
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Notification Manager
Toolbox

Revised by: Rich Collyer December 1989
Written by: Darin Adler April 1988

This Technical Note describes the Notification Manager, the part of the operating system that
lets an application, desk accessory, or driver alert the user.
Changes since October 1989: Clarified the section on error handling for calls to
_NMInstall.

The Notification Manager, in System Software version 6.0 and later, provides the user with
an asynchronous “notification” service. The Notification Manager is especially useful for
background applications; the PrintMonitor application and the system alarm (set by the
Alarm Clock desk accessory) both use its services.

Each application, desk accessory, or device driver can queue any number of notifications.
For this reason, you should try to avoid posting multiple notifications since each one will be
presented separately to the user (i.e., “you have mail,” “you have mail,” etc.).

The Notification Manager queue contains information describing each notification request;
you supply a pointer to a queue element describing the type of notification you desire. The
Notification Manager queue is a standard Macintosh queue, as described in the Operating
System Utilities chapter of Inside Macintosh, Volume II-367. Each entry in the Notification
Manager queue has the following structure:

TYPE NMRec = RECORD
qLink: QElemPtr; {next queue entry}
qType: INTEGER; {queue type -- ORD(nmType) = 8}
nmFlags: INTEGER; {reserved}
nmPrivate: LONGINT; {reserved}
nmReserved: INTEGER; {reserved}
nmMark: INTEGER; {item to mark in Apple menu}
nmSIcon: Handle; {handle to small icon}
nmSound: Handle; {handle to sound record}
nmStr: StringPtr; {string to appear in alert}
nmResp: ProcPtr; {pointer to response routine}
nmRefCon: LONGINT; {for application use}

 END;

To use the Notification Manager, you must also use _SysEnvirons (discussed in Inside Macintosh, Volume V and M.OV.GestaltSysenvirons)
to test the System Software version. If the System Software is not current and the Notification Manager routines are not present, display an alert
to inform the user that your application requires System Software version 6.0 or newer, then exit.

Developer Support Center December 1989

Macintosh Technical Notes

Using the Notification Manager

Your program can request three types of notification:

• polite notification: a small icon that periodically appears in rotation with the Apple in
the menu bar;

• audible notification: a sound to be played by the Sound Manager;
• alert notification: an dialog box containing a short message.

In addition, you can place a diamond mark next to the name of the requesting desk accessory
or application in the Apple menu.

After you have notified the user as you feel necessary (placed a diamond mark in the Apple
menu, added a small icon to the list of icons which rotate with the Apple in the menu bar,
played a sound, and presented the user with a dialog box to acknowledge), you should call a
response procedure.

How the Notification Manager Handles Notifications

When the Notification Manager handles a notification, it does one or more of the following
(in this order):

• puts a diamond mark next to the requesting application or desk accessory in the Apple
menu

• adds a small icon to the list of icons which rotate with the Apple in the menu bar
• plays a specified sound
• presents a dialog box for the user to acknowledge and dismiss
• calls the response procedure

At this point, the diamond mark in the Apple menu and the icon rotating with the Apple in
the menu bar remain until your application removes the notification request from the queue.
The Notification Manager only presents the sound and dialog box once.

Creating a Notification Request

To create a notification request, you must set up an NMRec with all the information about the
notification you want:

nmMark contains 0 to not place a mark in the Apple menu, 1 to mark the current
application, or the refNum of a desk accessory to mark that desk accessory.
An application should pass 1, a desk accessory should pass its own refNum,
and a VBL task should pass 0.

nmSIcon contains NIL for no icon in the menu bar, or a handle to a small icon to rotate

Developer Support Center December 1989

Macintosh Technical Notes

with the Apple. (A small icon is a 16 x 16 bitmap, often stored in an 'SICN'
resource.) This handle does not need to be locked, but it must be non-
purgeable.

Developer Support Center December 1989

Macintosh Technical Notes

nmSound contains NIL to use no sound, –1 to use the system beep sound, or a handle to a
sound record which can be played with _SndPlay. This handle does not need
to be locked, but it must be non-purgeable.

nmStr contains NIL for no alert, or a pointer to the string to appear in the alert.

nmResp contains NIL for no response procedure, –1 for a predefined procedure that
removes the request immediately after it is completed, or a pointer to a
procedure which takes one parameter, a pointer to your queue element. For
example, the following is how you would declare it if it were named
MyResponse:

PROCEDURE MyResponse (nmReqPtr: QElemPtr);
pascal void MyResponse (QElemPtr nmReqPtr);

Note that when the Notification Manager calls your response procedure, it does not set up A5 and low-memory globals for you. If you need to
access your application’s globals, you should save your application’s A5 in the nmRefCon field as discussed later in this Note.

Response procedures should never draw or do “user interface” things. You should wait until the user brings the application or desk accessory to
the front before responding to the user. Some good ways to use the response procedure are to dequeue and deallocate your Notification Manager
queue element or to set an application global (being careful about A5), so the application knows when the user receives the notification.

You should probably use an nmResp of –1 with audible and alert notifications to remove the notification as soon as the sound has finished or
the user has dismissed the dialog. You should not use an nmResp of –1 with an nmMark or an nmSIcon, because the Notification Manager
would remove the diamond mark or small icon before the user could see it. Note that an nmResp of –1 does not deallocate the memory block
containing the queue element, it only removes it from the notification queue.

You can also use nmRefCon; one convenient use is putting your application’s A5 in this field so the response procedure can access application
globals. For more information about this technique, refer to the section about VBL tasks in M.TB.MultifinderMisc.

Notification Manager Routines

The system automatically initializes the Notification Manager when it boots. To add a
notification request to the notification queue, call _NMInstall. When your application no
longer wants a notification to continue, it can remove the request by calling _NMRemove.
Neither _NMInstall nor _NMRemove move or purge memory, and you can call either of
them from completion routines or interrupt handlers, as well as from the main body of an
application and the response procedure of a notification request.

FUNCTION NMInstall (nmReqPtr: QElemPtr) : OSErr;

Trap macro _NMInstall ($A05E)
On entry A0: theNMRec (pointer)
On exit D0: result code (word)

Developer Support Center December 1989

Macintosh Technical Notes

_NMInstall adds the notification request specified by nmReqPtr to the notification queue and returns one of the following result codes:

Result codes noErr No error
nmTypErr (–299) qType field is not ORD(nmType)

FUNCTION NMRemove (nmReqPtr: QElemPtr) : OSErr;

Trap macro _NMRemove ($A05F)
On entry A0: theNMRec (pointer)
On exit D0: result code (word)

_NMRemove removes the notification identified by nmReqPtr from the notification queue and returns one of the following result codes:

Result codes noErr No error
qErr Not in queue
nmTypErr (–299) qType field is not ORD(nmType)

How to Call _NMInstall and _NMRemove

If you do not yet have glue for _NMInstall and _NMRemove, you can use the following
from MPW (these are in the include files for MPW 3.0):

Pascal

FUNCTION NMInstall (nmReqPtr: QElemPtr) : OSErr;
INLINE $205F, $A05E, $3E80;

FUNCTION NMRemove (nmReqPtr: QElemPtr) : OSErr;
INLINE $205F, $A05F, $3E80;

C

pascal OSErr NMInstall (QElemPtr nmReqPtr)
= {0x205F, 0xA05E, 0x3E80};

pascal OSErr NMRemove (QElemPtr nmReqPtr)
= {0x205F, 0xA05F, 0x3E80};

Also note that qType must be set to ORD(nmType), which is 8.

The following short code segments demonstrate the use of the Notification Manager in MPW C:

#include <OSUtils.h>
#include <Notification.h>

struct NMRec myNote; /* declare your NMRec */
Handle ManDoneS; /* declare a handle for the sound */
OSErr err; /* declare for err handling */

myNote.qType = nmType; /* queue type -- nmType = 8 */
myNote.nmMark = 1; /* get mark in Apple menu */
myNote.nmSIcon = nil; /* no flashing Icon */

Developer Support Center December 1989

Macintosh Technical Notes

/* get the sound you want out of your resources */
ManDoneS = GetResource('snd ', soundID);

myNote.nmSound = ManDoneS; /* set the sound to be played
myNote.nmStr = nil; /* no alert box */
myNote.nmResp = nil; /* no response procedure */
myNote.nmRefCon = nil; /* set to nil since I don't need my A5*/

Before calling _NMInstall, you need to see if your application is running in the background. If your application is in the foreground, you
really do not need to notify the user, but if your application is in the background, you should make the following call to install the notification
event:

err = NMInstall ((QElemPtr) &myNote);

If the call to _NMInstall returns an error, you cannot install the notification event and must wait for the user to switch your application to the
foreground before proceeding with anything else. While you are waiting for a resume event, you should take care of other events, such as
updates. If you were able to install the notification, then you want to make sure to remove it when you are switched back into the foreground.
The following code does just that:

err = NMRemove ((QElemPtr) &myNote);

Further Reference:
• Inside Macintosh, Volume II-367, V-591, The Operating System Utilities
• M.OV.GestaltSysenvirons
• M.TB.MultifinderMisc

Developer Support Center December 1989

