OMNIS Programming

OMNIS Software

August 1998

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of OMNIS Software.

© OMNIS Software, Inc., and its licensors 1998. All rights reserved.
Portions © Copyright Microsoft Corporation.

OMNIS® is a registered trademark and OMNIS 5™, OMNIS 7™, and OMNIS Studio are trademarks of
OMNIS Software, Inc.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

IBM and AlX is a registered trademark and OS/2 is a trademark of International Business Machines
Corporation.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

Acrobat is a trademark of Adobe Systems, Inc.

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase
Inc.

INFORMIX is a registered trademark of Informix Software, Inc.
EDA/SQL is a registered trademark of Information Builders, Inc.
CodeWarrior is a trade mark of Metrowerks, Inc.

Other products mentioned are trademarks or registered trademarks of their corporations.

Table of Contents

Table of Contents

ABOUT THIS MANUAL.ottt et e e e e e e e e et e e e e e aabnaaes 7
CHAPTER 1—EVENTS AND MESSAGES........oo oottt 9
EVENT HANDLING IMETHODSccitttieeteet i e e e et s e e e ee s e e e e et e e e sesta e e e s eatan e essetan e eseesanaeeeesnen 10
VVINDOW EVENTS ettt eei ittt e et e et e e e et e e e et e e e e et e e e e e et s e e e eetaa e e e eetaa e eeeeaaaneeeeennanss 16
CONTROLMETHODS ANDPASSINGEVENTSuuiiiiiie it ee et eeasee e e et e e e e e e e s e e et e e e e e eeeas 18
CONTAINER FIELDS AND EVENTS ... ittt e ceiite et e et e e et e e e st e e e e e et s e e e e et e e e e eannn s 21
L@ 1= BN L Y = N 5 TS 22
B IR =0T = = N s T 23
CHAPTER 2—METHODS AND NOTATION ..ot 28

(000 V1Y VYN 0= TS RPN 29
N[7. 1[0 PRSPt 30
DO COMMAND AND EXECUTING METHODS.......ciitiiiiee it ee e e e e e e e e e e e et e e e ee 34
CALCULATE COMMAND AND EVALUATING EXPRESSIONS.......cuiiiiiiieeiieeiieeeeieeeie e eaann 39
CALLING METHODS. ... iiiiiiie ettt et e e e e e et e e e e e e e et e e e et e e eaa e e e et e e et eeetn e ssaneeetaaeeennnnns 43
QUITTING METHODS ..ttt ettt s e ettt s e e e ettt s e e e ettt e e e e e eat e e et aa bt e e e eata s eeeeestan e eeeestanaeeeestnnanaens 43
FLOW CONTROL COMMANDS .. .cettiiiiieeiiie e et e e et e et e e et e e et e e e et e e e et e e et e eeteeeateeesnaeestnaaesnnnns 44
REVERSIBLEBLOCKS.ottt ettt ettt e et e e et e et e e et e e e e e e et e e st e e eaaesean e estaaeannnns 49
ERRORHANDLING ...ttt et e e e et e e e et e et e e et e e et e e st e e et e e et e e et e eetnaesnneeens 50
REDRAWING OBJECT S, ... iitiiiiiteeitee et eeee et e ettt e et ee et e e et e e e st e e st e e et e et e eetaeeesnneeennaaeenns 51
MESSAGEBOXES.ciuuiiiteeeite e et et e et et e et e ettt e e e e et e e e et e e e et e e et e e st e eetneeetaaeeataaeananns 51
CHAPTER 3—DEBUGGING METHODS........i i 52
EXECUTING AIMETHOD ..uuutiiiiititeeeette s e e et e e e e et e e e e et s e e s eat s e e s eatan s e e e eetan e eeeesaneeeeensnnaeaeees 53
INSPECTINGV ARIABLE VALUEScoutuuieeiiitiie e e e eettie e e e et s e e s et s e e s ee s e e e setan e e e sesaneeeeesannaeeeees 57
WATCHING VARIABLE VALUEScuttiiieiiiitie e e ettt e e e eetta e e e e saateeeesast s e e s sataseessstanseesestanaeeeees 59
BREAKPOINTS ... etetttteeeeettte e s e ettt e e e e e et e e e e e et e e e e s asa e e e s astan s eeseetan e e e eetan e eeeesnneeeeeasnnnaeeeesnnnss 59
THE METHOD STACKcttt ettt et e et etee e e e e ettae e e e e st e e e e e et e e e e e ettt eeesesta s eesestan s eeseetaneeeeerannaaaees 61
DEBUGGEROPTIONS ...t teitittiteesttte s eeseet s e e s eeta s e e e eetaa e e e s e taa e eeeestan e esestanaeeessaneeeessnnaeeessnen 62
DEBUGGERCOMMANDSuuiieitiieeeeetttaeeeesattaesessastaaseesastaseesestanaesestanaeeeettnnaeeeestaaaeressnnns 62
CHECKING METHODS e iiitti e ee et e e et e e e et e e e e et e e e e e et e e e e esta e e e estan e eeeessnneeeeeannaneeeeenen 64
CHAPTER 4—OBJECT ORIENTED PROGRAMMING.......cccccoeevviiiiieeieiieeeeeeen, 69
INHERITANCE ... cei ettt e et e et e e et e et e e e e e et e e et e e et e e et e eaan e st e eetneeesnnesennaaennns 69
CUSTOMPROPERTIES ANDIVIETHODS.cuuuieiiieeit ettt ee et e e et e e et e e et e e e st e e et e e et eeeaneeennneeees 80
OBJIECT CLASSES. ..ttt ee et ettt et e e et e e et e e e e e e et e e e et e e et e eeteeeaa s sanaeeaneeeanaesanaaernns 83
EXTERNAL OBJIECT S .. iituiiiitee e et e ettt et e et e et e e e e e et e e e et e esa e e et e e estn e saaeeetnaeeateeeanaeeen 89

INTERFACEMANAGER.....iitttetteieeeeeettt s e e e e et ettt e s e e e e e e e et et e eeae s e s e e e e e e e e neeenennnnnnas 93

CHAPTER B5—USING TASKS ...ttt ettt et e e et e e e e e et e e aees 96
DEFAULT AND STARTUP TASKS. ... iiitiiitiee et ee et e et e e et e et e e et e e et e e et e e e et e e et e eetaeesnnnaes 97
CREATING TASK CLASSES. .. ctuiiitieeete ettt ettt e et e et e et e e et e e e e e e et e e et e e et e e et esaneeetnaaesnnnns 98
OPENING TASKS ..t ettt e et e et e et e et e et e et e e e et e e eaa e e et e e e st e e eaa e esan e staeeeanassnneeraeaernns 98
CURRENT AND A CTIVE TASKS. ..ttt itee et e et e et et ettt e et e e et e e et e e et e e e st e e et e eetaaeannnns 99
CLOSING TASKS. .. ettt ettt et e et e et et e ettt e et e e e e e e et e e e et e e et e e et e eeaa e e et e eateeeaneesnnaaerans 100
TASKVARIABLES ...cuutiiiiieeitee et e e ete et e et e et e et e e ettt e et ee et e e e et e s san e e et e eetnasanneeetnaaeennnaes 100
PRIVATE INSTANCES .. .ottt e et e e et e e et e e e et e e et e e e et e e esa e et e eetaeennnnss 101
PRIVATE LIBRARIES.tu ettt et et e e e et e e et e e e e e et e et e e e e e e e te e e et e e saa e e et eeetneaesnnnaeen 102
MIULTIPLE TASKS. .ttt ettt et e et et e et e ettt e et e e e e e et e e et e e e st e e et e e et e saa e e et eeeanaersnneeeean 102
CHAPTER 6—LIST PROGRAMMINGciiiiiiiiieceeee ettt 105
DECLARING LIST ORROW VARIABLES.uuittteeeetieeeieetteee et s eeanee et e eet s e eaaee et eeenneessnneeenns 106
DEFINING LIST ORROW VARIABLES ... cttuieeit i eeet e et e e e e e ee e e et e e etaeeaaeseaaaeeateeeanneeenneeeen 107
BUILDING LISTV ARIABLES.ciittuiieeitititeee ettt e e e e et s e e e eeta s e e e ee s e e e ee b e e e eesaaaeeeestnnaeeeessnns 109
LIST AND ROW FUNCTIONS. ... ctttttieeeeettieeeeestieessestanseesestanseessstanaesestanaeesssnnnaeessssnnaeesessnns 111
ACCESSINGLIST COLUMNS AND ROWS.....ciiiiiiiieeieiii et e et e e e e e e e eaeaas 111
LISTVARIABLE NOTATION .uuuiiiiiiiieeteetis e e esette s e e eest s e e sesta s e e see b e e e ee b eeesesaaneeesesannaeeeessnns 112
MANIPULATING LIST S ititiiiiiiiiiie i e ee it e et e e ettt e e e et e e e e et e e e s e et s e e e e et s e e e ee b e e e eerannas 116
Y Y = I = RPN 119
CHAPTER 7—WINDOW PROGRAMMINGccvtiiiiiiiiiieeeeeeiee e 125
CONTAINER FIELDSn ittt et e e e e e e e e et e e e e e et e e et e e b e eeanns 126
TAB PANES, PAGE PANES, AND TAB STRIPS.....couuiiiiiieiiiieeieee e e e e et e et e e e e e e e e eaeeeeas 126
STRING AND DATA GRIDS.....euiiiiieeii e e e et e e e e e e et e e e e et e e et e e s e aeannns 130
HEADED LIST BOXES.....ccuuiiiitiiiii et e ettt et e e et e e e e e et e e e et e e et e e et e e e et e e eaaeeeanaeeanns 134
COMPLEX GRIDS ... ettt ettt ee et et e e et e e et e et e e et e e et e e et e et e e eat e e eaa e e st e eeta e eenn e sanneaernnns 137
SUBWINDOWS. ... etueeiteeett e e ete ettt e et e e et ee et e e e et e e e st e e et e s ean e e ta e e et e eean s ssneeetnaeesnnseetnaaesnnns 139
L ON A RR AY S ..ttt e e et e et e e e et e et e ettt e e et e et ee et e e et e et e e et eeeaneeetaeaetaaaaaaaan 146
LR = I = TSRS 149
MODIFY REPORTHFIELDS.uuiitiieiiteeete e et e et e et e et e et e e e e e e e e e e e et e e et e st e eetaeeeannnaeen 157
SCREENREPORTHFIELDSuiiitiieiit et ee e e e et e et e et e e et e e e e e et e e e et e e s s e e et eeetnaeesnnaeen 162
WINDOW STATUS BARS. ...ttt ettt e et e ettt e et e e e e e e et e e et e e et e eeteeeanaeeeen 163
FIELD ST LES ... ittt e e e et e ettt e et e e et e e et e e et e e et e e et e aeaaaaes 167
FORMAT STRINGS ANDINPUTIMASKS. ...ttt et ieee e e et e e e e et e e e e et e e et e e et e e eaaanas 171
DRAG AND DROP.... .ottt ettt e e e et e e e e et e e e e e e et e e e st e e et e e et e eeaaneeeeas 179
EXTERNAL COMPONENTNOTATIONuitiieiiieeii e e et e et e e et eeete e e et e e e st e e et eeeteeeaneeesnnaeees 183
HWVIND NOTATION ... eueeii et e e e e et e e e e e et e e et e e e e et e e et e e e s e e et e eanneesraneeeanns 187
ENTERDATA IMODEot e et e et e e et e e e e e e et e e et e e eannnas 189
FLOATING EDGES FORWINDOWS.uuiittteiiieeeite e et e e et e e ete e e et e e e et e e ebe e e et e eesaneestaaeeataaennnnns 190
LOOKUPWVINDOWS.iitieetieee et e e et e et ee e et e et e e et e e et e e e eaa e et e e et e e et e e st e eeta e eaanaeeraneenanns 190
TIMER METHODS AND SPLASH SCREENSituiiitiieiiiieeite e et ee et e s eteeestaeeeanaesanaeesnaeaeananns 192

Table of Contents

Table of Contents

CHAPTER 8—INTERNET PROGRAMMING ..ottt 193

INTERNETPROTOCOLS. ...uuiiitiieiii et e et e et e e e et e ettt e e e e e e ae e e et e e et e e st e e et e eaaneeetneeesnns 193
INTERNETCOMMANDSuuiitiieiit et e et e e e e et e e e e e et e e et e e e s e e et e e st e st e eetn e eennestnnaeesnns 196
SENDING AND RECEIVING E-MAIL ...uniiitiiiiii ettt e e e e e e e e 198
WORKING WITH FTP STES. ...ttt e et e e et et eaaans 201
WORKING WITHHTTP SERVERS ANDCLIENTS .. .cctuiiii it et e e e et e et e e et e e e e eeeaaans 203
TCP SOCKETPROGRAMMING.......uiiitiieiteeeete e et e et e et e e et e e e te e e et e e e et e e et e eetaeeesnneeeanaaesnns 211
INTERNETUTILITIES ..niiteeiiie e et e et e ettt e et e e et e et e e e et e e e et e e et e e et e e ssaneeesaneeetnaaennnnns 217
PROGRAMMING TIPS ... ittt et et e et e e e e e et e et e e e et e e eaa e e et e eaans 219
CHAPTER 9—EXTENDING OMNISootiiiiie e 226

(O]I = [U = P 227
OLE AUTOMATION ..ettuuettittieeetett s e eseet s e e ees bt eeaeetaa e eeeetaanasesessanaesessanaeeestanaeeessnnaeeeernen 233
) 5 PP 241

[0 1 U] N[0 1 =5 S 250
F N I Y = N T 256
PUBLISH AND SUBSCRIBE.ctuuuetttttteeettttieeesesttaeesestnnaaeeestntaeeessntaeesssteessstnaeserrnns 265
CREATING YOUR OWNHELP ...ttt ettt e e e e e e e e e e e et e e e s e et e e e s eetan e e e eeeranneaees 269
CHAPTER 10—OMNIS DATA FILES ..o 274
FILE CLASSES. . .eitiiit ittt ettt e et e et e e et e et e e et e e et e e et e e et e et e e et e aeaaaaes 274
SEARCH CLASSES. ...ttt et et et e et e e e et e e et e e e e e e et e e et e e eaa e e et e eat e e ean e eataeaeaanns 278
ENTERDATA IMODEottt e et e et e e et e e e e e et e e et e e eaaanas 289
SETTING CONNECTIONS ... it eiiteeti e ettt e et e e et ee et e e e et e e eaa e eetaeaesa e st aestnaeeansasennaassnaaennsaes 293
MULTI-USERDATA ACCESS. ... ittt et e et e e e e e e et e e et e e et e e et e e et e eeaans 297
DATA FILE STRUCTURE ANDMAINTENANCEcuutiiiiieiteeeii e eeeie e et e e e e et eeeataeeenneeeen 306
CHAPTER 11—OMNIS SQL ...ttt e e e e e e e e e e e anaanas 313
CONNECTING TO THED ATABASEtutiiiiiitiie e ettt ee e e e e ttee e e e e eaeeeeeetaaeeeeetaaaeeaeeanaeeeeeannaaaaes 313
SENDING SQL TO THEDATABASEieiiitieeee ettt e e et ette e e e e ettt e e e e eaateeeesaatseesaatan e eeeatansaeaeens 313
OMNIS SQL LANGUAGE DEFINITIONuiiiitieeeeetiieeeeeetieeeeeetanaeeeeeantneeessstaneeesestnnseesensanns 318
CHAPTER 12—SQL BROWSER.......ccooiiiiiie et 329
SETTING UP THEDAM S ...t e ettt e e et e e e e et e e et e e eanaas 329
S ST (0] TP TP PPRPUT 333
MANAGING SQL OBIECT S . i iittiiieeiieti e ettt e e ettt e e e et e et et e et e et e e e e et e e e aeta e e aeeaannaeas 340
VIEWING AND INSERTINGDATA FOR ATABLEiiiiiiiii e et e e 343
INTERACTIVE SQL . ciiiiiiiiiii ettt ettt e e e ettt e e e e et e e e e e et s e e e e et e e e e e etan e e e eesnnanes 345
STOREDQUERY IMANAGERccttttiiiititi e et et e et ettt e e e e et s e e e e et e e e e e st e eeaestan s eeeeetaneeaeesnns 347
ST I o 1S 0] 2 S 349
USERADMINISTRATION ...ceuuiitieeiiteeit et ee et e e ettt ee et ee et e e e et e e s s e e st e e et esanneestnaeestnaeesnneeenn 349
(@)= (0] N = PSP PPRPPP Q...... 35

CHAPTER 13—CLIENT/SERVER PROGRAMMINGcccooiiiiiiiiiiiiiiieeeniiiieeeee e 351

CONNECTING TO YOURDATABASEuuituiittiiteite e taesits et s st s st saaessneeanestnesan et estneeansaraeees 351
INTERACTING WITH YOURSERVERutituiiitiittiiiiiieet et e it sit e st s et e st ssaasstsesnessnsssneasnesansns 356
DESCRIBINGY OUR DATABASEuuittiitietet ettt ee et e et e s e et et et s st e e s st s st e s s st esaeasnessnans 362
T RANSACTIONS .1 tttit ittt ettt et e et e et e et st e s e s aa e e aa e e e e s e e e s e s b e s e e et e s b s ea s et s easebsesbssnssnaaes 365
SERVERSTATUS AND ERRORHANDLINGccviiitiiiiiee ettt e e e et s e ea e eans 368
CHARACTER IMAPPING. ... et ittt et e et ettt et s et e et e e st e e st e e sae s et s s aa e e s e s aa e e s e s aaeeaneeanssanseansabnnen 369
CHAPTER 14—SQL CLASSES AND NOTATIONoi i 372
o = N O YT =S 372
QUERY CLASSES .ttt iiiitti et ettt e e e ettt ae e e e ettt e e e ee ettt eees e st s eeeataa e eeesaanaeeeesstnasesssntnnresssnnnnaanes 374
CREATING SERVER TABLES FROMSCHEMA ORQUERY CLASSES......ccecvvvviieeeeeiineeeeenennnnns 377

T ABLE CLASSES. ..t iiittiittee ettt e ettt e e e ettt e et e et e e et e e e et e e et e e et e e e et e e eaa s s st s seaeseaneseaneerenns 378
LI = = 1S 7Y N =S 378
CHAPTER 15—SERVER-SPECIFIC PROGRAMMING.......ccoceviiiiiieeiieeeeie e 391
(@27 ol I =N 91...... 3
)27 XS] =N 98...... 3
N N 416
(@15 =1 O 434.
CHAPTER 16—SQL RESERVED WORDS ...ttt 444

Table of Contents

About This Manual

This manual describes how you develop an application using OMNIS Studio, focusing on
the programming aspects of application development.

TheUsing OMNIS Studiommanual describes the primary objects and components in
OMNIS Studio, and describes how you can create and modify them. If you have not already
looked atUsing OMNIS Studioyou should do so before starting on this manual.

Other manuals in the set, which are available in on-line format, include

— OMNIS Studio Conversion
describes how you convert your OMNIS 7 applications to OMNIS Studio and, for the
benefit of OMNIS 7 users, introduces the new features in ONBtUI8Io

— OMNIS Graphs
describes the Graph external component available in OMNIS

In addition to these manuals, a comprehensive Help system describing the OMNIS Studio
commands and functions is available from within the OMNIS Studio development
environment.

About This Manual 7

Your Notes

Chapter 1—Events and
Messages

Almost all user actions in OMNIS generateeaent For example, if the user clicks on a

field in a window an event is generated. If the user tabs from one cell in a grid field to
another an event is generated, and if the user closes a window an event is generated. When
the event occursmessagés sent to the object in which the event occurred. The key to
creating an events-based application that properly functions is in the methods you write in
the various objects in your library to intercept or handle these events. These methods are
calledevent handling methodsd you put them behind the fields, objects, and windows in
your library. You can also write event handling methods for the objects on a report.

"event"
message

Handle, pass,
or discard event?

When an event occurs thlefault actiornormally takes place. For example, when the user
presses the tab key to move to the next field on a data entry field, the default action is for
the cursor to leave the current field and enter the next field on the window, and normally

this is exactly what happens. However you could put a method behind the field that

performs any one of a number of alternative actions in response to the tab. That is, the event
handling method could use the tab to trigger a particular piece of code and then allow the
default action to occur, it could pass the event to somewhere else in your library, or it could
discard the event altogether and stop the default action from happening.

Events are reported in OMNIS agent message$hese messages are sent to the event
handling methods as one or mesent parameterd he first parameter of an event

message, pEventCode, containgeaant codeepresenting the event. Event messages may
contain a second or third parameter that tell you more about the event. For example, a click

Event Handling Methods 9

on a list box will generate an evClick event plus a second parameter pRow telling you the
row clicked on. Note that all event codes are prefixed with the letters “ev”, and all event
parameters are prefixed with the letter “p”. You can use the event codes in your event
handling methods to detect specific events, and the event parameters to test the contents of
event messages.

Event Handling Methods

You can write an event handling method for each field and object contained in window,

menu, toolbar, and report classes. The other class types do not generate events. You add the
event methods for window and report fields in Hield Methoddor the class. For menu

classes you can add an event method thithe Methodgor a menu line, and for toolbar

classes you can enter an event method i tteé Methoddor each toolbar control.

Window fields, toolbar controls, and menu lines contain a default event handling method
called $event(), and report fields contain a default event handling method called $print(). If
you open the field methods for a window field, toolbar control, or menu line you will see an
$event() method, and for each report field you will see a $print() method for the object.
These are the default event handling methods for those objects.

To view the event handling method for a field or object

® Show the design screen for the class

® Right-click on the field, menu line or toolbar control

® Choose Field Methods, Line Methods, or Tool Methods, as appropriate

The method editor opens showing the first method in the list for the field or object. If this is
not the $event() method, select it from the list to view it. Some event handlers will contain
code to handle a range of possible events in the object.

10 Chapter 1—Events and Messages

For example, the following screenshot shows the default $event() method for an entry field.

Ay Window TRAYELG My Window Field My Window_ 1027 Methods

Modify Wiew Debug Option: Breakpoint Instances Stack
&% &= (= & E| 2 @ @ | | My\indow 1027 =
% arniable | Type |5ubtype |Init Y al/Cale e

T ask Clazsh Instance b, Locald, Parameter,

Tin evBefare

Onevafter o Event Parameters - pClickedField, pClickedi,

The event handling method for some types of field may be empty, because there is only one
possible event for the object. For example, the event handling method for a menu line is
empty since you can only select a menu line. Therefore any code you put in the $event()
method for a menu line runs automatically when you select the line.

To enter the code for an event handling method

®* Assuming you have opened a default $event() method for a field, click on the next
command line after th&n command

or, for an empty $event() method

® Select the first line of the method

Event Handling Methods 11

12

For example, you can open the event method for a pushbutton, that contains@rsingle
evClickcommand which will detect a click on the button.

4y Window TRAYELG My Window Field My Window_1026 Methods

Modify Wiew Debug Options Breakpoint Instances Stack
Avzl=2F B | 2 @ @ | | MyWindow 1026 =
Y ariable | Type |5ubtype |Init al/Cale "wia

T ask M, Clazsh Instance b, Locald Parameter
m On evClick :: Event Parameters - pRow Itemreference |
N

®* Enter the code you want to run for that event

You could use th®o command and some notation in your event handling method, or you
can use th®o method command to run another method in the current class or instance, or
theDo code methodommand to run a method in a code class; in all cases, you can put
literally any code in an event handling method and it will run given the right event.

The On Command

You can use th®n command to detect events in your event handling methods. Fields from
the Component Store may contain a default event handling method with one @more
commands to detect different events. For example, an entry field contains the method

On evBefore ;; Event Parameters - pRow (Itemreference)

On evAfter ;; Event Parameters - pClickedField,
pClickedWindow, pMenuLine,
pCommandNumber, pRow

These lines detect the evertdBeforeandevAfter, which are the event codes contained in
the message sent when the user enters or leaves the field, respectively. The in-line
comments indicate which event parameters OMNIS supplies for that event. In most cases,
the event parameters are references containing values to do with the context of the event:
the field clicked on, the list row number, the menu line number, and so on.

There is a summary of the most common event codes at the end of this chapter.

Chapter 1—Events and Messages

You can use the default event handling method for a field or add your own. The following
event handler for a data entry field detects an evBefore as the user enters the field and
performs a calculation changing the value of the field.

On evBefore ;; user tabs into date field
Calculate cDate as #D ;; cDate is the dataname of the field
Redraw {DateField} ;; the current field

Quit event handler

Code which is common to all events should be placed at the start of the event handling
method beforeanyOn commands. You can use & defaultcommand to handle any
events not covered by an earli@n command line. The general format is
; code which will run for all events
On evBefore
; code for evBefore events
On evAfter
; code for evAfter events
On default
; code for any other events

When you enter th®n command in an event handling method, it displays a list of all the
available event codes in the command palette. You can click on the one you want, or you
can enter more than one event code for a sidgleommand, for exampl@n evClick,
evDoubleClickOn commands cannot be nested or contained Ifi @nloop construct

When you have entered tlisn command line for a particular event and selected the next
command line, you can open the Catalog to view the event parameters for that event code.

® Click on the lineafter anOn evClickcommand line
® Open the Catalog (F9/Cmnd-9)

® Click on Event Parameters under the Variables tab

Event Handling Methods 13

For example, a®n evClickcommand displays the parameters pEventCode and pRow in

the Catalog. You can use these event parameters in your event handling methods to test the
event message. A click on a list box generates an evClick event message containing a
reference to the row clicked on, held in the pRow event parameter. You can test the value of
pRow in your code

On evClick :; method behind a list box
If pPRow=1 ;;if row 1 was clicked on
: Do this...
End If
If pPRow=2 ;; if row 2 was clicked on
; Do that...
End If

All events return the parameter pEventCode, which you can also use in your event handling
methods.

On evAfter,evBefore :; method behind field
; Do this code for both events
If pEventCode=evAfter
; Do this for evAfter events only
End If
If pEventCode=evBefore
; Do this for evBefore events only
End If

The parameters for the current event are returned bgy#{86)function, which you can use
while debugging or monitoring which events are handled by which methods. For example,
you could use th8end to trace logommand and the functiosgs(89 andsys(86);o

report the current method and events, in the $event() method for a field

; $event() method for field 10 on the window

Send to trace log {[sys(85)] - [sys(86)]}

; sends the following to the trace log when you tab out of the field
WindowName/10/$event - evAfter,evTab
WindowName/10/$event - evTab

You can use any of the parameters reported for an event in your event handling methods.
However, if you enter an event parameter not associated with the current event, the
parameter will be null and lead to a runtime error.

Chapter 1—Events and Messages

The Quit event handler Command

If you want to discard or pass an event you can us@tiiteevent handlecommand to
terminate arOn construct. A field event handling method might have the following
structure.

; general code for all events
On evBefore
; code for evBefore events
On evAfter
; code for evAfter events
On evClick,evDoubleClick
; code for click events
Quit event handler (pass event)
On default
; code for any other events

The Quit event handlecommand has two options

— Discard event
for some events you can discard the event and stop the default action taking place

— Pass to next handler
passes the event to the next handler in the event chain

Discarding Events

In certain circumstances you might want to detect particular events and discard them in
order to stop the default action from occurring. You can discard or throw away events using
the Quit event handlecommand with the Discard event option enabled. Note however, you
cannotdiscard some events or stop the default action from taking place since the event has
already occurred by the time it is detected by an event handling method. In this@aite, a
event handler (Discard evertias no effect for some events.

Being able to discard an event is useful when you want to validate what the user has entered
in a field and stop the cursor leaving the field if the data is invalid. The following method
displays an appropriate message and stays in the field if the user does not enter the data in
the correct format.

Event Handling Methods 15

On evAfter ;; as user leaves the field
If len(CustCode <> 6) ;; check a value has been entered
If len(CustCode = 0) ;; field left blank
OK message {You must enter a customer code}
Else ;; wrong length code entered
OK message {The customer code must have 6 digits}
End If
Quit event handler (Discard event) ;; stay in the field
End If

You can also handle or discard events usingthi¢ methodcommand with a return value
of kHandleEvent or kDiscardEvent, as appropriate.

Window Events

So far the discussion has focused on field events, which you would normally handle in the
field using an event handling method. However you can enter methods to handle events that
occur in your window as well. Like fields, the event handling method for a window class is
called $event(), and you enter this method inGless Method$or the window class.

Window classes do not contain an $event() method by default, but you can insert a method
with this name. You enter the code for a window $event() method in exactly the same as for
fields using thedn command to detect events in your window.

Window events affect the window only and not individual fields. They include clicks on the
window background, bringing the window to the front or sending it to the back, moving it,
sizing it, minimizing or maximizing the window, or closing it. For example, when you click
on a window’s close box, the evCloseBox and evClose events are generated in the window
indicating that the close box has been clicked and the window has been closed. You could
enter an $event() method for the window to detect these events and act accordingly.

16 Chapter 1—Events and Messages

Window Events

The following window $event() method detects a click on a window behind the current
window, and discards the click if the user is inserting or editing data.

On evWindowClick ;> user has clicked on a window behind
If cInserting | cEditing ;; vars to detect current mode
OK message {You cannot switch windows while entering data}
Quit event handler (Discard event) ;; keep window on top
End If
Quit event handler

The following window $event() method checks for events occurring in the window and runs
the appropriate methods elsewhere in the class. Note you cannot trap an evResize and
discard it since the resizing has already occurred, but you can reverse the resizing by setting
the size of the open window back to the size stored in the class.

On evToTop
Do method Activate
Quit event handler
On evWindowClick
Do method Deactivate
Quit event handler
On evClose
Do method Close
Quit event handler
On evResized
Do $cwind.$width.$assign($cclass.$width)
Do $cwind.$height.$assign($cclass.$height)
Quit event handler (Discard event)

17

Control Methods and Passing Events

As already described, you handle events for fields using an event handling method
contained in the field, but you can add a further level of control over field events by adding
a method called $control() to your window. This method is callwthdow control methad

To allow this method to handle events you must pass events to it from the field event
handling methods. You do this by including in your field event handle®thieevent
handlercommand with th@ass to next handleioption enabled.

"event"
message

FIELD

event
method

WINDOW

Pass event...
control

method

Handle, pass,
or discard event?

As a further level of control, you can add a $control() method to your tasks. This method is
called atask control methadEvents are passed to the task control method from the window
control method contained in the window belonging to the task. Therefore, an event may be
generated in the field, passed to the window control method, and then passed to the task
control method.

18 Chapter 1—Events and Messages

"event"
message

WINDOW

Pass event...
control

method

TASK

Pass event...
control

method

Handle, or discard
event?

Window events that are handled in the $event() method for a window can be passed to the
task $control() method as well.

At each level an event handling method can discard the event or pass it on to the next event
handler. At the task level, the highest level of control, the event can be processed and the
default action takes place, or the event can be discarded and no further action occurs.

The OMNIS event processing mechanism gives you absolute control over what is going on
in your application, but it also means you need to design your event handling methods with
care. It is important not to pass on an event to higher levels unnecessarily and to keep
control methods short, to limit the time spent processing each event.

Control Methods and Passing Events 19

20

In the following example, the $control() method is contained in an OMNIS data entry
window. It sets the main file for the window when it is opened or comes to the top, and does
not let the user close the window if OMNIS is in data entry mode.

On evToTop
; window comes to the top or is opened
Set main file {FCUSTOMERS}
Quit event handler
On evClose
If cInserting | cEditing ;; vars to detect current mode
: User closes window when in enter data mode
OK message {You can't close in enter data mode}
Quit event handler (Discard event)
End If

Event Processing and Enter Data Mode

Normally, the default processing for an event takes place when all the event handler
methods dealing with the event have finished executing. It is not possible to have active
unprocessed events when waiting for user input so the default processing is carried out for
any active events after &nter datacommand has been executed or at a debugger break.
Therefore if required, you can use icess event and continaemmand to override the
default behavior and force events to be processed allowing an event handling method to
continue.

TheProcess event and continue (Discard eveptjon lets you discard the active event.
For example, in an event handler for evOK the following code would cause the OK event to
be thrown away before the subsequent enter data starts.

On evOK
Process event and continue (Discard event)
Open window instance {window2}
Enter data

Chapter 1—Events and Messages

Container Fields and Events

Container fields are fields that contain other fields; examples of container fields include
subwindows, tab panes, page panes, scroll boxes, and complex grid fields. The logic for
handling and passing events within a container field is the same as for simple fields, it just
has more levels of control.

For the purposes of event handling, you can regard the container field as both a field on the
parent window, and a window since it contains other fields. In this respect, a container field
can have an $event() method that handles events for the container field itself, and a
$control() method that handles events passed to it from the individual fields inside the
container field. Each field in the container field has a $event() method to handle its own
events. If the control method for your container field allows it, events are passed to the
parent window control method, which in turn can be passed onto the task control method or
discarded as appropriate.

"event"
message

Internal
FIELD

event
method

Container
FIELD

control
method

Pass event...

WINDOW

Pass event...
control

method

Handle, Pass,
or discard event?

You can nest container fields such as subwindows and tab panes, but nested container fields
do not pass events.

Container Fields and Events 21

Queuing Events

22

Some user actions generate a single event which is handled as it occurs by your event
handling methods. The event may be dealt with completely in the field or it may be passed
up the event chain as required. However some user actions generate a whole series of
events, one after another. These events are placecireahqueueEach event is handled

by your event handling methods strictly in turn on a first-in, first-out basis. For example,
when the user tabs from one field to another the current field is sent an evAfter and then an
evTab event, then the new field is sent an evBefore event: all these events are placed in the
event queue in response to a single user action, the tab. Similarly when you close a window,
the current field is sent an evAfter, the window is sent an evCloseBox event, then it is sent
an evClose event. Each one of these events is sent to the appropriate object and is handled
by your event handling methobleforethe next event in the queue is handled.

In addition to events generated by user actions, you can append an event to the event queue
using theQueuecommands in thEvents..group.

Queue bring to top
Queue close

Queue cancel

Queue set current field
Queue click

Queue double-click
Queue keyboard event
Queue OK

Queue scroll (Left|Right|Up|Down)
Queue tab

Queue quit

These commands let you simulate user actions such as key presses and clicks on buttons or
windows. For example, th@ueue bring to top {WDowNAMB command brings the

specified window instance to the top and simulates a user clicking behind the current
window. Events generated by these commands are handled after those that are currently
gueued. You can queue several events in succession.

Chapter 1—Events and Messages

Types of Events

The following sections list the events generated by the different types of fields and
windows. You can use the event codes described below in your field and window $event()
methods, and/or your window and task $control() methods. The events and parameters are
described in more detail in the OMNIS Help.

Types of Events

Field Events

For most types of entry field, button, list and grid field you can detect when the user enters
and leaves the field, or when the user clicks on the field. The following events are reported
by many types of fields

evAfter

the focus is about to leave the field. For example, the user has clicked outside the
current field, or they have pressed tab, or they have selected a line in a menu. The
parameters for the event tell you what other field or window was clicked on, or which
menu or list line was selected

evBefore
the cursor has entered the field

evClick andevDoubleClick
the field or window has been clicked or double-clicked on: not reported for entry fields.
For lists, the second event parameter tells you which row was selected

evOpenContextMenu
a context menu is about to open over the field

evSent
sent to a field when its value has changed due to DDE or Apple event

Window Events

The following events are sent to the current top window.

evClose
the window is about to be closed

evCloseBox
the user has clicked the close box of the window

evCustomMenu
the user has selected a line in a custom menu; the second event parameter tells you the
number of the menu line selected

evMinimized andevMaximized
the window has been minimized, or maximized

23

24

— evMoved
the window has been moved

— evOK andevCancel
the user has clicked the OK or Cancel button, or has pressed the equivalent key(s)

— evResizedandevRestored
the window has been resized, or restored to its normal size

— evStandardMenu
the user has selected a line in a standard menu, or has clicked on one of the standard
OMNIS database buttons (Find, Next, Previous, etc.); the second event parameter is an
internal number for the standard menu line selected

— evToTop
the window has come to the top

— evWindowClick
the user has clicked on another window; the second event parameter is a reference to
the window clicked on

Scroll Events

These events can occur for a field or window provided they have a vertical or horizontal
scroll bar as appropriate.

— evHScrolledandevVScrolled
the field or window has been scrolled horizontally, or vertically

Mouse Events

The following mouse events are sent to a field or window background. Mouse and right-
mouse button events are generated only if the $mouseevents and $rmouseevents library
preferences are enabled. Under MacOS, right-mouse events are generated when you hold
down the Ctrl key and click the mouse.

— evMouseDoubleandevRMouseDouble
the mouse, or right-mouse button is double-clicked in a field or window

— evMouseDownandevRMouseDown
evMouseUpandevRMouseUp
the mouse, or right-mouse button is held down in a field or window, or the mouse
button is released

— evMouseEnterandevMouselLeave
the mouse pointer enters, or leaves a field

Chapter 1—Events and Messages

— evDrag
the mouse is held down in a field and a drag operation is about to start; the parameters
report the type and value of the data

— evCanDrop
whether the field or window containing the mouse can accept a drop; the parameters
reference the object being dropped, the type and value of the data

— evWillDrop
the mouse is released at the end of a drag operation. The parameters reference the
object being dropped, the type and value of the data

— evDrop
the mouse is released over the destination field or window at the end of a drag
operation. The parameters reference the object being dropped, the type and value of the
data

Complex Grid Events

These events are generated when a complex grid is changed in some way by the user.

— evExtend
an extra line has been added to the end of the grid. The second event parameter
contains a reference to the new row

— evRowChange
the row in the grid has changed: a reference to the row is generated

String and Data Grid Events

These events are generated when a string or data grid is changed.

— evCellChangingandevCellChanged
the grid cell is about to change, or has changed; for example, the user has tabbed. The
parameters tell you the position of the cell and its data

— evScrollTip
sent to a string or data grid when scrolled and lets you intercept and change the scrolltip
text

Tab Pane and Tab Strip Events

A tab pane or tab strip can have a number of tabs. This event is generated when one of the
tabs is selected.

— evTabSelected
a tab has been selected. The second event parameter is the number of the tab selected

Types of Events 25

Tree List Events

A tree list can have a number expandable and collapsable nodes. The following events are
generated when a node is clicked on.

evTreeExpandandevTreeCollapse
a node has been expanded or collapsed; the second event parameter is a reference to th
node expanded or collapsed

evTreeExpandCollapseFinished
a node has expanded or collapsed; sent after an evTreeCollapse or evTreeExpand
message

evTreeNodelconClicked
a node icon has been clicked; the second parameter is a reference to the node

evTreeNodeNameFinishingandevTreeNodeNameFinished
a node name is about to change or has changed; the second parameter is a reference to
the node; the third parameter contains the new text for the node

Headed List Box Events

The following events are generated when the user edits a cell or clicks on a column header
in a headed list box.

26

evHeadedListEditFinished
a cell has been edited; the second and third parameters are the line and column numbers
of the selected cell

evHeadedListEditStarting
the cell is put into edit mode; discarding this event prevents editing; the second and
third parameters are the line and column numbers of the selected cell

evHeadedListEditFinishing

the user has edited the cell and pressed Return; discarding this event leaves the field in
edit mode; the second and third parameters are the line and column numbers of the
selected cell; the fourth parameter is the new text in the cell

evHeaderClick
a header button has been clicked on; the second parameter contains the column number

Chapter 1—Events and Messages

lcon Array Events

The following events are generated when the user edits the text in an icon array.

eviconDeleteStartingandeviconDeleteFinished
the user has pressed the delete key, or the delete has finished completely

eviconEditStarting
the icon text is put into edit mode; discarding the event prevents editing; the second
parameter contains the line number of the list that is to be edited

evlconEditFinishing

the user has edited the icon text and pressed Return; discarding the event leaves the
field in edit mode; the second parameter contains the line number of the list being
edited; the third is the new text entered

evilconEditFinished
the user has finished editing; the second parameter contains the line number of the list
that has been edited

Key Events

These events are generated when the user presses a key. Key events are generated only if
the $keyevents library preference is enabled.

evKey
any key is pressed. Contains the letter key and system key pressed

evTab andevShiftTab
the tab key, or shift-tab key is pressed

Field Status Events

The following events are reported for fields only and reflect the current status of a field.
They are generated only if the $statusevents library preference is enabled.

Types of Events

evDisabledandevEnabled
a field is disabled or enabled

evHidden andevShown
a field is hidden or shown

27

Chapter 2—Methods and
Notation

28

This chapter describes how you write methods to perform operations in your application. It
introduces the different commands and programming constructs you can use to control
program flow or perform complex calculations in OMNIS. You add methods to the classes
and objects in your library using theethod editorMethods let you

— Manipulate classes and other library objects
— Handle events and control program flow

— Send SQL to a server and process the results
— Interface with external software

OMNIS provides a complete 4GL programming language comprising over 400 commands,
each command performing a specific function or operation. In addition OMNIS provides a
means to manipulate the objects in your library callechthiation this accesses the

standard properties and methods contained in the objects in your library.

A method can contain one or more OMNIS commands, or some notation, or in practice a
combination of these. For example, to open a window from a menu line method you only
need one comman@pen window instan¢evhich as the name suggests instantiates or
opens a window. A method that connects you to a server database requires several
commands executed in a particular order. You can perform most operations using the
notation and th®o command. For example, you can open a window usinBdhe

command and the $open() method.

For further details about specific commands used throughout this chapter, see the OMNIS
StudioHelp. When you start to program methods you will need to use the debugger which
is described in thBebugging Methodshapter.

TheVariables and Methodshapter in Using OMNIS Studio tells you how to add methods
to the objects in your library, and tB&ents and Messagebapter deals specifically with
event handling methods. In addition, commands that you use with list variables are dealt
with in theList Programmingchapter.

Chapter 2—Methods and Notation

Commands

Commands

The following sections outline the more important commands or groups of commands in
OMNIS. The commands that you can use in your methods are listeddartimand lisat

the bottom of the method editor. If the command list is not showing in the method editor
you can show it using View>>Show Command Palette, or by pressing Shift-F6 under
Windows or Shift-Cmnd-6 under MacOS.

Double-click on each group in the command list to get an idea of the full range of
commands available in OMNIS.
I_| s | I
| |
Calculations... -
Parameters and vanables. .
Congtucts. .
Liztz...
Ligt lines...
kethods. ..
Errar handlers...
Debugaer...
Entemals..
Logon...
Seszion: and cursars...

I Select table =

Each group in the command list contains a number of commands that manipulate a
particular type of object or perform related operations. For exampl€atlalations..
group contains th€alculatecommand that lets you do calculations and assign a value to a
variable, and th®o command that lets you execute and modify objects using the notation.
The Constructs. group contains programming constructs sudii.aBlse If, Repeat...Until,
andFor loops.

The Flag

Some of the commands set a Boolean OMNIS variable calldthther #F, to true or false

depending on the success of an operation. Other commands test the current value of the flag

and branch accordingly. TI@VINIS Studiddelp documents whether or not a command
affects the flag.

29

Notation

OMNIS structures its objects in an object tree, or hierarchical arrangement of objects and
groups that contain other objects. The complete tree contains all the objects in OMNIS
itself, together with your design libraries, classes, and other objects created at runtime. You
can view the complete object tree in the Notation Inspector.

= Motation Inzpector 2 O] =]

Wi

<= G,

:JE
=

[F}- factivetask
[#}-- $odata
[#}- fodevice
[+}- foomponents
[+ foonstants
[+}-- $dataz
[
[
[
[
[
[
[
[
[
[
[
[
[
[

+1- fdefaulttazk,
+ fdevices
Foe $E:-:tD|IIiE'3t3
+1-- $hashvardefs

+1-- fhazhvars

F1 fimEnuE

+- fineports

+1- fikazks

+1-- fitaolbars

Fh fiind o

+-- flibg

+1- fmodes

.E|. $I:ITE|:S

+1-- ftopwind =
<] _>I_I

Froat i

The object at the base of the tree is called $root. The $libs group contains all the current
open libraries and lets you access each library and its classes at design time. The classes an
objects in each library are stored in their own separate groups; for example the $windows
group contains all the window classes in a library. Most of the other groups directly under
$root contain the objects created at runtime when you run your application; for example the
$iwindows group contains all the window instances currently open.

When you want to reference a particular object, a class or instance perhaps, you must access
the right branch of the object tree. For example, you must access the $windows group to

30 Chapter 2—Methods and Notation

Notation

reference a window class: the following screenshot shows a window called MyWindow in a
library called NEWLIB.

"Wiew
3,
[} fitoolbars -
[#}- Fiwindows _I
=k libs

[=- MEWLIB

[+} $claszes

[#} $oodes

[#}- $figldztyles

[t Bfiles

[#} Smenus

[+ $objects

[+} $prefz

[+ fquernes

[+ $reportz

[#}- $zchemas

[+}- $zearches

[+}-- $tables

[+ $tazks

[+ $tonlbars

[=h fwindows

....... it —

[#} fmiodes -

....... Ferafe
i _»I_I
Froot. $libz. NEWLIE. $windows. kytafindow A

To access a window instance, say an instance of the same Window class, you must reference
the $iwindows group, directly under the $root object.

To facilitate a system of naming or referring to an object in the object tree, and its

properties and methods, OMNIS uses a system callatbtaéon The notation for an

object is really the path to the object within the object tree. The full notation for an object is
shown in the status bar of the Notation Inspector. You can use the notation to execute a
method or to change the properties of an object, and you can use a notation string anywhere
you need to reference a variable or field name.

In the notation all property and standard method names begin with a dollar sign “$”, and
methods are further distinguished from properties by having parentheses after their name.
Standard objects and group names also begin with a dollar sign. To write the full notation
for an object you need to include each object and group in the path to the object, separating

31

each object using “.” a dot. For example, to refer to a window class in a library you would
use the following notation

$root.$libs.LIBRARYNAME.$windows.Windowname

This notation includes $root as the base object, the $libs group containing all the open
libraries, the name of your library, the $windows group containing all the window classes in
your library, and lastly the name of the window itself. If you want to refer to a particular
object on your window you need to add the $objs group and the name of the object

$root.$libs.Libraryname.$windows.Windowname.$objs.Objectname

You can omit certain object names from a notation string to make it shorter, and when you
have only one library open usually you can omit the library name as well. You can omit the
following objects: $root, $constants, $clib, $hashvars, $libs, $extobjects, $tvars, $datas,
$cvars, $files, $lvars, $vals. In most cases therefore, you can refer to an object on a window
as

$windows.Windowname.$objs.Objectname

In addition, there are a number of shortcuts that let you reference objects, without always
referring right back to the $root object, and certain global objects that you can use to make
your code more generic. These are described below.

ltem References

To save you time and effort, and to make your code more efficient, you can create an alias
or reference to an object which you can use in place of the full notation for the object. To

do this, you create a variable of tyipem referencend use th&et referenceommand to

assign the notation to the variable. The item reference variable can be of any scope, and the
notation can be any valid OMNIS notation for an object, a group, or even an object

property. For example

; Declare variable WinRef of type Item reference

Set reference WinRef to Libraryname.$windows.Windowname

; creates a reference to the window which you can use in your code
Do WinRef.$forecolor.$assign(kBlue) ;; changes the window forecolor

You can enter the notation for an object in the initial value field for the item reference
variable. You can also find the full notation for an object in the Notation Inspector and drag
it to the notation field when you enter tSet referenceommand.

You can also use an item reference variable to return a reference to a new object, when
using methods to create a new class, instance, or object. Furthermore OMNIS contains a
special property called $ref which you can use to return an item reference to an object. Both
these features are used in the section describir@dltemmand below.

Chapter 2—Methods and Notation

Current Objects

Under $root, OMNIS contains a number of global state variables that tell you about how
OMNIS is currently executing, or what objects, instances, and methods are currently being
used. These objects provide a shortcut tathieent objector instance that is currently
executing. Mostly their names begin with “$c”, and they include

Notation

$cclass
the current class

$cdata
the current open data file

$cinst
the current instance; usually the instance containing the currently executing method

$cfield
the field where the current method is executing

$clib
the current library

$cmethod
the current executing method

$cobj
the current object within a class or instance

$crecipient
the current recipient of an event; if a custom method is being processed, $crecipient is
the recipient of that method

$ctarget
a reference to the target field, that is, the field which currently has the focus (shows the
caret and is sent keyboard events)

$ctask
the current task; is usually the startup or default task until you open another task

$cwind
the current window instance

$topwind
the topmost open window instance

33

You can use the current objects in place of the full notation for a specific object to make the
object and its code reusable and portable between libraries. For example, you can use $cinst
in a method within a window instance to refer to itself, rather than referring to it by name

$cinst

; rather than
$root.$iwindows.WindowlnstanceName

You can refer to the current library using $clib. For example, to make the current library
private use

Do $clib.$isprivate.$assign(kTrue)

; is more generic than

Do $libs.MyLibrary.S$isprivate.$assign(kTrue)

Do Command and Executing Methods

34

While you can us€alculateto change an object property or evaluate an expression, you
can use th®o command for all expressions that execute some notation. In this respect, the
Do command is the single-most powerful command in OMNIS. You can ufiothe

command to set the value of a property, or to run any standard or custom methdd. The
command has several variants which include

— Do
sends a message to an object in your library, or assigns a value to an object property.
Normally you should execute til® command in the current object to execute one of
its methods or assign to one of its properties. There are a number of common methods
that you can use with tH2o command including $open() to open an instance of a class,
$assign() to change an object property, $redraw() to redraw an object, and so on

— Do inherited
executes the inherited method for the current method

— Do default
runs the default processing for a custom method

— Do redirect
redirects method execution to a custom method with the same name as the current
method contained elsewhere in your library

— Do method
calls a method in the current class and returns a value

— Do code method
runs a method in a code class and returns a value

Note that you can display a list of built-in methods for an object or object group by clicking
on the object in the Notation Inspector and opening the Property Manager. The methods for

Chapter 2—Methods and Notation

an object are listed under the Methods tab in the Property Manag@MpS Studio

Help for a complete list of methods for all the objects in OMNIS. The Show Runtime
Properties option in the Property Manager context menu lets you view properties that are
normally available in runtime only, that is, properties of an instance rather than a design
class. When runtime properties are visible in the Property Manager the methods for the
instance are also shown. You cannot set runtime properties or use methods shown in the
Property Manager, they are there as a convenient reference when you are writing code.

Do command

You can use thBo command in OMNIS to do almost anything: execute some notation,
evaluate an expression, and so on. Specifically, you can use it to execute a method for an
object or assign a value to one of its properties.Otieommand returns a value to

indicate whether the operation was successful or not, or for some methods a reference to the
object operated upon. This section shows you how you can uBe ttenmand and

introduces some of the most useful methods.

$open() method

Using theDo command with the notation you can perform many operations that are
otherwise performed with a command. For example, the class types that you can open
contain an $open() method which you can execute usifgdttemmand. For example,
you can open a window using

Do $windows.W INDOWNaMESopen('l NsTANCEAME,kWindowCenter)
; opens a window in the center of the screen

The $open() method returns a reference to the instance created. For example

; Declare variable WindRef of type Item reference

Set reference WindRef to LIB1.$windows.WindowName

Do WindRef.$open('WindowlInstance') Returns WindRef

; WindRef now contains a reference to the window instance

; ‘$root.$iwindows.Windowlnstance’ which you can use elsewhere, e.g.
Do WindRef.$forecolor.$assign(kBlue) ;; changes the instance

You can use a null value instead of an instance name; therefore CLASS.$open(") would
force OMNIS to use the class name as the instance name. Alternatively you can use an
asterisk in place of the instance hame and OMNIS assigns a unique name to the instance,
using the notation CLASSNAME_number. You can return the instance name in an item
reference variable and use the reference in subsequent code. For example

; Declare variable iMenuRef of type Item reference

Do $menus.MCUSTOMERS.$open(*) Returns iMenuRef

; IMenuRef now contains a reference to the menu instance, which
; will be something like ‘$root.$imenus.MCUSTOMERS_23'

Do Command and Executing Methods 35

You can close an instance using the $close() method. For example, the following method
opens a window instance, lets the user do something, and closes the instance

; initially WindRef contains a reference to the window class
Do WindRef.$open('WindowInstance') Returns WindRef

; let the user do something

Do WindRef.$close()

You can close the current window from inside the instance using
Do $cwind.$close()

Classes that contain the $open() methods also have the $openonce() method. This method
opens an instance if one does not already exist (excluding window menus, window toolbars,
and cascaded menus). In the case of a window, $openonce() brings the window to the top if
it is already open. $openonce() returns an item reference to the new or existing instance,
like $open().

$assign() method

You can change the properties of an object, including the properties of a library, class, or
field, using thedo command and the $assign() method. The syntax for the $assign() method

is NoTATION.PrROPERTY.$assignyALUE) whereNoTaTioN is the notation for the object,

ProPERTYIS the property of the object you want to change \ande is a value depending

on the context of the object being changed. Usually you can use an OMNIS constant to
represent a preset value, and for boolean properties, such as preferences, you can use kTrue
or kFalse to set the property as appropriate. For example

Do $clib.$prefs.$mouseevents.$assign(kTrue)
; turns on mouse events for the current library
Do $cclass.$closebox.$assign(kTrue)

: adds a close box to the current window class
Do $cfield.$textcolor.$assign(kGreen)

; makes the text in the current field green

$add() method

You can create a new object in your library using the $add() method. In the notation you are
really adding a new object to a particular group of objects. For example, to create a new
field on a window you need to add the object to the $objs group of objects for the window,
as follows

Do $cwind.$objs.$add(kPushbutton,iTop,iLeft,iHeight,iWidth)
; adds a pushbutton to the window with the
; specified size and position

Chapter 2—Methods and Notation

When using $add(), you can return a reference to the new object in a return field of type
item reference. You can use the reference to change the properties of the new object. For
example

; Declare variable WindRef of type Item reference
Do $windows.$add('NewWindowName') Returns WindRef
; now use the reference to change the new window
Do WindRef.$style.$assign(kPalette)

Do WindRef.$title.$assign('Window title’)

Do WindRef.$clickbehind.$assign(kTrue)

Do WindRef.$keepclicks.$assign(kFalse)

Do WindRef.$modelessdata.$assign(kTrue)

Do WindRef.$backcolor.$assign(kRed)

Do WindRef.$forecolor.$assign(kWhite)

Do WindRef.$backpattern.$assign(2)

$redraw() method

When you change an object or several objects on an open window usihgdbsmand,

you often need to redraw the window. However if you change an object before $construct()
completes execution for the window instance, you don't need to redraw the window. You
can redraw an object, window, or all open windows using the $redraw() method. For
example

Do $cfield.$redraw()

: redraws the current field

Do $cwind.$redraw()

: redraws the current window

Do $root.$redraw()

: redraws all window instances

$redraw(setcontents,refresh) redraws the contents and/or refreshes the field or window;
‘setcontents’ defaults to true, ‘refresh’ defaults to false.

Do Command and Executing Methods 37

38

$sendall() method

You can send a message to all the objects in a group usibg ttemmand and the

$sendall() method. For example, you can redraw all the objects in a group, you can assign a
value to all the members of an object group, or you can hide all the members of a group
using the $sendall() method and the appropriate message. The syntax for this method is
$sendall(MESSAGECONDITION) where MESSAGEIS the message you want to send to all the
objects and GNDITION is a calculation which the objects must satisfy to receive the

message. For example

Do $iwindows.$sendall($ref.$objs.F IELD Name$redraw())
; redraws the specified field on all window instances

Do $cwind.$objs.$sendall($ref. $textcolor.$assign(kYellow))

; makes the text yellow for all the fields on the current window

Do $cwind.$objs.$sendall($ref. $visible. $assign(kFalse),$ref.$order<=5)

; hides the first five objects on the current window; useful

; for window subclasses if you want to hide inherited objects

$makelist() method

Quite often you need to build a list containing the names of all the objects in a group, and
you can do this using the makelist() method. For example

Do $clib.$classes.$makelist($ref.$name) Returns cLIST
; builds a list of all the classes in the current library and
; places the result in cLIST

Do $imenus.$makelist($ref.$name) Returns cLIST

; builds a list of all the currently installed menus

Do inherited

TheDo inheritedcommand runs an inherited method from a method in a subclass. For
example, if you have overridden an inherited $construct() method, you can Ose the
inheritedcommand in the $construct() method of the subclass to execute the $construct()
method in its superclass.

Do default

You can use thBo defaultcommand in a custom method with the same name as a standard
built-in method to run the default processing for method. For example, you can Dge the
defaultcommand at the end of a custom $print() method behind a report object to execute
the default processing for the method after your code has executed.

Chapter 2—Methods and Notation

Do redirect

You can use thBo redirectcommand in a custom method to redirect method execution to
another custom method with the same name that is contained in another object in your
library. You specify the notation for the instance or object you want execution to jump to.

Inheritance and custom methods are further discussed @bijeet Oriented Programming
chapter.

Calculate Command and Evaluating
EXxpressions

This section describes how you use@aculatecommand with an expression. It also
discusses using square bracket notation for strings.

The Calculatecommand lets you assign a value to a variable calculated from an OMNIS
expression. Expressions can consist of variables, field names, functions, notation strings,
operators, and constants. For example

Calculate varl as var2+var3
in this case, “var2+var3” is the expression.

Calculate varl as con('Jon', 'McBride")

Here the expression uses ttwn() function which joins together, or concatenates, the two
strings ‘Jon’ and ‘McBride’. You must enclose literal strings in quotes.

See theOMNIS Studidelp for a complete list of functions. In expressions, functions
appear as the function name followed by parentheses enclosing the arguments to the
function. The function returns its result, substituting the result into the expression in place
of the function reference. Calling a function does not affect the flag.

Calculate Command and Evaluating Expressions 39

40

The OMNIS operators are shown below, in precedence order, that is, the order in which
they get evaluated by OMNIS. Operators in the same section of the table are of equal
precedence, and are evaluated from left to right in an expression.

Parentheses 0
Unary minus -
Multiplication *
Division /
Addition +
Subtraction -

Less than
Greater than
Equal to =
Less than or equal to <F
Greater than or equal tg >
Not equal to <>
Logical AND &
Logical OR |

When you combine expressions with operators, the order of expressions will often make a
difference in the interpretation of the expression; this is a consequence of the mathematical
properties of the operators such as subtraction and division. You can group expressions
using parentheses to ensure the intended result. For example

Calculate Iv_Num as 100 * (2 + 7)

evaluates the expression in parentheses first, giving a value of 900. If you leave off the
parentheses, such as

Calculate Iv_Num as 100 * 2 + 7

OMNIS evaluates the * operator first, so it multiplies 100*2, then adds 7 for a value of 207.

Square Bracket Notation

You can use a special notation in strings to force OMNIS to expand an expression into the
string. You do this by enclosing the expression in square brackets; OMNIS evaluates the
expression when the string value is required. You can use this in all sorts of ways, including
the technique of adding a variable value to the text in the SQL or text buffer.

You can use square bracket notation wherever you can specify a single variable or field
name, including

— command parameters, for exam@¥ message

Chapter 2—Methods and Notation

OK message {Your current balance is [lv_curbalance]}

— window or report fields; you can include values in text objects, such as

Your current balance is [Iv_curbalance]
— variable or field names within@Galculatecommand or text object
— function parameters

Square bracket notation lets you refer to a value indirectly letting you code general
expressions that evaluate to different results based on the values of variables in the
expression; this is callaéddirection For example, you can include a variable name

enclosed in square brackets in a text object to add the value to the text at runtime. However
in general, there is a significant performance penalty in using indirection.

If you need to use [or] in a string but do not want the contents evaluated, then use [[and]
to enclose the contents—double up the first or opening square bracket. This is useful when
you use square bracket notation with external languages that also use square brackets, such
as the VMS file system or DDE.

Type Conversion in Expressions

OMNIS tries its best to figure out what to do with values of differing data types in
expressions. For example, adding a number and a string generally isn't possible, but if
OMNIS can convert the string into a number, it will do so and perform the addition. Some
other examples are

; Declare local variable IDate of type Date D m Y

Calculate IDate as 1200

; 1200 is no. of days since 31st Dec 1900

Calculate IDate as 'Jun 5 93'

; conv string to date in format D m Y

OK message {Answer is [jst(IDate,'D:D M CY")]} ;; reformat date

Calculate INum as IDate ;; sets INum to 1200, the no. of days

Boolean values have a special range of possibilities.
— YES, Y, or 1 indicate a true status
— NO, N, or 0 indicate a false status

FALSE and TRUE are not valid values; OMNIS converts them to empty.

Calculate Command and Evaluating Expressions 41

; Declare local variable LBOOL of type Boolean
Calculate LBOOL as 1 ;;is the same as...
Calculate LBOOL as'Y' ;; or 'YES'

; the opposite is

Calculate LBOOL as 0 ;; or 'NO'or 'N'

OK message { The answer is [LBOOL] }
Calculate LBOOL as 'fui' ;; is the same as...
Calculate LBOOL as "

You can convert any humber to a string and any string that is a number in string form to a
number.

; Declare local variable IChar of type Character

; Declare local variable INum of type Number floating dp
Calculate IChar as 100

OK Message { [IChar], [2 * IChar], and [con(IChar,'XYZ"] }

; Gives message output 100 200 and 100XYZ

Calculate INum as IChar

Calculate IChar as INum

OK Message { [IChar], [[Num * IChar], and [con(IChar,’ABC")] }
; Gives message output 100 10000 and 100ABC

Constants

You will often find situations in OMNIS where you must assign a value that represents
some discrete object or preset choice. OMNIS has a set of predefined constants you should
use for this kind of data. For example, a class type can be one of the following: code, file,
menu, report, schema, and so on. Each of these is represented by a constant: kCode, kFile,
kMenu, kReport, kSchema, respectively. You can get a list of constants from the Catalog;
press F9/Cmnd-9 to open the Catalog. You can use constants in your code, like this

Calculate obj1.$align as kRightJst ;; or use Do
Do objl.$align.$assign(kRightJst)
; aligns the object obj1 to the right

Although you can use the numeric value of a constant, you should use the predefined string
value of a constant in your methods. In addition to ensuring you're using the right constant,
your code will be much more readable. Moreover, there is no guarantee that the numeric
value of a particular constant will not change in a future release of OMNIS.

Chapter 2—Methods and Notation

Calling Methods

You can execute another method in the current class Dsimgethodor call a method in a

code class usinBo code methadlhese commands let you pass parameters to the called
method and return a value in a return field. For example, the following method named Setup
calls another method named Date and returns a value.

; Setup method
Do method Date (INum,IDate+1) Returns IDate
OK Message {Date from return is [IDate]}

; Date method, the called method

; Declare Parameter var [pNum of type Number 0 dp

; Declare Parameter var IpDate of type Short Date 1980..2079

OK Message {Date from calling method is [I[pDate], number is [IpNum]}
Quit method {lpDate + 12}

Note that when you call a code class method from within an instance the value of $cinst, the
current instance, does not change. Therefore you can execute code in the code class method
that refers to the current instance and it will work.

WARNING OMNIS does not stop a method calling itself. You must be careful how the
method terminates: if it becomes an infinite loop, OMNIS will exhaust its method stack.

Quitting Methods

Calling Methods

You can use th®uit command, and its variants, to quit methods at various levels.

— Quit method
quits the current method and can return a value

— Quit event handler
quits an event handling method

— Quit all methods
quits all the currently executing methods, but leaves OMNIS running

— Quit all if canceled
quits all methods if you press Cancel

— Quit OMNIS
exits your application and OMNIS

You can also clear the method stack with@ear method stackommand, which does the
same thing as the debugger m&tack>>Clear Method Stack it removes all the methods

43

except for the current one. If you folld@lear method stackith Quit methodit has the
same effect a@uit all methods

Flow Control Commands

44

The Constructs..group contains many commands that let you control the execution and
program flow of your method#. statements let you test a condition and branch
accordingly; loop commands iterate based on tests or sequencésiheencommand

lets you comment your code; and reversible blocks let you manipulate objects and values
and restore their initial values when the block terminates.

Several commands in this command group have starting and terminating comihands (
End if for example). You must use the correct terminating command, or you will get
unexpected results. If chromacoding is enabled, the beginning and terminating commands
for most branching and looping constructs are highlighted. You can enable chromacoding
using the View>>Show ChromaCoding menu option in the method editor.

Branching Commands

Thelf command lets you test the flag, a calculation, or a Cancel event. The Flag is an
OMNIS variable with a True or False value which is altered by some commands to show an
operation succeeded, or by user input. Elsecommand lets you take an alternative action
when thdf evaluates to fals&lse ifgives you a series of tests. You must useEime If

command to terminate afl statements.

A simple test of the flag looks like this:

If flag true
Do method Setup
End if

You can do a sequential checking of values using a calculation expression:

If CollCourse ='French’
Do method Languages
Else If CollCourse = ‘Science’
If CollISubCourse = ‘Biology’
Do method ScienceC1
Else
Do method ScienceC2
End If
Else
OK message {Course is not available.}
End If

Chapter 2—Methods and Notation

While Loops

TheWhileloop tests an expression at the beginning of a loopWittike command will not
run the code block at all if the expression is false immediately. You wouldWhkéea
command when you want to loop while an expression is true.

; Declare Count with initial value 1
While Count <= 10
OK message {Count is [Count]}
Calculate Count as Count + 1
End While

This loop will output 10 messages. If the condition was ‘Count <= 1, it would run only
once.

Repeat Loops

A Repeatoop lets you iterate until an expression becomes true. Repeat loops always
execute at least once, that is, the test specified idnitiecommand is carried out at the

endof the loop, after the commands in the loop are executed, whereas While loops carry out
the test at the beginning of the loop.

; Declare Count of Integer type with initial value 1
Repeat

OK message {Count is [Count]}

Calculate Count as Count + 1
Until Count >= 10

This loop will output 9 messages.

For Loops

TheFor field valuecommand lets you loop for some specific number of iterations, using a
specified variable as the counter. The following example builds a string of ASCII characters
from their codes using the functioosn() andchr().

; Declare Count

Calculate cvarl as " ;; clear the string

For Count from 48 to 122 step 1 ;; set the counter range
Calculate cvarl as con(cvarl,chr(Count)) ;; add char to string
Do $cwind.$redraw()

End for

Flow Control Commands 45

46

TheFor each line in listommand loops through all the lines in the current list.

Set current list LIST1

For each line in list from 1 to LIST1.$linecount step 1
; process each line

End for

Switch/Case Statements

The Switchstatement lets you check an expression against a series of values, taking a
different action in each case. You would ussnatchcommand when you have a series of
possible values and a different action to take for each value.

The following method uses a local variable IChar and tests for three possible values, “A”,
“B”, and “C".
; Parameter pString(character 10) ;; receives the string
Calculate IChar as mid(pString, 1, 1) ;; takes the first char
Switch IChar
Case ‘A’
; Process for A
Case ‘B’
; Process for B
Case ‘'C’
; Process for C
Default
; do default for all cases other than A, B, or C
End switch

Itis a good idea to use tiSvitchcommand only for expressions in which you know all the
possible values. You should always have Gasestatement for each possible value and a
Defaultstatement that handles any other value(s).

Escaping from Loops

While a loop is executing you can break into it at any time usingréfek keycombination

for your operating system: under Windows this is Ctrl-Break, and under MacOS it is Cmnd-
period. Effectively, this keypress ‘quits all methods’. When OMNIS performs any repetitive
task such as building a list, printing a report, or executing a Repeat/While loop, it tests for
this keypress periodically. For Repeat/While loops, OMNIS carries out the test at the end of
each pass through the loop.

To create a more controlled exit for the finished library, you can turn oéfrttief looptest
and provide the user with a working message wittaacelbutton. When th€ancel

button is visible on the screen, pressing the Escape key under Windows or Cmnd-period
under MacOS is the equivalent to clickiGgncel For example

Chapter 2—Methods and Notation

Disable cancel test at loops ;; disables default test for loops
Calculate Countas 1
Repeat
Working message (Cancel box) {Repeat loop...}
If canceled
Yes/No message {Do you want to escape?}
If flag true
Quit all methods
End If
End If
Calculate Count as Count+1
Until Count > 200

Thelf canceledcommand detects the Cancel event and quits the method. To turn on testing
for a break, you can use tB@able cancel test at loogemmand

TheBreak to end of loopommand lets you jump out of a loop without having to quit the
method, and th&ntil breakprovides an exit condition which you can fully control. For
example

Repeat
Working message (Cancel box) {Repeat loop...}
If canceled
Yes/No message {Are you sure you want to break out?}
If flag true
Break to end of loop
End If
End If
Until break
OK message {Loop has ended}

If you have not disabled the cancel test at loops, a Ctrl-Break/Cmnd-period terminates all
methods and does not execute @€ messageHaving turned off the automatic cancel test
at loops, you can still causeCauit all methodsvhen canceled. For example

Flow Control Commands 47

48

Disable cancel test at loops
Calculate Countl as 1
Calculate Count2 as 1
Repeat
Repeat
Working message (Cancel box) {Inner repeat loop}
Calculate Count2 as Count2 + 1
Until Count2 > 12
Calculate Count2 as 1
Working message (Cancel box) {Outer repeat loop...}
Quit all if canceled
Calculate Countl as Countl + 1
Until Countl > 20

If the user selects Cancel in the outer loop, the method quits, but from the inner loop there is
no escape.

Optimizing Program Flow

Loops magnify a small problem into a large one dependent on the number of iterations at
runtime, and other program flow commands can use a lot of unnecessary time to get the
same result as a simpler command.

Here are some tips to help optimize your methods.

Use the=or command instead of the equival®hile or Repeatommandskor has a fixed
iteration, while the other commands test conditions. By eliminating the expression
evaluation, you can save time in a long loop.

Use theSwitchcommand instead of equivaldffElsecommands where possible. Arrange
both theCasecommands within 8witchand the severdf andElseif commands so that
the conditions that occur most frequently come first.

Use theQuit methodcommand to break out of a method as early as possible after making a
decision to do so. This can be a tradeoff with readability for long methods because you have
multiple exits from the method; if falling through to the bottom of the method involves
several more checks, or even just scanning through a large block of code, you can
substantially improve performance by adding@het methodhigher up in the code.

Avoid using commands that don't actually exeautthin a loop. For example, don’t put
comment lines inside the loop. You can alsolwsap to start of loopo bypass the rest of
that iteration of the loop.

You can speed up a frequently called method by puBpiimize methodt the start: refer
to OMNIS StudidHelp for details of this command.

Chapter 2—Methods and Notation

Reversible Blocks

A reversibleblock is a set of commands enclose®gin reversible blockndEnd

reversible bloclcommands; a reversible block can appear anywhere in a method. OMNIS
reverses the commands in a reversible block automatically, when the method containing the
reversible block ends, thus restoring the state of any variables and settings changed by the
commands in the reversible block.

; commands...

Begin reversible block
; commands...

End reversible block

; more commands...

Reversible blocks can be very useful for calculating a value for a variable to be used in the
method and then restoring the former value when the method has finished. Also you may
want to change a report name, search name, or whatever, knowing that the settings will
return automatically to their former values when the method ends.

The OMNISStudioHelp indicates which commands are reversible.

Consider the following reversible block.

Begin reversible block
Disable menu line 5 {Menul}
Set current list cListl
Define list {cvar5}
Build window list
Calculate INum as 0
Open window instance Window?2
End reversible block
; more commands...

When this method terminates:

OMNIS closes window Window?2

OMNIS restores INum to its original value

The definition of cListl returns to its former definition
OMNIS restores the former current list

OMNIS enables line 5 of Menul

a > D PRE

At the end of the method, OMNIS steps back through the block, reversing each command
starting with the last. If there is more than one reversible block in a method, OMNIS
reverses the commands in each block, starting from the last reversible block. If you nest
reversible blocks, the commands in all the reversible blocks are treated as one block when

Reversible Blocks 49

they are reversed, that is, OMNIS steps backward through each nested reversible block
reversing each command line in turn. You cannot reverse any changes that the reversible
block makes to OMNIS data files or server-based data unless you carefully structure the
server transaction to roll back as well.

Error Handling

50

When you enter a command, OMNIS automatically checks its syntax. When a command is
executed in a method, you can getiatime error a processing error rather than a syntax
error.Fatal errorseither display a message and stop method execution or open the
debugger at the offending command.

You can cause a fatal error to occur with 8ignal errorcommand, which takes an error
number and text as its argument. This lets you define your own errors, but still use the
standard OMNIS error handler mechanism.

In addition, OMNIS maintains two global system variables #ERRCODE and #ERRTEXT

that report error conditions and warnings to your methods. Fatal errors set #ERRCODE to a
positive number greater than 100,000, whereas warnings set it to a positive number less than
100,000.

You can trap the errors and warnings by adding a method to test for the various values of
#ERRCODE and control the way OMNIS deals with them; this is calledran handlert

The command.oad error handletakes the name of the method and an optional error code
range as its parameters:

Load error handler Codel/1 {Errors}
; warnings and errors will be passed to handler in code class

Once you install it, OMNIS calls the error handler when an error occurs in the specified
range. Please refer to tVINIS Studidielp for a detailed description of thead error
handlercommand and examples of its use.

There are several commands prefixed with SEA, which stands for Set error action. Using
these commands, you can tell OMNIS what to do after an error:

— SEA continue execution
continues method execution at the command following the command that signaled the
error; if the error handling routine has not altered them, #ERRCODE and #ERRTEXT
are available to the command

— SEA report fatal error
if the debugger is available, it displays the offending command in the method window
and the error message in the debugger status line

— SEA repeat command
repeats the command that caused the error.

Chapter 2—Methods and Notation

Repeating a command should be done with care since it is easy to put OMNIS into an
endless loop. If the error has a side effect, it may not be possible to repeat the command. If
an ‘Out of memory’ condition occurs, it may be possible to clear some lists to free up
enough memory to repeat the command successfully.

Redrawing Objects

Messag

Redrawing Objects

There are a number of commands that let you redraw a particular object or group of objects.
The Redraw command has the following variants.

— Redrawfield or window
redraws the specified field or window, or list of fields or windows

— Redraw lists
redraws all list fields on the current window or redraws all lists in your library

— Redraw menus
redraws all the currently installed menus

— Redraw toolbar
redraws the specified custom toolbar

You can use the $redraw() method to redraw a field or fields, a window or all windows, as
described earlier in this chapter.

e Boxes

There are a number of message boxes you can use in your library to alert the user. The
commands for these messages are ivibgsage boxes group. They include

— OK message
displays a message in a box and waits for the user to click an OK button. For emphasis
you can add an info icon and sound the system bell. You can use square bracket
notation in the message text to display the current value of variables or fields. For
example OK message {[sys(5)Wvill display your serial number

— Yes/No messagandNo/Yes message
displays a message in a box and waits for Yes or a No answer from the user. Either the
Yes or the No button is the default

— Prompt for input
displays a dialog prompting the user for input

— Working message
displays a message while the computer is processing data or executing a method; with a
Cancel button the user can break into the processing with Ctrl-Break/Cmnd-period

51

Chapter 3—Debugging
Methods

You can debug the methods in your library using the OMiMiIBuggerThe debugger is an
integral part of the method editor. It helps you find errors by

Running and stepping through methods

Setting breakpoints

Tracing execution of method lines and field values
Viewing and altering fields and variables
Inspecting the method stack

Programming with debugger commands

The OMNIS debugger provides several tools to help you monitor the execution of a
method, including the ability to create watch variables, interrogate and edit the contents of
variables during execution, and place a variety of breakpoint conditions, which when met
will interrupt execution.

The debugger operations are controlled from the Debug and Options menus on the method
editor menubar. The debug options are also on the toolbar, which you can show using the
View>>Toolbar menu option. The hierarchy of methods calling other methods is saved in
themethod stacknd shown on the Stack menu.

You can also check your code using khethod Checkeravailable under the Tools menu
and described in this chapter.

52

Chapter 3—Debugging Methods

Executing a Method

You can open most class and field methods and run them from the debugger menu bar or
toolbar. Note that event handling methods will not run fromheommand without the

event, but you can try out most types of methods while you're in design mode. You cannot
execute methods that contain instance or task variables at design time since these variables
are available when the objects are instantiated.

To run or execute a method
® Select Debug>>Go from the debugger menu bar
or

® Click on the Go button on the debugger toolbar

Aozl g @ o
o]

Execution will begin from the selected line. When you first open the method editor the first
line of the first method is selected. You can halt execution by pressing the stop key
combination Ctrl-Break/Cmnd-period. When you break into a method the debugger
completes the current command and halts execution.

= | Clazs methods ’

The basic debugging operations on the Debug menu are
— Go executes from the Go point

— Stepexecutes from the Go point to the next method line, stepping into recipient
methods

— Step Overruns from the Go point to the next method line, executing method calls, but
not stepping into them

— Trace steps automatically through the method

— Set Go Pointsets the current method line as the Go point

— Go Point Not Setindicates the method with the Go point when one is set

— From Line andTo Line runs, steps or traces from the current line or to the current line
— To Return runs or traces to the return address in the calling method

— Read Only Modeprevents editing of methods

Executing a Method 53

54

The Go Point

A method normally runs from the start, but you can start execution from any method line by
setting it as the Go Point.

To set the Go point
® Double-click on the line
or

® Select the method line and choose the Debug>>Set Go Point menu option

or

® Select the method line and click the Set Go Point button on the toolbar

Av=lEgE B |E[:Lﬂ @
Set Go Point

The debugger highlights this line and puts a yellow arrow in the left margin pointing to the
method line where execution will begin. You can move around the program, changing the
code, without changing the go point, which is independent of the current line. The name of
the method containing the Go point is shown in the Debug menu and choosing this option
from anywhere returns you to the Go point. You can clear the Go point using Stack>>Clear
Method Stack.

*= | Clazz methods -

Execution Errors

When an error occurs in a running method, OMNIS takes you into the debugger. The
offending method is displayed with the go point at the method line that encountered the
error, and an error message is shown in the status area. Error messages include the error
number and text, for example “E108139: Set main file command with no valid file name.”
You can use the various inspection tools to find out why the error occurred, fix it, and
continue.

You can use the Debug>>From Line submenu to run the method from the currently selected
line rather than the go point. The submenu items let you Go, Step, Step Over, or Trace from
the current line instead of from the go point. The To Line submenu lets you Go or Trace
from the go point to the current line, which becomes a one-time breakpoint.

Chapter 3—Debugging Methods

Stepping through a Method

Normally when debugging you will want to step through the code rather than just run it.

This gives much more control over when to start and stop methods and lets you examine
fields, variables, and the method stack at specific points in the program. You use stepping in
conjunction with breakpoints to control the debugging of your code.

To step through a method

® Choose Debug>>Step from the debugger menubar, or click on the Step In button

AEE B0 @ o
Step In

Every time you click on the Step In button, OMNIS executes the line at the go point and
sets the go point to the next line. If a command at go point calls another method, the
debugger loads the recipient method on the method stack and sets the go point to the first
line in that method.

= | Clazs methods i

The Step In option steps into a recipient method. You can avoid this with Step Over where
the debugger executes the recipient method without stepping into it. This speeds up
debugging if you have a lot of method calls.

Tracing a Method

As well as stepping through your code, you can record or trace method execution.

To trace a method

® Choose Debug>>Trace from the debugger menubar, or click on the Trace button

_ﬁlT:EEI;E;EEécbac
Trace|

The debugger steps through your code automatically, including stepping into recipient
methods, and adds each method line and its parameterste dog

= | Clazs methods e

Executing a Method 55

You open the log from the Tools menu.

f_ Trace log

[tem

[rata

FILEOPS. Test_Delete_File
FILEOPS. Test_Delete_File
FILEOPS. Test_Delete_File
FILEOPS.Common Code/G
FILEOPS.Common Code/&
FILEOPS.Common Code/&
FILEOPS.Common Code/G
FILEOPS.Common Code/&

: Find the current library path. -

Do code method Common Code/Get_Path [TEST
Calculate IPath az sps[10]

Split path name [IPatkIC rive, 10 IFile, B wt)
Calculate IPath as conf|Dirive, D, pFileM ame)

Cluit method [Path

= 10] x|
Clear Log

Print Log

Cloze

i

bl ax lines:

FILEOPS. Test_Delete_File
FILEOPS. Test_Delete_File
FILEOPS. Test_Delete_File
FILEOPS. Test_Delete_File
FILEOPS. Test_Delete_File

currorc T oo Pyl [_:I_

-
4| »

The first column in the trace log shows the name of the currently executing method, and the
class it belongs to. The second column shows the method line and parameters of the
currently executing command. When you double-click on a line in the trace log, the
debugger goes to and highlights that method line.

200

: Create a tesgt file to be deleted.

Create file [IPath)

You can open the trace log from within a method usin@jpen trace logommand. For
example, you can place t@pen trace loggommand in the startup task of your library to
trace method execution immediately after your library opens.

You can specify the maximum number of lines in the log in the Max lines entry field. When
the log contains that many lines, it discards the earliest lines when new ones are added.

Private Methods

When you step or trace through the methods in your library the debugger will normally
enter each method that is called, even if a method is in a private library. However if you set
the library property $nodebug to true, the debugger will not display methods contained in
private libraries. You need to set this property each time you open the library.

Chapter 3—Debugging Methods

Inspecting Variable Values

You can inspect the value of a variable or field using the variable context menu. This menu
gives you full information about the variable or field and the class it belongs to, if any. You
can display the variable context menu for any variable or field by right-clicking on its name
in a method or the Catalog. Note that you cannot inspect the value of instance or task
variables in design mode since the variables do not exist: in this case, the variables context
menu is grayed out.

To display a variable context menu

® Right-click on the variable or field

Yanable TestMum...

Local variables !

Shaort integer [0 to 255]

Break on vanable change
One-time breakpoint
Break on calculation

Set calculation. ..

Store min and max
Watch wariable

This menu contains the variable name, value, parent group and data type, and a series of
debugging options you can apply to the variable. If you click on a variable name in the
variable pane of the method editor, the context menu has the Insert New and Delete
Variable options as well. The other options at the bottom of the context menu are discussed
under Breakpoints. The first option Variable opens the Variable Value window, except that
for ltem References with a value, it opens the Notation Inspector.

Yariable ITestHum M=l

Optionz “iew

1 =]

[

[T ezt um Shart integer [0 ta 255] i

Inspecting Variable Values 57

58

This window shows the variable name and type at the bottom and displays the value, which
you can edit. OMNIS updates the value in the window whenever you bring the window
containing the method to the top, but you cannot observe the value change dynamically
through this window.

On the Variable Value window’s View menu
— Redraw Values redraws the variable on any window
— Single Window Mode shows subsequent variable values in the same window

You can show and edit a list variable in a value window in just the same way. Note you
cannot edit the binary variable.

The value window for a variable is valid only for as long as the variable is current.

The Values List

In addition to the Value window for an individual variable you can show a Values List for
whole groups of variables such as task variables, class variables, and local variables.

To show the Values List for class variables
®* Right-click on a class variable name in a method or in the catalog
® Select the Class Variables option from the variable context menu

The Values List for class variables appears with the different variable types on tabbed
panes.

m Class varniablez for Test_Delete_File _ O] =]

Optionz Yiew
M arne |Ty|:|e IMin IMa:-: IVaIue
FAILURE_TEST Character 10000000 (MA% |MAA [[Empty) ﬂ
Character 256 Mda Mas [[Ermphy]
Character 10 Mat MAa [Empty]
Character 30 s Mas [[Emphy]
I»I_I
Claszdlnstance, Locals
|FﬂILLIHE_TEST |Eharacter 10000000 i

On the View menu for the window

— Redraw Value redraws the variable wherever it occurs on a window

Chapter 3—Debugging Methods

— Show Full Value opens a scrolling Value window below for the selected variable

The Variable popup menu for a file or schema class lets you modify the class, and for file
classes only the Values List shows the current values for the file class.

Watching Variable Values

You can monitor or watch the value of a variable by makingvathed variableYou can

add task, class, local, instance and parameter variables to the Watch variables pane in the
method editor. When you run the debugger you can see the value of a watched variable
change in the Watch variable pane.

To set a watch variable

® Right-click on the variable name and choose Watch Variable

or

®* Inthe method editor, drag the variable from the variable pane into the watch pane

The Watch Variable item on the context menu is now checked. You can enlarge the watch
pane by dragging its borders. The watch variable value is only updated when stepping,
unless the method redraws it.

To remove a watch variable

®* Right-click on the variable name and uncheck Watch Variable on the popup menu

Breakpoints

A breakpointis a marker on a method line. When the debugger reaches that line, it stops
execution and makes that line the go point.

To set a breakpoint

® Select the method line

® Choose the Breakpoint>>Breakpoint or click on the Breakpoint button

When you set reakpointfor a line, a red dot appears in the left margimn&-time
breakpointis a breakpoint that the debugger removes immediately after you break on it. It is
marked by a blue dot in the margin.

When you close a library, you lose all breakpoints in the methods in that library. You can
use theBreakpointcommand in a method to set permanent breakpoints.

The Breakpoint menu lets you create and clear breakpoints.

Watching Variable Values 59

60

— Breakpoint (Ctrl/Cmnd-Shift-B)
sets a full breakpoint at the current line

— One-time Breakpoint (Ctrl/Cmnd-Shift-O)
sets a one-time breakpoint at the current line

— Clear Breakpoints (Ctrl/Cmnd-Shift-C)
clears all the breakpoints

— Clear Field Breakpoints (Ctrl/Cmnd-Shift-F)
clears all the field change breakpoints, calculation breakpoints, and min and max
settings (see below)

The rest of th@&reakpoint menu is a list of all the current breakpoints. Choosing a
breakpoint from this menu displays the line in the debugger.

You can also set breakpoints and from line to line execution, by right-clicking in the left
margin of the method line or by using the appropriate tools on the toolbar.

Breaking on Variable Change

In the second half of the variable context menu, there is a group of breakpoint options that
let you set breakpoints based on variable or field values.

The debugger only tests for variable or field breakpoints when methods are running, so a
variable change during an enter data suspension of a method will be immediately reported if
there is a control method and delayed otherwise. If there are several variable breaks at the
same command, the debugger only displays one. Setting a variable value breakpoint slows
down method execution considerably.

The menu optiolBreak on Variable Changetells the debugger to stop the method when

the variable value changes. The debugger puts a check mark against the line. Reselecting
the same line toggles the break off. The status line displays the text ‘Break on variable
change (field)’ when the break occurs.

The One-Time Breakpoint option puts a single-stop variable change breakpoint on the
line.

Breaking on Calculation

You can also create a variable value breakpoint with a calculation. For example, to stop a
method when a local variable IvLines becomes equal to the number of lines in list cvList,
the calculation is entered as

IvLines = Ist(cvList,cvList.$linecount)

The menu optio®Break On Calculation sets the breakpoint, and the following IBet
Calculation prompts for the calculation. The debugger treats the calculation value as a
boolean value where zero corresponds to No and anything else corresponds to Yes.

Chapter 3—Debugging Methods

Execution breaks when the calculation evaluates to Yes, but with a qualification: the break
happens only when the calculation changes from No to Yes. This means that if the
calculation is always Yes, the break never happens; it also means that the break happens
only when the change is from No to Yes, not every time the calculation evaluates to Yes.

For example, the calculation break
(IvNumber<10) | (IvNumber>20)

ensures that local variable IvNumber stays within the range 10-20.

Each variable or field can have one calculation breakpoint. There is no requirement that the
calculation refers to the variable.

The Store Min And Max option adds the minimum and maximum variable values to the
end of the menu as execution proceeds, along with thedtear Min and Max that lets

you turn off the feature. If you choose either menu item, OMNIS writes a line to the trace
log. Turning onStore Min And Max slows down the debugger a good deal.

The Method Stack

A stack is a list of things that you can access in a last-in, first-out manner. When you call a
method, OMNIS pushes the current method onto the mestholl of executing methods.

The debugger adds each new method t&thek menu in the method editor. The top-most
menu item is the latest method, the one below it called it, and so on. When a method
returns, OMNIS removes the top item, also known as popping the stack, and goes to the
calling method. You can examine any method on the stack by selecting it. You can also
move up and down the stack with B&ack menu itemdove Up StackandMove Down

Stack

If you select a method in a different class while holding dowisthft key, the debugger
opens a new method design window.

When you stop in a method with a breakpoint, an error, a step, or an explicit stop, OMNIS
sets the go point to the next method line and saves the stack. It marks the commands in the
methods on the stack that will execute when you return to that method with a gray arrow in
the left margin pointing to the method line where execution will resume.

A method can appear more than once in the method stack with a completely different set of
local variables.

Debug>>To Returnruns or traces the method from the go point or current line until it
returns control to the method that called it. If the only method on the stack is the current
method, this option is grayed out.

There are times when you may want to throw away the current stack and start over. For
example, if you follow a problem to its conclusion and everything freezes up, you can

The Method Stack 61

restart by clearing the stack. You do this v8tack>>Clear Method Stack which also
grays out th@ o Return item and removes the Go point.

Debugger Options

The debugge®ptions menu appears with the other debugger menus.

— Debug Next Event
stops at the first line of a method executed for an enter-data event with a control
method (a field method, a window control method or a timer method). Note this option
is not saved with other debugger options and defaults to off whenever OMNIS is started

— Trace All Methods
sets trace mode permanently on.

— Open Trace Log
opens the trace log window or brings it to the top

— Disable Debugger at Errors
stops OMNIS from breaking into the debugger on program errors; this is what the end
user of your application would see

— Disable Debugger Method Commands
deactivates any debugger commands in the methods

— Save Debugger Optionsaves all the debugger options, and Revert To Saved Options
reverts back to the last saved set of debugger options

Debugger Commands

62

You can control the debugger using the commands in the Debugger... group. These
commands effectively disappear when youGetions>>Disable Debugger Method
Commands See th@©OMNIS Studidielp for a complete description of the following
commands.

Breakpointbreaks the program when OMNIS executes it. If you specify a message, it
appears on the status line when the break happeatse onswitches trace mode on,
optionally clearing the trace log, afidace offswitches trace mode off.

Send to trace logdds a new line to the trace log containing the specified text. The text can
contain square bracket notation. You can then use the log as a notepad for your comments,
variable or field values, and bookmarks in the code. When the methods are run, double-
clicking on trace log lines opens the design windows at the appropriate points in the
methods. See the Send value to trace log option fdrahiable menicommandelow.

Chapter 3—Debugging Methods

The Variable menu commarapplies a variable context menu option to a list of variables.
The list has the same formatsfine list and for fields can include file names and so on.
This command has several options.

Debugger Commands

Set break on field change
sets a field change breakpoint for each field in the list

Clear break on field change
clears any field change breakpoints for each field in the list or all breakpoints if you
don't specify a field list

Set break on calculation
sets a calculated breakpoint for each field in the list; set the calculation for each field
with Set break calculation

Clear break on calculation
clears any calculated breakpoints for each field in the list or all calculated breakpoints
if you don’t specify a list

Store min and max
stores minimum and maximum values for each field in the list

Do not store min and max
clears store min and max mode for each field on the list or all modes set if you don't
specify a list

Add towatch variabledist
adds each specified field to the watch variables pane

Remove fromvatch variabledist

removes each specified variable from the watch variables pane or all variables if you
don’t specify a list. Variables with breakpoints or with store min and max mode set
always appear on the watch variables list

Send value to trace lagdds a line to the trace log for each field on the list; if you don’t
specify a list, adds a line for all fields

Send minimum to trace I@glds a line to the trace log with the minimum for each field
on the list for which the debugger is storing minimums; if you don’t specify a list, adds
a line for all such fields

Send maximum to trace laglds a line to the trace log with the maximum for each field
on the list for which the debugger is storing maximums; if you don’t specify a list, it
adds a line for all such fields

Send all to trace logdds a value line to the trace log for each field on the list; also
adds minimum and maximum lines to the trace log for each field on the list for which
Store min and mais set; with no list, adds a line for all appropriate fields

63

— Open value windowpens a value window for each field on the list; with no list, opens
a window for all fields with whatever limit the operating system puts on the number of
window instances

— Open values lisbpens a values list containing the value for each field on the list; with
no list, opens a values list for all fields, subject to the operating system limit on the
number of window instances. There is one values list for each file class so if more than
one field name from a particular file class appears in the list, OMNIS displays only one
values list for that file class

— Set break calculatiosets up the calculation for the field breakpoint

Checking Methods

You can check the methods in your library usingrttehod checkeiThe method checker

is available under the Tools menu on the main OMNIS menu bar. It checks your code for
syntax errors, unused variables, methods without code, and so on. It provides various levels
of checking and reports errors in individual classes or all classes in the current library. It is
particularly useful for checking libraries converted from an earlier version of OMNIS.

Note that the method checker does not correct the code in your libraries automatically, it
simply reports any errors and potential problems in your code.

When you open the method checker it loads all libraries that are currently open.
Alternatively you can open a particular library from within the method checker.

To check the methods in your library

® Select the Tools>>Method Checker menu item from the main OMNIS menu bar

i Method Checker = =]
Library g
! §| By -
1 Open Library 7

64 Chapter 3—Debugging Methods

® |f you need to load a library, click on the Open Library button on the method checker
menu bar

® Double-click on the library you want to check

W S5elect Clazses To Be Checked O] x|
Clazz narnme Class tupe - Checking Lewvel:
Tes!_dadd code 21 | € Ermaor conditions
Test_ddiff code :
Test_dname code = Level 1 warnings
Test_dpart code & Level 2 warings
Test_fday code
Test_getfye code
Test_getws code L
Test_|day code
Test_nday code
Test_pday code
Test_zetfye code
Test_setws code
Tirmirgs file Select all classes |
f_platfam file
f_prefs file:
f_tests file
f_uzers file [Eheck |
STARTUP =N -

lll ' LIJ Cancel |
51 Clazzes ,..-,-:‘E

® Shift-click or Ctrl/Cmnd-click to select the classes you want to check, or click on the
Select all classes button to select them alll

The following checking levels are available

— Error conditions
this level of checking finds problems that can cause runtime errors or undesired
behavior; youmustfix these errors

— Include Level 1 warnings
finds problems that you should investigate because they might result in subtle bugs and
strange behavior; yoought tofix these problems

— Include Level 2 warnings
finds problems that you should be aware of, including empty methods and/or inefficient
code, potential compatibility problems, and platform-dependent code

Checking Methods 65

66

The different levels of checking aireclusive that is, if you select Level 2 Warnings (the
default) this includes Level 1 and the Errors categories.

® Select a checking level, and click on the Check button

The method checker works through the classes you selected displaying their statistics in the
Method Checker Error Log. You can cancel checking at any time by pressing Ctrl-
Break/Cmnd-period.

When checking is complete, you can sort the log by clicking on one of the headers in the
list. You can print the log or save it to a text file.

You can show a summary of the errors for each class by clicking on the Show Summary
button.

Interpreting Errors and Warnings

The following sections detail the different levels of errors and the possible action you
should take.

Fatal Errors

These are the type of errors that youstfix.

Encountered a construct End without a construct Begin
An ending construct was found without a matching beginning:

— End if, End switchEnd while End for, Until, End reversible block

Method contains a construct Begin without a construct End
A beginning construct was encountered without the proper ending:

— If, Switch While, For, RepeatBegin reversible block

Construct End does not match construct Begin
An ending construct was encountered that did not match the beginning construct, e.g. Begin
reversible block followed by an End if.

Encountered a construct element in an invalid context
One of the following was found outside of a proper constilsg Case Default

Encountered a command in an invalid context

One of the following commands was found outside of a proper cond®mnectk to end of
switchoutside of a Switch construct, Break to end of loopr Jump to start of loop
outside of &or, While,or Repeatoop.

Incomplete command
A command with no parameters set, for exanpéd,referencevith no referenceSet
current listwith no list nameCall methodwith no method name.

Chapter 3—Debugging Methods

Invalid field reference
An invalid reference to a field or variable (i.e. #??7?) was encountered: usually a reference to
a field or variable that has been deleted.

Invalid method reference

Encountered a command containing a reference to a non-existent method, an unnamed
method, or a method in a library that is not currently open. For exa@gdlenethodwith
name of non-existent methdénable menu linavith reference to non-existent menu or
menu line.

Missing extended command or function
A missing extended command or function was encountered, either not loaded or installed:
these show in your code beginning with the letter “X".

Bad library name
The library name contains one or more periods.

Level 1 warnings
These are the type of problems that poght tofix.

Class variable with the same name as a library variable
Could cause precedence problems at the class level.

Optimize method command not in first line of method
The Optimize methodommand should be the first line of a method.

Code in an unnamed method
Named method with no code
Check to see if this code/method is required.

Debugging code?

You should remove all breakpoints before deploying your application. One of the following
was encounteredreakpoinf Trace on/offField menu commandet break calculatign

Send to trace log.

Debugging message?
EitherOK messager Sound belivas encountered: remove messages inserted for
debugging purposes.

Obsolete command
You should not use obsolete commands: remove them from your code. For example you can
replaceCall methodwith Do methodor Do code methad

Command removed by converter
In converted libraries certain commands are commented out: you should use another
command or use the equivalent notation.

Level 2 warnings
These are the type of problems that you should investigate that might require fixing.

Checking Methods 67

68

Unused variable
Variable defined but unused, or referenced and not defined.

Unfriendly code: Code which could affect other libraries if running in a multi-library
environment
For exampleClear method stack, Quit all methods, Close all windows, Remove all menus.

Unfriendly code: Code which would cause the current library to be closed
The following commands will close the current library if the “Do not close other libraries”
is not setOpen library, Create library, Prompt for library.

Class name specified in an internal method call
Inefficient code.

Code that modifies a library or class
One of the Classes... group of commands, sutNeasclass, Rename class, Delete class.

Platform-dependent code
Functions which return different values depending on which platform they are executed,
including sys(6), sys(10) to sys(22), sys(103) to sys(114).

Comment containing a question mark
Usually indicates code that needs to be tested, completed, or fixed.

Reference to hash variable
Avoid using hash variables: replace with variable of appropriate scope.

Chapter 3—Debugging Methods

Chapter 4—QODbject
Oriented Programming

ThelIntroductionin theUsing OMNIS Studionanual describes the basic concepts of object-
orientation used in OMNIS, and t@MNIS Toolschapter describes the tools you use to
access these features. This chapter deals specifically with the more advanced object-
oriented features including inheritance, custom properties and methods, and creating and
using object classes and external objects.

Inheritance

Inheritance

When you create a new class you can derive it from an existing class in your library. The

new class is said to be a subclass of the existing class, which is in turn a superclass of the
new class. You can make a subclass from all types of class except code, schema, file, and
search classes. The general rule is that if you can open or instantiate a class, you can make ¢
subclass of that type of class. OMNIS does not support mixed inheritance, that is, you

cannot make a subclass of one type from another type of class.

When you make a subclass, by default, it inherits all the variables, methods, and properties
of its superclass. Window subclasses inherit all the fields and objects on the window
superclass, and menu and toolbar subclasses inherit all menu lines and tools from their
respective superclass.

Inheritance saves you time and effort when you develop your application, since you can
reuse the objects, variables, and methods from a superclass. When you make a change in a
superclass, all its subclasses inherit the change automatically. From a design point of view,
inheritance forces uniformity in your GUI by imposing common properties, and you get a
common set of methods to standardize the behavior of the objects in your library.

Making a Subclass

You can make subclasses from the following types of class.

— Window
inherits variables, methods, and properties from its superclass, as well as all fields on
the window superclass

— Menu
inherits variables, methods, and properties from its superclass, as well as the menu lines
in the menu superclass

69

— Toolbar
inherits variables, methods, and properties from its superclass, as well as the toolbar
controls in the toolbar superclass

— Report
inherits variables, methods, and properties from its superclass: note that a report class
does nofnherit the fields, sections, and graphics from its superclass

— Task
inherits variables and methods from its superclass, but none of its properties

— Table
inherits variables and methods from its superclass, and only some of its properties

— Object
inherits variables and methods from its superclass, but none of its properties

To make a subclass in the Browser

® Open your library in the Browser and show its classes
® Select the class and choose Class>>Make Subclass from the Browser menu bar

or, you can

® Right-click on a class and choose Make Subclass from its context menu

When you make a subclass OMNIS creates a new class derived from the selected class. The
new class inherits all the objects, variables, and methods from its superclass. OMNIS
supports up to 10 superclass levels, that is, a single class can inherit objects from up to ten
other superclasses that are directly in line with it in the inheritance tree. If you create further
levels of subclass they do not inherit the objects from the superclasses at the top of the tree.

You can view and edit a subclass, as you would any other class, by double-clicking on it in
the Browser. When you edit the methods for a subclass in the method editor, you will see its
inherited variables and methods shown in a color. When you view the properties of a
subclass its inherited properties are shown in a color in the Property Manager. You can set
the color of inherited objects using tinderitedcolor OMNIS preference.

Chapter 4—Object Oriented Programming

Inheritance

The following screen shot shows the inherited and non-inherited properties for a window
class: note that all the Appearance and Action properties for a window are inherited too.

& Property Manager M[=]

General |ﬁ.ppearance | Action I
desc
clazstype kA indo
moddate 23JUL 1998 18:39
createdate 2300 1953 16:38
dizkzize 362
external kFalze
showaszcheckedo kFalze
superclass HE'WLIE. kMyfindaw
inheritedorder 1
izzupercomponent kFalze

ki LE=lom
componenticon | kD eCize [o
deszigntaskname | Startup T azk
fitle
top 38
|i=ft 110
height 359
width 384
ztartfield]
hasmetiuz kFalze
MENUNames
tonlbarpos kD ockingtreat one
toolbarnames |
hasztatuzhar kFalze
helpfile 1]
contexstmenuy

it =

|1 Object ,;::’_:

The properties at the top of the Property Manager are standard properties for the class and
are non-inherited, so too are the grid properties. The properties to do with the general
appearance of the window, suchtile andhasmenus are inherited and shown in a color,
which defaults to bright blue. You cannot change inherited properties unless you overload
them: their values are grayed out in the Property Manager. If you change the properties of
the superclass, the changes are reflected in the subclass when you next open it in design
mode.

71

There are some general properties of a class that relate to inheritance. These are

superclass the name of the superclass for the current class, prefixed
with the library name: the superclass can be in another
library

inheritedorder for window classes only, determines where the inherited

fields appear in the tabbing order: by default inherited
fields appear before non-inherited fields on your window

issupercomponent if true the class is shown in the Component Store as a
superclass; when you drag such a class from the
Component Store you create a subclass of the class

componenticon icon for the superclass when it is loaded in the Component
Store

Making a Subclass Manually

You can set theuperclassproperty for a class manually, to make it a subclass of the
specified class, either using the notation or in the Property Manager.

extermnal kFalze
superclazs I e Winc: ;l

inheritedarder 1

However when you make a subclass in this wapés not inheriainy of the properties of
the superclass. Only objects are inherited from the superclass. You have to open the
Property Manager and inherit the properties manually using a context menu.

To inherit a property manually

®* View the properties of the subclass in the Property Manager

® Right-click on the property and select Inherit Property from its context menu

LUTIr e sur | [= P Pl =} | |L|
designtaskname Startup_T azk
Fitle :

top Irherit Property

left 16

heimht A4

If the property cannot be inherited the context menu will display Cannot Inherit and will be
grayed out. If the class does not have a superclass the inheritance context menu does not
appear or is grayed out.

Chapter 4—Object Oriented Programming

Inheritance

To inherit a method manually

® Open the method editor for the subclass

®* Right-click on the method and select Inherit Method from its context menu

I M 1 l:l-&l\gf“.ll_-llzl-b-bl{"-\ll (L=} I'-':l{'\'l_l.".-lzlllfﬁll l:ll':llll':'.':ll{

wour initialization

Inzert Mew kethod
Delete bMethod
|Fiherit b ethiod

When you inherit a method in this way, OMNIS will delete the current method.

Overloading Properties, Methods, and Variables

Having created a class from another class using inheritance you can override or overload
any of its inherited properties, methods, and variables in the Property Manager or the
method editor as appropriate. All inherited objects are shown in a color. To overload an
object, you can Right-click on the object and select Overload from the object’s context
menu. Note that for windows, menus, and toolbars you cannot overload or delete inherited
fields, menu lines, or toolbar controls. If you don’t want certain objects to be displayed in a
subclass you can hide them temporarily at runtime using the notation.

To overload a property

®* View the properties of the subclass in the Property Manager

® Right-click on the inherited property and select Overload Property from its context

menu
componenticon kDetSize | [0
dezigntazkname Startup_T azk
t|t|E LI P P B =
E Overload Property
lieft 122
hieight 238

When you overload a property its inherited value is copied to the class and becomes
editable in the Property Manager. You can overload any number of inherited properties in
the class and enter values that are local to the class.

To reverse overloading, you Right-click on a property and select Inherit Property: the local
value will be overwritten and the value inherited from the superclass will appear in the
Property Manager.

73

74

To override a method

®* View the methods for the subclass in the method editor

® Right-click on the inherited method and select Override Method from its context menu

I Yy | QEry \. l_-ll:I-}-}l{ "\' In=van I'-':l{ "\' I_l."-l:IIl{ \'I [=1L=1]} IE'.'SIIK

-

Irzert Mew Method bur initializa

New Method W
Superclazs Methods. ..

When you override a method it becomes like a non-inherited method in the class, that is,
you can select it and add code to it.

To reverse this process and inherit the method with the same name from the superclass, you
can right-click on the method and select Inherit Method: the code in the non-inherited
method will be deleted and the inherited method will now be in place. Alternatively, if you
override a method and then delete the local one, the inherited method will reappear when
you close and reopen the class.

Chapter 4—Object Oriented Programming

To override a variable

®* View the methods for the subclass in the method editor and click on the appropriate tab
in the variable pane to find your variable

®* Right-click on the inherited variable and select Override Variable from its context
menu

"Yariable | Type | Subty
1 r\.ll lml'-:.r I ng "

Ingert Mew Y ariable

Qverride Variable
L3

T: Superclazs Methods. . rmeke
m Yariable cvarl... m
$desztuc Yalue 0 |0e
Mew Met Clazs vaniables. .

Long integer

Break on wariable change
One-time breakpoint
Break on calculation

Set calculation. ..

Store min and max

Wi atch variable

When you override a variable it becomes like a non-inherited variable in the class and is
only visible in that class.

To reverse this process and inherit the variable with the same name from the superclass, you
can Right-click on the variable and select Inherit Variable.

Inheritance 75

76

Inheritance Tree

The Inheritance Tree shows the superclass/subclass structure of the classes in your library.
All classes below a particular class in the hierarchy are subclasses of that class. When you
select a class in the Browser and open the Inheritance Tree it opens with that class selected,
showing its superclasses and subclasses above and below it in the tree.

To open the Inheritance Tree for a class

® Select the class in the Browser

® Choose Class>>Inheritance Tree from the Browser menu bar
or

® Choose View>>Inheritance Tree from the main menu bar, in which case you will need
to navigate to the class, since it will either come to the front as it was if already open, or
open at the default top level

or, you can

®* Right-click on the class and select Inheritance Tree from its context menu

. Inheritance Tree =] E3

Wi
E| Clazs ;I
........ Menu
= dindow

b NEWLIB Windowname

Chapter 4—Object Oriented Programming

Inheritance

Showing Superclasses in the Component Store

You can show any class that supports inheritance in the Component Store by setting its
issupercomponentproperty. You can specify the icon for a superclass by setting its
componenticonproperty. If you create a class from a superclass displayed in the
Component Store, by dragging its icon on to your library, the new class will be a subclass of
the class in the Component Store automatically.

For example if you create a window called ‘My Window’ and sas#spercomponent
property to true, it will appear in the Component Store under the Window Classes button.

j. Component Store
Wiew
{Qﬂ%filﬁaﬁ%?ﬁééf‘éﬁ%%|
T T W =
=] E =]
‘_«“
Mew wWindow FileFields Filelarid Filel'fars
Bl
| _ =]
3 3
Ormnig Form ... SGL Form... SOLColumnz SOLGnHd
SOLSmartlist fE0RERT el
Py Wafind o o

When you drag the ‘My Window’ component on to your library, OMNIS creates a new
window that is a subclass of ‘My Window’. The window superclass will only appear in the
Component Store if the library containing it is open, since the class actually remains in your
library and is not physically copied to the component library.

Note that classes that appear in the Component Store in this way cannot be made the default

object for that class.

77

78

Inheritance Notation

You can use the $makesubclass() method to make a subclass from another class. For
example

Do $windows.Window1.$makesubclass(‘Window2’) Returns ItemRef

; creates Window?2 which is a subclass of Window1 in the

; current library, ItemRef contains a reference to the new class

Do $windows.Window1.$makesubclass(‘Window2’,’'MyLibrary’) Returns
ItemRef

; creates Window?2 which is a subclass of Window1 in

; the library called MyLibrary

You can test if the current class can be subclassed by testing the $makesubclass() method
with the $cando() method, as follows

If $cclass.$makesubclass().$cando()
Do $cclass.$makesubclass(sClass,tLibName) Returns ltemRef
; creates a subclass of the current class in the
; library held in tLibName

You can test if a particular class is a superclass of another class using the
CLASS . $isa(SUPERCLASS) method as follows

Do $windows.window2.$isa($windows.windowl) Returns Iresult

; returns true if windowl is a superclass of window?2

You can change the superclass of a class by reassigning $superclass

Do $cclass.$superclass.$assign(‘DiffClassName’) Returns Iresult

You can test if a property can be inherited using
Do $cclass.$P roPeErRTNAMESisinherited.$canassign() Returns Iresult
A superclass can be in a different library to a subclass. If you open an instance of a subclass

when the superclass is not available, perhaps because the library the superclass belongs to i
not open or has been renamed, a kerrSuperclass error is generated.

Calling Properties and methods

When a property or method name is referenced in a subclass, OMNIS looks for it first in the
subclass and progressively up the chain of superclasses in the inheritance tree for the current
library. Therefore if you haven’t overridden the property or method in the subclass, or at

any other level, the property or method at the top of the inheritance tree will be called. For
example, the following command in a subclass

Do $cinst.$MethodName()
; will call $MethodName() in its superclass

Chapter 4—Object Oriented Programming

Inheritance

However, if you have overridden a property or method in the subclass the method in the
subclass is called. You can still access the inherited property or method using the $inherited
property. For example, assuming $MethodName() has been overridden in the subclass

Do $cinst.$inherited.$MethodName()

; will call the subclass method

Do $windows.MySubWin.$MethodName().$inherited
; will call $MethodName() in the superclass

Referencing Variables

When a variable is referenced in a subclass, OMNIS looks for its value first in the subclass
and progressively up the chain of superclasses in the inheritance tree for the current library.
Therefore if you haven't overridden the variable in the subclass, or at any other level, the
value at the top of the inheritance tree is used.

However, if you have overridden a variable in the subclass the value in the subclass is used.
You can access the inherited variable using $inherited.VarName, in which case, the value at
the top of the inheritance tree is used.

A superclass cannot use the instance and class variables of its subclasses, although the
subclass can pass them as parameters to superclass methods. References to class and
instance variables defined in a superclass are tokenized by name and the Remove Unused
Variables check does not detect if a variable is used by a subclass. If an inherited variable
does not exist, its name is displayed as $cinst.VarName in design mode and will create a
runtime error.

Inherited Fields and Objects

All inherited window fields on a window subclass are included in the $objs for an instance.
Since some field names may not be unique, when $objs.name is used OMNIS looks first in
the class containing the executing method, then in the superclasses and lastly in the
subclasses. The $objs group for report fields, menu lines, and toolbar controls behave in the
same way as window fields.

You should refer to fields at runtime by name, since at runtime OMNIS assigns artificial
$idents to inherited fields. The $order property of a field may also change at runtime to
accommodate inherited fields into the tabbing order.

Do inherited Command

You can use thBo inheritedcommand to run an inherited method from a method in a
subclass. For example, if you have overridden an inherited $construct() method, you can use
theDo inheritedcommand in the $construct() method of the subclass to execute the
$construct() method in its superclass. You could use this command at the end of the
$construct() method in the subclass to, in effect, run the code in the subclass $construct()
and then the code in the superclass $construct() method.

79

Custom Properties and Methods

You can add methods to the objects in your library and call them what you like; you execute
these methods from within the class or instance usinBdh@ethodcommand. However

you can create your own properties and methods and execute them using the notation, as
you would the standard properties and methods. These areaatech propertieand

custom method®r collectively they are referred to @sstom attributesThe name of a

custom attribute is case-insensitive and can be anything you like, but it must begin with the
dollar “$” sign, such as “$xyz".

Any class that can be instantiated can contain custom attributes, including window, report,
table, and object classes. In practice you can use custom attributes to override the behavior
of the standard attributes, or to add your own properties and methods to an object. Custom
attributes can only be executed at runtime, in an instance of the class.

If the name of a custom property or method is the same as a standard one, such as
“$printrecord()”, it will override the standard one. However, if you create a custom property
or method with the same name as a common attribute, such as $name, the common attribute
takes precedence over your custom attribute.

You create custom properties and methods for an object in the method editor. You enter
custom properties for a field in the Field Methods for the field, and for a class in the Class
Methods for a class. The code for a custom property or method can be structured like any
other method; it can modify the current instance, or calculate and return a result.

An instance of a class contains whatever custom attributes you define in the class, together
with the properties and methods for that type of instance. The object group $attributes
contains all the built-in and custom properties and methods for an instance. You can use
$first() and $next() against $attributes, but $add() and $remove() are not available.

You can reference a custom attribute using the notatiiaNON.$xyz, where IOTATION

is some notation for an instance of a class and “$xyz” is the name of your custom attribute.
If you specify parameters, such aMTION.$xyz(p1,p2,p3), they are passed as parameters
to the custom attribute, and a value may be returned.

You can use thBo defaultcommand within the code for a custom attribute to execute the
default behavior for a property or method with the same name as the custom attribute. You
can use th®o redirectcommand to redirect execution from a custom attribute in one
instance to another instance containing a custom attribute with the same name.

80 Chapter 4—Object Oriented Programming

To create a custom method

® Open the Class or Field methods for your class

®* Right-click on the method names list, and select Insert New Method from the context
menu

® Enter a name for your custom method, including a dollar sign at the beginning of its
name

® Enter the code for the custom method as you would any other method

Using Custom Methods

The following example uses a task class containing a custom method called $printprinter().
You can call this method from anywhere inside the task instance using

Do $ctask.$printprinter()

The $printprinter() method sets the print destination and calls another class method
depending on whether the user is accessing SQL or OMNIS data; it contains the following
code

; $printprinter() custom method
Begin reversible block

Send to printer

Set report name REPORT1
End reversible block
If ilsSQL

Do method printSQLData
Else

Begin reversible block

Set search name QUERY1

End reversible block

Do method printOMNISData
End If

The next example uses a window that contains a pane field and a toolbar with three buttons.
When the user clicks on a button, the appropriate pane is selected and various other changes
are made. Each button has a $event() method that calls a custom method called $setpage()
contained in the window class. Note that you can send parameters with the custom method
call, as follows

; $event() method for second toolbar button
Do $cwind.$setpage(2)

Custom Properties and Methods 81

The $setpage() custom method contains a parameter variable called pPage, and has the
following code

; $setpage() custom method
Switch pPage
Case 1
Do $cwind.$objs.MainPane.$currentpage.$assign(1)
Do $cwind.$title.$assign('‘Queries’)
Case 2
Do $cwind.$objs.MainPane.$currentpage.$assign(2)
Do $cwind.$toolbars.$add(‘tbModify1')
: installs another toolbar
Do $cwind.$title.$assign('Modifying')
Case 3
Do $cwind.$objs.MainPane.$currentpage.$assign(3)
Do $cwind.$menus.$add('MReports')
; installs a menu in the window menu bar
Do $cwind.$title.$assign('Reports’)
Default
Quit method kFalse
End Switch

The final example uses a window containing a subwindow, which in turn contains a tree list.
The subwindow contains a custom method called $buildtree() that builds and expands the
tree list. You can call the $buildtree() method from the parent window and send it
parameters, using the notation

Do $cwind.$objs.SubWin.$buildtree(lv_ClassList)
The $buildtree() method contains a parameter variable called pv_SourcelList of List type

that receives the list passed to it, and a reference variable called TreeRef set to the tree list
field, and contains the following code

; $buildtree() custom method
Do TreeRef.$setnodelist(kRelationalList,0,pv_SourceList)
Do TreeRef.$expand()

Chapter 4—Object Oriented Programming

Object Classes

Object Classes

Object classeket you define your own structured data objects containing variables and
methods. You can create an object variable based on an object class which contains all the
variables and custom methods defined in the class. When you reference an object variable
an instance of the object class is created containing its own set of values. You can store an
object variable instance and its values on a server or OMNIS database. The structure and
data handling capabilities of the object instance is defined by the types of variables you add
to the object class; similarly, the behavior of an object variable is defined by the methods
you add to the object class.

Object classes have the general properties of a class and no other special properties. They
can contain class and instance variables, and your own custom methods. You can make a
subclass from an object class, which inherits the methods and variables from the superclass.

To create an object class

® Open your library in the Browser

® Display the classes in your library using the View>>Down One Level menu option on
the Browser menu bar

®* Drag the template called “New Object” from the Component Store onto the Browser
or

¢ Select Class>>New>>0bject from the Browser menu bar
®* Name the new object class

® Double-click on the object class to modify it

When you modify an object class, OMNIS opens the method editor for the class. This lets
you add variables, and your own custom properties and methods to the class.

When you have set up your object class you can create any other type of OMNIS variable
based on your object class: an object variable has type Object and its subtype is the name of
your object class. For example, you can create an instance variable of Object type that
contains the class and instance variables defined in the object class. When you reference a
variable based on an object class you create an instance of that object class. You can call
the methods in the object class with the notation ObjVarName.$MethodName(), where
$MethodName() is any custom method you define in the object class.

You can store object variable instances in an OMNIS data file, or in a server database that
stores binary values. When you store an instance of an object variable in a database, the
value of all its contained instance variables are also stored. When the data is read back into

83

memory the instance is rebuilt with the same instance variable values. In this respect you
can store a complete record or row of data in an object variable.

You can store object instances in a list. Each line of the list will have its own instance of the
object class. Object instances stored in a task, instance, local, or parameter variable belong
to the same task as the instance containing that variable. Similarly object instances stored in
a list or row belong to the same task as the instance containing the list or row variable. All
other object instances have global scope and are instantiated by the default task and belong
to the default task.

You cannot make an object instance a private instance. If you delete the object class an
object variable uses, the object instance will be empty.

To add variables and methods to an object class

® Open your object class in design mode

®* Right-click in the variable pane of the method editor and select the Add New Variable
option from the context menu

®* Name the variable, give it a type and subtype as appropriate

®* Right-click in the Method Names pane of the method editor and select the Add New
Method option from the context menu

®* Name the method, including the dollar prefix

If you right click on an object variable, and use the Variable <name>... entry in the context
menu, the variables list window opens, initially showing instance variable values.

Using Object Classes

This section describes an invoices example and uses an object class and simple invoices
window; it is intended to show what you can do with object classes, not how to implement a
fully functional invoices application. You can create the data structure required for an
invoice by defining the appropriate variables and custom methods in an object class. The
following screenshot shows the object class called o_Invoice, which contains the variables
you might need in an invoice, such as the invoice ID, quantity, value, and a description of
the invoice item.

Chapter 4—Object Oriented Programming

4y Object DBJSQL.o_Invoice Class Methods

Modify Wiew Debug Option: Breakpoint Instances Stack

AzlEF Bl 0 o

% arniable | Type |5ubtype |Init Y al/Cale

| Clazz methods -

T ask A Clazs b, Inztance s, Localk, Parameter#

Fhatal

$fiend
Fnext

The o_Invoice object class also contains any custom methods you need to manipulate the
invoice data, such as inserting or fetching invoices from your database. The methods in the
object class contain the following code

; $Savelnvoice() method contains

; local var Iv_InvoiceRow of type Row and

; local var Iv_Bin of type Binary and

; parameter var pv_Object of type Field reference
Do Iv_InvoiceRow.$definefromtable(t_Invoices)
Calculate Iv_bin as pv_Object

Calculate Iv_InvoiceRow.InvoiceObject as Iv_bin
Do Iv_InvoiceRow.$insert() Returns #F

; $Selectinvoice() method contains

; local var Iv_Row of type Row

Do Iv_Row.$definefromtable(t_Invoices)
Do Iv_Row.$select()

Do Iv_Row.$fetch() Returns #S1

Quit method Iv_Row.InvoiceObject

; $Fetchinvoice() method contains

; local var Iv_Row of type Row

Do Iv_Row.$definefromtable(t_Invoices)
Do Iv_Row.$fetch()

Quit method Iv_Row.Inv_Object

; $total() method
Quit method iv_QTY *iv_Value

Object Classes 85

86

The invoice window can contain any fields or components you want, but would contain
certain fields that reference the instance variables in your object class, and buttons that call
the methods also in your object class. The window might look something like this

m Window OBJ50L.w_Invoice

e IC |D Select |

lkeri [item

gy oty
. Walue [vale T
. TotalValue [Total

Save

The invoice window contains no class methods of its own. All its functionality is defined in
the object class. The window contains a single instance variable called iv_Invoice that is
based on the o_Invoice object class.

4z Window OBJSOL.w Invoice Class Methods

Modifp Wiew Debug Options Breakpoint Instances Stack
A=EFE B2 0 e

= | Clazs methods -
" ariable | Tupe |Subtype |InitYal/Cale N
1 |iv_lrwoice Object OBJSOL.o ;I
2 | _Total Mumber Long intege

|

T ask M, Clazsh, Instances

Note that the instance variable has type Object and its subtype is the name of your object
class prefixed with the library name, OBJSQL.0_Invoice in this case.

When you open the invoice window an instance of the object class is created and held in
iv_Invoice. Therefore you can access the instance variables and custom methods defined in
the object class via the instance variable in the window; for example, iv_Invoice.iv_QTY
accesses the quantity value, and iv_Invoice.$Savelnvoice() calls the $Savelnvoice()
method. Each field on the invoice window references a variable in the object class; for

Chapter 4—Object Oriented Programming

example, the dataname of the quantity field is iv_Invoice.iv_QTY, the dataname of the item
or description field is iv_Invoice.iv_Item, and so on.

The buttons on the invoice window can call the methods defined in the object class, as
follows.

; $event() method for the Select button

On evClick
Do iv_Invoice.$Selectinvoice(iv_Invoice.iv_ID) Returns iv_Invoice
Do $cwind.$redraw()

; $event() method for the Fetch button

On evClick
Do iv_Invoice.$Fetchinvoice Returns iv_Invoice
Do $cwind.$redraw()

; $event() method for the Save button
On evClick
Do iv_Invoice.$Savelnvoice(iv_Invoice)

When you enter an invoice and click on the Save button, the $Savelnvoice() method in the
object class is called and the current values in iv_Invoice are passed as a parameter. The
$Savelnvoice() method receives the object instance variable in the parameter pv_Object and
executes the following code

Do Iv_InvoiceRow.$definefromtable(t_Invoices)
Calculate Iv_bin as pv_Object

Calculate Iv_InvoiceRow.InvoiceObject as Iv_bin
Do Iv_InvoiceRow.$insert() Returns #F

The row variable Iv_InvoiceRow is defined from the table class t_Invoices which is linked

to the schema class called s_Invoices which contains the single column called
InvoiceObject. The binary variable Iv_bin, which contains the values from your object
instance variable, is assigned to the row variable. The standard $insert() method is executed
which inserts the object variable into your database. The advantage of using an object
variable is that all the values for your invoice are stored in one variable and they can be
inserted into a binary column in your database via a single row variable. If you want to store
object variables in an OMNIS database you can create a file class that contains a single
field, called InvoiceObject for example, that has Object type, rather than Binary, and use the
appropriate methods to insert into an OMNIS data file.

Object Classes 87

88

Dynamic Object Instances

The object class has a $new() method that lets you create an object instance dynamically
and store it in an object variable, for example

Do $clib.$objects.objectclass.$new(parm1,parmz2,...)
Returns objectvar

where parameters parml and parm2 are the $construct() parameters for the object instance.
When the instance is assigned, any existing instance in the object variable is destroyed. It
would be normal practice to put no class in the variable pane for object variables which are
to be set up dynamically using $new(), but there is no class checking for instance variables
so no error occurs if the class shown in the variable pane is different from the class of the
new instance.

You can do a similar thing with an external function library if it contains instantiable
objects, such as Fileops. For example

Do Fileops.$objects.fileops.$new() Returns objectvar
Do objectvar.$openfile(pFilename)

The following example uses an Object variable ivSessionObj which has no subtype defined
in the method editor. When this code executes ivSessionObj is instantiated based on the
object class SessionObj which was created using the Session Wizard in OMNIS. Once the
object instance exists the $logon() method is called.

Do $clib.$objects.SessionObj.$new() Returns ivSessionObj
; runs $construct() in the SessionObj object class

Do ivSessionObj.$logon()

; runs the $logon() method in SessionObj

Self-contained Object Instances

Object classes have the $selfcontained property. If set to kTrue the class definition is stored
in all instances of the object class. An instance of such an object class is disconnected from
its class and instead relies on its own class data for method and instance variable definitions.
When the object instance is stored on disk the class definition is stored with the instance
data and is used to set up a temporary class whenever the instance is read back into
memory. Any changes to the original object class have no effect on existing instances,
whether on disk or in memory.

Once an instance is self-contained it is always self-contained, but you can change its class
definition by assigning to $class, for example

Do filel.objvarl.$class.$assign($clib.$objects.objectclassl)

causes the class definition stored inside objvarl to be replaced by the current method and
variable definitions for objectclass1. The instance variable values are maintained provided
the new instance variable definitions are compatible with the old ones (OMNIS can handle

Chapter 4—Object Oriented Programming

small changes in the type of variables but won't carry out substantial conversions). Note

that the old instance variables are matched to the new ones by $ident and not by name, so to
avoid problems the new class should be a descendant of the original class with none of the
original variables having been deleted.

Only the main class is stored with the object instance, inheritance is allowed but any
superclasses must exist in open libraries whenever the instance is present in memory.
Assigning to $class does not change the superclass structure of self-contained instances.

External Objects

External objectare a type of external component that comaéthodghat you can use by
instantiating an object variable based on the external object. External objects can also
containstatic functionghat you can call without the need to instantiate the object. These
functions are listed in the Catalog under the Functions pane.

Some external objects are supplied with OMNIS Studio; these include equivalents to the
FileOps and FontOps externals, and a Timer object. Writing your own external objects is
very similar to writing external components, which is described on the OMNIS website. The
FileOps and FontOps functions are documented in the OMNIS Help.

External objects are created and stored in component libraries in a similar manner to
external components, and in future releases are intended to replace external functions and
commands, although to maintain backward compatibility, the old external interface is still
supported at present.

External object libraries are placed in the XCOMP folder, along with the visual external
components. They must be loaded in the same way as external components using the
External Components dialog, available from the Library>>External Components menu item
in the Browser. See th&indow Classeshapter otUsing OMNIS Studifor more details

about loading external components.

External Objects 89

90

Using External Objects

You can add a new object in the method editor by inserting a variable of type Object and
using the subtype column to select the appropriate external object. You can click on the
subtype droplist and select an external object from the Select Object dialog. This dialog also
appears when you create an object elsewhere in OMNIS, such as the file class editor.

i Select Object

>ﬁ <Mones ;I

e @ Library NEWLIE Objects
El:.: Esternal Objects
-:.:-'--.-’-'-.utnmatiu:un

".: Timerz

elps

||

Cancel ok

An icon in the variable subtype cell shows whether the variable is based on an object class
or an external object. For example, objvarl is a variable based on an external object,
objvar2 is based on an object class in the current library.

Wanable I Type I Subtype I it &l Cale
1 |objvarl Object '@, FileOps =
2 |objvar2 Obiject @ MEWLIB. myobiclass

| |

Task?, Clazgd Instance h, Local s, Parameter

When an instance of the external object has been constructed, you can inspect its properties
and methods using the Interface manager.

Chapter 4—Object Oriented Programming

External Objects

< Interface Manager - FileOps Hi=1 E3

L=

Methods |F'r|:||:|erties |

tethod Parameters

$oreatefile
$oreatetmpfile
Foetfileinfo
$oetfilesize
$oetposition
$izopen

$openfile p
| 3

Parameters Descriphion |
$cloze() Closes the file :I

[
/

To use the object’'s methods in your code, you can drag the method you require from the
Interface Manager into the command parameters box. Your code could look like this:

o Window NEWLIE.mywin Class Methods

Modify iew Debug Optionz Breakpoint Instances Stack

L= lEE | o @ @ = | Clazs methods -
Wariable I Twpe I Subtype I [it al/ Cale:
1 |obivart Object @, FileOps =

T ask,, Clazsd Instance s Local s, Parameter,”
- ' objwarl.$openfile["CATEMPYS0Z TRTY)

Fdestruct Do objvarl . $readfile[0,100] Returns: #51
M ew kethod Do objvarl . $clozefile[]
End If

91

For some objects it is important to note that for the Interface manager to interrogate an
object it will need to be constructed. For example if the Interface Manager was used on an
Automation object, the Automation server needs to be started.

External objects are contained in the notation group $extobjects, which you can omit from
notation.

External Object Events

External objects do not support events in the GUI sense. They can however define
notification methods which they call when certain events occur.

You can subclass an external object and then override the notification method so your code
is informed of the event. The Timer object supplied in OMNIS is an example of this. To
subclass an object, you can either set the superclass property in the Property Manager, or
use the New Subclass Object wizard. You can drag the wizard from the Object classes pane
in the Component Store on to the Browser.

© OMHNIS Studio

File Edit “iew Toalz

2 NEWLIB
Librarp Clazz Wiew

Window Help

S [=] E3

Component Store =] B3

Wigw

o @ oo &l

mycode 5 myobjclaz: ;I & Meww Object =
B Startup_Task] i
LY F= Sub-Class Db S
% New SubrClass Obi... @ | Do
“I(1| @ |co0B2
4 Claszes 11 Hidden) 4 o -
Sub-Class Object

92

Chapter 4—Object Oriented Programming

Interface Manager

The Interface Manager displays the public methods and properties for objects in OMNIS
Studio, that is, any class that can contain methods and can be instantiated, including
window, menu, toolbar, report, task, table, and object classes (not available for code
classes). Furthermore, for window, report, toolbar, and menu classes the Interface Manager
displays the methods for the objects in the class. For each class or object, the Interface
Manager displays all built-in methods, including those available in the instance of the class,
as well as any custom methods you have added to the object.

Private methods, namely methods with a name that does not begin with a dollar sign, are not
included in the Interface Manager since these methods are confined to the class or instance.

For each method in the class or object, the Interface Manager displays the method name, its
parameters, return types, and a description, if any are present.

You can view the Interface Manager from several places in OMNIS, including the Browser,
method editor, and from various context menus.

To view the Interface Manager
® Click on the class in the Browser
® Select Class>>Interface Manager from the Browser menubar

or you can

® Right-click on the class in the Browser and select Interface Manager from the context
menu

or from the method editor

® Open the method editor for the class

® Select View>>Interface Manager from the method editor menubar

Interface Manager 93

94

< Interface Manager - NEWLIB. mywin M=

L=

HEd Methods |F'r|:||:uerties|

;Etl?;? il b ethod Farameters

e 1017]
iy 1078 $oopyzelection

mipvein,_ 1079 $outzelection

mywin_ 1020 $getselection %dTime, &iD uration
mywir_ 1023 $ootoback

mywir_1024 $gotofront

rywir_ 1028 Fgotatime

floadmovie [cPathnarne] -

4| _rl_l 4 | b

Parameters Descriphion |

$copyframel] Copies the current frame to the supplied picture figld ;I

| -]

Returnz Picture [M /&) o

The Interface Manager contains a list of objects in the class, that is, for windows and reports
a list of window or report fields, for toolbars a list of toolbar controls, and for menus a list

of menu lines. For other types of class or instance that do not contain objects, such as object
classes, the Interface Manager contains the class methods only. You can click on each
object or field in the left-hand list to view its methods. Built-in methods are shown in the

color specified in the $nosetpropertycolor preference. Inherited methods are shown in the
color specified in the $inheritedcolor preference. The properties tab similarly shows the
object’s properties.

The Details pane shows the parameters for the currently selected method. It also lets you
add a description for your own custom methods. The status bar shows the return type for
built-in methods, but not for your own methods, since these can return any type.

The View menu on the Interface Manager menubar lets you open the method editor for the
class, in addition to hiding or showing the built-in methods and details pane.

Chapter 4—Object Oriented Programming

Interface Manager

Dragging methods from the Interface Manager

You can drag a method or property from the method list and drop it on to an edit field in the
method editor, or you can use copy and paste to do the same thing. The method name is
prefixed by a variable name, such as “var_name.$methodname()” if you opened the
Interface Manager by right-clicking on a variable of type Object. Otherwise the method
name is prefixed by a dot, such as “.$methodname()”, suitable to concatenate onto a
variable name or some notation in the method editor. In all cases the parameters for the
method are copied too, so they can be used as a template for the actual values you pass to
the method.

95

Chapter 5—Using Tasks

96

OMNIS contains two environmentsdasign modand aruntime modeln design mode,

you can create and store classes in your library. In runtime mode, various objects or
instances are created as you run your application. You can group and control the runtime
objects in your application by opening or instantiating themt@sla You can manipulate
whole groups of instances by manipulating their task, rather than having to deal with each
separate instance. You define a task in your librarytaskaclass.

' Task instance

toolbar
instance

menu

instance

window
instance

OMNIS contains and opens a default task for your application to run in, but you can add
your own tasks. OMNIS provides the tools to create, manage and destroy tasks.

Task classes can contain variables and methods, and you can define custom properties and
methods for a task class as well. When you open a task you create an instance of that task
class. The task instance is unique in that it can contain other instances including window,
report, toolbar, and menu instances. Task instances cannot contain other tasks. When you
open an instance from within a taskéongs toor isowned bythat task.

By opening and closing different tasks, or by switching from one task instance to another,
you can control whole groups of objects. OMNIS provides certain default actions which
happen as the task context switches. You define exactly what happens in the task by
creating methods in the task class. For example, in the task you can specify which windows
are opened and which menus are installed using commands or the notation.

Each library contains a group of task classes called $tasks, and OMNIS has a group
containing all open task instances called $root.$itasks in the order that they were opened.

Chapter 5—Using Tasks

Default and Startup Tasks

When OMNIS opens, it creates a task instance for the IDE to run in. This task is called the
default taskand is represented in the notation as $root.$defaulttask. This task instance
contains all the IDE objects such as the Browser, Catalog, Property Manager, and so on.

When you create a new library, it contains a task class &Gtiéetup_Taslky default

When you open a library, an instance of the startup task is created automatically. From
thereon all instances opened in the library are owned by the startup task. You can delete the
startup task, or you can create other tasks for your application components to run in.

‘$defaulttask instance

| | Browser

‘Startup task instance

Catalog

AboutWindow
instance

MainMenu
instance

' Mytaskl instance

Window

instanceX

Menu

instanceA

It is not essential to add tasks to your library, your library will safely execute in the startup
task, or the default task along with the IDE objects.

The startup task instance has the same name as your library. For a simple application, the
startup task will probably be all you need, with all the other class instances belonging to it.
The startup task remains open for as long as the library is open, but you can close it at any
time using a command or the notation. You can change the name of the task to be opened on
startup by setting the library preference $startuptaskname; for all new libraries this is set to
Startup_Task by default.

Default and Startup Tasks 97

If you have an application that spans multiple libraries, often only the library used to start
the application will have a startup task. If a library is opened usinQlke library

command with the optioBo not open startup taskhe startup task is not instantiated. In
design mode, you can stop a library’s startup task from running if you hold down the
Alt/Option key as you open your library.

Creating Task Classes

This section describes how you create a task class from the Component Store or from the
Browser.

To create a task class

® Open your library in the Browser

® Display the classes in your library using the View>>Down One Level menu option on
the Browser menu bar

®* Drag the template called “New Task” from the Component Store onto the Browser
or
® Select Class>>New>>Task from the Browser menu bar

® Name the new task

® Double-click on the task class to modify it

You modify a task class in the method editor. You can place in the $construct() method any
code that you want to run when the task is opened. For the Startup_Task, the $construct()
method is executed when you open your library. You can add any other custom properties
and methods to the task, as well as any type of variable.

Opening Tasks

98

Apart from the startup task instance, which is opened automatically when you open your
library, you can open a task using thpen task instanceommand or the $open() method.
Any parameters you supply with the command are sent to the task’s $construct() method.

Open task instance MyTask/TaskInstance2 (p1,p2,...)
; opens the task, assigns an instance name, and sends parameters

Alternatively you can open a task instance using the $open() method.

Do MyTask.$open(‘Taskinstance2’,p1,p2,...) Returns iTaskRef
; does the same as above & returns a reference to the task instance

Chapter 5—Using Tasks

Current and Active Tasks

OMNIS keeps references to two different tasksaitteve taskand thecurrent taskto keep

track of the tasks that own the topmost instance or GUI object and the currently executing
method. The active task is the task that owns the topmost open window, installed menu, or
toolbar currently in use. The current task is the task that owns the currently executing
method.

A task context switchccurs when OMNIS changes the current or active tasks. As OMNIS
runs your library, the current and active tasks may point to different task instances
depending on the user’s actions.

The Active Task

The active task is affected by the user, and is typically the task containing the topmost open
window. When an instance belonging to another task is selected, OMNIS performs a task
context switch. As part of the context switch, messages are sent to both tasks. The active
task gets sent a $deactivate() message, and the new active task is sent an $activate()
message.

When the active task changes, you can use the $activate() and $deactivate() messages to
perform other relevant actions such as hiding other windows, installing menus, and any
other requirements your application has.

In order for OMNIS to perform an automatic task context switch when the user selects an
instance belonging to another task, the task’'s $autoactivate property must be set to kTrue.

OMNIS can install and remove menus and toolbars automatically during task context
switches. Menu and toolbar instances each have a $local property that you can set. When set
to true, the menu or toolbar instance is made local to the task that owns it. When a task
context switch occurs, local menus for the previously active task will be removed from the
menu bar, and any local menus instances owned by the new active task will be installed.
Toolbars behave similarly. If the tasks use different docking areas, OMNIS will not hide the
docking areas, only the toolbars.

You can change the active task using the notation, rather than waiting for the user to initiate
a task context switch. To do this, you can set the property $root.$activetask to a different
task instance name to switch tasks.

The Current Task

The current task is under the control of OMNIS itself, and is the task instance which
contains the currently executing method. When a custom attribute or event is sent to an
instance, the current task is switched to the task which owns the instance, and when control
returns from that attribute or event, the previous task is restored.

Current and Active Tasks 99

Closing

When the current task changes, messages are sent to both tasks. The current task is sent a
$suspend() message, and the new current task gets a $resume() message. If the new current
task is being instantiated for the first time, it gets a $construct() message rather than the
$resume().

In order to avoid endless recursion a task does not get suspend or resume messages during
the execution of a suspend or resume method.

Since $suspend() and $resume() are likely to be called frequently, it is important that the
code for them should be kept as short and efficient as possible and should not:

— alter the user interface
— open or close an instance
— switch tasks

You can find out the name of the current task using the notation $ctask().$name, and the
task that owns the instance by using InstanceName.$task().$name.

Tasks

You can close a task instance usingGhese tasicommand or the $close() method. When
you close a library all its task instances are closed, and when you quit OMNIS the default
task is closed and all instances belonging to the default task are closed.

When you close a task, all instances belonging to that task are closed or destructed

providing they can be closed. When instances are closed, a message is sent to the instance
asking it to confirm whether or not it can be closed. If the instance returns a false message,
OMNIS will not close that instance. For tasks, each instance belonging to the task is sent the
message, and then the task itself is sent the message. If any of the instances belonging to the
task cannot be closed, none of the instances nor the task instance are closed.

Task Variables

100

Task classes can contain both class and instance variables of any standard OMNIS data
type. Tasks can also contdask variableswhich are accessible to any instance owned by
the task. As with other variables, you create task variables in the variable pane of the
method editor.

When two or more types of variable use the same variable name, a reference to that variable
may be ambiguous. In this situation, OMNIS uses the variable with the smallest scope
automatically. All other variable scopes have precedence over task variables.

When a method in a code class is called from another class or instance uBlog te
methodcommand, the current task continues to point to the calling method. This allows
methods in a code class to have access to the task variables from the calling method.

Chapter 5—Using Tasks

The Design Task

In order for task variables to be available to you for use in design mode, you must establish
a connection between a class and the task whose variables you want to access. You do this
by setting thelesign taskor the class. The design task determines which task variables are
available to the class: if no design task has been set, the method editor does not let you
declare or see any task variables.

Setting the design task for a class doesn’t guarantee that the task will be available in runtime
when you open your class, nor will OMNIS automatically create an instance of the task. The

design task is simply a way to give you access to a set of task variables while you create the
classes in your library.

You can also access task variables without setting a design task by referring to the variable
as $ctask.variablename. This assumes that the variable will always belong to a task and can
therefore default to the current task.

If you attempt to access a task variable in an instance, and that variable is not available in
the task, a runtime error of ‘Unrecognized task variable’ will be generated, and the variable
will have a NULL value.

If you rename a task variable, any references to it are not renamed. Also if one with that
name ceases to exist, references to it which were entered as VariableName are shown in
design mode as $ctask.VariableName. Similarly, if some code containing a task variable is
pasted into a different class, any task variables used by that code are not copied into the
destination class.

Private Instances

Private Instances

Normally an instance is visible to other tasks and you can reference it using the notation
from anywhere in your library. However you can override this default behavior by making
an instanc@rivateto the task that owns it. You can do this by setting the instance’s
$isprivate property to kTrue.

When you make an instance private, you cannot destruct it, make references to it, or even
see it unless you are within the task that owns it. A task can even be private to itself, so it
can be closed only when it is the current task. If access to a private instance is required from
outside of the task, an item reference can be set to the instance, and the item reference can
be passed outside of the task. Once this has occurred, the item reference can be used to
manipulate the instance.

The $root object has a series of object groups, one for each instance type, that are
represented in the notation as $iwindows, $imenus, $itoolbars, $ireports, $itasks. Each of
these object groups displays all public instances, as well as instances which are private to
the current task. As the current task changes, the contents of these groups may change to
reflect the private instances present in your library.

101

Private Libraries

Libraries can be private to a task, and both the library and its classes are visible only to that
task.

The group of open libraries, $libs, contains a private library only when the task which owns
that library is the active task. The Browser does not display classes from a private library.
Standard entry points to the debugger such as shift-click on a menu line do not enter the
debugger if the menu belongs to a private library.

As with private instances, if an item reference to any object within a private library is
passed to an object outside the library, it is able to access the library using notation.

You can make a library private by setting its $isprivate property to true. This is normally
done immediately after opening the library, but can be done at anytime as long as the task
which owns the library is the active task. Libraries also have the $alwaysprivate property,
which, if set, means they are always and immediately private to their startup task.

Private libraries have an additional property, $nodebug, which keeps the debugger from
being entered for any reason when code from that library is executing, including errors,
breakpoints, and the stop key. Code from a private library with $nodebug set does not
appear in the stack menu or the trace log.

When a task is closed, it closes all its private libraries unless they cannot be closed. This
can occur if, for example, the library has instances belonging to other tasks. If a private
library cannot be closed, it will become non-private.

Multiple Tasks

When designing an application, you might want to partition your library by creating
modules containing all of the windows, reports and methods of like functionality. Each
module can have its own menus and toolbars. An example containing such modules might
be an accounting package, with General Ledger, Accounts Payable and Accounts
Receivable modules.

In a totally modal application, where the user switches between modules, it is easy to ensure
that the user sees the correct menus and tools for the current module. In a modeless, multi-
window environment, controlling this can sometimes be difficult. Tasks automate the
process of creating modular applications by providing all the management of menus and
tools for you.

Consider the following example in which a single library is running three tasks: the
Startup_Taskand two user taskBasklandTask2 The startup task, which opens

automatically when the library opens, contains an About window. The other two tasks each
contain a window, a menu, and a toolbar. When the user selects a window from either Task1

102 Chapter 5—Using Tasks

or Task2, you may want OMNIS to display the correct tools and menus for that window
automatically.

‘Menu 1 . Menu 2
. ‘Toolbar 1 . iToolbar 2
About window : o
Window 1 P Window 2
Startup_Task Taski TaskZ

When the library opens, the startup task opens and displays the About window and then
opens the other tasks, each of which opens its window and installs its menu and toolbar. The
startup task can close itself once the About window is closed if it's no longer needed.

To open the two tasks, you should execute the following in the $construct() method of the
startup task

Open window instance AboutWindow

Open task instance MyTaskClass1/Taskl

Open task instance MyTaskClass2/Task2

Close task instance LibraryName ;; close Startup_Task instance

Every task has a property $autoactivate, that allows the task to take control whenever the
user tries to bring a window it owns to the front. If the property is set to false, the window
won’'t come to the front. To activate each task automatically, you need to execute the
following in the $construct() of each task

Do $ctask.$autoactivate.$assign(kTrue)

To ensure that your menus and toolbars show and hide appropriately as the tasks change,
you need to set the $local property for each class. By making each menu and toolbar local
to the task that owns it, OMNIS hides and shows them automatically as the task context
changes.

In the $construct() for a task, you can install your menu and toolbar, and set their $local
property. For example

; $construct() for taskl...

Do $menus.MyMenuClass1.$open(‘Menul’) Returns iMenuRef

Do iMenuRef.$local.$assign(kTrue)

Do $toolbars.MyToolbarClass1.$open(‘Toolbarl’) Returns iToolRef

Do iToolRef.$local.$assign(kTrue)

Do $windows.MyWindowClass1.$open(‘Window1’) Returns iWinRef

You can do the same for the other task.

Multiple Tasks 103

; $construct() for task2...

Do $menus.MyMenuClass2.$open(‘Menul’) Returns iMenuRef

Do iMenuRef.$local.$assign(kTrue)

Do $toolbars.MyToolbarClass2.$open(‘Toolbarl’) Returns iToolRef
Do iToolRef.$local.$assign(kTrue)

Do $windows.MyWindowClass2.$open(‘Window1’) Returns iWinRef

This functionality will change menus and toolbars as you switch from one window to the
other.

104 Chapter 5—Using Tasks

Chapter 6—Llist
Programming

Multiple Tasks

OMNIS has two structured data types; the list and the roligt 8an hold multiple columns

and rows of data each row having the same column structure, whileig effectively a
single-row list. You can create lists of strings, lists of records, or lists of lists. You can
define a list from individual variables, or base a list on one of the OMNIS data classes, such
as a schema, query, table, or file class. In the latter case, the list gets its column definitions
from the columns defined in the data class. Each list can hold an unlimited number of lines
with up to 400 columns.

Coll Col2 Col3 Col4

List variable

Coll Col2 Col3 Col4
| | | | Row variable

OMNIS makes use of lists in many different kinds of programming tasks such as generating
reports, handling sets of data from the server, and importing and exporting data. The list is
the single most important data type in OMNIS programming.

In this chapter, rows are generally treated the same as lists, that is, you can use a row hame
in any command that takes a list name as a parameter. In addition, refer&SQedistsin

this chapter refer to lists based on either schema, query, or table classes, which are referred
to collectively asSQL classeDesigning simple list and grid fields is described inltists

and Gridsin Using OMNIS Studio

105

Declaring List or Row Variables

You can create various scopes of list and row variables, including task, class, instance, and
local variables. You declare a list or row variable in the variable pane of the method editor.
The following table summarizes the variable types and their visibility.

List or row When created? | Where visible? When removed?
type
Task variable| on opening task within the task and all on closing task
its classes and instances
that belong to the task
Class on opening the | within the class and all | on clearing class
variable library its instances variables or closing
library
Instance on opening within the instance only| on closing instance
variable instance
Local on running within the method only | when method
variable method terminates
Field in file when defined in | within the whole library | when you update or
class with list | file class delete the record, or
or row type Next or Previous
command

To declare a list or row variable

®* Right-click in the variables pane of the method editor
® Selectinsert New Variable from the context menu
® Enter the variable name

® Click in theType box and chooskist or Row from the droplist

106 Chapter 6—L.ist Programming

Defining List or Row Variables

To define a list or row variable you need to specify its columns. You can do this using
OMNIS commands or the notation. You can define a list or row variable

— from variables
— from a schema, query, or table class

— from a file class

Lists from Variables

To define a list from a number of variables you usdxéfine listcommand. For example

; Declare class variable cvListl of List type
; Declare class variable cvColl of Short integer type
; Declare class variable cvCol2 of Character type

; Declare class variable cvCol3 of type Date Time (Short date
1980..2079)

Set current list {cvList1}
Define list {cvColl,cvCol2,cvCol3}

This method will define the list cvListl with the columns cvColl, cvCol2, cvCol3. The data
type of each field or variable defined in the list determines the data type of the
corresponding column in the list.

Lists from Schema or Query Classes

You can define a list based on one of the SQL classes, that is, a schema, query, or table
class, using thBefine list from SQL classommand or $definefromsglclass() method. This
binds the list or row variable to the schema or query class and consequently maps the list's
columns to the server table.

Server OMNIS

table Schema or

Coll uery class . .
Col2 T 8o|1y List variable
Col... Col2

Col...

[[]

Row variable

Defining List or Row Variables 107

108

To define a list or row variable from a schema, query, or table class you can Deditiee
list from SQL classommand. For example

; Declare class variable cvListl of List type
Set current list {cvList1}
Define list from SQL class {MySchema} ;; or use a query or table

will define a list with all the columns in your schema class. You cannot specify certain
columns only when using a schema. However, you can select certain columns by creating a
query class containing specific columns and basing your list on the query class.

Specifically, when you define a list or row variable from a table class, it must have its
sqglclassnameproperty set to the associated schema or query class. You can do this either in
the Property Manager or using the notation.

Do $clib.$tables.MyTable.$sqlclassname.$assign('MySchema') ;; or
Do $clib.$tables.MyTable.$sglclassname.$assign('MyQuery')

When you create a list or row variable based on one of the SQL classes a table instance is
created, so the list or row variable contains the standard properties and methods of a table
instance. Specifically, if you create a variable based on a table class it contains any custom
methods you have added to the table class; these can override the standard table instance
methods. The following standard methods are available for lists based on a SQL class.

- $select()
issues a select statement to the server

— S$fetch(n[,append)
empties the list and fetches the next n rows from the server; for row variables, n is set to
one and the fetched row always replaces any existing data; the append switch is for list
variables and defaults to kFalse which means the list is cleared by default, otherwise if
you pass the append switch as kTrue the fetched rows are added to the end of any
existing data in the list variable

— S$insert()
inserts a row into the server database (row variables only)

— S$update(old_row)
updates a row in the server database (row variables only)

— $deletd)
deletes a row from the server database (row variables only)

— S$sqlerror()
reports the type, code and text for an error in processing one of the above methods

Chapter 6—L.ist Programming

These methods offer a powerful mechanism for processing or inserting data on your server
via your SQL list or row variable. For example, to fetch 30 rows into your list

; declare cvListl of list type
Do cvListl.$definefromsglclass(MySchema)
Do cvListl.$select() Returns myFlag ;; sends a select
If myFlag =0 ;; checks for errors
OK message {SQL error [sys(131)]: [sys(132)]}
End If
Do MyList.$fetch(30) Returns myFlag ;; fetches 30 rows
; to fetch another 10 rows and add them to your list
Do MyList.$fetch(10,kTrue) Returns myFlag

Lists from a File Class

To define a list from fields in a file class use

Set current list {cvList1}
Define list {field1,field2,field3,...}

or to include all the fields from a file class

Set current list {cvList1}
Define list {fileclassname}

The Define listcommand clears the list or row of any existing data. You can change the
column names without affecting the data by usteglefine listthis is useful if, for instance,
you want more friendly default column names for a graph. Note that you should use
Filename.LISTVAR when you reference a file class list using the notation.

Building List Variables

You can build lists
— from SQL data
— from OMNIS data

Building a List from SQL Data

The SQL SELECT statement defines a select table, which is a set of rows on the server that
you can read into OMNIS in three ways:

— Fetch next row
brings a row into CRB fields defined by a file class

— $fetch(n[,append)]) table instance method
brings n rows into a list defined from a SQL class

Building List Variables 109

110

— Build list from select table
transfers the select table to the current list as one block of data

To transfer rows:

Do mylist.$definefromsglclass(SchemaRef,Lname,Town) ;; define list
Do MyList.$select() Returns myFlag ;; make select table

Do MyList.$fetch(10) Returns myFlag ;; fetch 10 rows into list or

Do MyRow.$fetch() Returns myFlag ;; fetch a row into a row var

To transfer the whole select table useBlidd list from select tableommand:

; Declare class variable cvList of type List

Set current list cvList

Define list {fltems,LVAR1,LVAR5}

; defines the list with all fields from fltems, plus LVAR1 & LVAR5
Build list from select table ;; builds list from SQL query

When loading large select tables into the list, you should avoid making the user wait for the
whole set of rows to arrive before refreshing the screen to display the first fifty or so rows.
You can retrieve the rows in batches using the $linemax property which limits the size of
the list, pausing after each batch to redraw the list field.

Building a List from OMNIS Data

You can build a list from OMNIS data using tBsild list from filecommand. It puts all the
rows from an OMNIS data file into the current list. For example

Set current list LIST2

Define list (fCustomers)

Build list from file

You can also apply a search and sort with this command; s€#NeS Data Files
chapter.

For a list defined from file class or other variables you can add values either as variables or
literals usingAdd line to list This adds a line to the end of the list, or inserts a line after the
specified line. For example

Add line to list {('Jones','Ipswich',fCountry)} ;; adds at the end
Add line to list {10('Jones','Ipswich',fCountry)} ;; adds at line 10

Viewing the contents of a list variable

You can view the current contents of a list variable by Right-clicking on the variable name
and selecting the first option in the context menu. You can do this wherever the variable
name appears in OMNIS, including the method editor and Catalog.

Chapter 6—L.ist Programming

List and Row functions

OMNIS provides functions for converting independent variables into a row, and for
converting a series of row variables into a list.

The list() Function

The list() function accepts a set of row variables as parameters, and creates a list variable
from them. The definition for the first row variable is used to define the list. If subsequent
row variables have different definitions, OMNIS will convert the data types to match the
first row.

Calculate myList as list(myRow1, myRow2, myRow3)

The row() Function

The row() function accepts a set of variables as parameters, and creates a row variable from
them. The variable types are used to define the columns of the row.

Calculate myRow as row(myVarl, myVar2, myVar3)

Accessing List Columns and Rows

You can access data in a list by loading an entire row of data, or an individual cell into other
variables. An entire row of information is loaded with toad from listcommand. You can
access individual cells using thead from listcommand or thést() function, or by

referencing the list row and column as part of a calculation. Don’t colstseith the

list() function discussed in the previous section.

TheLoad from listcommand takes an optional set of variables to load data into. In the case
of a list defined from a File class or other variables, the load command will automatically
place each column’s data into the fields of the same name. To load a list defined from a
SQL class, you include a list of variables as part of.thel from listcommand.

Load from list ;; loads the row into a file class
Load from list (Varl, Var2) ;; loads the row into specified vars

You can use thist() function as part of a calculation to extract a particular cell of
information from a list.

Calculate MyVar as Ist(MyList, rowNumber, ColumnName)
You can address cells directly by referring to them as ListName.ColumnName for the
current row or ListName.RowNumber.ColumnName for a specified row. You can use

RowName.ColumnName for a row variable. OMNIS also recognizes the syntax
ListName(‘ColumnName’,RowNumber). The column name must be in quotes, for example

List and Row functions 111

Since ListName.ColumnName and ListName.RowNumber could be ambiguous, OMNIS
assumes character values are column names. In the case of the row number being contained
by a character variable, this should be indicated by adding ‘+0'.

Calculate MyNum as MyList. Amount ;; the current row
Calculate MyNum as MyList.5.Amount ;; row 5
Calculate MyNum as MyList(‘Amount’,5) ;; Amount column, row 5

The two types of statement above are also used to assign a value to a list element.

Calculate MyList.5.Amount as 100 ;; sets Amount column, row 5 to 100

List Variable Notation

List variables have certain standard properties and methods that provide information about
the list, such as how many rows or columns it has, or the number of the current line. List
columns, rows, and cells have properties and methods of their own which are listed in the
OMNIS Help.

List Properties and Methods

All types of list have the following properties. A list created from a SQL class has the
standard properties and methods of a table instance, together with these list properties.

— $linecount
returns the number of lines in the list; you can change this property 8etifieal line
numberto truncate the list

— $linemax
holds the maximum number of lines in the list; this is set to 10,000,000 by default but
you can change it to restrict the list size

- $line
holds the current line in the list; this changes when the user clicks on a list line, or when
using a method such as $search()

— $colcount
returns the number of columns in the list

— Sisfixed
true if the list has fixed length columns; changing $isfixed clears the data and the class
for the list, but keeps the column definitions (note that a list defined using $define() has
columns of any length). Fixed length columns improve performance in some cases, but
cannot contain all data types

— $class
returns the schema, query, or table class for the list, or is empty if it is not based on a
SQL class

112 Chapter 6—L.ist Programming

— $cols
groupcontaining the columns in the list; you can use $add() to add a column, but
$addbefore() and $addafter() do not work for $cols

For a row variable, $linecount, $linemax and $line are all set to 1 and cannot be changed.
Lists also have the following methods.

— $defing))
without parameters this clears the list definition, otherwise $define(varl][, var2, var3]...)
defines a list using variables or file class fields

— $definefromsglclasg)
$definefromsglclass(notation for SQL class[,parm1,parm2]...) defines a list or row
variable from a schema, query, or table class; the parameters are sent to the $construct()
of the table instance

— $copydefinition()
$copydefinition(list or row variable[,parm1,parm2]...) clears the list and copies the
definition but not the data from another list or row variable; if the list being copied
from is derived from a SQL class, the parameters are passed to $construct() of the table
instance

- S$clean)
clears the data for the list, but keeps the list definition

- S$first()
$first(selected only[, backwards]) sets the current row of the list to the first row or first
selected row and returns a reference to that row

— $next)
$next(list row or row number], selected only, backwards]) sets the current row of the
list to the next row or next selected row and returns a reference to that row

— $add()
$add(columnl value[, column2 value]...) inserts a row at the end of the list

— $addbefore))
$addbefore(list row or row number,coll value[, col2 value]...) inserts a row before the
specified row

— S$addafter()
$addafter(list row or row number,coll value[, col2 value]...) adds a row after the
specified row

- $remove()
$remove(list row or row number) deletes the specified row

List Variable Notation 113

— $searcK)
$search(search calculation[, from start, only selected, select matches, deselect non
matches]) searches the list; behaves the same as fBedineh listommand

- $sort()
$sort(first sort variable or calculation, sort order[, second sort variable or calculation,
sort order]...) sorts the list; you can specify up to 9 sort fields, including the sort order
flag. The sort fields or calculations can use $ref.colname or list_name.colname to refer
to a list column. The sort order flag defaults to kFalse (that is, the sort is normally
ascending). For calculated sorts, the calculation is evaluated for line 1 of the list to
determine the comparison type (Character, Number or Date).

— $removeduplicateg)
$removeduplicates(listname.column) removes all list lines with duplicate values in the
column; you must sort the list before using this method

— $mergd)
$merge(list or row[, by name, only selected]) merges the two lists

Properties and Methods of a List Column

The columns of a list are contained in the $cols group. The $cols group contains the
following properties:

— $name
returns the simple name of the column

— $dataname
returns the dataname of the list column; empty for a list defined from a SQL class

— $objtype
returns the data type of the column; changing this clears the list data

— $objsubtype
returns the data subtype of the column; changing this clears the list data

— $objsublen
returns the length of character and national columns; changing this clears the list

List columns have the following methods:

- $clean)
clears the data for the whole column; the column definition is left unchanged

- $total()
calculates the total of all rows for the specified column

— S$averagd)
calculates the average value of all non-NULL rows for the specified column

114 Chapter 6—L.ist Programming

$minimum()
calculates the minimum value of all rows for the specified column

$maximum()
calculates the maximum value of all rows for the specified column

$count()
number of rows for the specified column whose value is not NULL

Properties and Methods of a List Row

A list row has the following properties:

$group
returns the list containing the row

$selected
returns true if the row is selected

A list row has the following methods:

clear()
clears the value of all the columns in the row

$loadcoly)
$loadcols(variablel], variable2]...) loads the column values for the row into the
specified variables

$assigncol§)
$assigncols(columnl value[, column2 value]...) replaces the column values for the row
with the specified values

$assignrow)
$assignrow(row, by name) assigns the column values from the specified row into the
list row on a column by column basis

Properties of a List Cell

If a list cell is itself a list or row variable it has all properties of a list or row. List cells have
the following properties.

List Variable Notation

$group
returns the list row containing the list cell

$ident
returns the column number for the list cell

$name
returns the column name for the list cell

115

— $line
returns the row number for the list cell; not necessarily the current line in the list

Manipulating Lists

You can change both the structure and data of a list variable using both commands and
notation.

Dynamic List Redefinition

You can add, insert, remove, or move columns in list or row variables without losing the
contents of the list or row. This functionality applies to all types of list and row variables
including smart lists. In particular, the following notation no longer causes the contents of
the list to be lost. In addition, $addbefore() and $addafter() have been implemented for list
and row variables.

— List.$cols.$add(variable name)
adds a column to the right-hand end of the list using the specified variable as its
definition

— List.$cols.$add(colname, type, subtype, length)
adds a column to the right-hand end of the list using the specified definition

— List.$cols.$remove(column name or number)
removes the specified column and moves any remaining columns to the left

— List.$cols.$addbefore(column name or number, variable name)
inserts a column to the left of the specified column using the specified variable as its
definition, and moves any columns to the right as necessary

— List.$cols.$addbefore(column name or number, colname, type, subtype, length)
inserts a column to the left of the specified column using the specified definition, and
moves any columns to the right as necessary

— List.$cols.$addafter(column name or number, variable name)
inserts a column to the right of the specified column using the specified variable as its
definition, and moves any columns to the right as necessary

— List.$cols.$addafter(column name or number, colname, type, subtype, length)
inserts a column to the right of the specified column using the specified definition, and
moves any columns to the right as necessary

— List.$cols.column name or number.$ident.$assign(new column number)
moves the column to a new position and moves other columns to the right or left as
appropriate; in this case the $ident of a list column is its column number, therefore
changing the ident moves the column to a different position

116 Chapter 6—L.ist Programming

Manipulating Lists

You cannot insert, remove, or move columns in a list defined from a SQL class, since you
cannot redefine schema-, query-, or table-based lists. However you can use
List.$cols.$add() to add extra columns to a SQL list.

Clearing List Data

You can use the comma@ear listor ListName.$clear() to clear the data from a list. You
can clear individual columns of a list with the ListName.ColumnName.$clear(), and
individual rows with ListName.rowNumber.$clear().

Searching Lists

You can search a list using tBearch listommand or $search() method. W&bkarch list
the search criteria are set up either as a search calculation or a search class, and a successft
search sets the flag. The following method selects all lines matching the search.

Set current list MaiList
Set search as calculation {Country = ‘USA’}
Search list (From start, Select matches (OR))

Using the $search() method this example would be
Do MaiList.$search(Country = ‘USA’) Returns myFlag

Selecting List Lines

When you display the data in a list variable in a list field on a window, by default you can
select a single line only. However, you can allow multiple selected lines by setting the list or
grid field’s $multipleselecproperty. When the user highlights list lines with the mouse, the
$selected property for those lines is set. If the field does not have $multiplese)doe

current, selected line is the highlighted one; if the $multipleselect property is set, all
highlighted lines are selected, and the current line is the one with the focus.

Some of the commands that operate on a list variable use $selected to indicate their result.
For exampleSearch list (Select matchesill set $selected for each line that matches the
search criteria.

Each list variable has two select states stngedandcurrentselections. The current
selection is the set of lines currently selected, whereas the saved selection is the previous set
of lines that was selected before the current selection changed.

There are a number of commands that you can use to manipulate selected lines, save the
current selection, and swap between the selected and saved states. These commands are
described in th©MNIS Studio Help.

117

Merging Lists

You can copy lines from one list to another usingMieege listcommand or the $merge()
method. Merging copies one whole list to another, or certain lines only if you include the
Use searcltoption. The following example copies the selected lines from LIST1 to LIST2
by checking each line's $selected property.

Set current list LIST2

Set search as calculation {$clist.$selected=1}

Merge list LIST1 (Use search)

$merge() provides slightly different capabilities in that it can align the results by column
name as well as by position, wher&erge listworks by position only. The syntax is
$merge(listName, byColumnName, useSearch). The example above could be written as:
Do Listl.$search($selected=kTrue)

Do Listl.$merge(List2, kFalse, kTrue)

Sorting Lists

You can specify up to nine levels of sorting using3bet listcommand or $sort() method.
To useSort listyou need to set up the sort fields first, and clear any existing sort levels
since these are cumulative. $sort() clears existing sort fields automatically. For example

Set current list {MyList}
Clear sort fields

Set sort field Country
Set sort field Town

Set sort field Name
Sort list

Redraw lists

The $sort() method takes the sort variables or column names in order, each followed by a
boolean indicating the sort direction. Using notation, the equivalent of the above example
would be

; Country, Town, Name are columns in MyList
Do MyList.$sort(Country,kFalse, Town,kFalse,Name,kFalse)
Redraw lists

Removing Duplicate Values

List columns have the $removeduplicates() method which removes lines with duplicate
values in the column. You must sort the list on the column before using this method.

Do MaiList.$sort(CustNum,kFalse) ;; sorts list on CustNum column
Do MaiList.$cols.CustNum.$removeduplicates() return NumRemoved

118 Chapter 6—L.ist Programming

Smart Lists

Smart Lists

You can track changes made to a list by enablirfssitsartlist property. A smart list saves

any changes, such as deleting or inserting rows, in a parallel list called the history list. Smart
lists can be filtered, a process which allows data not meeting a particular criteria to be made
invisible to the user while being maintained in the history list.

A smart list variable therefore contains two lists:
— thenormallist containing the list data, and
— thehistorylist containing the change tracking and filtering information

If you store a smart list in an OMNIS data file or as a binary object is a SQL database, all
the smart list information is stored automatically.

Enabling Smart List Behavior

To enable the smart list capability of any list variable you have to set its $smartlist property
to kTrue.

Do ListName.$smartlist.$assign(kTrue) ;; to enable it

Setting $smartlist to kTrue creates and initializes the history list. If it is already kTrue, then
setting it again has no effect.

Setting $smartlist to kFalse discards the history list completely. The current normal list
remains unchanged, so the current contents of the normal list are preserved, but all history
and filtering information is lost.

If you define or redefine a list using any mechanism, or add columns to a list, its $smatrtlist
property is set to kFalse automatically.

The History List

The history list has one row for each row in the normal list, together with a row for each
row that has been deleted or filtered. The history list has the columns contained in the
normal list as well as the following additional columns:

— $status
contains the row status, which is one of the constants kRowUnchanged, kRowDeleted,
kRowUpdated, or kRowlInserted, reflecting what has happened to the row. Only one
status value applies, so a row that has been changed and then deleted will only show
kDeleted. Note that kRowUpdated is true if the row has changed in anyway, even if the
current values do not differ from the original column values.

— S$rowpresent
true if the row is still present in the normal list, otherwise, the row is treated as if it has
been deleted

119

120

— $oldcontents
a read only row variable containing the old contents of the row

— $currentcontents
a read only row variable containing the current contents of the row

— $errorcode
an integer value that lets you store information about the row; the standard table
instance methods use this to store an error code

— S$errortext
a text string that lets you store information about the row; the standard table instance
methods use this to store an error text string

Properties of the History List

You can access the history list via the $history property, that is, LIST.$history where LIST
is a smart list. $history has the properties:

— $linecount
read-only property that returns the number of rows in the history list

$history also supports the standard group methods $first() and $aextéll as
$makelist(), but you cannot change the history list.

Properties of Rows in the History List

LIST.$history.N refers to the Nth row in the history list. You can use this notation to access
the columns using the following properties:

— $status
the status of the row: not assignable

— S$rowpresent
results in the row being removed from, or added to, the normal list: this is assignable,
but there are several circumstances which cause OMNIS itself to change $rowpresent
and override your changes (deleting a row, applying or rolling back a filter, etc.)

— $rownumber
the row number of the row in the normal list, or zero if $Srowpresent is false; not
assignable

— $filterlevel
the number of filters applied to the history list, up to 15: not assignable (see filtering
below)

— $oldcontents
the old contents of the row in the normal list: not assignable

Chapter 6—L.ist Programming

Smart Lists

— S$currentcontents
the current contents of the row in the normal list: not assignable

— $errorcode
the error code for the row; assignable and initially zero

— Serrortext
the error text for the row; assignable and initially empty

The above row properties are also properties of the list rows in the normal list, and provide
a means of going directly to the history data for a line. In this case, $rowpresent is always
kTrue, but can be set to kFalse.

Tracking the Changes

Change tracking occurs automatically as soon as you enable the $smartlist property for a
list. From this time, OMNIS automatically updates the status of each row in the history list
whenever it inserts, deletes, or makes the first update to the row. Note that change tracking
only remembers a single change since the history list was created. Hence:

— Updating a row of status kRowUnchanged changes it to kRowUpdated; updating a row
with any other status leaves the status unchanged

— Inserting a row always sets the status to kRowlInserted and makes the row present in the
normal list

— Deleting a row always sets the status to kRowdeleted and makes the row not present in
the normal list; the row is still present in the history list (and can be made present in the
normal list) until a $savelistdeletes operation is performed

Change Tracking Methods

The history list has several standard methods that let you undo or accept changes to the list
data. After using any of these methods, the list is still a smart list.

You can use the following methods for accepting changes:

— $savelistdelete§
removes rows with status kRowDeleted from the history list, and also from the normal
list if $rowpresent is kTrue

— $savelistinsertg)
changes the status of all rows with kRowlnserted to kRowUnchanged, and sets the old
contents of those rows to the current contents. It does not change $rowpresent

— S$savelistupdate$)
changes the status of all rows with kRowUpdated to kRowUnchanged and, for all rows,
sets the old contents to the current contents; this does not change $rowpresent

121

122

— S$savelistwork()
quick and easy way to execute $savelistdeletes(), $savelistinserts() and
$savelistupdates()

And these are for undoing changes made to the list data:

— $evertlistdeletey)
changes the status of all kRowDeleted rows to kRowUnchanged or kRowUpdated
(depending on whether the contents have been changed); for these rows $rowpresent is
set to true

— $revertlistinserts()
removes any inserted rows from both the normal list and the history list

— Frevertlistupdates()
changes the status of all kRowUpdated rows to kRowUnchanged and, for all rows, the
current contents are set to the old contents; this does not change $rowpresent

— S$revertlistwork ()
quick way to execute $revertlistdeletes(), $revertlistinserts() and $revertlistupdates()

The history list also has a default method that lets you set the row present property based on
the value of the status.

— S$includelinesktatus
includes rows of a given status, represented by the sum of the status values of the rows
to be included. Thus 0 means no rows, kRowUnchanged + kRowDeleted means
unchanged and deleted rows, and kRowAll means all rows, irrespective of status. This
is a one-off action and does not, for example, mean that rows deleted later will remain
flagged as present

Filtering

Filtering works only for smart lists. You apply a filter by using the $filter() method, for
example

Do ListName.$filter(COL1 = ‘10’) Returns Count

$filter() takes one argument, which is a search calculation similar to one used for $search().
It returns the number of rows rejected from the list by the filter.

Filtering uses the row present indicator of the history list to filter out rows. In other words,
after applying a filter, OMNIS has updated $rowpresent to kTrue for each row matching the
search criterion and kFalse for the others. Filtering applies only to the rows in the normal
list, that is, rows where $rowpresent is kTrue, with the result that repeated filtering can be
used to further restrict the lines in the list.

Chapter 6—L.ist Programming

Smart Lists

Filter Level

Each history row contains a filter level, initially zero. When you apply the first filter,

OMNIS sets the filter level of all rows excluded by the filter to one; that is, for each row in
the normal list, for which $rowpresent becomes kFalse, $filterlevel becomes one. Similarly
for the nth filter applied, OMNIS sets $filterlevel for the newly excluded rows to n. You can
apply up to 15 filter levels.

Whenever a row is made present, for whatever reason, the filter level is set back to zero,
and whenever the row is made not present, for any reason other than applying a filter, the
filter level is also set back to zero.

Undoing a Filter

You can restore filtered rows to the normal list using the $unfilter() method, for example:

Do ListName.$unfilter() Returns Count

When called with no parameters, $unfilter() removes the latest filter applied. Otherwise,
S$unfilter removes filters back to the level indicated by the parameter. Thus $unfilter(0)
removes all filters, $unfilter(1) removes all but the first, and so on.

Reapplying a Filter

You can reapply all the filters which have already been applied, in the same order, to all
lines present in the normal list using the $refilter() method. For example

Do ListName.$refilter() Returns Count

The Filters Group

A list has a read-only group called $filters which lets you navigate through a list of the
filters that have been applied. For example

ListName.$filters.N

identifies the Nth filter currently applied to the list, that is, the filter which filtered out rows
at filter level N. Each member of the $filters group has a single property, $search
calculation, which is the text for the search calculation passed to $filter() when applying the
filter.

Committing Changes to the Server

The current state of the normal list can be committed to the corresponding server table,
assuming the list was defined from a SQL class, using the following smart list methods

— $doinserty)
inserts any rows in the list with the row status kRowlInserted

— $dodeletes()
deletes any rows in the list with the row status kRowDeleted

123

124

$doupdates()
updates any rows in the list with the row status kRowUpdated

$dowork()
executes the above methods one after the other, in the order delete, update, insert

List Commands and Smatrt Lists

Any command or notation which defines a list sets $smartlist to false, so that any history
information is lost. You can use the following list commands and notation with smart lists
but with particular effects.

Search listand equivalent notation selects only lines in the normal list.

Sort listand equivalent notation, includes all rows, even those with $rowpresent set to
false, so that if those lines become present in the normal list they will be included in the
correct position.

When usindMerge listor equivalent notation, if the source list is a smart list only its
normal list is merged, not the history information. If the destination list is a smart list
the merged lines are treated as insertions and have the status kRowlInserted.

When usingset final line numbeiif lines are added they are treated as insertions and
have the status kRowlInserted, and if lines are removed they are treated as deletions and
are kRowDeleted.

Using aBuild list.. command gives all lines the status kRowlInserted. This performance
overhead can be avoided by not setting $smartlist until after the list is built.

Chapter 6—L.ist Programming

Chapter 7—WIindow
Programming

This chapter describes some of the more advanced properties of window classes, and the
different OMNIS window components you can use, including

— Container fieldtypes
including tab panes, tab strips, page panes, subwindows, and complex grids

— Advancedist andgrid field types
including string and data grids, headed list boxes, icon arrays, and tree lists

— Modify ReportandScreen Repoffields
to let users modify report classes and print reports to a window

— Field styles
to implement styles throughout your application and across platforms

— Format stringsandinput masks
to format data input and display

— Drag and Drop
for dynamically exchanging data and objects in your application

TheWindow Classeshapter, in th&Jsing OMNIS Studionanual, tells you how to create
window classes and describes the simpler fields and objects you can use to design windows.
It also describes how you can create SQL and OMNIS data entry forms using wizards.

Smart Lists 125

Container Fields

Some of the complex field types are describedomsainerfields. A container field is

simply a window field that contains other fields. These include tab and page panes, complex
grids, group boxes, scroll boxes, and subwindows. All container fields except subwindows
have the $objs and $bobjs object groups containing the fields and background objects
within the container field. Therefore in the notation you access the objects within a
container field via these object groups. For example the notation for a field called MyField
inside a paged pane is

$windows.WindowName.$objs.PagePaneField.$objs.MyField

Every field within a container field has the $container property which returns the name of
the container field the object belongs to.

You can nest container fields four levels deep. Beyond this level, the most deeply nested
field is not set up when the window is opened and becomes a display field showing an error
message.

Tab Panes, Page Panes, and Tab Strips

126

Tab panes and Page panes are types of window field that contain a number of panes on
which you can place other fields. When the user clicks on a tab or other field its associated
pane can be brought to the front. This type of container field is useful for Options or
Preference-style dialogs in which you need to group a series of fields or options into logical
or functional areas. Standard field properties control the overall size, position, and border
style of a pane field, whereas each tab or pane has particular properties.

You can access the contained fields and background objects in a tab pane or page pane field
via the $objs and $bobjs groups for the container field. To set the properties of individual
tabs or panes, you must first set thierenttab or currentpage property as appropriate.

Tab Panes

Tab pane fields provide separate panes in design mode, on each of which you can place any
number of fields and background objects. You can switch panes in design and runtime
modes by clicking on the tab belonging to the pane. You set the position, number and style
of the tabs, and whether the tabs have icons in the properties for the tab pane.

To create a Tab Pane field

® Drag a Tab Pane field from the Component Store onto your window
® Settabcount and the other appearance properties

® Click on each tab and add the fields and background objects as required

Chapter 7—Window Programming

Tab pane fields have the following properties

taborient andtabstyle
the position and style of the tabs; either at the top or bottom, with square, rounded, or
triangular shaped panes

tabcount andcurrenttab
number of tabs or panes, and the currently selected one

imagenoroom
when insufficient room shows just picture and not text for each tab

showimages
shows icons for tabs in the field; specify icons under pane properties

showfocus
shows the focus for the selected tab

multirow
if true forces the tabs to stack rather than scroll when the field has many tabs

forecolor, backcolor,andbackpattern
sets the color and pattern of the area behind the tabs, not the tab panes

selectedtabcolor
the color of the selected tab; defaults to kColor3DFace

tabcolor
the color of non-selected tabs; defaults to kColor3Dface

An individual pane has the following properties

tabcaption

text or label for the tab

iconid

id of the icon from an icon data file; you cannot use icons larger than 48x48 pixels for
tabs (enablshowimagego show icons)

tabtooltip
tooltip for the tab; you must enable the OMNIS preferestmmvwindowtipsto show
object tooltips

Programming Tab Panes

When the user clicks on a tab at runtime, the field receives the event evTabSelected, with
the parameter pTabNumber holding the number of the tab clicked. $currenttab changes to
the current tab (and pane). Discarding the event will prevent the current tab from changing.

Tab pane fields can have a $control() method to control events for each of the contained
fields.

Tab Panes, Page Panes, and Tab Strips 127

128

To access individual tabs or panes using the notation, you must first set $currenttab. For
example, to change the text on the second tab use

Do $cinst.$objs. TabPane.$currenttab.$assign(2)

Do $cinst.$objs. TabPane.$tabcaption.$assign('New tab text)

Page Panes

Page panes are similar to tab panes except that they have no tabs: you can switch the curren
pane or page using a tab strip, a set of radio buttons, a pushbutton, or some other field. In
design and runtime mode you can set the number of papagétount and change the

current page usingurrentpage.

To create a Page Pane field

® Drag a Page Pane field from the Component Store onto your window
® Setpagecountto the number of pages

®* Add the fields and background objects to each page, changing the current page by
settingcurrentpage

Programming Page Panes

You can change panes in a method that@etentpage as required. Using a tab strip you
can set the page to the selected tab.

; $event() method for the tab strip field
On evTabSelected
Do $cwind.$objs.PagePaneld.$currentpage.$assign([pTabNumber])

Alternatively, you can design your own Next and Back buttons that cycle through the pages,
similar to a wizard. For example

; $construct() method for the window

; declare variable cCurPage initial value 1

; declare variable PageRef of type Item reference
Set reference PageRef to $cwind.$objs.PagePaneld

; $event() method for Next button
On evClick
Calculate cCurPage as PageRef.$currentpage + 1
If cCurPage > PageRef.$pagecount
Calculate cCurPage as 1 ;; if last pane, go to first
End If
Do PageRef.$currentpage.$assign(cCurPage)
Quit event handler (Discard event)

Chapter 7—Window Programming

Tab Strips

Tab strips contain a set of tabs only, they do not have pages or panes. The tab strip offers
similar functionality to a set of radio buttons in that only one tab can be selected at a time.
You could use a tab strip in conjunction with the page pane field to hide and show a series
of fields on your window.

To create a Tab Strip field

® Drag a Tab Strip field from the Component Store onto your window

® Set thetabs property to set the text and humber of tabs

You enter the text and number of tabs for the field irtabs property. Enter a text label
for each tab separated by commas. For example, the text Tim,Sue,Bill will enable three tabs
with the specified text.

Tab strip fields have the additional appearance properties

— backcolor
sets the color of the area behind the tabs; turditférbackground for a solid color

— tabcolor andselectedtabcolor
the color of the tabs, and the selected tab

— tabtextcolor andselectedtabtextcolor
the color of the text on the tabs, and the selected tab text color

— showedge
if true shows the edge of the tab strip

— ditherbackground
if true shows dithered background for the tab strip

— overlap
the overlap for the tabs in pixels

— tableftmargin
the indent for the left tab in pixels

Programming Tab Strips
Tab strips receive evTabSelected which you can handle in the same way as tab panes.

To add a new tab using the notation you have to assign to the $tabs property. For example,
to add a third tab called Bill use

Do $cinst.$objs. TabStrip.$tabs.$assign('Fred,Sarah,Bill")

Tab Panes, Page Panes, and Tab Strips 129

String and Data Grids

String and Data grids are both types of window field that display data from a list variable in
an enterable table format. String grids display character-based data, whereas Data grids can
display any type of data. You can scroll these grid types horizontally and vertically, and you
can make the first column and/or first row non-scrolling headers if required. If you tab out

of the last column in the last row in a data or string grid, a new row can be added to the grid.

String Grids

You can use string grids to display character-based data from a list. The row height and
column width are set at design time, but columns can also be sized at runtime if the first row
is fixed. String grids have the following properties

130

dataname
the source list variable

defaultheight anddefaultwidth
the default row height and column width in pixels

designcolsanddesignrows
number of columns and rows displayed in design mode

fixedrow andfixedcol
sets top row or first column as a fixed header or column

extendable
if true a new row is added when you tab out of the last column of the last row

A string grid instance has the read-only properties

gridrows andgridcols
the number of rows and columns

gridhcell andgridvcell
the current cell column and row number

To create a string grid

Drag a String Grid field from the Component Store onto your window
Set thedatanameproperty to the source list variable
Set the number of list rows and columnsl@signrowsanddesigncols

Add the list-building method behind the grid field

Chapter 7—Window Programming

You can make the first column and row fixed and non-scrolling by séittedrow and

fixedcol. This sets the first row and column of your list data as the column and row headers.
In addition, settindixedrow lets you size the columns both at design and runtime by

dragging in the column header. Dragging individual columns overrides any values set in
defaultwidth. If you want to have variable column widths at design time, but not have a

fixed row, seffixedrow back to false after sizing the columns. If you chasgfaultwidth

after manually sizing the columns, a message asks whether you wish to keep the non-default
widths.

Data Grids

Data grids are very similar to string grids with regards to their appearance, but with some
extra features.

— data can be of many types, even pictures
— the row height adjusts to fit the data
— column header names are added as a property

To create a data grid

® Drag a Data Grid field from the Component Store onto your window
® Setdatanameto the source list variable

® Setautosizeif you want the row height to adjust to fit the data

® Set the number of list rows and columnsl@signrowsanddesigncols

® Add the list-building method behind the grid field

You usefixedrow to adjust the column widths at design time. You can enter the column
headings in theolumnnamesproperty as a comma-separated string.

With theautosizeproperty on, character-based columns will size to a maximum of 5 lines
deep; for larger amounts of data cells will scroll. Columns containing pictures will size to fit
the picture. Different data types are displayed in different ways in a data grid: Boolean data
types become droplists with true/false options, and lists are shown as droplists. Character,
number, date and all other types map to edit fields.

Programming Data and String Grids

String grid cells are normally enterable except those in a fixed row or column. The grid
receives specific events when the user clicks in the grid; it does not receive evClick and
only receives evBefore and evAfter when entering or leaving the field. When the user clicks
in a data cell, two events are sent, as follows

String and Data Grids 131

— evCellChanging
returns pHorzCell, pVertCell, and pCellData event parameters

— evCellChanged
returns pHorzCell, and pVertCell event parameters

Note these events are not available for complex gfids.parameters pHorzCell,

pVertCell are the column and row numbers and pCellData is a character variable holding
the contents of the updated cell. You can use the evCellChanging event to validate cell data
entered by the user. If you discard the event the data is not changed.

; $event() method for the grid field
On evCellChanging
If pCellData ="
OK message {You must enter a value}
Quit event handler (Discard event)
End If

If the user tabs out of the last column of the last row andxtendableis set, the evExtend
event is sent with the parameter pRow. You can use this to set up the new row with default
data or stop the grid extending, as follows

; $event() method for the grid field
On evExtend
If $cobj.$gridrows > 20
OK message {This grid cannot have any more lines}
Quit event handler (Discard event)
Else
Calculate pRow.Columnl as DefaultVal
End If

Setting column widths

You can set the column widths for Headed lists, String and Data grids using the runtime
only property $columnwidths. This property returns a comma separated list of column

widths in pixels. When you use the $assign() method to assign to this property, you must put
the comma separated list in quotes. For example

: Item reference HeadedListRef set to headed list instance
Do HeadedListRef.$columnwidths returns HeadedCols

; returns something like ‘30,40,55’

Do HeadedListRef.$columnwidths.$assign('20,30,40’)

; assigns the column widths to the headed list instance

132 Chapter 7—Window Programming

Scrolling Tips for String and Data Grids
The following properties control string and data grid scrolling.
$vscrolltips

if true, enables vertical scrolltips showing the current row number when scrolling; the
scrolltip contains the value of column 1 of the current row while scrolling

— $hscrolltips
if true, enables horizontal scrolltips showing the current column number when
scrolling; the scrolltip contains the value of row 1 of the current column while scrolling

— S$cellbordercolor
the grid cell borders

— $gridendcolor
the color of empty grid where no data appears at the end of the grid

— $gridhcell and $gridvcell
return the current cell using (row,column) coordinates; the first row of the grid is row 1,
the first column is column 1

You can replace the default scrolltips for string and data grids by intercepting the
evScrollTip event, and providing your own scrolltip string, evSrcollTip has three event
parameters:

— plsVertScroll
if true, the current scrolltip is on the vertical scroll bar, otherwise it is on the horizontal
scroll bar

— pScrollPos
the list row number for vertical scrolling, otherwise the column number for horizontal
scrolling

— pScrollTip
the scrolltip text, if you do not assign a value the default scrolltip is used

You can also use thuit event handlecommand with the discard event option if you do
not want OMNIS to display a scrolltip.

String and Data Grids 133

Headed List Boxes

A headed list bois a type of window field that displays data from a list variable in a table
format. You can add button style headers to each column of the list on which the user can
click to sort the data. You can also make the columns sizeable, and individual cells can have
different colors, patterns, and text styles.

In addition to the general list box properties, suchmabipleselect, the headed list box has
the following properties

— dataname
the name of the list variable

— calculation
the calculation to format the columns for the list

— maxeditchars
the maximum size of the edit field for editing a column, or O if columns cannot be
edited

— enableheader
if true the column headings act like buttons

— canresizeheader
if true the columns can be sized at runtime

— boldheader
if true the headings are bold

— showcolumnlines
if true the list draws lines between the columns at runtime

— designcols
the number of columns, maximum of 30 columns

— columnnames

a comma-separated list of heading text for the columns
— align

allows you to determine column alignment

— columnalignmode
provides runtime alignment control

— headerfillcolor
the color of the header; defaults to kColor3DFace

— headertextcolor
the color of the text in the header; defaults to kColorDefault, that is, the text color of
the list

134 Chapter 7—Window Programming

— colcount
a runtime only property, which is the number of columns in the headed list.

— columnwidths
a runtime only property, allowing the column width to be set. See the previous section
on data and string grids..

Text Alignment

The $align text property lets you set the alignment of all the columns in the list. At runtime,
you can override the alignment for individual columns using the method

— $setcolumnalign(columnNumber, alignment)
sets the alignment to kLeftJst, kRightJst, or kCenterJst, and returns kTrue for success

and you can return the current alignment for a column using

— $getcolumnalign(columnNumber)
returns the alignment of the specified column

Note that headed list boxes do not support the style() function with type parameters
kEscLTab, kEscCTab and KEscRTab.

The property $columnalignmode provides additional runtime control over

$setcolumnalign(), and can have the following values: kAlignModeHeading,
kAlignModeBody, kAlignModeAll and kAlignModeNone. These determine whether the
heading, body, both or neither are affected by calls to $setcolumnalign(). Note that the call
to $setcolumnalign() always stores the new alignment value in the list; $columnalignmode
determines if the stored value is used. When the stored value is not used, $align determines
the alignment.

To create a Headed List Box field

® Drag a Headed List Box field from the Component Store onto your window
® Enter thedataname, designcolsindcolumnnamesproperties

® Set the column widths by dragging; shift-drag resizes the column to the right of the
mouse pointer so you can use this for the last column

® Setmaxeditcharsif the columns are to be editable

® If necessary, enter the formatting expressiocatoulation

You do not need a calculation if the columns in the headed list are an exact mapping of the
columns in the data list. If not, use the calculation to format the columns in the headed list
box. They must contain column names from your list and special column delimiters. You
can use theon()function to format the calculatioand insert column delimiters using
chr(9),the tab character. For example, to format three columns the calculation could be

Headed List Boxes 135

136

con(Col1,chr(9),Col2,chr(9),Col3)

You can also use thayle()function to change the style and color of specific columns. For
example, to give Coll a blue spot icon, make Col2 red and right-justified, and Col3 italic
you would enter the following calculation

con(style(kEscBmp,1756),Col1,chr(9),

style(kEscColor,kRed),Col2,chr(9),
style(kEscStyle,klitalic),Col3)

Programming Headed List Boxes

The $event() method for headed list boxes receives specific event messages. In addition to
the general entry field events evClick, evDoubleClick, evAfter, evBefore, and the drag and
drop events, there are specific events to report clicks on the column headers and when the
list data is edited.

Column Headers

When the header is enabled by seténgbleheader user clicks on the header buttons
generate the evHeaderClick event with the column number held in pColumnNumber. You
can use this event to sort the column clicked on. The following method sorts the column,
reversing the existing order

; $event() method for headed list box

; declare class variable SortOrder of Boolean type init value 0

On evHeaderClick
Calculate IColumnName as cList.$cols.[pColumnNumber].$name
Do cList.$sort(cList.[[IColumnName],SortOrder)
Calculate SortOrder as not(SortOrder) ;; reverses the order
Redraw {HeadedListBox}

Editing the List
When text editing is enabled Inyaxeditchars a headed list box receives three events in a

specific order, together with parameters containing the list line, column number and new
text entered.

— evHeadedListEditStarting
with parameters pLineNumber, pColumnNumber, is sent on the first click in the
selected cell which puts the cell into edit mode; discarding the event prevents editing

— evHeadedListEditFinishing
with parameters pLineNumber, pColumnNumber, pNewText, is sent if the user enters a
new value by hitting return or clicking away from the edit field; discarding the event
leaves the field in edit mode, for example if pNewText is invalid. Note that you must
store the new valid text in the list at this point: OMNIS cannot do this since the data is a
calculated expression

Chapter 7—Window Programming

— evHeadedListEditFinished
with parameters pLineNumber, pColumnNumber, is sent when the edit is completed

You could use the following event handlers for these events

; $event() method for the headed list box
On evHeadedListEditStarting
If pColumnNumber=2 ;; bar editing in this column
OK message (lcon,Sound bell) {Cannot edit this column}
Quit event handler (Discard event)
End If
On evHeadedListEditFinishing
If pNewText="
Quit event handler (Discard event)
Else
Calculate cList.pLineNumber.pColumnNumber as pNewText
End If
On evHeadedListEditFinished
; do anything necessary here

Default Methods
Headed list boxes contain the following default methods

— $edittext(column number)
puts the field into text edit mode if: there is a currently selected line, the field is the
current field, editing is enabled lyaxeditchars

— $getedittext(line number,column number)
called by the headed list to get the data to edit for a column, before displaying the edit
field; this gets the column data and strips text escapes inserstgld(y.You can
override this attribute if the default processing is not what you want.

Complex Grids

Complex Grids

A complex grids a type of window field that can display multiple rows and columns of

data taken from a list variable. To create a complex grid you place other fields, including
standard entry fields, droplists, and checkboxes, in the row and header sections of the grid
field. Complex grid fields are container fields having their own $objs and $bobjs groups
containing the foreground and background objects inside the grid field.

Every object in a complex grid has tieédsection property which tells you the section the
object is in, andjridcolumn which tells you its column. The fixed left-most column is

column zero: the other columns are numbered from one and are separated by the dividers.
Every field in the header is in column zero. Tope andleft properties of an object is

137

138

relative to the top left-hand corner of its grid section. diki@lers group contains the
dividers for the grid field.

The complex grid supports the standard properties $firstsel, $lastsel, $firstvis and $lastvis.
$firstsel and $lastsel only apply when the grid is not enterable.

Every field or object contained in a complex grid has the $container property which returns,
in this case, the name of the grid field the object belongs to.

To insert a field in a complex grid from a method you use the notation

Do MyGrid.$objs.$add(section,column,type,top,left,height,width)
Returns NewFieldRef

Events for Complex Grids

Each contained field receives its normal event messages such as evClick, evBefore, evAfter,
and the field event handler can pass these events to the $control() method contained in the
complex grid.

Complex grids receive the events evRowChanged and evExtend which you can handle in
the $event() method for the grid field. The evRowChanged event is sent whenever the user
clicks in a different row and when the window is opened. The evExtend event is sent
whenever a row is added to a grid with éxtendableproperty set. These events return the
pRow event parameter which holds a reference to the row changed or the new row. Thus
pRow.$line gives you the row number and pRow.ListColName returns the value of the cell.
Note the events evCellChanging and evCellChanged are available for string and data grids
only, not complex grids.

Grid Field Exceptions

Generally, the properties of a complex grid apply to the whole grid or to a single row or
column. However, you can set the properties of a single cell in the window instance by
setting arexceptiorfor the grid cell. To do this you use the notation

Do MyGrid.$objs.fieldname.row.property.$assign(value)
For example, if you wanted to show cells in Grid1 column cBal in red if the value is
negative, you could use the following code which runs when the user tabs out of the cell

On evAfter
Calculate row as pRow.$line
If cList.[row].cBal <0
Do $cinst.$objs.Grid.$objs.fBal.[row].$backcolor.$assign(kRed)
Redraw {Grid}

You could use this event handler for the cBal field in the grid, but the interior fields could
pass the events up to the $control() method in the complex grid field.

Chapter 7—Window Programming

; $control() method for the grid field
On evAfter
Calculate row as pRow.$line
If $cobj.$name = ‘fBal’ & cList.[row].cBal < 0
Do $cobj.[row].$backcolor.$assign(kRed)
Redraw {Grid}

You can clear exceptions using the $clearexceptions() method which acts on a cell, row,
column or the whole grid, as follows

; clear all exceptions
Do $cinst.$objs.GridName.$clearexceptions()

; clear exceptions for a row
Do $cinst.$objs.GridName.$clearexceptions(RowNum)

; clear exceptions for a column
Do $cinst.$objs.GridName.$objs.FieldName.$clearexceptions()

; clear exceptions for a cell
Do $cinst.$objs.GridName.$objs.FieldName.RowNum.$clearexceptions()

Subwindows

Subwindows

A subwindow fields a type of window field that contains another window class. You can

put any window class into a subwindow field; in this context, the window class inside a
subwindow field is referred to as the subwindow class, and the window containing the
subwindow field is called the parent window. The subwindow class can contain any number
of fields or window obijects, such as a group of radio buttons, a set of standard pushbuttons,
or it might contain a single field only, such as a complex grid field. The window class can
contain its own methods which in effect become the methods for the subwindow field.
Subwindow fields let you design sets of window objects and their associated methods, store
them as separate window classes, and reuse them on different windows as subwindow fields
with all their variables and methods encapsulated.

Creating a Subwindow

In design mode the subwindow field appears as a single object, so you cannot access the
fields contained in the subwindow class. The title bar and size borders of the subwindow
class are ignored. Fields inside the subwindow can have their edgefloat properties set so that
they resize with the parent window. In runtime the fields contained in the subwindow field
appear on the open window as standard fields and are part of the normal tabbing order. A
subwindow field is a container field, but it does not contain the $objs and $bobjs groups

like other container fields; its objects are treated as part of the parent window.

139

140

To create a subwindow field
® Drag a Subwindow field from the Component Store onto your window
or

® Click on the Subwindow icon in the Component Store and draw the field in your
window

® Open the Property Manager or press F6/Cmnd-6 to bring it to the top

* Select theelassnameproperty and enter the name of a window class or select one from
the droplist; normally you should leave tik@anameproperty empty

When you place the subwindow field it will resize to accommodate the subwindow class.
You can edit the subwindow class at any time by right-clicking on the subwindow field and
selecting Subwindow Class from the context menu.

If you enable th@obackground property, under the Appearance tab, the background of the
subwindow field becomes the same color and pattern as the parent window. Normally, the
text style of individual fields inside your subwindow class is retained. However, you can
force these fields to use the text style of the subwindow field if you enable their
subwindowstyle property in the original window class.

If the window class inside the subwindow field has only one field you can override its
dataname using ttdatanameproperty for the subwindow field. For example, your

subwindow class may contain a single complex grid field that takes its data from a particular
list variable. However you can change the list assigned to the complex grid by setting the
subwindow field’s dataname property to the name of another list. You could do this in the
$construct() method of the subwindow field.

Opening the Parent Window

Opening a window containing a subwindow field or any number of subwindows creates an
instance of each window, which belong to the same task as the parent window instance and
contains all the variables of its class. OMNIS calls the $construct() methods of all the
subwindow classes first in tabbing order, then the $construct() method of the parent window
instance. The reverse happens on closing the parent window, with the subwindows being
destructed after the parent window instance. It is important not to inclugietendata

command in a subwindow $construct() method as this affects the opening of the parent
window.

You can send parameters to the subwindow’s $construct() method by including a list of
parameters in thearameters property when you create or modify the subwindow field.

Chapter 7—Window Programming

Subwindows

Programming Subwindows

A subwindow instance inherits the properties and methods of its class and superclasses, as
well as having the normal properties of a window field. They are available only within the
instance and not to the parent window since the subwindow is private to itself. Within a
subwindow instance, $cobj refers to the current internal subwindow field rather than the
container field. From an internal field method, you can access subwindow field properties
using $cobj.$abc, whereas subwindow class methods such as $control() must be accessed
using $cinst.$control().

Subwindow Events

To the parent window, the subwindow is a single field and never has the focus, but does
receive some events. Field events in the subwindow are sent only to the subwindow $event()
method and not to the parent window. If tiebackground property is not set, click and

scroll events on the subwindow are sent to:

1. the subwindow $event() method

2. the subwindow field $event() in the parent window
3. the parent window $event() method

4. the task $control() method

Mouse enter and mouse leave events are sent only to the subwindow $event(), while mouse
up, mouse down on the subwindow are passed to the parent window.

Drag and drop

It is possible to drag and drop data to and from the fields inside a subwindow as though they
were in the parent window, and also to and from the subwindow field itself provided
nobackgroundis off. When dropping data from the subwindow pDragValue will usually be
set up, or alternatively you could use a custom $contents to hold the drag value (since a
subwindow has no default $contents property).

You cannot use the ‘drag field’ mode to move an internal field out of a subwindow. You can
use the ‘drag field’ and ‘drag duplicate’ modes to move or duplicate the complete
subwindow. When you duplicate a subwindow field, a new instance of the subwindow class
is constructed.

The drag and drop modes for the subwindow field belong to the field rather than to the
window inside the field. They are therefore not known when the subwindow is designed, so
the subwindow’s methods need to either switch off unsupported modes in the $construct()
method or be capable of supporting all modes.

141

Nesting Subwindows

You can nest container fields, such as subwindows, four levels deep. Beyond this level, the
most deeply nested field is not set up when the window is opened and becomes a display
field showing an error message.

A subwindow can contain a grid field and vice versa. When a grid contains a subwindow,
there is only one instance of the subwindow in the grid field, and not one per line. When a
row of the grid is redrawn the current field values are set up and the subwindow is redrawn.
Therefore a subwindow within a grid which displays instance variables will not work
correctly, since all rows of the grid will share one set of instance variables.

A grid field cannot contain a subwindow which itself contains a grid. If this occurs the
nested grid is not set up, and it becomes a display field showing an error message.

Using Subwindows

The following examples use subwindows containing tab strips and pushbuttons. In a

window that contains a long list sorted alphabetically, you might want to allow the user to
scroll the list with a single mouse click to show items starting with a given letter. This can
be done using a subwindow containing either a tab strip or a set of Rolodex-type buttons.

To create the tab strip subwindow

® Create a window and putTab stripfield on it
® On the tab strip field, set thabs property tcA,B,C,..,Y,Z

®* You may want to change tiselectedtabtextcolomroperty to highlight the tab selected

m Window NEWLIB My Window E3

EhChOELFn L HE b Pl oL L P Ll ik S Tk]

¢ Add a $control() method to the window and enter the single command

Do redirect $cwind

Subwindow field events are not passed beyond the subwindow field, but you canDse the
redirectcommand to redirect events to the $control() method in the parent window. The
subwindow is completely generic and you could use it on any window.

® Create a new window and plac&abwindowfield at the top
® Set the subwindow fieldlassnameproperty to the name of your tab strip window

® You may want to set the subwindow figldbackground property to false

142 Chapter 7—Window Programming

®* Place a List box field below the subwindow field and setatanameto the name of
your list variable and entercalculation if necessary

m Window HEWLIB New Window

I e Window 1016
T EEEEEEY bt el O P LI F S T L]

T bStp List field - =

| _ il

You need to add the following methods to the parent window. The $construct() method
builds and sorts the list using list commands, but you could equally use the $define() and
$sort() list methods.

; $construct() method in parent window

Set current list cList

Define list {cCol1}

; build your list of data

Clear sort fields

Set sort field cColl

Sort list

Subwindows 143

The $control() method in the parent window detects the tab strip event.

; $control() method in parent window
On evTabSelected

Set search as calculation
{upp(mid(cCol1,1,1)) = chr(64 + pTabNumber)}

Search list (From start,Do Not Load Line)
If flag true
Queue scroll (Down,Page) {ListField}
Redraw lists
End If

The search calculation in the $control() method usestth@function to derive ‘A’ to ‘Z’

from pTabNumber of 1-26, and compares it to the value of the first column in the list using
mid(). When a matching line is found, it will appear at the bottom of the list boQaade

scroll pages down to bring it into view.

To create the Rolodex buttons subwindow

The following example describes a subwindow containing a set of pushbuttons with the
letters of the alphabet. Rather than creating a window with 26 buttons manually, you can do
it automatically using the notation. You can paste this code into any method, but set up the
variables first, and run it to create a windeBubWin

; Declare variables cWRef and cRef of type Item reference
; Declare variables cLeft and num of type Number
Do $clib.$classes.$add(kWindow,'wSubWin') Returns cWRef
; returns a reference to the new window class
Do cWRef.$height.$assign(60) ;; edit this to change the height
Do cWRef.$width.$assign(330) ;; edit this to change the width
Calculate cLeft as 5
For num from 1to 13 step 1
Do cWRef.$objs.$add(kPushbutton,10,cLeft,15,15) Returns cRef
; returns a reference to the new object
Do cRef.$text.$assign(chr(num+64))
Do cWRef.$objs.$add(kPushbutton,35,cLeft,15,15) Returns cRef
Do cRef.$text.$assign(chr(num+64+13))
Calculate cLeft as cLeft+25
End For

Al B| €| D] E|] F| G| H| 1| 4] K| L| M|
N| o| P| o] R| 8| T| V| ¥| & X| ¥| 2

z |=

144 Chapter 7—Window Programming

Subwindows

Unlike the tab strip window described above, the parent window needs to receive the button
text, which is not supplied as an event parametddosiedirectwill only pass on the

evClick. However, you can do this by calling a custom method, called $alphabutton()
perhaps, in the parent class methods, and pass a parameter.

® Add a $control() method to you subwindow class containing the buttons, with the
following code

On evClick
Do method $cwind.$alphabutton($cobj.$text)

® Create a new parent window and placubwindowfield at the top

® Set the subwindow fieldlassnameproperty tovSubWirandnobackgroundto kTrue

®* Place d.ist boxfield below and set itdataname, calculation,andmultipleselect
properties

For the class methods in the parent window, the $construct() method is the same as the
example above. The $alphabutton() custom method is similar to the $control() method
above, but it has no event handling code and the search calculation is different

; declare parameter pChar of type Character
Set search as calculation {mid(cCol,1,1) = pChar}

m Window HEWLIB Hew Window

"A1"BI"¢/'D] E| FI & W] 1 J] K| L] M|
N| 0| Pl of R| 5| T| Ul ¥| ¥ x| ¥| Z]

TbStrp_Lizt field ;I

145

To create a radio button subwindow

®* Create a window with a set of radio buttons and declare a numeric variable, say iNum,
for the $dataname property for each radio button

® Add the window as a subwindow field to your parent window

In the same way as for the previous examples, you can either pass up the evén using
redirectand get the ident of the button clicked from $cobj, or declare a custom method, say
$buttonval, in the parent window, called by method $cwind.$buttonval(iNum)

lcon Arrays

146

An icon arrayis a type of window field that you can use to display a list of items identified

by icons. These choices are displayed as large or small icons which the user can click on or
drag to select. Each icon also has a short text description which the user can edit, and you
can add a button background. The data for an icon array is supplied from a list which
contains the icon id and text label for each icon. The OMNIS Browser and Component
Store use the icon array field, but you can build your own.

In addition to the general list field properties sucmattipleselect the icon array has the
following properties

— dataname
the list variable with at least two columns

— maxeditchars
the maximum size of the edit field, or O if the text cannot be edited

— smallicons
true for 16x16 icons, false for 48x48

— showtext
displays text labels

— buttonbackground
if true shows the icons on buttons

— smalltextwidth
the width in pixels of the text in small icon mode; must be at least 20

— hiliteline
if true lines highlight in single selection lists during drag and drop

— autoarrange
adjusts the number of icon columns when the field size changes

— enabledeletekey
allows the Delete key to delete the currently selected icons

Chapter 7—Window Programming

Icon Arrays

To create an Icon Array

® Drag an Icon Array field from the Component Store onto your window

® Set up the general properties and those above

Programming Icon Arrays

You must set up a list variable containing the data for your icon array. You can write event
handling methods to respond to user clicks, and drag and drop in the field.

Setting up the List

You must define the list variable for an icon array with at least two columns, the first
column for the icon id and the second column for the text label. You can use icons from the
OMNISPIC.df1 or USERPIC.df1 data files, or #fCONS in your library. You can see the id
numbers in the Icon Editor, which you can also use to add your own icons to USERPIC.df1
or #ICONS. You can define and build the list in the window $construct() method.

; declare variable Iconld (Number 0dp)

; declare variable lconName (Character)
; declare variable IconLlst of List type
Set current list IconList

Define list {Iconld, IconName}

Add line to list (605, Trash can’)

Add line to list (603,’Back arrow’)

Add line to list (601,’Pin’)

; etc...

When the window instance is opened, the icon array will appear as follows: in this case, the
smalliconsproperty is set to true and thmalltextwidth property is set to 80.

M Trash can ;I

E‘ Back armow
%, PFin

[

Editing in the Array

In addition to the general entry field evClick, evDoubleClick, evAfter, evBefore, drag and
drop events, there are specific events for editing the list and for deleting selected lines if the
delete key is enabled. When text editing is enablemhdyeditchars the field receives

147

148

three events in order, together with parameters holding the list line, column number, and the
new text entered.

If the Delete key is enabled, two events are sent to the field:

— eviconDeleteStarting
is sent to the field and Delete is pressed. Discarding the event prevents the delete
occurring.

— evlconDeleteFinished
is sent if the delete goes ahead, after all selected lines in the list have been deleted.

When text editing is enabled lbyaxeditchars the field receives three events in order,
together with parameters holding the list line and the new text entered.

— evlconEditStarting
with the parameter pLineNumber, is sent on the first click in the selected cell which
puts the cell into edit mode; discarding the event prevents editing

— evlconEditFinishing
with parameters pLineNumber and pNewText, is sent if the user enters a new value by
hitting return or clicking away from the edit field; discarding the event leaves the field
in edit mode, for example if pNewText is invalid

— evlconEditFinished
with the parameter pLineNumber, is sent when the edit is completed

Handlers for these events might be as follows

On evlconEditStarting
If pLineNumber<10
OK message (lcon,Sound bell) {Cannot edit these lines}
Quit event handler (Discard event)
End If
On evlconEditFinishing
If pNewText="
Quit event handler (Discard event)
End If
On evlconEditFinished
; do anything necessary here

Default Methods
Icon arrays have the following method

— S$edittext()
puts the field into text edit mode if: there is a currently selected line, the field is the
current field, editing is enabled Ibyaxeditchars, showtextis true

Chapter 7—Window Programming

Tree Lists

Tree Lists

A tree listis a type of window field that provides a graphical way of displaying a list of

items arranged in a hierarchy. The user can show or hide successive levels by expanding or
collapsing the nodes. The Windows Explorer and MacOS Finder use a tree list to display
the file hierarchy in your system. In OMNIS, the Notation Inspector uses a tree list to

display the object tree.

The sort of information most conveniently displayed in a tree is a list sorted to several
different levels. For example, a customer list might be sorted by

— Country
— Town
— Name

In a tree list, the first entry at each sort level isrtbde with each entry at the highest level,
Country, being aoot node Each of these nodes can be expanded to shahiitsnodes

by clicking on theexpand/collapse bo¥ach node can have an icon. In practice, items may
be continually added to or removed from different nodes and the tree must reflect this
changing state.

Creating a Tree List
To create a Tree List

® Drag a Tree List from the Component Store onto your window

The appearance of tree lists is governed by a number of properties for the tree and for
individual nodes, which you can set up either in design mode or using the notation. You can
select a specific icon for each node, and for the expand/collapse box, and specify the color
for the text name. You can also show lines connecting the nodes and change the horizontal
and vertical spacing to accommodate large icons. The position and state of the node icons
can also be set.

The tree Appearance properties are

— treelinehtextra
sets the distance between lines in the tree if using large icons; normally line height is
controlled by the font

— treeleftmargin
the distance from the left before the tree starts drawing; used if root nodes are given
large icons

— treeindentlevel
the distance between levels of nodes in the tree; used if nodes are given large icons

149

150

— defaultnodeicon
node icon id used by all nodes that do not already icaméd set

— expandcollapseicon
an icon id that will be used for the expand or collapse toggle button; defaults to the +-
icon

— showhorzlinesandshowvertlines
if true show connecting horizontal and vertical lines

— shownodeicons
if true shows node icons

— nodeiconpos
controls position of the expand/collapse box if a node has children: kiconOnNode next
to node icon or node name; kiconOnLeft on the left of the tree; kiconSystemSet
according to the operating system (under MacOS left side of tree, under Windows and
OS/2 next to the nodes icon or name)

— treenodeiconmode
controls the state that the nodes icon is displayed in: kNodelconFixed normal, or
checked iftheckedis set; kNodelconLinkExpand checked if expanded, normal if
collapsed; kNodelconLinkLine checked only if node is current line

Plus the following methods
— S$expand()and$collapse()

expands or collapses all nodes in the tree list
Populating a Tree List

Tree lists can either display data from a list variable or default list lines. To enter default
lines thedatanameproperty for the tree list must be empty. You can also populate it at
runtime when a node is expanded using the $add() method or from a list variable using
$setnodelist(), as described below.

To enter default lines in a Tree list

® Checkdatanameis blank

® Click in thetreedefaultlines property

The default lines dialog lets you build a tree by adding root nodes and child nodes. You can

edit the node names, change the icons, and add child levels. Note that clicking on a node
shows or hides its child nodes. Choosilefaultnodeiconor expandcollapseicorshows
the available icons at different resolutions.

® Right-click on a node to modify it

Chapter 7—Window Programming

Tree Lists

— Always Show Expand Box
shows an expand/collapse box even when there are no child nodes: this toggles the
node property $showexpandcollapsealways

— Enterable
lets the user edit the node name

— Node Color
presents a palette to choose node color; restor&efault Color

— Node Icon
displays the available icons; restoreddigar Icon

— Node Ident
lets you enter an ident number, clearedCisar Ident; you should assign node idents
since the names in your tree list may often be duplicated

® Click Accept Linesto enter the finished structure

When you open your window, the tree list displays all the properties you have set up.

Node Properties

A node has the properties

— showexpandcollapsealways
if true the node will always draw an expand/collapse box; useful for populating a node
on evTreeExpand event
— iconid
id for the node icon: if 0, uses the default icon for the current OS
— ident
a number you can assign to the node and refer to when node messages are received

— textcolor
the color the node name is drawn in: if kColorDefault, the tree contestsolor is
used

— name
node name: the name is the visible string part of the node in the tree

— enterable
if kTrue, the node name can be edited in the tree

— seedid
if true shows the icon id, a unique number assigned to each node by the tree

— nhodeparent
returns an item reference to the node’s parent node

151

152

isexpanded
true for nodes which are in the expanded state

checked
if true node icon is drawn in the checked state: drawing of the node icon in check mode
also depends ameenodeiconmode see above

first
used on the node, returns an item reference to the first child node of the calling node

level
returns a number indicating the indent level of the node: level 1 indicates root nodes

Plus the following methods

$clearallnodes()
used on a node to clear all child nodes recursively

$count()
counts child nodes of the calling node

$expand()and$collapse()
used on the node to expand or collapse the node’s child nodes

Programming Tree Lists

The $event() method for tree lists receives specific event messages in response to user
actions in the tree. When a node is clicked on, the pNodeltem event parameter is sent
holding an item reference to the node clicked on, so you can take action for that node. You
can manipulate nodes with the following methods

$clearallnodes()
clears the tree of all nodes

$count()
returns the number of root nodes in the tree

$add(name, ident)
adds a new child node to the calling node: ident is optional and defaults to O; returns an
item reference to the new node

$remove(itemref)
looks for a child node itemref and removes it

$getvisiblenode()
returns a node item reference for a visible line

Chapter 7—Window Programming

Tree Lists

Expanding and Collapsing Nodes

The evTreeExpand event indicates a node is about to be expanded and provides the
reference in pNodeltem. You would use this to populate a node using $add(), for example:

On evTreeExpand
Set Reference NewNode to pNodeltem.$add(‘NewNode’, 100)
Calculate NewNode.$textcolor as kRed

If you have set up your nodes as default lines as described above and given them idents,
such as:

Windows 100

Reports 200

you can expand the node from the appropriate list.

On evTreeExpand
Set Reference TreeRef to $cwind.$objs. TreeList
Switch pNodeltem.$ident
Case 100
Do TreeRef.$setnodelist(kRelationalList,pNodeltem,tWinList)

The evTreeCollapse event indicates a node is about to be collapsed and provides the
reference in pNodeltem. You would use this to clear child nodes, for example:

On evTreeCollapse
Do pNodeltem.$clearallnodes()

TheevTreeExpandCollapseFinishedentis sent to confirm that the evTreeExpand or
evTreeCollapse message is finished. You can use this event to update other controls or
states.

The evTreeNodelconClicked event message is sent when the user clicks on a node icon.
The second event parameter provides the name of the node clicked on.

Changing a Node Name

The evTreeNodeNameChanging event is sent to a tree list before the node is updated with
some new value entered by the user. It provides the parameters pNodeltem for the node, and
a character variablgNewText containing the new text entered. pNodeltem.$name still

holds the original text. This message is normally used to validate node name changing.

When the user changes the name or ident of an enterable node, it is important, particularly
for idents, to check that the value entered does not already exist. These two methods search
for a match.

— $findnodename(itemref, name, recursive)
returns an item reference to a found node using the node $name property for
comparison, or NULL if nothing is found: itemref is the starting node; a NULL value
searches the full tree; name is the name to search for; if recursive is kTrue, nodes with
children are also searched

153

154

$findnodeident(itemref, ident, recursive)
returns an item reference to a found node using the node $ident property for
comparison, or NULL if nothing is found: itemref is the starting node; a NULL value

searches the full tree; ident is the $ident value to search for; if recursive is kTrue, nodes

with children are also searched. For example

On evTreeNodeNameChanging

If pNewText ="
OK Message (‘Name must contain a value’)
Quit event handler (Discard Event)
Else
Do TreeRef.$findnodename(pNodeltem,pNewText,1) returns Found
If Found !'= NULL
OK Message (‘Name must be unique’)
Quit event handler (Discard Event)
End if
End if

The evTreeNodeNameChanged event is sent to a tree list after the node name has been
changed. It provides the parameters pNodeltem for the node and a character variable
pNewText containing the new text entered. For example

On evTreeNodeNameChanged

OK Message(‘Tree node has been updated’)
.. update the status

Traversing the Tree

The following methods fetch a reference to the current or first node, or change the current
node.

$currentnode()
returns an item reference to the tree’s current node

$first()
returns an item reference to the first root node

$setcurrentnode(itemref)
sets the current node to that specified in itemref

The following methods go to the next or previous node.

$nextnode(itemref, recursive)
returns the next node in the tree given a previous node itemref; if itemref is NULL,
returns first root node; if recursive is kTrue, operation steps into nodes with children

$prevnode(itemref, recursive)
returns the previous node in the tree given a node itemref; if recursive is kTrue, the
operation will step back into node parents

Chapter 7—Window Programming

Do TreeRef.$nextnode(pNodeltem,0) Returns NextNode
Do TreeRef.$nextnode(Null,0) Returns RootNode

Interchanging Data with Lists

Using the methods $setnodelist() and $getnodelist() you can either populate the whole tree
or a node from a list variable, which must contain a sorted list, or retrieve data from the tree
to a list variable.

— $setnodelist(listmode, noderef, listname)
lets you populate the tree or a tree node from a list: listmode is either kRelationalList or
kFlatList; noderef is either NULL to populate the entire tree, or a node reference;
listhame is name of a list variable e.qg. tList

— $getnodelist(listmode, noderef, listhame)
lets you retrieve information from the tree, or from a node and its children into a list:
listmode is either kRelationalList or kFlatList; noderef is NULL to retrieve the entire
tree, or a node item reference; listhame is name of a list variable e.g. tList

The list mode is eitheelational or flat. For a relational list, you supply a Null node
reference for the whole tree, and list data such as:

RootNode Child 1
RootNode Child 2 Child 1
RootNode Child 2 Child 2
RootNode Child 2 Child 3
RootNode Child 3
RootNode 2 Child 1
RootNode 2 Child 2

To populate the whole tree from a relational list, you would use the line
Do $cwind.$objs. TreeList.$setnodelist(kRelationalList,0,tList)

Tree Lists 155

In this case the tree contains all the information but the nodes are all in the default state. The
flat list option lets you specify the node property settings $iconid, $ident, $enterable,
$expandcollapsealways and $textcolor as the final 5 list columns. For example:

Name Name | $iconid| $ident| $enterable $expand$textcolor
collapse

RootNode 0 100 0 0 0
RootNode | Chid1| O 101 0 0 0
RootNode | Chid2| O 102 0 0 0

New Root 0 200 0 0 0

New Root | Child1| O 201 0 0 0

New Root | Child2| O 202 0 0 0

Last Root

The command
Do $cwind.$objs.TreeList.$setnodelist(kFlatList,0,tList)

draws the tree list with the node properties set as specified in the list. This example assigns
the list to an existing node:

Set Reference CurrentNode to TreeRef.$currentnode

Do CurrentNode.$setnodelist(kFlatList,0,tList)

To retrieve data from the tree, $getnodelist() does the opposite to $setnodelist() and
transfers data from the tree to a list, either as a relational list or a flat list, as above. There is
no need to define the list first. This line retrieves the whole tree and its node properties to a
list:

Do TreeRef.$getnodelist(kFlatList,0,tList)
This code retrieves the current node data but no node properties to a list:

Set Reference currentNode to TreeRef.$currentnode
Do currentNode.$getnodelist(kRelationalList,0,tList)

156 Chapter 7—Window Programming

Modify Report Fields

A modify report fields a type of window field that lets you display a report class on an

open window. This allows your users to change certain aspects of the report class at
runtime, including the height of the Record section, the contents of headers and footers, the
position and color of graphics on the report, and so on. When you create a modify report
field you specify the classname of the report to be displayed in the field.

To create a modify report field

® Open your window in design mode

®* Drag aModify Reportrield from the Component Store onto your window

W Window TRAYELE My Window O]

TP L NP P P &
|Record =

il

Fiecord e LTI

|End of report |

< | _*ILI

®* Open the Property Manager or press F6/Cmnd-6 to bring it to the top

® Select theelassnameproperty and enter the name of your report class

Modify Report Fields 157

The modify report field has all the properties of a standard window field in addition to the
following Appearance properties.

showpaper kTre
showrulers kTre
shownarrowsection kF alze
showcurconn kFalze
ghowallconns kTe
connzwidth 152

You can hide or show the outline of the paper and the rulershativpaperand
showrulers. You can hide or show the current or all connections for associated report
sections wittshowcurconnsandshowallconns and you can set the width of the
connections shown in the left margin by settbiognswidth. You can show the report
sections as narrow lines by enabling shewnarrowsectionsproperty. You can also
change these properties at runtime.

To make the modify report field fill the entire window you can setdigefloatproperty to
kEFposnClient.

Along with the common $redraw() method for a field, an instance of a report modify field
has the methods $sortfields() which opens the OMNIS Sort fields dialog for the report
contained in the field, and $pagesetup() which opens the standard Page Setup dialog.

A modify report field generates an evSelectionChanged event which you can detect in the
$event() method for the window field.

Applying changes to selected objects

To change individual objects inside a modify report field at runtime you need to set its
$applyselected property. When the $applyselected property is set to kTrue any property
changes you direct at the modify report field, such as font and appearance changes, apply to
the currently selected object inside the modify report field. For example, the following
window contains a modify report field; itlassnameproperty is set to contain a simple
summary style report that lists data from a Customers file. The window also contains a
single pushbutton, and an instance variable that stores a reference to the modify report field.

158 Chapter 7—Window Programming

Here’s the window

m Window TRAYELE ModReportwin
n .]
L P =S - ST S L SO =
|Page header I
0
: Customers
L |
1 - Fage header Datem _________________ 0
2.8 N e el
X Recs LU CUTl
- | Resard |
[T _I;I
Hecurdﬂ_l 4
n | |
Puszh buttan |

The pushbutton contains the following $eve

nt() method. Note that the variable

iModReportField stores a reference to the modify report field on the open window.

A Window TRAYELG. ModReportwin Field Pushbutton Methods

Modify Yiew Debug Options Breakpoint |nstances Stack
L=EE F | o @ @ [| Puzhbutton -
"ariable | Type |Subtype |InitYal/Cale
1 |ModReportField [tem reference A4 $iwindows. ModR eportiafin $objz. ModR eportField

Taskh Clazsh, Instanced Lacalh Parameter,”

Tr evClick
Do iModR eportField. $applyselected. $assign[kTrue]
Do iModR eportField. $textcolor. $azsign[kR ed)]
Do iModReportField. $applyzelected. $azzign[kFalze]

:: Event Parameters - pRow| [temreference |

When you open this window, select an object inside the modify report field, and click on the
pushbutton, the method changes the text color of the currently selected object to red. Note

Modify Report Fields

159

160

that you have to set the $applyselected property to kFalse when you have finished your
changes.

Font and Color Tools

Rather than using pushbuttons to change a Modify Report Field as above, you can create
your own set of toolbars and install them in your window containing the report field. The
Component Store contains a number of toolbar controls and pickers for setting fonts, lines,
and colors that you can use with the modify report field. A further example will demonstrate
using toolbars with the modify report field.

You can create the following toolbar class containing the appropriate font, line, and color
pickers, add suitable icons from the icon data file or use the default ones, and add it to your
window. Here’s the toolbar class

ree Toolbar TRAYELG. thModify2 =l

Each toolbar control contains a method that applies the current settings from the control to
the selected object in the modify report field. The following method is for the font list, the
first control on the toolbar.

4y Toolbar Class TRAVELG.tbModify2 Field FontList Methods

Modify View Debug Options Breakpoint [nstances Stack

A2 8 2 0 @ & rolis -
Yariahle | Tupe |Subtype [InitVal/Cale "watc
1_ it odFieldR ef [tem reference | MAd $ivindows. ModReportin $objz. ModR epartField ﬂ

[~

T ask, b, Classh, Instanced, Localk, Parameter,/
[T][Vin evCick

Do M odFieldR ef. $applyzelected. $assign(kTrue)
Do iModFieldR ef. $font_$assign[$cinst_$objs FontList. $contents)
Do iModFieldR ef. $applyselected $assign(kF alse)

Note that the toolbar class also contains an instance variable of type Item reference that
stores a reference to the modify report field on the open window, and that the method sets

Chapter 7—Window Programming

$applyselected. The methods behind the other tools on the toolbar are very similar; here’s
the method for one of the color pickers

; $event() method for forecolor picker control

On evClick
Do iModFieldRef.$applyselected.$assign(kTrue)
Do iModFieldRef.$forecolor.$assign($cobj.$contents)
Do iModFieldRef.$applyselected.$assign(kFalse)

Note that the current selection in a picker control is returned in its $contents property,
therefore as the user makes a selection you can use $cobj.$contents to return the value.

Graphics Tools

At runtime, a modify report field has the $tool property which you can set to allow users to
place graphics or background objects on your report; you cannot add fields and other
foreground objects to a modify report field. You can create another toolbar that uses the
$tool property and add it to your window. The toolbar class can contain various button
controls, with suitable icons from the icon data file.

J A4S 2L£00

Each button in your toolbar class contains a single method that assigns to the $tool property
and switches the cursor to the appropriate tool. For example, a 3D Rectangle button could
contain the following method; note that the toolbar class also contains an instance variable
of type Item reference that stores a reference to the modify report field on the open window.

7 Toolbar Class TRAYELG. tbModify1 Field Tool3dRect Methods

Modity Miew Debug Options Breakpoint |nstances Stack

A=EFE E D @ @|E TobiRe .
Wariable | Type |Subtype |lrit'al/Calz
1 |iModFieldRef Item reference | MA4 $imindows. ModReportading $objz. ModR eportField

T ask,k Clazzp, Instanced Localk Parameter/

M o iModFieldRef $tool $assign[kRect3D)
|

Modify Report Fields 161

When you open this window, select one of the tools, and move the cursor over the modify
report field, the cursor changes to a cross-hair. The user can draw objects on the modify
report field which are saved to the underlying report class automatically.

To use the modify report field to its fullest potential you need to build a number of toolbars
that allow the user to change every aspect of the report class, including margins, page setup,
sort fields, as well as the color and style of objects on the report. The modify report field is
used extensively in the Ad hoc report library supplied with OMNIS.

Screen Report Fields

162

A screen report fields a type of field that lets you display the output of a report on a
window, rather than sending the report to a standard screen report. You 8sedhe a

window fieldcommand to direct output to a screen report field. The user can copy data from
a screen report field instance by dragging the mouse on the report to select some data.

To create a screen report field

® Open your window in design mode

®* Drag aScreen Repofftield from the Component Store onto your window

The screen report field has all the properties of a standard window field in addition to the
showpaperunder the Appearance tab in the Property Manager. If you set $showpaper to
true, it changes the field to page preview mode.

This type of field does not havedatanameor classnameand it does not generate any
events of its own apart from the events for a standard field.

You could put the following method behind a pushbutton on your window or a toolbar
control to print to your screen report field.

On evClick
Set report name ReportName
Send to a window field {ScreenReportFieldName}
Print report

The screen report field has two methods:

— $zoom(bZoomOn=kTrue)
enables zoom mode when the screen report field is in page preview mode

— $redirect(bPrompt=kTrue)
redirects the current report by prompting for a different print device, rather than the
device specified in default preferences

Chapter 7—Window Programming

Window Status Bars

A window status bais an area at the bottom of a window in which you can display data,
text, help messages, progress or thermometer bars, and so on. For example

|
I Help: |Edit. Al lows changes to the selected book Ctitlel, i

Counting pennies in a dellar: - 25%

A status bar is a property of the window itself which you enable in the Property Manager.
You can set how many panes should appear in the status bar, and the size and style of each
pane.

To enable a window status bar

® Open your window in design mode

® Click on the background of the window to show its properties, or press F6/Cmnd-6 to
bring the Property Manager to the top

® Set thehasstatusbarproperty to kTrue

® Click on the Appearance tab in the Property Manager and sstatiusedgeproperty:
it can be flat (the default), plain, inset, or chisel border style

To set the number of panes in the status bar and their style you need to edit the properties of
the status bar in the Property Manager.

To set the number of panes in the status bar

® Click on the status bar and bring the Property Manager to the top

& Property Manager - O]

General |T et | Fare |

panecount 2 N
helppane 1]

|1 Dbject 7

Window Status Bars 163

164

The panecountproperty specifies the number of panes in the status bahélygane
property specifies the pane in which any help messages should appearhbégteixt for
menu lines, for example. On the Text tab you can sdbtiteandfontsize properties for the
whole status bar.

To change the properties of individual panes you should click on the pane and edit its
properties in the Property Manager.

To change the properties of a pane

® Click on a pane in the window status bar and click on the Pane tab in the Property
Manager

& Property Manager M=l
Generall Text Pane |
hasbarder kTue -]
effect klnzet
izing kFixed
panealigh kLeft] st
width 434 LI
|1 Dbject 7

You can change the pane’s border, alignment, and width in pixelsiZihg property sets
the pane to fixed or elastic when the window is sized at runtime. The minimum size of an
elastic pane is the size of the pane in design mode: it cannot be made smaller in runtime.

The height of the status bar changes to accommodate the status bar font size with a two-
pixel buffer above and below. In design mode you can change the width of a pane by
dragging the handle that appears in the selected pane.

Every window instance contains the $statusbar property containing the window status bar in
runtime. The $hasstatusbar property lets you hide and show the status bar at runtime. The
$statusbar property also contains a group $panes containing the panes in the status bar
numbered consecutively from the left. For example, pane 2 is
$iwindows.WindowName.$statusbar.$panes.2. Each pane has width, text and appearance
properties which you can set at runtime. For example

; declare item references to the panes

Set reference Panel to $cinst.$statusbar.$panes.1

Set reference Pane2 to $cinst.$statusbar.$panes.2

Set reference Pane3 to $cinst.$statusbar.$panes.3

Do $cwind.$statusbar.$panes.$remove(Pane3) ;; removes the third pane

Do Pane2.$text.$assign(‘Click Save button to save your work’)

Do Pane3.$sizing.$assign(kElastic)

Do Panel.$hasborder.$assign(kFalse)

Chapter 7—Window Programming

The $align property for a pane specifies whether to position the pane either after the
previous left-hand pane or before the right-hand pane.

Progress Bars

In runtime, you can make a pane into a progress bar by enabisgragressproperty. If
you want to view the properties of the status bar in runtime you can view it in the Notation
Inspector under $iwindows. The properties of the status bar on a window instance are

+ Property Manager O]

Generall Text | Appearance Fane |

feffect kPlainBarder Bl
$zizing

$panealign kLeft)zt

$rnir 1]

$rnax 1]

$izprogress kFalze

$ralue 1] LI

| $root. fiwindows. ModR eportiafin, $statusbar, $panes. 7

— min andmax
sets the minimum and maximum value for the progress bar

— isprogress
enables the pane as a progress bar

— value
sets the current value on the progress bar

When $isprogress is set, $min and $max default to 0 and 100 respectively, but if you set
them after setting $isprogress, your values will override the default settings. For example, to
set $max for the second pane:

Do Pane2.$isprogress.$assign(kTrue)
Do Pane2.$max.$assign(200) ;; default for $min is zero

Window Status Bars 165

The defaults for $min and $max are useful for percentages, for showing the percentage
completed for an operation. The following method sets up a progress bar in the second pane
and uses the default values for $min and $max:

Set reference Panel to $cinst.$statusbar.$panes.1
Set reference Pane2 to $cinst.$statusbar.$panes.2
Do Panel.$hasborder.$assign(kFalse)
Do Panel.$text.$assign("Doing Loop")
Do Pane2.$isprogress.$assign(kTrue)
; now set max if required e.g. Do Pane2.$max.$assign(maxvalue)
Do Pane2.$backcolor.$assign(kRed)
Calculate Pane2.$value as Pane2.$min ;; resets value of pane2
Repeat
Calculate Pane2.$value as Pane2.$value+1
Until Pane2.$value>=Pane2.$max
Do Panel.$text.$assign("Ready")
Do Pane2.$isprogress.$assign(kFalse)

The resulting progress bar looks something like this:

R
Doing Loop | I | Modifying

You can add an icon or picture from the USERPIC.DF1 data file or #/CONS to the progress
bar, either from the Property Manager or with a command. For example, to have a show of
hands as your bar add the line:

Do Pane2.$iconid.$assign(1072)

Doing Loop

As a further refinement, you can add a ‘% Done’ message to the progress bar using the
current $value of the pane inside the loop.

Repeat

Calculate Pane2.$value as Pane2.$value + 1

Calculate Pane2.$text as
con(rnd(((Pane2.$value/Pane2.$max)*100),0),"% Done")

Until Pane2.$value = Pane2.$max
Calculate Pane2.$text as “Finished!”

166 Chapter 7—Window Programming

Field Styles

Field Styles

If you are going to deploy your application on more than one platform the objects in your
application should use the correct fonts for each platform. You can do this using field styles,
which is a flexible alternative to using font tables. A field style is a style definition, like a
wordprocessing or DTP style, that you can apply to window and report objects. Each field
style contains a definition of its name, font, size, text color, typestyle, and alignment. You
can create a separate definition for each platform under the same style name, so objects will
display in the appropriate font and point size under different platforms.

OMNIS has some default styles for standard entry fields, pushbuttons, and lists, but you can
add your own styles. The style for a particular window or report field or text object is stored
in its fieldstyle text property.

You can create as many field styles as you like; they are stored in the #STYLES system
table. Having set up the styles in the style table, you can copy the table to any library and
use its styles throughout your whole application. When you copy an object from one library
to another, its field style is also copied automatically if there is not already one with the
same name in the destination library.

Note that the fonts shipped with previous versions of OMNIS are not supported in OMNIS
Studio. Field styles should be used instead.

To view the field styles system table
® Press Ctrl/Cmnd-A to show all classes in the Browser
or

® Open the Browser Options dialog (press F7/Cmnd-7 while the Browser is on top) to
show the system tables

® Double-click on #STYLES

167

B Styles - Library NEWLIB BHE

~ Shyles: ~ Flatforms:
|Mame | Desciiption -
" kM Siwfindows

nDMNISb.ullc:n Standard F‘lushl:uuttu:un J KMacintosh

|2 |OMMISfield Standard Field

|3 |OMNISIist Standard List

j Mew | [Elete) |

o |

Defining Field Styles

The Styles dialog lists all the styles in the current library, including the default styles. To
define a style, first you enable the characteristics for that particular style, that is, you specify
whether or not a style has a font name, size, style, alignment, and text color. Then you set
the font characteristics for the style for each platform.

To define a new style

® Click in the first empty line in the table and enter a name and description for the style

With the kAllplatforms constant selected in the right-hand list, open the Property
Manager, or bring it to the top

Set thehasfontname hasfontsize hasfontstylg hasalign andhastextcolor properties
to kTrue as required

168 Chapter 7—Window Programming

Field Styles

& Property Manager - O]
eneral |
[T | i |
dezc
ident 4
hasfantname kFalze
hasfantzize kFalze
hasfontzhyle kFalze
hazalign kFalze
hastextcalar kFalze _I
1 Dbject 4

For example, if you want a style to set the font name and size only, enable only the
hasfontnameandhasfontsizeproperties.

® Go back to the Styles dialog and select a platform from the list on the right

® Bring the Property Manager to the top and on the Text tab define the font
characteristics for the style

& Property Manager - |O]
General TE:-:tl
fantnarne |
fontsize 1]
fontstyle [l-Plain]
align kLeft) st
bestzalor | GE(0.0,0] J
|1 Dbject 7

You type in the font name and size and select the style from the checklist. This definition is
for the platform you selected. To define the characteristics for another platform for the same
style, go back to the Styles dialog and select another platform, and define its font
characteristics in the Property Manager as described. When you have set up the
characteristics for the style click on OK in the Styles dialog.

You can change a default style by clicking on its name in the Styles dialog and editing its
properties in the Property Manager.

169

Applying a Style to an Object

The field style for a window or report object is stored as a property. You can set this for
window fields under the Text tab in the Property Manager.

® Open your window or report class
® Click on a field or text object and view its properties

®* Onthe Text tab set tHldstyle property to the required style

& Property Manager M=l E3
General | Appearance 1 ekt |.ﬂ-.|:ti|:|n |
fieldztyle QRIS Bt o - |la
fant <Mones
fontzize
fontztyle Dk ISfield -
testcolor kM5 izt j
|'I Object [#=280,%'=6] 7

The properties that you have enabled usindhisfont... properties will override the text
properties in the object. For example, if you havéhasfontnameandhasfontsizein your
style definition, these properties will apply to an object with that style name, whereas the
other text properties will remain unaffected. Once you apply a field style to an object you

can no longer set the text properties controlled by the style; these become grayed in the
Property Manager.

If your style does not appear in the fieldstyle property list it usually means your style has no
font definition; go back to the Styles system table and make sure you have specified a font
name, size, and so on, for the style.

The library preferencstyleplatform controls which set of text characteristics defined in the
style is used on the current machine. For example, if you are running OMNIS under

Windows,styleplatform will be set to kMSWindows and the text characteristics defined in
the style for Windows will be used.

170 Chapter 7—Window Programming

Format Strings and Input Masks

A format stringis a set of characters or symbols that formats the data in a field for display,
regardless of how the data is stored. The string is stored farthatstring property for

the field. Aninput maskformats data as you enter it into a field, and is stored in the
inputmask property. On a window, only the masked entry field allows a formatting string
or input mask. When a user enters data into a field controlled by an input mask, OMNIS
rejects any text that does not conform to the format you've specified in the mask. Report
data fields also support format strings.

To enter a format string for a field, you need to specify the type of data represented in the
field, that is, itformatmode: this property can be Character, Number, Date, or Boolean.
You can enter a format string manually or use one from the dropdown list in the format
string dialog: the default formats in this dropdown are stored in the appropriate system
table.

Character Format Strings

To format a text field you have to setfitsmatmode property to Character. Character

format strings have one or two sections. The first section contains the value display format;
the second section contains the format to display for NULL or empty values. When you
click on theformatstring property, a dialog appears that lets you select a format. The
dialog is the same for all the different formats.

ungindes |kt alze

formatstring | = I |

fnrm;atmase Text Display Format

aloverpty | El
EI D&racter ol Space F | Character fil
_UI |lppercaze characters < | Left juztification
iIEharacter ar hiothing A Lallow trucation

1 Obiject _LI Lowercase characters _I Section divider
| 0K I

You can enter a format directly into the Text Display Format field, either from the keyboard
or using the buttons in the dialog. Alternatively, you can click on the down arrow in the
Text Display Format field and select a format from the #TFORMS system table. The
character formatting strings for the current library are stored in #TFORMS. You can edit
#TFORMS by double-clicking on it in the Browser.

Format Strings and Input Masks 171

You can use the following symbols in character formats:
- @

represents a single character or space
- &
represents a single character but not a space
- U
forces all characters in the field to upper case
- L
forces all characters in the field to lower case
- <
fills placeholders from left to right for left adjustment of the field; must be leading
characters in field

- A
truncates the value if it exceeds format length. It truncates the front of the string; use
the sequence <A to truncate the end of the string

- P
character fill; Px fills the front of the string with the character x to make the string the
required length

section separator

Example character format strings

Format string ANT adder Antelope Null
@ ANT adder Antelope

U ANT ADDER ANTELOPE

L'Text: '& Text: ant Text: adder| Text: antelope

Px&&&&K&&&EE XXXXANT xxadder Antelope
<Px&&&&&&&& ANTxxxxx adderxxx Antelope

A&&&& ANT dder lope
<A&&&& ANT adde Ante
&;'Null text value' ANT adder Antelope Null text valug

172 Chapter 7—Window Programming

Number Format Strings

To format a numeric field you have to setfaematmode property to Number. Number
formats can use the following symbols in a format string.

0
zero; displays a digit; displays leading or trailing zeros for the format length; rounds to
number of decimal places

#
a digit as for 0 but does not display leading or trailing zeros

?
a digit as for 0 but displays a space for leading or trailing spaces for the format length

aecimal placeholder

%
percentage placeholder

E-, E+, e-, e+
displays the number in scientific notation

$ -+ ()
display exactly as you type them in
P

character fill; Px fills the front of the string with the character x to make the string the
required length

section separator

The Numeric format string contains up to four sections: which format positive values,
negative values, zero values and NULL values respectively. An empty format section
consisting of two contiguous semicolons will cause the positive format section to be used.
Additionally, if the format string contains less than four sections, the positive section will be
used for the unspecified sections. Null values will only be formatted using the NULL
section.

Format Strings and Input Masks 173

174

Example numeric format strings

Format string 1234.47 -1234.47 0 Null
0 1234 -1234

0.0 1234.5 -1234.5 0.0

#,##0.00 1,234.47 -1,234.47 0.00
#,##0;(#,##0)[red] 1,234 (1,234) 0

0;(0);'Zero";'Nil' 1234 (1234) Zero Nil
0.00E+00 1.23E+03 -1.23E+03| 0.00E+00

+Px# HHH HHH,-Px# B Hox1,238 0 -xxxx1,234 FXXXXXXXKX

The number formatting strings for the current library are stored in #NFORMS. You can edit
#NFORMS by double-clicking on it in the Browser.

Date Format Strings

To format a date field you have to setfasmatmode property to Date. The display
formats of all date and time fields are controlled by date format strings. #FD is the date
format string which is used to display short dates, #FT is the date format string which is
used to display short times, and #FDT is the default date format string which is used to
display long dates.

Date format strings contain twenty special characters that denote the positions where the
string displays the year, month, day, hour, minute, second or hundredths of second. All
other characters in the date format string display unchanged (note, for example, the colons
in the sample strings below). The Date codes item on the Constants tab in the Catalog
contains a list of all the special date format characters. There are options to display the hour
in 24 or 12 hour format with an AM/PM position.

N is the character for displaying minutes; M and m indicate the month.

Using the date and time of 20 minutes past 1 p.m. on the 12th of January 1994, a date time
value displays as:

— 12JAN98 13:20if#FDTis ' DmY H:N'
— 12JAN98 1:20 PMif#FDTis DmY h:N A’
— 12th 01 1998 13:20:00.00 if #FDT is '"d My H:N:S.s'

The date formatting strings for the current library are stored in #DFORMS. You can edit
#DFORMS by double-clicking on it in the Browser.

Chapter 7—Window Programming

Boolean Format Strings

To format a boolean field you have to seffidisnatmode property to Boolean. Format
strings for boolean fields contain up to three sections: the first formats True values, the
second formats False values, and the third formats NULL or Empty values. You can use the
following formatting symbols:
-t
displays “T” or “F” for true or false values
- T
displays “True” or “False” for true or false values
-y
displays “Y” or “N” for true or false values
- Y
displays “Yes” or “No” for true or false values
-1
displays “1” or “0” for true or false values
- 0
the letter “O”; displays “On” or “Off” for true or false values

Example Boolean format strings

Format string 1 0 Null

T True False

True';'False' True False

T;Y;'Null Boolean' | True NO Null Boolean

The boolean formatting strings for the current library are stored in #BFORMS. You can edit
#BFORMS by double-clicking on it in the Browser.

Format Strings and Input Masks 175

Input Masks

Input maskgontrol the format of data entered by the user. The input field for a field is
stored in itsnputmask property. When you click on theputmask property, a dialog

appears that lets you select a mask.

Lnqindes

kFalze

formatztring

formatmade

kFormatCharacter

inpuUtrnagk
allowemnpty

EII::|E|:t

Input Mazgk

|
_I ﬁ.n}%lglt

|,£'-,n_|,| letter, upper cazed

&
_nl.ﬁ.lphanumeric

_NI.-'i‘-.Ipha, Lpper cased

= |,.'l'.,n_|,| character
b |Set prompk char

OE.

You can enter a mask directly into the Input Mask field, either from the keyboard or using
the buttons in the dialog. Alternatively, you can click on the down arrow in the Input Mask
field and select a mask from the #MASKS system table. The input masks for the current

library are stored in #MASKS, which you can edit by double-clicking on it in the Browser.

An input mask can contain a number of characters together with literal display characters.
The literal characters are presented to the user when the mask is used for data entry in order
to provide context to the surrounding mask placeholder characters. The mask characters can
either consist of placeholders or mask control characters. Placeholders are replaced by user
characters of the appropriate type during data entry.

176

Chapter 7—Window Programming

You can use the following mask placeholders:

Placeholder Meaning

any digit

@ any character

a any letter

A any uppercase letter

n alphanumeric

N alphanumeric, upper-cased

"ABC" any character from list, i.e. either A, B or G
"A-D" any character from A to D inclusive

Mask control characters control how the mask is presented to the user and how the data is
saved to the underlying field. You can use the following control characters:

Symbol Meaning

A stores literal characters in underlying field
\C displays next character literally

>C uses following character to prompt user
>> displays default prompt characters

By default, the underscore character is used at data entry to represent placeholder character:
yet to be entered. You can configure this character on a per placeholder basis using the '>'
symbol. When the character sequence ">>' occurs at the start of the input mask, the default
numeric prompt will be a hash sign; other placeholders are displayed as an ampersand.

Format Strings and Input Masks 177

178

The following table contains some example input masks, together with the string that is
initially displayed to the user and an example value that can be entered to satisfy the mask.

Input mask Initial display Example value
() HH-HHHHH)y - (717) 321-8745
>>(HtH) HHtH-HHHHH () - (717) 321-8745
aa## #t#ta 0 | Xy 12 34 56 z
>>aa #i# ## ## a @@ ## ## #H @ Xy 12 34 56 z
>PAA S # #HE >?A PP R Ak xk D XY 123456 Z
Enter digit # Enter digit _ Enter digit 1
>>aaaaaaaa Q@OE@E@@Q@@J Antelope
>>aaaaaaaa OOO@O@@@GE Baboon
>?"0-5" ? 4

By default, literal characters occurring in the input mask are simply used to aid data entry.
They are not saved to the underlying variable or field. Therefore, when performing queries
on the saved data the user must remember not to search for the literal characters. In the first
example above, the string '7173218745' would be saved. To show this data correctly, you
must add a display format to the entry field.

To enable the user to save literal characters to the underlying variable field, you can put a
circumflex character "' in the input mask. In the first example above, an input mask of
NHHH) #iHE-#HHEA# would cause the string '(717) 321-8745' to be saved. In this case it would
be inappropriate to place a display format on the associated entry field.

Chapter 7—Window Programming

Drag and Drop

Drag and Drop

Drag and drop is a powerful feature that lets the user copy data and objects from one field to
another, or from one window to another. For example, in a human resources application you
could build a list of employees and allow the user to select certain employees and drag them
onto a print button to print those employee details; in a stock control system, the user could
add items to a dispatch note by dragging the items from a stock list into the dispatch
window; and so on.

The drag and drop capabilities of a field are properties of the field itself. Windows also
have some drop properties. You can set these properties under the Action tab in the
Property Manager, or you can use the notation. The field properties are

& Property Manager M=l E3

General | Appearance I Text Action |

candropeursor | keursDefaul |0 |
dragmode kMoDragging - |
dragrange kR angedll |
dragiconid kDefSize | |0
dropmode [k&cceptMone] ;I

| 1 Object [==386, =30] 4

— dragmode
sets whether or not the data or whole object is dragged and/or duplicated: includes
kNoDragging (the default), kDragData (drags the data only), kDragDuplicate (drags a
copy of the object), kDragObject (moves the object without copying)

— dragrange
limits the scope of where a field can be dragged to: includes kRangeAll (can be
dragged anywhere in the application), kRangeTask (within the current task),
kRangeSubwindow (within a subwindow if the field is in a subwindow),
kRangeWindow (within the current window only)

— dragiconid
sets the icon for the object while it is being dragged

— dropmode
determines what types of object or objects the field will receive: includes kAcceptAll,
kAcceptButton, kAcceptComboBox, kAcceptDroplists, kAcceptEdit, kAcceptGrid,
kAcceptList, kAcceptNone, kAcceptPicture, kAcceptPopMenu, kAcceptSystem

For a field which is not in a subwindow, kRangeSubwindow is equivalent to
kRangeWindow. The drag range is ignored when the drag mode is kDragObject since a
field can be moved only within its own window or subwindow.

179

Drag and Drop Events

Having set the drag and drop properties of fields and/or windows, you need to write event
handling methods for these objects to handle events when dragging and dropping occurs.
Drag and drop actions generate four events, in the order

— evDrag
the mouse is held down in a field and a drag operation is about to start, the event
parameters are: pEventCode, pDragType, pDragValue. It is sent to the field being
dragged.

— evCanDrop
a drag operation has started to test whether the field or window containing the mouse
can accept a drop, the event parameters are: pEventCode, pDragType, pDragValue,
pDragField. It is sent to the field might receive the drop.

— evWillDrop
the mouse is released at the end of a drag operation, the event parameters are:
pEventCode, pDragType, pDragValue, pDropField. It is sent to the field being
dragged.

— evDrop
the mouse is released over the destination field or window at the end of a drag
operation, the event parameters are: pEventCode, pDragType, pDragValue,
pDragField. It is sent to the field being dropped on.

If a field can accept the object or data that you are currently dragging onto it, it will become
highlighted and the appropriate event messages are sent to the field. Depending on the drag
and drop mode, evDrag and evWillDrop are both sent to the dragged field, and evDrop is
sent to the drop field. For the kDragObject and kDragDuplicate modes, the move or
duplicate is not performed if you discard the evDrop message.

The event parameters are

— pDragType
the drag mode of the field being dragged
— pDragField
a reference to the field being dragged
— pDragValue
the object or data being dragged: text, numbers, list data, and so on
— pDropField
a reference to the destination field
All the drag and drop events supply pDragType and pDragValue event parameters. Initially

pDragType contains the drag mode of the field being dragged, but you can change it in any
of your event handlers. If pDragType is changed by evDrag, the subsequent evCanDrop,

180 Chapter 7—Window Programming

Drag and Drop

evWillDrop and evDrop will see the changed value, but changing it does not affect the drag
mode. To avoid confusion with built-in drag operations it is recommended that your drag
types are all greater than 1000.

Using Drag and Drop

Consider a window in which the user selects a substring of text in one field fDrag and drags
it onto another text field fDrop, which will then highlight the inserted string. First you must
set the drag and drop mode of the fields, either in the Property Manager or using the
notation

Do Winl.$objs.fDrag.$dragmode.$assign(kDragData)
Do Winl.$o0bjs.fDrop.$dropmode.$assign(kAcceptEdit)

You must also set up a variable name indaaname property for each field, perhaps
Stringl and String2.

You can trap the events in the field methods, but it may be more convenient to handle them
all in the window $control() method, in the case when all the fields in the window have
consistent drag and drop handling. The line

Quit event handler (Pass to next handler)

at the start of each field method will pass all events to the window $control() method. In the
window $control() method, you can add event handlers to detect the drag and drop event
messages evDrag, evDrop, evCanDrop, and evWillDrop, with the following structure.

; $control() method in window
On evDrag
; do this
On evDrop
; do this
On evCanDrop
: do that
On evWillDrop
: do the other

The evCanDrop event is sent frequently during a drag operation, so this handler must be
short and efficient: it shouldot do anything to change the appearance of the user interface,
such as displaying a message or opening or closing a window.

You could choose to handle evDrop only, which provides the value of the dragged substring
in the parameter pDragValue, and ignore the other events. When the mouse is released over
the fDrop field, triggering evDrop, you can use theuseover(junction to return the

position of the mouse pointer in the text string. The $mouseevents library preference must
be turned on for your library to send and receive mouse events. You can also use the string
functionscon() andmid() to insert the dragged string into the fDrop field at the right place.

You can highlight the inserted substring using the properties $firstsel and $lastsel.

181

; $construct() method for the window
; declare variable Pos of type Number
On evDrop
Calculate Pos as mouseover(kMCharpos)

Calculate String2 as con(mid(String2,1,Pos),
pDragValue,mid(String2,Pos+1,len(String2)-Pos))

Do $cobj.$firstsel.$assign(Pos)
Do $cobj.$lastsel.$assign(Pos+len(pDragValue))
Redraw (Refresh now) {fDrop}

Another frequent use of drag and drop is moving selected lines between lists. Consider two
fields IDrag and IDrop that use the list variables List1l and List2. IDrag should have its
$multipleselect property set and a drag mode of kDragData, and IDrop should have its
$dropmode property set to kAcceptList.

When the drop occurs, pDragValue has a copy of Listl and not just the selected lines: these
can be merged with List2 and removed from List1.
; $control() method for the window
; declare variable iList of type List
On evDrop
Set search as calculation #LSEL
Set current list List2
Calculate iList as pDragValue
Merge list iList (Use search)
Set current list List1
For each line in list (Selected lines only) from 1 to #LN step 1
Delete line in list ;; remove dragged lines
End For
Redraw lists (All lists)

Having merged the dragged lines into List2, you can sort the list.

Alternatively, you might wish to insert the line or lines at a specific place in List2. In this
case, you need to use timsert line inlist command to insert each required line at the
mouse pointer position in List2 using tuseover(kMLineunction

182 Chapter 7—Window Programming

Set current list Listl
Calculate InsertPoint as mouseover(kMLine)

For each line in list (Selected lines only,Descending) from 1 to #LN
step 1 ;; descending order, so as to insert in ascending order

Load from list
Delete line in list
Set current list List2
Insert line in list {InsertPoint}
Set current list Listl
End For
Redraw lists (All lists)

A drag mode of kDragObject can be useful to give users the chance to rearrange fields on a
window.

External Component Notation

The $components group under $root contains all the installed external components available
in your XCOMP folder. You can view the contents of the $components group using the
Notation Inspector.

2. Motation Inspector 1

Clack, Library
~Stix Librany
~OMMIS OLE
Sidebar Library

b arques Library

~PC Library

CuickTime Components
PicLizt Libran
~TranzButton Library
~Slider Library

External Component Notation 183

184

Note that you manipulate an external component via its custom field properties, as shown
above, not via the $root.$components...$compprops or $compmethods groups for the
control. The groups under $root.$components is simply a convenient way of viewing the
contents and functions of any external library or control.

The $components group has the standard group properties and methods, including $add()
and $remove(), and you can list the components using the $makelist() method.

; declare variable cCompList of type List
Do $root.$components.$makelist($ref.$name) Returns cComplList

You can drag a reference to any of the components from the Notation Inspector to your
code, in the same way as other built-in objects. You can click on a component library in the
Notation Inspector and view its properties in the Property Manager. Each component library
has the following properties

— $name
the name of the component which must be unique

— $pathname
the name and path of the external library file; this will vary across different platforms

— S$functionname
the name of the external function

— $controlhandler
Boolean that indicates whether the external is a control handler, for example, an
ActiveX is a control handler

— $constprefix
String used as a prefix for all constants within the external

— Sflags
indicates the external flags, for example, whether it is loaded

— S$usage
Current number of controls that are using this external

— S$version
the version information

You can view the contents of an external library in the Notation Inspector. Each component
library has a group called $controls containing all the controls in the library. Some libraries
may contain only one control, for example, the Slider Component Library contains the
Slider Control only. A control contains its own events, functions (or methods), and
properties in their own respective groups, as follows

— $compevents
group of events for the control

Chapter 7—Window Programming

— $comprops
group of properties for the control

— $compmethods
group of methods for the control

For example, the Slider Control has the following events and properties

=+~ Slider Library
=+ $oontols

=+ Slider Cortral
$ocompevents
evStartSlider
- evEndSlider
evMew alue
- foampfuncs

B $ocompprops

Fmarkfreq

In the notation you treat an external component property or function as you would a
standard built-in property or method, that is, you can use property and method names in the
notation to manipulate and send messages to an external component field. Note that
property and method names should include a dollar sign when you use them in the notation.

Do $cwind.$objs.ClockField.$facecolor.$assign(kBlue)

; assigns a color to the face of a clock component

; using the $facecolor property

Do $cwind.$objs.QTfield.$Play()

; executes the $Play() function for a QuickTime component

In general, the properties of an external component are unique to the object and their names
will not clash with standard OMNIS field properties. However when an external component
property has the same name as an OMNIS property, you must access the external property
using a double colon (::) before its name. For example, the Icon Field control has the
property $backcolor which you must refer to using

Do $cinst.$objs.iconfield.$::backcolor.$assign(kRed)
; would not work without the ::

At runtime you can add an external component to an open window using the $add() method.
You need to specify the kComponent object type, external library name, external control
name, and the position of the field. For example, the following method adds the Marquee

External Component Notation 185

186

Control to the current window instance, positions the new object, and sets some of its
properties
; declare local variable Objref of type item reference

Do $cinst.$objs.$add(kComponent,'Marquee Library','Marquee
Control',0,0,15,100) Returns Objref

Do Objref.$edgefloat.$assign(kEFposnStatusBar)

; repositions the object at the bottom of your window

Do Objref.$message.$assign('l hope you can read quickly!")
Do Objref.$steps.$assign(20) ;; number of pixels to step
Do Objref.$speed.$assign(20) ;; lower number is faster
Do Objref.$::textcolor.$assign(kBlue) ;; note :: notation

Do Objref.$::backcolor.$assign(kRed)

Version Notation

All external components have the $version property. To get the version of an external
component you must access it via the $root.$components group, not the external component
field on a window or report. For example

Do $root.$components.Marquee Library.$version Returns lvXversion
; returns “1.2” for example

If you have created any external components of your own to run under OMNIS Studio
version 1.x, you must recompile them for OMNIS Studio 2.0.

Chapter 7—Window Programming

Java Beans

The Java Bean external component has commands that let you control it in a Runtime
OMNIS. You request a command using the $cmd() method as follows:

$root.$components.JavaBean.$cmd(parameter list)

The parameters can be:

Parameter list Command

"GetPaths", List Populates the specified single column list with the Java Beagn
search paths; no return value

"AddPath", NewPath Adds the specified path to the Java Bean search paths; retyirns
true for success, or if the path is already present in the seargh
paths

"DeletePath”, DelPath Deletes the specified path from the Java Bean search path
returns true for success

(]

"EnumBeans" Enumerates Java Beans; returns the number of Beans found

"StartVM" Starts the Java virtual machine (to test if Java is installed);
returns a string containing an error, or an empty string to indicate
success

"SetupDialog". Opens the Java Bean component setup dialog

"RequestPath" Opens the “Prompt for Java Bean Path” dialog; returns a string
containing the new path; empty if none selected

HWND Notation

All window instances and their objects, except background objects, have the $hwnd and
$framehwnd properties. In addition, window instances have the $toplevelhwnd property.
These three properties all identify child windows or parts of a window. Each window object
has a $framehwnd, which is the outermost enclosing child window of the object. Each
window object also has an $hwnd, which is the child window which typically contains the
main information displayed by the object. $hwnd is always contained in $framehwnd, and in
many cases $hwnd and $framehwnd are the same child window.

For example, in the following field $hwnd is not the same as $framehwnd: $hwnd refers to
the client window excluding the title window, and $framehwnd refers to the frame window.

HWND Notation 187

188

Frame Window
Title Window

Client Window

For a window instance, $toplevelhwnd is the outermost enclosing child window of the
window instance, that is, it corresponds to the complete window, including title bar and
sizing border, if present. $framehwnd of an open window instance is the window contained
in the $toplevelhwnd; it excludes the window title bar and sizing borders. $hwnd of an
open window instance is contained in $framehwnd, together with the window menu bar,
toolbar and status bar, if present. For example, when you use the notation

Do $cwind.$hwnd Returns [IvNumber

$hwnd, $framehwnd, and $toplevelhwnd return a number. The number is a unique identifier
that represents the child window.

$hwnd, $framehwnd, and $toplevelhwnd can also return an item reference to the child
window, for example

Set reference myRef to $cinst.$hwnd.$ref

For $hwnd and $framehwnd, the item reference supports the following properties: $left,
$top, $width, $height, $clientleft, $clienttop, $clientwidth, and $clientheight. $toplevelhwnd
supports the following properties: $left, $top, $width and $height.

A child window can have a client area and a non-client area. The non-client area of the
window can contain features such as the window border and scroll bars. Sometimes the
non-client area is empty, such as in a borderless entry field with no scroll bars. Consider an
entry field with a 2 pixel inset border. Its client area sits inside the non-client area, as
follows.

|.—MNon Client Area
]

—Client Area

The entry field with a 2 pixel inset border may be 100 pixels wide and 50 pixels high. The
client area would be 96 pixels wide and 46 pixels high. Therefore

$width = 100 $clientwidth = 96

$height = 50 $clientheight = 46

$top and $left are the coordinates of the child window, relative to the child window which

contains it (in the case of $toplevelhwnd, these coordinates are relative to the area in which
OMNIS displays window instances).

Chapter 7—Window Programming

$clientleft and $clienttop are the coordinates of the client area of the child window. These
always return the value zero.

The properties of $hwnd and $framehwnd are not assignable. For $toplevelhwnd, $left,
$top, $width and $height are assignable.

Using HWND

Sometimes it is important to know the exact size of the client area. For example, if a
window has a toolbar on the left and you want to create controls right-justified down the
right edge f the window, $cwind.$width would not be good enough, as it includes the width
of the toolbar. This would cause you to add controls (using $add) too far to the right.

In this first example you call $add() to add objects

and the $left for the objects would be the width of E%
the window less the $width of the objects you are C 0
adding. As $width included the toolbar space, the 10
objects would be added too far to the right.
$cwind. $width

In this second example, using the $hwnd of the C
window, you get the exact width excluding the 1
toolbar width, allowing you to right justify the]
controls correctly.]

towind. Shwnd. $ref(). Sclientwidth

Enter Data Mode

Enter Data Mode

You can place window instances in enter data mode on a case-by-case basis. A window
instance has the $enterable attribute; if true, the window is in enterable mode. Enterable
means the window is in ‘enter data mode’ so data can be typed into the entry fields and any
OK and Cancel buttons are enabled. Normally windows with modeless enter data are always
enterable and other windows are enterable when there is an exé&mnitinglatacommand

on the method stack. When you set $enterable to kTrue for a window instance it is never
changed automatically by OMNIS at Bnter datacommand, therefore

Do $cinst.$enterable.$assign(kTrue)

189

in the $construct() method of the window is equivalent to putting the window in modeless
enter data mode.

It is possible to go into enter data mode without the top window (or any window) being
enterable. Sometimes this might be desirable, but beware OMNIS provides no protection
against this situation.

If a window is not enterable for Enter data it is also not enterable for Prompted find.

Floating edges for Windows

Lookup

190

Window classes and instances have the $edgefloat property. Therefore the edges of a
window can float using any of the floating edge constants, except the KEFposn... values.
When the size of the area available to window instances changes, that is, the OMNIS
application window is sized, open window instances and window classes float according to
the value of their $edgefloat property. The default value of $edgefloat is KEFnone.

For example, in conjunction with some code in the $construct() method of a window, you
can use $edgefloat to attach a window to the right-hand side of the main OMNIS window
(or desktop under MacOS). Set $edgefloat to kEFleftRightBottom, and use the following
code in the $construct() methods of the window.

Set reference item to $cinst.$toplevelhwnd.$ref

Calculate item.$left as $root.$modes.$width — item.$width
Calculate item.$top as 0

Calculate item.$height as $root.$modes.$height

If you resize the OMNIS window (under Windows), or change the monitor resolution
(MacOS), the window remains attached to the right-hand side.

Windows

ThelLists and Gridschapter in the Using OMNIS Studio manual describes how to build a
list, display it in a List Box field, and use evDoubleClick to transfer data from the selected
list line to the Current Record Buffer using thead from listcommand. However there

may be limited space on your window for a large list field, therefore you might want to
place the list on a separdd®kup windowYou can force such a window to open when the
user needs to look up the data, and close it as soon as a line is chosen. As a further
refinement you can allow the user to enter some data directly into a field and not popup the
window, or if the field is left empty popup your lookup window containing a list of possible
choices.

An entry window wBookings for the BOOKINGS file, for example, might have the foreign
key BkCuld to the primary key Culd in the CUSTOMERS file. The BkCuld field method
will check if the code entered by the user is valid and allow the user to choose from a list of

Chapter 7—Window Programming

Lookup Windows

customer names if it is not. The important point here is that method execution must be held
up until the user has made a choice. These are the methods to implement this: they will be
described together since they interact.

; $event() method for wBookings field BkCuld

On evAfter

Do CheckCustCode Returns Valid ;; check on code entered

If not(Valid) ;; ifinvalid or no code
Open window instance {wCustList} ;; open lookup window
Enter data ;; until item is selected
Close window instance wCustList
Calculate BkCuld as Culd ;; set foreign key ..
Redraw { BkCuld } :; and show value
Queue set current field {BkCuld} ;; reposition cursor ..
Queue tab ;; to next field

End If

Quit event handler (Discard event)

The Customers List window wCustList is a Simple or NoFrame style window filled by a list
box. The list is defined and built as the window opens. There’s no need to show Culd in the
list box but it must be in the list.

; $construct() method for wCustList

Set current list cCustList

Define list {Culd, CuLname, CuCountry}
.. build list from OMNIS or SQL data

; $event() method for list box field

On evDoubleClick ;; Event Parameters - pRow (Itemreference)
Load from list ;; transfer list line values to CRB
Queue cancel ;; terminate enter data mode

Quit event handler (Discard event)

When wCustList opens, the list is built. At this pdimtter datais necessary to halt

execution of the method until the user has chosen from the list. When the list box receives a
double-click,Load from listtransfers the list line data to the CRBueue cancehow

terminates the enter data state so that execution resumes and closes the window. BkCuld is
set from Culd entered from the list and the field is redrawn. The cursor will still be in

BkCuld soQueue set current fieldndQueue talran be added to place the cursor at the

next field in the tabbing order.

This enter data state is needed whether or not the parent window has $modelessdata set.

191

Timer Methods and Splash Screens

192

A splash screen makes a more friendly introduction to an application than presenting the
user with a blank screen and a menu bar. It involves opening an introductory window,
usually called wAbout, from the $construct() method in the startup task of your library. You
can keep the About window on screen either for a predetermined time or until the user
clicks on it. The wAbout window contains a button area field to detect clicks and the
following methods

; $construct() method for wAbout
Set timer method (8 sec) {Timer Control}

; $event() method for the button area field
On evClick
Do method Close Window

: Close Window method
Clear timer method
Close window {wAbout}

; Timer Control method
Do method Close Window

When the $construct() is called, tBet timer methodommand sets a time delay in seconds
and nominates a method, called Timer Control, which is run at the end of the delay. The
Timer control method then calls Close Window which clears the timer and closes the
window. If the window has been clicked on before the end of the delay, the button area
method calls the Close Window method which closes the window immediately.

The button area should have its $noflash property set to kTrue to avoid flashing when the
user clicks on it.

Pictures

You can place button area fields over a graphic, which you can paste onto your window or
load into a Picture field. If thibrary preference $sharedpictures is set, pictures are

converted to a format accepted under both Windows and MacOS. To optimize the drawing
of a picture so that the system palette matches the picture colors on the Windows platforms,
add the following line to the window $construct() method.

Set palette when drawing (Color shared pictures)

Chapter 7—Window Programming

Chapter 8—Internet
Programming

The client/server model, and hence your OMNIS applications, readily translate to the
Internet. OMNIS Studio includes a number of wizards in the Component Store to help you
get started with Internet access, and these are describedJsititeOMNIS Studionanual.

This chapter goes deeper into the programming aspects of Internet access.

The key facts about the Internet are self-evident; cross-platform compatibility, near-
universal access, cheap bandwidth, simple and well-disseminated standards for all.

OMNIS Studio supports high-level application-layer services, such as FTP, E-mail (POP3
and SMTP), and HTTP, as well as low-level communication protocols such as TCP/IP
sockets for operations like peer-to-peer information exchange and HTTP access through
proxy servers that redirect URLs. OMNIS provides a full-featured set of external commands
for enabling your OMNIS application for the Internet and World Wide Web.

The Internet is built on standards, therefore you should always refer to and understand those
standards, which are readily accessible. So before you start to web-enable your OMNIS
application, you should learn about HTML and query forms, about HTTP headers, server
responses, and methods of requesting information from HTTP servers (GET, POST, and
HEAD). You should also become familiar with CGI programming which is essential to Web
database applications.

Internet Protocols

Internet Protocols

This section discusses the protocols used for network communications, e-mail, and file
transfer over the Internet, and takes a closer look at HTTP on the Web, including an
explanation of server names and addresses and the role of CGls. You can get more detailed
descriptions and definitions for Internet protocols from the Internet itself.

Overview

The Internet is the largest public network, a global network of networks. All of these
interconnected networks rely on a standard underlying network-layer protocol called
TCP/IP (Transmission Control Protocol/Internet Protocol) to move information. The most
important feature of this low-level protocol is its platform independence. TCP/IP allows
Windows Intel-type, Macintosh, Unix, and other computers to exchange information using
the client/server Internet model.

193

In the TCP world, a connection is made usirspeket a dynamically generated reference
to network layer resources necessary for a conversation between a client and server.

The Internet client/server model also uses higher-level standardized protocols to enable data
transfer of different types. Servers and their clients use special-purpose applications
protocols, such as FTP (File Transfer Protocol), that sit on top of TCP/IP as it handles
network communications. While the FTP protocol is used to download and upload files

from and to FTP servers, e-mail servers often use two protocols, SMTP (Simple Mail
Transport Protocol) and POP3 (Post Office Protocol, version 3). SMTP handles sending
mail, and POP3 retrieves mail. HTTP (Hypertext Transport Protocol) is the applications
protocol used to transfer information among World Wide Web servers and client.

AN
Servers

|‘ FTP m

|‘ E-Mail POP and SMTP

Browsers

TCP/IP

Note for MacOS users

OMNIS supports Macintosh Open Transport 1.1.1 and above. Open Transport replaces the
current MacOS implementations of AppleTalk and TCP/IP (including the protocols and the
Network, MacTCP, and Admin TCP control panels). Open Transport is also designed to
replace the Connection Manager and the Communications Resource Manager of the current
Communications Toolbox architecture.

194 Chapter 8—Internet Programming

Internet Protocols

HTTP and HTML

People often use the tenviorld Wide Weltoosely to refer to the whole Internet. More
precisely, however, it encompasses Web servers that use HTTP (Hypertext Transport
Protocol) to transfer information specified URLs(Uniform or Universal Resource

Locators, pronounced “earl”). HTTP defines the formats and transmission methods of
interactions and how servers and clients respond to commands. When you point your
browser to an URL, an HTTP command goes to the specified server and tells it to find and
return the resource you need on the server.

HTTP servers normally listen for requests on Port 80, so a port number is not needed in a
client request unless the server listens on a port other than 80.

The Common Gateway Interface (CGl) is a convention that specifies how gateway
programs or scripts are integrated. Gateway progra@&esallow HTTP servers to

handle queries or forms requests from clients; they operate outside the HTTP protocol.
CGls are frequently used to allow an HTTP server to interact with a database to store or
retrieve information in response to a client request.

HTTP servers accept queries. There are two methods for querying HTTP servers:

— A GET usually requests the path to an HTML. This type of request generally can return
a maximum of 1,024 characters and is often used to perform “canned”, repetitive
queries.

— A POST usually includes field information from a form and is more flexible.

A server’s response includes a MIME (Multipart Internet Mail External) or MIME-like
header, which specifies the type of data contained in the body of the response.

In the Web environmentlientis often synonymous withrowser However, a client need
not be exclusively a browser (as is Netscape Navigator, for example). OMNIS can use
commands to act as a client and retrieve information from a server.

Web browsers also provide access to servers running protocols other than HTTP, such as
SMTP and FTP.

Unlike FTP servers, which remember the location of each client in the file system, HTTP
servers do not track client activities. HTTP has no Statech connection to a Web page is
made, closed, and forgottérso every request must fully specify the desired resource.

An application can also use CGils to track client interactions with an HTTP server,
overcoming some of the “statelessness” of HTTP (see the section on Caching for more
information about tracking HTTP sessions).

HTML provides a standard, text-based method of tagging content to specify the layout of a
Web page, as well as hyperlinks to resources (graphics, for example) and embedded
directives to the browser. The language is simple and straightforward, much like early
word-processing programs.

195

HTML version 3.2 and earlier is designed for portability to every type of graphical interface
and operating system. For this reason, HTML specifies some styles such as font attributes
(for example, and delimits bold text) and general size and positioning
relationships. However, other formatting aspects, margins for example, are left up to the
browsers displaying the page. Most Web browsers allow easy viewing of the HTML source
for a page, so that you can easily see how HTML translates into a Web page.

Internet Commands

196

The OMNIS Internet commands, located in the method editor iBxtexnalCommands...
group, simplify coding for Internet and Web-based applications. Each Internet command
has a prefix to identify its command group. For example, the command to send a message
on a socket iFCPSendTo locate a command of any particular type you can type the prefix
and then scroll the command list in the method editor to find the command you want. See
the OMNIS Help for a complete description and the syntax for each command.

FTP Commands

The File Transfer Protocol (FTP) commands let you download and upload files from and to
remote computers. Finding a file requires navigation of the directory/file structure on the
remote machine. On many servers, Unix file commands perform this activity. However, the
Internet commands let the user locate files using local OMNIS navigation screens that you
create. Alternatively, the application may specify exactly which file to download.

HTTP World Wide Web Commands

The HTTP (HyperText Transport Protocol) commands let you access Web content without
a detailed knowledge of the Web itself. For exantpld PPageretrieves the HTML text of

a Web page specified by an URETTPSplitHTMLparses HTML from a Web page into an
OMNIS list, andHTTPSplitURLsplits a full URL into a host name and path.

E-mail Commands

The e-mail commands let you send and receive Internet e-mail using the popular Internet
SMTP and POP3 protocols.

TCP/IP Sockets, DNS, and Ping Commands

The TCP commands let you manipulate TCP/IP sockets using equivalents to the Berkeley
Sockets Interface. In addition, the Internet commands provide an OMNIS application with
commands for Domain Name Services (DNS). These commands allow a client or server to
find information about a peer computer to which a socket is connected and perform general
DNS operations:

Chapter 8—Internet Programming

The Internet commands let you send an Internet Control Message Protocol (ICMP) Echo
(also calledPing) message to a named computer. Intercomputer transfer times can vary
widely and for that reason, tR&CPPingcommand is useful when timing certain

intercomputer transfers. Sending a ping to a distant computer determines whether a time-out
might close the socket or otherwise interfere with downloading a file.

Utility Commands

The Utility commands include Common Gateway Interface (CGI) encoding and decoding,
Binary file handling, and error handling.

The CGI standard establishes rules for running external programs on a Web HTTP server
and returning the results to the requestor. CGI encoding formats data so that all characters
may be transferred over the Internet and not be confused with special characters such as
field separators. These extended OMNIS commands allow an application to encode and
decode data from HTML forms and URLSs.

Many of the HTTP commands automatically encode and decode CGI information, as well
as performing other common operations (that is, POST/GET, parsing an HTTP header, and
SO on).

Information is frequently sent on the Internet in a format knowdldencodedThis format
preserves binary characters, primarily in e-mail, from accidental changes by transfers on the
Internet. This type of encoding prevents some servers from, for example, interpreting and
altering characters or imposing different byte-ordering on binary data.

UUencoding is a means to represent binary information as common printable ASCII
characters. It is often used at FTP sites.

The WriteBinFile andReadBinFilecommands let you read and write binary data forks
(Macintosh) or files (PC). UUEncoding provides a convenient method of encoding before
transmitting this binary information.

The WebDevErrorcommand lets you specify an OMNIS method to handle error that occur
in the HTTP, e-mail, FTP, and sockets commands.FlligGetLastStatusommand also
issues error messages when FTP commands return errors.

Internet Commands 197

Sending and Receliving E-maill

This section presents some OMNIS methods that demonstrate the Internet e-mail
commands. To try out any of the sample code, change the initial values to suit your own
requirements including server names, account names, passwords, and so on.

Sending E-mall

This example demonstrates how to useSME'PSend¢ommand to send e-mail to yourself.

To try out this example, you must have access to an SMTP mail server, though it need not
be the SMTP server that is hosting the accounts. As long as the account information is
correct, any SMTP mail server forwards the e-mail to the appropriate server.

; Declare the following local variables

; LV_SERVER_NAME (Char) = 'smtp.domain.com’

; contains name of SMTP mail server

; LV_ACCOUNT_NAME (Char) = 'me@domain.com'

; contains personal e-mail account name

; LV_TO_ACCOUNT (Char), LV_CC_ACCOUNT (Char), LV_BCC_ACCOUNT (Char)
; LV_CALLBACK_METHOD (Char) = 'method name'

; LV_PRIORITY (Short Int) ;; 1is high, 5 is low priority

SMTPSend(LV_SERVER_NAME,LV_ACCOUNT_NAME,LV_ACCOUNT_NAME,
'Hello world test', 'This is the body of the message'
,LV_CC_ACCOUNT, LV_BCC_ACCOUNT, "My Full Name",
LV_CALLBACK_METHOD, LV_PRIORITY)

Replace the default values with real values and run this example. OMNIS pauses as the
e-malil is going to the server. If you specify a callback method, the command calls that
method at least 11 times throughout the process to let you know that the e-mail was sent. If
the number of CC and BCC recipients is 0 (zero), then it is called 11 times. If you include
any CC and/or BCC recipients then:

11 + (<number of CC recipients> + 1) = Number of times called
and/or
11 + (<number of BCC recipients> + 1)= Number of times called

If you use the command to send a message with three CC: recipients and two BCC:
recipients, the total would be 18, as follows:

11+@3+1)+(2+1)=18

198 Chapter 8—Internet Programming

Finding Out How Many Messages are Waiting

The following method uses tfOP3Statommand to retrieve the number of e-mail
messages that are waiting on the server for a specified e-mail account. It does not change
the e-mail messages in any way.

; Declare the following local variables

; LV_SERVER_NAME (Char) = 'smtp.domain.com’

; contains name of SMTP mail server

; LV_ACCOUNT_NAME (Char) = 'me’

; LV_PASSWORD (Char) = 'secret’

; Checking the number of messages that are waiting on the server
POP3Stat (LV_SERVER_NAME,LV_ACCOUNT_NAME,LV_PASSWORD)

Receiving E-mail

The following method demonstrates how to retrieve e-mail messages for a specified
account. Thé?OP3Recxcommand requires that you have access to the POP3 server that
contains the e-mail messages for the account.

; Declare the following local variables
; LV_SERVER_NAME (Character 10000000) = 'smtp.domain.com’
; contains name of mail server
; LV_ACCOUNT_NAME (Char) = 'me’
; LV_PASSWORD (Char) = 'secret’
; LV_EMAIL_LIST (List)
; contains single column list of entire e-mail with header info
; LV_CALLBACK_METHOD (Char) = 'method name'
; LV_EMAIL_MESSAGE (Char)
; contains entire e-mail with header
; LV_DELETE_EMAILS (Boolean) = kTrue
; determines whether or not the e-mail should be deleted
Begin reversible block
Set current list LV_EMAIL_LIST
End reversible block
Define list {LV_EMAIL_MESSAGE}
; Retrieving e-mail from POP3 server

POP3Rec(LV_SERVER_NAME, LV_ACCOUNT NAME, LV_PASSWORD,
LV_EMAIL_LIST, LV_DELETE_EMAILS, LV_CALLBACK_METHOD)

Sending and Receiving E-mail 199

200

Parsing E-mail Headers

MAILSplit parses the headers from an e-mail message into a two-column list. Without
MAILSplit, this process would require a substantial amount of OMNIS code.
; Declare the following local variables

: LV_EMAIL_HEADER_LIST (List)

; contains 2-column list of header values

; LV_FIELD (Char), and LV_VALUE (Char)

; first and second cols in the e-mail header list

: LV_EMAIL_MESSAGE (Char)

; contains entire e-mail with header

; LV_BODY (Char)

; contains just the body of the e-mail

MailSplit ~ (LV_EMAIL_MESSAGE,LV_EMAIL_HEADER_LIST,LV_BODY)

Additional Information

The common hostname/port for SMTP servers is:
smtp, port 25

The common hostname/port for POP3 servers is:
POP3, port 110

Windows Users

If you have upgraded to Windows NT from Windows 3.x or Windows 95, you may have
several Services files in orphaned directories. POP3Stat may try to access one of these
unused files, which might not contain the valid port address a particular service. If this
happens, you receive the following error messages:

getservbyname() failed

followed by, for example,

POP3Stat : can’t connect, invalid socket from connect TCP

You should delete any extraneous Services files. In Windows, look in the residual
windows\system directories.

The Services file should have the following entries:

smtp malil 25/tcp mail

pop3 110/tcp Pop-3 postoffice
or

smtp 25/tcp mail

pop3 110/tcp postoffice

pop-3 110/tcp

Chapter 8—Internet Programming

Working with FTP Sites

This section presents sample code for retrieving information from an FTP server. It is a
simple and brief introduction to the use of FTP commands.

First you need to connect to an FTP site and check for errors. Use the commands
FTPConnecandFTPGetLastStatus

; Declare local vars fFtpSiteUrl, fFrtpUser,fFrtpPassword all (Char)
Calculate fFtpSiteUrl as 'ftp.omnis-software.com’

Calculate fFtpUser as 'anonymous'

Calculate fFtpPassword as 'your_mailid@your system’

Working message (High position,Large size) {Connecting to
[fFtpSiteUrl]}

FTPConnect (fFtpSiteUrl,fFtpUser,fFrtpPassword) Returns fFtpSocket
If fFtpSocket<O ;; an error
FTPGetLastStatus (fFtpSocket) Returns fStatus

OK message (High position,Large size)
{FTPConnect failed, status is [fStatus]}

End If
Close working message

Next locate the desired directory on the FTP site. Get the name of the remote server’'s
current directory usingTPPwd

FTPPwd(fFtpSocket) Returns fFtpCurrentDirectory

Get an OMNIS list of file information in the current directory on the remote server using
FTPList
Begin reversible block
Set current list fDirectoryList
End reversible block
Clear list
Working message (High position) {Getting Directory Info}
FTPList (fFtpSocket,fDirList,fFtpCurrDir,0) Returns fStatus
If fStatus<>0
OK message (High position) {FTPList failed, status is [fStatus]}
End If
Close working message
Do method FixFileNameList (fDirectoryList)
Calculate #L as 0
Redraw fDirectoryList

Working with FTP Sites 201

202

Next you change the working directory on the connected FTP server. The working directory
is the one for which thETPListcommand shows a directory listing. Files are transferred to
and from the remote working directory usiRgPCwd

FTPCwd(fFtpSocket,FtpNewDirectory) Returns fStatus
If fStatus<>0

OK message (High position) {FTPCwd failed, status is [fStatus]}
End If

Download files from the FTP site. Specify that the next file transfer on this socket is of
either ASCII or binary type usingTPType

FTPType (fFtpSocket,fFileMode) Returns fStatus
If fStatus<>0

OK message (High position,Large size) {FTPType failed, status is
[fStatus]}

End If

Download either a text file or a binary file from an FTP site uBingGet
PutFile (ISaveAsFileName,'Save file as:',",fTextFileName) Returns
fStatus
If len(ISaveAsFileName)
Working message (High position) {Downloading: [fTextFileName]}
FTPGet (fFtpSocket) Returns fStatus
If fStatus<>0
OK message (High position) {FTPGet failed, status is [fStatus]}
End If
Close working message
End If

Download a binary file into a Binary field in OMNIS usifR@PGetBinary
Working message (High position) {Downloading: [fBinaryFileName]}
FTPGetBinary (fFtpSocket,fBinaryFileName,fPicture) Returns fStatus
If fStatus<>0

OK message (High position) {FTPGet failed, status is [fStatus]}
Else

Redraw named fields fPicture to fPicture

End If
Close working message

Disconnect from the FTP site usiR@PDisconnect
FTPDisconnect (fFtpSocket) Returns fStatus

Chapter 8—Internet Programming

Additional Information

The common hostname/port for FTP servers is:
ftp, port 21

When using=TPList keep in mind that there are several standards among FTP protocols
(Unix, NT, and so on) for displaying directories. You may have to parse out some contents,
for example, read/write information, so that users don’t see it. If you are dealing with a Unix
FTP server, try the Common Code in the m_cc_ftp menu class to parse automatically.

Some FTP daemons accept system-specific directory path formats, that is, Macintosh colon-
separated as iMacintosh HD:My Folder:My File or VMS-style path and file specifications
asin

SOMES$DISK:[USER.SUBDIRECTORY]FILENAME.EXTENSION;1.

Consult the documentation for the server to determine the acceptable directory path
specifications. When in doubt, try the Unix style.

The FTPChmodcommand lets you change the permissions for a file on an FTP server. If
you've never done this before, consider using the supplied Common Code example window
w_cc_permissions to set the correct string value for this call.

Note to Windows users

FTP operations require the following entry in your Windows Services file:
ftp 21/tcp

If you experience problems connecting to an FTP server, consult this file.

Working with HTTP Servers and Clients

This section presents sample code for HTTP servers and clients.

HTTP servers and clients use HTTP (Hypertext Transport Protocol) to transfer information
specified by URLsCGIs allow HTTP servers to interact with databases.

The headers in HTTP server responses contain information about what kind of data is being
returned to a client. In the case of an HTTP call that is sending HTML files, for example,

the header specifiesntent-type:text/html. This tells the receiving application that an

HTML file is being sent.

The format of the headers in HTTP is exactly the same as that in e-mail protocols. The
recipient uses header information to determine what to do with the file when it is received.
In the case of HTML files, the browser first displays the text, then opens separate channels
for each additional file that is referenced by the HTML page. For example, a Web browser
might receive an image, decode the binary information, and display it in the appropriate
area of an HTML document.

Working with HTTP Servers and Clients 203

One of the best reasons for programming HTTP applications in OMNIS is that you can
create server applications to respond to requests from your end users’ Web browsers.

HTTP Server Commands

This example uses théTTPServecommand to listen for incoming client requests and
return “Hello world” regardless of the request.

First the method that starts listening.
StartListeningMethod

; Declare local variable vStatus (Long integer)
; Declare class variable fPort (Long integer) = 80
; Declare class variable fListeningSocket (Long integer)
TCPSocket Returns fListeningSocket
If fListeningSocket<0
Quit method (flag clear)
End If

Creates a socket and checks for an error.
TCPBInd (fListeningSocket,fPort) Returns vStatus
If vStatus<>0
HTTPClose (fListeningSocket) Returns vStatus
Quit method (flag clear)
End If

Binds the socket to a particular port and checks the status.

TCPListen (fListeningSocket) Returns vStatus

If vStatus<0
HTTPClose (fListeningSocket) Returns vStatus
Quit method (flag clear)

End If

Puts the socket in listening mode.

Set timer method 1 sec 5 {Listen}

Quit method (flag set)

Calls the Listen method every five seconds.

204 Chapter 8—Internet Programming

Listen

; Declare the following local variables:

; VWorkSocket (Long int0), vClientRequest (Char)

; VReadStatus (Long int), vStatus (Long integer)

; VAmountSent (Long int), vResponse (Char)

; VResponseStatus (Long int), vResponseHeader (List)
; VName (Character 1024), vValue (Character 1024)

; vContentLength (Long int)

TCPAccept (fListeningSocket) Returns vWorkSocket

Accepts an incoming connection on the port and returns the newly assigned socket number.

If vWorkSocket=-1 ;;-1is error
HTTPClose (fListeningSocket) Returns vStatus
Quit method (flag clear)
Else If vWorkSocket<>-10035
HTTPRead (vWorkSocket,vClientRequest) Returns vReadStatus
If vReadStatus<0
HTTPClose (vWorkSocket) Returns vStatus
Quit method (flag clear)
End If

Calculate vResponse as '<HTML><BODY><H2>Hello,
world!</H2></BODY></HTML>' ;; Prepares response

Calculate vResponseStatus as 200
Set current list vResponseHeader
Define list {vName,vValue}
Calculate vContentLength as len(vResponse)
Add line to list {('Content-type','text/html’)}
Add line to list {('Content-length’',vContentLength)}
HTTPHeader (vWorkSocket,vResponseStatus,vResponseHeader)
HTTPSend (vWorkSocket,vResponse) Returns vAmountSent
If vAmountSent<0
HTTPClose (vWorkSocket) Returns vStatus
Quit method (flag clear)
End If
HTTPClose (vWorkSocket) Returns vStatus
If vStatus<0
Quit method (flag clear)
End If
End If
Quit method (flag set)

Working with HTTP Servers and Clients 205

206

To stop listening you can call a stop listening method such as.
StopListening

HTTPClose (fListeningSocket)
Clear timer method

Accessing a Proxy Server

A proxy server protects an internal corporate network while allowing people inside the
company to serve Web pages. Proxy servers translate outside requests for use internally so
that outsiders do not gain access to information that an organization must keep secure. They
also can increase performance by distributing messages among multiple servers.

— HTTPPage
is a high-level command that allows you to grab a specified Web page transparently
from a remote server using a specific URL. No additional coding is required.

— HTTPGet and TCPReceive
are low-level tools for programming your application to handle communications
through a proxy server.

When a URL is redirected via a proxy server, the HTTP server originally contacted will
respond with a status code of 302, and a new URL to use as the value of the "Location:"
header field. To honor this when using the HTTPGet/TCPReceive combination, the caller
should loop through the redirections and replace the URL being gotten. Note that it is
possible to go through multiple redirections.

Chapter 8—Internet Programming

Test HTTP Proxy
; Declare the following local variables:
; getHost (Char) = 'localHost'
; getURL (Char) ="/TryProxy'
; sock (Long integer), and message (Char)
; len (Long int), respCode (Long int), and newURL (Char)
While getURL<>""
HTTPGet (getHost,getURL) Returns sock
Calculate getHost as ™" ;; Empty the string
Calculate getURL as "™ ;; Empty the string
If sock>=0
TCPReceive (sock,message) Returns len
; Check for the 302 status code, indicating a redirection
Do method getHTTPResponseCode (message) Returns respCode
If respCode=302
Do method getHTTPProxyURL (message) Returns newURL
; Finds the value for the "Location:" field in the
; HTTP response header.
If len(newURL)
HTTPSplitURL (newURL,getHost,getURL)
End If
End If
TCPClose (sock)
End If
End While

getHTTPResponseCode

; Declare parameter var HTTPResponseHeader (Field name)
; and Local variable IHTTPVersionString (Char) = 'HTTP/1.0'

Set return value
mid(HTTPResponseHeader,len(IHTTPVersionString)+2,3)}

Working with HTTP Servers and Clients

207

208

getHTTPProxyURL

; Declare parameter var pHTTPResponseHeader (Char)

; and Local variable IEOL (Char) = pick((sys(6)="W")+2*(sys(6)="U"),
chr(13),chr(13,10),'eol for unix’)

; ISearchStr (Char) = con(IEOL,'Location:)

; IPos (Long Int) = pos(ISearchStr,pHTTPResponseHeader)

If IPos

Calculate pHTTPResponseHeader as mid(pHTTPResponseHeader,
IPos+len(ISearchsStr), len(pHTTPResponseHeader))

Set return value {mid(pHTTPResponseHeader, 1,
pos(IEOL,pHTTPResponseHeader)-1)}

Else
Set return value {"}
End If

Submitting a CGI Request

OMNIS acting as an HTTP client is a powerful way to obtain information from the Web. To
do this, you use HTTP commands.

A typical CGlI request uses an HTML page that contains a form. This form is a list of fields
with names and general datatype attributes. A form also include®SBION tag, which
consists of a URL for the server that is accepting the CGI call for the form.

Some sample code, based on the US Postal Service site for accessing zip codes follows and
illustrates some of the commands.

The U.S. Postal Service is located at http://www.usps.gov/. Use a Web browser to connect
to this page on the server: http://www.usps.gov/ncsc/lookups/lookup_zip+4.html. The
browser displays a form for getting zip codes.

To gather the information needed for the application, use the browser’s built-in feature to
view the HTML source for this Web page. Scroll down and find the HTML tag FORM. In
this HTML, the tag looks like this:

<FORM METHOD="POST" ACTION="/cgi-bin/zip4/zip4ing">
This tag says that the POST method is used to send the zip code to the Internet server. This

means that thelTTPPostcommand can request information from the server. And the CGI
is /cgi-bin/zip4/zip4ing which the OMNIS application will call in its request.

Find the list of fields that the server is expecting in order to provide the requested
information. The labels that describe the form’s fill-in blanks and the field specifications are
included in the form, but you only need the names:

Chapter 8—Internet Programming

<INPUT SIZE="30" MAXLENGTH="50" NAME="company">
<INPUT SIZE="30" MAXLENGTH="50" NAME="urbanization">
<INPUT SIZE="30" MAXLENGTH="50" NAME="street">
<INPUT SIZE="30" MAXLENGTH="50" NAME="lastline">

There are also two buttons in the HTML source for the feliMPUT TYPE="submit"
VALUE="Process Address"> and<INPUT TYPE="reset" VALUE="Clear the Form">. The
SUBMIT button sends the filled-in information data to the server. The RESET button tells
the HTML Web browser to reset the fields in the famthe default value. Note that, in the
case of a SUBMIT button, the name of the button goes to the server when that button is
pressed. In this case, the SUBMIT button sends the Padwess Address.

Next, create a two-column list of fields and values to send to the server. The first column
describes the field name, and the second column contains the value.

Do LV_CGI_LIST.$define(FIELDNAME,LV_FIELD_VALUE)
Do LV_CGI_LIST.$add("company",PV_COMPANY)

Do LV_CGI_LIST.$add("urbanization",PV_URBANIZATION)
Do LV_CGI_LIST.$add("street",PV_STREET)

Do LV_CGI_LIST.$add("lastline”,PV_LASTLINE)

Do LV_CGI_LIST.$add("submit","Process Address")

When the list is complete, you can request information from the Postal Service’'s HTTP
server, using the information collected from the HTML form usiig PPost

HTTPPost ("www.usps.gov","/cgi-bin/zip4/zip4ing",

LV_CGI_LIST) Returns LV_SOCKET_NO

To receive the information, only a few commands are needed. This loop gathers information
from the Web server usingCPReceive

Repeat TCPReceive (LV_SOCKET_NO,LV_RESPONSE) Returns
LV_RESPONSE_LENGTH

Concatenate the results into a local variable LV_HTML. The return value of
LV_RESPONSE_LENGTH monitors the amount of information that is coming back. When
the response length drops to 0 (zero), the read is complete and you close the socket using
HTTPClose

Calculate LV_HTML as con(LV_HTML,LV_RESPONSE)

Until LV_RESPONSE_LENGTH<=0

HTTPClose (LV_SOCKET_NO)

Additional Information

Common hostname/port for HTTP servers is:
httpd, port 80.

Working with HTTP Servers and Clients 209

Port 80 is the standard port on an HTTP server where clients connect. Once you have
decided which port to use for listening on your server, you can accept HTTP connections by
using theHTTPServecommand. When a request arrives, HTTPServer opens a new socket
and passes the socket number to the processing routine.

Common hostname/port for echo servers is:
echo, port 7.

To get started with thETTPServecommand, try the HTTPServer Common Code method
in the m_cc_webserver class.

When you use HTTPPost or HTTPGet to specify a hostname URL, you do not need to
include the protocol specification (http://).

When you usélTTPParseto obtain a URL, the leading slash makes a simple OMNIS
equality string comparison to the name of the URL fail. Use the pos() function or similar
parsing mechanism to find the URL name.

The trailing question mark of a GET-method CGl, which separates the URL path from the
CGl arguments, is stripped by HTTPParse.

If you have used HTML already, you may have considered hard-coding all the HTML tags
inside string-manipulating methods until you've created the desired page. However, this is a
cumbersome method that often results in code duplication. Instead, try the Common Code
class m_cc_htmlgen, which creates HTML for you. If you know HTML, it shouldn't take

long for you to master it. If you don't know HTML, it can help you learn. The

m_cc_htmlgen Common Code menu class works through four basic atitakze,

Insert Add, andMake

— Init(ialize) initializes a character variable with an HTML base page.
— Insertplaces HTML tags into the HTML page at the proper location.
— Addappends HTML tags to the end of a specified character variable.

Makeencloses a character variable (text string) within the specified HTML tags, for
example, to make an entire string bold.

The m_cc_webserver Common Code class includes an infrastructure to maintain a list of
CGils that you support. This system uses two methods to manage the CGls. To add a CGl
name to the list, use the Register CGI method. To remove one, use the Remove CGI
method.

Once you have registered your CGI by supplying the method names to call for each CGI
request, use a listening method to start servicing requests from HTTP clients.

210 Chapter 8—Internet Programming

TCP Socket Programming

The following section demonstrates a TCP/IP client and echo server, Domain Name
Services, a TCP client HTML retrieval using a GET request, and sending e-mail using
TCP/IP.

TCP Echo Server and Client

This example uses basic TCP/IP commands to implement an echo server, a program that
simply responds with “Hello, world!” followed by the contents of any message it receives.
The example also shows a client accessing the echo server. A simple protocol consists of
establishing a connection to a client and echoing all messages until a message containing
only a period tells the echo server to close the connection. A client connecting to the server
may also send a message containing only an exclamation point, signaling the server not only
to stop the current session, but to stop listening for any more connections.

Whereas many TCP/IP stack implementations contain a built-in echo server, this example
implements a simple version of that command in an OMNIS method.

Server Code

; Declare the following local variables:

; listenSocket (Long int), message (Char)

; connectedSocket (Long int), portNumber (Short num 0 dp) = 1234
; status (Long int), messagelLength (Long int)

TCPSocket Returns listenSocket

Creates a socket on which OMNIS listens for connections.
TCPBInd (listenSocket,portNumber) Returns status

Binds that socket to a port, in this case port 1234. Next allow the socket to accept
connections from clients.

TCP Socket Programming 211

TCPListen (listenSocket) Returns status
Repeat
; until you get a message containing only an exclamation point
Repeat
;; listen for connections via TCPAccept
TCPAccept (listenSocket) Returns connectedSocket
Until connectedSocket>0
; @ socket number <0 means there was no client
; Get the message from the client
TCPReceive (connectedSocket,message) Returns messagelLength
While message<>"."&message<>"!"
; while you don't see a stop flag
; Get the contents of the client's message to us

TCPSend (connectedSocket,con("Hello, world!",message))
Returns messagelLength

; Concatenate "Hello, world!" and send the message back
TCPReceive (connectedSocket,message) Returns messagelLength
End While
; Close the connection to the current client
TCPClose (connectedSocket) Returns status
Until message="1"
; You have been told to stop listening, close the listening socket
TCPClose (listenSocket) Returns status

Client Code

This code is an implementation of a single client.

; Declare the following local variables:

; ServerAddress (Char) = 'TheServerAddress'

; ServerPort (Long integer) = 1234

; Socket (Long integer)

; Buffer (Char), and Status (Long integer)

TCPConnect (ServerAddress,ServerPort) Returns Socket

Connects to the remote machine.

212 Chapter 8—Internet Programming

If Socket>=0 ;; If successful...
TCPSend (Socket, This is message 1 connection 1') Returns Status
Repeat ;; Wait for a response
TCPReceive (Socket,Buffer) Returns Status
Until Status>0
; Send another message
TCPSend (Socket, This is message 2 connection 1') Returns Status
Repeat ;; Wait for a response
TCPReceive (Socket,Buffer) Returns Status
Until Status>0
; Signal the end of this session
TCPSend (Socket,".") Returns Status
; Now clean up
TCPClose (Socket) Returns Status
End If

Domain Name Services

The TCP/IP Domain Name Services (DNS) commands resolve server names when given IP
addresses and vice versa.

Address-to-Name Example Code

; Declare the following local variables:

; LocalPort (Long integer) = 1111

; AcceptSocket (Long int), ListenSocket (Long int)
; Buffer (Char), Status (Long int)

; RemoteAddress (Char), RemoteName (Char)

; LocalAddress (Char), LocalName (Char)
TCPSocket Returns AcceptSocket

Creates a socket for accepting connections.

TCPBInd (AcceptSocket,LocalPort) Returns Status

Specifies the port on which to listen.
TCPListen (AcceptSocket) Returns Status

Puts the socket in listen mode. Now wait for an incoming connection.

Repeat
TCPAccept (AcceptSocket) Returns ListenSocket
Until ListenSocket>=0
Having made a connection get the remote machine's address and domain name.

TCPGetRemoteAddr (ListenSocket) Returns RemoteAddress
TCPAddr2Name (RemoteAddress) Returns RemoteName

TCP Socket Programming 213

214

Now clean up...

TCPClose (ListenSocket) Returns Status
TCPClose (AcceptSocket) Returns Status

Now get the local machine's address and domain name, and display the result.

TCPGetMyAddr Returns LocalAddress
TCPAddr2Name (LocalAddress) Returns LocalName

OK message (High position,Large size) {My address is '[LocalName]'
([LocalAddress])// | was contacted by [RemoteName]'
([RemoteAddress])}

Name-to-Address Example Code

The following gets the address of the OMNIS Software web server using the
TCPName2Addcommand.

TCPName2Addr (‘www.omnis-software.com') Returns IvIPAddress

; returns something in the form 192.135.236.7

OK message (High position,Large size) {The IP address of the OMNIS
software web server is '[IvIPAddress]'}

TCP HTML Retrieval

The following example uses the basic TCP/IP commands to retrieve an HTML page from
an HTTP server. The protocol consists of establishing a connection to the server and issuing
a GET-type request, specifying the pathname of the HTML document to be downloaded.

Although OMNIS includes thelTTPPagecommand to accomplish the same task, this
example illustrates how a simple version of the protocol can be implemented using low-
level commands.

; Declare the following variables:

; Server (Char) = 'www.omnis-software.com’

; Path (Character 10000000) = '/index.html'

; that is, the pathname of the HTML document to retrieve

; Socket (Long integer), Page (Char)

; Temp (Char), Status (Long int)

TCPConnect (Server,'http’) Returns Socket

Connects to the server.
TCPSend (Socket,con('GET ',Path, HTTP/1.0")) Returns Status

Sends a GET request. Next, retrieve the page being sent back by the server.

Chapter 8—Internet Programming

Repeat
;; Get the data currently in the buffer
TCPReceive (Socket,Temp) Returns Status
;; Append it to what's already received
Calculate Page as con(Page,Temp)
; Loop until all of it is received

Until Status<=0

When you're done, close the socket.

TCPClose (Socket) Returns Status
OK message (High position,Large size) {Page = "[Page]"}

TCP Client E-maill

The following example demonstrates how the basic TCP/IP commands can send a mail
message via the SMTP protocol. This protocol simply consists of establishing a connection
to a server and issuing commands as you might do with a line-oriented command shell such
as DOS or Unix. The difference is that you use OMNIS commands to issue commands and
look for responses. Listening for responses at the appropriate time is mandatory!

This example implements a simple version of$lTPSendommand in an OMNIS
method. Before running this example, you should change the contents of the vars
senderAddress, recipientAddress, and smtpServerAddress to addresses that are specific to
your site.

; Declare the following local variables:

; Socket (Short integer (0 to 255))

; senderAddress (Char) = "me@mydomain.com"

; recipientAddress (Char) = "you@youraddress.com"

; smtpServerAddress (Char) = "smtp.somedomain.com”

; status (Long integer)

; recvBuffer (Character 2048)

; sendBuffer (Character 2048)

; myAddress (Char)

; numCharsReturned (Long integer)

TCPConnect (“interserve.com","smtp") Returns Socket

Opens a socket to an e-mail server at the SMTP socket.

TCPReceive (Socket,recvBuffer) Returns numCharsReturned

Gets the connection response.
TCPGetMyAddr Returns myAddress

Determines your IP address - it is required by the SMTP protocol. Now send your IP
address and begin the protocol with the HELO command.

TCP Socket Programming 215

216

Calculate sendBuffer as con("HELO ",myAddress,chr(10)) ;; Lines
end with a carriage return character

TCPSend (Socket,sendBuffer) Returns numCharsReturned
TCPReceive (Socket,recvBuffer) Returns numCharsReturned

Say who the e-mail message is from with the MAIL FROM command, and who is the
recipient with one or more RCPT TO: commands.

Calculate sendBuffer as
con("MAIL FROM: <",senderAddress,">",chr(10))

TCPSend (Socket,sendBuffer) Returns numCharsReturned

TCPReceive (Socket,recvBuffer) Returns numCharsReturned

Calculate sendBuffer as con("RCPT TO:
<"recipientAddress,">",chr(10))

TCPSend (Socket,sendBuffer) Returns numCharsReturned

TCPReceive (Socket,recvBuffer) Returns numCharsReturned

The DATA command begins the actual e-mail message.

Calculate sendBuffer as con("DATA",chr(10))
TCPSend (Socket,sendBuffer) Returns numCharsReturned

Even though the e-mail server gets the sender and recipient in the MAIL FROM and RCPT
TO commands, every e-mail message must contain at least this information in a message
header along with a Subject: line.

Calculate sendBuffer as con(‘From: "Hello,world! Example"
<'.senderAddress,">',chr(10))
TCPSend (Socket,sendBuffer) Returns numCharsReturned

Calculate sendBuffer as con('To: "Pop Test"
<poptest@www.omnis-software.com>',chr(10))

TCPSend (Socket,sendBuffer) Returns numCharsReturned
Calculate sendBuffer as con("Subject: Hello, world!",chr(10))
TCPSend (Socket,sendBuffer) Returns numCharsReturned

The header is separated from the message by a blank line.

Calculate sendBuffer as chr(10)
TCPSend (Socket,sendBuffer) Returns numCharsReturned

Calculate sendBuffer as con("Hello, world!",chr(10))
TCPSend (Socket,sendBuffer) Returns numCharsReturned

And the message is terminated by a line containing only a period.

Calculate sendBuffer as con(".",chr(10))
TCPSend (Socket,sendBuffer) Returns numCharsReturned

The SMTP protocol is terminated with the QUIT command.

Chapter 8—Internet Programming

Calculate sendBuffer as con("QUIT",chr(10))
TCPSend (Socket,sendBuffer) Returns numCharsReturned

Now, close the socket.
TCPClose (Socket) Returns status

The complete SMTP protocol is very complicated and allows for sending to multiple
recipients (se€MTPSend Recipients on the CC and BCC lists are taken care of by the e-
mail message header. In addition, special message content and other information may be
contained in an e-mail header, though this example restricts the header contents to the
absolute minimum required by the protocol and e-mail servers.

Additional Information

The “TCP Listener” Common Code method in the m_cc_webserver class speeds up the
process of listening for client requests using TCP commands.

Sockets are numbered (allocated) sequentially, starting with O (zero) under MacOS or 1
under Windows. The maximum number of connections is 32 under MacOS and 64 under
Windows.

Many of the HTTP commands automatically encode and decode CGI information. Refer to
those commands before assuming that you have to do any work for the most common
operations, that is, POST/GET, parsing an HTTP header, and so on.

Internet Utilities

This section shows how to UUencode and decode information for transmission via e-mail or
other Internet facilities, how to CGl-encode and decode text into a form acceptable as an
argument to a Web server CGl, and how to use the binary file commands for writing to and
reading from binary files in OMNIS methods.

UUEncoding and UUDecoding

UUencoding is used to move binary and text data between computers of all types, avoiding
byte-ordering problems. It is also used to pass username and password from a Web browser
in response to an HTTP 404 Authentication challenge.

; Declare the following local vars for en/decoded chars:
; IVEncodedText (Char)
; IvDecodedText (Char)

Internet Utilities 217

Encode text using thdUEncodecommand.

UUEncode ("Hello, world!",IvEncodedText)

OK message (High position,Large size) {Hello, world! UUEncodes as
[IVEncodedText]}

; Message reads: Hello, world! UUEncodes as SGVsbG8sIHdvemxklQ==

Now decode the text usinglUDecode

UUDecode (IvEncodedText,lvDecodedText)

OK message (High position) {[vEncodedText] UUDecodes as
[lvDecodedText]}

; Message reads: SGVshG8sIHdvemxklQ== UUDecodes as Hello, world!

CGIEncoding and CGIDecoding

CGI Encoding is used to pass special characters in URLSs, especially spaces and characters,
which might otherwise be mistaken for delimiters.

; Declare the following local vars for en/decoded chars:
; IVEncodedText (Char)
; IvDecodedText (Char)

Encode characters (in this case, text) u§i®@Encode

CGIEncode ("Hello, world!") Returns IvEncodedText

OK message (High position,Large size) {Hello, world! CGIEncodes as
[IVEncodedText]}

; Message reads: Hello, world! CGIEncodes as Hello%2C%20world%21

Now decode the text usirgGlDecode

CGIDecode (IvEncodedText) Returns IlvDecodedText

OK message (High position,Large size) {[IVEncodedText] CGIDecodes as
[lvDecodedText]}

; Message reads: Hello%2C%20world%21 CGIDecodes as Hello, world!

Reading and Writing Binary Files

This example shows how you use the binary file commands to write and read from binary
files in OMNIS methods. For simplicity, the example below writes a text string to disk and
reads it back into memory. However, these commands would normally be used to read and
write binary-type data, such as graphical images, spreadsheet documents, and so on.

; Declare the following local variables:

; Text (Character 10000000) = 'Hello world!

; PathName (Character 10000000) = 'hello.txt'
; BinaryField (Binary)

; Status (Long integer)

218 Chapter 8—Internet Programming

Copy the text string to a Binary field usibiiEncode
UUEncode (Text,BinaryField)

Write the contents of the Binary field to disk usivgiteBinFile
WriteBinFile (PathName,BinaryField) Returns Status

Clear variables, then read the file’s contents back into a Binary field RemgBinFile

Calculate Textas "
Calculate BinaryField as
ReadBinFile (PathName,BinaryField) Returns Status

Copy the contents of the Binary field to a text variable usid®ecode

UUDecode (BinaryField, Text)
OK message (High position,Large size) {[Text]}

Programming Tips

Programming Tips

This section discusses the ways that you can adapt your programming style and practices to
the demands of the Internet or Intranet. It is designed for people who are just beginning to
Web-enable their applications.

Error Handling

An essential fact to remember about all Internet connections is that your environment is
uncontrolled. Factors such as network traffic are unpredictable and may interrupt the current
activity at any time. For this reason, you must constartfckreturn valuesmonitorand
handleerrors. Consider the following factors as you plan your application.

Whenever a TCP or HTTP command performs any type of socket operation, your code
must check the command’s return value for an error and, if one occurs, close the socket. For
example, TCP commands return a value of O (zero) to indicate success. The following code
checks for this value and closes the socket if there is an error.

TCPBInd (fListeningSocket,fPort) Returns vStatus
If vStatus<>0
TCPClose (fListeningSocket) Returns vStatus
Quit method (flag clear)
End If

Be sure to define all variables containing socket numbers and command return values as
Long Integer. If you use Short Integer values, you cannot check for error conditions,
because an OMNIS Short integer cannot store a negative value.

219

220

When you perform an operation on a socket, reading information for example, the socket
can operate in one of two mode#ckingor non-blocking

— A blocking socket keeps waiting until it receives data, and the function is not completed
until the data arrives.

— A non-blocking socket does not wait but instead returns immediately with an error
message to indicate that there is no data to receive.

When you are using TCP or HTTP commands to connect to a socket, first decide whether to
use blocking or non-blocking sockets and program accordingly. Blocking sockets have their
uses, but non-blocking sockets are generally better. If a socket blocks, it stops processing
until it receives what it requires, while a non-blocking socket keeps returning the WinSOCK
error -10035 until it receives what it needs or times out. Under Windows, uS€Riiock
command to toggle socket-blocking on or off. The following example shows code for
blocking sockets:

TCPConnect ('ServerAddr',123) Returns Socket

If Socket >= 0
TCPSend (Socket,LongMessage) Returns Status
TCPReceive (Socket,TheResponse) Returns Status
TCPClose (Socket) Returns Status

End if

And for non-blocking the code might look like this:

TCPConnect (‘ServerAddr',123) Returns Socket
If Socket >= 0
Repeat
TCPSend (Socket,TheMessage) Returns Status
Until Status <> -10035
Repeat
TCPReceive (Socket,TempBuffer) Returns Status
Until Status >0
Repeat
Calculate TheResponse as con(TheResponse, TempBuffer)
TCPReceive (Socket,TempBuffer) Returns Status
Until Status = -10035
TCPClose (Socket) Returns Status
End if

By default, Windows sockets are non-blocking. Under MacOS, sockets are always non-
blocking.

OMNIS cannot determine whether a particular command is being executed on a machine
acting as a server or as a client. Therefore, when writing server applications, you should use
theWebDevErrorcommand to specify an error-handling routine, otherwise OMNIS

Chapter 8—Internet Programming

displays a modal dialog each time an error occurs, effectively disabling the server until the
error is acknowledged.

The error codes returned by the Internet commands are categorized as follows:

-1t0-999 Deterministic programmer errors such as insufficient parameteys,
invalid parameter values, and so on

-1000 and below | Non-deterministic runtime errors such as insufficient memory,
inability to connect to server, and so on.

Programming Tips

You need to know immediately about deterministic errors, whereas you don’t want runtime
errors to interfere with the server’s operation. Here is an example of an error handling
method that does this.

Error Handler

; Define the following parameters:

: PWE_ErrText (Character 500) ;; error text

; PWE_ErrCode (Long integer) ;; error code

; pPCommand (Character 50) ;; Command name

; PWS_ErrCode (Long integer) ;; WinSock error code
If pErrCode > -1000 ;; Check for programmer errors

Ok message (Large size, sound bell)
{Error! Command = [pCommand].Code = [pWebDeVvErrCode]
/[Text = "[pWebDevErrText]"}

Else ;; It's a runtime error, so log it
Begin reversible block
Set current list cvErrors
; List cols defined as cvCommand,cvCode,cvText,cvWSCode
End reversible block

Add line to list (p)Command, pWE_ErrCode, pWE_ErrText,
pWS_ErrCode)

End if

Client/Server Connections

A system of sockets and ports categorizes the communications among Internet computers. A
telephone switchboard offers an analogy. When you call a company’s main listed phone
number, a person answers and then directs your call to the employee you are trying to reach.
The main line is then free to take another call. Similarly, when a client accesses an HTTP
server, for example, on Port 80 at a given socket, the server accepts the request and routes i
to a different local port and socket for processing.

Client/server connections vary according to the type of protocol you are using. FTP
operations are session-based and straightforward. Your client connects to the server,

221

222

performs the operations it requires, then disconnects. The client can perform multiple
operations using a single connection.

For Mail operations, the e- mail commands handle the opening and closing of connections
to POP3 and SMTP servers. A single command is used to send one message or receive all
waiting messages.

HTTP and TCP connections require the most adjustment to standard LAN client/server
programming styles. Keep the following points in mind when using these commands to
handle client/server interactions.

A TCP connection typically involves many operations. Some of the higher-level HTTP
commands reduce the number of steps required to implement the HTTP protocol using TCP
commands:

— At the server, opening a socket

— Atthe server, listening for client requests at a port and socket. At the client, specifying
the server address and port

— Atthe server, accepting the client requests and returning a new socket number for
receiving them. At the client, establishing the connection with the server

— Sending and receiving information
— Closing the socket

Opening a connection is something like opening a file: When the transfer is complete, the
socket must be closed. However, the consequences of leaving a socket open are more
serioug] at the very least, a tied-up resource until the connection times out.

Sockets are either blocking or non-blocking, as described above. Although it's often easier
to program using blocking sockets, you surrender control of the socket until the operation is
complete. For this reason, non-blocking sockets are usually preferable.

To transmit information, the TCP/IP protocol monitors the exchange of information (in
packet$ and attempts to estimate how long to wait for a reply before re-sending a packet.
For this reason, you will encounter limits on how many characters you can send in a single
operation. If you send very long character streams, eventually the protocol will drop packets
and force them to be retransmitted. A good rule of thumb is to keep your messages short.
When you are querying a Web server, break long queries into small ones and cache the
results.

Intercomputer transfer times can vary widely and for that reason, you may need help when
timing certain intercomputer transfers. Sending a ping to the distant computer allows the
program to determine whether a time-out might close the socket or otherwise interfere with
downloading a file. Us& CPPing to send an ICMP request packet to a specified IP address
or named host.

Chapter 8—Internet Programming

Programming Tips

Caching

Caching has been described by some people as the most important technique you can apply
to your Internet applications. It's obvious to anyone who has surfed the Web that a browser
cache saves the client a lot of time and spares resources on HTTP servers.

Proxy servers often play a part in caching by maintaining a network-level cache that is
accessible to all the browsers in an organization. A cache server of this type maintains
URLs in a database and uses them to satisfy local requests. When you do not want a proxy
server to cache a reply to a request, you can include pragma:no-cache in the response
header.

When information does not change rapidly, re-querying your server can affect performance.
Whether or not you cache queries and responses depends upon a humber of factors,
primarily related to the type of application. It's a good idea to plan caching after doing some
analysis.

— Are many requests repetitive? If most queries are unique, there is little point in caching.

— Measure the number of hits you get on information that you may want to cache, model
your measurements, and ask yourself whether you require the speed.

— Look at the time sensitivity of information that people request. For example, if users
require a daily sales report, you can simply run it at the same time each day, convert it
to HTML, and make it available as a static URL. It's not necessary to create the report
on demand each time that it's needed.

In designing your applications, caching is also important because of the short-lived
connections you must create in order to maintain reliable and monitored data exchanges
among Internet data resources. What was a single connection within a LAN becomes a
series of short connections on the Internet. You break a long query into shorter queries, then
retrieve each response and cache it.

Your application can cache URL requests to your database. For example, you can keep
requested URLs in a two-column list, with one column holding the request and the other the
data response. When a user queries the database, your application consults the list and looks
for a match. If there is no match, the server retrieves the information from the data source
rather than returning a cached value. To implement expiration dates and times for cached
requests, you might set up a trigger that fires and makes an entry in a second flag table.
When a flag is set by the date and time of a request, the application knows that it must
search anew for the query response rather than using the cached data.

You can also increase performance by using an OMNIS datafile an as intermediary cache
resource. When a request is made to, for instance, your SQL database, the response data is
stored in the intermediate OMNIS datafile. Then when a client makes the same request
again, the data is retrieved from the OMNIS datafile much faster than it would be from the
originating SQL database.

223

224

You can also useookiesto help users request information that they have requested before.

A cookie is a piece of information sent from an HTTP server to a client for storage. It can
provide your application with functionality similar to that of Web browser caches, except

that it works for queries to a database. When a client makes a request to a server, a cookie is
set in the HTTP server response header, telling the client to store the request. Subsequently,
when the client requests an URL from the server, the client application looks for a match

with any stored cookies and places the URL/response in the client request header. A cookie
can store the expiration date and time along with the query.

The cookie technique is generally implemented through a CGlI script. Cookies are used on
the Internet, for example, to store user registration information so that once a user has
registered at an HTTP site, they need not re-type an ID to gain registered access. Here is a
sample showing a HTTP server header response that specifies a cookie to be stored by the
client for future use.

Set-Cookie: NAME MyCookie ; expires= 01/01/98 ;
path= /; domain= omnis.com ;

A cookie can bring a stored database record by referencing a lookup key, for example:
Set-Cookie: KEY _FIELD=0056; expires= 01/05/98 ;path= /;

To revoke a cookie, a new cookie is set with the same name as the original one, but with an
expiration date in the past.

Caching and cookie expiration techniques dictate the neecctorsistentate and time
setting on your server. Be careful: Daylight Savings Time adjustments, for example, can
wreak havoc with caching and cookies. Servers that are accessed globally should use
Greenwich Mean Time (GMT). A commonly accepted forma$ist, 06 Nov 1997

18:26:02 GMT

Troubleshooting Common Problems

The Internet relies upon agreed standards for naming and protocols. Problems can arise
when your application connects to the Internet and does not behave as expected by different
types of servers. Standards and conventions are well-documented at various Internet sites.

Many systems, including Windows systems, have a TCP/IP Services file that lists certain
types of servers and specifies service names corresponding to port numbers that are used in
accessing them. In this way, if the underlying port number changes (as it has for POP mail
servers, for example), programs still function, because they refer only to the service name.
The TCP/IP system translates the name by looking in the Services file dynamically. Internet
mail and FTP commands, when used under Windows, refer automatically to the Services

file and use the entries when accessing mail servers. In addition, some TCP commands
optionally use a service name from the Services file. You can override the Services file

entry by using a port number instead.

Chapter 8—Internet Programming

When you update your operating system or communications software, you may find that you
have more than one Services file on your hard disk drive(s). The operating system TCP/IP
software will only use one of them, which lists the service names and port numbers. Some
old TCP/IP systems’ Services files will have out-of-date port listings.

The following table lists a few of the problem symptoms that you may encounter, the most
common cause or causes of those problems, and some solutions.

Symptom

Possible Cause(s)

Possible Solution(s)

OMNIS or
system freez

Attempting to quit OMNIS with
gpen sockets

Track all open sockets and ensure that t
are closed

hey

The server ig
not servicing
client

You started listening on a
socket, stopped to do someth
else, attempted to listen again

Ensure that the listening socket is closed,

my closing all recorded sockets. If you
,don’t know which sockets are open, gue

BS

requests but the listening socket was |a number range to close, or check the
already bound to a listening | documentation for your sockets
port and wasn’t closed. The |implementation and close all sockets that
TCPBindoperation is failing. |could be open.
The server |The OMNIS modaEnter data | Consider using modeless data entry.
hangs command on the server stops|
processing until its modal
dialog is dismissed.
The server encountered an ernrbiseWebDevErrorto call a method when g
that was not handled by the |command returns an error.
WebDevErrorcommand. If you
don’t useWebDevErrorto set
up a method for handling
errors, Internet commands
report errors by displaying a
modal message that stops
processing until the dialog is
dismissed.
Some client | Long, blocking asynchronous | Minimize blocking asynchronous
requests are| processes are taking place or processes. If they are database requests,
never the server, for example, large| constrain your query system so shorter
answered or| database queries, mail queries are performed. If you are
they time deliveries, or DNS lookups. | performing network operations, ensure the
out. remote resources are as accessible as

possible to your server. This may mean
running multi-threaded mail or DNS serv
applications directly on your server.

Programming Tips

225

Chapter 9—Extending
OMNIS

This chapter describes various features and third-party applications you can access and use
in OMNIS to extend its functionality. Some of these features are loaded as external
components, while others access an interface available under one platform only. The
features you can access include

226

OLE and Automation
under Windows, OLE lets you link or embed different types of object in your server or
OMNIS database, including spreadsheets, pictures, and wordprocessing documents

DDE
lets you exchange data and commands with other programs running under Windows

Lotus Notes
lets you manage and update Lotus Notes databases and e-mail

Apple Events
lets you send standard commands and data to and from OMNIS, and interact with other
MacOS applications including word processors and databases

Publish and Subscribe
is a feature of the MacOS that lets you make data available to other applications or
access such data

Help
describes how you create help for your own application

Chapter 9—Extending OMNIS

OLE Pictures

You can use OLE in your applications to link or embed OLE-aware objects in your
database. The Windows implementation of OLE2 provides features such as Linking and
embedding, and in place activation. The OLE Picture external component is loaded by
default and found under the External Components button in the Component Store.

Using the OLE Picture component you can link or embed many different types of object

into your database, including spreadsheets, charts, pictures, and wordprocessing documents.
You link or embed the object in an OLE Picture field while your window is in enter data

mode. Note tha#mbeddeabjects are stored in your database whdielasd objects store

the link or location of the source file only.

Placing an OLE Picture
To place an OLE Picture on your window

® Open your window in design mode

® Open the Component Store, or bring it to the top, by pressing F3

® Click on the External Components button in the Component Store toolbar
® Click on the OLE Picture icon and create the field on your window

® Select the field and set its properties in the Property Manager

The OLE field is an external component of type kComponent. You can set its dataname
property to a variable of Picture type.

Inserting Objects

You can link or embed an object in an OLE Picture field using the Edit menu. The window
containing the picture field must be in enter data mode when you insert the object. You can
create three types of object.

— A new embedded object
— An embedded object from an existing file

— An object linked to an existing file

OLE Pictures 227

To insert an OLE Picture component

®* Put OMNIS in enter data mode (this is set in the window by default as the
modelessdatgroperty)

®* Tab to your OLE field, or click in the field (the focus is shown as a dotted border)

® Choose the Edit>>Insert Object menu item

Inzert Object |
Object Type: | 0k I
% Create Mew: Adobe A
Bitrap Image Cancel |
PR e — Inter_net Du:u:ument [HTHL]
tedia Clip

Microsoft ClipAt Gallers

Micrazoft Drawing

icrozoft Equation 2.0

Microzoft Excel 5.0 Chart =]

Rezult
|nzertz a new Adobe Acrobat Document object

[~ .
ifito pour document.

The Insert Object dialog lists all the OLE-aware applications on your system.

To create a new embedded object
® Select the Create New radio button (the default)
®* Double-click on the application type, for example, Microsoft Excel 5.0 Worksheet

The server application is launched. You enter the data into the server application and close
the application (you may also want to save the source file). The object appears in the OLE
Picture field. To save the object you should update the record.

228 Chapter 9—Extending OMNIS

To insert an object from an existing file

® Select the Create from File radio button in the Insert Object dialog

Inzert Dbject x| |

aK |

" Create Hew:

File: Microsoft waord 6.0 Cancel |
' Create from File: Iu::'xwinwu:-rd'xml:u:-_as.du:u:

Browse... [v |F|nk_

Fesult
Inzerts a picture of the file contents into vour

@4@ daocument. The picture will be linked ta the file 2o
that changes to the file will be reflected in your
dacument.

® Enter the path and name of the file you want to insert or click on the Browse button to
locate the file

If you want to create a link, instead of embedding the object
® Select the Link check box and click on OK

The linked object appears in the OLE Picture field. To save the linked or embedded object
you should update your server or OMNIS database.

Alternatively, you can paste an OLE object into the OLE Picture field if you have placed
OLE data on the clipboard (your window must be in enter data mode and the cursor must be
in the picture field).

® SelectEdit>>Pasteto create an embedded object, or

® SelectEdit>>Paste Link to create a link to the object

OLE Pictures 229

230

Linking Objects

To create a link to a source file, you must first open the server application, create the source
file, and Copythe data you require. This places the OLE data on the clipboard.

To place the link

® Put OMNIS in enter data mode
® Place the cursor in your OLE Picture field

® Select the Edit>>Links menu item

Links: Type
i o e s

Update

I Cancel I
M anual

| Update How I

| Open Source I

| Change Source... I

| BreakLink |

Sourcez D:AMSOFFICEAEXCELABOOK1 XLS!Sheet1!R1C1:R3C3
Type: Microsoft Excel 5.0 Worksheet

Update:) Automatic ® Manual

The Links dialog lists all the current links and lets you specify whether the link is updated
manually or automatically.

® Double-click on the link you want to insert

When you first link to an object, OMNIS sets the link to Manual update. You click on the
Update Now button to update the link manually.

To start the application to edit the data, click on the Open Source button.

To change the link to another source, click on the Change Source button and use the
resulting dialog to specify a new link as before. You select the Automatic radio button to
force the link to update when the source changes.

Note that if the linked object is large, automatic updating can take quite some time, and this
can happen at unexpected moments.

Chapter 9—Extending OMNIS

To copy the contents of an OMNIS field to another application, click in the field while in
enter data mode, and seléctit>>Copy. Switch to the other application and paste the link.

Edit Menu Verbs

When an OLE Picture field contains a linked or embedded object, the Edit menu contains
an item corresponding to the object, for example, Picture or Linked Picture. This submenu
gives you up to four verbs, such as Edit, Play, and so on. It can contain a Convert item that
lets you convert the type of the OLE2 object to another server application if applicable.

The Edit or Open item on the Edit menu always opens the server application as a separate
application rather than activating the object in place.

In place Activation

You can edit an objei place(if the server

u | | | |
application permits this), which means the OMNIS A B |
menu bar becomes partially controlled by the server %_1 |Jon 1 347E
application, with OMNIS supplying only tHedit 2 | Giffy 2384
menu. Also, OMNIS removes all its tool bars 3 |Bed 8734 =
(including floating ones) for the duration of the in placg 4 [Mason 45112
editing. 5 |Steve 8923

. L 6 |Marmi 1243
To edit an object in place H! {! }! H[Sheetl /%
et et |

® |Locate the record/object you want to change
® Place OMNIS in enter data mode (or you may already be in enter data mode)

® Double-click on the object

If the object is larger than the OLE Picture field, in place activalims nobccur. In this
case the server application is launched as a separate window.

If you add data to the object you may need to resize it by dragging its handles to display the
additional data in the OLE field. (For example, if you add more cells of data to an Excel
worksheet, you must resize the field to include the new cells.)

To return to OMNIS and save the changes to the object, click somewhere in your OMNIS
window outside the object.

OLE Pictures 231

Embedding and Linking using Drag and drop

You can drag objects from other applications onto an OMNIS picture field while it is in
enter data mode. There are three possible situations with the following consequences:

— No keys held down
moves the object to create an embedded object

— Citrl key held down
copies the object to create an embedded object

— Ctrl and Shift keys held down
creates a linked object in the picture field

Properties and Methods

OLE Picture fields have the following runtime properties and methods which let you
manipulate the OLE object.

— $classapp
application name of the current OLE object, for example, on inserting a Word 97
object, this property would have the value ‘Microsoft Word 97’

— $classfull
full name of the current OLE object, for example, on inserting a Word 97 document
object this property would have the value ‘Microsoft Word Document’

— $classshort
short name of the current OLE object; for example, on inserting a Word 97 document
object this property would have the value ‘Document’

— $getobject()
returns an automation object (refer to OLE Automation for further information on
automation objects). For example

; myObject is a variable defined as Object with no subtype
; myOLEfield is an item reference for the OLE Picture field
Do myOLEObject.$getobject() Returns myObject

Ok Message {The name of the OLE objects’ server is
[myOLEObject.$appnamel}

232 Chapter 9—Extending OMNIS

— $doverb(constant)
invokes the specified action on the OLE object and returns an HRESULT error code
(refer to OLE Automation for further information concerning HRESULT error codes);
the following constants are available

kOLEPrimary the default action for the object

kOLEShow activates the object for editing; if the server application
supports in-place activation, the object is activated in the OLE
Picture field

kOLEOpen opens the OLE object in a separate application window, even
if the server application supports in-place activation

kOLEHide causes the object to remove its user interface, toolbars, etc.,
from the view; applies to in-place activated objects only

kOLEUIActivate if the object supports in-place it is activated, otherwise an error
occurs

kOLEDiscardUndoState discards any undo state without deactivating the object

OLE Automation

OLE Automation

Under Windows 32-bit platforms, OMNIS Studio supports Automation, formerly known as
OLE Automation, for Component Object Model (COM) objects which expose the dispatch
(IID_IDispatch) interface, such as Microsoft Word and Excel.

In addition, under Windows 32-bit platforms only, OMNIS Studio supports remote
automation, which means that the object resides on another machine, via the Distributed
Component Object Model (DCOM).

OLE Automation is provided via non-visual external objects which you can use at any time
without the need for a window or report instance.

Automation objects have the following basic life-cycle:

1. Construct the automation object (such as Microsoft Word).

2. Communicate with the automation object via methods and properties.
3. Terminate the automation object.

OMNIS is always the client of the automation objects it constructs.

You access automation objects by adding a new object variable and selecting the
appropriate subtype.

If an error occurs, for example the construction of an automation object fails, you can
inspect both #ERRCODE and #ERRTEXT to determine the error.

233

234

The following code is a simple example of using an automation object.

; objExplorer is an Object with the subtype set to
; ‘InternetExplorer.Application.1’

Do objExplorer.$createobject() ;; Create the object
Do objExplorer.$navigate ; Invoke method
If objExplorer.$visible=0 ;» s explorer visible?
Do objExplorer.$visible.$assign(kTrue) ;; Show explorer
End If
Do objExplorer.$quit() ;; Quit/Shutdown explorer

OLE Automation Methods

You can use $createobject() to instantiate the automation object. This is not the only way to
construct a new automation object. Every automation object in OMNIS has the following
methods:

— $createobject()
creates the automation object

— $getobject(filename)
creates an automation object from the file; if the file is specified by empty (*"), a new
object is created, otherwise the object is created and restored to the state in the file

Wy

— $getactiveobject()
constructs an object to the active server object; note that this method relies on the
server implementing RegisterActiveObject

— Sisavailable()
returns kTrue if the automation object is available for use, that is, $createobject() or
$getobject() have been invoked successfully

OMNIS to Automation Variable Type Conversion

Automation has a data type called VARIANT, which can hold any type of data.
Unfortunately, with this flexibility comes a price, namely that some objects, Excel for
example, state that they handle any type of data, but in fact they may be expecting data
passed by reference or of a limited subset of the VARIANT types. The OMNIS automation
component takes the same approach as Visual Basic, meaning that everything is passed by
VARIANT, making certain assumptions based on the OMNIS data type you use. You can
override these assumptions if you wish.

The default approach is as follows.
— Everything is passed in a VARIANT type by value.

— Convert to and from automation data types using the following conversion table.

Chapter 9—Extending OMNIS

OMNIS Data Type Automation Data Type
Boolean VT_BOOL

Integer (0..255) VT_ 11

Integer (Long) VT _l4

Number VT_RS8

Character VT_BSTR

List VT_ARRAY | VT_VARIANT
Row VT_ARRAY | VT_VARIANT
Binary VT_ARRAY | VT_UI1
Object VT_DISPATCH

Passing Parameters by Reference

Passing by value ensures that the server cannot change the value of variables in OMNIS.
However, sometimes you want to pass parameters by reference, so that their value can be
updated. To do this, simply precede the variable with the appropriate constant from the
‘Automation Library’ constant group.

For example, suppose the object has a magetdamewhich requires a parameter passed
by reference.

; This fails to change myVar

Do myObject.$getname(myVar)

; This successfully changes myVar
Do myObject.$getname(kAutoBSTRREF,myVar)

OLE Automation 235

Coercing Data Types

You can coerce parameters, and values to be assigned to properties, to one of the following

automation data types:

Automation Constant Description

Data Type

VT _BOOL Either kAutoBOOL or Boolean value (True or false)
kAutoBOOLREF

VT 11 Either kAutoll or Signed byte (-128 to +127)
kAutol1REF

VT _Ull Either kAutoUI1 or Unsigned byte (0 to 255)
kAutoUI1REF

VT 12 Either kAutol2 or Signed short (-32768 to +32767)
kAutol2REF

VT _UI2 Either kAutoUI2 or Unsigned short (0 to 65535)
kAutoUI2REF

VT 14 Either kAutol4 or Signed long (-2147483648 to
kAutol4REF +2147483647)

VT _Ul4 Either kAutoUl4 or Unsigned long (0 to 4294967295)
kAutoUI4REF

VT R4 Either kAutoR4 or 4 byte real (1.175494351E-38 to
kAutoR4REF 3.402823466E+38)

VT_RS8 Either kAutoR8 or 8 byte real (2.2250738585072014E-3(
kAutoR8REF to 1.7976931348623158E+308)

VT _BSTR Either kAutoBSTR or Binary string (Limited by system
kAutoBSTRREF resources)

VT_EMPTY Either KAUtOEMPTY or Corresponds to no valid data type
KAutoEMPTYREF

VT _CY Either kKAutoCY or Currency value
kAutoCYREF

VT_DISPATCH | Either kAutoDISPATCH | IDispatch FAR * (4 bytes)

or kAutoDISPATCHREF

Chapter 9—Extending OMNIS

8

OLE Automation

For example, suppose an object method called "FastSort" only accepted a VT_BSTR array:

; myList passed as a BSTR array, by value

Do myObject.$fastsort(kAutoBSTR,myList)

; myList passed as a BSTR array, by reference
Do myObject.$fastsort(kAutoBSTRREF",myList)

You can also coerce properties to a data type and calling convention (by reference or by
value) by preceding the assignment variable by the datatype constant.

For example, suppose a visible property accepts an unsigned short:

; Boolean passed as unsigned short, by value

Do myObject.$visible.$assign(kAutoUI2,myBoolean)

; Boolean passed as unsigned short, by refernce

Do myObject.$visible.$assign(kAutoUI2REF,myBoolean)

Automation Errors

If an error occurs, the automation component sets #ERRCODE. A value of minus one
indicates that the error occurred in the component, whereas other error codes are the
HRESULT value returned from the server. In both cases, #ERRTEXT describes the error.

HRESULT codes are difficult to document as they can be defined by both the server
application and the operating system. However, here are a few of the more common codes:

0x8000FFFF Unexpected error
0x80004001 Not implemented
0x8007000E Out of memory

0x80070057 Invalid argument
0x80004002 No such interface supported
0x80004004 Operation aborted.
0x80004005 Unspecified error
0x800401F3 Invalid class string

Limitations

Automation constants and events are not supported.

237

Using OLE Automation

Note that these examples do not include error checking for brevity.

The following example creates an Excel server object using Excel ‘97 and opens the
Sample.xIs workbook.

; excelObject is an Object with the subtype of Excel.Application.8
; workBookObiject is defined as an object with no subtype

; Create Excel object

Do excelObject.$createobject()

; Make object visible

Do excelObject.$visible(kTrue)

; Obtain workbook interface

Do excelObject.$workbooks Returns workBookObject

; Open workbook

Do workBookObject.$open(“c:\samples.xls”)

; Mark as saved to avoid dialog

Do excelObject.$activeworkbook().$saved.$assign(kTrue)

; Quit excel object

Do excelObject.$quit()

The following example creates a Microsoft Word 95 object and opens a document.
; wordObiject is defined as Object with a subtype

; of Word.Application.8

; documentsObiject is defined as Object with no subtype
; Create word object

Do wordObject.$createobject()

; Make object visible

Do wordObject.$visible.$assign(kTrue)

; Obtain documents’ object

Do wordObject.$documents Returns documentsObject
; Open specified document

Do documentsObject.$open("c:\mydoc.doc")

; Quit word object

Do wordObject.$quit()

238 Chapter 9—Extending OMNIS

OLE Automation

The following example uses Excel ‘97 to create a pie chart from a list variable.

; objExcel is an Object with the subtype of Excel.Application.8
; objWorkBook , objWorkSheet, and objRange are objects with
; ho subtype.

; Create Excel object

Do objExcel.$createobject()

Do objExcel.$visible.$assign(kTrue) ;; Make excel visible

Do objExcel.$workbooks().$xadd(xIWorkSheet) Returns objWorkBook

; Create a new worksheet

Do objWorkBook.$activesheet Returns objWorkSheet

; Obtain the object for the active sheet

; Setup area list

Set current list |ArealList

Define list {cArea}

Add line to list {("North")}

Add line to list {("South™)}

Add line to list {("East")}

Add line to list {("West")}

Do objWorkSheet.$range("A1:D1").$value.$assign(lAreaList)

; Set a range of cells

Do objWorkSheet.$range("A2").$value.$assign(5.2) ;; Set cell value
Do objWorkSheet.$range("B2").$value.$assign(10) ;; Set cell value
Do objWorkSheet.$range("C2").$value.$assign(8) ;; Set cell value
Do objWorkSheet.$range("D2").$value.$assign(20) ;; Set cell value
; Create a pie chart from the cells

Do objWorkSheet.$range("A1:D2") Returns objRange

Do objWorkBook.$charts().$xadd().$chartwizard
(objRange,xI3DPie,7,xIRows,1,0,2,"Sales Percentages")

OK message Excel {Example Finished}

; Print worksheet

Do objWorkSheet.$PrintOut()

; Mark workbook as saved to avoid excel prompting when
; application closes

Do objWorkBook.$saved.$assign(kTrue)

Do objExcel.$quit() ;; Shutdown & quit excel

239

The followingexample creates a sort server object and demonstrates OMNIS and
automation arrays.

; objSort is an object with the subtype of SafeArray.Application
; Create sort object
Do objSort.$createobject()
; Build list
Set current list #L1
Define list #S1
For #1 from 100 to 1 step -1
Calculate #S1 as con(#1," - Contents of line")
Add line to list
End For
; COM Object expects BSTR array(passed by reference) so
; force conversion
: Sort list
Calculate #1 as objSort.$FastSort(kAutoBSTRREF,#L1)
; GetArray returns a list of 20 elements all with the same contents
; Get list
Calculate #L2 as objSort.$Getarray()
Set current list #L2
Redefine list {#S1}
; Quit/shutdown sort object
Do objSort.$quit()

240 Chapter 9—Extending OMNIS

DDE

DDE

Dynamic Data Exchange (DDE) is a Windows facility similar to OLE that lets OMNIS
exchange data and commands with other programs running under Windows.

To set up a conversation as the client, OMNIS use®gas DDE channedommand. An
acknowledgment from the server confirms that the conversation can take place, and OMNIS
issues the transactions using commands suBtegsest fieldSend commanénd so on.

Before OMNIS can act as a server, 8ut server modeommand lets OMNIS respond to
certain requests and commands from a DDE client.

Creating a DDE Link

Using the Edit menu, you can link data from programs such as Excel and Word to OMNIS
entry fields and vice versa. In particular, you can link the data in an OMNIS list to a
spreadsheet, so that it updates automatically when the values in the list change. Similarly,
you can copy a spreadsheet to the clipboard and paste it into an OMNIS list field.

To create a DDE link to a spreadsheet

®* In your spreadsheet, copy a range of cells to the clipboard
® In OMNIS, select a field such as a list

®* From the Edit menu, select Paste Link

OMNIS as Client

To set up a conversation with a DDE server, you must open a channel to the server and give
it a number. You can have up to eight channels open at the same time.

Test if file exists {EXCEL.EXE}
If flag true
Start program normal (EXCEL)
Set DDE channel number {1}
Open DDE channel (EXCEL|SHEET1)
If flag false
Quit method kFalse
End If
End If

The Open DDE channatommand contains the name of the program, 'Excel’, followed by
the topic name. Note that the delimiter '|' must be entered as part of the parameter.

241

242

You use theésend fieldcommand to send data and $end commandommand to send a
command to a DDE server.

In this example, OMNIS is sending monthly sales totals from nl to column two in an Excel
spreadsheet. The value of CUSTOMER is sent to column one; charl contains a string that
includes the row and column numbers to which the data goes.

While PRODUCT=char2
Calculate charl as con('R',n2,'C',1) ;; Excel row [n2] Col 1
Send field CUSTOMER {[char1]}
Calculate nl as Jans
Calculate nl as nl1+Febs
Calculate n1 as n1+Mars

Calculate n1 as nl1+Decs ;; totaling the monthly sales
Calculate charl as con('R',n2,'C',2) ;; Excel row [n2] Col 2
Send field n1{[charl]} ;; send total month sales to row n2 col 2
Calculate n2 as n2+1 ;; Row number increased by 1
Next (Exact match)

End While

DDE makes extensive use of square brackets, for example, you must include the commands
you send inside square brackets. This can lead to confusion since OMNIS tries to evaluate
square bracket text as an expression. To solve this problem you can

— Put the text including brackets into a character field and send the contents of the field

— Use two initial square brackets

Calculate num2 as num2-1 ;; return to last row
Calculate char3 as con('R',num2,'C',2) ;; last row column 2

Calculate charl as
con('[SELECT("R1C1:',char3,™)] [NEW(2)][GALLERY.PIE(5, TRUE)])

; command to be sent to Excel to draw chart

Send command {[charl1]}

Do method (wait)

Calculate charl as '[OPEN("\EXCEL\SALES.XLM",0,0)]'
; command to be sent to Excel to open macrosheet
Send command {[charl1]}

Calculate charl as '[RUN("SALES.XLM!mclose")]'

: command to be sent to Excel to execute a macro
Send command {[charl1]}

Close DDE channel

Chapter 9—Extending OMNIS

DDE

The DDEExecute message can contain one or more OMNIS commands. A string of
commands sent in this way constitutes a method. The commands must follow a certain
syntax in order to be understood by OMNIS.

The best way to create the script is to
— Create the method

— Copy the method to the clipboard
— Paste itinto a text editor

Now you need only incorporate the method lines of the script in your application. Don't
forget to edit out the title and error count lines. You can also print the method to a screen
report and use the mouse to select the method script and copy in the usual way. This is a
simple example written in Word for Windows:

DDEExecute ChanNum, "OK message {Word says Hi!}"

The script form for a method consists of a series of command lines separated by carriage
return characters. '&' at the end of a line denotes that the next line is a continuation of the
previous line. Each command line converts to a single OMNIS command.

The syntax for a command line is exactly the same as that in the right-hand list of the
method editor. Case is not significant, and you can include extra spaces. The script cannot
contain local, class or task variables since these must be already declared before using the
variable. The method created from the script is in its own self-contained format that deletes
as soon as the script finishes executing.

When you convert the text to a method, you can get a syntax error. OMNIS returns an error
code of -1 plus an error string to the server. If there are multiple errors, OMNIS only reports
the first. If the OMNIS debugger is available, OMNIS still creates a method on the method
stack, replacing the syntax error witlBeeakpointcommand.

If there are no syntax errors, the created method is pushed onto the method stack and
immediately executed. A reply is not returned to the sender of the Do Script event until the
created method (and all its called methods) finishes executing, or an error occurs when
executing the method (or any of its called methods), or until a command which returns
control to the user is encountered (such as Enter data or any of the Prompt for... commands
which open a non-modal window). If an error occurs and the debugger is available, the
debugger is opened at the error in the usual way; otherwise, no error is reported to the user
by OMNIS.

Methods which display an OK message or other modal windows do not count as returning
control to the user, so the sender may be waiting for a reply for the period that the message
is being displayed; this means that eventually the sender may receive a time-out reply to the
DDEExecute message.

243

244

Requesting Data

You can request data from another program witiRibguest fieldommand. It takes two
parameters: the name of the data item in the server program and the OMNIS field hame into
which the data is placed:

Request field S3 {CCNAME}
Request field n5 {FEXCHANGE}

The data returned to OMNIS is read into the CRB.

Requesting Advise Messages

You can also ask a server to advise OMNIS whenever the value of a data item changes. If
the request is accepted, the flag is set. From there on, if the requested item changes value,
the server sends it to the CRB.

The following method sets up a channel to another OMNIS library and requests advise
messages for three fields NAME, ADDRESS and TEL. The values are read into the fields
CNAME, CADDRESS and CTEL in the client.

Set channel number {2}
Open DDE channel {OMNIS|COUNTRY?}
If flag false
OK message {Country library not running}
Quit method
End If
Request advises TEL {CTEL}
Request advises NAME {CNAME}
Request advises ADDRESS {CADDRESS}
Prepare for insert
Enter data

; $event() method for the window
On evSent
If $ctarget="ADDRESS' ;; Last field has been sent
Update files
Queue cancel
Redraw WindowName
End If

The control method traps each DDE event (evSent) caused by the incoming field values.
The fields are sent in the order they were requested, that is, TEL, NAME, ADDRESS.
When the ADDRESS field has been received, the control method updates the files and
cancels Enter data mode. The example is an interesting way of transferring data from one
OMNIS library to another, and can be driven from the server library @#ngd advises

nowto specify when to send the field values.

Chapter 9—Extending OMNIS

DDE

OMNIS as the Server

When you want to run OMNIS as the server, you must specify the mode usiet dexrver
modecommand. By default, OMNIS accepts all commands and data from a DDE client.

OMNIS accepts the following DDE commands:

Accept advise requedets OMNIS respond to a client program with values of requested
advise messages.

Accept field requestsends the field value to the client program response to a Request
message specifying a valid field name.

Accept field valuesesponds to a Poke message specifying a valid field name by setting the
value of that field to the value transmitted by the client program. Values are stored in the
CRB and if the relevant field is on the top window, OMNIS redraws it.

Accept command=sxecutes a command string sent by the client program.

WhenevelAccept field valuesor Accept commandss enabled, either as an option under
Set server moder by the appropriate command, OMNIS processes the Take control
command from the client. All conversations are terminated when the OMNIS library is
closed.

Send advises noadvises the client programs of all the values for all the fields for which it
has received Advise requests, in the order that the client requested them.

Message timeowtaits a specified length of time for responses to messages sent to other
programs: default 30 seconds.

You useSet advise option® specify events that cause OMNIS to send values to a client (in
addition to an active request, as above):

— Find/next/previous sends the requested advise valueEiod, Next Previous or
Clear

— OK sends the requested advise values whdfnaéer dataor Prompted Findcommand
ends with an OK event

— Redraw sends the requested advise values when OMNIS redraws

Printing Reports to a DDE Channel

You can send reports to an open channel either by sel&ttisugnel in thePrint

destination hierarchical menu or by issuingsend to DDE channelommand. Each use of
the command adds a field name to an internal list so that when you print the report, each
field in the record section goes to a corresponding field in the server.

This method exports a report to a DDE channel using the tab-delimited format.

245

Set DDE channel number {2}

Open DDE channel {OMNIS|CLIENTS}
; Check flag etc.

Send to DDE channel

Set export format {Delimited (tabs)}
Set report name DDEReport

Clear DDE channel item names

Set DDE channel item name {Name}
Set DDE channel item name {Address}
Set DDE channel item name {Telephone}
Set DDE channel item name {Town}
Print report

Close DDE channel

The System Topic

You must set up the server mode to enable OMNIS to respond as a server. DDE has
however a special feature, the system topic, that is an exception to this. This is a tab-
delimited CF_TEXT document containing several generic items. Whatever server mode
OMNIS is in, when an Initiate message contains the name of the system topic, OMNIS
always accepts requests to act as server.

OMNIS responds to any one of the four following items under the system topic:

Sysltems
OMNIS returns a list containing the three items below in a Data message

Topics
OMNIS returns the name of the current library if there is one, otherwise a blank is
returned

Formats
OMNIS returns a list of the clipboard format numbers which can be implemented

Status
OMNIS returns a DDE data item with one of the following strings, indicating the
current status

Topic open

You have control status message
No control status message

Enter data

Prompted find

Import data

If OMNIS is in Enter data, Prompted find or Import data mode, the appropriate status is
returned. If the client requesting the status has DDE control, OMNIS sends the status

246

Chapter 9—Extending OMNIS

DDE

message You have control. If no program has DDE control, OMNIS sends the status
message No control. Alternatively, the data message contains an item indicating that
OMNIS’ status is busy.

Events during DDE

The message evSent is sent to the window control method to indicate that data has been
updated via a DDE link. The parameter pChannelNumber provides the number of the DDE
channel.

If the Data or Poke message does not contain a valid OMNIS field name, OMNIS rejects

the message. The data item name need not correspond to an OMNIS field name on the enter
data window for the message to succeed, but if the field is visible on the window there is an
automatic redraw.

This example control method detects the arrival of a particular field and triggers an Update:

On evSent
If $ctarget ='C_FIRSTNAME'
OK message {Got first name}
Update files
Queue Cancel
End If

Ack Bits

When OMNIS sends a Data message as server, the fAck bit is set which requests the client
to send an acknowledgment.

When receiving Data messages as a client, OMNIS sends an acknowledgment if requested
to do so by the incoming fAck bit set in the incoming Data message from the server. These
acknowledgment bits are used by OMNIS to determine the value of the flag after DDE
commands.

OMNIS as server returns a busy message when it is running methods, printing reports or
running a menu option. This happens when field values are requested, poked or commands
sent.

As a client, OMNIS returns a 'busy' Ack when running a method, printing a report, or
executing a standard menu option.

OMNIS never returns a 'busy' Ack message in response to data which is the result of a
Request message because OMNIS waits for the response.

247

248

Programming with DDE
This section has some tips for programming DDE calls to OMNIS.

Any client wishing to initiate a conversation with OMNIS must send a

WM_DDE_INITIATE message with the Program name given as OMNIS. The topic name
given in the message must be that of an OMNIS library without the .LBS extension. So, for
example, an Initiate message addressed to OMNIS to open a conversation might read:

WM_DDE_INITIATE 'OMNIS' 'PERSON'

The client wishes to start a conversation with OMNIS on the topic of PERSON.LBS. For
OMNIS to respond positively to an Initiate message, the name OMNIS must be present in
the message. It is possible to send an Initiate message to OMNIS with the program name
'OMNIS', and a null topic. 'Null" in this context means that no value has been given for the
topic, i.e. no library name has been supplied. OMNIS responds with a positive ACK
message containing the name OMNIS, and the name of a currently supported OMNIS
library. OMNIS sends one positive ACK message for each library which it supports.

If any parameter value sent to OMNIS as part of an Initiate message is invalid, OMNIS
sends a TERMINATE message to the client.

To request data from the OMNIS CRB, the field name in the Request message must be a
valid OMNIS field name as defined in the OMNIS file classes. The clipboard format
required in the Request message must be CF_TEXT.

To send data to OMNIS via the Poke message, the field name must be currently valid in the
OMNIS file classes, and the text type must be one of the supported clipboard formats.

Using DDE with Word

Under Windows, Microsoft Word has good support for DDE as a client through its DDE
Field facility and its macro programming language. The easiest way to get a field value
from OMNIS into Word is

® Start OMNIS and switch on the server options witltept advise requests (Accept)
andAdvise on Redraw (Advise)

® Inyour Word document, select thesert>>Field menu item
® From the list of Word field types, chooB®E Auto

® Add the name of OMNIS, the OMNIS library and OMNIS field to the parameter line
for the Word field

ddeauto OMNIS DDE2 C_COMPANY

With the Show field codes option turned off, Word displays the OMNIS field and updates it
when the value changes. This method uses Word as the client, and you need to enable

Chapter 9—Extending OMNIS

OMNIS as a DDE server. Word issues the 'advise request’ when you create the field or
when you open the document containing the field.

You can use Word Basic to set up DDE links to OMNIS, but remember to put OMNIS in
your PATH statement. Here’s a simple example
Sub MAIN

Shell "OMNIS.EXE \OMNIS\DDE\DDE2.LBS"

: Wait for OMNIS to start

For x =1 to 1000

Next

Beep

ChanNum = DDElInitiate("OMNIS", "DDE2")

Print ChanNum

Print DDERequest$(ChanNum, "C_FRSTNAME")
DDEExecute ChanNum, "Next"

Print DDERequest$(ChanNum, "C_FRSTNAME")
DDETerminate ChanNum

End Sub

DDE 249

Lotus Notes

Lotus Notes is a client server package that lets you share data with other users. It contains a
database facility, e-mail, and other features for sharing objects. In particular, you can
replicate data on different notes servers and Notes synchronizes the replicated data
automatically. OMNIS supports Lotus Notes version 4.0 and later on Win and MacOS. You
must have the OMNIS Lotus Notes external in the EXTERNALS folder to access your

Notes database; this is installed by default.

Data Types
The Notes data types map to the following OMNIS data types:
Notes OMNIS
Text Character (15000)
Date range Character
Number range | Character
RTF Character
Text List first column of a single char column list in OMNIS
Date-time Date time
Number Number
Note ID Number

There are some limitations on transferring data from Notes to OMNIS:

— Because Notes has a summary buffer size of 15,000 bytes, text fields are limited to this
size. RTF fields don't have that limitation.

— You can't create fields with date range or number range data types.

— The list definition the map command uses can't exceed 512 characters
— You can have up to 32 mapped fields

— You can have up to 8 open data files

— TheNSF Write compositeommand chooses default style for the text and this is hard-
wired

— The Lotus Notes API limits the number of items in a view that you can list to 32K.

250 Chapter 9—Extending OMNIS

Lotus Notes Commands

You need to create fields or variables in OMNIS with the same names as the Notes field
names you want to use and with compatible data types.

Notes Command Parameters Returns

NSF Set Error Field Error field name Status

NSF Open File Pathname Status

NSF Close all files Status

NSF Close File Pathname or 'Mail_File' Status

NSF Get Info Information string

NSF Who am | Information string

NSF Where's my mail? Information string

NSF Make server path Server and NSF File Path to server/file

NSF List Open NSF Files| List name Status (number open??)

NSF Map fields List name

NSF Select Listname, Select macro, DateStatus (number found/error
View name

NSF Build View View name, List name[,Text | Number of notes found
key][,'Partial']

NSF Make Note None Note ID

NSF Copy Note Path for destination Note_ID

NSF Mail note Note_ID Note_ID (created)

NSF Delete Note Note ID Status

NSF Write composite Note ID, Commit Status (fields updated)
flag,Fieldsl...n

NSF Add Fields Note ID,Commit Status (fields updated)
flag,Fieldsl...n

NSF Attach file NotelD, Filepath, Filename Status

NSF Unpack file NotelD, File, Filepath Status

NSF Describe fields on | Form name, List name, Field | Status

form name

NSF Find Forms List name, Field Status

Lotus Notes 251

252

Server Access

You can use thBISF Open fileommand to open any database normally available to the
user. To determine the correct 'path’ for the file, open the file in Notes and use the
Synopsis... option to read the Path to that database.

NSF Make server patteturns to OMNIS the best path to a given server and NSF file.

In order to access a database that is on a server through an API program, the user must have
access to the server itself, otherwise Notes returns an error when you try to open the
database. The open command returns integer values 0, 1, and 2. 0 means error, 1 indicates
that the file is already open and is now the current file, and 2 indicates that the file is open
for the first time.
NSF Make server path (LANSERVE','Specs') returns NPATH
NSF Open Notes file (NPATH) returns #F
If flag false
OK message {error opening note file. Specs}
End if
NSF Make Note ('SimpleDataForm') returns Note_ID
If not(Note_ID)
; error
End if
NSF Map fields (‘DataList’)
NSF Add Fields (Note_ID,'Commit") returns #F
If flag false
OK message {Error adding fields to Note}
End if
Redraw (All windows)
OK message {Made [Note_ID]}

You can have a variable or field with the name Note_ID to store the note IDs as you create
and update notes. The “Note_ID” name is case-insensitive.

The last opened data base is¢herentdatabase, and reopening an open data base simply
makes it current.

You must give the same path to the database NSF file each time.

Mapping Fields to Notes

Even when returning only one value from Notes, it is usual to load the result into a list.
Normally it is the developer who sets up OMNIS variables with the same name as the fields
in Notes. Thd=ind FormsandList fields on forntommands can automate this process.

Having set up the variables in OMNIS, define a list with the columns required:

Chapter 9—Extending OMNIS

Set current list List2

Define list {Note_ID,LastName,FirstName,PhoneNumber,Type
NSF Map Fields ('List2") returns #F

Calculate Type as 'Person’

; Class variable Wititle (Character)

; Class variable LastName (Character)

; Class variable FirstName (Character)

; Class variable PhoneNumber (Character)

; Class variable Type (Character)

The OMNIS field namemusthave the same names as the Lotus Notes field names, or you
cannot get any data back.

Once you've set up the mapping, you canNISE SelecandNSF Build viewSome

commands let you put individual data items into specific variables: this is slightly less
efficient since the server needs to remap its variables and query the types again. Any
command that you run repeatedly in your code shoultN&eMap fieldgo set up the field

mapping.

Views and Searching

NSF Build Viewets you move the data from a view into an OMNIS list in a manner similar

to Build list from select tableYou can also search the primary index with a text key, either
using a partial or full match on the index. The search is insensitive to diacritical marks. The
first two parameters, the name of the view and the name of the list to hold the data, are
required. As OMNIS opens each note, its fields are read into the CRB and added to the list.
Thus, the last note found in the view is always loaded into the mapped variables. There is
no way to prevent the values from being added to the list unless you were to redefine the
columns of the list to be different to the map.

Set current list List2

Define list (Store long data)
Note_ID,LastName,FirstName,PhoneNumber}

NSF Map Fields ('List2") returns Res
NSF Build View (‘People’,'List2") returns Num
Redraw (All windows)

TheNSF Build Viemncommand returns the number of notes found in the view in the
specified return value. If you add a third parameter to the command, Notes searches for a
matching value in the primary index for that view:

NSF Build View (‘People’,'List2','Pon’) returns Num

A fourth parameter Partial searches for a partial match beginning with the text value in
parameter 3.

Lotus Notes 253

254

; Beginning with 'P'
NSF Build View (‘People’,'List2','P','Partial’) returns Num

NSF Selecscans all the notes in a database or files in a directory.

Set current list Listl

Define list (Store long data)
{PLAIN_TEXT,NUMBER,TIME_DATE,TEXT_LIST,RichStuff,Note_ID}

Clear list (All lists)
Set current list TEXT_LIST
Define list {S3}
NSF Select ('Listl',’@All') returns Found
For each line in list
; process list
End for
Redraw (All windows)

Error Handling

By default serious errors are reported with an OK message. If you define an error field with
Set error field OMNIS reports errors to this field and the command continues.

Unfortunately, you can't track multiple errors in a single command once this option has been
set, so you should use this option only once the application has been tested fully. Most
commands return an integer value where 0 indicates an error.

NSF Set error field (‘Error’)
NSF Build view (‘'VIEW','LIST')
If flag false
OK message {Error [Error]} ;; or call error routine to log it
End if

Creating and Deleting Notes

NSF Make not@nserts a new note in the currently open file, sets its default form and

returns the Note_ID to you:

NSF Make Note ('SimpleDataForm') returns Note_ID

OK message {Made [Note_ID]}

Once you have the Note_ID for the note you want to upt8€,Add fieldsvrites new

field values to the note:

NSF Add Fields (Note_ID,'Commit") returns Res

Adding the fields deletes and replace any fields that are already there. They set the flag and
thus a text field bigger than 15K cannot be added and returns an error.

You can also specify a fieldname as a parameter, in which case OMNIS ignores the
mapping and adds the value of the field directly to that field:

Chapter 9—Extending OMNIS

NSF Add fields (Note_ID,'NoCommit','Field1','Field2'

The “Commit” or “NoCommit” string controls the flushing of the note from the disk cache
on the server. Any string other than “commit” gives better performance but less data
security in case of a server failure.

Composite fields (RTF)

When reading RTF fields, OMNIS converts the RTF to plain text. To append a text value to
an existing RTF field you can usésF Write Composite

NSF Write Composite (Note_ID,'Commit','RichStuff') returns Res

This command never uses the mapping and always appends the text in the OMNIS field to
the composite Notes field with the same name. It converts the text using the default fonts
and styles. There is no control over the style of the composite field.

Mail and Copying

The Lotus Notes mail system is a standard Notes database with fields for items such as To,
From, CopyTo, and so on. Notes placed in the user's file with the correct fields are
forwarded by the Notes Mail Gateway. You can insert a note directly into the mail and
identify the mail server and the user's name:

NSF Where's my mail? returns ServerName
NSF Who am I? returns MyName

NSF Copy Notéets you copy a note from the current database to a specified database. If the
target database is not open, it is opened but not made current.

NSF Mail notecopies a note to the mail file. After writing to the mail file, the data is not
flushed to disk until the file is closed wiSF Close fild'Mail_file").

Once the Mail command is used for the first time, the database remains open until you close
it.

Reading Data Dictionary Type Information

Forms in Notes contain a certain amount of data relating to the fields and their data types.
There are two commandsSF Find FormsandNSF List fields on forrthat you can use to
read this information and create OMNIS windows on the fly. This example builds a list of
forms, stripping out any aliases in the names.

Lotus Notes 255

Set current list FormList

Clear list

NSF Find forms ('FormList','Form")

For each line in list from 1 to #LN step 1
If pos(';',Ist(Form))

Calculate FormList('Form'#L) as
mid(Ist(Form),1,pos(’;',Ist(Form))-1)

End If
End For
This method builds a list of fields on the form:
NSF Describe fields on form (Form,'FieldsList','Field’,' Type")

Apple Events

256

Apple events is an event messaging system defined by Apple that allows applications,
including OMNIS, to send commands and data to each other. For example, your current
OMNIS library can launch a spreadsheet, open a document, and spellcheck it. Similarly, a
Hypercard stack can send a method script to OMNIS, execute and print it.

Apple Event Groups

Apple events are divided by Apple into several categories, or 'suites', and this is followed
closely by the OMNIS grouping; see Apple events in the command list. All applications that
claim to handle Apple events must support the four ‘required' events, Open Application,
Open Documents, Print Documents and Quit. In addition to these compulsory events,
OMNIS supports events in the following suites (OMNIS command in brackets, detailed in
the OMNIS Help):

— Core eventsSend Core event)
— Database suit&sénd Database event)
— Finder suite$end Finder event)

— Word Services suité&send Word Services event)

Terminology

A number of Apple terms have been introduced into OMNIS when dealing with Apple
events; in error messages, for example. However, some OMNIS terms have been used to
replace System 7 terms, where these clash; the word 'attribute' is an example.

Initially, the client application starts sending Apple events in order to use the services of the
server application. Since OMNIS can both send and receive Apple events, it can act as both
client and server. Indeed, OMNIS can send Apple events to itself, and in this case is both

Chapter 9—Extending OMNIS

Apple Events

client and server. This is the default for many OMNIS commands using Apple events; for
example Set event recipientithout a parameter sends events from OMNIS to itself.

— Sourceltarget
While the client is initially the source of Apple events, and the server the target, the
server can, in fact, send its response to an event back to the client, in the form of a
further event. When this happens the source and target are reversed.

— Recipient
The recipient of an Apple event may be any object that can understand them; a named
computer; a file in a server application; a field within that file. Note that OMNIS can be
the recipient of its own events; it can also be the recipient of Apple events created by
other applications, such as Hypercard.

— Recipient tag
This is a parameter that allows OMNIS to store the path to a particular recipient with a
name or tag, and so avoid constant re-prompting when using multiple recipients.

— Message/parameter
Many commands include messages and parameters. For example:
Send DataBase event {Set Field (THERE','HERE")}.

This OMNIS command is a member of the Send DataBase event group; the message 'Set
Field' is selected from an option list, and the parameters are added, if required, in the
Message box, including the plain brackets ().

Sending and Receiving Apple Events

This section discusses in general the way OMNIS handles Apple events as both client and
server. The technique of sending and receiving events using procedural text is given later in
the Scripts section.

Except for the four 'required' events, OMNIS only accepts Apple eventshhtitae

receiving of Apple eventommand has been run in the library that is to receive them. When
opened, an OMNIS library has reception of Apple events disabled by default, Bndtde
receiving of Apple eventsust be added to the library and run if all events are to be
received. Once enabled in this w@jsable receiving of Apple eventsist be run within

the library to return to the default. However, the four compulsory events are still accepted.

OMNIS must always respond to the four required Apple events, which may be created by
another OMNIS library, or by another MacOS application. The actual way they are created
depends on the client application.

When received by OMNIS the compulsory events do the following:
— the 'Open application' event launches OMNIS,
— the 'Close application' event quits OMNIS,

— the 'Open documents' event prompts the user to load a library or Ad hoc report,

257

258

— the 'Print documents' event prompts the user to open a library, and print a report or
opens and prints the Ad hoc reports.

With reception enabled, OMNIS can respond to events in the following suites:
— Core events (usually sent from Finder to OMNIS),

— Database events.

— Error messages when receiving events

When an event is not accepted, the Apple message errAEEventNotHandled is returned to
the sender.

There is a default timeout period when an event sender is waiting for acknowledgment. This
period is set by Apple and is not altered by OMNIS; see Applestem 7 Reference
manual.

Numeric values are accepted as character strings and data conversion to numbers takes
place.

A table is simply described as a collection of rows and columns in a database or
spreadsheet. For OMNIS, this equates to the combination of an OMNIS file class and
corresponding data file, and takes the name of the file class as a parameter. OMNIS keeps a
table index (record pointer) for the table that is currently being used for database events in
order that record (row) operations can be performed.

The Send Database event {Use table (TABLENAMBjhmand must be issued with a

valid table name (file class name for OMNIS) that is used for all subsequent record (row)
operations. This OMNIS command sends the Does Field Exist event before setting the
current active table to ensure that there is such a valid table, and also resets the 'table index'
to point to the first record in that tabldse Tablemay also be used to reset the table index

to the first record in a table.

The following example returns the type of the data in field CHARFIELD (Character,
Boolean, etc.) and stores it in the OMNIS field DATATYPE.
Send DataBase event {Does field exist (CHARFIELD'")}
If flag true
OK message (Sound bell) {Yes, CHARFIELD exists.}
Else If flag false
OK message (Sound bell) {CHARFIELD not found.}
End If
Send DataBase event {Get field type (CHARFIELD','DATATYPE")}

This example returns the size of the field CHARFIELD (character, Boolean, etc.) and stores
it in the OMNIS field DATASIZE.

Chapter 9—Extending OMNIS

Apple Events

; mapping of Apple/OMNIS data types?

Send DataBase event {Get field type ('S5','DATATYPE")}

OK message {field [S5] is of type: [DATATYPE].}

Send DataBase event {Get field size (CHARFIELD','DATASIZE")}

Get size CHARFIELD returns the size of the field/container in Bytes, e.g.

Local variable REMOVED DATASIZE (Character)

Send DataBase event {Get field size (CHARFIELD','DATASIZE")}
OK message {field 'CHARFIELD' has size of: [DATASIZE]}

: The next command:

Send DataBase event {Set field ('S1', S5)}

Sets the value of the recipient field S1 to the value of the OMNIS variable S5:

; This example sets S1 from S5

Send DataBase event {Set Field ('S1', S5)}

Redraw (S1)

; and to get the value, use:

Send DataBase event {Get field ('S1',/CHAR_FIELD")}

Gets the value of the recipient field S1 and returns it to the OMNIS variable
CHAR_FIELD.

Similarly:

; Local variable Nets (Character)

; Local variable Message_date (Short date 1980)

Set event recipient {('DocsCl:Q40:V2:Contractors')}
Send DataBase event {Get field (NETWORKS','Nets')}

Send DataBase event {Get field (DATE','Message_date")}
OK message {Number of networks is [Nets] on [Message_date]}

Note differences in use of quote marks in@et fieldandSet fieldcommands. If quotes are
used for the second parameter of the Set command the actual string is sent; i.e., the
characters 'S' and '5' in the example above.

The Send Findecommands let you send many standard events to the Finder. However,
only two of the events can also be sent and received over a network. Both are compulsory
commands and can be received by libraries even Wisable receiving of Apple events

has been run. These two commands are

— Send Finder event {Open Files
— Send Finder event {Print Files

Sent without parameters, these commands prompt the user for filenames with a file open
dialog.

259

260

Note that the commariend Finder event {Empty Tragbermanently removes deleted
files. The “Are you sure?” warning ret given.

There is an error reporting mechanism within OMNIS which uses two hash variables
#ERRCODE and #ERRTEXT; these allow target programs to pass back errors into your
library and allow your methods to analyze errors in more detail than a simple 'flag false'.

Scripts

You can send a series of commands to a target program in the form of an executable script
using theDo scriptcommands, such &end Core event {Do Script (FIELDNAMEhd

Send Core event returns ReturnField {Do Script (FIELDNAMB)INIS can send or

receive scripts, and the format of the script depends on the particular program being used by
the source.

The syntax for OMNIS scripts is defined simply by the form of the commands as displayed
by OMNIS in the method editor.

A useful tip when creating scripts is to write and debug the method in OMNIS in the
method editor, copy the required method lines to the clipboard, and paste into the
appropriate field.

To split a command between two lines of script, you add '&' to the end of the line and
continue the command after the carriage return character. When the script is read by
OMNIS, the two lines are concatenated with a space in the position of the & When each
script is received by OMNIS, it is converted into method form and, if free from syntax
errors, pushed onto the method stack and executed immediately.

This is a simple example written in Hypercard:

on mouseUp
Send "OK message {Hypercard says Hi}" to program "OMNIS "
end mouseUp

Variables used in the script must be hash variables or % local variables.

To send this method:

Find first on CSEQ

Do method Total

Prepare for edit

Calculate %TOTAL as %TOTAL*17.5+%TOTAL
Update files

Next

you would type the commands into the field as they appear in the OMNIS method editor,
one command per line, and send the value of the text field (LTEXT) to the target OMNIS
program:

Chapter 9—Extending OMNIS

Set event recipient
Send Core event {Do script (LTEXT)}
; Sending to myself

This illustration assumes that you are sending events from OMNIS to Hypercaf®etThe
event recipientommand is first used to see if the target program is already in the
Application menu; if not, it is launched.

Set event recipient {Hypercard}
; Checks Application menu to see whether HC is running
If flag false
Send Finder event {Open files}
; prompts the user to locate Hypercard, add it to the App
; Menu and open the Hypercard stack 'SalesStack'. Alternatively,
; the file path could be given as a parameter: Send Finder
; event {Open files (‘MacOSHD:Apps:Hypercard:SalesStack')}
; in which case you could add the following condition:
Set event recipient {Hypercard}
If flag false
OK message {Can't start Hypercard}
Quit method flag false
End If
End If
; with 'SalesStack'open, and Hypercard the recipient
; you can send a HyperText message
Send Core event {Do script (‘'Go Next)}
OK message {Error handling: Code is [fERRCODE], text is [fERRTEXT]}
; This has opened a stack and advanced one card
; Now publish a field on this card

Send Core event
{Create publisher('Card Field TEXT','SalesStack-TEXT")}

; Second parameter not required here

; Next, send HC a value from OMNIS

Send Database event {Set field ('Card Field TEXT','OMNIS Text')}
; And finally, get a value back from HC

Send Core event returns S1 {Get data (‘Card Field TEXT")}

Note the different uses made of the comméaBeisd Core everindSend Core event

returns Clearly, the latter is capable of getting data from the target program. The data
passing protocol uses either text or PICT and OMNIS uses its usual character-to-number
conversion routine when receiving numbers from another program such as Hypercard.

If an event is sent which returns an error to OMNIS, the hash variables #ERRCODE and
#ERRTEXT are used to store the error code and message. The flag is set if the event evokes
a positive response (no errors are returned). OMNIS waits for a reply for the default timeout

Apple Events 261

period and, while waiting, allows the user to cancel by pressing Cmnd-pefiatheelif a
working message with@ancelbutton is visible.

If there is a syntax error when converting the text to a method, an error code of -1 together
with an appropriate error string is returned in the reply message to the sender. If there are
multiple errors, only the first is reported. If the OMNIS debugger is available, a method is
still created and pushed on the method stack. A syntax error is replac@&tdakpoint
command containing the error text.

The debugger for a method created from a script is tledrnal Script; you can modify
the method, but Save and Revert To Saved are not available.

If there are no syntax errors, the created method is pushed onto the method stack and
immediately executed. A reply is not returned to the sender @fdtcript evenuntil one
of the following occurs:

— The created method (and all its called methods) have finished executing
— An error occurs when executing the method (or any of its called methods)

— A command which returns control to the user is encountered (s&stteadataor any
of thePrompt forcommands which open a non-modal window)

If an error occurs, an error code of -2 with the usual error string is returned in the reply
message to the sender. If the debugger is available, the debugger is opened at the error in
the usual way, but otherwise no error is reported to the OMNIS user.

Methods which display an OK message or other modal window do not count as returning
control to the user, so the sender may be waiting for a reply for the period that the message
is being displayed; this means that eventually the sender may receive a time-out reply to the
Do Scriptmessage (the default time out period set by Apple is currently around a minute

but the sender can override this).

If the script contains Quit method Returns Resattmmand, OMNIS returns this value to

the caller as a keyDirectObject parameter in the return message. If the value is a picture, it
is sent as typePict; else it is sent as typeChar (lists are converted into their tab-delimited
forms). If, for example, there is &nter datacommand in the script, the reply is returned to
the sender wheBnter datais encountered, and any return value which has been set at that
stage is included in the reply.

You can us&end Core event returns ReturnField {Do Script SCRIPTFIELDE result
of running a script returns a value (for example, sent to Hypercard), which is placed in the
OMNIS ReturnField.

262 Chapter 9—Extending OMNIS

Apple Events

The following methods illustrate some simple uses of Apple Events

Set event recipient {'MagicMac'}
; Send to MagicMac already on my Application Menu
If flag false
OK message {Error [f{ERRTEXT], code [#ERRCODE]}
Quit method flag false
End If
Send Finder event {Open files (‘MagicMac:Sheet36")}
; This initializes MagicMac on my workstation
.. deal with errors etc.
Send Finder event {Print files} ;; prompts you for sheets to print
Send event {Create publisher ('Work')} ;; Publishes document 'Work'

Send event {Set data ('Spread1',LIST1)} ;; Sends LIST1 to
spreadsheet

The following example method uses Apple events to open a remote library called
‘Contractors' , which includes a file class (an OMNIS file class is a 'table’ in Apple
terminology) called 'Site details'. The local library has a field, S4, that is used to test the
link, in particular the existence and value of the field CO_NAME (Company name) in 'Site
details'.

If the script needs to use variables, as in this case, they must be ready-defined such as hash
variables or % local variables.

263

; Open Library method, behind a pushbutton
On evClick
Send Finder event {Open Files('DocsCl:Docs:V2:Contractors')}
Prompt for event recipient {REM}
Use event recipient {REM}
Send DataBase event {Does table exist ('Site details')}
If flag false
OK message {No file class of that name}
Quit method
End If
Send DataBase event {Use table ('Site details')}
Send DataBase event {Does field exist (CO_NAME")}
If flag false
OK message {No such field as CO_NAME}
Quit method
End If
Send DataBase event {Get field (CO_NAME','%S4")}
OK message {CO_NAME IS [%S4]}
Send DataBase event {Define Returns ("%S1','%S2','%S3")}
Send DataBase event {Next}
OK message {%S1 is [%S1], %S2 is [%S2], %S3 is [%S3]}
Calculate %S1 as 'Holland & Duke Inc.'
Calculate %S2 as 'The Old School House'
Calculate %S3 as 'Benhall’
; Instead of calculating values you could use data entry windows
Send DataBase event {Insert}
: Takes values in %S1, %S2 and %S3 and inserts new row/record
If flag false
OK message {Insert event failed}
End If
OK message {%S1 is [%S1], %S2 is [%S2], %S3 is [%S3]}
Calculate %S1 as 'Beta Productions PIc'
Calculate %S2 as '56 Lion's Road'
Calculate %S3 as 'Ipswich'
Send DataBase event {Update}
; Takes values in %S1, %S2 and %S3 and updates current record
If flag false
OK message {Update event failed}
End If

OK message {%S1 is [%S1], %S2 is [%S2], %S3 is [%S3]}
End If

264 Chapter 9—Extending OMNIS

Publish and Subscribe

Publish and Subscribe is a feature of MacOS that lets you make data available to other
applications or access such datgublisherin OMNIS is a field, list, or report whose
contents you have made available to other MacOS applications.

When you publish a field or report, you create a file calledddtion that stores the latest
value of the object. If the edition is placed in a shared folder it becomes available to other
users on your Network. When you publish an edition, you can specify a name for the
edition. The default edition name is 'Document-Object name', for example 'MyLib-List1'.

A subscriberis an OMNIS field or list whose value is obtained from an edition. When a
field is subscribed (that is, turned into a subscriber), an edition name is specified which
could be in a shared folder of another Macintosh.

Edit Menu

The Edit menu contains three items that let you publish and subscribe OMNIS fields and
reports: Create publisher, Subscribe to, and Publisher/Subscriber options (the latter changes
from Publisher to Subscriber according to whether you tab into a field which has been
published or into one which has been subscribed). When a field is published or subscribed,
it is the value in the current record buffer which is used, not the value shown on the

window. The value typed into a field is written to the buffer as the user tabs out of the field.

When fields (including lists) are published or subscribed, they are shown with a border
when the user tabs or clicks into the field. The borders are gray and differ in darkness for
publishers and subscribers.

Data is transferred as text or PICT. Lists are published as tab-delimited text and directly
transfered into a spreadsheet or graph plotting package. You can easily publish one list and
subscribe another list to the published one.

The Open Editions List item on theDptions menu of the Debugger opens a method editor
window listing all the current publishers and subscribers. The PROC column shows those
editions which have been set up and are invisible to the user.

Publishers and subscribers are not canceled when the library terminates. The #EDITIONS
system table class in the library stores a list of current publishers and subscribers.

To publish an entry field on a window

® Put your window into enter data mode, &rab to or click in the required field

® While in the field, seledCreate publisherfrom theEdit menu

The edition name can be left at the default value.

® Select théPublish button

Publish and Subscribe 265

266

The field is shown with a 50% gray border when you tab into it. Next you need to set up the
publisher options.

®* Open theEdit menu and sele®ublisher optionsor double-click on the published
field

The publisher options dialog lets you manually update the edition with the latest value of
the field by clicking on th&end Edition Nowbutton. Alternatively, you can select 0@
Saveoption which causes the field to be published when the value in the current record
buffer is modified. In this case, that would be whenever you tab out of the entry field.

Lists are published in tab-delimited character format. The process is exactly the same as for
an entry field except that you don't have to select enter data mode or tab to the field to select
it. Simply click on the list field and select tleeate publisheritem. It is the data held in

the underlying list data structure that is published; the list field displayed on the window is
not relevant. The format for the published data is suitable for importing to a spreadsheet,
that is, each row of the list is converted to text and forms a line of text in the edition, and
each field is separated from the last by a tab character. ForRulidish On Savemeans

when you leave the field.

Reports are also published in tab-delimited character format. Each library can have only one
report edition open at a time.

Subscribe toandSubscriber optionson theEdit menu let you subscribe OMNIS fields to
published data. The editions to which you can subscribe a field can be on the same
workstation or on a shared network volume. The MacOS allows any user to share data with
other users via the network.

To subscribe an entry field on a window

® Put your window into enter data mode drab to the required field

® SelectSubscribe tofrom theEdit menu

The Subscribe to dialog lists all the available editions. As you click on each edition name,
the contents of the edition is shown in the preview area. When you have located the data

® Select theSubscribebutton

The field is shown with a 75% gray border when you tab into it. Next you need to set up the
subscriber options.

® Open theEdit menu and sele@ubscriber options or double-click on the subscribed
field

The subscriber options let you manually update the field with the latest value of the edition
by clicking on theGet Edition Now button. Alternatively, you can select the
Automatically option, which causes the field to be updated when the value in the edition is

Chapter 9—Extending OMNIS

modified. When there is a window open which contains subscribed fields, they are redrawn
automatically when the field is updated.

Ctrl-clicking on a subscriber field is the same as selectin@pien publisher pushbutton

on the subscriber options dialog window, that is, it launches the library responsible for
publishing the edition, with the appropriate document. For example, where you have
subscribed a character field to a word-processor document, Ctrl-clicking on the subscribed
field opens the word-processor with the document as the top window.

Lists can be subscribed to an edition which uses tab-delimited character format. The process
is exactly the same as for an entry field except that you don't have to select enter data mode
or tab to the field to select it. Simply click on the list field and select the Subscribe to...
option. It is the underlying list data structure that is subscribed; the order of the columns
shown in the window are not relevant.

The data is read into the list in the same way as it would with a spreadsheet, that is, a line of
text which forms a row in the list. If the fields used in the OMNIS list definition are not
character fields, the text converts to the correct data type.

The evSent event is generated when a subscriber is updated. Using a simple task $control()
method, you can check when a subscribed field changes:

On evSent
OK Message {Subscriber [pChannelNumber] has been updated}

Publish and Subscribe Commands

The Publish and Subscribe group in the method editor contains the necessary commands for
publishing and subscribing data. For example

Publish LIST1 {HD:Public Folder:MyApp-LIST1}

; Check flag etc after each command

Publish TOTAL1 {HD:Public Folder:MyApp-TOTAL}

; Subscribe a list

Subscribe LIST2 {FredsMac:Public Folder:Freds App-LIST1}

; Check flag etc.

Subscribe TOTAL2 {FredsMac:Public Folder:Freds App-TOTAL}

All the commands clear the flag and do nothing if your system software is earlier than

System 7. For these commands, edition names can include a pathname (if a pathname is
omitted, the usual searching rules apply). Field name lists have the same format as for the
Define listcommand. Any publishers and subscribers set up by a command are invisible to
the user. This means that no borders are shown for these fields on user defined windows and
it is not possible to change their options from the Edit menu. However, it is possible to
change the options for editions set up from the Edit menu using the commands. If a local
variable is published or subscribed, then that edition is canceled as soon as the method
terminates.

Publish and Subscribe 267

You can publish the current record buffer values manually usinguhksh nowcommand,
or set up the automatic publisher and subscriber options, for example

Set publisher options (Publish on save) {LIST1,TOTAL1}
Set subscriber options (Subscribe automatically) {LIST2, TOTAL2}

When the current record buffer values of LIST1 and TOTAL1 change, the new values are
written to the editions. This takes time and should be avoided unless you particularly want
frequent updates to be made. Similarly, when the operating system informs OMNIS that the
editions for subscribers LIST2 and TOTAL2 change, OMNIS updates the fields. The
subscriber update is delayed if there is a design window on top, evSent is generated in the
usual way and the task $control() method given earlier can be used to trap the incoming
updates as before.

Various commands are available to control the automatic aspects of publish and subscribe.

Publish field C_CODE

Publish field C_LNAME

Publish field C_PICT

Publish now {FCUSTOMERS}

; Publishes text, tab-delimited

; and PICT fields in default edition names

; FCUSTOMERS means 'all fields in file FCUSTOMERS'

Set publisher options (Publish on save){FCUSTOMERS}
Calculate C_LNAME as 'Spratt'

; C_LNAME is published when the value changes
Disable automatic publications

; Turns off ALL auto-publishers

Cancel publisher

; With no field list this cancels all publishers

The command set for subscribers is exactly equivalent.

268 Chapter 9—Extending OMNIS

Publishing Reports

Any report can be printed to an edition file and shared by other applicationSefmtigo
publishercommand is part of the Select destination command group and directs all
subsequent reports to an edition file for the library in tab-delimited form. An edition name is
specified and if this is empty, the previous report publisher is used (or an edition named
library name-report' is created if no previous publisher exists). The flag is set if a publisher
is successfully set up. For example

Send to publisher {MyApp-Report}
Set report name RSales

Print report

Send to publisher

Creating your own Help

You can create your own help and incorporate it into your application for the benefit of
your end-users. This section describes how you implement Context-sensitive help using the
Help Project Manager in OMNIS.

Under Windows 95, you can implement What's This Help by adding a ? button to the title
bar of some types of window using thelpbutton window property. The standard Help

menu, available on the main menu bar in design mode, is not available in the runtime
version of OMNIS. Therefore to include a Help menu in your application you need to create
your own Help menu class that calls up your own help file.

The Help system in OMNIS Studio uses HTML files to store and display help text. To
create help for your application, you must create your own help folder containing your
HTML help files, as follows.

Creating the Help folder

Create a new folder inside the OMNIS\HELP folder. This folder should contain all the
HTML files and sub-folders which make up the help for your application. You can create as
many sub-folders as you like.

Creating your Help pages

Use a tool like Microsoft Front Page to create your help pages. Each help page must contain
an HTML title, for example, <title>How to do x</title>, which OMNIS uses as the topic

name in the help indexes and contents tree. As a basis for your help files, you may want to
use the Gethelp.htm and Usehelp.htm files (found in the 'About Help' folder in the OMNIS
help folder) which provide basic information about using OMNIS Help.

Creating your own Help 269

270

Creating a Contents Tree

The OMNIS Help displays the contents tree as an expandable and collapsible tree. You can
create a contents tree for your help in one of two ways: create special HTML files that
contain the contents information, or let OMNIS build a contents tree based on the exact
folder structure in your help folder. With the latter you need to arrange your HTML files

and sub-folders in the same hierarchy as you want to appear in your contents tree. OMNIS
uses the folder names to populate the contents tree and sorts each node alphabetically, but
with the second method you can replace folder names with longer descriptive titles.

Creating a contents tree from HTML Contents Files (Method 1)

In order to structure and control the ordering of a long contents tree you can create multiple
HTML contents files with links to the sub contents. Contents file names must begin with

" C_", i.e. your main contents file might be called *_C_MAIN.HTM". Other sub-folders

may contain other contents HTML files. Once you have created your help and contents
pages your help tree may look like this:

MYHELP (folder)

_C_MAIN.HTM (Contains a title and links to all other contents pages)
WELCOME.HTM (An introductory help page)

USING (folder containing help on using your library)

_C_USING.HTM (Contains a title and links to help pages in folder)
PAGE1.HTM (A help page)
PAGE2.HTM (Another help page)

MAINT (folder containing help on maintaining data)

_C_MAINT.HTM (Contains a title and links to help pages in folder)
PAGE1.HTM (A help page)
PAGE2.HTM (Another help page)

There is no limit to the number of nested folders.

Creating a contents tree from your Folder Structure (Method 2)

If you choosenot to create any contents pages, OMNIS will build a contents tree based on
the tree of folders and sub-folders it finds in your main help folder. You can replace the
folder names (usually limited to eight characters) by placing a special text file in each folder
and sub-folder. The text file must be called _TITLES .TXT and contain a list of real folder
names and corresponding full names or text you want to appear in your contents tree. Your
text file should look something like this:

:FOLDERZ1:Alternative title one
:FOLDER2:Alternative title two
:FOLDERS3:Alternative title three

Chapter 9—Extending OMNIS

The folder name you want to override must be in ALL CAPS and surrounded by colons,
followed by the title you want to appear. Each title must be terminated by a carriage return.
The OMNIS Help system is created using the second method; examine the folder hierarchy
under OMNIS\HELP\OMNIS and the _TITLES .TXT files to see how it's done.

Creating your Help Project File

You create your Help using the Help Project Manager in OMNIS.

To create your Help project

® SelectTools>>Help Project Managerfrom the main OMNIS menubar, or click on the
Help Project Manager button on the Tools toolbar

® Click on theNew Projectbutton in the Help Project Manager toolbar

OMNIS Help Wizard |

Specify the name of the folder containing the help
filez. Thiz falder muzt be located inside the OkMNIS
help folder.

H E i

Specify the window title far the Help Contents and
Index Window

< Hack MHext » | Cancel

® Enter the name of the folder containing your help files (this folder must be inside the
OMNIS\HELP folder)

® Enter a window title for the Help window

® Click on Next and follow any further instructions

Creating your own Help 271

Bookmarks

The Topic pane in the OMNIS help window has a Bookmark menu that contains fixed
bookmarks which link to specific HTML pages in the local Help system or on a website.
You can add items to the Bookmark menu by specifying bookmarks in your help project.
For example, the Bookmarks menu in the OMNIS Help contains links to pages on the
OMNIS website. You can examine the OMNIS Help project file to see how you specify
bookmarks. The Personal menu option can contain bookmarks entered by the user.

To create bookmarks

® Open your help project file in the Help Project Manager

® Click on the Bookmarks tab

® Enter the title or caption for the menu line from which your bookmarks will cascade
® Click in the bookmarks data grid to create an empty row for your first bookmark

® Enter theicon id, title, and so on, for the bookmark, and tab to create a new line

For each bookmark you must specify:

Icon id the id of the icon for the menu line; the icon can be from the
OMNISPIC.DF1, USERPIC.DF1, or the help library #lICONS
file

Title the title which appears in the Bookmarks menu

IsHelp True if the address specified in Address points to a help file in
your help folder, or False for a full address to a web site

Address the path to the HTML help page; for a help file in your help
folder, include the name and partial path of the HTML file; for
. a web page enter the web address

Enabling Help in your Application

Having created your Help project, you need to set up the links in your library to your help
pages. First, enter the name of your Help folder in the $helpfoldername property in your

library preferences; this folder must be inside the OMNIS\HELP folder. Next, update the

$helpfile property of each object for which you have written context help. The names you
enter in the $helpfile property must include the names of all sub-folders under your main
help folder, separated by forward slashes ‘/’, for example, MAINT/PAGEL1.HTM.

272 Chapter 9—Extending OMNIS

Opening Help in your Application

You can open the OMNIS Help window from within your application using the $exechelp()
method, which is a method under $root. It can take up to five optional parameters; the full
syntax is:

Do $exechelp(cInstName,cWindowTitle,cHelpFolder,cDocumentName,cTopic)

wherecinstNamespecifies the optional instance name of the help windevindowTitle
specifies the optional window titleHelpFolderspecifies a help folder name, overriding

the folder named in $helpfoldernane®ocumentNamespecifies the name and partial path

of the help topic to be displayed, if empty help searches on the topic specifibobig
cTopicspecifies the title or beginning of a topic titlecBocumentNamis empty and a

topic title is specified, help attempts to locate the topic. If no topic is found, the help
window enters the given text into the word search entry field and displays any topics found.
If both cDocumentNamandcTopicare empty, the contents list is displayed.

The following examples use the $exechelp() method.

Do $exechelp()
; displays help contents for the library

AIRLRTI

do $exechelp(”,”,”,’Reports/Printing.htm’)
; displays the specified help topic (note the extension .htm
; does not need to be specified)

[LRTTINTIE]

Do $exechelp(”,”,”,”,'Printing’)

; displays the topic whose title starts with or is equal

; to ‘Printing’. If non is found the word search tab is displayed
; with the word(s) entered and found topics are displayed

Do $exechelp(”,”,'Docs’)
; displays the contents of the help in the folder docs inside
; the OMNIS help folder

Do $exechelp(”, Alternative Title’)
; opens the help window of the current library with an
; alternative window title

Do $exechelp(‘instName’)
; opens a separate help window for the current library if
; a open window with that name does not exist

Creating your own Help 273

Chapter 10—OMNIS Data

Files

This chapter describes how you access data in an OMNIS database using the OMNIS Data
Manipulation Language, or DML. This language is specific to the OMNIS database,
therefore it requires a greater understanding of the database structure than if you are using
SQL.

The OMNIS database consists of one or more data files, and the OMNIS data manager
handles all the data exchange with an OMNIS data file using the OMNIS DML.

Two OMNIS classes provide ways of structuring and accessing data files. File classes
define the template for the types and lengths of the data fields that will be stored in an
OMNIS data file. Search classes are used with OMNIS data whenever it is hecessary to
restrict the number of records to be used

File Classes

274

A file class defines the template for the types and lengths of the data fields that will be
stored in an OMNIS data file, and is used exclusively with the OMNIS Data Manipulation
Language. Once one or more file classes have been defined, a data file can be created and
data, corresponding to the file classes placed in it.

You can define an unlimited number of file classes for a single library, each consisting of up
to 400 fields.

Creating file classes is described in b@ng OMNIS Studimanual. This section describes
indexes and file modes.

Indexes and Keys

Thelndex Options button on the file class editor shows the index and key information.

For each indexed field, OMNIS maintains a table of record sequencing numbers (RSN)
from which it can retrieve the indexed field in sorted order.

Chapter 10—OMNIS Data Files

File Classes

Consider the following data:

RSN Code Name Description
1 C/100 Xerox 5305 Office copier
2 B/100 NEC 4X4c CD changer
3 D/220 Tecra 700 Notebook PC
4 A/100 LaserJet 5L Laser printer
5 H/100 Taxan 410LR Color monitor

The Record Sequence Number is a unique number assigned to each record as it is inserted
into the data file. If you index the fields for CODE and NAME, OMNIS maintains two
tables of RSNs.

A keyis the part of the field value used to sort the index. When you choose the indexed
attribute for a character field, you can specify the number of characters, up to a maximum of
seventy-four to use in the key.

For example, a character field that can have up to 255 characters may have an index that
uses only six characters in the key. The following field values are therefore indexed with the
same “Corpor” key value:

— Corporate Housing Ltd.
— Corporate Sales Inc.
— Corporate Technology

Using an exact match find to locate one of these records is now impossible, and the search
string “Corporate Sales Inc.” will locate the “Corporate Housing Ltd.” record if it was the
first record of the three in the file.

The unique index option prevents an index from having records with duplicate key values.
When you execute tHdpdate filescommand, OMNIS checks for a unique key value. This
means that in multi-user mode, the data file is locked and safe against simultaneous inserts
with the same key value. If you make an attempt to insert a new key value in an index or
change an existing key value, and the new key value already exists in the index, then the
Update filescommand stops and returns an error code, kErrUngindex, which can be trapped
with an error handler.

Case-insensitive indexes ignore the case of the characters in character and national data
types. The key values for the following field values are the same:

— Hexadecimal
— HEXADECIMAL
— HeXabDeCiMaL

275

276

An exact match find on this index with a search string “HEXADECIMAL" finds any one of
the three records, depending on the order in the data file.

You can create compound indexes with a key value derived from more than one field in the
same file class. When in the file class editor, supply the names of the fields for the
compound index in one of two ways:

® Check thdndexed option for a field in the file class and then selectltiex Options
button

® Select theNew Indexoption in theModify file class menu when the focus is in the list
of indexes

You cannot use compound indexes with the stanBead button on a window because it
allows you to enter only the value of one field. However, when you usértieommand

in a method, and the compound index is the only index for the indexed fieldimthe

OMNIS matches the values of the fields in the compound index against the index key when
it carries out an exact match find.

If the only index for a given field is the compound index, OMNIS uses that indexFimdll
commands that specify that indexed field. If you specify two or more sort fields that happen
to correspond to the fields used in a compound index, OMNIS uses the compound index to
order the records.

Modify Menu

The file class editoModify menu has the following options:

Set Connectionpens thé&et Connectionsvindow, where you can connect other file

classes in the library to the current file class. To connect a file, double-click on the file class
name when the dialog opens; an asterisk appears next to the file name. To deselect a file
class, double-click again and the asterisk disappears. See the Setting Connections section
later in this chapter for more on Connections.

Set File Modedetermines how OMNIS opens the file: the default setting for a new file is
Read/Write. You can also use method commands to change the file mode of a file within a
library. There are four file modes:

— Read/Write
you can read and write to the file

— Read-only Files
you can read but not write to the file

You use this mode when you are only displaying or printing the data. OMNIS does not
write the records in read-only files to disk when it executddpadate filescommand, and

any attempt to delete a record in a read-only file causes an error. In multi-user libraries, a
read-only file is not reread or locked when OMNIS executesepare for update

Chapter 10—OMNIS Data Files

File Classes

command. It is good practice to make all files read only until they are required for editing.
The method command@et read-only fileandSet read/write fileghange the file mode.

— Memory-only files
builds the file as one or more slots in the CRB; the main file may not be a memory-only
file

— Closed Files
denies access to data held in a file to a particular level of user; all fields belonging to a
closed file appear empty when displayed on the screen

Changing the mode of an existing read/write file to closed is equivalent to closing the file.
OMNIS clears the CRB values for the file and releases the memory. If you reset the mode
of the file back to read/write or read only, then OMNIS reopens the file and sets up a record
buffer in the CRB when the file is next needed. If you edit a main file record whose parent
file is closed, its connection to the parent record is not changed.

Estimate Disk Usageopens a window in which OMNIS calculates the amount of disk
space required for a given number of records based on the specifications of the current file
class.

If the file includes long character fields, pictures or other variable length fields, the
estimated disk space is much less accurate.

Modifying a File Class

Before you store any data in a data file, you can change the field definitions in the file class
as much as you want. Just reselect a line and enter any changes in the entry boxes. Once yol
have created a data file, you must undertake changes to the file class with care.

For example, do not attempt to tidy up any blank lines in the file class by moving fields into
the gap, because data is referenced by field number not by name. The order in which the
fields are entered does not matter, but OMNIS uses the field numbers to identify the data.
You should not attempt to change the field numbers at any stage, even before you store any
data. If you do, the names of the fields in calculations will change.

If you need to change the file class field definitions after data has been stored, the data file
must be reorganized. This process is described later in this chapter.

Creating a Data File

You can create a data file from the Data File Browser.

To create a data file

® Select View>>Data File Browser from the main OMNIS menu bar

® Select Data File>>New

277

A standard file creation dialog appears, with the default file extension of .df1.

®* Name your data file including the .DF1 extension

Reserving Space for a Data File

If a data file is allowed to grow as new records are added, new areas of the disk are
allocated as they are needed. This can lead to fragmentation, where the various disk sectors
making up the file do not follow one after another on the surface of the disk, and may give
slower access times when searching and loading records. To prevent this, the data file
should be created large enough for future use right from the beginning. To ensure this:

® For each File class, use thstimate Disk Usageoption in theModify File class menu
to estimate the disk storage for the maximum number of records

®* Add all the estimates to obtain the overall file size requirement

®* Inthe Data Fil8BrowserselectData File>>Change Sizeand supply the required
information

If file fragmentation does occur and performance is suffering, you should consider running a
proprietary defragmentation disk utility.

Search Classes

278

Searches are used with OMNIS data whenever it is hecessary to restrict the number of
records to be worked on; for example, to print all the client addresses in a certain area, all
the salaries above a certain amount, all the video titles containing the word 'space’, and so
on.

Searches can also select the records read into the current record buffer when a window is
used to edit data, or when a method is used to process data in the file directly. A department
in a company, for instance, may only need to update certain records; access to the others
may be restricted to the managers, and so on.

Searches are implemented using either the search classSat thearch as calculation
command. You use these for searching both OMNIS data files, in conjunction wiimdhe
commands, and lists.

Clear search classlears the selection of a search class so that all records are used in the
print, find, next command, and so on.

Creating search classes from the Browser or Component Store is describddsim¢he
OMNIS Studionanual. This section describes how you construct and use searches.

Chapter 10—OMNIS Data Files

Search Classes

Creating Search Lines

You enter search lines into the main pane and select comparison operators from the toolbox
at the bottom of the editor. Lines are added, building up a series of comparisons to test
against each record in the file. If the record passes the tests, it is selected for display or
printing in a report, and so on. If the record fails the test, it is passed over and the next one
tested. A line of the search class can be a comparison, a calculation, or a logical AND or
OR.

A comparison line consists of three elements: a comparison field, a comparison type such as
equal to, and a comparison value. It takes the specified field in each record and compares it
with the value entered in the comparison value box.

To enter a comparison

® Open your search class in the search editor

® Click or Tab to the Comparison field box

Enter a field name or select one from the Catalog by double-clicking on it If the Catalog is
not visible, use F9/Cmnd-9 to display it.

® Click on an option in the comparison type box

® Tab to or click in the comparison value box and enter the text for the comparison

The characters typed into the comparison value box are read as a text string. Square
brackets can be used to cause OMNIS to evaluate the contents of a field, for example,
[FIELDZ2]. Quotation marks around text strings should not be used unless within square
brackets, for examplgcon(‘ab',FIELD2)]

® Press Enter when the comparison value has been entered

The search line displays the comparison line like this:

FIELD MODE VALUE/CALCULATION

1 NAME = Smith
FIELD MODE VALUE/CALCULATION
1 NAME = [#S1]

Comparison lines are dealt with by OMNIS as strings of characters, so you must be careful
when comparing numeric, date, time and Boolean fields. OMNIS converts the strings to the
same type as the field before performing the comparisons. Dates, times and Booleans can be
abbreviated.

The Edit menu option€ut, Copy, PasteandClear can be used on the selected line of the
search class.

279

280

TheModify search menu has the following options:

— Next Line
moves the selected line down one position and places the cursor in the field name box
ready for data entry

— Insert Line
inserts a blank line above the currently selected line and moves the subsequent lines
down

— Delete Line
deletes the highlighted line and moves the subsequent lines up

— Clear Class
deletes all lines in the search class so that a new search can be designed
Numeric Fields

A numeric field in square bracket notation is always evaluated as a string, so that a
comparison like this:

1 NUMBER FIELD = [#1]

can fail because some of the information in #1 might be lost during the string conversion.
For example, if #1=1.28, then [#1] would be evaluated as 1. If NUMBER_FIELD is a 2dp
number, [#1D2] should be used to format the #1 string representation.

Boolean Fields

To test a Boolean field, the string values can be YES, NO or empty. Y, N and " can also be
entered as comparison values; characters other than Y or N are converted to empty.

Searching on a Boolean field can produce unexpected results if you have not initialized the
field to 'NO' or zero and you have used a check box for data entry. If the user does not click
on the check box, then an empty value (not a ‘NQ") is stored in the data file.

Dates and Times

Date and time comparisons are carried out by converting the date/time to a string using the
appropriate conversion string. Short dates are converted using the string held in #FD, short
time fields use #FT, date and time fields use #FDT. For example, if the #FD date format
string is 'm D CY', the short date field is converted to 'JUN 12 1994'. A search line of:

1 DATE_FIELD Beginswith J

passes. But if a new #FD value is used such as 'D m Y', the search fails because the date
converts to 12 JUN 94.

The following example shows the combined use of a comparison and calculations involving
date and time functions.

Chapter 10—OMNIS Data Files

Search Classes

FIELD MODE VALUE/CALCULATION

1 DSTART >= 11-05-94
2 CAL DFINISH<=dat('11-06-94')
3 CAL TFINISH<=tim('18:30"

Remember that you can obtain a complete list of all format strings for date and time fields
by clicking on Date and Timein theHash pane of the Catalog.

Calculations

A calculation line allows you to enter a calculation that will be evaluated to either zero
(FALSE) or non-zero (TRUE). The outcome of the calculation decides whether a particular
record passes the search condition.

To enter a calculation line:

® Click on theCalculation button in theMode box

®* Enter the calculation in the Calculation box

The two previous examples would be entered like this:

FIELD MODE VALUE/CALCULATION

1 CAL NAME=‘Smith’
FIELD MODE VALUE/CALCULATION
1 CAL NAME=#S1

For character strings such as 'Smith’, quotes are necessary when they are entered in
calculations but not in comparisons (see previous examples).

Calculation lines avoid the problems associated with the string conversion of comparison
lines, but when comparing numbers stored to different precision, it is well worth rounding
the fields with thend() function to make absolutely sure that values that look like 1.20, for
example, are not really 1.200000456.

FIELD MODE VALUE/CALCULATION

1 CAL NUM_FLD=rnd(#1,2)
2 CAL DATE_FLD=dat(#S1)
3 CAL BOOL_FLD=1

Search calculations are optimized for query speed by choosing the best index based on the
fields used in the calculation. Index optimization is discussed later in this section

Multiple Line Searches

When a search that makes more than one comparison or calculation is defined, multiple
lines are used. For example, you may want to print records of your clients who live in New
York or Washington and spend more than $10,000 per year on your products.

281

The search for this is:

FIELD MODE VALUE/CALCULATION
1 TOWN = Washington
2 OR
3 TOWN = New York
4 AND
5 ACC_TOT > 10000

To enter an AND or OR operator on a search line:

® Click on the blank line
® Select AND or OR from thode box

The evaluation of multi-line search logic is discussed in more detail later in this chapter.

Selecting and Using a Search

A search class is selected by 8t search nameommand. Once a search is selected
(madecurrent), any reports that are printed from the standard OMNIS menus, or from
methods with th&Jse searcloption will automatically use that search.

Using Search Classes in Methods

To use a search within a method, the search must first be made current \Bi¢h skarch
namecommand. In the following exampl8et search namis included in the method
before printing a report:

Set main file {F_COMMAND}

Set report name R_LIST1

Send to screen

Set search name S_LONDONERS

Print report (Use search)

Don't forget to click on théJse searctcheck box when entering tiint report command.

In this method, th&ind first (Use searchis used to select the first record for printing. The
command\ext (Use searcHpcates the next record that meets the search.

282 Chapter 10—OMNIS Data Files

Search Classes

Set main file {F_COMMAND}
Set report name R_LIST1
Send to screen
Set search name {sMailing}
Prepare for print
Find first (Use search)
While flag true

Print record

Next (Use search)
End While
End print

Selecting Records and Using Find Tables
A find tableis a set of records that is defined when you usé€itie; Find first, Find last

andBuild list from filecommands. ThEind commands define a find table and also load the
first record in the table into the CRB. They must have a main file specified.

Single file finddoes not require a main file and does not set up a find table.

A find table always has a record order and this can be defined by specifying an indexed
field, as in:

Set main file {CONTACTS}

Find first on NAME

or by using one or more sort fields:
Set main file {CONTACTS}

Set sort field NAME

Find first

A search class or calculation can be specified in order to filter the records in the find table:
Set search name {S_LONDONERS}
Find first on NAME (Use search)

This loads the first record that passes the S_ LONDONERS search criteria.

Index Field and Find Table

Note that the order of the records defined byRimel command is defined by NAME,
which is an indexed field and therefore has its own index table. The find table is in effect
the NAME index table, and no further physical reordering of records is required.

Similarly, if a sort field defines the record ordering, and is an indexed field,
Set sort fields NAME

Set search name {S_LONDONERS}

Find first (Use search,Use sort)

283

284

the find table ordering is effectively the NAME index and no record loading or sorting takes
place by choosing that index.

If OMNIS can find no suitable indexes, or if you specify more than one sort field, OMNIS
has no choice but to read in the records to memory and physically sort them into the correct
order. This takes time and memory, and always results in a working message dialog.

As a general guide, OMNIS will try to use the best index available unless you force it to use
a particular index field in thEind or Build list command.

These are the rules that OMNIS uses:

— Ifthere is a conflict between the record ordering defined by the index field and the sort
field, the sort field takes precedence

— For files with more than 5000 records, OMNIS avoids physically loading and sorting
the records in memory if it can find a suitable index in the correct order

— If the Main file contains less than 5000 records, if the time to sort the record set is not
too great, and if there is an index field used in the search that avoids reading and
filtering unnecessary records, it is used to read in the subset of records; the records are
then physically sorted and stored as a physical table of records in RAM.

— If you define more than one sort field, records are read in using an index chosen by
analyzing the search for the best index; the records, once read into memory, are then
sorted and held in RAM as a physical table of records.

You can enter the same sort field twice to force OMNIS to use the index implied by the
Find or Search

Accessing the Find Table

Once a find table is created, thextandPreviouscommands are used to load the records
into the current record buffer. These commands should be used without any options if you
want to use the existing find table:

Find first (Use search) ;; first record is in the CRB
While flag true

Add line to list

Next
End While ;; Flag cleared when no more records found

The flag will clear after the last record that matches the search has been Kexdiislised
after the flag false condition, then you'll get the first record in the find table again.

If you use options such as bhrdexed fieldSearch or Exact matchin aNextor Previous
command and these are different from those used iRitite the find table has to be rebuilt
when theNextcommand is encountered. As a general rule, ussektandPrevious
commands without any options if you want OMNIS to step through the current find table.
The commandclear find tableclears the table.

Chapter 10—OMNIS Data Files

Search Classes

Note that OMNIS allows you to build one find table for each main file setting. If you have
more than one open data file, each data file has its own current record buffer and find tables.

Search Calculations

The Set search as calculaticmommand allows you to set up a search within a method
without defining a search class:
Set search as calculation {mid(NAME,1,1)="B'} ;; select names
starting with 'B'
Find first (Use search)

A search calculation can also be entered as part of a search class as described earlier and th
following points apply to both types of calculation.

For direct access to OMNIS data files, OMNIS does not support a full query language along
the lines of SQL-based systems. The concept of a find table is close to the SQL query such
as this:

SELECT * FROM FCLIENTS WHERE FCLIENTS.TOWN = 'Washington'

which can be implemented in OMNIS as:

Set main file {FCLIENTS}
Clear main file

Find on TOWN (Exact match) {'Washington'}

TheFind command builds a find table (in this case, based on the TOWN index) for which
the TOWN index value is “Washington”. The first record in the table is loaded into the
record buffer, and subsequétdxtor Previouscommands use the current table just as a
Fetchwould in SQL. When the end of the table is reached\thécommand sets the flag

to false.

With direct access to OMNIS data, relational queries can be created using find tables. For
example, the SQL query:

SELECT * FROM Authors, Publishers where Authors.city = Publishers.city

can be implemented in OMNIS using tBeable relational find€ommand and a simple
search calculation:

Enable relational finds {PUBLISHERS,AUTHORS}

Set search as calculation {PUBCODE = AUTHCODE & AREACODE = 'X}

Find first on PUBLISHER (Use search)

; Now print records

OK message {First record is [AUTHOR_NAME]}

The SQL ‘ORDER BY’ clause can be implemented using sort fields. Sorted tables are
available with thd=ind first andFind lastcommands:

285

286

Set main file {AUTHORS}
Clear main file
Set search as calculation {ADVANCE > 5700}
Clear sort fields
Set sort field TYPE
Find first on A_CITY (Use search,Use sort)
If flag true
Redraw (window1)
End If

Multi-line Search Logic

With long search classes using several lines, it is important to understand how the logical
grouping is interpreted. The rules are:

1. Adjacent lines without AND or OR are treated as groups and within each group the lines
are evaluated in the order in which the comparison fields appear in the file class

2. Within each group, the lines are assumed to be connected by AND unless they start with
the same comparison field and a comparison type of equal to, begins or contains

3. Calculated lines are evaluated last in the group and are assumed to be connected by
AND logic

The following examples show how multi-line search logic works:
CITY equal to "MIAMI' OR "NEW YORK'

FIELD MODE VALUE/CALCULATION
1 CITY = MIAMI
2 CITY = NEW YORK

Because each field is the same and the comparison is Equal to, the connecting logic is OR.
TITLE equal to "Secretary' AND SALARY greater than $10,000

FIELD MODE VALUE/CALCULATION
1 TITLE = Secretary
2 SALARY > 10000

Because the comparison fields are different, you don't need to put in the AND between the
lines.
CITY equal to MIAMI AND (TITLE="MANAGER)

FIELD MODE VALUE/CALCULATION
1 CITY = MIAMI
2 CAL TITLE="MANAGER'

The second search line is a calculation so that the connecting logic is assumed to be AND.

Chapter 10—OMNIS Data Files

Indexes and Searches

When searches are used, an index may be available that makes the searching more efficient.
This choice of index will override any previously selected index. Searches on non-indexed
fields will force OMNIS to test every single record in the file.

Where reports andlind commands use a combination of sort fields and searches, OMNIS
uses a simple set of rules to choose the most efficient index as described earlier.

If a Find or Build list command is given a specific indexed field, such as
Find on INDEX (Use search)

; or

Build list from file on INDEX (Use search)

OMNIS will use the index you specify to load in the records. However, if you add a sort
field that implies an index that conflicts with the specified index, the sort field takes
priority. By leaving the index field blank and with no sort fields, you indicate that the
ordering is not important and OMNIS picks the index implied by the search.

Search Optimization

If a record fails any line of the search and the rest of the tests are linked by AND logic, the
record is failed without further tests and the next record read in. For example, if most of the
NAMES live in London this search is inefficient because a large number of records are
tested against “Phibbs”.

NAME = Phibbs

TOWN = London

The search class is stored inside OMNIS as:
(NAME="Phibbs' & (TOWN="London’))

The innermost set of parentheses is evaluated first for each record.

The automatic sorting of fields within each group may conflict with the most efficient
comparison order, so it is sometimes necessary to split the group up with a logical AND or
OR. In this case, a more efficient search is:

TOWN = London

AND

NAME = Phibbs

The second ordering checks for the NAME value and then for each “Phibbs” entry, the
TOWN comparison is made.

Similarly, if there is a group of lines connected by OR logic, as soon as one line passes,
OMNIS passes over the rest until an AND connection is found before continuing to test the
record. This intelligent interpretation is completely automatic and does not normally
concern the library designer.

Search Classes 287

288

Choosing Indexes

When a search class is used, indexes can significantly speed up a search. Search
calculations are optimized automatically but comparisons can be tuned for maximum
efficiency by the developer. The first indexed field in the last group in the class is chosen as
the index. In an earlier search example (which uses STATE, CITY, AREA), AREA is the
indexed field. OMNIS steps through all the AREA codes of 100000 and carries out the
other comparisons on each one. In this case, the search is optimized for cases where there
are only a few AREA codes equal to 100000.

Search Calculations

Search calculations are optimized automatically by OMNIS provided that you do not
override the optimizer by specifying an order that implies an index. The optimizer works by
taking a sample of records using the index fields in the search and deciding which index is
the most efficient.

In the following examples, the commartéad first, Find, Build list from fileandPrint

reportdo not have any specified indexes. Thus OMNIS is able to use the built-in optimizer
to choose an index.

Set sort field {TOWN}

Set sort field {AREACODE}

Set search as calculation {{(NAME = 'Smith") & (TOWN = 'London")}

Find first (Use search,Use sort)

The two indexes NAME and TOWN are considered as suitable candidates for reading in the
records depending on the relative numbers of records with 'Smith' and 'London'. If there
were no indexes available, the sequence number index would have to be used, i.e. records
are read in the order they were entered.

Set search as calculation {{(NAME = 'Smith") & (TOWN = 'London")}

Clear main file

Find (Use search)

The two indexes NAME and TOWN are considered as suitable candidates for reading in the
records depending on the relative numbers of records with “Smith” and “London”. The

order of the records is undefined (since no sort field has been specified) and could be either
TOWN or NAME order.

Set sort field {TOWN}

Set sort field {AREACODE}

Set search as calculation {(NAME = 'Smith") & (TOWN = 'London")}

Clear main file

Build list from file (Use search,Use sort)

The two indexes NAME and TOWN are considered as suitable candidates for reading in the
records.

Chapter 10—OMNIS Data Files

Clear sort fields

Set search as calculation {{(NAME = 'Smith") & (TOWN = 'London")}
Clear main file

Print report (Use search)

The two indexes NAME and TOWN are considered as suitable candidates for reading in
the records depending on the relative numbers of records with “Smith” and “London”. The
order of the records printed is undefined and could be either TOWN or NAME order.

In the following examples, the optimizer is overridden by specifying an index in the Build
list and Find commands:

Build list from file on NAME {Use search}

; NAME is used whatever the search

Find first on NAME {Use search,Use sort}

Compound and Case-Insensitive Indexes

Compound indexes are used by the optimizer whenever it seems most efficient. For
example, if there is a compound index based on the concatenation of FIELD_A and
FIELD_B, it is used in the following example to build the find table:

Set sort field FIELD_A (Descending)

Set sort field FIELD_B (Descending)

Build list from file (Use sort)

If the sorts were not both descending, clearly the index would be of no use and a sorted find
table would be built in memory.

If there is a choice to be made between a case-sensitive and case-insensitive index, the case
sensitive one is used. If the only index for a field is case-insensitive and that field is chosen
as the best index, any find table built will be in case-insensitive order.

Enter Data Mode

Enter Data Mode

Enter data mode is the operating state used by OMNIS whenever an Insert or Edit function
is selected. It places the cursor in the first entry field on the top window and allows the user
to tab to or click in the entry fields and type in the data.

When a text field is selected for data entry, the cut and paste editing facilitie€idithe
menu are available. Text can be pasted direct from a text file witPeiste From File
option.

When the user selects a picture entry field, the cursor becomes a block and a picture can be
pasted from the clipboard. Windows metafiles can be entered by selRatitegFrom
File... in theEdit menu.

Enter data does not terminate until either OK (the Enter key) or Cancel (Escape/Cmnd-
period) is selected. If OMNIS detects an OK, the file is updated with the contents of the

289

current record buffer. If Cancel is detected, Enter data is terminated and the buffer cleared
without affecting the data file.

Find operates in a similar way, i.e. the cursor is placed in the first indexed field, the user
enters the data to be found and presses Enter or clicks OK. The data file is searched and the
record which matches the entered data is displayed. If an exact match is not found, the next
record in the index is displayed. If you want an 'Exact match only' Find, you must create a
custom pushbutton or menu option, and uséPtioenpted find (Exact matclepmmand.

Prepare for Update Mode

'Prepare for update mode' is a general term which encompaspase for insertPrepare
for edit andPrepare for insert with current values

Prepare for updatgets OMNIS ready to insert or edit/insert records in the data file.
Without it, any calculations you make will never be committed to the OMNIS data file. The
Prepare for...commands cause record locking of any read/write files in the current record
buffer. Record locking for multi-user editing is dealt with later.

When aPrepare for..command is executed for a Read/write file, the current record may be
automatically re-read to ensure that the value presented to the end-user is the most recent.
Calculate FIELD as 'Value'

Prepare for edit

; Do something such as Enter data

Update files if flag set

This may falil to store 'Value' in the data file if the file has been changed by another user. To
correct this, move th€alculatecommand:

Prepare for edit

Calculate FIELD as 'Value'

; Call a routine for example

Update files if flag set

Enter Data Command

When a method is used to insert/edit data, the Enter data mode is initifatebygata It

passes control to the user so that data can be typed into fields on the window. When control
is returned to the method, the flag is used to signal to the method whether OK or Cancel was
used to terminate data entry. Clicking OK sets the flag, Cancel clears it.

290 Chapter 10—OMNIS Data Files

The standardhsert function can be programmed using OMNIS commands, and is
equivalent to:

Prepare for insert
Enter data
If flag false
Clear main file
Redraw (WindowName)
Else
Update files
End If

The following example illustrates how the flag can be tested afténtar datacommand
has given control to the user for data entry. A simple window is selected in which three
fields have been placed: an entry field for #S5, an OK pushbutton and a Cancel pushbutton.

The value entered into #S5 is used to search the letter file. If a match is found, a window is
opened in which the new letter can be edited. The Repeat loop continues until the user
selects No in the “Select another letter' Yes/No message box or clicks on the Cancel
pushbutton in Enter data mode.

Choose letter
Set main file {F_LETTER}
Repeat
Open window instance W_CHOOSE
Enter data
If flag true ;; User has clicked OK
Find on LETCODE {#S5}
If flag true
Call method 20 {edit letter}
End If
Else ;; User has canceled in Enter data mode
Close all windows
Break to end of loop
End If
Yes/No message {Select another letter?}
Until flag false ;; Cancel selected or No answer
Close all windows

Enter Data Mode 291

292

Inserting Records

The simplest method for inserting a record is:

Set main file {FMAIN}

Open window instance W_FMAIN
Prepare for insert

Enter data

Update files if flag set

Prepare for insertlears the Main file buffer ready for the new data and prepares the system
to insert data.

The action of clicking OK on the window or pressing Enter sets the flag and returns control
to the method so that thépdate filedine can be executed. If the user cancels the Enter
data, the Update is not executed and the record is not created.

If you want to enter a series of records, a loop could be used to reselect the insert mode
automatically as each record is entered:

Set main file {FMAIN}
Open window instance W_FMAIN
Repeat
Prepare for insert
Enter data
Update files if flag set
Until flag false

Editing Records

To edit records, the basic method is:

Set main file {FMAIN}
Open window instance W_EDIT
Prepare for edit
Enter data
If flag true
Update files
Else
Clear main file
Redraw (WindowName)
End If

The Enter datacommand places the cursor in the first entry field in the top window and
allows the displayed record to be edited. When an OK pushbutton or the Enter key is
pressed, th&lpdate flescommand writes the new data to the data file.

Chapter 10—OMNIS Data Files

Modeless Data Entry

In a modeless window, as set by the window property $modelessdata, fields can be entered
at all times. Editing or inserting a record can be implemented by setting a mode flag and
trapping the button click event in a control method.

$control() method

On evClick
Switch wMode
Case 'Editing'
Do method Edit
Case ‘Inserting’
Do method Insert
End Switch

Data Entry Windows

TheWindow Classeshapter in thé&Jsing OMNIS Studiomanual describes the OMNIS
forms in the Component Store. These let you generate data entry windows automatically
from a file class, which contain the underlying code to view, insert, and edit your OMNIS
data.

Setting Connections

Connections are used in OMNIS to relate records described by one File class to those in
another. Before records in one file can be connected to records in another file, the extra
indexed field must be added to the child file. This is done by setting the connection in the
File class of the child file, as has already been described in this chapter.

Connecting the Records

To create the link between a child record and its connected parent record, the following
must happen:

— The child record and its parent record must be read into the current record buffer.
— OMNIS must be placed in eithBrepare for Editor Prepare for Insertmode.

— The contents of the current record buffer must be saved to the disk, i.e. by selecting OK
or pressing Enter when tl@mmandsmenu is used (or by executing tipdate files
method command).

Connections are changed only for the Main file during an edit. Consider an invoicing
system where the two files are fCustomer and flnvoice: a window would be set up with

Setting Connections 293

fields from both files, the customer's name field having the property $autddinde the
customer details are entered, the normal method for generating an invoice is:

® Set the Main file to FINVOICE, i.e. the child file
® Selectinsert from theCommandsmenu

® Enter the customer's name in the appropriate entry field

As the customer's name is entered, the automatic find attribute causes OMNIS to locate the
appropriate customer record and read it into the current record buffer. Once the required
customer details are displayed, the invoice can be generated:

® Type in the invoice amount and any other required details

® Click OK to save the invoice details, complete with the RSN (i.e. connection) of the
appropriate customer record

In practice, the user would not be aware that files are connected; the records would appear
to be all in the same file.

Once connected records have been stored, recalling, editing and printing them is very
simple because of the way in which OMNIS makes use of the current record buffer:

1. Whenever a Main file record is read into the current record buffer, any connected
records are also read in. Consequently, to view fields in both the Main file and its
connected files, you only need to open a window on which you have placed the required
fields and then uslext or Find etc., to read in the records.

2. When OMNIS is placed iBdit mode, all the fields in the current record buffer can be
edited. New records, however, can be inserted only into the Main file.

3. When a report is printed, connected records for the Main file are read into the current
record buffer; fields in the connected file can be placed on the Report class just like
fields from the Main file.

4. If you perform a Find using a field from a connected file, OMNIS searches for a
matching record in the Main file.

Note that OMNIS does not automatically read in records from the parent of a parent file i.e.
the “grandparent file'. To achieve this, tliad connected record®mmand can be used
for the parent file.

294 Chapter 10—OMNIS Data Files

File Connection Schemes

The OMNIS file connection scheme involves the addition of one invisible pointer to each
record in the child file. Thus each record in this file can be linked to only one other record
for each file connection. This system is ideal where one record in one file is related to just
one record in another file, or where more than one record of one file relate to one record in
another file. These two scenarios are known as “one-to-one' and “one-to-many' relationship
respectively.

One-to-One

File A (parent) File B (child)

One-to-many

File A (parent) File B (child)

Every record in File B (the child file) is related to one record in File A (the parent file). For
example, File A could be the departments in a company and File B the personnel. Clearly, a
person can belong to only one department, while a department is likely to contain more than
one person.

Many-to-Many Relationships

In a 'many-to-many' relationship, any record in file A can be related to more than one record
in file B, and any record in file B can be related to more than one record in File A.

For example, consider a database system for use in a video rental outlet. There is a file of
customers and a file of videos. Each customer can borrow more than one video and, over a
period of time, will borrow many videos. Conversely, each video can be borrowed by any
number of customers over time.

Setting Connections 295

If the owner of the outlet only needs to keep track of whether a video is available for rent
and to whom it has been rented, there is no need for the many-to-many relationship.
However, if he wants to list, for each customer, all the videos borrowed, or for each video,
all the customers to whom it has been rented, then a many-to-many relationship is
necessary.

Link File

The many-to-many relationship can be implemented in OMNIS by using a third file known
as a 'Link' file. The link file is connected to both File A and File B, and has fields such as
transaction date, number, time, etc. Each record in the link file connects one record from
both parents, i.e. the two files must both be parents of the link file. They are not directly
connected in any way. The link file need not have any fields at all, but usually stores the
time and date for the transaction.

In the video rental outlet example, each record in the link file records one rental transaction,
i.e. one customer rents one video.

Customer 5 Video 6
Customer 4 Video 5
Customer 3 Video 4
Customer 2 Video 3
Customer 1 Link 3 Video 2
Parent File A Link 2 Video 1
Link 1 Parent File B
Link File

Linking the Records

The Current Record Buffer is the key to understanding how the link file works. With the
link file set as the Main file, reading a record in the link file automatically reads a record
from each of the parent files into the current record buffer. A link file record must exist for
each combination from the two other files.

To create a link between two parent records:

® Set the Main file to the link file

®* Open a window containing at least three fields, one for each file. Two fields, one from
each parent file, must lato find fields with $autofind set

® Choose thénsert option from theCommandsmenu and enter values into both auto
find fields to read in the two parent records in Enter data mode

296 Chapter 10—OMNIS Data Files

®* Enter the data for the Main file fields, e.g. rental date and rental transaction number

® PressEnter or click on anOK pushbutton to update the file

As the link file is updated, pointers to each parent record in the current record buffer are
stored in link record.

In the video rental example, it may be desirable to print a report listing all the videos
borrowed by each customer and sorted in customer name order.

Provided that the Main file is set to the link file, fields from both parents can be placed on
the report. The primary and secondary sort fields can be set to the customer's surname and
the video name respectively, and a report can be printed without the need for any autofind
fields etc. Searches can be based on values from all three fileBn@ibke Relational Finds
command can also be used to connect files, using relational joins or OMNIS connections.

Multi-user Data Access

The OMNIS database and specifically OMNIS data files are inherently multi-user. This
section describes how you design a multi-user OMNIS database system.

To store an OMNIS data file you need a file server, complete with suitable network

software installed and tested according to the supplier’s instructions. Depending on your
requirements, you can put the OMNIS executable or program and your OMNIS library files
on a server, or individual workstations. Best performance is obtained by storing the OMNIS
program and library on a hard disk attached to the workstation. This means that the network
is used only when data is transferred between the workstation's memory and the file server.

To maximize speed of access to the information on the server disk, you should store your
data file on contiguous sectors of the disk. You can achieve this by formatting the disk
immediately before installing the network software and creating the data file, or by running
a proprietary defragmentation utility.

Sharing Data Files

All MacOS and networked volumes are sharable, but DOS files are sharable only if you run
the SHARE command. OMNIS opens data files in shared mode by default, and there is no
need to choose any special options. If you open a library or data file on a non-sharable
volume, OMNIS opens the files in exclusive mode and the operating system prevents the
files from being opened more than once.

While the Windows platforms use a three character file name extension to identify file
types, the MacOS uses creator codes. Data and libraries created under Windows will not
have the correct OMNIS Creator codes under MacOS, but the extensions .df1 and .Ibs are
recognized by the MacOS version of OMNIS. Similarly, if you do not use a .df1 (or .df2)

Multi-user Data Access 297

298

file name extension for a data file created under MacQOS, it will not be recognized as a data
file on a Windows platform.

So, to ensure that when you double-click on the file, you launch OMNIS, make certain you
use the correct file name extensions.

You can access OMNIS data files under all platforms. If your mix of platforms includes
Windows 3.1, you need to choose file names for shared data files with a maximum of eight
characters plus the three character extension.

The maximum number of users is 451. As each OMNIS library opens a shared data file, its
serial number is stored in a special block within the data file. Only one instance of each
single-user serial number is allowed in at a time.

As each user is allowed to open the data file, a unique user number is allocated and stored in
the #MU variable on that workstation. As each OMNIS workstation quits OMNIS, the
#MU number is made available to the next user to open the data file.

DOS Share Configuration

OMNIS opens data files in Shared mode if they are on a networked volume or if the
SHARE command is run on a DOS machine. If you have run SHARE and then open a
library and data file on your local hard disk, OMNIS will log into the data file as if it were
shared over a network. If a software failure causes Windows to terminate OMNIS without
rolling back the locks in the data file, you may be forced to reboot before you can log back
into the data file.

Record Locking and Semaphores

A locking system is used to protect records in a data file from being altered by more than
one user at a time.

When a user attempts to change a record, a lock status indicator in the file is automatically
checked before it can be edited. This indicator is knowrsasnaphorelf the record is not

locked and the user starts changing it, the indicator is changed so that it indicates locked
status, thus preventing another user from editing the same record. Semaphores are handled
through standard calls to the operating system and are independent of networking software.

The normal locking system uses a page lock. This locking scheme is the most efficient but
will lock every 500th record in a file. The Data FBeowsermenuoption Slot>>Toggle

Unique Locks provides a way of selecting either this page locking system or the unique row
lock. The unique row lock method is slower but does not suffer from the condition where
each lock affects a number of records in the file. You can change the option on a slot-by-
slot basis, so that you can choose the optimum locking system for each file slot. You should
use the default page locking system.

When another user attempts to edit a locked record, the mouse cursor changes into a
padlock icon. Users can view locked records, but if an attempt is made to inRistpaae

Chapter 10—OMNIS Data Files

for... command, the workstation is forced to wait until the lock is removed. Only the break
key, Ctrl-Break or Cmnd-period releases the Prepare for edit/insert mode, clearing the flag
and enabling the user to select another function. You can uBéstidele cancel test at
loopscommand to prevent users from canceling from a lock, but this is not recommended.

If you do not want th@repare for..command to wait for the semaphore, you can first run
theDo not wait for semaphoreasommand. This causes tRespare for..command to

return a false flag to the method immediately if a record is locked. You can check the flag
and present the user with an option to try again or do something else instead. For example

Do not wait for semaphores
Repeat
Prepare for edit
If flag false
No/Yes message {The record is in use, do you want to quit?}
If flag true
Quit method
End If
End If
Until flag true
Enter data
Wait for semaphores
Update files if flag set

Disabling the Break/Cancel Key

TheDisable cancel test at loogommand prevents the user from canceliRgepare for
edit/insertcommand by pressing a break key. Provided that the library checks the flag after
eachPrepare forand prevents the subsequbipdate filesfrom being encountered, the
Working messag@vith Cancel)provides an alternative way to withdraw from a lock.

File Locking

When theUpdate filescommand is encountered, any index tables that have been changed,
data blocks added, deleted or changed are all written to the data file. While this is carried
out, the header blocks in the data files are locked to prevent another workstation from doing
the same. If you have a large number of users and indexes to sort, a large record length or a
slow network, you will notice the lock cursor appearing for a short time if two users update
the files at the same time. Normally these delays last at most a few seconds.

Index Caching

Index tables used to locate records in the OMNIS data file are held in memory on each
workstation to improve performance over a network. OMNIS tracks the changes made to
the index tables automatically and only re-reads the index from disk if it knows the one in

Multi-user Data Access 299

300

memory is out of date. This means that, as users log into the library, the index is altered
more frequently and performance on the workstations is reduced.

Redrawing the Screen

If a record which is being viewed by a user is locked, you should design a method so that
when the record is unlocked, the screen is redrawn and the latest version of that record is
shown. If you do not redraw, even though the CRB is refreshed, the values on the screen are
not brought up to date until the user tabs through the fields. The method is

Prepare for edit
If flag true
Redraw (WindowName)
Enter data
Update files if flag set
End If

Constants Files and Global Data

In multi-user systems, record locking can cause serious delays if there is a record which
needs to be continuously updated by a number of users, an invoice number or running total,
for instance. If a user attempts to read and lock the record for the length of time it takes to
enter a complete screen full of data, it could stay locked for 10 minutes or more! And if he
goes for a coffee without releasing the invoice number record, the accounts department
could grind to a halt.

In this circumstance, it is important for the record not to be read into the current record

buffer and locked for any appreciable length of time. To avoid this, you should make the

file read-only until it is ready to be updated. You can update it before the main update
method is started (which can cause unused numbers to be created if a user Cancels half way
through an Edit), or update it as the Enter key is pressed on completing the entry window.
The commandbet read-only fileprevents OMNIS from locking a file even though it is in

the current record buffer.

Set Read-only Files

You can designate a file as read-only to prevent OMNIS from locking it. Setting a file to
Read/write affects the way that the local library deals with the file but changes nothing in
the actual data file. You can use thet read/write flesommand to return the file to

read/write status and update the record. Note that you should not change the status of files
while in Prepare for edit/inserinode unless you are sure that the record cannot be locked
for any appreciable length of time.

In the following example, the invoice number is stored in a field cinvNum in file class
finvNumber. finvNumber contains just one record, the current invoice number. In this
method, it is initially given the read-only status. This prevents it from being locked by the

Chapter 10—OMNIS Data Files

Prepare for insertommand. When the details of the invoice have been entered, the invoice
number is incremented and then stored in the finvNumber file by changing its status back to
Read/write. ThéJpdate filescommand terminates tfiRrepare for.. mode and stores the

new number.

Open window instance WINVOICES

Disable cancel test at loops

Set read-only files { flnvNumber }

Set main file {FINVHD}

Prepare for insert

Enter data

If flag true
Update files
Set read/write files { finvNumber }
Prepare for edit
; Assign the new number to the invoice
Calculate InvNo as clnvNum+1
Calculate clnvNum as InvNo
; Update both Invoice and constant file
Update files

End If

An equally good approach would be to makeyour file classes default to read-only status
and then use a reversible block at the beginning of the method to set the required files to
read/write status.

Using the #MU Variable

The #MU hash variable is the multi-user number, that is, it holds a number which identifies
the user. Each user is given a unique number greater than zero as he selects the data file.

When users log off, their #MU numbers are reused, i.e. the next user to select the data file is
assigned the first available number. In single-user mode, #MU is zero.

Multi-user Data Access 301

In situations where each user requires some scratch-pad fields in which to store temporary
values, you can use the #MU hash variable to reference a corresponding local record, for
example

: Find record on workstation number
Set main file {F_SCRATCH}
Find on USER (Exact match) {#MU}
If flag false ; No record set up for this user
Prepare for insert
Calculate USER as #MU
Update files
End If
Prepare for edit
Calculate FS_TOTAL as FS_TOTAL+FS_TRAN_TOT
Update files

File Connections

When you are designing multi-user libraries which use connected files, you must take care
to prevent excessive record locking of parent files which will be required by other users.
Any file in the current record buffer will be locked, so in the sample method below, the
PCODE record in the parent file P_FILE is made read-only.

Before the main record can be updated, the original parent file is made Read/write, but with
the added complication that another user may have deleted that record! If this has happened,
the user is forced to change the value of PCODE so that the Main file record can be
connected to another parent record. For example:

Prepare for edit ;; Waits for record release
Redraw windows (All windows)*** ;; ensures the changes on disk are
displayed
Set read-only files {P_FILE}
Enter data
If flag true
Set read/write files {P_FILE}
; Tests if Parent record exists before update
Single file find on PCODE (Exact match)
If flag true ;; if parent record exists
Redraw windows (All windows)
Else ;; parent record does not exist
OK message {Code does not exist, please re-enter}
End If
End If
Update files if flag set

302 Chapter 10—OMNIS Data Files

Do not cancel pfu option

The Updatefiles command has the opti@o not cancel pfuwhich lets you write methods

that maintain locks on parent records while multiple child records are inserted. Take the
common example of an invoicing system: you insert an invoice record and then a number of
related invoice items are added to a child file. When this option is used, the invoice record
can remain locked until the whole transaction is complete. Here is an example method

Set main file {FINVOICES}

Set current list FLIST

Prepare for insert

Enter data

Update files if flag set (Do not cancel pfu)

; The parent is in place and remains locked. Now load items from a
list and insert into the child file FITEMS

Set main file {FITEMS}
For each line in list

Prepare for insert

Load from list

Update files (Do not cancel pfu)
End For
; At this point the parent remains locked
Update files
: Locks are released on all records

Note thatPrepare for..commands cannot be nested; each one overrides the last. There is
only onePrepare for..mode active at any time and, as each one is executed, it uses the
Main file setting active at that time.

Unique Index Check

You can set the Unique index check property for a window field. In single-user mode, it
prevents users from creating identical part numbers, invoice numbers, etc. It does this by
checking that the value entered in the entry window does not duplicate a value in the
corresponding fields on disk; the check is made as the user tabs out of the field (and before
the Enter key is pressed). However, the check does not have the same effect when used in
multi-user systems. In this case, two users may be entering values for that field at the same
time so, although there is no duplicate on the disk as the value is entered, there will be
duplication once the users have pressed Enter and the records are stored in the data file!

Multi-user Data Access 303

304

The Unique index property available in the file class definition is ideal for multi-user

libraries and causes the check for uniqueness to be carried out on the indexed value before
updating the file.

Load error handler $errorhand {Error handler}

; No range means all warnings and errors will be passed to
$errorhand

Prepare for insert
Enter data
Update files if flag set

$errorhand

; Store error details before another error changes them
Calculate ERROR as #ERRTEXT

Calculate ERRNUM as #ERRCODE

If ERRNUM = kErrUngindex

OK message {Part number already exists, please re-enter part
code}

Enter data
If flag true
SEA repeat last command ***
Else
Quit all methods
End if
End If

Connected Records

In some libraries you should consider the possibility that another user could alter the
relationships between the records while waiting for a semaphore. For example, in a Video
rental system, the record for the tape may be connected to a customer record and, while
waiting for a semaphore on a video tape, another customer rents the tape and a connection
or relational join is made to another customer record. If you use connections, you can add
Load connected recorde ensure that the latest record and its parent are displayed
Prepare for edit
If flag true

Load connected records

Redraw (WindowName)

Enter data

Update files if flag set
End If

Chapter 10—OMNIS Data Files

One drawback of using the@ad connected record®mmand is the possibility of a 'deadly
embrace' which is described below.

Semaphores

OMNIS makes use of additional semaphores to prevent conflicts when additional record
locks are required and the system is alreadBr@pare for edit/insertnode. These

semaphores are indicators set in the data file which inform other users that the record has
been required for editing. Since OMNIS has already locked some recordasphse

for... was issued, the additional locking requirements need to be carefully controlled by the
developer, especially the potential problems associated by a user pressing a break key.

Deadly Embrace

Take the situation where two users Fred and Jim have locked some recordBnejthra

for... command. While ifPrepare for..mode, Jim attempts to find a record held by Fred

and Fred tries to edit one of Jim's. Both users sit and wait for the padlock to go away, all
day perhaps! If a user is forced to reset with the re-start button, semaphores are left on the
original records and you have to wait for the file server to release them.

The simplest rule to follow is to avoid using commandBriepare for edit/insermode

which read new records into the buffer for editing Eigds, Set read/write filed oad
connected recordand also Automatic find fields in windows. If new records must be read
in, update the files to cancel tReepare for.., get the new records and issurapare for
editto return to the former status. As e&lepare for...is encountered, the flag is checked
and an orderly withdrawal from a lock is possible.

Clearing Semaphores

Semaphores are set in the data file via calls to the operating system. When the file server's
operating system is restarted, they are all cleared automatically and the first OMNIS user to
gain access to the file becomes #MU=1. If workstations are shut down unexpectedly, some
file servers eventually clear semaphores automatically. If you are forced to break out of a
lock by switching off a computer, and you have the maximum number of workstations, it
may be necessary to wait for this to occur before logging back onto the data.

Multi-user Data Access 305

Data File Structure and Maintenance

In order to store and query data in the OMNIS data file, you only need to understand the
general principles of database organization. If however, you are involved in database
administration and management, you need a more detailed understanding of the underlying
structure. This section describes the structure of OMNIS data files and the utilities
available to maintain them.

OMNIS data files hold records of data whose structure you define in a file or schema class.
Data associated with different file or schema classes can be held in a data file, each one
occupying aslot You can index some fields in a file class for faster retrieval so OMNIS

also needs to keep the indexes for these fields.

FILE CLASSES DATA FILE

SLOTS

| INDEXES

You can access data in more than one data file at a time. Since the structure of the data
stored in the data file is based on the framework defined in the file or schema class, it must
be kept compatible by reorganizing it if structural changes are made to the class. You can
also export and import data to and from OMNIS data files.

It is not recommended practice to use the same data file for both OMNIS SQL and DML
access. In the remainder of this section, DML access and the use of the OMNIS file class is
assumed for clarity of writing; the structure is the same, regardless of how you access your
data.

306 Chapter 10—OMNIS Data Files

Data File Structure

An OMNIS data file can store data for any number of file classes and has a maximum size
of 3,840 MB. An OMNIS data file may comprise up to fifteen separate files, although
OMNIS still treats these files as one continuous data file. The individual data files are called
segmentsgach segment having a maximum size of 256 MB. OMNIS automatically expands
the first segment of the data when it needs more space, by adding unused disk blocks to the
file.

The data file is divided into blocks of 512 bytes each. There are five types of block in a data
file:

— Data blocks

— Index blocks

— File header blocks
— Free blocks

— The master block

A block that stores the data for a database record is a data block. Depending on the size of
an individual record, one data block may be large enough to store several records from a
file, or OMNIS might need several data blocks to store just one record.

Index blocks store index values. You can index any combination of fields in the file class
through the file class editor. OMNIS indexes the data values in a sorted tree structure. Every
insertion, change, or deletion of a record rearranges the tree. For this reason, the more
complex the index structure for a file class, the longer it takes to process insertions,
deletions, or changes to data file records with that file class structure.

Free blocks are unused blocks in the data file. OMNIS keeps track of the free blocks in a
free chain. Whenever OMNIS deletes a record from a specific file, it updates the free chain
by marking the block or part-block that the deleted record occupied as being available for
new records.

OMNIS maintains a file header block for each file class in the data file. File header blocks
store information about the attributes of each field in the file. This lets OMNIS determine
whether a particular data file needs reorganization. The file header block also maintains a
pointer to the first block in the data chain for that file as well as a pointer to the first and last
block of all indexes for that file, and other information.

Block 0 is the master block of the data file, which contains critical information about the

file. It holds a total block count for its own segment of the data file and, if there is more than
one segment in the data file, also holds information about the sizes of the other segments.
Block 0 also stores a pointer to the first block in the data set free chain, a directory of all
files in the data file, and a pointer to each of the file header blocks.

Data File Structure and Maintenance 307

308

OMNIS has the concept ofraain file while you can open several files at the same time
and edit their values, you can insert and delete records only in the main file.

Data File Reorganization

Reorganization is the process of converting the data file so that its structure reflects any
changes that have been made to the data class(es) in the library. If a reorganization or
reindexing operation is unsuccessful, the data file may be left in a damaged state.

When you make a change to a file class and close the design window, OMNIS automatically
checks to see if reorganization is necessary and displays a prompt. You can turn off this
prompt by setting $promptforreorg to kFalse in the OMNIS preferences, accessed from the
Tools>>Optiongnenu.

Reorganization is necessary if any of the following changes have been made to a file class:
— You have added or deleted indexes

— You have changed the field type of any field

— You have changed the file connections

Reorganization or reindexationnst necessary because of any of the following changes:

— New fields

— Changed field names

— Changed field lengths

Reorganizing the records for a file class in the data file creates a new file header block,
clears the indexes and allocates all the complete blocks cleared to the free chain, converts
the records to the new structure in place, transfers data to optimize it, removes the old file
header, and constructs new indexes. Finally, OMNIS recreates the data dictionary entry for
the file class.

You can reorganize a data file from the Data File Browser, described in the next section.
You should ensure that you have adequate backups of the data file before attempting data
file reorganization.

Maintaining Data Files

Data file maintenance is necessary to

— keep the structure compatible with its associated classes
— regularly check for and repair any data errors

The utilities for doing this are found in the Data File Browser.

Chapter 10—OMNIS Data Files

Data File Browser

You can use the Data File Browser to maintain your OMNIS data files. You open the Data
File Browser from the main OMNIS menu bar.

To open the Data File Browser

® Select View>>Data File Browser from the main OMNIS menu bar

The Data File Browser lists the open data files. For a selected data file, the View>>Down
One Level option shows System slots and Data slots.

£z Data File Browser - File THAYEL =]
Datafile Slot Wiew

@) i

System zlokz

[
7

— System slots
display #SLOTS and #INDEXES which are read-only and kept by the system.

— Data slots
referenced internally by #SLOTS above, correspond to the file classes on which the
data file is based. Viewing the next level lists all the slots in the current data file in a
statistics table showing the number of fields, records, and related parameters.

File maintenance operations are carried out from the Datafile and Slot menus. OMNIS
keeps a log of any damage to the data file iftheck Data Log accessible from the View
menu. This has options to clear the log and repair reported damage. You can select one or
more slots to check by Ctrl/Cmnd-clicking in the list.

Data File Structure and Maintenance 309

310

Datafile menu

The Datafile menu lets you open and close
data files, and create new ones. The Datafile @ Mew...

menu also contains goeen |

— Make Current A Cloze
specifies the selected data file as the
current data file = Make Current
— Check Free Blocks Check Free Blocks...

steps through the chain of free blocks an Change Size...
reports the number of free blocks: any :
corruption causes OMNIS to report an Huick Check
error

1 b homnis gofbware inchnnn,dfl

— Change Size
displays the Change Data File dialog, which lists the segments in the current data file;
only the first segment of the data file expands automatically as you add records; you
must size the other segments individually

— Quick Check
opens the Check Data Log that lists any damage in the data file

In the Change Data File dialog you increase the size of a segment by clicking in the
Segment sizdield and typing in a new number of 512-byte blocks. You can add a new
segment wittAdd segment This displays the Select directory for new segment dialog,

which lets you choose a directory for the segment. On Windows, the allowed directories are
the directory of the first segment and any directories in the OMNIS environment string, a
list of directories similar to the DOS path. OMNIS looks in all these directories for
secondary data file segment files (DF2 and so on). Under MacOS, you can put the new
segment in the OMNIS folder or in the root of any mounted volume.

You delete a segment other than the first one by selecting it in the list and clicking on
Delete segmentThis action is irreversible.

As the first data segment grows to accommodate additional data blocks, it can become
fragmented the sectors of the disk become non-contiguous because other files on the disk
use sectors adjacent to the data file. This can cause slower disk access times because the
read/write head must jump from one track to another to find records. This is particularly a
problem in multi-user installations. The solutions are either to run a proprietary program to
move all the data blocks onto contiguous sectors of the disk or to start with a recently
formatted disk and create the data file at its maximum size before you delete any other files
from the disk.

The Check Data Log that lists any damage in the data file. This reflects only the damage
found as the data file was used since the last time you repaired the data, and unless your
library has “Nexted” through each record in all the files, this may not reflect the true state of
the data. OMNIS does not carry out any actual checking of the data file itself, and if

Chapter 10—OMNIS Data Files

OMNIS finds no problems in the log, it displays the message “No damage found by quick
check”. The log has three optiofsjnt, Clear, andRepair. Choosing th&€lear option

results in a warning if there are any damaged blocks reported in the logephi option
attempts to correct the damaged blocks and enters a report of found or lost data in the log

window.

Slot menu

The Slot menu has the options m

— Reorganize Bearganize...

initiates a standard reorganization of the selected

data file slots Reorganize And Optimize...

v LCorvert Pictures To Shared

— Reorganize And Optimize
reorganizes the selected data file elements and Full Check...
attempts to store the records that optimize the Full Check And Repair...
access times; unused space distributes among th
data and data files can get larger during this
process. Note that Reorganization is not a data
recovery option and should be carried out only or Elerame
good data Delate.

Update D.ata Dictiohany
T ogale Unique Locks

— Convert Pictures to Shared Format
converts any pictures stored in the data file to shared picture format

— Full Check
forces OMNIS to examine the internal consistency of the areas shared by all slots, such
as the free space; any problems are reported in the Check Data log and can be repaired
by selecting the Repair option in the repair log window

When you launch OMNIS, it clears the log. When you choose a full check, OMNIS writes

out all reports of damage and messages about any repairs carried out to the @gairhe

option results in a warning if there are any damaged areas reported in the log, and you
should normally back up the data and carry out the repairs before using the data file.
SelectingRepair causes OMNIS to repair all the damage listed in the log and rebuild the
indexes. Once begun, you cannot interrupt the process and a software crash or power failure
can leave the data file in an unusable state so it is essential to back up before you start.

Signs of a damaged index include looping of records during report printing, missing records
on a report, or missing records in Find, Auto find, Next, or Previous operations.

— Full Check and Repair
displays the Check Data Log as for the previous item and repairs any damage as part of
the operation

— Update Data Dictionary
copies the data dictionary as stored in the current design library file class to the system
slot held in the current data file

Data File Structure and Maintenance 311

312

If the slot for the file class requires reorganization, OMNIS leaves unchanged the field types
of the fields needing reorganization. If you make minor changes to a file class, such as
altering field lengths and so on, OMNIS uses the field lengths from the file class when
determining the number of characters that you can type into the field. However, OMNIS
reads attributes that affect the way data is stored (such as field type) from the data
dictionary.

— Toggle Unigue Locks
modifies the way in which multi-user locking is handled for that slot in the data file

The default, non-unique locking, is faster but has the disadvantage that each time you lock a
record, you lock approximately one in every 500 records in the same slot. This is the most
reliable locking mode. If you find it essential to wew locking where the locks apply to

only one record at a time, you can toggle this mode on a slot-by-slot basis. The locking
mode for each slot is given in the Unique Locks column in the main browser pane.

— Rename
renames the selected slot and creates an archive of the data. You can also use this to
rename the file class in the data file when you rename it in the library, which lets you
continue to use the data file without needing to recreate the data

— Delete
deletes the selected slot

Shared Data Files

Some data file operations require that only one user is using the data file, and cannot be
started if there are other current users; they are:

— Check free blocks, Reorganize, Reindexing

— Repairing data, Deleting or renaming a slot

Chapter 10—OMNIS Data Files

Chapter 11—OMNIS SQL

This chapter describes how to use OMNIS SQL to access an OMNIS database, and assumes
a working knowledge of SQL. A formal definition of the OMNIS SQL language is included.

The OMNIS Data Access Module (DAM), which is in the EXTERNAL folder, lets you
connect to an OMNIS database using OMNIS SQL. No additional software is required to
use OMNIS SQL.

Connecting to the Database

For an application to logon to a database in runtime requires a set of commands in a
method. For OMNIS SQL all that is required is the comnfagidhostnamt® identify the
database that contains the tables you want to access.

Set hostname { c:\omnis\df\my-dfile}

Sending SQL to the Database

Before a client application can get any data from a server, it must set up a corresponding
place in OMNIS to hold the data. This involves mapping the structure of the data, including
column names and data types. Typically, you do this using OMNIS schema classes. You can
define a schema to include all columns of the server table or any subset of the columns.

The schema serves as a framework for defining a table class which, in turn, is the reference
for defining lists and rows. OMNIS uses list and row variables for handling client/server
data. Creating schema and table classes is described earlier in this manual, and using lists
and rows is described in thést Programmingchapter.

To send SQL to the database, you can either write your own methods, or use the table
instance methods that handle both single row and bulk SQL transactions. This section
covers custom methods; OMNIS table classes were described earlier.

OMNIS provides two different ways of building a SQL statement and sending it to the
database: thBerform SQLcommand and SQL scripts.

Perform SQL

ThePerform SQLcommand sends a single-line SQL statement to the current SQL session:
Perform SQL { SELECT name FROM Agent }

You can substitute text into the SQL statement using square bracket notation:
Perform SQL { SELECT name from [TABLENAME] }

Connecting to the Database 313

where TABLENAME is an OMNIS variable.

SQL Scripts and the SQL Buffer

For longer statements that you may want to enter on more than one line, OMNIS provides
the SQL script. OMNIS has a SQL buffer, an area of memory that contains a single SQL
statement that you build up with a series of commaBeigin SQL scriptlears the buffer;
SQL:enters a line of SQL textnd SQL scriptloses the buffer ariixecute SQL script
sends the contents of the buffer to the database. For example,

Begin SQL script

SQL: INSERT INTO Agent

SQL: (name,number)

SQL: VALUES ('FRED',123)

End SQL script

Execute SQL script

is equivalent to th@erform SQLcommand

Perform SQL {INSERT INTO Agent (name, number) VALUES ('FRED', 123)}

You can also us€et SQL script {field naméo copy the contents of the SQL buffer into a
variable andset SQL script {field narher to copy the contents of a variable into the
current SQL buffer.

Error Handling
Both Perform SQLandExecute SQL scriptlear the flag when the operation is not
successful and the functiosgs(131)andsys(132yeport the error code and error text
respectively.
Perform SQL { SELECT name FROM Agent }
If flag false
OK message {SQL error [sys(131)] [sys(132)] }
End If

The Name Functions

There are several functions you can use to create part of a SQL statement. Each of these
functions takes a file class name or field name list as a parameter and evaluates to a string of
text that OMNIS inserts automatically into the SQL buffer. With these functions, you can

write general-purpose methods that will work with any server without typing long SQL
statements. For more information, see the descriptions in the OMNIS Help. The functions
are:

— createnames()
— insertnames()

— selectnames()

314 Chapter 11—OMNIS SQL

— updatenames()

— wherenames()

Data Mapping
There are several ways to map OMNIS data into SQL statements.

Square Bracket Notation

SQL statements can contain square bracket notation, which OMNIS evaluates. If you use it
you must supply quoted literals. For example, to update an Agent table by setting the name
to a string from a variable called FIELD, you must quote the square bracket notation
expression:

Perform SQL { UPDATE Agent SET name ='[FIELD]' }

You cannot use the string ‘[J[I' (two sets of empty square braces) in your SQL statements
because the DAMs use this string to mark the variables passed as @[]

Bind Variables

A bind variableis an OMNIS variable to which you want to refer in a SQL statement.

Instead of expanding the expression, OMNIS binds, or associates the variable value with a
SQL variable. If you place an @ before the opening square bracket, OMNIS evaluates the
expression and passes the value to the server directly rather than substituting it into the SQL
statement as text. You can also use this syntax to bind large fields such as pictures into a
SQL statement:

Perform SQL { INSERT INTO Agent (agentPortrait) values (@[P_FIELD])

Never quote bind variables, and use them only to represent complete literals or values;
otherwise you will get an error from the server.

Generally, using bind variables performs better than square bracket notation and is more
flexible with respect to data representation. You should use square bracket notation only
when the notation expression evaluates to a part of a SQL statement broader than just a
value reference (such as an entire WHERE clause, for example) or where you know that
simple value substitution is all you need. This works best for numeric data; strings tend to
cause problems because of the issues with quoting. You must include quotes when using
square bracket notation, but you don’t need to when using bind variables. Also, if you are
inserting NULL data into the database, you should use bind variables, since square bracket
notation tends to insert empty strings into the SQL statement, not SQL nulls. This also
applies to pictures, binary data, and very long text.

Select Tables and Cursors

A select tablds a table of results that belongs to a session. When you send a SQL SELECT
statement to the server and there is no error, the results of the SELECT become available to
OMNIS as the select table for the current session. The select table can be empty; in this

Sending SQL to the Database 315

316

case, the flag is true after the execution of the select and is only set to false when you
attempt to fetch the first row after the end of the select table.

You can map the data in the select table into OMNIS data in three ways:
— Declare cursorandFetch next row

— Build list from select table

— Retrieve rows téile

When you fetch data from the server, OMNIS converts data types between the native SQL
server and the OMNIS data type if possible, including numeric precision. If there is a total

mismatch between OMNIS field types and SQL column types, you can lose information or
get a SQL error.

Declare cursor and Fetch next row

TheDeclare cursorandFetch next roncommands let you map each row in the select table
into the CRB on a row-by-row basis.

Declare cursordefines é5QL cursoya hamed pointer to a row in the select table, and
associates a SQL select statement with the cu@gmmn cursomopens the cursor, parses the
SQL statement, binds input data, and executes the SQL stat&aeotrrent cursor
switches OMNIS to use the named cursor.

When you execute a SQL SELECT statementgthieent cursorpoints to the first row in

the resulting select table. When yéetch next rowyou fetch the row pointed to by the
current cursor and move the cursor to the next row. You can have more than one cursor
active at a time, letting you select rows based on values retrieved from a completely
separate select table. You use 8 current cursocommand to use a particular cursor as
the current cursor with tHeetchcommands.

Unless you are using multiple cursors, you don't need to explicitly open a cursor; OMNIS
automatically opens one for you.

The Fetch next roncommand loads the column values for a single row of the select table
into the OMNIS CRB fields.

If the list of fields does not match the columns in the select table, OMNIS tries to map the
data as best it can. If there are more columns than fields, then OMNIS doesn't copy the extra
column values into OMNIS variables. On the other hand, if there are more fields than
columns, then OMNIS leaves the extra field values unchanged.

The usual retrieval process is to fetch the rows in a loop, one at a time, until there are no
more rows in the select table. To do this, youkssteh next rowwvhich fetches the row

pointed to by the current cursor, then moves the cursor to the next row. After successfully
fetching a row, the flag is true. After you fetch the last row, the next fetch returns a false
flag and does nothing to the mapped fields. You then can uSdabe cursocommand to
close a cursor explicitly, freeing the memory it uses.

Chapter 11—OMNIS SQL

Using theRepeatandUntil commands with the flag lets you fetch until the flag turns false,
though you must save the value of the flag in a separate variable for the test, since other
commands may reset the flag before reaching the end of the loop. You can al¥dhilse a
command, fetching the first row before entering the loop.

There are several variations on ffetchcommand.

— Fetch first rowfetches the first row in the select table and points the cursor at the
second row

— Fetch current rowfetches the current row and leaves the cursor pointing to that row

— Fetch next rowietches the current row and points the cursor to the following row

Build list from select table

TheBuild list from select tableommand fetches all the rows of the select table into a list
that has been defined with the appropriate fields. The command appends the values rather
than overwriting any values in the list so you can use this feature to put multiple select
tables into a list, but there is@lear listoption to clear the list first. If you have defined

the list with other fields or variables, tAeld CRB field®ption inserts these values to the

list as well.

You can use #LM or $linemax to limit the size of the list regardless of the number of rows
in the select table. There are also commands provided by most servers to limit number of
rows returned; do not confuse these with the #LM value, which just affects the list.

The following method selects a table cali@ohtactswith columnsname andnumber
directly into a list.

; Local variable IvContacts (list)
Set current list lvContacts

Define list { fContacts }
Perform SQL { SELECT name, number FROM Contacts }
: Creates the select table of all rows and columns
If flag true
Build list from select table
End If

Retrieve Rows to File

This command copies the select table on a row by row basis into the current client import
file, where the data is appended in tab-delimited format.

Set client import file name {my_file}

Open client import file

Perform SQL {Select * from my_table}

Retrieve rows to file

Close client import file

Sending SQL to the Database 317

OMNIS SQL Language Definition

The following sections show the grammar of OMNIS SQL using BNF (Backus-Naur Form)
diagrams, using the conventions from the ANSI standard.

Each statement includes a note specifying what parts, if any, of the statement depart from
the ANSI 1989 standard for SQL.

SQL Statement

SQL_statement ::=
create_table_statement
create_index_statement
delete_statement_searched
drop_index_statement
drop_table_statement
insert_statement
select_statement
update_statement_searched
update_statement_positioned
alter_table_statement

The SQL statement is the text that goes inittdorm SQLcommand or in a SQL script
starting withBegin SQL scriptThe rest of the grammar depends on this main element.

ANSI SQL has the following statements that OMNIS does not implement. Most statement
involve cursors, and OMNIS implements these as commands rather than as SQL statements.

— close_statement
closes a cursor (see t@#ose cursorQuit cursor andReset cursorsommands)

— commit_statement
commits a transaction (see tBemmit current sessiccommand)

— declare_cursor
declares a cursor (see theclare cursocommand)

— delete_statement_positioned
deletes a row based on current cursor position

— fetch_statement
fetches a row using the current cursor (sed-dtehcommands)

— open_statement
opens a cursor (see tpen cursocommand)

— create_schema_statement
creates a schema containing tables and views; OMNIS SQL does not support schemas

— create_view_statement
creates a view; OMNIS SQL does not support views

318 Chapter 11—OMNIS SQL

— grant_privilege
grants an access privilege on an object to a user; OMNIS SQL does not implement any
SQL security

CREATE TABLE

create_table_statement ::=
CREATE TABLE table (table_element_comma_list)
CONNECTIONS (table_comma_list)

The CONNECTIONS clause is an OMNIS extension to the ANSI standard that lets you
specify a list of file classes to which to connect a file class. Connections are parent-child
relationships between file classes. SedQMNIS Data Fileschapter for information on
connections

table_element ::= column_definition | UNIQUE (column_comma_list)

You can define a file class using the SQL CREATE TABLE statement. The fields in the
format come from the list of column definitions. You can also specify that the values for a
group of columns are unique, taken together, with the UNIQUE constraint. You can have
more than one UNIQUE constraint. All the columns in a UNIQUE constraint must be
defined with the NOT NULL qualifier (see below).

The ANSI standard contains several other table constraints, namely PRIMARY KEY,
FOREIGN KEY and CHECK that OMNIS SQL does not implement.

column_definition ::= column_data [[NOT] NULL]

The NOT NULL constraint specifies that when you insert a row, the value for this column
must not be NULL.

The ANSI standard specifies a default clause that lets you define a default value for the
column. It also lets you specify that the column is UNIQUE, REFERENCES a primary key
in another table, or satisfies a CHECK constraint. OMNIS SQL does not implement any of
these features.

column_data ::=
column_name data_type

OMNIS SQL Language Definition 319

320

data_type ::=

LONG] VARBINARY

BIT

VARCHAR (NUMBER)

CHAR (NUMBER)

NATIONAL CHAR[ACTER] VARYING (NUMBER)
NCHAR VARYING (NUMBER)
SEQUENCE_TYPE

DATE [({1900..1999 | 1980..2079
2000..2099 }) 1]

TIME

TIMESTAMP

TINYINT

SMALLINT

INTEGER

NUMERIC (number, integer)
DECI[IMAL] (number, integer)
FLOAT_TYPE [(integer)]
REAL

LIST

PICTURE

ANSI data types include CHARACTER, NUMERIC, DECIMAL, INTEGER, INT,
SMALLINT, FLOAT, REAL, and DOUBLE PRECISION. OMNIS does not implement
FLOAT and DOUBLE PRECISION directly, though FLOAT_TYPE is similar to FLOAT.
The other data types are OMNIS specific. The integer value in the NUMERIC, DECIMAL,
and FLOAT_TYPE types corresponds to the OMNIS subtypes for numbers; 0-8, 10, 12,
and 14 are the possible values.

ALTER TABLE

alter_table_statement ::=
ALTER TABLE table ADD
{ column_data | (column_data_comma_list) }

The ALTER TABLE statement lets you add a column to an already existing table using the
same syntax as in CREATE TABLE.

The ALTER TABLE statement does not exist in the 1989 ANSI standard.
DROP TABLE

drop table statement ::=
DROP TABLE table_name

The DROP TABLE statement removes a file slot and any data for that slot from an Omnis
datafile.

The DROP TABLE statement does not exist in the 1989 ANSI standard.
CREATE INDEX

create_index_statement ::=
CREATE [CASE SENSITIVE] [UNIQUE] INDEX index
ON table (index_column_comma_list)

Chapter 11—OMNIS SQL

index_column ::=
column_reference [ASC]

The CREATE INDEX statement lets you create an index on an OMNIS database column.
You can make the index UNIQUE, asserting that no two rows of the database have the same
value for this combination of columns. You can also make the index CASE SENSITIVE,

this will usually result in more efficient queries. The index column list contains columns

from the table, and the table must already exist. You can also specify ASC on an individual
column to sort it in ascending, as opposed to descending, order.

The CREATE INDEX statement does not exist in the 1989 ANSI standard.

DROP INDEX
drop_index_statement ::= DROP INDEX index

The DROP INDEX statement removes the named index, which must already exist.
The DROP INDEX statement does not exist in the 1989 ANSI standard.

SELECT

select_statement ::=
SELECT [ALL | DISTINCT] { value_expression_comma_list | * }
from_clause
[where_clause]
[group_by clause]
[order_by clause]
[FOR UPDATE]

The SELECT statement is the basic query statement in OMNIS SQL. It largely matches the
ANSI standard, one exception being the having clause, which in OMNIS SQL is part of the
group by clause instead of being a separate clause in the select statement. That is, in
OMNIS SQL you cannot have a HAVING clause separate from the GROUP BY clause.

The FOR UPDATE clause initiates special locking for the records in the query. When you
fetch a row from a cursor containing a SELECT statement with a FOR UPDATE clause,
OMNIS locks the row for update. One of three things can then happen:

— You update the record with an UPDATE ... WHERE CURRENT OF cursor_name (see
below), which on completion unlocks the row

— You fetch another row, which releases the lock on the previous row and locks the
current one

— You terminate the transaction, which releases all locks

The order_by clause is separated out in ANSI SQL so that there is only one ordering for a
query. Since OMNIS SQL does not have any set operators, such as UNION, there is no
need to separate out the ordering clause.

The ANSI 1989 standard has no for_update clause. This comes from embedded SQL, the
syntax there is FOR UPDATE OF column_name_list.

OMNIS SQL Language Definition 321

322

Value Expression

value_expression ::=
term _
| value_expression { + | - } term

term ::=

factor

| term {* |/} factor
factor ::=)

[{+]-}]primary
primary ::=

literal
| column_reference
| function_reference
| (value_expression)

A value expression is a key element of SQL that lets you calculate a value using an
arithmetic expression language. You build an expression out of literal numbers and strings,
references to columns, or parenthesized, nested expressions. You can combine expressions
with any of the four arithmetic operators. The grammar above expresses the precedence
relationships between the operators: unary + and - take precedence over * and /, all of
which take precedence over binary + and -.

Column and Table References

column_reference ::=
[table .] column_name

| [alias .] column_name

The column name corresponds to a field in a file class.
table ::=
[library_name .] table_name

The table name corresponds to a file class or to a table alias in the same SELECT statement,
and the library name corresponds to a library. The table must belong to the library.

OMNIS SQL does not support the ANSI standard syntax alias.*, meaning all the columns
from the table to which the alias refers. Also, if you use something other than a library
name, or a name that OMNIS cannot recognize as a library name, you will get a syntax
error.

Function Reference

function_reference ::=
scalar_function
| aggregate_function

A function reference is either a scalar function or an aggregate furStialar functions
operate on each row of data in the selaggregate functionsperate on groups of rows.

The ANSI SQL standard has no scalar functions.

Chapter 11—OMNIS SQL

scalar_function ::=

scalar_function_name (value_expression_comma_list)

There are a number of scalar functions, summarized below.

Function Purpose Parameters
ABS absolute value of a number number
ACOS angle in radians, the cosine of whichisa | number
specified number
ASCII ASCII character corresponding to an integey integer
between 0 and 255, inclusive
ASIN angle in radians whose sine is the specified| number
number
ATAN the angle in radians whose tangent is the number
specified number
ATAN2 the angle in radians whose tangent is one | number 1, number 2
number divided by another number
CHARINDEX | the starting character position of one string jnindex string, source
a second string string
CHR ASCII character corresponding to an integer integer
between 0 and 255, inclusive
COS cosine of a number number
TODAT converts a date string or number to a date | date string/number,
value using a format string format string
DIM increments a date string by some number of date string, months
months
DTCY a string containing the year and century of g date string
date string
DTD a string containing the day part of a date strjrapte string
or a number representing the day of the
month, depending on context
DTM a string containing the month part of a date | date string
string or a number representing the month of
the year, depending on context
DTW a string containing the day of the week part|oflate string
a date string or a number representing the day
of the week, depending on context
DTY a string containing the year part of a date | date string

string or a number representing the year,

depending on context

OMNIS SQL Language Definition

323

324

Function Purpose Parameters

EXP exponential value of a number number

INITCAP transforms string by capitalizing the initial | string
letter of each word in the string and lower-
casing every other letter

LENGTH number of characters in a string string

LOG natural logarithm of a number number

LOG10 base 10 logarithm of number number

LOWER transforms string by lower-casing all letters string

MOD modulus of a number given another number number, modulo

number

POWER the value of a number raised to the power ¢ofnumber, power
another number

ROUND rounds a number to an integer number of | number, significant
significant digits digits

SIN sine of a number number

SQRT square root of a number number

STRING concatenates some number of strings into & string|, string, ...]
string

SUBSTRING extracts part of a string starting at a given | string, start index,
index and moving a certain number of length
characters

TAN tangent of a number number

UPPER transforms a string by upper-casing all lettgrs ~ string

aggregate function ::=
COUNT(*)
| aggregate function name (DISTINCT column reference)
| aggregate function name ([ALL] value expression

aggregate_function_name ::=
AVG | MAX | MIN | SUM | COUNT

There are some departures from the ANSI standard for DISTINCT aggregates: you can use
only one such function in a given SQL statement, and you cannot use aggregate functions in
expressions in a GROUP BY clause or WHERE clause.

Chapter 11—OMNIS SQL

FROM Clause

from_clause ::=
FROM table_reference_comma_list

table_reference ::=
table_name [AS] [alias]

The FROM clause lets you specify the table to input into the SQL statement. Multiple tables
in the list indicate a join, and the WHERE clause specifies the join condition. Each table
reference can have an optional alias that lets you refer to the table in other parts of the SQL
statement by the alias. You can use this to abbreviate references to the table in the other
clauses.

The ANSI standard does not have the optional AS keyword.
WHERE Clause

where_clause ::=
WHERE search_condition

search_condition ::= -
boolean_term | search_condition OR boolean_term

boolean_term ::=
boolean_factor | boolean_term AND boolean_factor

boolean_factor ::=
[NOT] boolean_primary

boolean_primary ::=
predicate | (search_condition)

The WHERE clause lets you select a subset of the input rows using a logical predicate. The
above grammar defines the precedence of the logical operators AND, OR, and NOT.
predicate ::=
comparison_predicate

| between_predicate

| in_predicate

| like_predicate

| relation_predicate

| null_predicate

The ANSI standard has, in addition to the above predicates, the quantified and exists
predicates (nested selects), which OMNIS does not support. The relation_predicate is an
OMNIS extension to the standard that lets you use OMNIS connections; see below.

comparison_predicate ::=
value_expression comparison_operator value_expression

comparison_operator ::=
<I>l=l<fi=]>=| <= =] =

The standard comparison predicate involves one of the relational operators (greater than,
less than, and so on).

OMNIS SQL Language Definition 325

326

ANSI SQL also allows you to use a nested select statement in place of the right-hand
value_expression; OMNIS SQL does not support that. OMNIS adds the !=, *=, and =*
operators (not equal, left outer join, and right outer join, respectively) to the ANSI standard
operators.

An outer joinis a join that includes all the rows in the tables regardless of the matching of
the rows. The *= operator includes all rows from the table on the left that satisfy the rest of
the WHERE clause. The =* operator includes all rows from the table on the right that
satisfy the WHERE clause. Rows from the other table (right and left, respectively,
contribute values if there is a match and NULLSs if not. This syntax is similar to the
SYBASE outer join syntax.
between_predicate ::=

value_expression [NOT] BETWEEN value_expression AND

value_expression
in_predicate ::=

value_expression [NOT] IN (literal_comma_list)
The ANSI standard lets you use a subquery (a nested select) as well as a literal list; OMNIS
does not.
like_predicate ::=

column_reference [NOT] LIKE literal
The ANSI standard adds an ESCAPE clause to the like_predicate to let you specify an
escape character so you can match a % or _; OMNIS does not implement this.

null_predicate ::=
column_reference IS [NOT] NULL

relation_predicate ::=

{ CHILD | PARENT } OF table
The relation_predicate lets you test the current row as being either a child or a parent of
rows in the specified table. . See WBINIS Data Filexhapter for information on parent-
child connection relationships

GROUP BY Clause

group_by clause ::=

GROUP BY column_reference_comma_list [HAVING

search_condition]
The group_by clause lets you group the input rows into groups according to a set of
columns. The HAVING clause lets you select the groups, as opposed to the WHERE clause,
which selects the rows going into the groups.

ANSI SQL has no ordering dependency between GROUP BY and HAVING, and you can
have a HAVING clause without an accompanying GROUP BY. OMNIS does not allow
this.

OMNIS SQL does not support the use of functions in a GROUP BY clause.

Chapter 11—OMNIS SQL

ORDER BY Clause

order_by_clause ::=
ORDER BY order_column_comma_list

order_column ::=
column_reference [ASC | DESC]

The order_by_clause lets you sort the output rows of the SQL statement using columns from
the input tables.

The ANSI standard lets you sort by value_expressions in the select list by specifying the
number of the expression; OMNIS does not.

INSERT

insert statement ::=
INSERT INTO table [(column_reference_comma_list)]
{ VALUES (insert_value_comma_list) | select_statement }

The INSERT statement inserts rows into an OMNIS table. The first list of columns names
the columns you are creating; this exists to let you reorder the list to match your list of
values or select statement.

There are two alternative ways to supply values to the INSERT statement. You can supply
actual values through a VALUES clause that contains a list of values, or you can give a
SELECT statement that creates a table of data matching the insert list. SE& B@ET
statement section above for details on SELECT.

insert_value ::=
literal | NULL

An insert value is a literal value or the NULL value specified by the string “NULL”".

UPDATE

update_statement_searched ::=
UPDATE table SET assignment_comma_list [where_clause]

assignment ::= _
column_reference = { value_expression | NULL }

The searched update statement updates all rows that satisfy the predicate in the WHERE
clause by assigning the indicated value or NULL to the column.

OMNIS SQL will let you preface the column name in the assignment with the library and
table names, which extends the ANSI standard. There is no need to specify the additional
names, but you can do so for clarity if you wish. Specifying a table other than the table in
the UPDATE table clause, generates an error.

update_statement_positioned ::=

UPDATE table SET assignment_comma_list
WHERE CURRENT OF cursor

OMNIS SQL Language Definition 327

328

The positioned update statement updates the current row, the row to which the current
cursor points. See the description of Beclare cursocommand in the OMNIS Help. The
WHERE CURRENT OF cursor clause works with the SELECT ... FOR UPDATE
statement to update rows locked for update.

DELETE

delete_statement_searched ::=
DELETE FROM table [where_clause]

The DELETE statement deletes rows from the OMNIS database based on the predicate in
the WHERE clause. OMNIS deletes all rows that satisfy the predicate.

Chapter 11—OMNIS SQL

Chapter 12—SQL Browser

This chapter describes how you setup the OMNIS DAMs and create and modify sessions
using the SQL Browser. It assumes you have the correct access rights to log on to and create
tables on your server database.

Setting up the DAMs

OMNIS Studio installs the DAMs into your EXTERNAL folder under the main OMNIS

folder. Each DAM provides the interface between OMNIS and a particular server database,
sending SQL instructions and getting back data. You must make sure that no other copies of
a DAM are located in any OMNIS folder or subdirectory on your local machine, regardless
of the filename.

Direct DAMS

The vendompplication programming interfac@PI) provides a direct connection to a
particular type of server database. DAMs that use these interfaces arelicatteBAMs
since they access the DBMS directly through the API.

The OMNIS Data Access Manager provides the following direct DAMs

— Oracle
connects to ORACLE with full use of PL/SQL under Windows, and MacOS

- DB2
connects to IBM’'s DB2 Universal Database (UDB) under Windows, and MacOS

— Sybase
connects to Sybase under Windows, and MacOS

— Informix
connects to INFORMIX under Windows, and MacOS

Middleware DAMs

Middlewareis software that provides a common API for several different relational
database managers, as well as non-relational file systems. The middleware accepts standard
SQL and translates it into or passes it through to the underlying data access mechanism.

The OMNIS Data Access Manager provides the following middleware DAMs:

— ODBC
Microsoft's ODBC (Open Database Connectivity) lets you write database- or server-

Setting up the DAMs 329

330

independent client applications; it connects to many different databases under
Windows, and MacOS; the ODBC middleware is available from many different
vendors including Intersolv and Visigenic Software

- EDA/SQL

Information Builders Inc’s EDA (Enterprise Data Access) connects to a variety of
servers under Windows only

Client and Network Software

Every DAM requires specific client and networking software to run. The specific version of
the client software supported for each DAM is documented on the OMNIS website.

ORACLE
The Oracle DAM connects to both local and remote Oracle databases. You will need either
local Oracle or the SQL*Net driver software for your network configuration.

DB2

The DB2 DAM connects to IBM’s DB2 Universal Database (UDB). Your System or
Database Administrator needs to install the DB2 Universal Database on a suitable server,
and all clients need to install the DB2 Client Application Enabler appropriate to their
operating system, all available from IBM and documented in IBMikk Beginnings

manual. You can use the Client Configuration Assistant to enable access to your database.

INFORMIX

To use the Informix DAM you will need a version of Informix-Net. Under MacOS, check
that your services file contains an entry for the Informix Server, since this does not happen
automatically.

SYBASE

The Sybase DAM connects to the Sybase server database and requires the OpenClient
software.

ODBC

The ODBC DAM connects to many different databases and file systems using the
appropriate client ODBC drivers. You must use an ODBC driver with an API that conforms
to the core or minimal ODBC API conformance level. The driver must also support the
following level 1 ODBC API extensions:

— SQLColumns

— SQLDriverConnect
— SQLGetData

— SQLGetInfo

Chapter 12—SQL Browser

— SQLGetTypelnfo

— SQLStatistics

— SQLTables

— SQLSetConnectOption

— SQLGetFunctions

— SQLParamData

— SQLPutData

and the Level 2 functions, if you wish to make use of the BatchSize functionality.
— SQLExtended Fetch

— SQLSetScrollOptions

The ODBC driver should also conform to the core SQL language. You can use drivers that
conform to the more limited minimal SQL language conformance level, but this limits the
functionality available to you.

EDA

The EDA DAM connects to a variety of databases using Enterprise Data Access client and
server software from Information Builders, Inc. EDA/SQL is a gateway product connecting
to over 70 different databases and file systems, supporting many different network protocols
and operating systems.

Platform Specific Issues
Some additional information is given here in case of problems on specific platforms.

Windows NT

If your connect protocol is Named Pipes or IPX/SPX you may have problems retrieving
multi-column data that includes a binary picture field, if connecting to Microsoft SQL
Server 6.0. Data corruption can occur when all characters of the server column are filled,
that is, the last character of the text is replaced with a garbage character. For example,
"Dumbo"” would come back as "Dumbl", the last character being "|", the vertical bar
character. The Picture field is retrieved intact and displays correctly when viewed. If the
binary picture field is not included in the data retrieval, this type of corruption does not
occur.

This problem only occurs if the connect protocol is Named Pipes or IPX/SPX, which are
not supported or tested. TCP/IP will not cause this problem, so ask your Database
Administrator to modify the MS-SQL 6.0 Server to allow connections via TCP/IP. To do
this:

® Open the SQL-Server 6.0 tools on the client machine

Setting up the DAMs 331

® Open the Client Configuration Utility and choosdvanced

® Select the server name and change the DLL to TCP/IP; add the IP address and port
number of the server in the connect string field

® Click onAdd Modify , thenDone

MacOS

If you are using a 68K Macintosh, for ODBC and Sybase you need to be running the Apple
Shared Library Manager (ASLM). The Code Fragment Manager must be on the PowerMac
for all DAMs.

332 Chapter 12—SQL Browser

Sessions

Sessions

The process of connecting and logging on to your server database crgsi®@N
OMNIS. You can log on and create sessions usinG@ie Browseravailable under the
Tools menu on the main OMNIS menu bar.

To open the SQL Browser

® Select the Tools>>SQL Browser option on the main OMNIS menu bar

&% 50L Object Browser

Sezzion Toolz Wiew

B O AP 2

3h Oh B

OMMISSEL ORACLE INFORMIE

[

4 Open Sezsions v

The SQL Browser shows all the databases or sessions you have open, so it is empty when
you first open it. Each icon at the top-level of the SQL Browser represents an open database
or session. The Tools menu on the SQL Browser menubar contains various tools that let you
manage your database. Most of the functionality in the SQL Browser is grayed out until you
open a session.

You can either create a new session and enter your details from scratch, or you can modify
one of the template sessions in the SQL Browser. A template is provided for each supported
server database and middleware connection, along with one for OMNIS SQL. The
templates contain some default parameters, but you will need to provide further details, such

333

as hostname, username, and password, before you can logon to your database. To create or
modify a session you need to open the Session Manager.

To open the Session Manager

® Select Session>>Modify Sessions from the SQL Browser menu bar, or click on the
Modify Sessions button on the toolbar

W Seszion Manager

Seszionz Wiew

P am

a0BC ED, WCS5_Seszion ChS_Session

9 Seszion Templates

B

334 Chapter 12—SQL Browser

Sessions

Modifying a Session Template

T

he quickest and simplest way to logon to your database is to modify one of the session

templates provided.

T

(0]

o modify a session template
Double-click on the session in the Session Manager
r

Click on the session and select Sessions>>Modify

7 Session Definition Details
Sezzion Mame: DBMS Yendor: IS_I,II::ase ;I
Data Access Module: |DSYB,-’.'-.SE ;I DB Version: |SYB,-’.'-.SE ;I
Host Name: [5VEASEalias =
|Jzer Mame: Isupewisu:ur FPazzword: |’““““““‘x
D atabaze: Iemplu:u_l,leedl:u At Startup: T Sutomatically Logon
Initializatior:
b axirnuim rows: IEI— Sesszion lpe: ¢ General
Tranzaction mode: I ;I :: EEHSS
ITI Cancel

T

he Modify Session window lets you change the details for a session. Not all the items in

the window are required for every DBMS, as described below.

Session Name
the name of the session or logon, limited to a maximum length of 15 characters

DBMS Vendor
the DBMS software

Data Access Module

the name of the DAM; for some databases you can connect using a direct DAM or via
ODBC, for example you can connect to Oracle either directly or using ODBC. DAM
names all start with the letter D followed by the database or middleware name

335

— DB Version
the database version, as follows

DB Version

Oracle ORACLEG6, ORACLE7, or ORACLES

Informix | INFORMIX, INFORMIX-SE or INFORMIX-ONLINE
Sybase SQLSERVER, or use one of the SYBASE or SQLSERVE synonyms

DB2 not used, leave empty

ODBC not used, leave empty

EDA not used, leave empty
— Host Name

the server connection information, as follows

Host Name
Oracle the Oracle database alias (note this must be prefixed with an @)
Informix | the Informix database name
Sybase the name of the Sybase alias
DB2 the DB2 database name

ODBC the Data Source Name defined for the connection via the ODBC
Administrator

EDA the name in the ENTITY field in the EDALINK.CFG file

— Username and Password
sets the database username and password strings

Username Password

Oracle your username your password

Informix | not used, leave empty Optional; use for EXCLUSIVE or
SHARED to control access

Sybase your username your password

DB2 your username your password

ODBC target database usernameg target database password

EDA EDA/SQL host username EDA/SQL host password

— Database

sets the SQL Server database for Sybase logons

— Initialization
defines an initialization string that is sent to the database when you log on

336 Chapter 12—SQL Browser

Sessions

— At Startup
executes this logon automatically when you start up OMNIS

— Maximum Rows
sets the maximum number of rows to return for queries in the Interactive SQL window

— Transaction Mode
sets the transaction mode for the session: Automatic (the default), Generic, or Server

— Session Type
eitherGeneralfor a standard database session (the defS@tyif the session is to be
used with the OMNIS VCS, &MSfor the OMNIS CMS

— DB2 Extenders
allows system administrators to enable DB2 extender data types

When you have provided all your session information

® Click on OK to save the new or modified session, and close the Modify Session
window

Creating a New Session Template
To create a new session template

®* Inthe Session Manager, select Sessions>>New

A new session definition appears in the Session Manager, with the default name New
Session. To use this session, you need to rename it, and double-click on it to add your
database details, as described in the previous section.

Duplicating a Session Template
To duplicate a session template

®* Inthe Session Manager, click on the session you want to copy and select
Sessions>>Duplicate

A copy of the session template appears in the Session Manager. You can select it and
modify it as you wish.

Having created or modified your session, you need to open it to establish the connection to
your database.

Deleting a Session Template
To delete a session template

®* Inthe Session Manager, click on the template and select Session>>Delete

337

This operation is irreversibleso only delete a session if absolutely necessary.

Opening a Session
To open a session you need to return to the top level of the SQL Browser.

To open a session

® Make sure you close the Modify Session window and the Session Manager
®* Inthe SQL Browser, select the Session>>0pen option from the menubar

® Select the appropriate session from the Open submenu

® oryoucan

® Click on the Open Session button and select a session from the popup menu

The Session>>0Open submenu includes only those sessions that you have modified, that is,
ones that have complete logon details.

Once you open a session, most of the SQL Browser functionality is enabled, and you can
browse and manipulate your database in the current session. Some features may remain
disabled, depending on the database you are connected to.

Closing a Session

To close the current session

® Select the session and click on the Close Session button on the SQL Browser toolbar
or

® Select the session and select Session>>Close from the SQL Browser menubar

or

®* Right-click on the session and select Close from its context menu

Session Information

To display information about the current session

® Select the session and click on the Session Info button in the SQL Browser toolbar
or

® Click on the session and select Session>>Session Info in the SQL Browser menu bar

338 Chapter 12—SQL Browser

Sessions

or

®* Right-click on the session and select Session Info from its context menu

B 5ezzion Information |

Seszion Mame: |SYE.£'-.SE

I1zer Hame on Host; |supewisu:ur
Log on Date and Time: |10 APR 97 14:35:15
DERMS Wendor: |Sybase DB Yerzion: IW
Host Address: |5vBASE alias
Data Access Module: [DSYBASE

Current D atabase: |em|:|||:|_l,lee-:||:u

Database Information

You can print a list of objects in your database

including the object name, type, owner, and
schema (not applicable for some DBs). The rep [SetBy:————
is sent to the current print destination. [Object Owrer
To print an object list for your database [Obiect Type
® Click on the database and select ! _
Session>>Print Database in the SQL Brows
menu bar Concel |

or
®* Right-click on the database and select Print Database from its context menu

The criteria for the sort are in Owner, Type, Name, Schema order (the order in the dialog),
for example, if you click on Type and Name the object list is sorted on Type then by Name.

DB2 Extenders

The final option on the Session menu lets you enable and disable DB2 extenders for a DB2
database. These are described irShever-Specific Programmirghapter.

339

Managing SQL Objects

340

Once you open a database or session in the SQL Browser, you can view and modify the
objects in your database. All databases contain Tables, as well as other objects such as
Views, Synonyms, Functions, Stored Procedures, and so on, depending on your database.
For example, if you access an Oracle database you will see something like the following.

&% ORACLE _ |O]

Seszion Toolz Wiew

Alcada0 |[fms e E

S D

& =]

Wiews Synonyms Sequences T ablespaces
Stored Proc... Functions Triggers

||

3 Object Tupes v

You can print a list of the objects in a group by right-clicking on the group and selecting
Print Objects from the context menu. You can view the contents of a group, such as the
Tables group, by double-clicking on the group in the SQL Browser. Once you can see the
objects in your database, the SQL Browser provides a number of ways to manipulate them,
assuming you have the correct privileges.

Copying Tables between Sessions

You can copy a table from one database or session to another using drag and drop in the
SQL Browser.

To copy a table from one database to another

® Open both databases in the SQL Browser using a session for each
®* View the tables in each session by double-clicking on the Tables group

®* Drag the required table from one database to the other

Chapter 12—SQL Browser

A series of dialogs will appear to enable the table to be created in the target database. In
particular, note that if a table of the same name already exists, you are prompted for an
alternative; you cannot overwrite an existing table.

Object Menu

The Object menu lets you create, modify, rename, and delete SQL objects, in addition to
providing access to the User Privileges dialog. This menu also allows you to view and insert
data for the current table using the Interactive SQL tool. Furthermore for DB2 only, this
menu lets you enable and disable the DB2 extenders for the current table. The menu is also
available as a context menu by right-clicking on an object.

Creating a new Object

As well as viewing existing objects in your database, the SQL Browser lets you create new
objects, such as tables and views and other objects for other types of database. To do this
you must have the correct access privileges.

To create a new database object

®* Inthe SQL Browser, display the group of objects in which you want to create a new
one, for example, open the Tables group to create a new table

® Select New from the Object menu
or you can
®* Right-click on any object and select New from the context menu

The contents of the dialog that appears depends on the object you are creating. For example,
the Create Table dialog contains tabs for Columns, Keys, and Indexes.

Managing SQL Objects 341

342

& Create Table M= B3

Columnz |Ke_l,ls | Indexes |

T able M ame: IEmpIn_l,Jee Segment default j
Column Mame |Data Type |Length | &lloves Mull
Emp_ID tiryint 1 Falze ;I
Erp_Firstname char 20 True
Erp_Surnarme char 20 True
Ernp_[ateQfBirth datetime g True
Erp_Sex char 1 True
Erp_D'epartment char 20 True
Emp_E «tension birint 1 True

n o

[~ Baze on file class ™| Tirarsten @ mnie deta

Create | Cancel |

Modifying an existing object

To modify an object

® Double-click on the object

or

® Click on the object and select Modify from the Object menu

or

®* Right-click on the object and select Modify from the context menu

A dialog appears as for creating an object, with the current object’s data displayed. As with
creating an object, the dialog that appears depends on the type of object.

Chapter 12—SQL Browser

Renaming an object

The Rename option (not available for ODBC or EDA sessions) renames the current object,
subject to any limitations imposed by the specific database. For example, Informix table and
column names are limited to a maximum length of 15 characters.

Deleting an object

The Delete option deletes the selected object or objects; since this operation is irreversible,
you are asked to confirm the deletion before it occurs.

User Privileges

The Privileges option is only available for direct DAMs and lets you set the user privileges
for the current object. For example, you can allow select, insert, and update for the various
categories of users and groups, assuming you have the right to do this.

Object Information

You can print a report showing the columns in the current table or view.

To print object information
® Click on the table or view and select Object>>Print in the SQL Browser menu bar
or

®* Right-click on the table or view and select Print from its context menu

Viewing and Inserting Data for a Table

The Object menu in the SQL Browser lets you view and insert data into the current table.
The Show and Insert options do not require any SQL data classes in your library, in this
case, the SQL Browser interacts directly with your database.

To view the data for a table

® Click on the table and select Show Data from the Object menu

or

® Right-click on the table and select Show Data from the context menu

The Show Data option creates a Select statement for the current table and sends it to your
server automatically via the Interactive SQL tool. The results of the Select are displayed in
the lower pane of the ISQL tool.

Viewing and Inserting Data for a Table 343

344

W Interactive S5QL

OMNISSOL - | & 2 & || Example . :
SELECT *FROM FCUSTOMERS
CU_ID CL_TITLE Cl_FMHAME CU_LHAME | CU_ADDR1
1 kdr Jamez Briggz Marina ' =
2 izz Thelma Hodges King'z La
3 brz Lavinia Williamz Wizteria®
4 Dir Peter E agleburger 258 Char
4] Rew Leonard Eccles The Rec
: I I m [1”1 M (N} [f
0F. 15 Rows selected. Queny execution time: 1 ticks. L

To insert data for a table

® Click on the table and select Insert Data from the Object menu

or

®* Right-click on the table and select Insert Data from the context menu

&2 Insert data into FCUSTOMERS =3

Column Name
cu_ID
CU_TITLE
CU_FHNAME
CU_LWNAME
CU_ADDR1
CU_ADDRZ
CU_TOwMN

Data Type
SMALLINT
WYARCHAR
WYARCHAR
HATIONAL
WARCHAR
WYARCHAR
WARCHAR

VYalue

[T

| v

Inzert Data I

T

Fiished |

Chapter 12—SQL Browser

The SQL Browser creates a window containing an entry field for each column in your table.
The window lets you insert a single row of data into your database.

DB2 Extenders

The final option on the Object menu lets you enable and disable DB2 extenders for a table
in a DB2 database. This is described inSleever-Specific Programmirahapter.

Interactive SQL

ThelInteractive SQLtool lets you execute SQL statements in any active session, so you
must first logon to your server by opening a session in the SQL Browser. Using Interactive
SQL, you can maintain your database interactively or you can test SQL statements before
using them in a method. See B@L Historywindow below for a way of copying

previously executed SQL statements into a method.

To open the Interactive SQL tool

®* Inthe SQL Browser, select the Tools>>Interactive SQL menu item or click on the
Interactive SQL button in the toolbar

B Interactive SOL _[O] %]
SYBASE - &2 S| ey - @ Ew

Select * from Employes order by Ermp_ID ﬂ
Erp_ID Ernp_Firstname Ernp_Surname Emp_DateOfBith | Emp_Sex Erp_[
1 John Srmith 10 0CT 1965 00:00:; M Erw
Z Thomas Brown 2 MAR 1968 00:00:[: b Erm

3 Clare Jones 1 MaY 1971 00:00F Er

4 Jane Briggs 8.JaN 1960 00:00:0:F [

A Alan Gunn 30JUL 1965 00:00:; M QA

B Fhilip Gardener 20 MAY 1953 00:00; M A

7 Christing Hodges 20 MAY 1966 00:00:F Can

g Andy O'Meil JAPR 1956 00:00:C M Con

| | LlJ
OF. BRows selected. Quen execution tirme: 4 ticks, v

Interactive SQL 345

346

The Interactive SQL tool lets you enter any SQL statement valid for your server, including
multiple SQL statements if the server supports them. The results pane displays any results
for a query with column names taken from the database columns.

You can send any SQL statement to the server, not just a Select query statement, but a
Select is the only command that returns results.

The Interactive SQL toolbar has the following buttons:

— Session Dropdown List
drops down a list of the active sessions, letting you switch between sessions

— RunSQL
runs the SQL statement or statements currently in the SQL pane. See below.

— More Results
fills the result table with additional result batches for a SQL Server query

— Print Results
prints a report using the data in the results pane

— Stored SQL Dropdown List
drops down a list of the SQL statements you have saved

— Save Query
stores a SQL statement for later use; a dialog prompts for a name and optional
description for the SQL statement.

— Stored Query Manager
lists the SQL statements you have saved and gives you some additional options for each
of them. See below for more details.

— View SQL History
lets you view the most recent queries you have run. See below for more details.

To run a SQL statement

®* Type your SQL statement into the SQL pane and press Return, or clickRuarthe
SQL button

If the SQL statement has a syntax error or some other problem, you will see an error
message in the status bar at the bottom of the window. Do not use a semicolon or other
delimiter at the end unless you are typing in multiple SQL statements in a format the server
accepts.

If the SQL statement is acceptable, the status bar tells you so, the SQL statement is executec
and the results are displayed in the results pane. The status bar displays how many rows
were returned in the results and how long the statement took in ticks, which is a measure of
CPU time relative to your type of computer; see your microprocessor hardware manual or
other documentation for details.

Chapter 12—SQL Browser

You can change the size of the columns in the report pane by dragging the line between the
columns to the left or right in the header area, and you can sort rows by clicking on the

column headings.

Stored Query Manager

The Stored Query Manager lets you manage the SQL statements you have saved using

Interactive SQL.

Bl Stored Query Manager _ [
ATEHT 4 B 6
Stored Quernies Query Mame Tupe
CreateT able ﬂ IE!ueryTal:uIe ISelect j
Created Modiied DBMS
[UpdateT able [1DAPR 97 1446:00 | [11APR 97 145431 | [3pbase
Diescription
Retumnz a sorted result list of Employes records. d
Quem Text
Select * from Employee order by Emp_|D ﬂ
Stared Query Location : C:AOmnizhStudicGuenes. DF1 i

It has a toolbar, a scrolling list of named SQL statements, and a pane with fields for each
statement, including the text of the statement. The list of named SQL statements contains
the names of all the SQL statements you have saved. When you select a line in the list, the
statement pane displays the details for that statement.

The statement pane gives you the name and type of statement such as Select, the date and

time it was created and last modified, the database for which the statement was constructed,
a description, and the SQL text of the statement. You can change the name, description, and
query text by clicking on the field and editing the text in it.

The toolbar has several buttons for managing the statements:

Stored Query Manager

347

348

Modify Query
saves any changes to disk

Duplicate Query
alter the query name in the right hand pane before clicking on this button. A copy of the
query with the new name is made, which you can edit as you wish

Print Query
prints the query as a report to a report destination

Copy Query to Clipboard
copies the query text to the clipboard

Delete Query
removes the query from the list. Since this is irreversible, you are asked to confirm the
deletion.

Run Query

displays the Interactive SQL window with the selected statement in the SQL pane and
runs the query.

Find

attempts to locates a query; you specify the text you are looking for and which field in
the stored query is to be searched

Export SQL
exports the query text of your currently selected query to a text file.

Import SQL
imports a query from a text file so you can add it to your stored queries.

Chapter 12—SQL Browser

SQL History

The View SQL History button lets you inspect the most recent queries you have submitted
in your SQL sessions. The number of queries stored can be changed from Tools>>Options
in the SQL Browser.

B Yiew S50L Query History |

bzt Recent B0 Queries:

Mo, | Cluery
B0 idrop table Employes ﬂ
43 iSelect * from Employes order by Emp_|D

48 iDelete from Employee where Emp D8
47 iSelect ® from Employee order by Emp_|D
dh LE Emplovee [Ernp |0 brwint NOT MULL. Emp

T g T P

20) Ll

FirstM arme charl

Full Test af Query:

CREATE TABLE Employee [Emp_|D tingint MOT MULL, Emp_Firzth ame char[20) NLILL,A
Ermp_Surname char[20) MULL, Ermp_Date0fBith datetime MULL, Emp_Sex char(1]
MULL, Emp_Department char[20) MULL, Emp_E <tension tingint MULL)

[

| Copy ta Clipboard I Cancel |

The View SQL Query History window has two panes, the query list and the query text.

You select a query from the query list; the full text of the query is displayed in the query
text pane. Clicking on the Copy button copies the query to the clipboard, closes the History
window and displays the Interactive SQL window, where you can paste the query.
Alternatively, you can paste the query into a method by clicking on the class in the Browser
that is to contain the SQL and opening the method editor.

The Cancel button closes the window without copying the SQL text.

User Administration

SQL History

The User Administration option lets you alter user information; it is not available in an
ODBC or EDA session. If your session provides a direct connection to Informix, Oracle, or
Sybase, a dialog specific to the user and group structure of that database appears that lets
you alter the user information.

349

Options

350

To open the SQL Browser options

® Select Tools>>Options in the SQL Browser toolbar

B 50L Object Browser Options |

Objects |Drag b Dru:upl Cueny Histu:uryl Stored I]ueriesl

~ When displaying objects:

" Only show objects owned by curent uzer

% Show objects owned by ang user

¥ Include System objects

Save |

The SQL Browser options lets you change:

— Objects
the range of objects displayed

— Drag & Drop
the types of class created when you drag a server table from the SQL Browser onto
your library; the default option creates a schema class for every server table, but you
can specify that OMNIS creates a schema and table class for every server table

— Query History
the number and type of queries retained in the history list

— Stored Queries
the location of the OMNIS data file that holds stored queries

Chapter 12—SQL Browser

Chapter 13—Client/Server
Programming

The SQL Browser lets you connect to your server database quickly and easily, and the SQL
Form wizards in the Component Store let you build the interface to your server database.
However you may want to modify the SQL forms created automatically or build your own
from scratch to complete your client/server application. To do this, you use the OMNIS
client/server commands.

This chapter covers information and features specific to each of the supported proprietary
databases and middleware components. Information about the precise level of client and, to
a lesser extent, server software is not presented here since it changes so frequently. Please
see the OMNIS Studio web site for the software versions supported.

Connecting to your Database

The session templates in the SQL Browser contain all the necessary code to connect to your
server database automatically. However to connect and log on to your database using a
method you need to use the following OMNIS commands:

Set current session { session name '} ;; optional for single session
Start session { DAM name}

Set database version { database version }

Set hostname { host name }

Set username { user name }

Set password { password }

Logon to host

Starting a Session

The Set current sessiotcommand creates a session with the specisgiomamewhich
becomes the current session. If you are using a single session, you don't need to use this
command. If the specified session already exists it becomes the current session. SQL error
messages use the name of the current session. There is no limit to the number of sessions
you can have open, except the usual limit imposed by memory.

Connecting to your Database 351

352

The Start sessiomommand loads the specified DAM and initializes communication

between the current session and the server database. The following table lists the parameters
you can use in th8tart sessiocommand for the different DAMs. Note that some DAM

names contain the letter ‘O’, not zero.

Connection Start Session Keyword
Informix dINFORMX

Oracle dORACLE

Sybase dSYBASE

DB2 dDB2

ODBC dOoDBC

EDA dEDA

Setting the Database Version

The Set database versimommand has a set of options that let you identify the version of
the database to use, but if you use the default database version or a DAM with no database
version parameters, you don’'t need to use this command.

For direct DAMs, the database version can be the version of the software, such as Oracle,
but for ODBC it can be the database manager to which you want to connect via the
middleware. The following table shows the various database version names and what they
mean.

Note that many DAMs have a default database version; the table marks these as (default). If
you don't use th8et database versimommand, you get this version by default. Generally

you should supply the database version to avoid problems with mismatching server access
and server type.

Chapter 13—Client/Server Programming

nSe

D
—_

DAM Database Version Description
Informix INFORMIX INFORMIX
INFORMIX-ONLINE Same as INFORMIX (default)
Oracle ORACLE ORACLE (default)
Sybase SQLSERVER System 10/ 11
SQLSERVE Synonym for SQLSERVER
SYBASE Synonym for SQLSERVER
MSSQLSERVER Microsoft SQL Server
MSSQLSERVE Synonym for MSSQLSERVER
MICROSOFT Synonym for MSSQLSERVER
DB2 Gateways to DB2
MDIDB2 DB2 via MDI Gateway
GATEWAY Generic gateways
DB2 Not required; do not use the Set datab
version command
ODBC No database version; do not use the S
database version command
EDA No database version; do not use the S
database version command

3%
—

Setting the Hostname, Username, and Password

Informix

The Set hostnameommand takes the Informix database name as its argusegnt.
usernamealoes nothingSet passwords optional, but you can use the term “EXCLUSIVE”
if you want exclusive access to the database or “SHARED” (the default) if you want shared

access.

You should set the properti@sniguefieldnamesand$sensitivefieldnamego kFalse
under the Tools>>Options/Preferences menu option on the main OMNIS menu bar. This
combination works best since Informix converts all table and column names to lower case

and is case-insensitive.

Connecting to your Database

353

354

Oracle
The Oracle DAM does not use tBet hostnameommand. You need to uSet username
to specify the entire Oracle logon string:

Set username { username/password@T:server:SID }

with SQL Netl, or specify the user name and password separatelydattheernamand

Set passwordommands. The T refers to the TCP/IP protocol; use AT for AppleTalk. The
server is the name of the server. The SID is the name of the database on the server, which
Netware servers don't require.

With SQLNet 2.x, the interfaces file TNSNAMES.ORA holds symbolic names for calling a
defined connection.

If you have trouble logging on to Oracle through Windows, make sure your WIN.INI file
contains an [Oracle] section that has a line like

ORA_CONFIG=C:\WINDOWS\ORACLE.INI
the ORACLE.INI file must exist in that location

Sybase

The host name is the name of the SQL Server alias. Under MacOS, you will find this name
in theinterfacesfile. Look for a line starting with the word 'query'. The name above this

line is the SQL Server alias. On Windows, look in\tiN.INI file for the [SQLSERVER]
section. Each server alias has a line starting with the alias followed by an equal sign and the
server information. If you need to set up or change the alias and server information, see the
SQL Server documentation or call Sybase technical support. The user name and password
are the SQL Server logon user name and password.

The DAM automatically configures itself on encountering a DBMS version of 10.0 or later.
DB2

The host name is the DB2 database name specified during configuration. You do not need
to specify the database version using3kédatabase versiamommand. The user name and
password are the user name and password for the specified host.

ODBC

The host name is the Data Source Name you defined for the ODBC connection using the
ODBC Administrator. The user name and password are the user name and password for the
target database system.

If you specify the host name, user name, and password, the ODBC DAM tries the
connection using those values. A dialog box prompts you for any missing logon item. You
can also supply these values in @BBC.INI file as default values for the fields in the
dialog box, which you can then override when the box appears.

Microsoft recommends that you connect to their SQLServer 6.x via ODBC.

Chapter 13—Client/Server Programming

EDA

The host name is in the ENTITY field in tBALINK.CFG file. The user name and
password correspond to the user name and password of the host, as supplied through the
vendor: you should refer to the EDA/SQL documentation for details.

Logging on and off

Each kind of server database has a distinct way of logging on. The following sections
describe the specific format of the command that you need to use to logon to your chosen
server.

— Logon to host
logs on to the server database specified in the current session

— Logoff from host
logs off the current session from the server but does not free the resources (such as
cursors) associated with the session. You can logon to another server with Sabther
hostnameSet usernaméet passwordandLogon to hossequence

— Start session
logs off then back on if the session had already started

— Quit cursor(s)
logs you off the server and also frees the memory associated with the session, such as
cursors and select tables

— Quit cursor(s) (Current)
quits the current cursor

— Quit cursor(s) (All)
quits all open cursors; automatic when OMNIS quits

SQL Separators

TheSet SQL Separatoommand lets you define the characters that are used to specify the
thousand and decimal separators during a session. Not all DAMs make use of this
command, and you need to be sure the separators are compatible with those in OMNIS.

Connecting to your Database 355

Interacting with your Server

356

Once a user is logged into a server, they can make use of all the tables and views to which
they have been granted access.

Mapping to the Data

Before a client application can get any data from a server, it must set up a corresponding
place in OMNIS to hold the data. This involves mapping the structure of the data, including
column names and data types. Typically, you do this using OMNIS schema classes. You can
define a schema to include all columns of the server table or view, or any subset of the
columns. In addition you can create query classes that use columns from one or more
schema classes.

You can use schema and query classes to define list and row variables to handle your server
data. Information on creating schema, query, and table classes will be found earlier in this
manual, as will details on using list and row variables.

Sending SQL to the Server

To send SQL to the server, you can either write your own methods, or use the table instance
methods that generate SQL automatically and handle both single row and bulk SQL
transactions. OMNIS provides two different ways of sending SQL to the server: the

Perform SQLcommand and SQL scripts.

Perform SQL

ThePerform SQLcommand sends a single-line SQL statement to the current SQL session.
For example

Perform SQL { SELECT name FROM Agent }

OMNIS sends to the server whatever you pass as a parameter to the command. It can be
standard SQL or any other command statement the server can understand.

SQL Scripts and the SQL Buffer

For longer statements that require more than one line, you can &@ltheommand.

OMNIS has a SQL buffer, an area of memory that contains a single SQL statement that you
build up with a series of commands. The commBedin SQL scriptlears this buffer; the
commandend SQL scriptloses the buffer; the commaBdecute SQL scripgends the

contents of the buffer to the server. T3@L:command enters a line of SQL text into the

buffer and appends a space to the end of each line. For example

Chapter 13—Client/Server Programming

Begin SQL script

SQL: INSERT INTO Agent
SQL: (name,number)

SQL: VALUES ('FRED',123)
End SQL script

Execute SQL script

is equivalent to th@erform SQLcommand
Perform SQL {INSERT INTO Agent (name, number) VALUES ('FRED', 123)}

You cannot split a string literal over more than one line. You can however put more than
one statement on a single line, separated by semicolons.

OMNIS limits the size of the SQL buffer to 32K bytes. You should not try to build a SQL
statement or series of SQL statements that exceeds this. In particular, do not use the square
bracket notation to substitute in very large literal values or BLOBS; you can easily exceed
the 32K limit.

The SQL statement buffer holds all SQL statements that have been entered but not yet
executed since the laBegin SQL scripbr Reset cursocommand.

SQL Errors

If Perform SQLor Execute SQIscriptresult in an error, as well as the flag being cleared,
the error code and error text are heldspg(131)andsys(132yespectively. In addition the
$sqlerror() method in the table instance is called. If smart lists are used, the list row
properties $error and $errortext contain the same results as sys(131) and sys(132).

Square Bracket Notation
You can substitute text into the SQL statement using square bracket notation. For example
Perform SQL { SELECT name from [TABLENAME] }

where TABLENAME is an OMNIS variable, substitutes the value of that variable into the
SQL statement to use as a table name. When the SQL statement is read, OMNIS evaluates
the expression and inserts the result as text into the statement. You must supply quoted
literals according to the rules imposed by the version of SQL your server uses. For example,
to update an Agent table by setting the name to a string using a variable called FIELD, you
must quote the square bracket notation expression:

Perform SQL { UPDATE Agent SET name ='[FIELD]' }

Bind Variables

A bind variableis an OMNIS variable to which you want to refer in a SQL statement.

Instead of expanding the expression, OMNIS associates, or binds, the variable value with a
SQL variable. To specify a bind variable you place an @ before the opening square bracket.
OMNIS evaluates the expression and passes the value to the server directly rather than

Interacting with your Server 357

358

substituting it into the SQL statement as text. You can also use this syntax to bind large
fields such as pictures into a SQL statement:

Perform SQL {INSERT INTO Agent (agentPortrait) values (@[FIELD])}

Do not quote bind variables, and use them only to represent complete literals or values,
otherwise you will get an error from the server.

Not all database systems allow bind variables; in these cases OMNIS will behave as though
they do, but will instead perform literal expansion as though you had entered square bracket
notation instead of bind variables

Generally, using bind variables performs better than square bracket notation and is more
flexible with respect to data representation. You should use square bracket notation only
when the notation expression evaluates to a part of a SQL statement broader than just a
value reference such as an entire WHERE clause, or where you know that simple value
substitution is all you need.

Bind variables work best for numeric data; strings tend to cause problems because of the
issues with quoting. You must include quotes when using square bracket notation, but you
don’t need to when using bind variables. If you are inserting NULL data into the database,
you should use bind variables, to ensure that SQL nulls, rather than empty strings are
inserted.

You can pass an item reference via @[] notation to a DAM if the item reference points to a
variable, but this is not recommended. If the item reference points to something else, a class
for example, the value is not defined.

Editing the SQL Script

You can use the comman@gt SQL script {field namegndSet SQL script {field namép

copy the contents of the SQL buffer for the current session into a field or variable or to copy
the contents of a field or variable into the current SQL buffer, respectively. It can also be
useful to view the final SQL script before it is executed.

For example, to manipulate the contents of the SQL buffer directly, the following script
displays the buffer and lets you change it.

Begin SQL script

SQL: SELECT * from [TableName]

SQL: WHERE [Key] >= [Val2]

End SQL script

Get SQL script { my_string } ;; this puts the SQL into my_string

Since this command bypasses all the normal checks carried out on the SQL buffer, you must
take care not to introduce errors when uset) SQL script

Chapter 13—Client/Server Programming

Preparing the Cursor

When sending a SQL statement uditegform SQLandExecute SQiscriptthe SQL script
is parsed and interpreted by the server. Should you wish to send the same statement again,
you can bypass this preparation stage uBimgpare current cursor-or example:

Begin SQL script

SQL: INSERT INTO Sales(col1,col2,..) VALUES (@[coll],@][col2], ..)
End SQL script

Prepare current cursor

Execute SQL script

Subsequent use &xecute SQlscript on the same cursor will execute the same statement
without having to set up the SQL buffer each time since the indirection and bind variables

are already prepared. This can greatly speed up the process of, say, inserting many rows into
a server table within a loop.

Set current cursor { Cursorl }
Repeat

; get next row

Execute SQL script ;; insert the row
Until .. ;; no more rows to insert

Data Type Mapping

OMNIS converts the data in an OMNIS field or variable into the corresponding SQL data
type. Since each DAM maps to a wide variety of data types on servers, each DAM
determines the correct conversion for the current server. See the next chapter for details on
how each DAM maps SQL data types to OMNIS datatypes and vice versa.

Select Tables and Cursors

A select tablds a table of results that belongs to an OMNIS cursor after a select statement
has been issued. When you send a SQL SELECT statement to the server and there is no
error, the results of the SELECT become available to OMNIS as the select table for the
current cursor. A valid SELECT can result in the select table being empty. The flag is true
after the execution of a valid select and is only set to false when you attempt to fetch beyond
the end of the select table.

An OMNIS cursor should not be confused with a SQL cursor. The ANSI standard select
cursor on a remote database is the name of a pointer into a result set on a DBMS. An
OMNIS cursor on the other hand contains the context of the connection to a remote
database, the associated OMNIS context and possibly a reference to a SQL cursor..

Unless you are using multiple cursors, you don't need to explicitly open a cursor; OMNIS
automatically opens a cursor for you.

TheDeclare cursorcommand defines an OMNIS cursor, and associates a SQL statement
with the cursor. Th®pen cursoicommand opens the cursor, parses the SQL statement,

Interacting with your Server 359

binds input data, and executes the SQL statementS&heurrent cursocommand
switches OMNIS to use the named cursor. Prepare current cursocommand opens the
current cursor and parses the SQL statement but does not bind data nor execute the
statement. You can later execute the statementQp#n cursorwhich you can call
multiple times with some time savings over not having prepared the cursdreyithre
current cursor

Not all servers or DAMs use SQL cursors. This means you can have only one SQL
statement active at a time in a session. The following cursor command discussion applies
only to those DAMSs that have cursor operations.

When you execute a SQL SELECT statement through an OMNIS cursor, the current cursor
acquires a reference to the first row in the resulting select table. When you execute $fetch()
you fetch the row pointed to by the current cursor and move the reference to the next row.
You can have more than one cursor active at a time, letting you select rows based on values
retrieved from a completely separate select table. You usseth®irrent cursocommand

to use a particular cursor as the current cursor with the $fetch().

Fetching rows is described in detail in thist Programmingchapter.

Building a List from a Select Table

TheBuild list from select tableommand fetches all the rows of the select table into a list.
You first need to define the list with the appropriate field-to-column mappings; in a table
instance these will automatically be correct. Normally, the command appends the values
rather than overwriting any values in the list so you can use this feature to put multiple
select tables into a list, but there iéear listoption to clear the list first. If you have
defined the list with other fields or variables, thad CRB field®ption inserts these values
to the list as well.

You can use #LM or $linemax to limit the size of the list regardless of the number of rows
in the select table. There are also commands provided by most servers to limit number of
rows returned; do not confuse these with the #LM value, which just affects the list.

The following method selects a table called Contacts with columns name and number
directly into a list.

; Declare local variable lvContacts of type List
Set current list IvContacts
Define list from table { fContacts }
Perform SQL { SELECT name, nhumber FROM fContacts }
; Creates the select table of all rows and columns
If flag true
Build list from select table
End If

360 Chapter 13—Client/Server Programming

You can generally improve performance in Bgld list from select tableommand by
setting the batch size witbet batch sizeyou will need to experiment to determine the best
setting for your environment.

Retrieving Rows to File

Retrieve rows to filéets you retrieve a select table directly into a file on disk. You should
make sure that there are no intervening commands that might move the current cursor if you
want to retrieve all of the select table rows into the file.

To retrieve a select table into a file, you first set the client import file, delete any existing
file if you don't want to append records, open the file, retrieve the records, then close the
file. You must close the file in order to import it into another tool.

When you read a select table into an import file \W#trieve rows to fileyou must have

the import file open and ready to receive it. If the file already exists, OMNIS opens it and
moves to the end of the file, where it will append the incoming data. However, if the file
does not already exist, OMNIS creates and opens it. By precedi@gp#émeclient import

file with aDelete client import fileyou are guaranteed an empty file for the next SQL
transaction. For example

Set client import file name { XprimportFile }

Open client import file

Begin SQL script

SQL: SELECT cust_name, cust_city, credit_line FROM customer;
End SQL script

Execute SQL script

Retrieve rows to file

Close client import file

Interacting with your Server 361

Describing Your Database

OMNIS provides a set of commands that give you access to data dictionary information
about any database to which you can connect using a DAM. Using these commands, you

can code database-independent methods to describe your server database, no matter what it
type. These commands work by creating select tables as though you had queried the
information from the database. You use standard commands to fetch the data into OMNIS.

Describe database (Tables)

TheDescribe database (Tablespmmand creates a select table with one row for each
server table accessible to the current session. The single column contains the table name.
The following method builds a list of tables available for the specified session.

Set current list [MyList]
Define list {Table_Name}
Describe database (Tables)
Build list from select table

Describe server table (Columns)

TheDescribe server table (Columns) { tablenameinmand creates a select table with one
row for each column of the specified server table. Each row contains the following columns:

Col Meaning

the column name

the equivalent standard SQL data typeARACTER, NUMBER, DATETIME ...)
the column width (for character columns)

the number of decimal places (for numeric cols), empty for floating numbers
NULL or NOT NULL

indicates whether the column is an index or a primary key (see below)

N o o0k WODN B

the remarks or description for the column where available.

362 Chapter 13—Client/Server Programming

Column 6 indicates whether the column is an index or a primary key using a 2-character

string.
1st char | 2nd char | Either char | Denotes
Y’ index
Y’ primary key
‘N’ neither
‘v’ indeterminate

Composite Primary keys or indexes cannot be detected and will show as “N”s.

In addition, the table instance property $colsinset returns the number of columns in the
current result set for the session used by the table.

To build a schema class from a table called Agent, you would execute the commands

Describe server table (Columns) {Agent}
Make schema from server table {AgentSchema}

This command uses the select table of columns names createdd®stinibe server table
(Columns)command and builds a schema class called AgentSchemilakigeschema

from server tableommand sets the primary key property of a schema column based on the
information returned in column 6 of tidescribe server table (column®sult set.

Describe database (Views)

TheDescribe database (Viewspmmand creates a select table with one row for each view
available to the current session. The single column contains the view name.
Describe results

TheDescribe resultommand builds an OMNIS list of information similarRescribe

server table (Columngpr the current select table. It builds the list directly rather than
requiring you to fetch the rows, since this is describing an internal data structure, not a part
of the server data dictionary.

Describing Your Database 363

Describe server table (Indexes)

TheDescribe server table (Indexes) { tablenanwminmand creates a select table that lists
the unique indexes for the specified server table. Each row has the following columns:

Col Meaning

1 the name of the indexed column
2 the name of the index used for the column (in column 1)
3 the numeric position of the column within a composite index

(defaults to 1 for non-composite indexes)

You can obtain the list of non-unique indexes by adding the /N switch to the command:
Describe server table (Indexes) {MyTable /N}

The /A switch gives a list of all indexes. /U is the default; unique indexes only. This
command lets you write general purpose data handling methods, such as:

Set current list MY_LIST

Define list {KEY_NAME}

Describe server table (Indexes) {{TABLE]}
Build list from select table

Building User Views

Using theDescribe server table (Columnsdmmand, you can get column information
about a table in a server database. OMNIS can use this information to build classes that
correspond to the server tables with kih@ke schema from server taldemmand. This

gives you a basis for creating user views; it can also let you develop dynamic user views
based on the structure of a server database.

Using the data dictionary commands, you can write methods that attach to the server, get a
list of tables, get a list of columns for each table, then build a schema class for each server
table.

364 Chapter 13—Client/Server Programming

Transactions

Transactions

There are several commands in OMINS to manage transactions in addition to the native
SQL facilities for transaction management.

Transaction Modes

Transaction processes vary from one database to another. OMNIS provides some options
for transactions that let you choose how to control transactions for your particular database.

The Set transaction modeommand lets you set transaction processing in the current
session to one of these values:

— Automatic
commit or roll back each SQL statement automatically as soon as the next SQL
command startBegin SQL scriptPerform SQL.Reset cursgror if the statement did
not generate a result set immediately after it was executed, or the statement fails

— Generic
implement basic transaction processing usingli@mit current sessicandRollback
current sessiocommands

— Server
rely on server transaction processing commands only; see the specific DBMS
documentation for the default transaction mode

With INFORMIX, you should not use Automatic transaction mode since INFORMIX closes
all cursors at the end of each transaction. If you automatically end the transaction after each
SQL statement and you are using multiple cursors, any SQL statement with one cursor will
close all the other cursors. The Server transaction mode under INFORMIX turns statement
level checking on. All specified constraints are checked at the end of each INSERT,
UPDATE or DELETE statement. If a constraint violation occurs, the statement is not
executed.

The Sybase DAM defines automatic transaction mode as committing after the execution of
each SQL statement: they use Sybase transaction management so the commit happens as
part of the Sybase processing rather than on the return to the OMNIS client.

With generic transaction mode, you can commit the current session and transaction with the
commandCommit current sessiofYou can roll back the session and transaction with the
commandRollback current sessiolVith server transaction mode, you must use the server-
specific SQL statements or functions to implement transactions. You can also commit and
roll back with the standard SQL commands COMMIT WORK and ROLLBACK WORK, if
your database manager provides that command, in server mode.

The server may commit or roll back the transaction under certain circumstances such as
errors of a certain type, server shutdown, methods with embedded commits and rollbacks,

365

or data definition (DDL) statements such as CREATE TABLE. See your DBMS
documentation for more information about transaction management in your type of server.

Multiple Sessions

OMNIS makes it possible to connect not only to multiple servers but to multiple servers
running different database managers, using the OMNIS session. Setting a session using the
Set session { session_nammmmand makes that session ¢therent sessionlf you use a

session name already set, the named session becomes the current session.

INFORMIX does not support multiple sessions on different servers but does support
multiple sessions on the same server. To start a session on a different server you must logoff
and logon to the different server.

All the session command®pen cursorPrepare current cursQirCommit sessigrand so

on) apply to the current session. Each session has a set of objects (select tables, import file,
error status, and so on) that let it manage the individual server connection. You can have
any number of sessions going on at once, subject to memory limits, so you can connect to
many different types of server at the same time.

If you issue a SQL command but you haven't set up a session, OMNIS creates a default
session called CHANNELn as the current session, wharis a sequential number.

It is important to understand how your servers process transactions and that you must
coordinate all transactions among multiple servers, since the individual database managers
on the servers don't communicate with one another.

Unlike a single database session, a multiple-session client application has multiple server
transactions progressing in parallel. At any given moment in time, each session has a single
transaction going and transactions can interact: you can select data from one server and
update another while a third waits for an insert done after successful completion of the
update. In this case, you can consider all three sessions part of a single, large transaction.
All the transactions start at the same point and commit or roll back at the same point.
Remember that in OMNIS is that you must commit or roll back the individual sessions with
three separat€ommit sessionommands.

For example, here is a method that updates a row in a lookup table in a database based on a
value retrieved from another database:

366 Chapter 13—Client/Server Programming

; Declare class variable CHAR255 of Character 255 type

; The following methods create a session and logon to the database
; servers, setting the individual session names.

Do method M_DB/d1 (‘Sessionl’) ;; Logon to database 1
Do method M_DB/d2 (‘Session2’) ;; Logon to database 2

: Read the rows from the server

Perform SQL { set connect default }

Perform SQL { select char255 from testtypes }
.. error check

;. Fetch the row.

Fetch next row

.. error check

; Change to the other session before executing the SET CONNECT
; statement. This preserves the cursor and select table

; in the first session.

Set current session { Session2 }

; Update the ORACLE row.

Perform SQL
{update testtypes set char255 = "X" where char255 = @ @[CHAR255]}

.. error check

; Commit both sessions.
Commit current session

.. error check

Set current session { Sessionl }
Commit current session

.. error check

In practice you would improve this code by encapsulating many of the common elements
into separate methods, then calling the methods to execute the separate, individual
transactions, testing for results in the main transaction method. You can also use error
handlers to simplify error checking..

Transactions 367

Server Status and Error Handling

This section shows how you can obtain status and error information for your database. It
also contains a section for each DAM giving hints on solving specific problems you may
encounter.

Status and Error Functions

Thesys()function returns error and status information from the current session. The most
important functions arsys(131)andsys(132)which return server errors.

Function Returns

sys(130) the name and version of the DAM; empty if you have not issu&daitie
sessiorcommand

sys(131) the error code of the last command sent to the server, zero for no error; codes
are specific to the server DBMS, see the DBMS documentation

sys(132) the error text that corresponds to the error code
sys(133) the number of columns for the current select table

sys(134) the number of rows processed by the previous SQL statement; set after
INSERT, UPDATE, and DELETE statements, zero after most other
statements

sys(135) the number of rows you have fetched from the select table; after selecting all
rows withRetrieve rows to fileBuild list from select tableor the finalFetch
next row corresponds to the number of rows in the select table

sys(136) name of the current cursor

sys(137) name of the current session

sys(138) 1 if there are more rows to fetch, O if there are none; this helps deal with
multiple select tables in Sybase

All server errors set the flag to false. If you get errors during an OMNIS command and the
error is not a fatal OMNIS error, it does not prevent execution of further commands. You
should always test the flag after SQL commands and take the appropriate action.

368 Chapter 13—Client/Server Programming

Set session { CHAN_TUT }
Start session { ORACLE }
If flag false
OK Message { Start failed }
Reset cursor (Session)
Quit all methods
End If
Set username { your_name }
Set password { your_password }
Logon to host
If flag false
OK Message { Logon failed: [sys(131)]--[sys(132)] }
Reset cursor (Session)
Quit all methods
End If

Reset cursor

TheReset cursocommand resets communication with the server to a stable state. It clears
or empties the SQL buffer, the error status, and the select table for one or more cursors.

— Reset cursor (Session)
resets the cursors in the session containing the current cursor

— Reset cursor (Current)
resets the current cursor

— Reset cursor (All)
resets all the open cursors

Character Mapping

When reading data from a server database, OMNIS expects the character set to be the same
as that used in an OMNIS data file. The OMNIS character set is based on the MacOS
extended character set, but is standard ASCII up to character code 127. Beyond this value,
the data could be in any number of different formats depending on the client software that
was used to enter the data.

The Set character mappingpmmand lets you translate the character codes for data read
into and sent out of OMNIS client/server libraries. You use this command to select a
conversion table for the data flowing in and out of OMNIS. For example, suppose you are
working with a database that stores EBCDIC characters. In order to accommodate this
database, you could create an ".IN map file' which translates EBCDIC characters to ASCII
characters when the server is sending OMNIS data. One could also create a '.OUT file'

Character Mapping 369

which reverses the process by converting ASCII to EBCDIC characters when OMNIS is
sending data to the server.

Under Windows, OMNIS uses the same character set as under MacOS, and a mixed
platform OMNIS installation should have no nee®et character mappinddowever, if

the data in a server table was entered by another software package, running under Windows
or DOS for example, the characters past ASCII code 127 would be incorrect when read with
either OMNIS platform. In this situation ti8et character mappingpmmand could be used

to map the character set.

When you use th8et character mappingpmmand, performance will be adversely affected
because each character processed must invoke the OMNIS conversion routine. If possible,
data should be converted once and written to a new server table in the OMNIS format.
However, when sharing server tables with non-OMNIS clients this is not possible.

There are two kinds of character maps: IN and OUT files. IN files are used to translate
characters coming from a server database into OMNIS. OUT files are used to translate
characters that travel from OMNIS back to a server database. The pair of files must have the
same name but with the extensions .IN and .OUT, an8e¢heharacter mappingpmmand

loads .IN and .OUT files at the same time. Charmap files are restricted to eight characters
plus an extension of .IN or .OUT as required, and must be placed in a folder called
CHARMAPS under the OMNIS\EXTERNAL folder.

The Charmap Ultility

The Charmap utility lets you create character mapping files and is located in the
OMNIS\STUDIO folder. You can change a given character to another character by entering
a numeric code for a new character. The column for the Server Character for both .IN and
.OUT files may not actually represent what the character is on the server. This column is
only provided as a guide. The Numeric value is the true representation in all cases.

To change a character select a line in the list box, and change the numeric code in the
Server Code edit box. Once the change has been recorded, press the Update button to
update the character map. You can increase/decrease the value in the Server Code edit box
by pressing the button with the left and right arrows. Pressing the left arrow decreases the
value, pressing the right arrow increases the value.

The File menu lets you create new character map files, save, save as, and so on. The Make
Inverse Map option creates the inverse of the current map, that is, it creates an .in file if the
current file is an .out character map, and vice versa.

370 Chapter 13—Client/Server Programming

Using the Map File

Make sure the .IN and .OUT files are located in the OMNIS\EXTERNAL\CHARMAPS
folder. Enter th&Set character mappingpmmand, followed by the CharMap translation file
name pair, where the file name pair is both an .IN and .OUT pair of translation tables. For

example:

Set character mapping { TransThl }
: for the files TRANSTBL.IN file and TRANSTBL.OUT

You can disable translation by specifying 8&t character mappingpmmand with no
parameter.

Character Mapping 371

Chapter 14—SQL Classes
and Notation

OMNIS has thre&QL classethat provide the interface to your server database: they are
theschemagquery, andtable class. Schema and query classes map the structure of your

server database. They do not contain methods, and you cannot create instances of schema o
guery classes. You can however use a schema or query class as the definition for an OMNIS
list using the $definefromsglclass() method, which lets you process your server data using
the SQL methods against your list. When you create a list based on a schema or query class
a table instance is created which contains the default SQL methods.

Tableclasserovide the interface to the data modeled by a schema or query class, and
exist primarily to allow you to override the default methods in the table instance. Like
schema and query classes, you can use a table class as the definition for an OMNIS list and
use the same SQL methods against your list.

The SQL list methods and notation are described in this chapter. Creating SQL classes in
the Browser or Component Store is described irufiag OMNIS Studionanual.

Schema Classes

372

A schema clasmaps the structure data dictionaryof a server table or view within your

library. A schema class contains the name of the server table or view, a list of column names
and data types, and some additional information about each column. The data types are the
equivalent OMNIS data types, and the names must conform to the conventions used by the
particular server. Schema classes do not contain methods, and you cannot create instances
of a schema class. You can define a list based on a schema class udefinthést from

SQL classommand or the $definefromsglclass() method. You can create a schema class
either from the Browser or Component Store.

Schema Class Notation

Each library has a $schemas group containing all the schema classes in the library. A
schema class has the type kSchema.

In addition to the standard class properties, such as $moddate and $createdate, a schema
class has the following properties

- $objs
the group of columns in the schema class

Chapter 14—SQL Classes and Notation

— $servertablename
the name of the server table or view to which the schema corresponds

The $objs group containing the columns in the schema class supports the group methods
including $first(), $add(), $addafter(), $addbefore(), and $remove(). The $add... methods
require the following parameters

— Name
the name of the column

— Type
constant representing the OMNIS data type of the column

— Subtype
constant representing the data subtype of the column

— Description (optional)
a text string describing the column

— Primary-key (optional)
a boolean set to kTrue if this column is a primary key. If omitted it defaults to kFalse

— Maximum-Length (optional)
for character and national columns, the maximum length; for other types, OMNIS
ignores the value of this parameter. If omitted for character and national columns, it
defaults to 10000000.

— No-nulls (optional)
a boolean set to kTrue if this column cannot have NULL values. If omitted it defaults to
kFalse

You can identify a particular column in the $objs group using its column name, order, or
ident, a unique number within the scope of the schema class assigned to the column when
you add it. A schema column has the following properties (all are assignable except $ident)

— $name
the name of the column

— S$coltype
the OMNIS data type of the column

— $colsubtype
the OMNIS subtype for the data type of the column

— $colsublen
the maximum length for Character and National columns

— $desc
a text string describing the column

— S$primarykey
if kTrue the column is a primary key

Schema Classes 373

— $nonull
if kTrue the column does not allow null values

— $order
the position of the column in the list of columns in the schema class

— $ident
a unique number within the scope of the schema class, identifying the column

Make Schema From Server Table

You can also create a schema usingMlage schema from server taldemmand. For
example

Describe server table (Columns) {ServerTable}
Make schema from server table {MySchema}

will create the schema MySchema, referencing server table ServerTable, using the current
OMNIS session.

Query Classes

Query classeket you combine one or more schema classes or individual columns from one

or more schemas, to give you an application view of your server database. A query class
contains references to schema classes or individual schema columns. Like schema classes,
guery classes do not contain methods, and you cannot create instances of a query class. You
can define a list based on a query class usinBdfiae list from SQL classommand or the
$definefromsglclass() method.

You can create a query class either from the Browser or Component Store. The Catalog
pops up when you open the query class editor, which lets you double-click on schema class
or column names to enter them into the query editor. Alternatively, you can drag schema
class or column names into the query editor. Furthermore, you can reorder columns by
dragging and dropping in the fixed left column of the query editor, and you can drag
columns from one query class onto another. You can also drag a column from the schema
editor to the query editor.

You can drag from the query list, the schema editor, and the Catalog, and drop onto the
extra query text field labeled ‘Text appended to queries’. Dragging a query column from the
right-hand list of the catalog query tab inserts a bind variable reference in the form
@[S$cinst.name].

The column entries have a context menu, whick -

allows you to delete a column, and to open the ~ Delete’TAE_Fievisions Notes'..
schema editor for the schema containing the Modify Schema...

column.

Save "Window Setup

374 Chapter 14—SQL Classes and Notation

The additional query text edit field has a context menu which allows you to insert text
commonly used in SQL queries.

WHERE

GROUF B
HavIMG
ORDER BY
AMD

OR

HNOT
BET*EEM
LIKE

I

15 HULL

IS HOT MULL
[

]

The query class editor does not validate schema class or column names, nor does OMNIS
automatically update query classes when you edit a schema class. You need to update your
SQL classes manually using the Find and Replace tool.

The alias allows you to eliminate duplicate column names when defining a list from the

query class. By default, each list column name is the same as the schema column name. You
can override this with the alias. If the column name is empty, meaning use all columns in the
schema, OMNIS inserts the alias at the start of each column name in the schema, to create
the list column name; otherwise, OMNIS uses a non-empty alias as the list column name.

Calculated Columns

Query classes can also contain calculated columns. A calculated column is an entry in a
query class which has:

— A schema name, which determines the table to be used in the SQL statement.

— Acolumn name. This is the calculation. OMNIS treats a column name as a calculation
if it contains at least one open parenthesis and one close parenthesis. This rule helps to
distinguish a calculated column from a badly named schema column. OMNIS performs
no validation on the calculation, and it simply inserts it into queries generated by
$select or $selectdistinct, and into the result of $selectnames.

Query Classes 375

— An alias, used as the list column name.

A calculated column is represented, in the list or row variable defined from a SQL class, as
a character column of maximum length. Its column properties $excludefrominsert and
$excludefromupdate (see the Table Instance section) are automatically set to kTrue. If you
include strings in the form “<schema name>.” or “<library>.<schema name>.” in the
calculation, then OMNIS replaces them with “<server table name>.” when it adds the
calculation to a query. The “<server table name>" comes from the schema class.

Query Class Notation

Each library has the group $queries containing all the query classes in the library. A query
class has the type kQuery.

A query class has the standard properties of a class together with $extraquerytext, a text
string which in some cases OMNIS appends to automatically generated SQL, and for
example may contain a where clause. The extra query text string can be empty. Before
OMNIS adds $extraquerytext to a SQL query, it replaces strings in the form “<schema
name>. “and “<library>.<schema name>. “ with “<server table name>.”. The “<server table
name>" comes from the schema class. This allows you to design query classes which are
independent of the table names actually used on the server, since the only place storing the
table name is the schema.

A guery class has a $objs group containing a list of references to schema columns, or
schema classes. $objs supports the same group methods as $objs for the schema class, with
the exception of $findname. The $add... methods require the following parameters:

— Schema name
the name of the schema, which can be qualified by a library name

— Column name (optional)
the name of the column in the schema
— Alias (optional)
the alias used to eliminate duplicate list column names

Each query class object has the following properties.

— $schema
the name of the schema, which can be qualified by a library name

— $colname
the name of the column in the schema; if empty, all columns from the schema class
specified in the $schema property are included

— $alias
lets you eliminate duplicate column names from a list defined from a query or a table
class referencing the query; if $colname is empty, this is a prefix which OMNIS inserts

376 Chapter 14—SQL Classes and Notation

at the start of each column name in the schema named in $schema; otherwise, OMNIS
uses a non-empty alias in the place of the column name

— $order
the position of the object in the class

— $ident
a unigue numeric identifier for the object

A list defined from a query class using the $definefromsqlclass() method has columns which
correspond to the objects in the query class. The order of the columns in the list corresponds
to the order of the columns in the query class. When an object includes a complete schema,
the columns have the order of the columns in the schema class. You can eliminate duplicate
list column names using the $alias property.

Queries Tab in the Catalog

The Catalog has a queries tab which lists the query classes in the current library. For each
query class, the right hand list shows the list column names which would result from
defining a list from the query class.

Creating Server Tables from Schema or
Query Classes

You can create a table or view in your server database by dragging a schema or query class
from the IDE Browser and dropping it onto an open session in the SQL Browser.

To create a server table or view from a schema or query class

® Create the schema or query class in the IDE Browser
® Define the columns in the schema or query class
®* Use the SQL Browser to open the SQL session for your database

® Drag the schema or query class from the IDE Browser on to your Session

If you drag a schema class onto an open session, OMNIS creates a SQL table with the table
name defined in your schema class. If you drag a query class, OMNIS creates a SQL view
with the name of the query class.

Creating Server Tables from Schema or Query Classes 377

Table Classes

An instance of a table class provides the interface to the data modeled by a schema or query
class. You only need to create a table class if you wish to override some of the default
processing provided by the built-in table instance methods.

You can create a table class from the Component Store or from the Browser. You can edit
the methods for a table class or add your own custom methods in the method editor.

Table Class Notation

Each library has a $tables group containing all the table classes in your library. A table class
has all the basic properties of a class plus $sglclassname, which holds the name of the
schema or query class associated with the table class. To create a table class using a methoc
you can use the $add() method.

Do $clib.$tables.$add(‘MyTable’) Returns TabRef
: returns a reference to the new table

Do TabRef.$sqlclassname.$assign(‘AgentSchema’) Returns MyFlag

Table Instances

You create a table instance in OMNIS when you define a list or row variable from a

schema, query, or table class, usingeéine list from SQL classommand, or the
$definefromsglclass() method. Table instances created from schema or query classes have
all the default methods of a table instance. Table instances created from a table class have
all the default methods of the table class in addition to any custom methods you have added,
perhaps to override the default methods.

When you us®efine list from SQL classr $definefromsglclass(), OMNIS defines your list

to have either one column for each column in the schema class, or one column for each
column referenced by the query class. In the case where you use a table class, OMNIS uses
the $sqglclassname property of the table class to determine the schema or query from which
to define the list.

A list variable defined in this way has all of the methods and properties of a normal list
variable, together with all of the methods and properties of the table instance. You never
access the table instance directly; you can think of it as being contained in the list variable.

378 Chapter 14—SQL Classes and Notation

Table Instances

For example, if you want to display a grid containing your data in a SQL form you can use
the following code in the $construct() method of the form to create a list based on a schema
class

; Declare instance variable iv_SQLData of type List

Set current session {session-name}

Do iv_SQLData.$definefromsglclass('SCHEMACLASSNAME')
Do iv_SQLData.$select()

Do iv_SQLData.$fetch(1000) ;; Fetch up to 1000 rows

Once you have defined and built your list you can use the table instance methods to
manipulate the data. Equally you could declare a row variable, define it from a table,
schema or query class, and manipulate your data on a row-by-row basis using many of the
same methods.

You can add columns to a list which has a table instance using the $add() method. For
example, the following method defines a list from a query class and adds a column with the
specified definition to the right of the list.

Do LIST.$definefromsglclass($clib.$queries.My_Query)
Do LIST.$cols.$add('MyCol',kCharacter,kSimplechar,1000)

Columns added in this way are excluded from the SQL queries generated by the SQL
methods described in this section. You can only add columns to the right of the schema or
query related columns in the list.

TheDefine list from SQL classommand and $definefromsqglclass() method both reset the
$linemax property of the list to its largest possible value.

Table Instance Notation

Table instances have methods and properties which allow you to invoke SQL queries and
related functionality via the list containing the table instance. Some methods apply to list
variables only and some to row variables only. Some of these methods execute SQL, which
by default executes in the context of the current OMNIS session. The methods do not
manage transactions; that is your responsibility.

The table instance methods are summarized in this section, with a more detailed description
of each method in the next section.

- S$select()
generates a Select statement and issues it to the server

— $selectdistinct()
generates a Select DISTINCT statement and issues it to the server

- S$fetch()
for a list, fetches the next group of rows from the server, for a row, fetches the next row

379

380

The following methods apply to row variables only.

— S$insert()
inserts a row into the server database

— $update()
updates a row (or rows if the where clause applies to several rows) in the server
database

— $delete()
deletes a row (or rows if the where clause applies to several rows) from the server
database

The following methods apply to smart lists only, updating the server database from the list.

— $doinserts()
inserts all rows in the list with the row status kRowlInserted

— $dodeletes()
deletes all rows in the list with the row status kRowDeleted

— $doupdates()
updates all rows in the list with the row status kRowUpdated

— $dowork()
executes the three $do... methods above, in the order delete, update, insert

When you call $doinserts(), $dodeletes(), $doupdates() or $dowork(), the table instance
calls the appropriate method(s) from the following list, to invoke each individual insert,
delete or update. This allows you to use table class methods to override the default
processing. As a consequence these methods only apply to smart lists.

— $doinsert()
inserts a single row with row status kRowlInserted

— $dodelete()
deletes a single row with row status kRowDeleted

— $doupdate()
updates a single row with row status kRowUpdated

The following methods apply to smatrt lists only, reverting the state of the list, that is, they
do not affect the server database.

— $undoinserts()
removes any inserted rows from the list

— $undodeletes()
restores any deleted rows to the list, and resets their status to kRowUnchanged

Chapter 14—SQL Classes and Notation

Table Instances

$undoupdates()
restores any updated rows to their original value, and resets their status to
kRowUnchanged

$undowork()
executes the three $undo... methods above, one after the other, in the order insert,
update, delete

You can use the following methods to create text strings suitable for using in SQL
statements. You are most likely to use these if you override default table instance methods
using a table class.

$selectnames()
returns a comma-separated list of column names in the list or row variable, suitable for
inclusion in a SELECT statement

$createname()

returns a comma-separated list of column names, data types, and the NULL or NOT
NULL status, for each column in the list or row variable, suitable for inclusion in a
CREATE TABLE statement

$updatenames|()
returns a text string containing a SET clause, suitable for inclusion in an UPDATE
statement

$insertnames()
returns a text string containing a list of columns and values for a row variable, suitable
for inclusion in an INSERT statement

$wherenames()
returns a text string containing a Where clause, suitable for inclusion in a SQL
statement that requires a constraining clause

You can use the following method in a table class.

$sqlerror()
a means of reporting errors. The table instance default methods call this method when a
problem occurs while executing SQL

Table instances have the properties of list or row variables as well as the following.

$sqglclassname
the name of the associated schema or query class used to define the columns of the list;
this property is NOT assignable

$Suseprimarykeys

if true, only those schema columns that have their $primarykey property set to true are
used in Where clauses for automatically generated Update and Delete statements.
OMNIS automatically sets $useprimarykeys to kTrue when defining the list, if and only
if there is at least one primary key column in the list

381

— S$extraquerytext
a text string appended to automatically generated SQL; used by the $select(),
$selectdistinct(), $update(), $delete(), $doupdates() and $dodeletes() methods; for
example, it can contain a Where clause. When the table instance is defined either
directly or indirectly via a query class, OMNIS sets the initial value of this property
from the query class; otherwise, this property is initially empty

— S$servertablenames
a comma-separated list of the names of the server tables or views referenced by the
schemas associated with the table instance. If the table instance uses a schema class to
define its columns, there is only one name in $servertablenames. If the table instance
uses a query class, there can be more than one name, corresponding to the schemas
referenced by the query class, and in the order that the schemas are first encountered in
the query class

— $sessionname
the name of the OMNIS session to the server, on which the table instance methods
execute their SQL; if empty, OMNIS issues the SQL on the current session

— S$colsinset
the number of columns in the current result set for the session used by the table
instance; this property is NOT assignable

— $rowsaffected
the number of rows affected by the last call to $insert(), $update(), $delete(),
$doinserts(), $doupdates(), or $dodeletes()

— S$rowsfetched
the number of rows fetched so far, using the $fetch() method, in the current result set
for the session used by the table instance

— $allrowsfetched
set to kTrue when all rows in the current result set for the current table instance have
been fetched, otherwise kFalse at other times

List columns in a list containing a table instance have two table instance related properties:
$excludefromupdatand $excludefrominsert. When true, the column is omitted from the

result of $updatenames or $insertnames, and from the list of columns in the SQL statements
generated by $update or $insert. Note that the column is not omitted from the where clause
generated by $update and $updatenames, therefore allowing you to have a column which is
purely a key and not updated. For example:

Do MyList.$cols.MyKey.$excludefromupdate.$assign(kTrue)

The default setting of this property is kFalse. If you define a list from a SQL class and use
$add to add additional columns, you cannot set these properties for the additional columns.

382 Chapter 14—SQL Classes and Notation

Table Instance Methods

The following methods use the list variable MyList or row variable MyRow which can be
based on a schema, query, or table class.

$select()
Do MyList.$select([parameter-list]) Returns STATUS

$select() generates a Select statement and issues it to the server. You can optionally pass
any number of parameters which OMNIS concatenates into one text string. For example,
parameter-listcould be a Where or Order By clause. The method returns kTrue if the table
instance successfully issued the Select.

The $select() method executes the SQL statement equivalent to

Select [$cinst.$selectnames()] from [$cinst.$servertablenames]
[$extraquerytext] [parameter-list]

The following $construct() method for a SQL form defines a row variable and builds a
select table. The form contains an instance variable called iv_SQLData with type Row.

Set current session {session-name}
Do iv_SQLData.$definefromsglclass('schema-name’)
Do iv_SQLData.$select()

$selectdistinct()
Do MyList.$selectdistinct([parameter-list]) Returns STATUS

$selectdistinct() is identical in every way to $select(), except that it generates a Select
Distinct query.

$fetch()
Do MyList.$fetch(n[,append]) Returns STATUS

$fetch() fetches up to rows of data from the server into the list, or for row variables
fetches the next row. If there are more rows available, a subsequent call to fetch will bring
them back, and so on. The $fetch() method returns a constant as follows

kFetchOk OMNIS fetched n rows into the list or row variable

kFetchFinished OMNIS fetched fewer than n rows into the variable; this means that
there are no more rows to fetch

kFetchError an error occurred during the fetch; in this case, OMNIS calls $sqlerror()
before returning from $fetch(), and the list contains any rows fetched
before the error occurred

Table Instances 383

384

When fetching into a list, if the Boolean append parameter is kTrue, OMNIS appends the
fetched rows to those already in the list; otherwise, if append is kFalse, OMNIS clears the
list before fetching the rows. If you omit the append parameter, it defaults to kFalse.

The following method implements a Next button on a SQL form using the $fetch() method
to fetch the next row of data. The form contains the instance variables iv_SQLData and
iv_OIldRow both with type Row.
; declare local variable Iv_Status of Long integer type
On evClick
Do iv_SQLData.$fetch() Returns Iv_Status
If Iv_Status=kFetchFinished|lv_Status=kFetchError
Do iv_SQLData.$select()
Do iv_SQLData.$fetch() Returns Ilv_Status
End If
Calculate iv_OIdRow as iv_SQLData
Do $cwind.$redraw()

Sinsert()
Do MyRow.$insert() Returns STATUS

$insert() inserts the current data held in a row variable into the server database. It returns
kTrue if the table instance successfully issued the Insert. The $insert() method executes the
SQL statement equivalent to

Insert into [$cinst.$servertablenames] [$cinst.$insertnames()]
The following method implements an Insert button on a SQL form using the $insert()

method to insert the current value of the row variable. The form contains the instance
variable iv_SQLData with type Row.

On evClick
Do iv_SQLData.$insert() ;; inserts the current values

$Supdate()
Do MyRow.$update(old_row[,disable_where]) Returns STATUS

$update() updates a row in a server table from the current data held in a row variable. It
returns kTrue if the table instance successfully issued the Update. Note that if the SQL
statement identifies more than one row, each row is updated.

Theold_row parameter is a row variable containing the previous value of the row, prior to
the update.

The optionaldisable_whergarameter is a boolean which defaults to kFalse when omitted.
If you pass kTrue, then OMNIS excludes the where clause from the automatically generated
SQL. This may be useful if you want to pass your own where clause using $extraquerytext.

Chapter 14—SQL Classes and Notation

Table Instances

The $update() method executes the SQL statement equivalent to

Update [$cinst.$servertablenames][$cinst.$updatenames(‘old_row’)]
[$extraquerytext]

The following method implements an Update button on a SQL form using the $update()
method. The form contains the instance variables iv_SQLData and iv_OIdRow both with
type Row.

On evClick
Do iv_SQLData.$update(iv_OldRow)

$delete()
Do MyRow.$delete([disable_where]) Returns STATUS

$delete() deletes a row from a server table, matching that held in the row variable. It returns
kTrue if the table instance successfully issued the Delete. Note that if the SQL statement
identifies more than one row, each row is deleted. The optiliseble whergarameter is

a boolean which defaults to kFalse when omitted. If you pass kTrue, then OMNIS excludes
the where clause from the automatically generated SQL. This may be useful if you want to
pass your own where clause using $extraquerytext.

The $delete() method executes the SQL statement equivalent to
Delete from [$cinst.$servertablenames] [$cinst.$wherenames()]
[$extraquerytext]
Note that [$cinst.$wherenames()] is omitted by setting disable_where to kTrue.
The following method implements a Delete button on a SQL form using the $delete()
method. The form contains the instance variable iv_SQLData with type Row.

On evClick
Do iv_SQLData.$delete()
Do iv_SQLData.$clear()
Do $cwind.$redraw()

$doinserts()
Do MyList.$doinserts()Returns MyFlag

This method only works for smart lists. $doinserts() inserts rows with status kRowInserted

in the history list, into the server table, and returns kTrue if the table instance successfully
issued the Inserts. $doinserts() calls $doinsert() once for each row to be inserted.
$doinserts() then accepts the changes to the smart list, unless an error occurred when doing
one of the Inserts.

385

$dodeletes|()
Do MyList.$dodeletes([disable_where])Returns MyFlag

This method only works for smart lists. $dodeletes() deletes rows with status kRowDeleted

in the history list, from the server table, and returns kTrue if the table instance successfully
issued the Deletes. $dodeletes() calls $dodelete() once for each row to be deleted.
$dodeletes() then accepts the changes to the smart list, unless an error occurred when doing
one of the Deletes. The optiortisable_whergarameter is a boolean which defaults to

kFalse when omitted. If you pass kTrue, then OMNIS excludes the where clause from the
automatically generated SQL. This may be useful if you want to pass your own where

clause using $extraquerytext.

$doupdates()
Do MyList.$doupdates([disable_where]) Returns MyFlag

This method only works for smart lists. $doupdates() updates rows with status
kRowUpdated in the history list, in the server table, and returns kTrue if the table instance
successfully issued the Updates. $doupdates() calls $doupdate() once for each row to be
updated. $doupdates() then accepts the changes to the smart list, unless an error occurred
when doing one of the Updates. The optiatiahble_whergarameter is a boolean which
defaults to kFalse when omitted. If you pass kTrue, then OMNIS excludes the where clause
from the automatically generated SQL. This may be useful if you want to pass your own
where clause using $extraquerytext.

$dowork()
Do MyList.$dowork([disable_where]) Returns MyFlag

This method only works for smart lists. $dowork() is a shorthand way to execute
$doupdates(), $dodeletes() and $doinserts(), and returns kTrue if the table instance
successfully completed the three operations. The optitisable whergarameter is a

boolean which defaults to kFalse when omitted. If you pass kTrue, then OMNIS excludes
the where clause from the automatically generated SQL for $dodeletes() and $doupdates().
This may be useful if you want to pass your own where clause using $extraquerytext.

$doinsert()

$doinsert(row)

$doinsert inserts the row into the server database. The default processing is equivalent to

row.$insert()

$dodelete()

$dodelete(row)

$dodelete deletes the row from the server database. The default processing is equivalent to
row.$delete()

386 Chapter 14—SQL Classes and Notation

Table Instances

$doupdate()

$doupdate(row,old_row)

$doupdate updates the row in the server database, using the old_row to locate the row. The
default processing is equivalent to

row.$update(old_row)

$undoinserts()
Do MyList.$undoinserts() Returns MyFlag

This method only works for smart lists. $undoinserts() undoes the Inserts to the list and
returns kTrue if successful. It is equivalent to the smart list method $revertlistinserts().

$undodeletes()
Do MyList.$undodeletes() Returns MyFlag

This method only works for smart lists. $ undodeletes() undoes the Deletes from the list and
returns kTrue if successful. It is equivalent to the smart list method $revertlistdeletes().

$undoupdates()
Do MyList.$undoupdates() Returns MyFlag

This method only works for smart lists. $undoupdates() undoes the Updates to the list and
returns kTrue if successful. It is equivalent to the smart list method $revertlistupdates().

$undowork()
Do MyList.$undowork() Returns MyFlag

This method only works for smart lists. $undowork() undoes the changes to the list and
returns kTrue if successful. It is equivalent to the smart list method $revertlistwork().

$sqlerror()
Do MyList.$sqlerror(ERROR_TYPE, ERROR_CODE, ERROR_TEXT)

OMNIS calls $sqglerror() when an error occurs while a default table instance method is
executing SQL. The default $sqlerror() method performs no processing, but you can
override it to provide your own SQL error handling. It passes the parameters:

ERROR_TYPE indicates the operation where the error occurred: kTableGeneralError,
kTableSelectError, kTableFetchError, kTableUpdateError,
kTableDeleteError or kTablelnsertError.

ERROR_CODE contains the SQL error code, as returnagdi31).
ERROR_TEXT contains the SQL error text, as returnesiyisy132).

387

388

$selectnames|()
Do MyList.$selectnames() Returns SELECTTEXT

Returns a text string containing a comma-separated list of column names in the list variable
in the format:

TABLE.col1, TABLE.col2, TABLE.col3,...,TABLE.coIN

The returned column names are the server column names of the list columns in the order

that they appear in the list, suitable for inclusion in a SELECT statement; also works for
row variables. Each column name is qualified with the name of the server table.

$createnames()
Do MyList.$createnames() Returns CREATETEXT

Returns a text string containing a comma-separated list of server column names and data
types for each column in the list variable, suitable for inclusion in a CREATE TABLE
statement; also works for row variables. The returned string is in the format:

coll COLTYPE NULL/NOT NULL,col2 COLTYPE NULL/NOT NULL,
col3 COLTYPE NULL/NOT NULL,...,colN COLTYPE NULL/NOT NULL

The NULL or NOT NULL status of each column is derived from the $nonull property in the
underlying schema class defining the column.

$updatenames()
Do MyRow.$updatenames() Returns UPDATETEXT
Returns a text string in the format:

SET TABLE.col1=@[$cinst.col1], TABLE.col2=@[$cinst.col2],
TABLE.col3=@[$cinst.col3],...,TABLE.colIN=@[$cinst.colN]

where coll...coln are the server column names of the columns in the row variable. Each
column name is qualified with the name of the server table.

Do MyRow.$updatenames([old_name]) Returns UPDATETEXT

The optional paramet@eid_names the hame of a row variable to be used to generate a

‘where’ clause. If you includeld_namea ‘where’ clause is concatenated to the returned
string in the following format:

WHERE coll=@][old_name.coll] AND ... AND colN=@][old_name.coIN]

The columns in the where clause depend on the setting of $useprimarykeys. If
$useprimarykeys is kTrue, then the columns in the where clause are those columns marked
as primary keys in their schema class. Otherwise, the columns in the where clause are all
non-calculated columns except those with data type picture, list, row, binary or object.

You can replace $cinst in the returned string using:

Chapter 14—SQL Classes and Notation

Table Instances

Do MyRow.$updatenames([old_name][,row_name]) Returns UPDATETEXT

whererow_nameis the name of row variable which OMNIS uses in the bind variables.
This may be useful if you override $doupdate() for a smart list.

$insertnames()
Do MyRow.$insertnames() Returns INSERTTEXT
Returns a text string with the format:

(TABLE.col1, TABLE.col2, TABLE.col3,..., TABLE.coIN) VALUES
(@[$cinst.coll],@[$cinst.col2],@[$cinst.col3],...,@[$cinst.colN])

where coll...colN are the server column names of the columns in the row variable. The
initial column names in parentheses are qualified with the server table name. You can
replace $cinst in the returned string using:

Do MyRow.$insertnames([row_name]) Returns INSERTTEXT

whererow_names the name of row variable which OMNIS uses in the bind variables. This
may be useful if you override $doinsert() for a smart list.

$wherenames()
Do MyRow.$wherenames() Returns WHERETEXT
Returns a text string containing a Where clause in the format:

WHERE TABLE.coll=@[$cinst.col1] AND TABLE.col2=@][$cinst.col2] AND
TABLE.col3=@[$cinst.col3] AND ... TABLE.colN=@][$cinst.colN]

where coll...colN are the server column names of the columns in the row variable. Each
column name is qualified with the server table name.

The columns in the where clause depend on the setting of $useprimarykeys. If True, then
the columns in the where clause are those columns marked as primary keys in their schema
class. Otherwise, the columns in the where clause are all non-calculated columns except
those with data type picture, list, row, binary or object.

The = operator in the returned string is the default, but you can replace it with other
comparisons, such as < or >=, by passing them inpikeatorparameter.

Do MyRow.$wherenames([operator]) Returns WHERETEXT

You can replace $cinst in the returned string using:
Do MyRow.$wherenames([operator][,row_name]) Returns WHERETEXT

whererow_nameis the name of row variable which OMNIS uses in the bind variables. This
may be useful if you override $dodelete() for a smart list.

389

390

If you want to see the SQL generated by the table instance SQL methods, you can use the
commandGet SQL scripto return the SQL to a character variable after you have executed
the SQL method. Note that the returned SQL will contain bind variable references which do
not contain $cinst. This is becauSet SQL scriptloes not execute in the same context as

the table instance. However, you will be able to see the SQL generated, which should help

you to debug problems.

Chapter 14—SQL Classes and Notation

Chapter 15—Server-
Specific Programming

Oracle

Oracle

This chapter contains server-specific information for each of the proprietary databases and
middleware configurations that OMNIS Studio supports.

This section contains the additional information you need to access an Oracle database,
including server-specific programming and PL/SQL, troubleshooting and data type mapping
to and from Oracle. For general information about logging onto Oracle and managing your
database using the SQL Browser, refer to the earlier parts of this manual.

Server-specific Programming

Almost every DBMS has its own specific, extra features that are not part of the SQL
standard. You can take advantage of many of these themugér-specifiprogramming

OMNIS provides special keywords and therver specific keyworbmmand to assist you

in this. Server-specific keywords are single-word commands enclosed in angle braces, such
as <NULLASEMPTY>.

You use theServer specific keywormbmmand to send a keyword command to your server.
Server specific keyword { <DESCRIBETABLES> ALL}
This command, after evaluating square bracket notation, sends the string to the DAM, which

translates the command into the appropriate server instructions. The string often includes
parameters.

The Oracle DAM supports the following keywords.

— <DESCRIBETABLES> ALL|USER
If ALL is specified the Describe tables command will return all tables in the database.
If USER is specified the Describe tables command will only return the names of the
tables owned by the current user.

— <NULLASEMPTY> ON|OFF
If ON is specified any NULLSs retrieved from Oracle will be treated as empty instead of
NULL. If OFF is specified NULLs are retrieved as NULLSs.

391

392

— <TRAILINGSPACES> ON|OFF
If OFF is specified any trailing spaces on data being inserted are stripped. If ON is
specified trailing spaces are kept. By default trailing spaces are stripped (OFF).

Updating and Deleting Specific Rows
You can use positioned updates and deletes to update and delete specific rows from the

select table you are fetching. To enable positioned updates and deletes, declare and open a
cursor for your SELECT statement:

Declare cursor EMP_CURSOR for SELECT * FROM EMP FOR UPDATE
Open cursor { EMP_CURSOR }

As you fetch individual rows using the cursor, you can decide whether or not to update or
delete the current row with the "WHERE CURRENT OF" syntax. This language takes the
session name of the session in which you executed the FOR UPDATE clause. For example,
if you declared the above cursor and opened it, then started fetching rows, you could update
the last row fetched using these statements:

; fetch the next row
Set current cursor { EMP_UPDATE_CURSOR }
Perform SQL{UPDATE EMP SET DEPTNO =5 WHERE CURRENT OF EMP_CURSOR }

You need to change the current cursor in order to use the original cursor (EMP_CURSOR)
to do the update. You can delete the row using this statement:

; fetch the next row
Set current cursor { EMP_DELETE_CURSOR }
Perform SQL { DELETE FROM EMP WHERE CURRENT OF EMP_CURSOR }

You must fetch at least one row before using WHERE CURRENT OF in a positioned
update or delete statement. You cannot use this syntax after is®ulg st from select

table command, since you must fetch the rows one at a time to set the cursor to a current
row. You must be in the same session in which you declared the cursor in order to use the
WHERE CURRENT OF clause; if you have changed sessions, you must change back using
the Set current sessiacommand.

You need tdSet transaction mode (Genertogfore using these commands. Do not use the
OMNIS Autocommit featurdutocommit (Onpr Set transaction mode (Automatic)
ORACLE lets you select multiple tables for update:

Declare cursor EMP_DEPT_CURSOR for SELECT * FROM EMP, DEPT FOR
UPDATE

Open cursor { EMP_DEPT_CURSOR }

Chapter 15—Server-Specific Programming

Oracle

You can then update each table separately:
Perform SQL {UPDATE EMP SET DEPTNO =5 WHERE CURRENT OF
EMP_DEPT_CURSOR}

Perform SQL {UPDATE DEPT SET DNAME = 'Quality Assurance' WHERE
CURRENT OF EMP_DEPT_CURSORY}

PL/SQL

The ORACLE DAM fully supports ORACLE PL/SQL, which is a procedural language that
the server executes. You create a PL/SQL script, send it to ORACLE in the same way as
any SQL statement, and the server executes it.

The DAM improves PL/SQL performance by deferring binding for parsing SQL and
PL/SQL statements. It also reduces numeric conversions between OMNIS and ORACLE
variables.

With PL/SQL support, you can establish updateable bind variables. That is, you can include
OMNIS variables in a PL/SQL statement, and when the PL/SQL statement executes, it
updates the OMNIS variables with a new value. For example:

BEGIN
SELECT id INTO :XINT FROM Emp WHERE name = ‘Jones’;
END;

In this example, “XINT" is a PL/SQL bind variable associated with the OMNIS variable
'XINT'. After the PL/SQL executes, the OMNIS variable XINT has the value associated
with the column id from the row with the name ‘Jones’.

Since ORACLE PL/SQL variable names and OMNIS variable names use a different set of
characters, the DAM needs to remap some OMNIS variables to be able to refer to them in
PL/SQL. This is automatic, but there are some mappings that you should be aware of. The
DAM translates all occurrences of ." in OMNIS variable names to '_". In addition, for hash
variables, the DAM translates '# to a 'z".

When you create a PL/SQL program and pass OMNIS variables to the ORACLE Server,
the input and output sizes of the variables may be different for character, picture, and binary
fields; the initial size may even be zero. OMNIS must allocate a buffer for each updateable
bind variable. The size of the buffer is set as the greater of the current size of the variable
and the default minimum size (256 bytes for Character; 1,024 bytes for Picture and Binary).
In some cases, you may need a variable that is much larger than either the default minimum
or the current size of the variable. In this case, you can put the size of the buffer after the
bind variable, like this:

:myvar:2048
The DAM cannot return OMNIS picture fields from PL/SQL through updateable bind

variables. You can bring picture fields into OMNIS by means of a normal SQL select
statement.

393

394

The Oracle DAM supports select tables returned through PL/SQL procedures. However,
Oracle can only return single column tables. To bind a column of a list to the select table
being returned you must use the following:

:list_name(num_rows).column_name

where num_rows is the maximum number of rows to bind. Specifying the number of rows is
optional. If the number of rows is not specified then the maximum number that available
memory permits is returned. To let the DAM calculate the maximum number of rows
simply omit (num_rows) from the above. Note that if the procedure returns more rows than
there are allocated, an error results.

You cannot execute a stored procedure on Oracle directly. For example, the following will
not work:

Perform SQL: EXECUTE METHOD(PAR)

To execute such a procedure you must use the full SQL that PL/SQL requires. The
statement would be:

Perform SQL: BEGIN EXECUTE METHOD(PAR); END;

The ORACLE DAM lets you send and receive null data, both in SQL statements and in
PL/SQL programs. This works for both input and output variables. You can set the null
display feature for the OMNIS fields to see the results.

The ORACLE DAM concatenates multiple error messages to give you more information
when possible.

Server Information

Theserver()function takes a parameter in which you request information from the DAM
about the server. You can use @aculatecommand to place the result in an OMNIS
variable:

Calculate RESULT as server('Version') ;; Returns the version number
of the active DAM

Calculate PATH as server('Path’) ;; Directory path of the DAM

Calculate API as server('vendorAPl') ;; Directory path of server API
if available

Every DAM, including the Oracle DAM, supports the followisgrver()parameters.

— Version
the version string, same as sys(130)

— Vendorapi
the version string of the client API with which the DAM compiled

— Path
the file path to the DAM

Chapter 15—Server-Specific Programming

Oracle

File

the name of the DAM file

DAM

the name of the DAM

In addition, the Oracle DAM supports the followisgrver()parameters:

GETDESCRIBETABLES

whether Describe table returns ALL tables or just the USER'’s tables

GETTRANSACTIONMODE
the current transaction mode - AUTOMATIC, GENERIC or SERVER

Troubleshooting

The following points may help in resolving issues in programming OMNIS applications that
use an Oracle database.

If you connect to DB2 or SQL/DS through an ORACLE Gateway using the ORACLE
DAM, there is a 70-character limit for error strings

If you bind an OMNIS Character or National variable to a CHAR, you should note the
ORACLE rules for comparing CHAR data. ORACLE will pad out the strings to the
same size with blanks, which might lead to unexpected results. See the ORRCLE
Reference Manudbr details.

Attempting to set batchsize higher than 255 causes method execution to halt in the
debugger.

OMNIS supports blob fields of up to 200MB (for binary, or picture fields). However,
in practice you may have memory problems under MacOS which puts a real limit of
about 4 to 8MB on blob fields.

Platform Specific Issues

For characters to be read between MacOS and Windows on Oracle, the Mac character
set has to be used in tBeacle.ini file under Windows and in the registry under
WINDOWS 95 and Windows NT. However, if the Mac character set and the server
character set are different not all characters may be successfully converted and so will
be represented by a default character chosen by the server.

The Oracle DAM on NT can send and receive BLOBs of up to 100MB. However, in
practice the real limit may be less depending on the available memory.

395

Data Type Mapping

The following tables describe the data type mapping for OMNIS and Oracle.

OMNIS to ORACLE

OMNIS Data Type

ORACLE Data Type

CHARACTER

Character/National <= 255 VARCHAR(n)
Character/National > 255 VARCHAR(N)
Character/National 2100 LONG
DATE/TIME

Short date (all subtypes) DATE

Short time DATE

Date time (#FDT) DATE

NUMBER

Short integer (0 to 255)

NUMBER(3, 0)

Long integer

NUMBER(11, 0)

Short number 0dp

NUMBER(10, 0)

Short number 2dp

NUMBER(10, 2)

Number floating dp

FLOAT

Number 0..14dp

NUMBER(16, 0..14)

OTHER

Boolean VARCHAR2(3)
Sequence NUMBER(11, 0)
Picture LONG RAW
Binary LONG RAW

List LONG RAW

Row LONG RAW
Object LONG RAW
Item reference LONG RAW

Chapter 15—Server-Specific Programming

Oracle

ORACLE to OMNIS

Server Data Type

Describe Data Type

OMNIS Data Type

CHARACTER

CHAR Char Character
VARCHAR2 Character Character

LONG Long Character

RAW Binary Binary

LONG RAW Picture Picture
DATE/TIME

DATE Datetime Date time (#FDT)
NUMBER

NUMBER Number(10,14) Number floating dp
NUMBER(10) Number(10,14) Number floating dp
NUMBER(10, 8) Number(10,14) Number floating dp
NUMBER(18) Number(10,14) Number floating dp

NUMBER(16, 15)

Number(10,14)

Number floating dp

NUMBER(18, 15)

Number(10,14)

Number floating dp

FLOAT

Number(10,14)

Number floating dp

FLOAT(30)

Number(10,14)

Number floating dp

397

Sybase

398

This section contains the additional information you need to access a Sybase database,
including server-specific programming, troubleshooting, and data type mapping to and from
Sybase. For general information about logging on to Sybase and managing your database
using the SQL Browser, refer to the earlier parts of this manual.

Server-specific Programming

Almost every DBMS has some special features you can take advantage of seuagh
specificprogramming OMNIS provides special keywords and Berver specific keyword
command to assist you in this. Server-specific keywords are single-word commands
enclosed in angle braces, such as <WRITEBLOB>.

You use theServer specific keywor@bmmand to send a keyword command to your server.
Server specific keyword { <WRITEBLOB> }

This command, after evaluating square bracket notation, sends the string to the DAM, which
translates the command into the appropriate server instructions. The string often includes
parameters. For example, the following command, issued to a Sybase session, sets the
W_Tours/Error method as the error message handler for the session.

Server specific keyword { <SQLMESSAGE> W_Tours/Error }
The Sybase DAM supports the following keywords.

— <CALLERRORHANDLER >
calls the current error handler for the session or the global error handler if there is no
session handler

— <CALLMESSAGEHANDLER >
calls the current message handler for the session or the global message handler if there
is no session handler

— <DBCANCEL >
discards all pending results in select tables; faster than Reset session; see section below
for warning on use

— <DBCANQUERY>
discards a single pending result table

- <RPC>
defines and executes a remote procedure call: see section below

— <RPCPASSWORD>
sets a password for a remote connection; see below

Chapter 15—Server-Specific Programming

Sybase

— <RPCRESULTS>
processes output from a remote procedure call; see below

— <SETERRORHANDLER>
sets an OMNIS method as session error handler

— <SETMESSAGEHANDLER>
sets an OMNIS method as session message handler

— <SETPROGRAMNAME >
sets the Sybase program name column in the sysprocess table to the parameter

— <SETTIMEOUT >
sets the number of seconds that Open client will wait for Sybase to respond to a query;
0 sets the timeout to infinity

— <SKIPEMPTYSETS>
ignores empty select tables in a multiple-table sequence; see the Sybase section below
for details

— <SQLERROR>
sets an OMNIS method as global error handler

— <SQLMESSAGE>
sets an OMNIS method as global message handler

— <SETENCRYPT_ON>
sets password encryption on logon

— <SETENCRYPT_OFF>
disables password encryption on logon (Default)

— <WRITEBLOB >
updates a binary large object (blob) in a Sybase database; see the section below for
details.

Multiple Select Tables

The Sybase DAM lets you run more than one SQL SELECT statement at once and return
multiple select tables, one after the other. You need to do some special processing in order
to process all the tables. Ordinarily, when the flag turns falsé=etch next rowit means

there is no more data. With multiple select tables, there may be more data. There is a special
system functionsys(138)which is true if there are more rows (regardless if the flag is

false) and false if there are no more rows. As you process several select tables, the flag turns
false when you retrieve the last row from a table.

TheBuild list from select tableommand retrieves data into a list up to the limit #LM, the
maximum number of items in list. You can thus get a list full, flag truesgs@ 38)}rue,
which means there are more rows in the select table to fetch because you filled up the list. If

399

400

the flag is false, you have exhausted the current select tabsydfliB88)can still indicate
more rows, meaning there are more select tables.

One way to do multiple SELECTSs is to code a procedure containing several SELECT
statements that is to execute on the server. The example below executes the following
method (assuming the number of lines in your list is adequate to contain all the rows
returned):

create proc multi_select as
SELECT firstName, lastName FROM Agents
SELECT id, name FROM Customers

To execute this from an OMNIS method and to fetch the results,

Perform SQL { exec multi_select }

Set current list { My _list1 }

Define list { aFirstName, aLastName }

Build list from select table

If #F = kFalse & sys(138) =1 ;; flag false and sys(138) =1
Set current list { My _list2 }
Define list { anID, aName }
Build list from select table

End if

You need to be careful about handling errors from the server for each SQL statement, or
you may lose the error before seeing it. Sometimes a server will return multiple errors and
OMNIS will not be able to tell you because only the last one gets passed through to you
through the error handling mechanism (see below). You should use multiple SQL
statements sparingly for this reason.

The sysprocess table (in the master database) has a program_name column that stores a
separate name for each connection to the server. The <SETPROGRAMNAME> server-
specific keyword lets you put a name into this column for the current session that you can
then use to distinguish multiple sessions.

The default name is the name of the library that first loaded the DAM. If you have already
set this name with the keyword, you can restore the default value by calling the keyword
with no parameter.

You must use this keyword after starting a session but before logging on to the server,
because the value gets set at logon: using the keyword after logon results in an error. The
value persists across logons and logoffs,Reset current cursatoes not reset it.

If the string passed to the keyword is too long, the DAM truncates it without reporting an
error. The DAM stores it internally as a thirty-character string but the program_name field
on the SQL Server is shorter than this. Finally, the DAM allows spaces and eight-bit
characters in the string and ignores spaces between the keyword and the first non-space
character of the name.

Chapter 15—Server-Specific Programming

Sybase

The server-specific command <SKIPEMPTYSETS> lets you process multiple-select-table
queries more effectively by letting you skip over any empty tables in the sequence of
multiple tables.

The default setting for the parameter is NO, which means that the Sybase DAM reports the
select tables exactly as Open Client reports them. When this is called with the “YES”
parameter, this causes the DAM to skip over all select tables that have no rows in them. The
effect, for the developer, is that the empty tables do not exist.

The NOCOLUMNS parameter tells the DAM to skip only those select tables that have no
columns and no rows of data. The examples above generate select tables that have no
columns or rows. This query,

SELECT * from sysobjects where 1 = 2

generates a select table with no rows and seventeen columns. There are times where being
able to distinguish between sets without columns and with columns is useful.

This setting affects only a single session, and you can toggle it on and off at any time after
starting the DAM. Toggling it while fetching data sets may produce unexpected results due
to the ordering of the operations within the DAM itself. When the session is logged off, this
parameter is reset to NO. TReset sessiocommand does not affect this setting.

Error Handling

Because one OMNIS command’s action can generate multiple errors or messages, there is
an issue relating to which of these gets storexy&t131)andsys(132)which can report

only one code and string per action. Whenever the server reports an error or a message to
the DAM, it uses the following rules:

— Every error and message has a severity code, so the DAM stores an error or a message
only if its severity is greater than or equal to the one already stored (if any)

Errors and messages use slightly different severity scales (1-11, and 0,11-24, respectively),
so the DAM treats all messages as if they were between severity 5 and 6 on the error
handling scale. The ranking, from least to most important, is therefore:

1. Severity 1-5 errors
2. Severity 11-24 messages

3. Severity 6-11 errors

— Thesys()functions never report messages with a severity of 0 (informational messages,
including ones produced with the Transact-Sfpibt command); these functions also
never report the Open Client generated error of severity 5 (20018 on MacOS, 10007 on
Windows) that indicates a message just arrived

— sys(131)ontains the ErrorNumber, OSErrorNumber, or MessageNumber code,
depending on the rules above.

401

402

— sys(132)ontains the severity value, followed by a colon, followed by one of three
things:
the MessageString for a message
the ErrorString for an error
the OSErrorString followed by a colon then the ErrorString for an OS error.

Each time you call the DAM, it clears the information in($84) and sy§132) so that it
doesn't cause errors from one action to be associated with a later one.

You should be aware that the errors reported by the error handler have codes and messages
that sometimes differ between the MacOS and Windows Sybase clients.

Instead of relying on this limited capability, you can declare error or message handlers in
OMNIS to capture all the relevant information directly from the DAM. The DAM invokes
these handlers as soon as it receives notification of the error or message from the Sybase
Open Client. Hence the DAM usually calls them while you are waiting for a SQL command
to return in OMNIS. For example, you might issueogon to hostommand, and the DAM
might call your message handler multiple times before returning from the command.

An exception is severity 0 messages; sometimes the server does not report these until you
have finished fetching rows from the select table. Here is a handler that reports all messages
directly to the user. Thus:

; Declare parameter vars SessionName, MessageString,

; ServerName, MethodName of Character type

; Declare parameter vars MessageNumber, MessageState,
; Severity, LineNumber of Long Integer type

OK message {con(Message: ",MessageString," (Code=", MessageNumber,")
(Severity=",Severity,")")}

You can then set this method (W_Tours/ErrHand, say) as the error handler for your session:

Set hostname {myserver}

Set username {me)

Set password {secret}

Server specific keyword {<SETMESSAGEHANDLER> W_Tours/ ErrHand}
Logon to host

When you log on, your application greets you with an OK box declaring:
Message: Changed database context to ‘'mydatabase’. (Code=5701)

(Severity=0)
You can implement a wide variety of things in an error or message handler. You might
choose to report severe errors to the user, or to set flags to cause your library to behave
differently based on certain codes from the server. Other things you might want to do would
be to store all incoming messages in an error log that you can review at any time in your
application. Since you can install and remove handlers at any time, you might want to turn
on your handlers in particularly tricky parts of your code. Alternatively, you can set up

Chapter 15—Server-Specific Programming

Sybase

separate handlers for each session and have them report their messages in different ways
appropriate for each session’s role in the library.

There is a limit of 250 bytes when the DAM calls the handler. If the combination of
parameters is too long, then the DAM may truncate the message or oserror and dberror text.
If truncation occurs, then the text ends with an asterisk (*).

The Sybase error handler is unusual in that you can return a code in one particular instance.
If and only if the error is a timeout error (20003 under MacOS, 10024 under Windows) for
a statement, then you can return either 2 to continue waiting or 1 to cancel the operation.

WARNING The effect of returning a 1 varies between the Windows and MacOS Open
Client. You will probablyneverwant to return a value of 1. Under MacQOS, this causes
Open Client to kill the dbprocess, thus terminating your connection to the SQL Server. On
Windows, this merely cancels the action and discards the results.

The DAM uses the hash variable #1 when it retrieves this return code error from OMNIS.,
You must therefore refrain from using #1 while in the error handler.

Establishing a timeout with the server-specific keyword <SETTIMEOUT> can be useful,
therefore, because you can use the errors to let the user know that a long query is, in fact,
doing something; but using it to kill the query is more problematic.

If you place breakpoints of any sort in a handler method, then when OMNIS encounters the
breakpoint, it will clear the stack and clear the method’s variables.

You should not do too much in a handler. If you have work that involves adding scores of
things to lists or calling dozens of other methods, it is usually best to set a flag while in the
handler then do this work after you return to the main flow of your library. OMNIS can get
confused if the handler gets too complex due to the complexity of handling a call back from
the DAM while it is, itself, waiting for the DAM to return.

Blobs

The Sybase DAM can send and retrieve text and image fields that are larger than 32K
(BLOBs or "binary large objects"). When dealing with BLOBs, you need to take some
limitations into account.

Transferring BLOBs is very memory-intensive, since each layer of software has a copy of at
least part of the blob. Thus, sending a simple 40K picture can demand several times that
amount of RAM before it gets passed over to the DBMS.

The Sybase DAM provides different ways to send and fetch BLOBs. You can send or fetch
the fields using the standard OMNIS commands, with certain limitations; or you can use the
<WRITEBLOB> keyword to update a text or image field on the DBMS, with the implicit
functionality to retrieve a large text or image field.

The standard SQL commandef¢form SQL, Fetch next rowand so on) let you pass large
character, picture, list or binary fields by binding them into SQL statements or mapping

403

404

SQL results into OMNIS fields. There are, however, platform-specific limits on how large
the values can be.

Under Windows, you cannot have values larger than 32,767 bytes. Sending a larger value
generates an error message (31,955 for OMNIS-to-Sybase, 31,966 for Sybase-to-OMNIS)
meaning that it was unable to send the value, after which the current transaction is aborted.
This means that the DAM discards any text sent since thExasute SQL scripr

Perform SQL For data being retrieved, the DAM returns a NULL value to the mapped
OMNIS field.

Under MacOS, the limit is much less well defined. It is a combination of the memory you
allocate to OMNIS and the DAM and of the limits on the size of a query that the SQL
Server can process. You should be careful, therefore, to allocate sufficient memory for the
DAM and OMNIS if you want to use BLOBs.

There are no limitations, aside from memory concerns, on sending multiple BLOBs in one
SQL script.

To fetch a blob larger than these limits, you can select the particular column of values by
itself, and then use normal retrieval operations suéfeteh next rowor Build list from

select tableThis special fetching mode is otherwise completely invisible. For example, if
you have an image column named myPhoto in a table called myTable:

Perform SQL {select myPhoto from myTable} ;; gets the whole blob

If, however, photoNum is an integer column in the same table, the command:
Perform SQL {select photoNum, myPhoto from myTable}

will return a NULL image column, since there am® columns in this select table.

This blob-fetching feature lets you retrieve BLOBs under MacOS in a way that uses less
memory than the standard method. Retrieving BLOBs as single select-list elements is thus
always a good idea for optimization.

No matter how you fetch the BLOBS, you should not forget to set the textsize parameter on
the Server. This parameter tells the server not to truncate all outgoing values to this setting
(see your Sybase documentation for more details). Therefore, if you set the textsize
parameter to the default of 32,767 and select a 500K image, you get a 32,767 byte value in
OMNIS.

Perform SQL { set textsize 123456 }
This sets the textsize parameter, for this session, to about 123K.

This setting is for fetching values only. When fetching BLOBs under MacOS using the
standard commands, you should not set this parameter to its largest value. Increasing this
also causes Open Client to allocate more memory to deal with the larger BLOBs. Therefore,
setting it too small will truncate your fetched data while setting it too large may cause Open
Client to kill your connection (resulting in a dead DBPROCESS). If you are retrieving a
variety of BLOBS, you should try to set it as closely as you can to the size of the largest

Chapter 15—Server-Specific Programming

Sybase

blob; you can set this for each SQL script sent. You can also use the Sybase datalength()
function to find out how long the value is that you want to retrieve, and use this to set the
textsize parameter.

Under MacOS, you can increase the memory allocated to the DAM in two ways: When you
install OMNIS, the installer prompts you to select an allocation size for the Sybase DAM. If
you need to change this later, you can use the MacOS ResEdit utility to change the four
numbers in the two SIZE resources in the DAM. You should set all four to be the same
number, which is the number of bytes to allocate to the Sybase DAM. After doing this you
should set the OMNIS memory allocation (through the Get Info command) to the sum of its
current value and the increase in DAM memory allocation, since the DAM’s memory is
allocated out of OMNIS memory. If you expect to be building lists of BLOBs, you should
give OMNIS even more memory.

Should you need to handle data larger than the limitations above allow, you can use the
server-specific keyword <WRITEBLOB>. To use <WRITEBLOB>, you must already have
the row in the database. <WRITEBLOB> updates data rather than inserting it, so you must
qualify the keyword to identify the particular row. Also, the particular database column
value must have data in it, not a NULL. You would usually create the row with a blank ("' ")
in the column, for instance, then use <WRITEBLOB> to update the value with the large
blob.

Perform SQL {insert into mytable (x, mycol) values (2, *)}

Server specific keyword
{<WRITEBLOB> /Uselmytable.mycol, pictureField, where x = 2}

This command places the value of the OMNIS field pictureField into the column mycol of

the table mytable in the row where x has the value of two. Thus, the keyword places a single
blob value into a location that you specify. The clause after the name of the OMNIS blob
field (in the example, this is the "where x = 2") uniquely specifies an existing row into

which to place the blob. The syntax of the keyword is:

<WRITEBLOB> [/Log|/Nolog] [/Usel|/Use?2] table.column, OMNISField,
where-clause

The/Log or /Nolog option denotes whether to log this action in the transaction log. If you
do not log the action, you cannot roll it back. Using /Nolog requires that the select
into/bulkcopy option be set to true with sp_dboption for the database on the DBMS. If you
wish to use the /Nolog option, you must consult your documentation and system
administrator since setting this option can have significant ramifications on being able to
backup and recover your database. /Log is the default.

The/Usel or /Usedption sets a single session or two sessions to write a blob. By default
<WRITEBLOB> opens a second session when writing a blob, resulting in one or more
“changed database context” messages. This lets you process a result set in the select table
then write blob values back to the server in parallel, but with /Usel you can force
<WRITEBLOB> to use the same session. You should specify /Usel unless you can
guarantee that the table you are writing to will not have any transactions running against it,

405

406

including the main session. If you can’t guarantee this, you risk a deadlock situation where,
for example, the user might try to write a blob to a table that the main session locks. This
call never returns, since the transaction never releases the lock on the first.

/Usel discards any pending select tables and dga($33)sys(134)andsys(138)You
can actually specify the options in any order and in upper, lower, or mixed case. You must
separate them by spaces. The commas between the parameters are optional.

Thetable.column parameter sets the table and column to which to write the blob.
OMNISField supplies the name of an OMNIS field from which to copy the blob.

Thewhere-clauseoption supplies a where-clause for a select statement, including the word
'‘where'. If your where-clause is ambiguous OMNIS updates the first blob value it finds, so
the value updated may not be the one you intended. Make sure your where clauses specifies
a unigue row.

If there are any errors, OMNIS sets the flsgs(131)andsys(132appropriately.

<WRITEBLOB> reports an error and rolls back the transaction if you try to update a NULL
value or a column that is other than a text or image type. The command cannot send NULL
or empty fields itself, but it can send any field that is at least one byte long.

Remote Procedure Calls

The Sybase DAM provides commands that let you invoke Remote Procedure Calls (RPCs).
When used with a SQL Server, these let you invoke a stored procedure without using the
Transact SQL exec statement. An RPC has two advantages over the exec statement: it
avoids converting the parameters to and from ASCII, thus potentially offering faster calling
times, and more significantly, RPC commands let the DAM return output parameters from
a stored method to your program automatically.

Using an RPC is easy. For example, the following statements invoke a stored procedure
with one parameter. With an ISQL stored procedure call, use:

Perform SQL { exec MyStoredProc('[oField]) }

To do the same thing with an RPC:

Server specific keyword {<RPC> MyStoredProc(char:oField)}

The Sybase DAM provides three server-specific keywords related to issuing RPCs:

— <RPC>
define and execute an RPC

— <RPCRESULTS>
process output from an RPC

— <RPCPASSWORD>
set passwords for remote connections

Chapter 15—Server-Specific Programming

<RPC>

<RPC> defines and executes the remote procedure, and affects thgs{ag1 Yo sys(134)
andsys(138)Its arguments have the following format.

<RPC>name([parameter[;parameter]*])[status]

nameis the name of the remote procedure you want to call. You can get access to group
stored procedures by appending the number to the name; for example, to access procedure 4
in procedure group "helpme", the name would be "helpme;4"

parameter is one of up to 255 specifiers for the parameters to the remote procedure, in the
format described below. If more than one is specified they must be separated by semicolons.

status holds the name of an OMNIS Long integer field into which the DAM places the
return status code from the RPC (see <RPCResults>, below). If the remote procedure
executes successfully without errors or does not explicitly set the return status, the return
value is 0. This parameter is optional and has the format:

type:field[option]*
It is used as follows:

type is one of the following Sybase data types: bit, tinyint, smallint, int, smallmoney,

money, real, float, char, varchar, binary, varbinary, smalldatetime, datetime, or binchar (see
below). You cannot pass either image or text fields in an RPC call. This data type is what

the Sybase DAM reports the parameter to the remote procedure as, and thus it should match
the type defined in the remote procedure declaration.

field is the name of the OMNIS field that you wish to pass to the remote procedure. This
field should have a type analogous to the type specified immediately before (for example,
for tinyint, smallint, int, or float, types, you should use an OMNIS number field). However,
OMNIS can do a wide variety of datatype conversions, and so you can actually get away
with things like passing a long integer field as a char type. The DAM silently truncates
fields with values longer than 255 bytes to that length when it sends them to the server.

An option for a parameter is a colon followed by one of the following three items. Note that
all options are optional, and that you can specify them in any order.

@nameis the name of the parameter in the remote procedure call. The DAM uses this
parameter only if the order of the parameters in the <RPC> call is different from the order
defined by the remote procedure. The character ‘@’ is compulsory if you use this
parameter.

OUTput determines whether the parameter can receive output values from Sybase. If the
data specifier includes this constant, the DAM passes the field by reference and not by
value. After the remote procedure executes successfully and the DAM processes all results
rows, a call to <RPCRESULTS> updates these OMNIS fields with the return values. Note
that only the first three letters of this option are significant. If you declare your parameters
as OUTput, youmustpass them to <RPC> in the same order that they were declared in the

Sybase 407

408

remote procedure: the Sybase DARhnotreturn output values if the parameters are not in
the defined order.

ISNULL forces the value in the field to be treated as NULL. If the parameter includes this
option, the DAM passes NULL to the remote procedure. This is generally an obsolete
option since you can pass a NULL value directly by calculating the field to be #NULL.

While it is legal to pass no parameters to a remote procedure, you must still include the
open and close parentheses. For example:

Server specific keyword { <RPC> JustDolt() }

You may include spaces around any of the delimiters in the RPC argument string (that is,
around ‘(, '), ", and ;") but you cannot pass bind variables with @[].

There are two phases involved in invoking an RPC with the Sybase DAM. In the first, the
DAM parses the arguments to the <RPC> keyword, and locates the relevant OMNIS
variables. If any errors occur, it will report information through the standard error handling
mechanism about what the syntax error in the string was. Otherwise, it starts an RPC call to
the server and passes the parameters to it. If any errors occur here, both the server and the
DAM pass the error reports through the standard error handling system.

The binchar type is specific to the Sybase DAM. It lets you pass binary data as an ASCII
hex string. This string must start with “0X” or “0x” followed by hexadecimal digits (for
example, “Ox001102FF008A45"). The <RPC> command converts this data to a binary
value before passing it to the server.

If the following procedure is defined:-
create procedure appendbyte

@parm varbinary(2) output
as

select @parm = @parm+0x35

You could then issue the following <RPC> call:

; Local variable MYBINCHAR (Character 512)

Calculate MYBINCHAR as '0x34'

Server specific keyword {<RPC>appendbyte (binchar:MYBINCHAR:OUT)}
Server specific keyword { <RPCRESULTS>}

After this, MYBINCHAR will contain the string “0x3435". You must take care when

defining the character field for the type binchar. The maximum length allowed for data sent
through the RPC interface is 255 bytes. When the data is retrieved, it is converted back to
ASCII, which becomes 512 characters at maximum (255 bytes * 2 when converted to ASCII
+ 2 for the ‘0x’).

Chapter 15—Server-Specific Programming

Sybase

<RPCRESULTS>

<RPCRESULTS> returns data into any parameters marked as OUTput in the <RPC> call.
This also returns the return status value into the field specified in the <RPC> call. If the
stored procedure did not return a status, the DAM puts a 0 into the target field. This
keyword affects the flag, fields defined as OUTput in the <RPC> call, a field defined for
return statussys(131) andsys(132)<RPCRESULTS> takes no parameters.

Here is a more detailed example using both <RPC> and <RPCRESULTS>. Consider a table
called person_data where the age for Karen Salt is 38.

create proc GetAge @name varchar(32), @age int output as
select @age = (select person_age from person_data
where person_name = @name)

return 105
One could then invoke this as follows:

; Declare the following variables...

; Local variable THENAME (Character 32)

; Local variable THEAGE (Long integer)

; Local variable THESTATUS (Long integer)
Calculate THENAME as “Karen Salt”

Server specific keyword
{<RPC> GetAge (varchar:THENAME; int: THEAGE:OUT) THESTATUS}

At this point, if you look at the value of THEAGE, it would contain the value it started out
with. If the next line of the OMNIS method were:

Server specific keyword {<RPCRESULTS>}

then as soon as this command was executed, the OMNIS variables THEAGE would contain
the number 38, and THESTATUS would contain 105.

If you have an RPC that returns a value to an output field and generates a result set with one
row, you can call it with:

Server specific keyword {<RPC> my_proc (int:My_int:out)}

You should then fetch the RPC generated result set. If you issue only one fetch command
and use <RPCRESULTS> you will get an error; you should keep fetching rows until #F=0.

<RPCPASSWORD>

<RPCPASSWORD?> sets the password for remote servers and affects the flag, the session,
sys(131)andsys(132)It has the syntax:

<RPCPASSWORD>server:password

server holds the name of the remote server, from the srvname column of its sysservers
system table.

409

410

passwordis the password that the server to which you are logged on uses to access the
server specified in the first part of this command.

An RPC or stored procedure can invoke procedures on another server. To do this, the server
that the first procedure is running on must log onto the other server and for this you can set
up a password to use when logging onto that server. This associates the specified password
with the specified server for this connection to the DBMS. You can call this multiple times

to establish passwords for different servers.

If the server name is empty (that is, you provide no text before the colon), then the
password is a 'universal' password that you can use with any server for which you haven't
already established a password.

You can put spaces before and after the colon: the DAM ignores these and does not
consider them part of the servername or password.

Server Information

Theserver()function takes a parameter in which you request information from the DAM
about the server. You can use the Calculate command to place the result in an OMNIS
variable.

Calculate RESULT as server('Version') ;; Returns the version number
of the active DAM

Calculate PATH as server('Path’) ;; Directory path of the DAM

Calculate API as server(‘'vendorAPI') ;; Directory path of server API
if available

Every DAM handles the following set eérver()parameters.

— Version
the version string, same as sys(130)

— Vendorapi
the version string of the client API with which the DAM compiled

— Path
the file path to the DAM

— File
the name of the DAM file

— DAM
the name of the DAM

In addition, the Sybase DAM supports the following server() parameters.

— GETDATABASEVERSION
returns the database version for current session; see section on Logging On above

Chapter 15—Server-Specific Programming

Sybase

GETERRORHANDLER
returns the name of the current session’s error handler, if any, in standard format:
name/number

GETLOGGEDON
returns Boolean YES if the session is logged on, NO if not

GETMESSAGEHANDLER
returns the name of the current session’s message handler, if any, in standard format:
name/number

GETPROGRAMNAME

returns the program name set with the <SETPROGRAMNAME> server-specific
keyword or the name of the library that first loaded the DAM; no longer than thirty
characters

GETSKIPEMPTYSETS
returns YES if you have set on the <SKIPEMPTYSETS> server-specific keyword, NO
if not, and NOCOLUMNS if that option is set (see the keyword below for details)

GETSQLERROR
returns the name of the global error handler, if any, in the standard format:
name/number

GETSQLMESSAGE
returns the name of the global message handler, if any, in the standard format:
name/number

GETTIMEOUT
returns 0 if no timeout is set, otherwise returns the timeout period set with the
<SETTIMEOUT> server-specific keyword

GETTRANSACTIONMODE
returns “AUTOMATIC”, “SERVER?”, or “GENERIC” depending on the current
transaction mode

Troubleshooting

The following points may help in resolving issues in programming OMNIS applications that
use a Sybase database.

Sybase is a case-sensitive RDBMS. Check the case of the table or column names if you
can see a table but cannot select anything out of it

Sybase defaults to NOT NULL columns; you must initialize columns to a specific value
while inserting data, or insertion will fail

Any number with no digits after the decimal point, that is > ¥/wil generate an
error and not be inserted. This is because Sybase tries to parse numbers without
decimal points as integers

411

412

The Sybase DAM has the notion of a Primary Cursor which takes the name of the
current session. This allows any SQL command, such as Select, Insert, Update or stored
procedure to be invoked. Any additional cursors opened are regarded as secondary and
allow only a single select statement to be issued, or a stored procedure returning only a
single result set (from a single select statement). Results pending on the primary cursor
will block the use of any secondary cursor.

The Sybase DAM does not support 8et SQL blob preferencesSet batchsize
command

Sybase does not support binding a NULL Boolean field in OMNIS to a Sybase bit field

Sybase does some character mapping, but you may need to do character conversion
explicitly in your OMNIS code using character maps or other conversion functions

Sybase interprets empty strings as single spaces.

Fetching pictures from Sybase stored there by other applications, even in standard
formats, is likely to cause problems, since OMNIS stores all pictures in a special
format. This occurs even in platform-specific graphics formats such as PICT or BMP.

The Sybase DAM reports errors both through the error handler and tisym{@B1)
andsys(132using error codes 31000-31999

The Sybase DAM supports up to a maximum of twenty-five multiple sessions in one or
more libraries simultaneously; note that some uses of the <WRITEBLOB> keyword
may reduce the number (see below). The exact number may depend on your server
configuration, so check with your System Administrator.

The Sybase DAM does not ignore compute rows in select tables; if it encounters any, it
simply skips over them to the next non-compute row

If the Sybase dbprocess for a session is killed (usually because of memory problems),
the DAM does not let you issue any further commands in that session keagefftor

Quit

When you logoff a session, the DAM resets transaction mode to automatic and database

version to the default value and clearssiig(133)-sys(139ndsys(138)\alues as
well.

If you issue &ogon to hostommand in a session that is already logged on, the DAM

will immediately log off the first and establish a new logon. Since this does a full

logoff, the settings for transaction mode and database version and the system flags end
up with their default settings in the new logon session; you should explicitly set up the
transaction mode and database version as you need

Short number Odp has at least nine digits of precision, which fits into the four-byte
server type ‘int’, thereatenames(@napping type; however, in some circumstances, it is
possible to put more than nine digits of data into a short number, so you must be careful
about what sort of numbers you pass into the database

Chapter 15—Server-Specific Programming

— Using the /N qualifier with an OMNIS Boolean field causescteatenames(function
to create a string that creates a NULL bit column, but this is illegal syntax for Sybase:
avoid using /N with Boolean fields areatenames()

— When you reach the end of a select table (flag is set to false after the fetch), then
sys(133)s set to the number of columns in the next select table

— Describe database (tabledpes not list system tables

— Describe databasgll varieties) does not report any errors if there are no tables;
instead, it returns an empty select table

— Describe server table (Columnagcepts only the name of a table; it does not support
any owner, database or other qualifier in the parameter

— The third column obescribe server table (Columnis)set to NULL for all types
except char, binary, nchar, varchar, varbinary, varnchar, text, and image; the fourth
column is set to NULL for all types except the float, integer and money types; column 7
is always NULL

— All the Describe server tablandDescribe databaseommands and the transaction
commands$et transaction mog&et autocommitCommit sessigrandRollback
sessiofissue aReset sessioccommand

— After issuing the commaridescribe server table (Indexesys(133) reports 3 even if
there are no actual rows to return, even if <SKIPEMPTYSETS> is on

— You should not usBescribe server table (Indexds)the generic transaction mode
because the stored procedure creates a table

— In automatic transaction mode, the Sybase DAM issues no commands to provide
transaction support, since Sybase’s default behavior matches the behavior OMNIS
defines as automatic transaction mode, and the DAM ignores the OB it
sessiorandRollback sessionommands; in the generic transaction mode, the DAM
issues certain Transact-SQL statements to begin, commit, and rollback transactions on
the server, so you should never begin, commit, or rollback any transactions in SQL or
in stored procedures, since these cause the DAM and the server to get confused and to
generate errors; server transaction mode is identical to automatic mode

— You can end up with a select table with no rows in it, or a select table with no rows or
columns; because these empty sets can be a nuisance in multiple-table situations, the
server specific keyword <SKIPEMPTYSETS> lets you skip over these

— Even after statements that produce no results, such as insert and update, the Sybase
DAM cannot verify whether there are select tables until you issue at leaSetmmer
Build list command. This is whgys(138)s 1 even after such a statement.

Platform Specific Issues

— The alias in the interfaces file or SQL.INI must correspond to the name you use in the
Set hostnameommand

Sybase 413

— Under Windows, you can bind character, binary, picture, and list fields to Sybase
columns as long as they are less than or equal to 32,767 bytes, and you can fetch data
less than or equal to 32,766 bytes; MacOS is limited only by memory

— Under MacOS, the control par&ybaseconfig/ocscfgnust be installed and configured

properly for the DAM to work

Data Type Mapping

The following tables describe the data type mapping for OMNIS and Sybase.

OMNIS to Sybase

OMNIS Data Type

Sybase Data Type

CHARACTER

Character/National 0 varchar(1)
Character/National 1 <= n <= 255 varchar(n)
Character/National > 255 text
DATE/TIME

Short date (all subtypes) datetime
Short time datetime
Date time (#FDT) datetime
NUMBER

Short integer (0 to 255) tinyint

Long integer int

Short number 0dp numeric(9,0)
Short number 2dp numeric(9,2)

Number floating dp

float/double

Number 0..14dp

numeric(15,0..14)

OTHER

Boolean bit
Sequence int
Picture image
Binary image
List image
Row image
Object image
Item reference image

Chapter 15—Server-Specific Programming

Sybase to OMNIS

Sybase Data Type

Describe Results Type

OMNIS Data Type

CHARACTER

char(n) CHARACTER(n) Character n
varchar(n) CHARACTER(n) Character n
nchar(n) CHARACTER(n) Character n
nvarchar(n) CHARACTER(n) Character n

text CHARACTER Character 10,000,000
DATE/TIME

datetime DATETIME Date time (#FDT)
smalldatetime DATETIME Date time (#FDT)
NUMBER

tinyint TINYINT Short integer (0 to 255)
smallint SMALLINT Short number 0dp
int INT Long integer
numeric(p,n) NUMBER Number (n)dp
decimal(p,n) NUMBER Number (n)dp

real FLOAT Number floating dp
float FLOAT Number floating dp
double FLOAT Number floating dp
money NUMBER (4dp) Number 4dp
smallmoney NUMBER (4dp) Number 4dp
OTHER

bit BOOLEAN Boolean

binary(n) BINARY Binary

varbinary(n) BINARY Binary

image PICTURE Picture

415

Informix

416

This section contains the additional information you need to access an Informix database,
including server-specific programming, troubleshooting, and data type mapping to and from
Informix. For general information about logging on to Informix and managing your
database using the SQL Browser, refer to the earlier parts of this manual.

Server Information

Theserver()function takes a parameter in which you request information from the DAM
about the server. You can use @&culatecommand to place the result in an OMNIS
variable:

Calculate RESULT as server('Version') ;; Returns the version number
of the active DAM

Calculate PATH as server('Path’) ;; Directory path of the DAM

Calculate API as server(‘'vendorAPI') ;; Directory path of server API
if available

Every DAM handles the following set eérver()parameters.

— Version
the version string, same as sys(130)

— Vendorapi
the version string of the client API with which the DAM compiled

— Path
the file path to the DAM

— File
the name of the DAM file

— DAM
the name of the DAM

In addition, the Informix DAM supports the following server() parameters.

— SQLERRDO to SQLERRD5
returns the corresponding member of the SQLERRD structure in the SQLCA

— SQLWARNO to SQLWARN7
returns the corresponding member of the SQLWARN structure in the SQLCA

Stored Procedures
You can run stored procedures in INFORMIX with the EXECUTE METHOD statement.

Chapter 15—Server-Specific Programming

Informix

Troubleshooting

The following points may help in resolving issues in programming OMNIS applications that
use an Informix database.

— INFORMIX I-Net PC has a problem with FTP TCP/IP Version 2.3. Version 2.3
appears to work, but during the logon sequence, a dialog box reading “SYSTEM
ERROR: CANNOT WRITE TO DEVICE AUX" appears. Clicking on the Cancel
button removes the dialog box and communications will continue normally. The dialog
box results from FTP having Windows debug calls in the file WINSOCK.DLL. You
can avoid this problem using the WINSOCK.DLL that came with FTP version 2.2 in
place of the file that came with the FTP Version 2.3 software.

— INFORMIX closes all cursors when you commit or roll back a transaction. It is
recommended that you do not do long transactions as they may have serious effects on
the INFORMIX database. To avoid these transactions, you should use the Server
transaction mode.

— INFORMIX does not support the Set SQL blob preferences command.

417

Data Type Mapping

The following tables describe the data type mapping for OMNIS and Informix.

OMNIS to INFORMIX

OMNIS Data Type

INFORMIX Data Type

CHARACTER

Character/National < 32767 CHAR
Character/National => 32767 TEXT
DATE/TIME

Short date (all subtypes) DATE

Short time

DATETIME HOUR TO MINUTE

Date time (#FDT)

DATETIME YEAR TO FRACTION

NUMBER

Short integer (0-255)

SMALLINT

Long integer

INTEGER

Short number 0dp

DECIMAL(15,0)

Short number 2dp

DECIMAL(15,2)

Number floating dp

FLOAT

Number 0..14dp

DECIMAL(15,0..14)

OTHER

Boolean SMALLINT
Sequence SERIAL
Picture BYTE

Binary BYTE

List BYTE

Row BYTE

Object BYTE

Item reference Not supported

Chapter 15—Server-Specific Programming

DB2

DB2

Informix to OMNIS

INFORMIX Data Type |Describe Data Type | OMNIS Data Type
CHARACTER

SQLCHAR CHAR National
SQLVCHAR CHAR National
DATE/TIME

SQLDATE DATE Short date 1980-2079
SQLDTIME DATETIME Date time (#FDT)
NUMBER

SQLSMINT NUMBER Number Odp
SQLINT NUMBER Number Odp
SQLINTERVAL NUMBER Number 0dp
SQLSERIAL NUMBER Number Odp
SQLMONEY NUMBER Number floating dp
SQLDECIMAL NUMBER Number floating dp
SQLFLOAT FLOAT Number floating dp
SQLSMFLOAT FLOAT Number floating dp
SQLTEXT CHAR National
SQLBYTES BINARY Binary

SQLNULL UNKNOWN National

This section contains the additional information you need to access a DB2 Universal Server
database, including server-specific programming, supporting DB2 extenders and data type
mapping to and from DB2.

Server-specific Programming

Almost every DBMS has its own specific, extra features that are not part of the SQL
standard. You can take advantage of many of these themugér-specifiprogramming

OMNIS provides special keywords and therver specific keyworbmmand to assist you

in this. Server-specific keywords are single-word commands enclosed in angle braces, such
as <SETBLOBSIZE>.

You use theServer specific keywormbmmand to send a keyword command to your server.
Server specific keyword { < SETBLOBSIZE > 32768}

419

420

This command, after evaluating square bracket notation, sends the string to the DAM, which
translates the command into the appropriate server instructions. The string often includes
parameters.

The DB2 DAM supports the following keywords.

<SETBLOBSIZE> integer_value

where 0 < integer_value < 2147483647. The createnames() function uses integer_value
when columns of type BLOB are created. DB2 requires a minimum size; if
SETBLOBSIZE has not been set, the default is 64K.

<USESCHEMANAMES> YES|NO

If USESCHEMANAMES is set to NO, all of the OMNIS data dictionary querying
commands will display information about any table, view or key the user has
permission to see. If itis set to YES, only tables in the user's schema will be seen by
the data dictionary commands.

In the case of the Describe table columns or keys commands, this behavior may be
overloaded by qualifying the specified table name with a schema name.
e.g.Describe server table (Columns) {Yourschema.MyTable}

This type of overloading is not possible with the Describe Database (Tables) or
(Views)_ commands, but the DB2 DAM will return two columns of data for these
commands. The first contains the list of table or view names, the second the name of
the schema in which the table or view occurs.

The default setting is NO.

<GET_DATASOURCES> list_name

List_name is the name of a list defined as having two columns of type character(30).
After execution of the command, the list will contain two columns of data, the first
containing the names of all known data sources to the client machine, and the second
holding a description.

<DATETIME_FORMAT> datetime_format_string
where datetime_format_string is an OMNIS Date/Time format string.

<BIND_SESSION>

Binds the current session’s logon information with the DB2 externals to be used when
the DB2 external commands log on to the DB2 database. This keyword overrides the
information registered through the DB2 externals.

<UNBIND_SESSION>
Unbinds the session’s logon information being used by the DB2 externals The logon
information contained in the externals is now used if registered.

Chapter 15—Server-Specific Programming

DB2

Reserved Words

This section covers the DB2 specific reserved words.
The following schema names are reserved:

— SYSCAT

— SYSFUN

- SYSIBM

— SYSSTAT

In addition, it is strongly recommended that schema names never begin with the SYS prefix,
as SYS is by convention used to indicate an area reserved by the system.

There are no words that are specifically reserved words in DB2. Keywords can be used as
ordinary identifiers, except in a context where they could also be interpreted as SQL
keywords. In such cases, the word must be specified as a delimited identifier. For example,
COUNT cannot be used as a column name in a SELECT statement unless it is delimited.

IBM SQL and ISO/ANSI SQL92 include reserved words, these reserved words are not
enforced by DB2 Universal Database, however it is recommended that they not be used as
ordinary identifiers, since this reduces portability. Please see the final chapter in this manual
which lists the SQL reserved words.

DB2 Extenders

DB2 extenders are extended or intelligent data types supported in IBM’s DB2 Universal
Database. They includmage audio, videg and richtextdata types, although at present the
OMNIS SQL Browser does not support the text type. The DB2 extenders take your data
handling capabilities well beyond the standard character and numeric types, and allow you
to create all types of application for storing, querying, and retrieving multimedia content for
web-based and intranet solutions.

What makes these data types intelligent? Not only can you store image, audio, and video
data in DB2, but you can search and retrieve this type of data by querying its content. For
example, when querying image data you can specify a color or pattern in your query to
retrieve images containing that color or pattern. You can do similar things with the audio
and video extended data types.

Thelmage extendecan store all types of image including GIF, JPEG, BMP, and TIFF. The
image extender stores the file size, format, height, width, color information, and bit depth of
the image. When you insert and retrieve image data to and from your DB2 database, you
can convert the format of images and perform other operations such as compression and
decompression, resampling, scaling, rotating, and color inversion. The image extender can
also store a thumbnail or miniature version of an image suitable for display in a web
browser.

421

422

The Audio extendesupports a variety of audio file formats, including WAVE and MIDI

files of up to 2 gigabytes in length. The audio extender stores attributes such as the number
of audio channels, transfer time, and sampling rate, as well as the standard file information
such as name, size, and modification date. Using the appropriate query you can retrieve an
audio clip and play it in one operation. For example, in a music database you could retrieve
tracks by a particular artist and playback audio clips of their work.

TheVideo extendesupports a variety of video file formats, and can store video data up to 2
gigabytes in length. The video extender stores attributes such as frame rate, compression
format, and number of video tracks. You can query your database for video clips based on
the file format or modification date. Like the other DB2 extender types, you can retrieve a
video clip and play it back using a single query. You can also use the video extender to
automatically segment a video clip into shots based on scene changes or major differences
between frames. The video extender stores information about the separate shots which you
can query to produce a quick summary of a video, to display on a web page perhaps.

SQL Browser support for DB2 Extenders

OMNIS Studio supports connections to any DB2 database containing all standard data
types, such as text and numeric. However several unique features have been added to the
SQL Browser to support the DB2 extenders. Furthermore on Windows 95 and Windows NT
platforms, a new set of external commands has been included to allow you to enable and
disable the DB2 extenders: these are seamlessly integrated into the SQL Browser and allow
you to enable DB2 extender data types using point-and-click context menus.

Enabling DB2 Extenders

Note that this feature is only available if you are working on a machine running Windows
95 or Windows NT.

To use the DB2 extenders you need to enable them in your database on several different
levels: for yourdatabasefor a particulatable, and for a specificolumnthat will contain
extended data. Furthermore you need to enable your database, tables, and coleawhs for
type ofDB2 extender, that is, you must enable your database for audio, video, and image
data if a particular database table or column stores that type of data. IBM supplies tools to
do this via the command line, but in OMNIS you can enable your database in the SQL
Browser using point-and-click.

To enable your database for audio, video, or image data

® Start OMNIS and open the SQL Browser
® Logon to your DB2 database

®* Right-click on your database to open its context menu

Chapter 15—Server-Specific Programming

DB2

&¥ S0L Object Browser

Session Tools MWiew

cEce kmb niw

<5 Open ’
i & Cloze

%) Modify Sessions..

€ Sessionnfo..

&b Print Database...

DB? Extenders

v Audio ‘

by

ideo

<

Enahle All
Disakle All

N

® Select DB2 Extenders>>Enable All

or to enable specific DB2 extenders

® Select DB2 Extenders>>Audio, Image, or Video

Next you need to enable specific tables in your DB2 database.

To enable a table for audio, video, or image data

®* Double-click on your DB2 database in the SQL Browser
®* Double-click on the Tables group

®* Right-click on your table to open its context menu

® Select DB2 Extenders>>Enable All

® orto enable specific DB2 extenders

® Select DB2 Extenders>>Audio, Image, or Video

423

£ DBZ Tables _ (O] x]

Session Qhject Tools Yiew

Blcfa® Ssa'sagn Amd |2 E

B

Sa MNew..
£y Modify... D Environm... EXTEMND...

Jdah
= Bename...

 Delete.

Privileges..
IndexUpt@ e . RAMALL STOCK
Show Data...

Inser Data...

[|

DBZ Extenders Audio
TextColum |

iH
F%F

Enahble All 7
Disakle All

You can enable a column for audio, video, or image data when you create or alter the table
containing a reference to the DB2 extender. In addition, the context menus for databases
and columns includes an option to disable the DB2 extenders.

424 Chapter 15—Server-Specific Programming

DB2

Playing Audio, Video, and Image Data

You can show or playback audio, video, and image data stored in your DB2 database using
the Show Data option in the SQL Browser. At present you can display only one type of

DB2 extender at a time, so for example, you cannot show audio and image data at the same
time. The multimedia players in the SQL Browser display either audio, video, or image data
depending on the data types in the current table.

To show or playback audio, video, or image data

® Open your DB2 database in the SQL Browser and display its tables

&% DB?_Tables

Session

Ohbject Tools

iy

B0 HbaBagh Lm0

John

m]
M

EEEE G

oa New...
Jully =3 kModify...

o BEename...

Delate...
Frivilages...

Show Data. . h

Insent Data...

I.

DBZ Extenders

k

TextColl

[EXIINCICES

Showe all data in the current takle

0 Environm... EXTEMD...
FaAkALL STOCE
T2 GBFGH

NE B

®* Right-click on the table and select Show Data

The SQL Browser creates a Select statement based on your table and sends it directly to the
server via the Interactive SQL tool. The results are displayed in the lower pane of the ISQL
tool. For example, if you show the data for a table containing image data, each image is
shown in the ISQL tool as an <image> placeholder. You can click on the placeholder to

display the image in the Multimedia Player.

425

W Interactive SQAL
el i DB? Multimedia Player
DB? B PR W D52 Mulimedia Player B

SELECT *FROM JEATES EMPPIC: : ; 4]

EMP_ID |EMP_PICTURE] |

2 <image? -
3 <image

4 <image?

g <image> o '

B <image> & e

7 <image?r = T

g <image? _|;|
4 b

0K, 30 Rows selected. Query exec ﬂl l“ 7of30 Ll il 4

The Multimedia Player lets you go to the next and previous row in the table, and you can
jump to the beginning or end of the results set. The player is virtually the same for each type
of DB2 extender, that is, for audio each sound clip in your database is displayed in the
player, and likewise for video you can load each video and play it back.

Inserting Audio, Video, and Image Data

You can insert data into a table containing DB2 extenders using the Insert Data option in
the SQL Browser. When you use the Insert Data option the SQL Browser creates a data
entry window depending on the type of DB2 extender contained in the current table.

To insert audio, video, or image data into your DB2 database

® Open your DB2 database in the SQL Browser and display its tables
® Right-click on the table and select Insert Data

The data entry window contains a prompt for you to load the path to your audio, video, or
image file.

426 Chapter 15—Server-Specific Programming

DB2

DB2 Extender Wizards

The SQL browser provides many tools for examining your DB2 database and the extended
data types such as audio, video, and image data. However you may want to add DB2
support to your application. The DB2 Extenders palette in the Component Store contains
some easy-to-use wizards to build multimedia players and DB2 extender data entry
windows.

Extender Data Manager Wizard

The Extender Data Manager lets you insert any of the DB2 extender data types into your
DB2 server database, including audio, video, and image data.

To create an Extender Data Manager

® Open your DB2 database in the SQL Browser
® Open your library and show the Component Store

® Scroll the Component Store toolbar and click on the DB2 Extenders button

Component Store Ni=]E3
e
(e ddow o DB |
(=3 Extenders|
a‘ e
of ="
Extender ... IilyI=Tem

427

®* Drag the Extender Data Manager Wizard onto your library in the IDE Browser

®* Name the new window and press Return, or click in the Browser

® Extender Data Manager m

Create an Extender Data Manager Window

select DBZ Table

=88 DB2 ﬂ
----- [~ DB2TX Environment

----- [M-DEZTH.Indexpdate

""" [M-DBE2T+ Logl=<273911

----- [T-DB2Tx. TextColumns

----- [[-DB2T= Texndices
OMNISs BB [~ JBATES B

R | [~ IBATES CUSTOMERS
stu d 10 [IBATES EMFDERO

& IBATES EMPRICS
""" [T IBATES EMFSOURNDS LI

{Preuinusl Mext » | Cancel |

® Select the database table into which you want to insert data
® Click on Next and select the key field for the table

® Click on the Create button

428 Chapter 15—Server-Specific Programming

The window includes a prompt or Browse button for the DB2 extender entry field that lets
you add the path to your audio, video, or image file. For example, if your database table
contains an image column, the Extender Data Manager looks something like the following.

B Extender Data Manager

E:\wIN9EyDeskiopi200-01 1]

DB2 429

Multimedia Wizard

The Multimedia Player lets you view any of the DB2 extender data types in your DB2
server database, including audio, video, and image data.

To create a Multimedia Player in your library

® Open your DB2 database in the SQL Browser

® Open your library and show the Component Store

Scroll the Component Store toolbar and click on the DB2 Extenders button
® Drag the Multimedia Wizard onto your library in the IDE Browser

®* Name the new window and press Return, or click in the Browser

W Multimedia Wizard E3

To Create a multimedia wind o

select DBZ Table

ERTNEE il
----- [~ DBET= Environment

----- [T~ DB2Tx Indexpdate

""" [M-DBZT+ Logl=<273911

----- [T-DBeT=.TextColumns

----- [~DB2T=. Texndices
OMNIS IEEE [T JBATES BM

D | [~ IBATES CUSTOMERS
studio NS [IBATES.EMFDERMO

g IBATES EMPRICS
""" [~ IBATES EMESOUNDS LI

{F"revinusl Mext > | Cancel |

® Select the database table you want to view
® Click on Next and select the key field for the table

® Click on the Create button

430 Chapter 15—Server-Specific Programming

B Multimedia Player B

EMP_ID [57

ME_FICTLIRE

-
4| 3

I« <] 30 of 30 >

The Multimedia Player lets you go to the next and previous row in the table, and you can
jump to the beginning or end of the data. The player is virtually the same for each type of
DB2 extender, that is, for audio each sound clip in your database is displayed in the player,
and likewise for video you can load each video and play it back.

DB2 431

432

DB2 Commands

The DB2 external commands let you enable and disable your DB2 database for Audio,
Image, and Video extender data types. They are available in the external commands group
in the method editor; their names are prefixed by “DB2" and they are described in the
OMNIS Help. These commands let you control access to the DB2 extenders at a lower level
than the enablement and disablement supported in the SQL Browser.

Data Type Mapping
The following tables describe the data type mapping for OMNIS and DB2.
OMNIS to DB2 UDB

OMNIS data type Server data type
CHARACTER

Character/National <= 4000 varchar
4000 < Character/National <= 32,700 long varchar
Character/National > 32,700 clob
DATE/TIME

Short date (all subtypes) date

Short time time

Date time (#FDT) datetime
NUMBER

Short integer smallint

Long integer integer

Short number 0 dp

decimal (15,0)

Short number 2 dp

decimal (15,2)

Number 0..14 dp

decimal (15,0..14)

OTHER

Boolean varchar (3)
Sequence integer
Picture blob
Binary blob

List blob

Row blob

Object blob

Item reference n/a

Chapter 15—Server-Specific Programming

DB2

DB2 UDB to OMNIS

Server Data Type

Describe Data Type

OMNIS Data Type

NUMBER

SMALLINT INTEGER Long integer
INTEGER INTEGER Long integer
FLOAT FLOAT Number floating dp
DECIMAL NUMBER Number dp
CHARACTER

CHAR CHAR Character
VARCHAR CHAR Character

LONG VARCHAR CHAR Character
DATE/TIME

DATE DATE Short date

TIME DATE Short time
TIMESTAMP DATETIME Date time (#FDT)
EXTENDERS

IMAGE BINARY Binary

AUDIO BINARY Binary

VIDEO BINARY Binary

TEXT BINARY Binary

433

ODBC

434

This section contains the additional information you need to access a database using ODBC
middleware, including server-specific programming, troubleshooting, and data type
mapping. For general information about logging on via ODBC and managing your database
using the SQL Browser, refer to the earlier parts of this manual.

Server-specific Programming

Almost every DBMS has its own specific, extra features that are not part of the SQL
standard. You can take advantage of many of these theaugér-specifiprogramming

OMNIS provides special keywords and Berver specific keyworcbmmand to assist you

in this. Server-specific keywords are single-word commands enclosed in angle braces, such
as <WRITEBLOB>.

You use theServer specific keyworbmmand to send a keyword command to your server.
Server specific keyword { <WRITEBLOB> }
This command, after evaluating square bracket notation, sends the string to the DAM, which

translates the command into the appropriate server instructions. The string often includes
parameters.

The ODBC DAM supports the following server specific keywords:

— <TYPEB_ON> and<TYPEB_OFF>
theseenable or disable multiple cursors

- <RPC>
executes remote procedure calls.

— <RPCPROCS>
returns a result set containing information on the parameters defined by an RPC.

— <RPCSUPPORT>
indicates whether remote procedure calls are supported or not.

The ODBC DAM turns the server Autocommit off when you log on to let OMNIS directly
control transaction behavior. Consequently you may need to modify ODBC.INI for some
ODBC data sources for various data isolation levels. When OMNIS Autocommit is off, any
DDL operation (CREATE, ALTER, DROP) or GRANT and REVOKE causes the current
transaction to commit immediately.

A DDL operation in a multiple-statement block causes an error.

A result set from a select operation may not be valid across transaction boundaries,
depending on the driver. If you commit or roll back a transaction, you should execute the
select again.

Chapter 15—Server-Specific Programming

ODBC

When Autocommit is on, OMNIS commits only groups of statements containing UPDATE,
INSERT or DELETE statements, and then only if there is no pending result set.

Generally, turning Autocommit off results in much increased performance because the
DAM does not force a commit after each statement. For best results, the ODBC driver
should conform to the core SQL language. However, many drivers support core SQL with
only minimal data types.

OMNIS maps Boolean values to the closest representation possible on the target server. If
BIT is not available, it will generally map a Boolean to a numeric type. It represents TRUE
and FALSE values by 1 and 0, respectively. When these values come into OMNIS target
variables of type BOOLEAN, OMNIS converts them, otherwise it converts the values to
appropriately sized NUMBER values. OMNIS currently expands numeric and Boolean
deferred bind variables inline rather than deferring the binding.

When you map date and timestamp data types in the commasdsbe server table
(columns)andDescribe resultsthe types map to OMNIS types Date1980 and
DateTime1980, respectively. OMNIS maintains the correct date; the 1980 in the type name
refers to setting the default if you don't supply the full year.

You must specify literals in SQL statements with single quotes (), not double quotes (*).

You should always check the valuesgb(131)andsys(132)after SQL operations even if

the command reports that the flag is TRUE. Most ODBC operations report the status "SQL
SUCCESS WITH INFO" with a TRUE flag, but there may still be informative messages
that you can obtain througlys(131)andsys(132)For example, if you connect through
Sybase, the connection can succeed with the information "database context changed to
xxxX", your default database. In most cases, the additional information does not refer to
problems, but you must be aware of possibly important messages.

Multiple cursors
To allow multiple select cursors with Microsoft ODBC Driver for SQLServer 6, there are
two server-specific keywords: <TYPEB_ON> and <TYPEB_OFF>.

The Microsoft ODBC Driver for SQLServer 6 needs to be able to execute SQL while
processing a select statement. To allow multiple cursors, you shoueusansaction
mode(Generig)open your cursors and, for each, issue the following command prior to
filling the SQL buffer.

Server specific keyword {<TYPEB_ON>}

If you want to reuse a particular cursor, that is, use it for something other than select
statements, or select statements that will be fully processed prior to further SQL operations,
or you want to close the cursor altogether, you should issue the command:

Server specific keyword {<TYPEB_OFF>}

435

436

Remote Procedure Calls
<RPC>

The <RPC> keyword executes remote procedure calls. It relies upon the ODBC driver used,
being able to execute ODBC SQLProcedureColumns calls (see conformance issues in your
driver documentation).

All output parameters including ‘return values’ should be defined OMNIS variables or
fields. Input parameters may either be literals or OMNIS variables or fields. When using
OMNIS fields, as either input or output parameters, they must be preceded by a colon “:”
character. When using literals no special characters are required. In some cases you may
wish to force a parameter to be an output parameter. You can do this by placing :OUT’
after the parameter.

The following example calls an RPC called ‘name’ and passes two parameters. The ODBC
DAM will determine parameter types by the use of the ‘SQLProcedureColumns’ call. To
obtain a list of parameters for a given RPC, use ‘<RPCPROCS> name'.

<RPC> RETURN = name (:INPARAM, :OUTPARAM)
The following example calls the same RPC, but passes a literal as the first parameter and

forces the last parameter to be treated as an output. In this case SQLProcedureColumns is
used to determine all parameter types apart from the last.

<RPC> RETURN = name ('abc’, :OUTPARAM:OUT)

In the above examples ‘RETURN' is a defined OMNIS variable. It does not require a “:”
character since in this case a literal would never be used.

After executing an <RPC> call, all output parameter fields will contain values set by the
RPC, if successful. If a problem occurs the sys(131) and sys(130) functions are called. If the
RPC builds a result set, it can be retrieved usingthilel list from select tableommand.
<RPCPROCS>

<RPCPROCS> can take the following parameters, or none at all.

d: database name
0: owner name
p: stored procedure, or RPC, name

The following example returns a result set containing information on all RPCs available to
the currently logged on user.

<RPCPROCS>

The following is the same, but in addition it returns all RPCs owned by user ‘colin’.
<RPCPROCS> o:colin

The following returns a result set containing information on all the parameters defined by
the RPC called ‘name’.

Chapter 15—Server-Specific Programming

<RPCPROCS> p:name

The following returns a result set containing information on all the parameters defined by
the RPC called ‘name’ and owned by user ‘colin’ on database ‘dbo’. This is used primarily
when RPCs with the same name have been defined by two different users.

<RPCPROCS> d:dbo o:colin p:name

<RPCSUPPORT>

<RPCSUPPORT> takes one parameter, and returns a simple ‘Y’ if RPCs are supported in
the current ODBC driver. For example, where SUPPORT is an OMNIS character string

<RPCSUPPORT> SUPPORT

Server Information

Theserver()function takes a parameter in which you request information from the DAM
about the server. You can use @aculatecommand to place the result in an OMNIS
variable:

Calculate RESULT as server('Version') ;; Returns the version number
of the active DAM

Calculate PATH as server('Path’) ;; Directory path of the DAM

Calculate API as server('vendorAPI') ;; Directory path of server API
if available

Every DAM handles the following set sérver()parameters:

— Version
the version string, same as sys(130)

— Vendorapi
the version string of the client API with which the DAM compiled

— Path
the file path to the DAM

— File
the name of the DAM file

- DAM
the name of the DAM

In addition, the ODBC DAM supports the following server() parameters.

— DBMSNAME
returns the name of the server DBMS

— DBMSVERSION
returns the version of the server DBMS

ODBC 437

DRIVERNAME
returns the name of the ODBC driver

DRIVERVERSION
returns the version of ODBC.DLL and the ODBC driver

Troubleshooting

The following points may help in resolving issues in programming OMNIS applications that
use the ODBC middleware.

438

Bind variables with ODBC v2 Drivers work with MS Access, SQL Anywhere, and
other drivers.

Implicit datatype conversions generally result in error 257: “Implicit conversion from
datatype "x" to "y" is not allowed.” Use the CONVERT function to run this query. This
error will occur, for example, when a select statement mixes data types between the
SQL data and a bind parameter.
SELECT ... WHERE F = @[INT]
; "F"and "INT" are different datatypes

Implicit conversions involving a datetime field will result in error 260: “Operand type
clash: "x" is incompatible with datetime.”

Whether or not the ODBC DAM can transfer data values larger than 32K bytes is
dependent on the individual ODBC driver

Describe server table (ColumnaipdDescribe server table (Indexesjcept
[owner].tablename as the parameter

TheDescribe resultandDescribe server table (columnsdmmands generally report
column size only for character and numeric or decimal date. In these cases, the
commands report the actual display width of the field. For fields of other types, such as
"INTEGER", the commands report the internal storage size

You cannot issue DDL statements within a block with several SQL statements

ODBC does not support any extended ORACLE cursor operations

Chapter 15—Server-Specific Programming

Data Type Mapping

The following table describes the data type mapping for OMNIS to ODBC connections.
OMNIS to ODBC

OMNIS Data Type ODBC Data Type
CHARACTER

Character/National SQL_VARCHAR
DATE/TIME

Short date (all subtypes) SQL_DATE

Short time SQL_TIME

Date time (#FDT) SQL_TIMESTAMP
NUMBER

Short integer (0 to 255) SQL_TINYINT

Long integer SQL_INTEGER

Short number 0dp SQL_NUMERIC(9, 0)
Short number 2dp SQL_NUMERIC(9,2)
Number floating dp SQL_DOUBLE

Number 0..14dp SQL_NUMERIC(15, 0..14)
OTHER

Boolean SQL_BIT

Sequence SQL_INTEGER

Picture SQL_LONGVARBINARY
Binary SQL_LONGVARBINARY
List SQL_LONGVARBINARY
Row SQL_LONGVARBINARY
Object SQL_LONGVARBINARY
Item reference SQL_LONGVARBINARY

ODBC 439

EDA

440

This section contains the additional information you need to use the EDA/SQL middleware.
For general information about logging on to EDA and managing your database using the
SQL Browser, refer to the earlier parts of this manual.

Server-specific Programming

Almost every DBMS has some special features you can take advantage of seuagh
specificprogramming OMNIS provides special keywords and Berver specific keyword
command to assist you in this. Server-specific keywords are single-word commands
enclosed in angle braces, such as <WAIT>.

You use theServer specific keyworbmmand to send a keyword command to your server.
Server specific keyword { <WAIT>}

This command, after evaluating square bracket notation, sends the string to the DAM, which
translates the command into the appropriate server instructions. The string often includes
parameters. The keywords available with EDA are used to call FOCUS procedures on an
EDA/SQL Server, and are:

- <RPC>
Executes a remote procedure call on the server

— <LONGRPC>
Executes a remote procedure call on the server with parameters > 80 characters in
length

— <ACCEPT>
Retrieves error messages into a variable

— <DATE_FORMAT>
Sets the date format.

— <TIME_FORMAT>
Sets the time format.

— <DATETIME_FORMAT>
Sets the date/time format.

These keywords are described in the following section.
EDA Keywords
<RPC>
The <RPC> keyword executes a remote method call on the server and has the syntax:

<RPC>procedure_name [[varname=]value[,[varname=]value]...]

Chapter 15—Server-Specific Programming

<LONGRPC>

The <LONGRPC> keyword is similar to <RPC> but allows RPCs with parameters greater
than 80 characters in length.

<ACCEPT>

The <ACCEPT> keyword has the syntax:

<ACCEPT>ListName

ListName refers to a list which must be defined as:
Define list { MSGTYPE, MSGORIGIN, MSGCODE, MSGTEXT }

where the columns in the list are as follows:

— MSGTYPE (numeric) is the message type: message type 1 is a system error message,
and message type 2 is a message sent from the remote method.

— MSGORIGIN (character) is the originator of the message. This string is ‘EDA’ for
system error messages (type 1 above) or is otherwise specific to the remote method.

— MSGCODE (nhumeric) is the numeric code returned from the remote method.
— MSGTEXT (Character) is the message text returned from the remote method.

These variables are case-sensitive, but the order is not important. You can use $linemax
(maximum number of lines in list) to control the number of messages returned in each call
to <ACCEPT>. <ACCEPT> differs fromys(131)andsys(132)in that it returns all

messages from the server, whereas th@ Bysctions return only the first system error
message.

The following example illustrates the use of the EDA keywords.

Server specific keyword { <RPC>TABLIST }
.. check sys(131) for errors
Redraw WindowName

Server specific keyword { <WAIT>}
; Wait for the server to finish RPC
.. check sys(131) for errors
Redraw WindowName
; Bring the results back from the server. This call must be made
every time an RPC is called.
If server("EXECUTING")
Redraw WindowName
Quit method
End If

EDA 441

442

; Set up message list and retrieve all waiting messages into it.
Set current list MSGLIST

Define list (MSGTYPE,MSGORIGIN,MSGCODE,MSGTEXT}
Server specific keyword { <ACCEPT>MSGLIST }

.. check sys(131) for errors

: Fetch all the rows in the result set into another list.
Set current list RESULT_LIST

Define list {NAME,FILLER1,CREATOR,FILLER2}
Build list from select table

.. check for errors

Redraw WindowName

<DATE_FORMAT >
The <DATE_FORMAT> keyword has the syntax:

<DATE_FORMAT> date_format_string

where date_format_string is an OMNIS Date format string

<TIME_FORMAT>
The <TIME_FORMAT> keyword has the syntax:

<TIME_FORMAT> time_format_string
where time_format_string is an OMNIS Time format string

<DATETIME_FORMAT >
The <DATETIME_FORMAT> keyword has the syntax:
<DATETIME_FORMAT> datetime_format_string

where datetime_format_string is an OMNIS Date/Time format string

Troubleshooting

The following points may help in resolving issues in programming OMNIS applications that
use the EDA/SQL middleware.

— Under MacOS, if theDALINK.CFG file does not exist in thereferencesfolder
inside theSystem Folderor if another application has this file open, sys(131) returns
Error -7, Fatal error: Error connecting to server

— SQL statements that you pass to the EDA DAM must conform to the dialect of SQL
that EDA/SQL supports; the DAM will not pass through native SQL to the target
databases

— Describe server table (Indexes) and Set batch size do nothing when using EDA

— syg131)returns the most recent EDA error code.

Chapter 15—Server-Specific Programming

Data Type Mapping

There is no EDA/SQL-to-OMNIS data type mapping, since you cannot create tables using
EDA/SQL. The following table describes the OMNIS to EDA/SQL mapping.

OMNIS Data Type Server Data Type
CHARACTER

Character/National <= 255 CHAR(N)
Character/National > 255 CHAR(255)[trunc]
DATE/TIME

Short date (all subtypes) CHAR(30)

Short time CHAR(30)

Date time (#FDT) CHAR(30)

NUMBER

Short integer (0 to 255) INTEGER

Long integer Unknown

Short number 0dp INTEGER

Short number 2dp DOUBLE PRECISION
Number floating dp DOUBLE PRECISION
Number Odp INTEGER

Number 2..14dp DOUBLE PRECISION
OTHER

Boolean CHAR(3)

Sequence INTEGER

Picture CHAR(255)[trunc]
Binary CHAR(255)[trunc]

List CHAR(255)[trunc]

Row Not supported

Object Not supported

Item reference Not supported

[trunc] types do not report a warning to OMNIS when the truncation occurs. EDA/SQL
INTEGER data is a 32-hit signed int on most platforms, while SMALLINT is a 16-bit
signed integer and DOUBLE PRECISION is a 64-bit float.

EDA 443

Chapter 16—SQL
Reserved Words

444

This chapter contains a list of SQL reserved words. The table shows whether the reserved
word is reserved in the ANSI-1989 or ANSI-1992 standards and whether it is reserved in
any of the supported direct DBMS versions of SQL, as well as in OMNIS SQL.

For maximum portability of your application between data managers, you should not use
any of the reserved words in this list as file class or variable names.

reseeaor foms | ooz | wx | O | CE | soL | ase
ABS X

ABSOLUTE X X
ACCESS X X

ACOS X

ACQUIRE X

ACTION X X

ADD X X X X X
ALL X X X X X X X
ALLOCATE X X

ALTER X X X X X
AND X X X X X X X
ANY X X X X X X
ARE X X
ARITH_OVERFLOW X

Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-

1989 1992 MIX CLE SQL ASE
AS X X X X X X X
ASC X X X X X X X
ASCII X
ASIN X
ASSERTION X X
AT X X X
ATAN X
ATAN2 X
AUDIT X X
AUTHORIZATION X X X X X
AVG X X X X X X
BEGIN X X X X
BETWEEN X X X X X X X
BIT X X
BIT_LENGTH X
BOTH X
BREAK X
BROWSE X
BUFFERPOOL X
BULK X
BY X X X X X X X
CALL X
CAPTURE X

Chapter 16—SQL Reserved Words 445

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

CASCADE X X

CASCADED

CASE X X X

CAST X X

CATALOG X

CCSID X

CHAR X X X X X X

CHAR_CONVERT X

CHAR_LENGTH X

CHARACTER X X X X X

CHARACTER_LENGTH X

CHARINDEX X

CHECK X X X X X X

CHECKPOINT X

CHILD X

CHR X

CLOSE X X X X

CLUSTER X X X

CLUSTERED X

COALESCE X

COBOL X X X

COLLATE X

446 Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE
COLLATION X
COLLECTION X
COLUMN X X X
COMMENT X X
COMMIT X X X X X
COMPRESS X X
COMPUTE X
CONCAT X
CONFIRM X
CONNECT X X X
CONNECTION X X
CONNECTIONS X
CONSTRAINT X X X
CONSTRAINTS X
CONTINUE X X X X
CONTROLROW X
CONVERT X X
CORRESPONDING X
cos X
COUNT X X X X X
CREATE X X X X X X X
CROSS X X
CURRENT X X X X X X X

Chapter 16—SQL Reserved Words 447

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

CURRENT_DATE X X

CURRENT_SERVER

CURRENT_TIME X X

CURRENT_TIMESTAMP X X

CURRENT_TIMEZONE X

CURRENT_USER X X

CURSOR X X X X X

DAT X

DATA-PGS X

DATABASE X X

DATE X X X X

DAY X X

DAYS X

DBA X

DBSPACE X

DBCC X

DEALLOCATE X X

DEC X X X

DECIMAL X X X X X

DECLARE X X X X

DEFAULT X X X X X X

DEFERRABLE X

448 Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

DEFERRED X

DELETE X X X X X X X

DESC X X X X X X X

DESCRIBE X

DESCRIPTOR X X

DIAGNOSTICS X

DIM X

DISCONNECT X

DISK X

DISTINCT X X X X X X X

DOMAIN X

DOUBLE X X X X X

DROP X X X X X

DTCY X

DTD X

DTM X

DTW X

DTY X

DUMMY X

DUMP X

EDITPROC X

ELSE X X X X

END X X X X

Chapter 16—SQL Reserved Words 449

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE
END-EXEC X X
ENDTRAN X
ERASE X
ERRLEVEL X
ERROREXIT X
ESCAPE X X X X X
EXCEPT X X X
EXCEPTION X X
EXCLUSIVE X X
EXEC X X X X
EXECUTE X X
EXISTS X X X X X X
EXIT X
EXP X
EXPLAIN X
EXTERNAL X X X
EXTRACT X
FALSE X X
FETCH X X X X X
FIELDPROC X
FILE X
FILLFACTOR X

450 Chapter 16—SQL Reserved Words

reseeaor foso | ooz | wx | O | CE | soL | ase
FIRST X

FLOAT X X X X

FLOAT_TYPE X

FOR X X X X X X
FOREIGN X X X X
FORTRAN X X X

FOUND X X X

FROM X X X X X X X
FULL X X

GET X

GLOBAL X

GO X X X X

GOTO X X X X X
GRANT X X X X X
GRAPHIC X

GROUP X X X X X X X
HAVING X X X X X X X
HOLDLOCK X
HOUR X X

HOURS X
IDENTIFIED X X
IDENTITY X X
IDENTITY_INSERT X

Chapter 16—SQL Reserved Words 451

Reserved Word ANSI- ANSI- INFOR- | OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

IF X

IMMEDIATE X

IN X X X X

INCREMENT

X | x| X[x
P

INDEX X

INDICATOR X X X X

INITCAP X

INITIAL X

INITIALLY X

INNER

X
X

INOUT X

INPUT

INSENSITIVE

INSERT X

INT

X
X

INTEGER X

INTERSECT

INTERVAL

INTO X

IS X

ISOLATION

JOIN

X| X| X[X| X[X]| X|X]| X|X]| X| X

X | x| x| XX
N

KEY X X

452 Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

KILL X

LABEL X

LANGUAGE X X X

LEADING X

LEFT X X

LENGTH X

LEVEL X

LIKE X X X X X X X

LINENO X

LIST X

LOAD X

LOCAL X

LOCK X X

LOCKSIIZE X

LOG X

LOG10 X

LONG X X X

LOWER X X

MATCH X

MAX X X X X X X

MAXEXTENTS X

MICROSECOND X

Chapter 16—SQL Reserved Words 453

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

MICROSECONDS X

MIN X X X X X X

MINUS X

MINUTE X X

MINUTES X

MIRROR X

MIRROREXIT X

MOD X

MODE X X

MODIFY X X

MODULE X X X

MONTH X X

MONTHS X

NAMED X

NAMES X

NATIONAL X X X

NATURAL X

NCHAR X X

NEW

NEXT X

NHEADER X

NO X

454 Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

NOAUDIT X

NOCOMPRESS X

NOHOLDLOCK X

NONCLUSTERED X

NOT X X X X X X X

NOWAIT X

NULL X X X X X X X

NULLIF X

NUMBER X X

NUMERIC X X X X

NUMERIC_TRUNCATION X

NUMPARTS X

OBID X

OCTET_LENGTH X

OF X X X X X X X

OFF X

OFFLINE X

OFFSETS X

ON X X X X X X X

ONCE X

ONLINE X

ONLY X X X

OPEN X X X X

Chapter 16—SQL Reserved Words 455

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

OPTIMIZE X

OPTION X X X X X X

OR X X X X X X X

ORDER X X X X X X X

ouT X

OUTER X X

OUTPUT X

OVER X

OVERLAPS X

PACKAGE X

PAD X

PAGE X

PAGES X

PARENT X

PART X

PARTIAL X

PASCAL X X X

PCTFREE X X

PCTINDEX X

PERM X

PERMANENT X

PICTURE X

PLAN X X

456 Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

PLI X X X

POSITION X

POWER X

PRECISION X X X X X

PREPARE X

PRESERVE X

PRIMARY X X X X X

PRINT

PRIOR X X

PRIVATE

PRIVILEGES X X X X X

PROC X

PROCEDURE X X X X X

PROCESSEXIT X

PROGRAM X

PUBLIC X X X X X X

RAISERROR X

RAW X

READ X X

READTEXT X

REAL X X X X

RECONFIGURE X

Chapter 16—SQL Reserved Words 457

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

REFERENCES X X X X

RELATIVE X

RELEASE X

RENAME X

REPLACE X

RESERVED_PAGES X

RESET X

RESOURCE X X

RESTRICT X

RETURN

REVOKE X X X

RIGHT X X

ROLE

ROLLBACK X X X X X

ROUND X

ROW X X

ROWCNT X

ROWCOUNT X

ROWID X

ROWLABEL X

ROWNUM X

ROWS X X X X

458 Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

RRN X

RULE X

RUN X

SAVE X

SCHEDULE X

SCHEMA X X X X X

SCROLL X

SECOND X X

SECONDS X

SECQTY X

SECTION X X X

SELECT X X X X X X X

SENSITIVE X

SEQUENCE_TYPE X

SESSION X X

SESSION_USER X

SET X X X X X X X

SETUSER X

SHARE X X

SHARED X

SHUTDOWN X

SIMPLE X

SIN X

Chapter 16—SQL Reserved Words 459

Reserved Word

ANSI-
1989

ANSI-
1992

INFOR-
MIX

OMNIS

ORA-
CLE

IBM
SQL

SYB-
ASE

SIZE

SMALLINT

SOME

SPACE

SQL

SQLCODE

SQLERRM

SQLERROR

SQLSTATE

X | X[X| X| X| X[X

SQRT

START

STATISTICS

STOGROUP

STOPOOL

STRING

STRIPE

SUBPAGES

SUBSTR

SUBSTRING

SUCCESSFUL

SUM

SYB_IDENTITY

460

Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

SYB_RESTREE X

SYNONYM X X

SYSDATE X

SYSTEM X

SYSTEM_USER X

TABLE X X X X X X X

TABLESPACE X

TAN X

TEMP X

TEMPORARY X X

TEXTSIZE X

THEN X X

TIME X X

TIMESTAMP X X

TIMEZONE_HOUR X

TIMEZONE_MINUTE X

TINYINT X

TO X X X X X X

TRAILING X

TRAN X

TRANSACTION X X X

TRANSLATE X

Chapter 16—SQL Reserved Words 461

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

TRANSLATION X

TRIGGER X X

TRIM X X

TRUE X

TRUNCATE X

TSEQUAL X

uID X

UNION X X X X X

UNIQUE X X X X X X X

UNKNOWN X

UPDATE X X X X X X X

UPPER X X

USAGE X

USED_PGS X

USER X X X X X X

USER_OPTION X

USING X X X

VALIDATE X

VALIDPROC X

VALUE X

VALUES X X X X X X X

VARBINARY X

VARCHAR X X X

462 Chapter 16—SQL Reserved Words

Reserved Word ANSI- ANSI- INFOR- OMNIS ORA- IBM SYB-
1989 1992 MIX CLE SQL ASE

VARCHAR?2 X

VARIABLE X

VARYING X X X

VCAT

VIEW X X X X X X

VOLUMES

WAITFOR X

WHEN X

WHENEVER X X X X

WHERE X X X X X X X

WHILE X

WITH X X X X X X X

WORK X X X X X

WRITE X

WRITETEXT X

YEAR X X

YEARS X

ZONE X

Chapter 16—SQL Reserved Words 463

Index

464

#BFORMS, 175
#DFORMS, 174
#EDITIONS, 265
#ERRCODE, 50, 237
#ERRTEXT, 50

#F, 29

#FD, 174

#FDT, 174

#FT, 174

#ICONS, 147, 166, 272
#MASKS, 176

#MU, 301
#NFORMS, 174
#STYLES, 167
#TFORMS, 171

$activate(), 99

$add(), 36, 80, 113, 152
$addafter(), 113
$addbefore(), 113
$align, 165
$allrowsfetched, 382
$alwaysprivate property, 102
$applyselected, 158
$assign(), 36
$assigncols(), 115
$assignrow(), 115
$attributes, 80
$autoactivate, 99
$average(), 114
$bobjs, 126

$class, 112

$clear(), 113, 114, 115
$clearallnodes(), 152
$close(), 36, 100
$cobj, 141

$colcount, 112
$collapse(), 150, 152
$cols, 113

$colsinset, 382
$columnwidths, 132
$compevents, 184
$compmethods, 185
$components, 183

$comprops, 185
$constprefix, 184
$construct(), 98, 379

In subwindows, 140
$container, 126
$controlhandler, 184
$controls, 184
$copydefinition(), 113
$count(), 115, 152
$createname(), 381
$createnames(), 388
$ctask, 101
$currentcontents, 120, 121
$currentnode(), 154
$currenttab, 127
$dataname, 114
$deactivate(), 99
$defaulttask, 97
$define(), 113
$definefromsqlclass(), 107, 113, 372, 374,

378
$delete(), 108, 380, 385
$destruct()

In subwindows, 140
$dodelete(), 380, 386
$dodeletes(), 123, 380, 386
$doinsert(), 380, 386
$doinserts(), 123, 380, 385, 386, 387
$doupdate(), 380, 387
$doupdates(), 124, 380, 386
$dowork(), 124, 380, 386
$edgefloat, 190
$edittext(), 137, 148
$errorcode, 120, 121
$errortext, 120, 121
$event(), 10
$excludefrominsert, 382
$excludefromupdate, 382
$exechelp(), 273
$expand(), 150, 152
$extraquerytext, 382
$fetch(), 108, 109, 379, 383
$filter(), 122
$filterlevel, 120

Index

Index

$filters, 123
$findnodeident(), 154
$findnodename(), 153
$first(), 80, 113, 154
$firstsel, 181
$flags, 184
$functionname, 184
$getedittext(), 137
$getnodelist(), 155
$group, 115
$helpfile, 272
$helpfoldername, 272
$ident, 115
$includelines(), 122
$insert(), 108, 380, 384
$insertnames(), 381, 389
$isa(), 78
$isfixed, 112
$isprivate property, 101
$itasks, 96
$iwindows, 30
$lastsel, 181
$libs, 30
$line, 112, 116
$linecount, 112, 120
$linemax, 112
$loadcols(), 115
$local

Using with tasks, 99
$makelist(), 38
$makesubclass(), 78
$max, 165
$maximum(), 115
$merge(), 114, 118
$min, 165
$minimum(), 115
$mouseevents, 181
$multipleselect, 182
$name, 114, 115, 184
$next(), 80, 113
$nextnode(), 154
$nodebug, 56
$nodebug property, 102
$nonull, 374
$objs, 126
$objsublen, 114
$objsubtype, 114
$objtype, 114
$oldcontents, 120

$open(), 35
$openonce(), 36
$pagesetup(), 158
$panes, 164
$pathname, 184
$prevnode(), 154
$primarykey, 373
$print(), 10
$redirect(), 162
$redraw(), 37, 51
$refilter(), 123
$remove(), 80, 113, 152

$removeduplicates(), 114, 118

$resume(), 100
$revertlistdeletes(), 122
$revertlistinserts(), 122
$revertlistupdates(), 122
$revertlistwork(), 122
$root, 30

$rownumber, 120
$rowpresent, 119, 120
$rowsaffected, 382
$rowsfetched, 382
$savelistdeletes(), 121
$savelistinserts(), 121
$savelistupdates(), 121
$savelistwork(), 122
$schemas, 372
$search(), 114, 117
$select(), 108, 379, 383

$selectdistinct(), 379, 383

$selected, 115, 117

$selectnames(), 381, 388

$sendall(), 38
$servertablename, 373
$servertablenames, 382
$sessionname, 382
$setcurrentnode(), 154
$setnodelist(), 155
$smartlist, 119

$sort(), 114, 118
$sortfields(), 158
$sqlclassname, 378, 381

$sglerror(), 108, 357, 381, 387

$startuptaskname, 97
$status, 119, 120
$statusbar, 164
$suspend(), 100
$tasks, 96

465

466

$tool, 161

$total(), 114
$undodeletes(), 380, 387
$undoinserts(), 380, 387
$undoupdates(), 381, 387
$undowork(), 381, 387
$unfilter(), 123

$update(), 108, 380, 384
$updatenames(), 381, 388
$usage, 184
$useprimarykeys, 381
$version, 186
$wherenames(), 381, 389
$windows, 30

$zoom(), 162

Accept advise requests command, 245
Accept commands command, 245
Accept field requests command, 245
Accept field values command, 245
Active task, 99
Add line to list command, 110
ANSI SQL
Close_statement, 318
Commit_statement, 318
Create_schema_statement, 318
Create_view_statement, 318
Declare_cursor, 318
Delete_statement_positioned, 318
Fetch_statement, 318
Grant_privilege, 319
Open_statement, 318
Apple events, 256
Commands, 256
Scripts, 260
Sending and receiving, 257
Terminology, 256
Applications protocols, 194
Audio
Inserting data, 426
Playing data, 425
Audio extenders, 422
autoarrange property, 146
Automation, OLE, 233
autosize property, 131

Begin reversible block command, 49
Begin SQL script command, 314, 356, 357
Binary files, 218

Bind Variables, 315, 357
Blobs, 403
<WRITEBLOB>, 403
boldheader property, 134
Branching Commands, 44
Break key, 46
Break to end of loop command, 47
Break/Cancel key
Disabling the, 299
Breakpoint command, 59, 62
Breakpoints, 59
Break on calculation, 60
Break on variable change, 60
Clear breakpoints, 60
Clear field breakpoints, 60
One-time breakpoint, 60
Browser
Creating an object class, 83
Making a subclass, 70
Viewing field styles system table, 167
Build list from file command, 110
Build list from select table command, 110,
253, 317, 360, 399, 404, 436
buttonbackground property, 146

Caching, 223
Calculate command, 39
calculation property, 134
Calculations
OMNIS operators, 40
Square bracket notation, 40
Type conversion in expressions, 41
Using constants, 42
Using the Calculate command, 39
Calculations in searches, 281
Calling methods, 43
Cancel button, 46
canresizeheader property, 134
Case command, 46
CGl requests, 208
CGIDecode command, 218
CGIDecoding, 218
CGIEncode command, 218, 219
CGIEncoding, 218
CGils, 210
definition, 195
GET requests, 210
maintaining lists of, 210
Character mapping, 369

Index

Index

Charmap.exe, 369
checked property, 152
Class variables, 106
Classes
Making a subclass, 69
Clear list command, 117, 317, 360
Clear method stack, 43
Clearing semaphores, 305
Client Data Mapping, 315
Client/Server, 221
Client/Server commands, 351
Close cursor command, 316
Close task command, 100
column_definition, 319
columnnames property, 131, 134
Columns
Describing columns, 362
Commands, 29
Commands, client/server, 351
Complex grids, 138
Events, 138
Exceptions to properties, 138
Component Store
Creating a data grid, 131
Creating a headed list box field, 135
Creating a modify report field, 157
Creating a page pane field, 128
Creating a screen report field, 162
Creating a string grid, 130
Creating a subwindow, 139
Creating a tab pane field, 126
Creating a tab strip field, 129
Creating a tree list, 149
Creating an icon array, 147
Creating task classes, 98
Showing superclasses in the Component
Store, 77
componenticon property, 72, 77
Components
Extending OMNIS, 226
con() function, 39
Connected files, 302
Connected records, 304
Connecting
Using methods, 351
Connections, 302
File connection schemes, 295
Link file, 296
Linking records, 296

Many-to-many relationships, 295
Setting connections, 293
connswidth property, 158
Constants, 42
Constants file, 300
Container fields, 126
Container fields and events, 21
Control methods and passing events, 18
createnames() function, 314
Cross platform fonts, 167
Current cursor, 316
Current objects, 33
Current task, 99
currentpage property, 128
currenttab property, 127
Cursors, 315, 359
Preparing cursors, 359
Custom methods, 80

DAMs, 329
Direct DAMs, 329
Middleware DAMs, 329
Setting up, 330
Data Access Modules, 329
Data dictionary, 362
Data entry
Editing records, 292
Enter data command, 290
Enter Data Mode, 289
Inserting records, 292
Modeless, 293
Data entry windows, 293
Data File Browser, 309
Data Files, 306
Maintaining, 310
Maintenance, 308
Multi-user data access, 297
Reorganization, 308
Shared data files, 312
Sharing data files, 297
Slots, 311
Structure, 307
Data Grids, 131
Data Manipulation Language, 274
Data Mapping, 315, 356
Data Type Mapping
DB2, 432
EDA, 443
Informix, 418

467

468

ODBC, 439
Oracle, 396
Sybase, 414
Data types
Mapping OMNIS to SQL, 359
Database
Printing an object list, 339, 343
Database version
Setting the, 352
Databases
Connecting using the SQL Browser, 329
Describing your database, 362
Datafile menu, 310
dataname property, 130, 134, 146
DB2, 330, 419
<BIND_SESSION>, 420
<DATETIME_FORMAT>, 420
<GET_DATASOURCES>, 420
<SETBLOBSIZE>, 420
<UNBIND_SESSION>, 420
<USESCHEMANAMES>, 420
Data type mapping, 432
Hostname, 354
Password, 354
Reserved words, 421
Server-specific programming, 419
Username, 354
DB2 commands, 432
DB2 extender wizards, 427
DB2 extenders, 421
Enabling, 422
SQL Browser support, 422
DDE, 241
Ack bits, 247
Creating a DDE link, 241
Events, 247
OMNIS as client, 241
OMNIS as server, 245
Printing reports to a DDE channel, 245
Programming, 248
System topic, 246
Using Word, 248
DDEExecute message, 243
Debug next event, 62
Debugger
Executing methods, 53
Execution errors, 54
Go point, 54
Private methods, 56

Stepping through methods, 55
Tracing methods, 55
Debugger commands, 62
Debugger options, 62
Debugging Methods, 52
Breakpoints, 59
Executing a method, 53
Inspecting variable values, 57
Method stack, 61
Using the method checker, 64
Watching variable values, 59
Declare cursor command, 316, 359
Default command, 46
Default task, 97
defaultheight property, 130
defaultnodeicon property, 150
defaultwidth property, 130, 134, 135
Define list command, 107
Define list from SQL class command, 108,
378
Delete client import file command, 361
Deleting data, 385
Describe database (Tables) command, 362
Describe database (Views) command, 363
Describe results command, 363
Describe server table (Columns) command,
362
Describe server table (Indexes) command,
364
Describing your database, 362
Design mode, 96
designcols property, 130, 134
designrows property, 130
Direct DAMs, 329
Disable cancel test at loops command, 299
Disable debugger at errors, 62
Disable debugger method commands, 62
Disable receiving of Apple events command,
257
Disabling the Break/Cancel key, 299
Discard event option, 15
ditherbackground property, 129
dividers property, 138
DML
Search classes, 278
DML, 274
Data entry windows, 293
Editing Records, 292
Enter Data Command, 290

Index

Index

Enter data mode, 289
Inserting Records, 292
Modeless data entry, 293
Prepare for Update Mode, 290
Setting connections, 293
DNS, 213
DNS commands, 196
Do code method command, 12, 43, 100
Do command, 35
Do default command, 38, 80
Do inherited command, 38, 79
Do method command, 12, 43, 80
Do not cancel pfu option, 303
Do redirect command, 39, 80, 142
Do script commands, 260
DOS Share configuration, 298
Drag and drop, 179
OLE, 232
Using drag and drop, 181
Drag and drop events, 180
dragiconid property, 179
dragmode property, 179
dragrange property, 179
dropmode property, 179
Dynamic Data Exchange, 241

EDA, 331, 440
<ACCEPT>, 441
<DATE_FORMAT>, 442
<DATETIME_FORMAT>, 442
<LONGRPC>, 441
<RPC>, 440
<TIME_FORMAT>, 442
Data type mapping, 443
Hostname, 355
Password, 355
Server-specifc keywords, 440
Server-specific programming, 440
Troubleshooting, 442
Username, 355

edgefloat property, 158

Edit menu
Creating a DDE link, 241
Publish and subscribe, 265

Else command, 44

Else if command, 44

E-mail
connections, 221
Headers, 200

Receiving, 199
Sending, 198
Status, 199
E-mail commands, 196, 198-200
Enable cancel test at loops command, 47
Enable receiving of Apple events command,
257
enabledeletekey property, 146
enableheader property, 134
Enabling DB2 extenders, 422
End If command, 44
End of loop test, 46
End reversible block command, 49
End SQL script command, 314, 356
Enter data command, 140, 225, 245
Event processing, 20
Enter data mode, 189, 289
enterable property, 151
Error handlers, 50
Error handling, 219, 368
Errors
sys() functions, 368
Escaping from loops, 46
evAfter, 12, 23
evBefore, 12, 23
evCancel, 24
evCanDrop, 25, 180
evCellChanged, 25
evCellChanging, 25
evClick, 10, 23
evClose, 16, 23
evCloseBox, 16, 23
evCustomMenu, 23
evDisabled, 27
evDoubleClick, 23
evDrag, 25, 180
evDrop, 25, 180
evEnabled, 27
Event handling methods, 9
Discarding events, 15
On command, 12
Quit event handler command, 15
Event messages, 9
Event parameters, 9
Event processing
Enter data mode, 20
Event queue, 22
Events
Field, 23

469

470

Field status, 27
Grid, 25
Headed list box, 26
Icon array, 27
Key, 27
Mouse, 24
Scroll bar, 24
String and data grids, 25
Tab panes and tab strips, 25
Tree lists, 26
Window, 23
Events and messages, 9
Container fields and events, 21
Control methods and passing events, 18
Event handling methods, 10
Queuing events, 22
Types of events, 23
Window events, 16
Events, discarding, 15
Events, queuing, 22
Events, types of, 23
Events, window, 16
evExtend, 25, 138
evHeadedListEditFinished, 26, 137
evHeadedListEditFinishing, 26, 136
evHeadedListEditStarting, 26, 136
evHeaderClick, 26
evHidden, 27
evHScrolled, 24
evilconDeleteFinished, 27, 148
eviconDeleteStarting, 27, 148
evlconEditFinished, 27, 148
evilconEditFinishing, 27, 148
evilconEditStarting, 27, 148
evKey, 27
evMaximized, 23
evMinimized, 23
evMouseDouble, 24
evMouseDown, 24
evMouseEnter, 24
evMouseleave, 24
evMouseUp, 24
evMoved, 24
evOK, 24
evOpenContextMenu, 23
evResized, 24
evRestored, 24
evRMouseDouble, 24
evRMouseDown, 24

evRMouseUp, 24
evRowChange, 25
evRowChanged, 138
evScrollTip, 25
evSelectionChanged, 158
evSent, 23, 267
evShiftTab, 27
evShown, 27
evStandardMenu, 24
evTab, 27
evTabSelected, 25, 127
evToTop, 24
evTreeCollapse, 26, 153
evTreeExpand, 26, 153
evTreeExpandCollapseFinished, 26
evTreeNodelconClicked, 26, 153
evTreeNodeNameChanging, 153
evTreeNodeNameFinished, 26
evTreeNodeNameFinishing, 26
evVScrolled, 24
evWillDrop, 25, 180
evWindowClick, 24
Exceptions

Grid properties, 138
Execute SQL script command, 314, 356
expandcollapseicon property, 150
extendable property, 138
extendable property, 130
Extender Data Manager wizard, 427
Extenders, DB2, 421
Extending OMNIS, 226
External components

Events, 184

Functions, 185

Java beans, 187

Notation, 183

Properties, 185

Version notation, 186
External Objects, 89

Events, 92

Fetch current row command, 317
Fetch first row command, 317
Fetch next row, 109
Fetch next row command, 316
Fetching data, 383
Field events, 23
Field styles, 167

Applying a style, 170

Index

Index

Defining styles, 168
Fields
Status events, 27
fieldstyle property, 167
File classes, 274
Creating a data file, 277
Indexes and key field values, 274
Modify menu, 276
Modifying, 277
File locking, 299
Find tables, 283
first property, 152
fixedcol property, 130
fixedrow property, 130
Flag, 29
Flow control commands, 44
Fonts, 167
For each line in list command, 46
For field value command, 45
For Loops, 45
Format strings, 171
Boolean, 175
Character, 171
Date, 174
Number, 173
formatmode property, 171
formatstring property, 171
FTP
changing permissions on server, 203
connections, 221
Working with, 201
FTP commands, 196
Services file entry, 203
FTP servers
displaying directories on, 203
state allocation, 195
FTPChmod command, 203
FTPConnect command, 201
FTPCwd command, 202
FTPDisconnect command, 202
FTPGet command, 202
FTPGetBinary command, 202
FTPGetLastStatus command, 201
FTPList command, 201, 203
parsing and, 203
FTPPwd command, 201
FTPType command, 202
Functions

Name, and database independence, 314

GET requests, 210
Get SQL script command, 314, 358
Global data, 300
Go Point, 54
Grid exceptions, 138
gridcols property, 130
gridcolumn property, 137
gridhcell property, 130
gridrows property, 130
Grids
Complex grids, 138
Data, 131
Programming, 131
String, 130
gridsection property, 137
gridvcell property, 130

hasalign property, 168
hasfontname property, 168
hasfontsize property, 168
hasfontstyle property, 168
hasstatusbar property, 163
hastextcolor property, 168
Headed list box events, 26
Headed list boxes, 134
Headed List Boxes, programming of, 136
Help

$exechelp() method, 273

Bookmarks, 272

Context help, 269

Creating a contents tree, 270

Creating a project file, 271

Creating help, 269

Creating help pages, 269

Enabling in your application, 272
helpbutton property, 269
helppane property, 164
hiliteline property, 146
HTML, 195, 210
HTTP, 195

headers, 2034

server listening port, 195
HTTP servers, 217

response headers, 224

Working with, 203
HTTP World Wide Web commands, 196
HTTPClose command, 209
HTTPPage command

471

472

proxy servers and, 206
HTTPParse command, 210
HTTPPost command, 209
HTTPRead command, 209
HTTPServer command, 210
HWND Notation, 187
Hypertext Transport Protocol. See HTTP

Icon array events, 27
Icon arrays, 146
Icon arrays, programming of, 147
iconid property, 127, 151
ident property, 151
If canceled command, 47
If command, 44
Image
Inserting data, 426
Showing data, 425
Image extenders, 421
imagenoroom property, 127
Index caching, 299
Indexes
Describing, 364
Indexes and searches, 287
Indirection
Using Square bracket notation, 41
INFORMIX, 330, 416
Data type mapping, 418
Hostname, 353
Password, 353
Server information, 416
server() function, 416
Server-specific programming, 416
Stored procedures, 416
Troubleshooting, 417
Username, 353
Inheritance, 69
Overloading and overriding, 73

Showing superclasses in Component Store,

77
Inheritance notation, 78
Calling properties and methods, 78
Do inherited command, 79
Inherited fields and objects, 79
Referencing variables, 79
Inheritance tree, 76
inheritedcolor property, 70
inheritedorder property, 72
Input masks, 171, 176

Control characters, 177
Placeholders, 177

inputmask property, 171, 176

Insert Data option, 426

Insert line in list command, 182

Inserting data, 384

insertnames() function, 314

Instance variables, 106
Instances

Private instances, 101
Interactive SQL, 345
Interface Manager, 93
Internet

Commands, 196

Programming tips, 219
Internet protocols, 193
IP addresses, 213
isexpanded property, 152
isprogress property, 165

issupercomponent property, 72, 77

Item references, 32
Java beans, 187

kAcceptAll, 179
kAcceptButton, 179
kAcceptComboBox, 179
kAcceptDroplists, 179
kAcceptEdit, 179
kAcceptGrid, 179
kAcceptList, 179
kAcceptNone, 179
kAcceptPicture, 179
kAcceptPopMenu, 179
kAcceptSystem, 179
kAllplatforms, 168
kComponent, 185
kDragData, 179
kDragDuplicate, 179
kDragObiject, 179
kerrSuperclass, 78
Keywords, 444
kFetchError, 383
kFetchFinished, 383
kFetchOk, 383
klconOnLeft, 150
klconOnNode, 150
klconSystemSet, 150

KNodelconFixed normal, 150

Index

Index

kNodelconLinkExpand, 150
kRangeAll, 179
kRangeSubwindow, 179
kRangeTask, 179
kRangeWindow, 179

left property, 137
level property, 152
Libraries
Private libraries, 102
List columns
Properties and methods, 114
List commands and smart lists, 124
List data type, 105
List rows
Properties and methods, 115
List variables, 378
list() function, 111
Lists
Accessing columns and rows, 111
Building from OMNIS Data, 110
Building from SQL Data, 109
Building list variables, 109
Clearing list data, 117
Declaring list variables, 106
Declaring row variables, 106
Defined from a file class, 109
Defined from a query class, 107
Defined from a schema class, 107
Defining list variables, 107
Defining row variables, 107
Dynamic redefinition, 116
List and row functions, 111
Manipulating lists, 116
Merging lists, 118
Programming, 105
Properties and methods, 112
Properties of a list cell, 115
Removing duplicate values, 118
Searching lists, 117
Selecting list lines, 117
Smart lists, 119
Sorting lists, 118
Variable notation, 112
Viewing List Values, 110
Load error handler command, 50
Load from list command, 111, 191
Local variables, 106
Logging on and off, 355

Logoff from host command, 355
Logon to host command, 355
Lookup windows, 190
Loops, escaping from, 46
Lotus Notes, 250
Commands, 251
Creating and deleting notes, 254
Data dictionary type information, 255
Data types, 250
Error handling, 254
Mail, 255
Mapping fields, 252
RTF fields, 255
Server access command, 252
Views and searching, 253
Ist() function, 111

MacTCP, 194
Main file, 308
Make schema from server table command,
364, 374
maxeditchars property, 134, 146
Merge list command, 118
Message boxes, 51
Message timeout command, 245
Method Checker, 64
Fatal errors, 66
Level 1 warnings, 67
Level 2 warnings, 67
Method Editor
Declaring list or row variables, 106
Event handling methods, 10
Method stack, 61
Methods
Custom methods, 80
Debugging, 52
dragging from the Interface Manager, 95
Event handling, 10
Executing using the Do command, 34
Field methods, 10
Inheriting methods, 73
Interface Manager, 93
Line methods, 10
Overriding inherited methods, 74
Programming, 28
Tool methods, 10
Using search calculations, 285
Using search classes, 282
Using the method checker, 64

473

474

Window control, 18
mid() function, 181
Middleware DAMs, 329
MIME, 195
Modify report fields, 157

Applying changes to selected objects, 158

Font and color tools, 160
Graphics tools, 161
Mouse events, 24
mouseover() function, 181
Multimedia Player, 430
Multimedia wizard, 430
MultipleSelect property, 117
multirow property, 127
Multi-user
#MU, 301, 305
Connected files, 302
Record locking, 298
Redrawing the screen, 300
Semaphores, 298, 305
Unique index check, 303

Name Functions, 314
name property, 151
Netscape Navigator, 195
No/Yes message, 51
nobackground property, 140
nodeiconpos property, 150
nodeparent property, 151
Nodes

Tree lists, 151
Notation, 28

Current objects, 33

External components, 183

Inheritance, 78

Item references, 32

List variables, 112

Object tree, 30

Square bracket, in SQL, 315
Notation Inspector, 30
NSF Add Fields command, 251
NSF Attach file command, 251

NSF Build View command, 251, 253
NSF Close all files command, 251

NSF Close file command, 251
NSF Copy Note command, 251
NSF Delete Note command, 251

NSF Describe fields on form command, 251
NSF Find Forms command, 251, 255

NSF Get Info command, 251

NSF List fields on form command, 255
NSF List Open NSF Files command, 251
NSF Mail note command, 251

NSF Make Note command, 251

NSF Make server path command, 251
NSF Map fields command, 251

NSF Open file command, 251, 252

NSF Select command, 251

NSF Set Error Field command, 251

NSF Unpack file command, 251

NSF Where's my mail? command, 251
NSF Who am | command, 251

NSF Write composite command, 250, 251

Object classes, 83
Creating an object class, 83
Object linking and embedding, 227
Object menu, 341
Object orientation, 69
Custom properties and methods, 80
Inheritance, 69
Object classes, 83
ODBC, 330, 434
<RPC>, 436
<RPCPROCS>, 436
<RPCSUPPORT>, 437
<TYPEB_OFF>, 435
<TYPEB_ON>, 435
Data type mapping, 439
Hostname, 354
Multiple cursors, 435
Password, 354
Remote procedure calls, 436
Server information, 437
server() function, 437
Server-specific Programming, 434
Troubleshooting, 438
Username, 354
OK message, 51
OLE, 227
Drag and drop, 232
Edit menu verbs, 231
In place activation, 231
OLE Automation, 233
Built-in methods, 234
Coercing Data Types, 236
Errors, 237
Examples, 238

Index

Index

Variable type conversion, 234
OLE pictures, 227
Inserting them, 227
Linking objects, 230
Placing them, 227
OMNIS
Object orientation, 69
OMNIS DAM, 313
OMNIS Data Files, 274, 306
OMNIS DML
File classes, 274
OMNIS SQL
ALTER TABLE, 320
CREATE INDEX, 320
DELETE, 328
DROP INDEX, 321
DROP TABLE, 320
FROM clause, 325
GROUP BY clause, 326
INSERT, 327
ORDER BY Clause, 327
SELECT, 321
UPDATE, 327
Value Expression, 322
WHERE clause, 325
OMNIS SQL, 313
Aggregate functions, 322
Column and table references, 322
Connecting to the database, 313
CREATE TABLE, 319
Function Reference, 322
Language definition, 318
Scalar functions, 322
Sending SQL to the database, 313
SQL Scripts and the SQL Buffer, 314
OMNIS SQL statement, 318
OMNISPIC.df1, 147, 272
On command, 11, 12, 16, 53
On default command, 13
Open client import file command, 361
Open cursor command, 316, 359, 360
Open DDE channel command, 241
Open library command
Do not open startup, 98
Open task instance command, 98
Open trace log command, 56
Open trace log, Debugger, 62
Open Transport, 194
Operator precedence, 40

Optimizing methods, 48

Optimizing Program Flow, 48

Options, 350

ORACLE, 330, 391
<DESCRIBETABLES>, 391
<NULLASEMPTY>, 391
<TRAILINGSPACES>, 392
Data type mapping, 396
Hosthame, 354
Password, 354
PL/SQL, 393
Server information, 394
server() function, 394
Server-specific programming, 391
Troubleshooting, 395
Updating and deleting rows, 392
Username, 354

overlap property, 129

Overloading properties, methods, and
variables, 73

Packets, 222

Padlock icon, 298

Page Panes, 128

pagecount property, 128

panecount property, 164

Pass to next handler option, 15, 18

pCellData, 132

pDragField, 180

pDragType, 180

pDragValue, 180

pDropField, 180

Perform SQL command, 313, 356, 357

pEventCode, 9

pHorzCell, 132

Pictures, 192

PL/SQL, 393

pLineNumber, 148

pNewText, 148, 153

pNodeltem, 153

POP3Stat command
troubleshooting, 200

Prepare current cursor command, 360

Private instances, 101

Private libraries, 102

Privileges, 343

Process event and continue command, 20

Programming and manipulating lists
Accessing list columns and rows, 111

475

476

Building list variables, 109
List and row functions, 111
Programming Methods, 28
Calculate command, 39
Calling methods, 43
Commands, 29
Do command, 34
Error handling, 50
Flow control commands, 44
Message boxes, 51
Notation, 30
Quitting methods, 43
Redrawing objects, 51
Reversible blocks, 49
Progress Bars, 165
Prompt for input, 51
Prompted find command, 245
Properties
dragging from the Interface Manager, 95
History lists, 120
Inheriting properties, 72
List cells, 115
Overloading inherited properties, 73
Protocols, 193
Proxy servers, 206
pTabNumber, 127
Publish and Subscribe, 265
Commands, 267
Reports, 269
pVertCell, 132

Queries
caching and, 222
Query classes, 372, 374
Calculated columns, 375
Notation, 376
Queue commands, 22
Quit all if canceled, 43
Quit all methods, 43
Quit command, 43
Quit cursor(s) command, 355
Quit event handler command, 15, 18
Quit method, 43
Quit method command, 16
Quit Omnis, 43
Quit Session { All } command, 355
Quit Session { Current } command, 355
Quit to enter data, 43
Quitting methods, 43

ReadBinFile command, 219
Read-only files, 300
Record locking, 298
Record Sequence Number (RSN), 275
Redefine list command, 109
Redraw command, 51
Redrawing objects, 51
Redrawing the screen, 300
Remote Procedure Calls
ODBC, 436
SQL Server, 406
Reorganizing data files, 308
Repeat command, 317
Repeat Loop, 45
Reports
Modify report fields, 157
Printing to a DDE channel, 245
Screen report fields, 162
Request field command, 241, 244
Reserved keywords, SQL, 444
Reset cursor command, 357, 369
Retrieve rows to file command, 317, 361
Reversible blocks, 49
Row data type, 105
Row variables, 378
row() function, 111
Runtime mode, 96

Save debugger options, 62
Schema classes, 372
Notation, 372
Screen report fields, 162
Scripts
Editing the SQL script, 358
Scripts, SQL, 356
Scroll events, 24
SEA commands, 50
Search classes, 278
Boolean values, 280
Calculations, 281
Creating a search line, 279
Dates and times, 280
Find tables, 283
Indexes and searches, 287
Multi-line search logic, 286
Numeric fields, 280
Optimization, 287
Selecting and using, 282

Index

Index

Using in methods, 282
Using multiple lines, 281
Search list command, 114, 117
Search logic, 286
Search optimization, 287
Calculations, 288
Choosing indexes, 288
Compound and case-insensitive indexes,
289
Searching lists, 117
seedid property, 151
Select statement, 383
Select table
Describing, 363
Select tables, 359
selectedtabcolor property, 129
selectedtabtextcolor property, 129
selectnames() function, 314
Semaphores, 298
Clearing, 305
Deadly embrace, 305
Send advises nhow command, 245
Send command command, 241
Send Core event command, 256
Send Database event command, 256
Send field command, 242
Send Finder event command, 256
Send to a window field command, 162
Send to DDE channel command, 245
Send to trace log command, 14, 62
Send value to trace log command, 62
Send Word Services event command, 256
Server
Sending SQL to, 356
Server specific keyword command, 391, 398,
419, 434, 440
Server specific programming, 391
Server status, 368
Server tables
Creating from schema and query classes,
377
server() function, 394, 410, 416, 437
Servers
setting time on, 224
troubleshooting, 224
Services file, 203, 224
Session Template, 335
Sessions
Closing a session, 338

Creating a session, 337

Creating in the SQL Browser, 333

Deleting a session, 337

Duplicating sessions, 337

Modifying a session, 335

Multiple, 366

Opening a session, 338

Session information, 338

Starting a session, 351
Set advise options command, 245
Set batch size command, 361
Set current cursor command, 316, 360
Set current session command, 351
Set database version command, 352
Set error field command, 254
Set event recipient command, 257
Set hostname command, 313, 355
Set palette when drawing command, 192
Set password command, 355
Set read only files command, 300
Set reference command, 32
Set search as calculation command, 285
Set server mode command, 241, 245
Set session command, 366
Set SQL script, 314
Set timer method command, 192
Set transaction mode command, 365
Set username command, 355
SHARE command, 298
Shared data files, 312
Sharing data files

On mixed networks, 297
Show Data option, 425
showallconns property, 158
showcolumnlines property, 134
showcurconns property, 158
showedge property, 129
showexpandcollapsealways property, 151
showfocus property, 127
showhorzlines property, 150
showimages property, 127
shownarrowsections property, 158
shownodeicons property, 150
showpaper property, 158, 162
showrulers property, 158
showtext property, 146
showvertlines property, 150
Signal error command, 50
sizing property, 164

477

478

Slot menu, 311
Slots, 311
smallicons property, 146
smalltextwidth property, 146
Smart lists, 119
Change tracking methods, 121
Committing changes to the server, 123
Enabling smart lists, 119
Filtering, 122
History list, 119
List commands, 124
Properties of history lists, 120
Properties of rows in history lists, 120
Tracking changes, 121
Sockets
blocking and non-blocking, 222
closing, 219
definition, 194, 221
numbering, 217
Programming, 211
Sort list command, 118
Splash Screens, 192
SQL
Interactive SQL, 345
OMNIS SQL, 313
Sending to server, 356
Using square bracket notation, 357
SQL Browser, 329
DB2 Extenders, 422
Sessions, 333
SQL buffer
Scripts, 356
SQL classes
Notation, 372
SQL cursors, 316
SQL errors, 357, 387
SQL History, 349
SQL Objects, 340
SQL reserved keywords, 444
SQL script command, 356
SQL separators, 355
SQL Server
Error handling, 401
Remote procedure calls, 406
SQL:command, 314
sqglclassname property, 108
Square bracket notation, 40
Using SQL, 357
Start session command, 352, 355

Startup task, 97

Stop it running, 98

Startup_Task class, 97
Status bars, 163

statusedge property, 163
Stored Query Manager, 347
String Grids, 130
styleplatform preference, 170
Subclasses

Making a subclass, 69

Subwindows, 139

$construct() and $destruct() methods, 140
Creating a subwindow, 139

Drag and Drop, 141

Examples, 142

Nesting, 142

Programming subwindows, 141

subwindowstyle property, 140
superclass property, 72
Switch command, 46

Sybase, 330, 398

<CALLERRORHANDLER>, 398
<CALLMESSAGEHANDLER>, 398
<DBCANCEL>, 398
<DBCANQUERY>, 398

<RPC>, 398, 407
<RPCPASSWORD>, 398, 409
<RPCRESULTS>, 399, 409
<SETENCRYPT_OFF>, 399
<SETENCRYPT_ON>, 399
<SETERRORHANDLER>, 399
<SETMESSAGEHANDLER>, 399
<SETPROGRAMNAME>, 399, 400, 411
<SETTIMEOUT>, 399, 403, 411
<SKIPEMPTYSETS>, 399, 401, 411
<SQLERROR>, 399
<SQLMESSAGE>, 399
<WRITEBLOB>, 399, 403

Blobs, 403

Data type mapping, 414
Hostname, 354

Multiple select tables, 399
Password, 354

RPCs, 406

Server information, 410

server() function, 410
Server-specific Programming, 398

Troubleshooting, 411

Username, 354

Index

Index

sys(85) function, 14
sys(86) function, 14

Tab Panes, 126
Tab Strips, 129
tabcaption property, 127
tabcolor property, 129
tabcount property, 127
Table classes, 372, 378
Notation, 378
Table instances, 378
Methods, 383
Notation, 379
tableftmargin property, 129
Tables
Copying tables between sessions, 340
Describing tables, 362
Tables, select, 315
taborient property, 127
tabs property, 129
tabstyle property, 127
tabtextcolor property, 129
tabtooltip property, 127
Task classes, 96
$control(), 19
Active task, 99
Closing tasks, 100
Creating tasks, 98
Current task, 99
Default and startup, 97
Design task, 101
Multiple tasks, 102
Opening tasks, 98
Private instances, 101
Private libraries, 102
Task variables, 100
Task context switch, 99
Task variables, 106
TCP client E-mail, 215
TCP commands, 196
TCP HTML retrieval, 214
TCP programming, 211
TCP/IP
definition, 193
packets, 222
TCP/IP commands, 211
TCPBlock command, 220
TCPName2Addr command, 214
textcolor property, 151

Timer Methods, 192
top property, 137
Trace all methods, 62
trace log, 55
Trace off command, 62
Trace on command, 62
Transaction modes, 365
Transactions, 365
Tree list methods, 152
Tree lists, 149
Creating, 149
Entering default lines, 150
Node properties, 151
Populating, 150
Programming, 152
treedefaultlines property, 150
treeindentlevel property, 149
treeleftmargin property, 149
treelinehtextra property, 149

treenodeiconmode property, 150

Troubleshooting, 224

Windows Services file, 200, 224
Type conversion in expressions, 41

Unique index check, 303
Unique locks, 298
Unix FTP servers, 203
Until break command, 47
Until command, 317
Update files command, 303
updatenames() function, 315
Updating data, 384
URLs
caching, 223
definition, 195
Use search option, 118
User administration, 349
User views, 364
USERPIC.df1, 147, 272
Using Tasks, 96
Closing tasks, 100
Creating task classes, 98
Current and active tasks, 99
Default and startup tasks, 97
Multiple tasks, 102
Opening tasks, 98
Private instances, 101
Private libraries, 102
Task variables, 100

479

480

Utility commands, 197
UUDecode command, 218
UUDecoding, 217

UUEncode command, 218, 219
UUEncoding, 217

Values List, 58

Variable context menu, 57

Variable menu command, 63

Variables
Bind variables, 357
Building, in lists, 109
Declaring, in lists, 106
Defining, in lists, 107
Item references, 32
Overriding inherited variables, 75
Watched, 59

Variables, Bind, 315

Video
Inserting data, 426
Playing data, 425

Video extenders, 422

Views
Describing views, 363

Watched variables, 59
wherenames() function, 315
While command, 45, 317
While Loop, 45

Window classes

Advanced field types, 125
Complex grids, 138
Container fields, 126
Drag and drop, 179

Field styles, 167

Headed list boxes, 134
Icon arrays, 146

Lookup windows, 190
Modify report fields, 157
Status bars, 163

String and data grids, 130
Subwindows, 139

Tab panes, page panes, and tab strips, 126

Timer methods and splash screens, 192

Tree lists, 149
Window events, 23
Window fields

Format strings, 171

Input masks, 176
Window Programming, 125
Window status bars, 163
Working message, 51
World Wide Web

definition, 195
WriteBinFile command, 219

XCOMP folder, 183

Yes/No message, 51

Index

OMNIS
Programming

How to use this manual

The on-line documentation is designed to make the task of identifying and accessing
information about OMNIS Studio as easy and intuitive as possible.

You can navigate this document, or find topics, in a number of different ways.

Bookmarks

=E Bookmarks mark each topic in a document. To view the bookmarks in this
document, click on the Bookmark icon on the Acrobat toolbar or select the
View>>Bookmarks and Pagemenu item.

1=

Click on an arrow icoll* to open or close a topic, and click on a topic name or double-click a
page icorl] to move directly to a topic.

Thumbnails

EEE Thumbnails are small images of each page in the document. To view the
Thumbnails in this document click on the Thumbnails button on the Acrobat
toolbar, or select theiew>>Thumbnails and Pagemenu item.

You can click on a thumbnail to jump to that page. Also you can adjust the view of the current
page by moving and/or sizing the gray page-view box shown on the current thumbnail.

Links

Links in this document connect related information or take you to a specific location in the
document. Links are indicated wittue italictext. To jump to a related topic, move the pointer
over a linked area (the pointer changes to a pointing finger) and simply click your mouse. Try
it!

Py To return to your last view or
location, click on thé&o back
button on the Acrobat toolbar.

Browsing

You can use the Browse buttons on the Acrobat toolbar to
4] 4 » | p1 44| pp move back and forth through the document on a page by
page basis. You can also click on ée Backto return to
your last view or location.

Find

You can find a text string using tA@ols>>Find menu item. To find the next occurrence of the
text you can use thEools>>Find Again option. If you reach the end of the document, you can
use the Ctrl-Home key to go to the beginning and continue your find.

Search

If you have the Acrobat Search plug-in (available undel tas>>Searchmenu in some

versions of Acrobat Exchange and Reader), you can use the Studio Index to perform full-text
searches of the entire OMNIS Studio on-line documentation set. Searching the Studio Index is
much faster than using tkénd command, which reads every word on every page in the current
document only.

To Search the Studio Index, sel@dbls>>Search>>Indexego locate

the Studio Index (Studio.pdx) on the OMNIS CD. Next, select ﬁlﬁll}l
Tools>>Search>>Queryto define your search text: you can use Word
Stemming, Match Case, Sounds Like, wildcards, and so on (refer to the

Acrobat Search.pdf file for details about specifying a query). In the Search Results window,
double-click on a document name (the first one probably contains the most references). Acrobat
opens the document and highlights the text. To go to the next or previous occurrence of the
text, use the Search Next or Search Previous button on the Acrobat toolbar.

Grabbing Text from the Screen

You can cut and paste text from this document into the clipboard using the

— Text tool. For example, you could copy a code segment and paste it into the
OMNIS method editor.

Getting Help

For more information about using Acrobat Reader see the PDF documents installed with the
Reader files, or select titelp menu on the main Reader menu bar.

	OMNIS PROGRAMMING
	About This Manual
	Chapter 1--Events and Messages
	Event Handling Methods
	The On Command
	The Quit event handler Command
	Discarding Events

	Window Events
	Control Methods and Passing Events
	Event Processing and Enter Data Mode

	Container Fields and Events
	Queuing Events
	Types of Events
	Field Events
	Window Events
	Scroll Events
	Mouse Events
	Complex Grid Events
	String and Data Grid Events
	Tab Pane and Tab Strip Events
	Tree List Events
	Headed List Box Events
	Icon Array Events
	Key Events
	Field Status Events

	Chapter 2--Methods and Notation
	Commands
	The Flag

	Notation
	Item References
	Current Objects

	Do Command and Executing Methods
	Do command
	$open() method
	$assign() method
	$add() method
	$redraw() method
	$sendall() method
	$makelist() method

	Do inherited
	Do default
	Do redirect

	Calculate Command and Evaluating Expressions
	Square Bracket Notation
	Type Conversion in Expressions
	Constants

	Calling Methods
	Quitting Methods
	Flow Control Commands
	Branching Commands
	While Loops
	Repeat Loops
	For Loops
	Switch/Case Statements
	Escaping from Loops
	Optimizing Program Flow

	Reversible Blocks
	Error Handling
	Redrawing Objects
	Message Boxes

	Chapter 3--Debugging Methods
	Executing a Method
	The Go Point
	Execution Errors
	Stepping through a Method
	Tracing a Method
	Private Methods

	Inspecting Variable Values
	The Values List

	Watching Variable Values
	Breakpoints
	Breaking on Variable Change
	Breaking on Calculation

	The Method Stack
	Debugger Options
	Debugger Commands
	Checking Methods
	Interpreting Errors and Warnings

	Chapter 4--Object Oriented Programming
	Inheritance
	Making a Subclass
	Overloading Properties, Methods, and Variables
	Inheritance Tree
	Showing Superclasses in the Component Store
	Inheritance Notation

	Custom Properties and Methods
	Using Custom Methods

	Object Classes
	Using Object Classes
	Dynamic Object Instances
	Self-contained Object Instances

	External Objects
	Using External Objects
	External Object Events

	Interface Manager
	Dragging methods from the Interface Manager

	Chapter 5--Using Tasks
	Default and Startup Tasks
	Creating Task Classes
	Opening Tasks
	Current and Active Tasks
	The Active Task
	The Current Task

	Closing Tasks
	Task Variables
	The Design Task

	Private Instances
	Private Libraries
	Multiple Tasks

	Chapter 6--List Programming
	Declaring List or Row Variables
	Defining List or Row Variables
	Lists from Variables
	Lists from Schema or Query Classes
	Lists from a File Class

	Building List Variables
	Building a List from SQL Data
	Building a List from OMNIS Data
	Viewing the contents of a list variable

	List and Row functions
	The list() Function
	The row() Function

	Accessing List Columns and Rows
	List Variable Notation
	List Properties and Methods
	Properties and Methods of a List Column
	Properties and Methods of a List Row
	Properties of a List Cell

	Manipulating Lists
	Dynamic List Redefinition
	Clearing List Data
	Searching Lists
	Selecting List Lines
	Merging Lists
	Sorting Lists
	Removing Duplicate Values

	Smart Lists
	Enabling Smart List Behavior
	The History List
	Properties of the History List
	Properties of Rows in the History List
	Tracking the Changes
	Change Tracking Methods
	Filtering
	Committing Changes to the Server
	List Commands and Smart Lists

	Chapter 7--Window Programming
	Container Fields
	Tab Panes, Page Panes, and Tab Strips
	Tab Panes
	Page Panes
	Tab Strips

	String and Data Grids
	String Grids
	Data Grids
	Programming Data and String Grids
	Setting column widths
	Scrolling Tips for String and Data Grids

	Headed List Boxes
	Text Alignment
	Programming Headed List Boxes

	Complex Grids
	Events for Complex Grids
	Grid Field Exceptions

	Subwindows
	Creating a Subwindow
	Opening the Parent Window
	Programming Subwindows
	Using Subwindows

	Icon Arrays
	Programming Icon Arrays

	Tree Lists
	Creating a Tree List
	Populating a Tree List
	Programming Tree Lists

	Modify Report Fields
	Applying changes to selected objects
	Font and Color Tools
	Graphics Tools

	Screen Report Fields
	Window Status Bars
	Progress Bars

	Field Styles
	Defining Field Styles
	Applying a Style to an Object

	Format Strings and Input Masks
	Character Format Strings
	Number Format Strings
	Date Format Strings
	Boolean Format Strings
	Input Masks

	Drag and Drop
	Drag and Drop Events
	Using Drag and Drop

	External Component Notation
	Version Notation
	Java Beans

	HWND Notation
	Enter Data Mode
	Floating edges for Windows
	Lookup Windows
	Timer Methods and Splash Screens

	Chapter 8--Internet Programming
	Internet Protocols
	Overview
	Note for MacOS users

	Internet Commands
	FTP Commands
	HTTP World Wide Web Commands
	E-mail Commands
	TCP/IP Sockets, DNS, and€Ping Commands
	Utility Commands

	Sending and Receiving E-mail
	Sending E-mail
	Finding Out How Many Messages are Waiting
	Receiving E-mail
	Parsing E-mail Headers
	Additional Information
	Windows Users

	Working with FTP Sites
	Additional Information
	Note to Windows users

	Working with HTTP Servers and Clients
	HTTP Server Commands
	Accessing a Proxy Server
	Submitting a CGI Request
	Additional Information

	TCP Socket Programming
	TCP Echo Server and Client
	Domain Name Services
	Address-to-Name Example Code
	Name-to-Address Example Code

	TCP HTML Retrieval
	TCP Client E-mail
	Additional Information

	Internet Utilities
	UUEncoding and UUDecoding
	CGIEncoding and CGIDecoding
	Reading and Writing Binary Files

	Programming€Tips
	Error Handling
	Client/Server Connections
	Caching
	Troubleshooting Common Problems

	Chapter 9--Extending OMNIS
	OLE Pictures
	Placing an OLE Picture
	Inserting Objects
	Linking Objects
	Edit Menu Verbs
	In place Activation
	Embedding and Linking using Drag and drop
	Properties and Methods

	OLE Automation
	OLE Automation Methods
	OMNIS to Automation Variable Type Conversion
	Passing Parameters by Reference
	Coercing Data Types

	Automation Errors
	Limitations
	Using OLE Automation

	DDE
	Creating a DDE Link
	OMNIS as Client
	OMNIS as the Server
	Printing Reports to a DDE Channel
	The System Topic
	Events during DDE
	Ack Bits
	Programming with DDE
	Using DDE with Word

	Lotus Notes
	Data Types
	Lotus Notes Commands
	Server Access
	Mapping Fields to Notes
	Views and Searching
	Error Handling
	Creating and Deleting Notes
	Composite fields (RTF)
	Mail and Copying
	Reading Data Dictionary Type Information

	Apple Events
	Apple Event Groups
	Terminology
	Sending and Receiving Apple Events
	Scripts

	Publish and Subscribe
	Edit Menu
	Publish and Subscribe Commands
	Publishing Reports

	Creating your own Help
	Creating the Help folder
	Creating your Help pages
	Creating a Contents Tree
	Creating a contents tree from HTML Contents Files (Method 1)
	Creating a contents tree from your Folder Structure (Method 2)

	Creating your Help Project File
	Bookmarks
	Enabling Help in your Application
	Opening Help in your Application

	Chapter 10--OMNIS Data Files
	File Classes
	Indexes and Keys
	Modify Menu
	Modifying a File Class
	Reserving Space for a Data File

	Search Classes
	Creating Search Lines
	Selecting and Using a Search
	Indexes and Searches
	Search Optimization

	Enter Data Mode
	Prepare for Update Mode
	Enter Data Command
	Inserting Records
	Editing Records
	Modeless Data Entry
	Data Entry Windows

	Setting Connections
	Connecting the Records
	File Connection Schemes

	Multi-user Data Access
	Sharing Data Files
	DOS Share Configuration
	Record Locking and Semaphores
	Disabling the Break/Cancel Key
	File Locking
	Index Caching
	Redrawing the Screen
	Constants Files and Global Data
	Set Read-only Files
	Using the #MU Variable
	File Connections
	Do not cancel pfu option
	Unique Index Check
	Connected Records
	Semaphores
	Deadly Embrace
	Clearing Semaphores

	Data File Structure and Maintenance
	Data File Structure
	Data File Reorganization
	Maintaining Data Files
	Data File Browser
	Datafile menu
	Slot menu
	Shared Data Files

	Chapter 11--OMNIS SQL
	Connecting to the Database
	Sending SQL to the Database
	Perform SQL
	SQL Scripts and the SQL Buffer
	Error Handling

	The Name Functions
	Data Mapping
	Square Bracket Notation
	Bind Variables
	Select Tables and Cursors
	Declare cursor and Fetch next row
	Build list from select table
	Retrieve Rows to File

	OMNIS SQL Language Definition
	SQL Statement
	CREATE TABLE
	ALTER TABLE
	DROP TABLE
	CREATE INDEX
	DROP INDEX
	SELECT
	Value Expression
	Column and Table References
	Function Reference
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	ORDER BY Clause
	INSERT
	UPDATE
	DELETE

	Chapter 12--SQL Browser
	Setting up the DAMs
	Direct DAMs
	Middleware DAMs
	Client and Network Software
	ORACLE
	DB2
	INFORMIX
	SYBASE
	ODBC
	EDA

	Platform Specific Issues

	Sessions
	Modifying a Session Template
	Creating a New Session Template
	Duplicating a Session Template
	Deleting a Session Template
	Opening a Session
	Closing a Session
	Session Information
	Database Information
	DB2 Extenders

	Managing SQL Objects
	Copying Tables between Sessions
	Object Menu
	Creating a new Object
	Modifying an existing object
	Renaming an object
	Deleting an object
	User Privileges
	Object Information

	Viewing and Inserting Data for a Table
	DB2 Extenders

	Interactive SQL
	Stored Query Manager
	SQL History
	User Administration
	Options

	Chapter 13--Client/Server Programming
	Connecting to your Database
	Starting a Session
	Setting the Database Version
	Setting the Hostname, Username, and Password
	Informix
	Oracle
	Sybase
	DB2
	ODBC
	EDA

	Logging on and off
	SQL Separators

	Interacting with your Server
	Mapping to the Data
	Sending SQL to the Server
	Perform SQL
	SQL Scripts and the SQL Buffer
	SQL Errors
	Square Bracket Notation
	Bind Variables
	Editing the SQL Script
	Preparing the Cursor
	Data Type Mapping
	Select Tables and Cursors
	Building a List from a Select Table
	Retrieving Rows to File

	Describing Your Database
	Describe database (Tables)
	Describe server table (Columns)
	Describe database (Views)
	Describe results
	Describe server table (Indexes)
	Building User Views

	Transactions
	Transaction Modes
	Multiple Sessions

	Server Status and Error Handling
	Reset cursor

	Character Mapping
	The Charmap Utility
	Using the Map File

	Chapter 14--SQL Classes and Notation
	Schema Classes
	Schema Class Notation
	Make Schema From Server Table

	Query Classes
	Calculated Columns
	Query Class Notation
	Queries Tab in the Catalog

	Creating Server Tables from Schema or Query Classes
	Table Classes
	Table Class Notation

	Table Instances
	Table Instance Notation
	Table Instance Methods
	$select()
	$selectdistinct()
	$fetch()
	$insert()
	$update()
	$delete()
	$doinserts()
	$dodeletes()
	$doupdates()
	$dowork()
	$doinsert()
	$dodelete()
	$doupdate()
	$undoinserts()
	$undodeletes()
	$undoupdates()
	$undowork()
	$sqlerror()
	$selectnames()
	$createnames()
	$updatenames()
	$insertnames()
	$wherenames()

	Chapter 15--Server-Specific Programming
	Oracle
	Server-specific Programming
	Updating and Deleting Specific Rows
	PL/SQL

	Server Information
	Troubleshooting
	Platform Specific Issues

	Data Type Mapping
	OMNIS to ORACLE
	ORACLE to OMNIS

	Sybase
	Server-specific Programming
	Multiple Select Tables
	Error Handling
	Blobs
	Remote Procedure Calls
	<RPC>
	<RPCRESULTS>
	<RPCPASSWORD>

	Server Information
	Troubleshooting
	Platform Specific Issues

	Data Type Mapping
	OMNIS to Sybase
	Sybase to OMNIS

	Informix
	Server Information
	Troubleshooting
	Data Type Mapping
	OMNIS to INFORMIX
	Informix to OMNIS

	DB2
	Server-specific Programming
	Reserved Words
	DB2 Extenders
	SQL Browser support for DB2 Extenders
	Enabling DB2 Extenders
	Playing Audio, Video, and Image Data
	Inserting Audio, Video, and Image Data

	DB2 Extender Wizards
	Extender Data Manager Wizard
	Multimedia Wizard

	DB2 Commands
	Data Type Mapping
	OMNIS to DB2 UDB
	DB2 UDB to OMNIS

	ODBC
	Server-specific Programming
	Multiple cursors
	Remote Procedure Calls
	<RPC>
	<RPCPROCS>
	<RPCSUPPORT>

	Server Information
	Troubleshooting
	Data Type Mapping
	OMNIS to ODBC

	EDA
	Server-specific Programming
	EDA Keywords
	<RPC>
	<LONGRPC>
	<ACCEPT>
	<DATE_FORMAT>
	<TIME_FORMAT>
	<DATETIME_FORMAT>
	Troubleshooting
	Data Type Mapping

	Chapter 16--SQL Reserved Words
	How to use this manual
	Bookmarks
	Thumbnails
	Links
	Browsing
	Find
	Search
	Grabbing text from the screen
	Getting help
	Start manual

