
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

MPW C Q&As
Platforms & Tools

Revised by: Developer Support Center June 1993
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As this month:
Calling standard C functions from within a shared library

Calling standard C functions from within a shared library
Date Written: 1/21/93
Last reviewed: 4/1/93

In building libraries with Shared Library Manager, I’ve discovered a limitation that shared
libraries can’t call functions in the Standard C Library. I’ve tried to call malloc and rand. The
use of both of these functions cause crashes that seem related to interrupts. What’s wrong?

There are several issues concerning the use of standard C library functions:

1. They aren’t compiled using model far.
2. Some of them use globals.
3. Some of them make callbacks into MPW.
4. Some of them allocate memory and never free it.

The first issue concerns the fact that normally a shared library isn’t in its global world when

Developer Support Center June 1993

Macintosh Technical Notes

it’s called. This means that the shared library needs to enter its global world before calling
any model near code that contains references to global variables or calling any model near
code that makes a call to code in another code segment (intersegment call). This is a
common problem when linking with some of the libraries supplied by MPW, since they’re
all compiled using model near. You can avoid the intersegment call problem by merging all
your shared library’s implementation code segments into one code segment using the
linker’s -sg option, but you’ll

Developer Support Center June 1993

Macintosh Technical Notes

still need to enter the library’s global world before calling model near code that references
global variable. Just call OpenGlobalWorld before calling the routine, and
CloseGlobalWorld after the routine returns. If you choose not to merge your implementation
code segments into one code segment, then you must use the flags=segUnload option when
declaring your library in the library’s export definition file.

With regards to the jump table problem, BuildSharedLibrary and LinkSharedLibrary take
care of the jump table problem by forcing all of the MPW libraries to be merged into the
Main code segment.

The problem with the MPW callbacks is that when they’re called from a shared library, the
environment isn’t set up for the callbacks to work. Routines that use MPW callbacks include
all of the I/O routines such as fprintf when used with stdin, stdout, or stderr, unless they’ve
been redirected to a file. This includes the routines that use one of these by default such as
printf. You might want to try using the Trace instead to display the output in the Trace
Monitors trace window. Another solution is used by the Shared Library Manager’s TestTool
example. It sets a print function for each object that it creates. This print function exists in
the MPW tool and simply sends the output to stdout. This allows the object to essentially do
a printf. This print function is called myPrintFunc and can be found in TestTool.cp.

The last issue regarding memory allocation that doesn’t get freed is one of the more
annoying ones. Some of the routines cause some memory to be allocated the first time one of
the routines in a “family” is called. A pointer to this memory is stored in a global so it can be
reused on successive calls. The libraries rely on the fact that when the application quits, the
memory will automatically get freed up when the application heap is freed. If you call one of
these routines from a shared library or any stand-alone code resource, the memory gets
allocated from the application heap (or maybe it’s the current heap) and isn’t freed up until
the heap that it was allocated from goes away (usually when the application quits). One of
the offenders is sprintf and others in its family (scanf, fprintf, sprintf, and so on). They all
share a buffer that gets allocated the first time one of them is called. Another offender is
malloc, which creates a big chunk of memory to allocate little chunks out of.

Shared libraries can crash if they allocate the memory from one application heap and then,
while a second application is also using the library, the first application quits. Now the
pointer is invalid but the library is unaware of this change. Libraries that are only used by
one application at a time won’t show a memory leak once the application quits. This
shouldn’t be a problem for such applications unless the application causes the library to
repeatedly load and unload.

Currently there’s no general solution to this problem. You can get around the sprintf problem
by using SLMsprintf instead. You can get around the problem with malloc by using memory
pools instead. We hope to come up with solutions for the other routines in the future.

MPW C and file I/O performance

Developer Support Center June 1993

Macintosh Technical Notes

Date Written: 8/26/92
Last reviewed: 11/24/92

Are there any tricks that might speed up reading and writing large files to disk? We’re using
standard C calls (fread and fwrite) for this purpose since our file I/O calls need to be
platform-independent. Are there any low-level File Manager calls that might speed up the
file I/O?

Developer Support Center June 1993

Macintosh Technical Notes

The C fread and fwrite functions are slower than File Manager calls because the standard C
library adds another layer of overhead to file I/O. In addition, unless you turn buffering off,
all file I/O is double-buffered when you use the standard C library functions. That is, fread
reads from a RAM buffer in which the lower-level C library code has buffered data read
from a disk file; fwrite writes data into a RAM buffer and the lower-level C library code
writes from that buffer into a disk file.

For the highest file I/O throughput, and for maximum flexibility and functionality on the
Macintosh, you should use the File Manager for all file access. The low-level File Manager
calls (the PBxxx or PBHxxx calls) have the least overhead and give you the most control. If
you use the File Manager’s Read (FSRead or PBRead) and Write (FSWrite or PBWrite)
calls, you’ll achieve maximum throughput by reading or writing your data in the largest size
possible (for example, if you need to write 10,000 bytes, you can write them with one Write
call).

If you must use the standard C library, you may want to adjust the size of the file I/O buffer
used by the library for your particular purposes. You can adjust the size of the file I/O buffer
using MPW C’s setvbuf function. If you do nothing, you’ll get a default buffer with a size of
1024 (1K).

MPW C’s setvbuf size parameter is treated internally as an unsigned short. This means that
the largest value acceptable to setvbuf for its size parameter is 65535. Larger values will be
treated modulo this number. If you set the buffer size to 0, I/O is unbuffered. You can turn
off buffering like this:

 setbuf(stream, NULL); // turn off buffering

or like this:

 setvbuf(stream, NULL, _IONBF, 0); // turn off buffering

Here are some general rules to follow to determine the size of the file I/O buffer you should use:

• If the file is small (less than 10K), you should probably use the default buffer.

• If the file is large (greater than 10K) but you write to it from your program in small pieces, buffering may help cut down the number of disk
accesses. You may want to change the buffer size to around 10K. You can experiment to see whether other values provide better results for you.
You’ll probably find some point where the overhead of double-buffering is more than the overhead of disk accesses—that’s when you should
turn buffering off.

• If the file is large (greater than 10K) and you write to it in large pieces or write to it with one Write call, you should turn buffering off.

Additional references:
Pages 106–107 in the MPW 3.0 C Reference for setbuf and setvbuf
Macintosh Technical Note “Mixing HFS and C File I/O”

Porting standard C library calls for Macintosh use
Date Written: 7/13/92
Last reviewed: 11/30/92

Developer Support Center June 1993

Macintosh Technical Notes

I’m porting C code from a UNIX® platform to the Macintosh. The code uses stdlib and stdio
calls such as calloc, realloc, malloc, free, memcmp, memcpy, memset, strtod, strcat, strchr,
strcpy, strlen, strncat, strncpy, strrchr, fopen, fclose, fwrite, and fread. For the most part, I’ve
always avoided these calls on the Macintosh since the Toolbox has equivalents. However, I’d
like to know whether there are any ramifications if I use these calls for porting compatibility.
The only issues I can identify are (1) StdCLib.o, which defines these calls, uses globals and
therefore will prevent me from using the code in standalone code segments, and (2) I’ll lose
some file information such as type and creator. Are there any other issues that I should be
aware of?

There are various difficulties or “gotchas” associated with use of these calls on the
Macintosh, which generally keep them from being used in commercial development.
However, being able to cross-compile code is very useful, so people like to use the calls for
portability reasons despite their drawbacks.

The memory allocation calls (such as malloc, calloc, and realloc) all allocate pointer-based
blocks. This works but can cause memory fragmentation and inefficient usage compared to
the handle-based system usually used on the Macintosh. Also, MPW’s implementation of
these calls doesn’t return memory to the Macintosh pool; when you allocate a block with
malloc, the routine gets a larger block from the Macintosh with NewPtr, which it then
subdivides into several smaller blocks to satisfy allocation requests. However, if the program
then frees all the allocations made from this Macintosh pointer block, the library routine
won’t notice and dispose of it. Although the memory remains available for reuse by the
standard C allocation routines, it has been lost to the Macintosh. For details, see the Q&A
about using calloc and NewPtr in the same program in develop Issue 12 and the Macintosh
Technical Note “A/UX Q&As.”

The file manipulation calls suffer somewhat merely because they don’t fit well into the
Macintosh file system. For example, if you want to select files with the Macintosh
StandardGet dialog, you’ll find that fopen doesn’t accept the volume reference or directory
ID returned; it accepts a pathname, making it difficult to specify files in various folders.
Also, as you noted, you have no control over types or creators; you also can’t easily
associate resource forks with data forks or use a number of the more expressive Macintosh
file system calls.

You can use all of the string-manipulation calls (such as strcpy and strlen) and simple
memory-access calls (such as memcpy and memcmp) with impunity; fortunately, bytes is
bytes. Note, however, that a large number of seemingly innocuous calls (such as atoi and
many others) use globals, making them inappropriate for use in cases where globals
wouldn’t be available, such as in code resources.

Basically, the standard C calls do work but suffer from faults, primarily because they’ve
been kind of wedged into a system in which they don’t fit. While most are functional and
compatible enough to be used in software safely, be aware of their drawbacks and

Developer Support Center June 1993

Macintosh Technical Notes

limitations; the basic decision is whether you can provide the functionality you need with
these calls and whether the extra work required to deal with them is more or less than the
effort saved by avoiding wholesale modifications to the source being ported.

Use File Manager SetEOF calls to do “lseek” file sizing
Date Written: 6/14/91
Last reviewed: 8/1/92

Using standard C I/O calls, I would create a new file of a specific size with the following
code:

Developer Support Center June 1993

Macintosh Technical Notes

 int n;
 n = creat("filename");
 lseek(n, the_size_I_want, 2);

However, under MPW 3.1 the lseek call always returns -1 with errno set to 6 (ENXIO). The only workaround I have found is to actually write
the number of dummy bytes into the file before I have to seek around in it. Is there a call resembling the UNIX call ftruncate, or must I use stdio
calls rather than fctnl calls?

MPW C lseek is not capable of increasing file sizes, as in the UNIX lseek code. The best way to achieve file sizing is to use the File Manager
SetEOF calls, which can grow a file to whatever size (using Create, Open, and SetEOF). Many of the low-level C I/O routines don’t work
exactly like they work under other platforms, and this is a known worry when moving source code between PC, Macintosh, and UNIX
platforms. If possible, use the ANSI C file I/O routines.

MPW C error 426 and workarounds
Date Written: 7/13/90
Last reviewed: 8/1/92

What does the following MPW C error mean?

C - Fatal Error : 426
#---
 File "HD80:MPW:Gui:Guie:source:debug.c"; Line 2383
#---
C - Aborted !

“File "HD80:MPW:Gui:Guie:source:debug.c"; Line 2383” is a valid MPW compound command. If you triple-click it and press enter, the line is
executed and it will take you to the exact line of your source code that produced the error 426.

The error 426 is an internal compiler error that occurs for several reasons, but all are related to symbol table space for local variables
overflowing memory. Possible workarounds are:

• Use a bigger memory partition for MPW.
• Use less or shorter local variable names.
• Restructure your compile and linking so that less total local symbols are used in each compile.

Building resources with MPW C
Date Written: 12/11/90
Last reviewed: 8/1/92

When building a 'CODE' resource with MPW C the main entry point needs to be specified
with the -m option of Link. So why does one need also to make sure that the routine is the
first one in the file and that the file is the first one linked? Why can’t “-m” be enough to tell
the linker where the entry point will be?

Developer Support Center June 1993

Macintosh Technical Notes

From your question, it sounds like you are asking about resources _other_ than 'CODE'
resources containing object code (that is, 'XMCD's, 'INIT's, 'cdev's, 'CDEF's, 'LDEF's, and
so on). When you create 'CODE' resources, you are building a full-fledged application and
don’t need to specify the -m option or make sure that the main entry point is the first one in
the link list. With applications, that is done for you.

You need to specify the -m option and make sure that the main entry point is the first one in
the link list only when you build stand-alone code resources. There are separate reasons for
each of these requirements.

You specify the -m option to tell the linker what the root module or routine is. It uses this
module as the start of a tree search for unreferenced modules. These unreachable modules
are not included in the link, making your code smaller.

The reason for making sure that the main entry point is the first one in the link list is so that
clients know where the starting point of the code is. With stand-alone code, you don’t get a
jump table, which is normally the mechanism used to find the main entry point (the main
entry point is in the first jump table entry). Without a jump table, you don’t have an
indication of “the main entry point is $xxxx bytes into the resource,” so by convention, it’s
the first byte. I think that the exception to this are DRVRs, which have a five-entry table at
the start of the resource that points to five routines in the DRVR.

For more information on this, you might want to take a look at the DTS Macintosh Tech
Note “Stand-Alone Code, ad nauseam."

Converting parameter sizes for MPW and A/UX C
Date Written: 3/11/91
Last reviewed: 8/1/92

Is it possible to tell the MPW C compiler to generate 68881 instructions without having the
compiler represent extended numbers in 96 bits?

I know of no way to induce either MPW or A/UX C to change the size of the parameters it
passes, but there are SANE routines to convert back and forth. MPW Sane.h conditionally
(depending on whether you are using mc68881 or not) defines the types extended80 and
extended96 as well as routines to convert between them:

#ifdef mc68881
struct extended80 {
 short w[5];
};
void x96tox80(const extended *x,extended80 *x80); /* x is src, x80 is dest */
void x80tox96(const extended80 *x80,extended *x); /* x80 is src, x is dest */

typedef struct extended80 extended80;
#else

Developer Support Center June 1993

Macintosh Technical Notes

typedef struct {short w[6];} extended96;
void x96tox80(const extended96 *x96,extended *x); /* x96 is src, x is dest */
void x80tox96(const extended *x,extended96 *x96); /* x is src, x96 is dest */
#endif

Developer Support Center June 1993

Macintosh Technical Notes

Build these routines into your MPW code, then call them from your A/UX code to do the conversion as necessary. If you want to build these
routines in assembler under A/UX, here is a dump of the code from MPW:

Module: Flags=$08=(Extern Code) Module="x96tox80"(313)
Segment="CSANELib"(259)

Content: Flags $08
Contents offset $0000 size $0018
00000000: 206F 0004 ' o..' MOVEA.L $0004(A7),A0
00000004: 226F 0008 '"o..' MOVEA.L $0008(A7),A1
00000008: 3290 '2.' MOVE.W (A0),(A1)
0000000A: 2368 0004 0002 '#h....' MOVE.L $0004(A0),$0002(A1)
00000010: 2368 0008 0006 '#h....' MOVE.L $0008(A0),$0006(A1)
00000016: 4E75 'Nu' RTS

Size: Flags $00 ModuleSize 24

Module: Flags=$08=(Extern Code) Module="x80tox96"(314)
Segment="CSANELib"(259)

Content: Flags $08
Contents offset $0000 size $0018
00000000: 206F 0004 ' o..' MOVEA.L $0004(A7),A0
00000004: 226F 0008 '"o..' MOVEA.L $0008(A7),A1
00000008: 2368 0006 0008 '#h....' MOVE.L $0006(A0),$0008(A1)
0000000E: 2368 0002 0004 '#h....' MOVE.L $0002(A0),$0004(A1)
00000014: 3290 '2.' MOVE.W (A0),(A1)
00000016: 4E75 'Nu' RTS

Size: Flags $00 ModuleSize 24

Disable MPW dead-code stripping with #pragma directive
Date Written: 6/5/91
Last reviewed: 8/1/92

In my run-time MPW C object messaging mechanism, when I resolve references to routines
at run time through a little piece of code, the linker never sees any references to my routines
and thinks that they are all dead code, dutifully eliminating all them during the linking
process. Is there a way to force a routine to be loaded into a code resource without adding
either an unnecessary reference in the jump table or its code segment?

MPW C 3.2 has a #pragma directive to disable dead-code stripping. It is used as follows:

 #pragma force_active on // don't strip the below code
 void not_accessed()
 {
 }
 #pragma force_active off // go back to stripping as usual

The default for force_active is off, and so dead code will normally be stripped.

The #pragma directive didn’t exist before MPW 3.2, but it is still possible to avoid code stripping with a technique similar to the one used by
MacApp. Simply insert a conditional that is never true into a section of your program that is called and make a function call from this
conditional to the nonreferenced code, as shown below:

Developer Support Center June 1993

Macintosh Technical Notes

 short i=0;
 if (i==1)
 DeadFuncCall()

You can easily check to make sure your code did not get stripped by adding the MPW linker option “-uf <file>.” This option will write the
names of all unreferenced modules to the specified file.

Use types long and short instead of int for Macintosh toolbox calls
Date Written: 6/11/91
Last reviewed: 8/1/92

Using the int type isn’t a good idea for Macintosh toolbox calls, because the size of the int
type is compiler dependent. MPW has 4-byte ints and Think C has 2-byte ints, for example.
The code will compile slightly differently depending on the availability of prototypes and the
compiler used. It’s better to use types long and short because they are 4 bytes and 2 bytes,
respectively, for all Macintosh C compilers.

Maximum buffer size for MPW C setvbuf is 65536
Date Written: 8/13/91
Last reviewed: 8/1/92

MPW C’s setvbuf size parameter is treated internally as an unsigned short. This means that
the largest value acceptable to setvbuf for its size parameter is 65536. Larger values will be
treated modulo this number. In practice, the optimal settings for this value using MPW C is
somewhere in the range of 8K–12K, so DTS recommends that you use a value of 10K.
Alternatively you can experiment to see if other values provide better results for you. But
any value you try should be within 64K. Your mileage using setvbuf may differ for other
development environments.

MPW C comp keyword
Date Written: 12/16/91
Last reviewed: 8/1/92

What is the keyword comp? If comp is a reserved word in MPW C, is it also reserved for
type names? If it is, then the MPW headfile Script.h is in violation of this at line 788:

 typedef comp LongDateTime;

Where does this comp come from? Is this why comp is reserved?

Comp is not an ANSI or C++ keyword; however, it’s an IEEE-defined type to be used mainly for portable data, where floating-point values are
stored and retrieved between various systems/architectures (the name is short for “compatible”). By contrast, the “extended” type should be used
for Macintosh-only applications, or internally inside computation algorithms on a Macintosh system (comp is less precise than extended, only
64 bits).

Loading and dumping symbol files for MPW C
Date Written: 12/17/91

Developer Support Center June 1993

Macintosh Technical Notes

Last reviewed: 8/1/92

Loading and dumping symbol files for MPW C, I get errors that say “### Error 542 symbol
table structure sensitive compile time variables in dump file do not match current settings.”
I’m using two files: Makefile, which sets CREATE_THE_DUMPFILE for creating a bogus
include.h.o for Mak; and include.h, which gets #include’d into every source file. In
Makefile, {COptions} has “-d USE_THE_DUMPFILE” so all the source files will load
includes.h and then load the symbol table. What could be causing this error?

You’re probably getting the error because the rule you’re using to build the dumpfile begins
with C -c {SYM}... The -c option, which suppresses an output file, makes a dump file that’s
only useful for other compiles with -c.

So, you should get rid of the -c from your dumpfile rule; of course you can always add a line
to the rule to delete the resulting include.h.o.

Script for inline assembly code with MPW C compiler
Date Written: 1/8/92
Last reviewed: 8/1/92

How can I get the MPW C compiler to do inline assembly code, like I do with Think C?

With MPW C, it still isn’t possible to write inline assembly language code (at least not
easily). You can write the hexadecimal equivalent of your assembled code and put that in
your code (much as Apple does in many of its MPW C header files), but this is not nearly as
nice as Symantec’s implementation.

In MPW C, you have to type the hexidecimal code instead of the assembly statements. An
example from aliases.h follows:

 pascal OSErr NewAlias(const FSSpec *fromFile,
 const FSSpec *target,
 AliasHandle *alias)
 = {0x7002,0xA823};

Fortunately, there is an MPW script that helps with the task of calculating the hexidecimal equivalent to assembly language commands. The
script, called A2Hex, writes hex equivalent of selected lines of assembly to standard output. The script follows below. Basically put the A2Hex
file in the MPW Scripts folder, and A2Hex can be added to your Tools menu (or a different menu) with the following command:

 AddMenu Tools A2Hex 'A2Hex "{Active}" ∑∑ "{Worksheet}"'

Then you can enter assembler source code. For example, if you enter this in your work sheet:

 MoveQ #$0A, D0
 LSL.L #$8, D0

select it and then chose A2Hex from the menu, this is the output:

 700A #MOVEQ #$0A,D0
 E188 #LSL.L #$8,D0

Developer Support Center June 1993

Macintosh Technical Notes

Here is the script:

#---
A2Hex
MPW Shell Script

Original by Stuart Davidson
Changes by Gina Cherry • August 16, 1991
Copyright: © 1991 by Apple Computer, Inc., all rights reserved.

Usage: A2Hex [file]

Function:
A2Hex takes one or more lines of assembly language and computes the
equivalent in hexadecimal. The assembly lines cannot contain
variables, labels, or procedure headers. If an input file is not
specified, A2Hex prompts the user for a line of assembly language.
If an input file is specified, A2Hex converts the selected text in
the input file to hex.
#
Note:
A2Hex can be added to the Tools menu with the following command:
AddMenu Tools A2Hex 'A2Hex "{Active}" ∑∑ "{Worksheet}"'
#---
The first section of this script consists of commands that are
executed by the MPW Shell. These commands are ignored by StreamEdit,
because of the semicolon in the first column.
#---
Shell Commands
#---
; # If more than one parameter was given, write error msg & exit script
; If {#} > 1
; Echo "### Usage: {0} [file]" >> Dev:StdErr
; Exit 1
; End
;
; # Don't exit on error.
; Set Exit 0
;
; # Write procedure header to temporary file.
; Echo 'FOO PROC' > "{0}Temp.a"
;
; # If an input file was specified:
; If {#} == 1
; # Copy selected text from input file to clipboard.
; Copy § "{1}" ≥ Dev:Null
; # Exit if no text is selected in the input file.
; If {Status} != 0
; Delete {0}Temp.a
; Exit 0
; End
; # Save value of {NewWindowRect}
; Set OldWindowRect "{NewWindowRect}"
; # Want to open a small workspace.
; Set NewWindowRect 0,0,100,100
; # Open temporary file.
; Open {0}Temp.a
; # Restore old value of {NewWindowRect}
; Set NewWindowRect "{OldWindowRect}"
; # Append text from clipboard to temporary file.
; Paste ∞ {0}Temp.a
; # Write a newline to temporary file.
; Echo >> {0}Temp.a
; # Insert tabs.

Developer Support Center June 1993

Macintosh Technical Notes

; # Set count to the number of lines in the temporary file.
; Set count `Count -l {0}Temp.a`
; # Loop through lines.
; Loop
; # Break if on first line.
; Break if {count} == 1
; # Position cursor at beginning of current line.
; Find ∆{count} {0}Temp.a
; # Insert tab at beginning of line.
; Replace /(≈)1/ ∂t1 {0}Temp.a
; # Decrement count.
; Set count `evaluate {count} -1`
; End
;
; # Close temporary file
; Close -y {0}Temp.a
;
; # If no input file was specified:
; Else
; # Request a line of assembly code.
; Set assembly "`Request "Assembly to hex:"`"
; # If Cancel button was chosen, delete temp file & exit script.
; If "{assembly}" == ""
; Delete {0}Temp.a
; Exit 0
; End
; # Write assembly code to temporary file.
; Echo -n ∂t >> {0}Temp.a
; Echo "{assembly}" >> {0}Temp.a
; End
;
; Echo "∂tRTS" >> {0}Temp.a
; Echo "∂tENDPROC" >> {0}Temp.a
; Echo "∂tEND" >> {0}Temp.a
;
; # Assemble temporary file.
; Asm {0}Temp.a
;
; # If assembly fails, exit script.
; If {Status} != 0
; Echo "### {0}: Assembly failed." >> StdErr
; Exit 3
; End
;
; # Pipe output of Dumpobj to StreamEdit command. Dumpobj writes
; # disassembled code to standard output. StreamEdit executes the
; # StreamEdit statements at the bottom of this file to extract the
; # hex equivalent of the assembly input from the Dumpobj output. The
; # call to StreamEdit uses the command Which "{0}", which expands
; # into the name of the currently running shell script. The -d
; # option causes StreamEdit to discard text from the input file,
; # writing only the output from print statements to standard output.
; Dumpobj -m FOO {0}Temp.a.o | StreamEdit -d -s `Which "{0}"`
;
; # Delete temporary file(s).
; Delete {0}Temp≈
;
; # Exit shell script.
; Exit

#---
-
StreamEdit Statements
#---
-

Developer Support Center June 1993

Macintosh Technical Notes

These statements are meant to operate on the output of the Dumpobj
shell command. They write each instruction (except the RTS
instruction) in both assembly and hexadecimal to standard output.

Find all hex lines except the one representing the RTS instruction.
 (!/[0-9]«8»:≈RTS≈/) &&
 (/[0-9]«8»: ([0-9a-fA-F]+)1≈∂'≈∂'[]+([¬ ∂n]+≈)2/)
 # Print hex and assembly equivalent to output file.
 print 1'#'2

MPW C offsetof doesn’t work with array references
Date Written: 1/9/92
Last reviewed: 8/1/92

The MPW C offsetof macro from StdDef.h doesn’t seem to work for initialized globals such
as the following:

typedef struct
 {
 short bob;
 char stGolly[10];
 }
 FOO;

short fooArray[] =
 {
 offsetof(FOO,bob),
 offsetof(FOO,stGolly)
 };

When I run this through, the compiler reports:

((size_t)&((FOO *) 0)->stGolly)
};
?
Error 234 error in type of initialization expression

The offsetof(FOO,bob) worked fine, but string offsets don’t compile the string offsets. Any ideas?

MPW C has a parsing bug with offsetof and arrays inside/outside the struct. Any other definitions, such as long/short…, work OK. Engineering
is working on a fix for the problem.

MPW C compiler optimization
Date Written: 10/31/90
Last reviewed: 8/1/92

Is there a code optimizer for MPW C?

Well, the C compiler tries its best to optimize; it optimizes by default. Compared with the
UNIX world (where the cc has a special -O option), in the MPW world we have a lot of
special optimizing flags that the developer can freely test separately. However, we would
like to point out that it is usually recommended to test only a few things/flags at at time.
With the new MPW

Developer Support Center June 1993

Macintosh Technical Notes

3.2 compiler the developer is also able to switch off optimization. Try to use the performance
tools in order to find out the code bottlenecks where optimization would help.

Preventing MPW C string constants from compiling as globals
Date Written: 10/31/90
Last reviewed: 8/1/92

Using MPW C, a local immediate text string such as printf("%s\n","This is a test") is
compiled as a global variable. This is causing the global data over 32K problem. To get
around this we used the -m option to compile some of the files that are not speed critical
when running. We then link the entire program with the -srt option. Will this cause a
degradation of performance?

The following options for the C compiler will move string constants into 'CODE' resources:

 C [option…] [file] < file > preprocessor ≥ progress
 -b # put string constants into code & generate PC-relative references
 -b2 # implies '-b' above, and allows string constants to be overlaid
 -b3 # overlaid string constants in code (but not PC-relative refs.)

Another idea is maybe to start using 'STR ' and 'STR#' resources and load strings into memory with the Resource Manager.

MPW C compiler parameter-handling difference
Date Written: 10/31/90
Last reviewed: 8/1/92

In our example below, when you pass the parameter in the test procedure, the i value we
expect is the same for the x and y array. With MPW C, the i for array x is incremented and
the i for array y is not. With a different compiler, i is incremented after the parameter
passing.

 #include <StdIO.h>

 main()
 {
 double x[8], y[8];
 short i, j;

 i = j = 0;
 while (1) {
 if (i >= 8) break;
 j = i;
 test(&(x[i]), &(y[i++]), j); /* problem here */
 printf("i=%d x=%f y=%f\n", i, x[i - 1], y[i - 1]);
 }
 }

 test(x, y, i)
 double *x, *y;
 short i;
 {
 *x = (double)i;
 *y = (double)i;
 }

Developer Support Center June 1993

Macintosh Technical Notes

Developer Support Center June 1993

Macintosh Technical Notes

Increment/decrement of values inside function calls is not defined concerning ordering. See K&R’s new edition, page 53. In general one should
try to increase/decrease values before passing them as parameters. The sore point in your case is the , statement, which means that the compiler
does not have an obligation to pass the first or second statement, or to increase the value in a certain order. So please increment the value before
passing it as a function value. Concerning optimization, there’s no worry incrementing values before passing them.

MPW C 3.1 compiler -mc68020 option bug fixed for 3.2
Date Written: 10/31/90
Last reviewed: 8/1/92

In our example below, the bit field of record array field1 is assigned a number 1, and then it
is assigned into field2 record array using field1 value. When we print out the array we can
consistently obtain a zero in the field2[0].visible. We should be getting all ones when we
print the array.

 /*
 * Here is the bug we found on MPW C compiler:
 * We compiled using -mc68020 option, and the result didn't
 * turn out to be what we expected.
 */
 #include <Memory.h>

 typedef struct _fldInfo {
 unsigned short visible:1, unused:15;
 } ReadoutField;

 /*
 * The result of this piece of code is:
 * i=0 field1=1 field2=0 */
 main()
 {
 ReadoutField field1[1], field2[1];
 short i;

 for (i = 0; i < 1; i++) {
 field1[i].visible = 1;
 field2[i].visible = (field1[i].visible); /* assignment of same type */
 printf("i=%d field1=%d field2=%d\n", i, field1[i].visible,
 field2[i].visible);
 }
 }

This was a bug with the MPW 3.1 C compiler. The MPW C 3.2 compiler on the current E.T.O. (Essentials-Tools-Objects) CD fixes this
problem. Then again bitfields are a little bit nasty, especially concerning porting issues—one has to consider issues like separate padding and
data structure sizing. Bit fields are supported by the language, but they tend to cause problems.

MPW C function prototyping restrictions
Date Written: 12/20/89
Last reviewed: 8/1/92

When is a C function prototype not a C function prototype?

Developer Support Center June 1993

Macintosh Technical Notes

Many developers want to take advantage of function prototyping provided by the ANSI
MPW C 3.0 compiler. But the MPW C implementation is somewhat restrictive and you may
be getting less than you bargained for.

Consider the following code:

// Declare functions, with prototypes
int foo (int a, int *b);
int bar ();
int foobar ();

// Now define foo()
int foo (a, b)
int a;
int *b;
{
 *b = a;
 return (a);
}

int bar ()
{
 int i;

 foo (1, &i);
 return (i);
}

int foobar ()
{
 return (foo (1, 2)); // The second parameter is not pointer to int
}

If you simply compile this code without any options, it compiles without errors, even though the call to foo() in foobar() is clearly incorrect. If
you compile with the -w2 option, the compiler issues the following warnings:

#
#foo (1, &i);
?
Warning 270 This function has no prototype
#---
 File "foo.c"; Line 28
#---
#{
#return (foo (1, 2)); // The second parameter is not pointer to int
?
Warning 270 This function has no prototype
#---
 File "foo.c"; Line 34
#---

This may seem strange because the functions were clearly declared with prototypes.

The problem here is that in addition to using the new style function declarations, you MUST use new style function definitions. So the correct
way to define foo() is:

int foo (int a, int *b)
{

Developer Support Center June 1993

Macintosh Technical Notes

 *b = a;
 return (a);
}

Now, when you compile, you correctly get the error message:

#{
#return (foo (1, 2)); // The second parameter is not pointer to int
?
Error 229 mismatch between formal and actual parameter types
#---
 File "foo.c"; Line 35
#---

The bottom line is that if you want full advantage of function prototypes, you must use new style function definitions. This seemingly arbitrary
limitation was a design decision by the MPW C compiler writers. Their reasoning is now documented in the MPW C 3.1 release notes:

“There already existed a large body of code written in MPW C which used both K&R function declarations and the fact that there was no
parameter checking to allow variable numbers of parameters to be passed. If we enforced strict parameter checking, that code would have failed
to compile. Denizens of the C world even objected to making these warnings! We therefore do parameter checking only on declarations of the
form:

 int foo (int parm1, int parm2);

and not on:

 int foo (parm1, parm2)
 int parm1;
 int parm2;

Perhaps in the future the -w2 option will at least generate warnings in such cases.”

MPW C 3.1 symbolic table limit
Date Written: 10/31/90
Last reviewed: 8/1/92

When we compile a file with the MPW C 3.1 -sym on option, it seems that the global and
local variables (references) cannot exceed 12000. Is that the limit? Are there ways to
increase the size?

There is no official way to change limit values with symbolic table generation. However, the
internal values usually are increased with new tool releases. You might check the MPW C
3.2 compiler on the current E.T.O. (Essentials-Tools-Objects) CD for limit changes. In
general, try to test each module in your code separately. The SADE debugger will work far
faster if you have .SYM information generated for the few modules you want to test.

MPW C compiler -m option
Date Written: 2/22/91
Last reviewed: 8/1/92

Developer Support Center June 1993

Macintosh Technical Notes

If I use the -m option in the MPW C compiler to build my application, will my application
be able to run in the 68000 machines?

The -m option doesn’t pertain to the processor that you want your application to run on.
Rather, it generates less efficient code and allows you to address over 32K of global data.
Because you can use over 32K of data, your code has to calculate the address of your data all
of the time, hence the linker and your code will run slower. If you type Help C in MPW, it
should say that the -m option generates 32 bit reference for data.

By default, the C compiler produces code that is compatible with 68000 machines. For
additional information, see the Macintosh Technical Note “Stand-Alone Code, ad nauseam.”

MPW C 3.2.2 -e option problem
Date Written: 4/2/92
Last reviewed: 5/21/92

When we use the -e flag with MPW C 3.2.1 and earlier to preprocess a file, if the file
contains an #include statement, the included file is inserted in the output in place of the
#include statement. For example, if fred.h is

 #define fred 1

and fred.c is

 #include "fred.h"
 main(){}

then the command c -e fred.c results in

 #define fred 1
 main() {}

However, with MPW C 3.2.2 the included file is not inserted and the result is

 #include "fred.h"
 main() {}

Is this a bug or is it intentional? Is there any way to reproduce the old result?

The -e option malfunctions or doesn’t work at all when using MPW C 3.2.2. Until the problem is fixed, we suggest you use MPW C 3.2.1 to do
the -e preprocessing. Having done that, you will presumably want to use MPW C 3.2.2 or later to do the actual compilation.

MPW C 3.2 and volatile keyword support
Date Written: 3/12/92
Last reviewed: 5/21/92

My MPW C 3.2 macros to access memory-mapped I/O on a NuBus card with a 68030
processor, as in the following example:

 /*

Developer Support Center June 1993

Macintosh Technical Notes

 * Macro: RdUSCl(reg)
 * Reads 8 bit value from low byte of USC register.
 */
 #define RdUSCl(reg) (*(volatile unsigned char *)(reg+TD_PORT+lower_byte)

where reg, TD_PORT and lower_byte are all constants. If I now write a function that uses the RdUSCl macro twice in succession, the I/O port
only gets read once. In other words, MPW C appears to be ignoring the “volatile” keyword. Is there some way of declaring a variable with a
preset address as with other compilers?

MPW C’s volatile keyword support was not implemented in the spirit of ANSI C. It only makes sure the variable is not optimized away (as in
the case of placing it in a register or stripping it out). It does not take into account I/O address validity. Volatile keyword support is part of
Apple’s future compiler directions. Meanwhile, your best bet is really to make a special get function that reads the register; eventually inline
code would produce a performance-wise quick fetch routine.

Macintosh Quadra performance optimization compiler flag
Date Written: 6/11/92
Last reviewed: 9/15/92

Are there any C++ or C compilation flags that will optimize performance of the Macintosh
Quadra computers? Even when I use the “-NeedsMC68030” flag in MacApp, an
investigation of the MABuild source files reveals that it sets compiler flags only for the
68020 optimization. If Quadra-specific compilation flags don’t exist, do you have any
Quadra performance optimization suggestions?

The current MPW compilers don’t have a 68040 performance optimization flag, though
Apple’s future compilers will optimize code for the best possible 040 performance. In the
meantime, here are some tips on 040 performance tuning:

• Cache management for the 040 can give you the biggest performance boost. Keep program
loops inside the cache space, and flush the cache as seldom as possible. In most cases you’ll
have small loops inside the 4K instruction cache.

• You might get better performance by not calling BlockMove, because the system flushes
the cache when you call it in case you’re moving code. If you’re moving data, the cache
doesn’t need to be flushed, but the system can’t tell from the BlockMove call whether you’re
moving code or data. Testing will help you determine whether you should call BlockMove or
write your own transfer routine. The new MOVE16 opcode is used by the BlockMove trap
when the system is running on an 040 processor, but because of problems with this opcode
in early 040 processors, it requires special handling. For details, see the Macintosh Technical
Note “Cache As Cache Can” (formerly #261).

• Transcendental functions aren’t implemented in the 68040 hardware as they are in the
68881 chip used with the 68020 and 68030. Consequently, the functions are emulated in
software, resulting in slower performance. If you suspect that your floating point
performance is less than optimal, consider modifying your code to use functions supported
by the internal 040 FPU. See the Macintosh Technical Note “FPU Operations on Macintosh
Quadra Computers” for more information about this performance factor. Future MPW
compiler and library releases will support faster transcendental operations and floating

Developer Support Center June 1993

Macintosh Technical Notes

point–to–integer conversions.

Developer Support Center June 1993

