
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Font Names
Imaging

Revised by: Bryan Stearns August 1988
Written by: Darin Adler April 1988

This note recommends the use of font names rather than font numbers.

The Font Manager chapter of Inside Macintosh Volume IV claims that font family numbers 0
through 127 are reserved for use by Apple, and numbers 128 through 255 are assigned by
Apple for fonts created by software developers. This is no longer true. Developer Technical
Support does not assign font family numbers. You should only use font numbers to reference
the system font (font 0) and application default font (font 1). All other fonts should be
identified by name. The Font/DA Mover will renumber a font when moving it into a file
containing a conflicting font family.

The Font Manager routines GetFontName and GetFNum map font names to numbers and
vice versa. This makes it simple to store a font’s name in a document and turn it back into a
number when reading the document. Unfortunately, GetFNum returns a 0 when a font by
that name doesn’t exist; this is the same as the font ID for the system font. The following
routine in MPW Pascal alleviates this problem:

FUNCTION GetFontNumber(fontName: Str255; VAR fontNum: INTEGER) : BOOLEAN;
{GetFontNumber returns in fontNum the number for the font having
 the given fontName. If there’s no such font, it returns FALSE.}

VAR
 systemFontName: Str255;

BEGIN
GetFNum(fontName, theNum);
IF fontNum = 0 THEN BEGIN
 {either the font was not found, or it is the system font}
 {if it was the system font, we got it, otherwise we didn't}
 GetFontName(0, systemFontName);
 GetFontNumber := EqualString(fontName, systemFontName, FALSE, FALSE);
END ELSE
 {if theNum was not 0, we found the font}
 GetFontNumber := TRUE;
END;

Developer Support Center August 1988

Macintosh Technical Notes

In MPW C:

Boolean GETFONTNUMBER(fontName, fontNum)
Str255* fontName;
short* fontNum;
/* GetFontNumber returns in fontNum the number for the font having
 the given fontName. If there’s no such font, it returns false. */
{
 Str255* systemFontName;

 GETFNUM(fontName, fontNum);
 if (*fontNum == 0) {
 /* either the font was not found, or it is the system font */
 /* if it was the system font, we got it, otherwise we didn't */
 GETFONTNAME(0, systemFontName);
 return (EQUALSTRING(fontName, systemFontName, false, false));
 } else
 return true;
}

This routine makes it easy to find out if a given font exists; if the font isn’t available, you can present a dialog to the user, allowing an
appropriate substitute font to be chosen.

Handy Hint for Lists of Font Names

Most applications that offer the user a choice of fonts do so by creating a Fonts menu. Some
applications, however, present a list of fonts in some other way: for example, word
processors that use a dialog box to let the user pick a font family, point size, and style often
display the font family choices in a List Manager list. You can get the Menu Manager to do
most of the work by using AddResMenu to enumerate and alphabetize the names, as
follows:

PROCEDURE BuildMyFontList;
CONST

AnUnusedMenuID = 150; {a menu ID not used by any of your menus}
VAR

tempMenu: MenuHandle;
thisItem: INTEGER;
aFontName: Str255;

BEGIN
{Get a menu; use the Menu Manager to fill it with font names}
tempMenu := NewMenu(AnUnusedMenuID,'x');
AddResMenu(tempMenu,'FONT');

{Extract the names we got, one at a time}
FOR thisItem := 1 TO CountMItems(tempMenu) DO

BEGIN
{Extract the next name from the menu}
GetItem(tempMenu,thisItem,aFontName);

{** Do something with this font name (add **}
{** it to a List Manager list, or whatever) **}

END;

{We’re done with the menu; dispose of it}
DisposeMenu(tempMenu);

END; {BuildMyFontList}

Developer Support Center August 1988

Macintosh Technical Notes

This approach will help to insulate your application from changes to the Font Manager. Historically, AddResMenu was modified to notice
FOND resources at the same time the Font Manager began to support them, so applications that used this technique to build their font lists didn’t
need to be modified to work with FONDs.

Suggested Font Strategy for Applications and Documents

If your application offers the user a choice of a single font for use in the entire document, it’s
a simple matter to store the name of that font somewhere in the document (perhaps in an
‘STR ’ resource). However, if your application lets the user use many fonts within each
document (as is the case with most word processors) a more complex strategy is necessary:
the Font Name Mapping Table. Each entry might look like this:

FontMapEntry : RECORD
name: Str255; {The name of the font}
localID: INTEGER; {a unique number for this entry}
realID: INTEGER; {last time we checked, this font’s font number}
useCount: INTEGER; {How many times this font is used in this

document}
END;

In a new document, start out with no entries in the table. When the user changes a selection of text to a new font (that is, one whose name is not
in the table), add an entry to the table. Set useCount to 1 (as this font is now referenced once within the document), and pick a localID that
is unique within the table. In the text, or wherever you would normally keep the font number, store a copy of this localID instead of the font
number. Use GetFontNumber (the example above) to get the “real” font number, and store it in the table as well, in realID.

Whenever you need to draw text, search through the table for the proper localID. When you find it, use the realID that is stored in that
entry in a call to TextFont, then draw your text as usual.

Keep the useCount updated, so that you know when to get rid of a table entry. If the user deletes a range of text, or changes it to another font,
examine the text to see if you should decrement any of the useCounts in your table. When a useCount for an entry becomes zero, you’ll
know that the font for that entry isn’t used anywhere within the document, and you can remove the entry from the table.

When you save the document, save the table with it. When you open an existing document, load the table. For each entry, call
GetFontNumber using each name, and update the realID field with the current font number for that name. If a font isn’t present, you
should warn the user: You could let the user choose an alternative font, or use the default application font by storing (and using) the constant
applFont as that font’s realID; this way, the user could still edit the document, but the original font name would remain, so that when the
user adds the proper font to the System file, or moves the document to a Macintosh whose System file contains it, the document would be
displayed as originally intended.

The overhead of handling your documents’ fonts in this manner is rather small; as more font families become available, and Font/DA Mover’s
renumberings occur more often, your customers will appreciate this extra effort.

Developer Support Center August 1988

Macintosh Technical Notes

Further Reference:
• The Font Manager

Developer Support Center August 1988

