
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

MPW Q&As
Platforms & Tools

Revised by: Developer Support Center June 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As in this Technical Note:
MacBrowse and building or editing 411 files

MacBrowse and building or editing 411 files
Date Written: 1/26/93
Last reviewed: 4/1/93

We’d like to add documentation to the Documentation part of MacBrowse for our
application. Is this possible and if so how? I’ve noticed that MacBrowse reads 411 files.
How can I create a 411 index file?

MacBrowse will allow you to create but not edit your 411 files. Build your own 411 file by
parsing your source files then using the SaveAs Text option in MacBrowse. The dialog box
will have an option to save as 411. This will create a 411 file with stubs; then fill in the stubs
using MPW or any text editor. The next time you open MacBrowse it will build the index
file for your 411 file. For more information on the tags used in 411 files see the Get
command documented in the MPW Command Reference on the E.T.O. CD under MPW
Documentation. Note: The Copyright Notice is needed at the top of the 411 file.

Developer Support Center June 1993

Macintosh Technical Notes

OBJECT MASTER also has support for creating and editing 411 files. This product is
available from Acius.

Developer Support Center June 1993

Macintosh Technical Notes

Choice of C or Pascal language for Macintosh development
Date Written: 5/28/90
Last reviewed: 5/28/90

Should I use C or Pascal for Macintosh development? Which language is better? Which
development system should I use?

Asking MacDTS which language is better is like asking the Rolling Stones what their
favorite song is: the answer depends on whom you ask and the mood they are in.

Use the language that you are most comfortable with. MacDTS engineers use both C and
Pascal. Both languages have advantages and disadvantages. Many people complain that C is
terse and unreadable. Others say that Pascal is too verbose, and that its lack of knowledge
about the machine can make programming awkward.

There are many good development systems. MPW is powerful and extensible, but it requires
a lot of hardware to run efficiently. Both Think™ languages (from Symantec) are fast and
easy to use, but they aren’t extensible at all. There are also good languages from other
vendors, including Semper Software™ Modula-2, Language Systems™Fortran,
MicroSoft™ and Zedcor™ BASIC, and Allegro Common Lisp from Apple (formerly from
Coral Software).

Officially, Apple doesn’t recommend any particular language or development system.

Installing MPW 3.0
Date Written: 1/1/90
Last reviewed: 12/17/90

The MPW installer is reporting that it can’t find the “DoIt” script. What is wrong and how
can I properly install MPW?

The problems installing MPW 3.0 could be due to a limitation of the installation script—that
is, using the Installer we provide will not work if there are single or double quotes, or other
special characters, in the full pathname of the destination folder. This is noted in the MPW
manual under “Getting Started.” The solution is to either install MPW by hand (not hard
unless you’ve never done it before and don’t know where everything goes), or to rename
your hard disk with a simpler name. Since most of MPW complaints occur when your hard
disk’s name has an apostrophe in it, I would suggest the latter method.

Another possible problem is caused by a bug in some third-party 'INIT's that cause the MPW
installer to fail. This bug is caused by those 'INIT's using PBHSetVol and changing the
default volume behind MPW’s back. This problem is frequently reported by users with

Developer Support Center June 1993

Macintosh Technical Notes

TOPS (from TOPS, a Sun Microsystems company).

Some 'INIT's use PBHGetVol to get and save the working directory, then attempt to restore it
using PBHSetVol, but end up setting the working directory to the root instead. The
Macintosh Technical Note “Why PBHSetVol is Dangerous" warns against using PBHSetVol.

Developer Support Center June 1993

Macintosh Technical Notes

Not only do these 'INIT's interfere with the installer they can also interfere with other MPW
operations, most commonly when MPW tries to access a script in your current directory or a
tool tries to open a script in the current directory.

To work around the installer problem, you can:

1. Manually install MPW;
2. Disable any 'INIT's (remove them from the System Folder and reboot), then mrun the
installer. (Note: you can prevent TOPS from loading by holding down the command key
while you reboot);
3. Use a text editor to edit the file “Startup” in the Installation Folder. Search for the line
starting with “DoIt” and insert the line “directory” immediately before it. This will force the
MPW shell to reset the working directory. Save the Startup file and perform the installation
procedure as documented.

Any 'INIT' that uses PBHSetVol will interfere with the setting of the working directory
whenever a disk is inserted while MPW is running. You will have to issue a “directory”
command to make the MPW shell reset the working directory.

Directory can’t be prerequisiteFile in an MPW dependency rule
Date Written: 1/28/91
Last reviewed: 2/14/91

We are working on a project with MPW. Is there a way to set up our makefile for the main
project so that it is dependent on the source files from the library (already constructed), not
the object file produced by running lib? Is there a way to refer to a directory (rather than a
file) as a prerequisiteFile in a dependency rule?

That’s a great suggestion, but unfortunately it isn’t possible (at this time) to have a directory
as a dependency. I will definitely forward the suggestion along to the appropriate people.

Window-splitting resource format for MPW 3.2
Date Written: 7/29/91
Last reviewed: 8/30/91

The Macintosh window-splitting resource 'MPSR' (ID =1008) for MPW 3.2 contains a 20-
byte header, followed by an array of 10-byte elements that describe how to make the panes.
Its fields are defined as follows, subject to revision in future MPW releases:

The Header:
rect (8 bytes) Open Rectangle (zoomed out size)
rect (8 bytes) Close Rectangle (zoomed in size)
long (4 bytes) First position (offset into file of upper left corner
 for the lower right pane)

Developer Support Center June 1993

Macintosh Technical Notes

Each Element:
enum (1 byte) Orientation - (none = 0, row = 1, column = 2)
pad (1 byte)
short (2 bytes) PaneSpec - an ID number, the pane to split
short (2 bytes) Size - offset from top or left for the split

Developer Support Center June 1993

Macintosh Technical Notes

long (4 bytes) First Position - first character position in the pane

The last element in the array is a null element with Orientation = none. The PaneSpec is used to locate the pane to split. A Pane spec consists of
5 3-bit fields. [0 eee ddd ccc bbb aaa]. Panes can be nested up to 5 levels deep. A pane can be split up to 7 times (3 bits).

Script for finding Macintosh modify-read-only files
Date Written: 3/17/92
Last reviewed: 4/22/92

How can I tell if a given file (with projector ckid) has been ModifyReadOnly’d? What I
really need to do is search a folder nest for all such files.

This is a script to find out where modify-read-only (or modifiable) files are . The files that
are modify-read-only have a “*” after the revision number; the modifiable files have a “+”
after the revision number.

 for file in `files -r -f`
 projectinfo "{file}" -s
 end

MPW 3.0 max global data size is >32K, max local data still 32K
Date Written: 1/1/90
Last reviewed: 12/17/90

Is the maximum size for global and local data still 32K?

Starting with MPW 3.0, the maximum size for global data in MPW became larger than 32K,
using compiler and linker options -m and -srt. Local data is tougher, because local data is
allocated by using the LINK instruction—for example, LINK A6,#$-380. With this relative
addressing mode, you’re constrained to the negative side of a 16-bit value for local space,
which translates to 32K. In other words, this limit is basically due to the Motorola processor
architecture.

If you are allocating more than 32K either globally or locally, you might want to rearchitect
your system to use dynamic (and theoretically unbounded, especially on virtual
architectures) storage space.

Calling/linking external routines
Date Written: 4/25/89
Last reviewed: 11/8/90

I’m trying to call external routines, written in assembler or some high-level language, from
my C program, but the linker complains that my procedure is not defined anywhere. How
can I make it accessible from C?

Developer Support Center June 1993

Macintosh Technical Notes

Developer Support Center June 1993

Macintosh Technical Notes

C is case sensitive, while some other languages, notably Pascal, are not. Pascal generates an
all uppercase symbol names for any of your procedures. (For example, MyProc causes the
Pascal compiler to create an entry point symbol named MYPROC.)

In C, if you are declaring a C routine, the name is case sensitive, For example,

 extern MyProc();

requires an entry point named MyProc, but

 Pascal MyProc();

requires an entry point named MYPROC, consistent with the Pascal compiler.

The assembler can be either case sensitive or case insensitive. Use the

 CASE ON ; For C

directive to make the assembler case sensitive like C. Make sure your assembler routines match their expected usage.

If all else fails, you can use the linker -ma option to remap entry point names to satisfy unresolved references.

MPW 3.1 doesn’t work with System 7
Date Written: 4/2/91
Last reviewed: 4/2/91

Does MPW 3.1 work with System 7.0?
__

MPW 3.1 won’t work with System 7.0. The MPW 3.2 Shell is on the final System 7.0 CD,
along with MPW 3.2 Choose, release notes, help files, and Include files. The other MPW 3.2
Tools are not included on the System 7.0 CD, but are available from APDA as a standalone
product and as part of the Essentials•Tools•Objects (ETO) #4 CD.

Developer Support Center June 1993

