
cdent -1- 3/5/25
Places, Contexts, Commands, and Glue 1
Numeric registers 1
Numeric Expressions 2
Formatting Commands 2
Indentation 2
Permanent indent 2
Temporary indent 2
Indent to column 3
White space 3
Inter token spaces 3
Line breaks 3
Required white space 3
Asserted white space 3
Other formatting commands 4
Declaration formatting 4
Conditional formatting 4
Display the token 4
Places and their default formatting 4
If statement 5
Switch statement 5
For statement 5
While statement 5
Do statement6
Compound statement 6
Goto, break and return 6
Other statement 6
Struct, union and class declarations 6
Function declaration 6
Other declarations 7
Expression 7
Function call 7
Label 7
Name 7
Command line options 7
-o 7
-p 8
-t 8
-indent 8
-ll 8
-cc 8
-allnl 8
-nonl 8
-trace 8
Embedded formatting commands 8
“Can’t touch this” ƒ- and ƒ+ 8
Appendix 8
How long output lines are formatted 8
Treatment of newlines from the source 9

cdent -2- 3/5/25
Parsing and how it affects formatting 9

cdent -3- 3/5/25
cdent

A Formatter for C and C++ source

cdent is an MPW tool which formats C and C++ source code. By default, the format style is
that of The C Programming Language by Kernighan and Ritchie. An alternative style,
developed for MacApp by Michael Burbidge, is also available. Additionally, the user can
specify
Places, Contexts, Commands, and Glue
Formatting commands are applied to specific places in the input. The places where formatting
is applied are defined by cdent and name syntactic entities like opening curly braces after the
condition of an “if” or the “case” label in a “switch” statement. A context is the range over which
certain formatting commands have an effect. A context is best thought of as that which exists
between opening and closing braces and parentheses. Formatting commands affecting the
indentation have a lifetime that begins when first seen until the end of the context. Glue (a
term stolen from Knuth’s TEX) is the formatting command sequence applied to a particular
place. Glue is predefined by cdent but can be specified on the command line.
Numeric registers

®0 The global indent delta
®1 The global width value
®2 The current indentation level
®3 The current output column
®4 The current temporary indentation level

The registers can also be set by the following formatting commands:

=dn Set register d to the value of expression n.

There are 10 registers, ®0 - ®9. These registers contain numeric values. Five of these
registers belong to the formatter, the remainder to the user's format commands. The
user registers are saved when a new context is entered and restored on exit. When a
new context is entered, the user registers are set to the values of the outer context.

cdent -4- 3/5/25
Numeric Expressions

expr : term
| expr + term
| expr - term
;

term : number
| ®d
;

Numeric expressions are sums and differences of terms and registers.
Formatting Commands
Formatting is done via yet another MPW language. The language is a prefix language; the
operator is specified before the arguments to the operator. Blanks and tabs appearing
between commands are ignored, however no blanks or tabs can appear between the operator
and its arguments.

Indentation
The indent is where output lines will begin. The indent remains in effect until the

closing of the context in which the indentation took place (think of the “{“ and “}”
surrounding compound statements).There is a global indent change value stored
in register ®0 which can be used in expressions such as "i+®0" and "i-®0". The
indent can also be set to the current column by using register ®3, as in "i®3".
This is most useful for establishing the indent for lines following this one.

Because indent is preserved as part of a context, it is not necessary for glue to restore
the previous indent. Indent is restored automatically when the end of a context is
reached. A consequence of this is that it is not possible for a nested context to
modify the indentation of an upper context. This is a minor limitation.

Permanent indent
i<n> Set indent to absolute column n
i+<n> Set indent to current indent + n
i-<n> Set indent to current indent - n

Temporary indent
t<n> Set temporary indent to absolute column n
t+<n> Set temporary indent to current indent + n
t-<n> Set temporary indent to current indent - n

The permanent indent applies to all lines output for the remainder of the current context. The
temporary indent is used for continuation lines. It is the column output lines will begin
when the line being written overflows the column width. It remains in effect until a
newline, either from the source or from other formatting commands, occurs. At that
point, indentation reverts to the current indentation level. Whenever the indent is
modified, the temporary indent is set to the same value as the indent. The effect of this
is that continuation lines line up under the current indent.

cdent -5- 3/5/25

Indent to column
c<n> Position to column <n>. Does not newline

Emits blanks and tabs until column <n> is reached. If already beyond that column, nothing is
emitted. Indent to column overrides permanent and temporary indent for this one line of
output.

White space
Inter token spaces

s<n> Require <n> blanks. <n> defaults to 1
s#<n> Desire <n> blanks. <n> defaults to 1

Blanks are desired in certain places and required in others. Blanks can be used to display
"if (…" instead of "if(…". Required blanks are always displayed. Desired blanks will be
removed to fit more items on the line if so required.

Line breaks
n<n> Require <n> newlines. <n> defaults to 1
n#<n> Desire <n> newlines. <n> defaults to 1
/ If a newline required, put one here.
/+<n> As above, but override global temporary indent.

Newlines separate output lines. Required newlines will always be emitted when seen.
Desired newlines will appear only after all comments from the current input source line
have been emitted. Continuation newlines, denoted by "/", are emitted when the output
line would be too long. If followed by "+<n>", the temporary indent for the first and
following continuation lines will be <n> more than the current indent. Otherwise, the
most recently established temporary indentation level is used.

Required white space
&n Require beginning of line
&s Require last token was a space/newline

The beginning of line token ("&n") requires that there must not be any output on the current
line (with the exception of indentation).

Asserted white space
!n Assert beginning of line
!s Assert that last token was a space

Asserting beginning of line ("!n") is used by labels to indicate that a logical beginning of line
condition exists.

cdent -6- 3/5/25
Other formatting commands
Declaration formatting

dr<n> Set declaration width to <n>, associate "*" and "&" with object
dl<n> Set declaration width to <n>, associate "*" and "&" with type

The declaration width is the number of characters taken by the type of a declaration. The
declaration might have operators such as "*" and "&". To maximize the declaration
width (so that following declarations will be aligned to largest preceding declaration) use
"dl0" or "dr0".

Conditional formatting
?n{…}{…} At beginning of line
?s{…}{…} Last token was a space or newline
?i{…}{…} Last token was an identifier-like thing
?o{…}{…} Last token was an operator
?'({…}{…} Last token was a '('
?'){…}{…} Last token was a ')'
?'{{…}{…} Last token was a '{'
?'}{…}{…} Last token was a '}'
?';{…}{…} Last token was a ';'

If the condition is true, then the first set of formatting instructions are used, otherwise the
second set of formatting instructions are used. Conditional formatting commands can
be nested.

Display the token
• Contextual reference to the current item

A place can have 0, 1, or 2 items to display. These items are referenced by the symbol "•" in
the format string. When there are more than one item to display, the "•" work from left to
right.

Places and their default formatting
This sections describes the places where glue can be applied, the wonderfully mnemonic
option names for the places, and the default glue.

cdent -7- 3/5/25
If statement

• if -if0 "&n"
• (• -if1 "s# • i®3 !n"

•) • -if2 "•/"
• ; • -if3 "&n c®2+®0 • n#"
• { • -if4 "?n{}{s#} • &n i+®0"
• } • -if5 "&n c®2-®0 • &n"
• } • else -if6 "&n c®2-®0 &n • s# !n"
• ? -if7 "&n i+®0"

• else • if -else1 "&n • s !n"
• else • { • -else3 "?n{}{s#} • &n i+®0"

• } • -else6 "&n c®2-®0 • n#"
• else • ? -else4 "&n • n# i+®0"

Switch statement
• switch -switch0 "&n"

• (• -switch1 "s# • i®3 !n"
• { • -switch2 "?n{}{s#} • n# i+®0"

• case • -switch3 "&n c®2-®0 • &s"
• default • -switch4 "&n c®2-®0 •"
• : • -switch5 "•n#"

• } • -switch7 "c®2-®0 &n • n#"

For statement
• for -for0 "&n"

• (• -for1 "s# • i®3 !n"
• ; -for3 "!s • !n s#"
•) • -for4 "!s • /"
• { • -for5 "?n{}{s#} • n# i+®0"
• ; • -for6 "&n c®2+®0 • n#"
• ? -for7 "&n i+®0"
• } • -for8 "c®2-®0 &n • n#"

While statement
• while -while0 "&n"

• (• -while1 "s# • i®3 !n"
• { • -while2 "?n{}{s#} • n# i+®0"
• ; • -while3 "&n c®2+®0 • n#"
• ? -while4 "&n i+®0"
• } • -while5 "c®2-®0 &n • n#"

•) • -while6 "•/"

cdent -8- 3/5/25
Do statement

• do -do0 "&n"
• ; -do1 "&n i+®0 • n#"
• { • -do2 "?n{}{s#} • n# i+®0"
• ? -do3 "&n i+®0"
• } • -do4 "c®2-®0 • ?n{}{s#} !n"

• while -do5 "&n"
• (• -do6 "s# • i®3 !n"

Compound statement
• { • -block1 "&n • i+®0 n#"
• } • -block2 "&n c®2-®0 • n#"

Goto, break and return
• goto • -goto1 "&n • &s"
• break • -break1 "&n • !n"
• return • -return1 "&n •& s"

Other statement
• stmt -stmt0 "&n"

• ; • -stmt1 "!s • n#"

Struct, union and class declarations
• struct -struct0 ""

• : • -struct1 "/ s# • i®3-1 s"
• , • -struct2 "?n{•s#}{•/?n{}{s#}} !n"

• { • -struct3 "?n{}{s#} • n# i+®0"
• public • : • -struct5 "&n c®2-®0 • c®3 • n#"
• } • -struct6 "&n c®2-®0 • s#"
• ; • -struct7 "!s c0 • n#3"

Function declaration
• fundef

• name -fundef2 "&n"
• (• -fundef3 "• i®3 !n"

• , • -fundef4 "?n{• t®3-1 s#}{•/?n{}{s#}} !n"
•) • -fundef6 "•"

• decl -fundef7 "&n c0 dr+"
• : • -fundef8 "&n i+®0 t+2 • s"

• { • -fundef13 "&n c®2+2 • n"
• } • -fundef14 "&n c®2+2 • n"

• , • -fundef10 "?n{• s#}{•/?n{s#}{&n c®2+2}}"
• { • -fundef11 "&n • n i+®0"
• } • -fundef12 "&n c®2-®0 • n#3"

cdent -9- 3/5/25
Other declarations

• decl -decl0 "&n dr"
• , • -decl1 "?n{• s#}{• / ?n{}{s#}} !n"
• = • -decl2 "s# • s# i®3 !n"
• (• -decl3 "• i®3 !n"
• { • -decl5 "&n • i®3 n#"

• { • -decl6 "&n • i®3"
• } • -decl7 "•"
• , • -decl8 "?n{i®3•s#}{•/?n{}{s#}} !n"

• } • -decl9 "•"
• ; • -decl10 "!s • n#"

Expression
• expr

• , • -expr1 "?n{•s#}{•/?n{}{s#}} !n"
• ? • -expr2 "/?n{}{s#} • s#"
• : • -expr3 "/?n{}{s#} • s#"
• op • -expr4 "/ &s • &s"
• (• -expr5 "/• i®3 !n"
• = • -expr6 "&s • &s i®3"
•) • -expr7 "?o{!s}{}•/"
• name • -expr8 "?i{&s}{}"

Function call
• funcall

• (• -funcall2 "• i®3 !n"
• , • -funcall3 "?n{•s#i®3}{•/?n{}{s#}} !n"
•) • -funcall4 "•/"

Label
• label • : • -label1 "&n c0 • c0 • c®2 !n"

Name
• name -name1 "?i{&s}{}"

Command line options
By default, cdent reads from standard input and writes to standard output. It sets tabs to 4
spaces, indents by 4 spaces, sets temporary indent to +2 from the current indent, places end-
of-line comments at column 48 and sets line length to 120. Solitary source new lines are
ignored, but multiple newlines are passed through.

An input source file can be specified on the command line. Instead of standard output, another
file can be named. Default formats can be overridden using the option names given in the
“Places and their default formatting” section.

-o file Output file
The single argument is the name of an output file. The output file will be overwritten
with the formatted source.

cdent -10- 3/5/25

-p Progress
Emit progress information during the formatting. The progress information is written to
standard error

-t n Set the tab width
The default tab width is 4. Sequences of 4 or more spaces will be replaced by a tab
character. This option specifies how many spaces there are to a single tab character.

-indent n Default indentation
Lines within blocks and other statements are indented 4 more spaces than lines outside
the block. This option specifies the indentation to use instead of 4.

-ll n Line length
Output lines are broken when they become longer than the line length. The default line
length is 120.

-cc n Comment column
Comments appearing at the end of a line are aligned. The default column is 48. This
option changes the comment column.

-allnl Preserve source newlines
Single newlines from the source are ignored except when long output lines are
reformatted. Setting this option will preserve all source newlines in the output.

-nonl Ignore source newlines
Setting this option causes all source newlines to be ignored. The only newlines
appearing in the output will those generated by the glue or by line overflows.

-trace option Debug cdent
Option is either parse or formatting. cdent will display cryptic lines of text during
execution. Have fun.

Embedded formatting commands
Some formatting commands can be embedded in the source. These formatting commands
are embedded in comments. If the first character following the comment lead-in is a “ƒ”, the
embedded formatting command follows it. At this writing, only one formatting command is
available.
“Can’t touch this” ƒ- and ƒ+
Frequently there are blocks of source text which should not be reformatted, either
because the formatter will screw it up (sad but true) or because the tables are specially
formatted data. To prevent this source from being formatted, the command “ƒ-” turns
off formatting until the line following the command “ƒ+”.
Appendix
How long output lines are formatted
Applying the default formats to most source files produces acceptably formatted
output. However, some source files will cause the output line length to be exceeded.
When this occurs, the formatter applies the following steps until the line fits:

1. Remove optional blanks.
The source is reformatted, with optional blanks (those whose glue is “s#”) removed.

2. Use previously ignored source newlines.
Previously ignored newlines are inserted. This is done under the premise that the

cdent -11- 3/5/25
source was not some bazoo test case but something relatively close to what was
desired. Consequently, we re-use the newlines to break the output.

3. Insert a conditional newline.
If the re-use of source newlines doesn’t help, conditional newlines (those whose glue is
“/”) are converted into real newlines. This is done after re-use of source newlines under
the premise that source newlines are more likely correct than conditionally newlines.

4. Insert a newline.
Drop back and punt. A newline is inserted and formatting continues. This can yield
very bizarre output on the right hand side of the affected lines. The output is valid, but
squirrelly.

Treatment of newlines from the source
As noted above, source newlines are handled as special cases. Single newlines are
ignored (except when reformatting long lines), but multiple newlines are retained. This
allows the formatter to preserve blank lines following break statements inside switch
statements if they occur without adding more special cases. It also allows the inclusion
of blank lines separating declarations from the body of a block. It’s the right thing to
do.

Parsing and how it affects formatting
The formatter must parse the source. The parser is best described as a “slob” parser.
Because cdent does not do file inclusion or macro expansion, it must be lenient in parsing.
This leniency means that declarations will not always be recognized as declarations if the
declaration begins with a typedef name. It also means that all code in any branch of a
conditional must be valid; the technique of incorporating comments by preceding text with a
“#if 0” will fail with a syntax error.

