
OMNIS Studio
Conversion

OMNIS Software
May 1997

The software this document describes is furnished under a license agreement. The software may be used
or copied only in accordance with the terms of the agreement. Names of persons, corporations, or products
used in the tutorials and examples of this manual are fictitious. No part of this publication may be
reproduced, transmitted, stored in a retrieval system or translated into any language in any form by any
means without the written permission of OMNIS Software.

© OMNIS Software, Inc., and its licensors 1997. All rights reserved.
Portions © Copyright Microsoft Corporation.

OMNIS® is a registered trademark and OMNIS 5™, OMNIS 7™, and OMNIS Studio are trademarks of
OMNIS Software, Inc.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered trademarks,
and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power Macintosh
and PowerPC are trademarks of Apple Computer, Inc.

IBM and AIX is a registered trademark and OS/2 is a trademark of International Business Machines
Corporation.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered trademarks
of Sun Microsystems Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

Acrobat is a trademark of Adobe Systems, Inc.

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

INFORMIX is a registered trademark of Informix Software, Inc.

EDA/SQL is a registered trademark of Information Builders, Inc.

CodeWarrior is a trade mark of Metrowerks, Inc.

Other products mentioned are trademarks or registered trademarks of their corporations.

Table of Contents 3

Table of Contents
ABOUT THIS MANUAL ...4

CHAPTER 1—WHAT’S NEW? ..5

OBJECT ORIENTATION IN OMNIS STUDIO...5
NEW CLASSES AND OBJECTS...11
NEW GUI ..18

CHAPTER 2—WHAT’S CHANGED? ..31

WHAT’S BEEN RENAMED?...31
WHAT’S BEEN REMOVED?...37
WHAT IS OBSOLETE?..45

CHAPTER 3—CONVERSION AND COMPATIBILITY ..48

CONVERTING YOUR OLD OMNIS APPLICATIONS...48
CONVERTING LIBRARIES AND DATA FILES...49
FORMAT CONVERSION..52
MENU FORMATS ..53
LIBRARY CONTROL PROCEDURES AND TASKS..55
LIBRARY AND FORMAT VARIABLES...55
WINDOW FORMATS AND CLASSES...57
TOOLGROUPS AND TOOLBARS...62
EVENTS...62
LIST VARIABLES ..65
REPORT FORMATS AND CLASSES...66
HELP MESSAGES..67
ICONS..68
COLORS...69
GRAPHS...69
AD HOC REPORTS...69
DAMS AND EXTERNAL NAMES...70
COMMANDS REMOVED BY CONVERTER...70
CHECKING METHODS IN A CONVERTED LIBRARY...70

4 About This Manual

About This Manual
This manual introduces the new features in OMNIS Studio from an existing OMNIS
user’s point of view and describes how you convert your old OMNIS applications to
OMNIS Studio. After reading this manual and converting your application you may like to
read the Using OMNIS Studio manual.

Before you start, you should note that in OMNIS Studio some existing objects have been
renamed to comply with object-oriented terminology or standard industry usage. These are
described in the following chapters, but in particular

q formats are renamed classes

q procedures are renamed methods, and attributes are further
divided into properties and methods

q and under MacOS only, you should Ctrl-click and not Option-click
to open variable and context menus

Note that all references to “V3” in this manual refer to all versions of OMNIS 7 Version 3,
including 3.0, 3.2, and 3.5.

What’s New?
The first chapter in this manual introduces the new object-oriented features in
OMNIS Studio, the new classes and objects, and the new GUI and design tools available
in OMNIS Studio.

What’s Changed?
The second chapter provides a summary of all the changes in OMNIS Studio, and lists all
the objects that have been renamed, removed, or made obsolete, including functions,
attributes, and commands.

Conversion and Compatibility
The final chapter in this manual describes how you convert your old OMNIS 7 Version 3
applications to OMNIS Studio and discusses the compatibility of converted libraries. If you
want to convert an application created with an earlier version of OMNIS, such as
OMNIS 7 Version 1 or 2 or even earlier, you must convert it to OMNIS 7 Version 3 first
and use the information in this manual to convert it to OMNIS Studio. A demo version of
OMNIS 7 Version 3 is provided for this purpose.

Object Orientation in OMNIS Studio 5

Chapter 1—What’s New?
This chapter introduces the new features in OMNIS Studio, for existing OMNIS users and
anyone who wants a quick summary of what’s new in OMNIS. It includes a brief summary
of the new object-oriented features in OMNIS Studio, the new classes and objects, and the
new GUI and design tools in OMNIS Studio. For full details about all these topics, refer to
the Using OMNIS Studio manual.

Object Orientation in OMNIS Studio
OMNIS Studio uses many of the concepts and terms in Object-Oriented Programming.
The essential components of any OOP system are the objects in that system and the
messages sent to and from those objects. OMNIS Studio is no exception.

OBJECT

"Message"

OMNIS Studio expands the range and type of objects you have available, it enhances the
system of messaging between these objects using a wealth of new notation, it increases
your control over the events in your application using the new event handling system, and
overall OMNIS Studio contains many new and improved design tools that let you and your
development team create and manage the objects in your applications.

6 Chapter 1—What’s New?

Libraries and Classes
An OMNIS library is a complex object that can contain many different types of GUI and
data objects including windows, menus, toolbars, and reports. The definition for each of
these objects is stored in your library as a separate class, called formats in previous
versions. OMNIS Studio includes several new types of class including table, schema, code,
and object classes.

LIBRARY

classes

The Browser lets you create libraries and classes, examine existing libraries and copy
objects from one library to another. The Component Store lets you create classes and many
other library objects, including window and toolbar controls, report fields, and external
components.

Properties and Methods
In OMNIS Studio attributes are renamed and separated into properties and methods.
Every object has certain characteristics that define exactly how it looks and behaves,
known as its properties. Properties of an object could include its name, type, color, size, or
visibility; all objects including libraries and classes have properties. Most objects also
contain methods, which are pieces of code that perform some action when you send the
object the appropriate message. For example, most GUI classes contain an $open() method
that opens an instance of the class when the method is called.

OBJECT

properties
methods

You can manipulate an object’s properties and methods using the OMNIS notation. In the
notation all property and method names start with a “$”, and methods are further
distinguished from properties by having parentheses after their name. You can examine
and change the properties of an object using the Property Manager, and you can add
methods to an object or change its default ones using the Method Editor. The code for a
method can contain OMNIS commands, some notation, or a combination of the two.

Object Orientation in OMNIS Studio 7

Variables
The principal data container in OMNIS Studio is the variable. You add variables to an
object using the method editor. Most objects can contain variables, but their scope and the
kind of data they can contain depends on their type. OMNIS provides many different data
types including character, number, date, list, and picture types. Furthermore, you can use
the object class to create your own structured data objects containing their own
encapsulated variables.

OBJECT

properties
methods

vars

Instances
In OMNIS Studio, the principal objects that you manipulate at runtime are instances. An
instance is the object you create when you open a class. For example, you create an
instance of a window when you open a window class. When you print a report you create
an instance of the report class, and similarly when you install a menu you create an
instance of the menu class.

CLASS
properties
methods

instance
properties
methods

When you open an instance of a class it inherits all the properties, methods, and variables
from the class. In addition to class variables, an instance can contain instance variables;
these are defined in the class using the method editor. You can create multiple instances of
most types of class, which means each instance can have its own set of instance variable
values. For example, you can create multiple instances of the same window class and
display different data values in each separate window instance.

8 Chapter 1—What’s New?

Tasks
A task is a runtime container for the objects or instances in your application. You must
open an instance of a class always from inside a task, that is, all instances must belong to a
task. To ensure this, OMNIS opens a task for your instances to run in called the startup
task, but you can create and open your own tasks.

The real advantage of using tasks is that you can control the instances belonging to a task
simply by manipulating the task itself. For example, you can close all the instances
belonging to a particular task by closing the task. OMNIS also hides and shows instances
that belong to different tasks when you switch from one task to another.

menu
instance

toolbar
instance

Task instance

window
instance

Object Orientation in OMNIS Studio 9

Messages
A message is an instruction to do something such as open, close, print, or redraw. You
send messages to and from the various objects in your application using the Do command
and the notation. A particular message will run the corresponding method contained in the
object. Messages in OMNIS are formatted in the same way as the notation, where each
message begins with a “$”, and then the name of the message. For example, you can send
a $close() message to an open window which runs the standard $close() method in the
window, which in turn closes the window instance.

"close"
message

window
instance

close
method

You can activate or change object properties in a similar way using the $assign() message.
When you assign to an object you can send a value or list of parameters with the message.
For example, to change the background color of a window instance you would send the
$backcolor.$assign() message with a color value as a parameter.

window
instance

color
property

"assign color"
message

As well as assigning to an object, you can return information from an object using
messages. For example, you could find out the background color of a window instance by
returning the value of its color property.

10 Chapter 1—What’s New?

Events
OMNIS Studio introduces a completely new event handling mechanism. Any user action
that occurs in OMNIS Studio is reported as an event message. The key to creating an
events-based application is in the methods you write to intercept or handle these events.
These methods are called event handling methods and you would normally place them
inside fields, windows, and tasks.

When the user generates an event, OMNIS sends a message describing the event. Usually
this message is a simple predefined code for the event. Depending on where the event
occurs it is intercepted by an event handling method. For example, if the user clicks on a
field, a simple click event is generated and the event handler for the field is called.

"click"
message

field
instance

event
method

Modify, discard
or pass event?

The event handling method can modify the default action for the event or redirect method
execution to anywhere else in the application. Alternatively, the event handler may discard
the event altogether or pass it on to the next method in the event chain.

Inheritance
When creating a new class, instead of having to set up all its properties, methods, and
objects you can derive it from an existing class. The new class is said to be a subclass of
the existing class, which is in turn a superclass. In this way you can create a hierarchy of
classes, each class being a subclass of the one above it in the chain. This saves you time
and effort when developing your application, since you can reuse the objects from the
superclass. When you make a change in a superclass, all its subclasses inherit the change
automatically. You can view the inheritance structure for all the classes in your library
using the Inheritance Tree.

New Classes and Objects 11

New Classes and Objects
In OMNIS Studio formats are renamed classes. Some class types, such as file and search
classes, are direct equivalents of the OMNIS 7 formats of the same name. Window classes
have been greatly enhanced, and many new field types have been added. Other classes
such as task, schema, and table classes are new in OMNIS Studio. This section
summarizes the new classes in OMNIS and describes how the new object-oriented features
are implemented.

Task Classes
A task class is a new type of class that lets you control or group instances. For example,
you can link a menu instance with a particular window instance by opening them in the
same task. Whenever the window comes to the top the menu instance is installed on the
menu bar automatically.

You define exactly what happens in a task by creating methods in the task class. When
you open a task class you create an instance of the task. A task instance can contain any
other type of instance including window, report, and menu instances. When you open an
instance from within a task instance it is said to belong to that task. By opening and
closing different task instances, or by switching from one task to another you can control
whole groups of instances.

When OMNIS starts up, a single default task is initiated, containing all the built-in design
tools such as the Browser, the Component Store, and so on. When you create a new library
it contains a task called the startup task. This task is run automatically when you open
your library. From the startup task you can open other tasks containing other instances and
objects that are part of your application.

menu
instance stock

report
instance

window
instance

Task instance Task instance

sales
report

instance

12 Chapter 1—What’s New?

When you close a task instance, all other instances belonging to that task are closed,
providing they can be closed. When you quit OMNIS the default task is closed and all
instances belonging to the default task are closed. Each library contains a group of task
classes in $tasks, and all task instances are held in $itasks, in the order they are opened.

Schema and Table Classes
A schema class is a new type of class that represents a table or view in a server database.
A schema class contains the name of the table or view on the server, a list of column
names and data types for that table or view, and some additional indexing information
about the columns.

The schema editor lets you enter the server table or view name, the column names, and
data types for each column. Schema classes do not have methods and cannot be
instantiated. Each library contains a $schemas group containing all the schema classes in
your library.

A table class is a new type of class that provides an interface to the data modeled by a
schema class. A table class contains the name of the schema class it uses, a number of
standard methods for data handling, and your own custom properties and methods. Each
library contains a $tables group containing all the table classes in your library.

A table class does not store data, rather you can use a table class to define a list or row
variable which holds the data from your server database. You can define list and row
variables using the Define list from table command, or the $definefromtable() method.

OMNIS
Schema class
Col1
Col2
Col...

OMNIS
Table class
Ref to
schema

Server
table
Col1
Col2
Col...

Row variable

List variable

A list or row variable defined from a table class creates a table instance. Therefore, a list
or row variable has its own properties and methods together with the properties and
methods of a table instance. This includes methods you can use to fetch and insert data on
your server database, such as $fetch() and $insert().

New Classes and Objects 13

Construct and Destruct Methods
When you open a class, an instance of the class is created. Most classes that you can open
or instantiate, including window, menu, toolbar, and report classes, contain two default
methods called $construct() and $destruct(). The $construct() method controls the opening
or construction of the instance. Therefore, you can place any code that you want to run as
the class is opened in the $construct() method. Similarly, just before an instance is closed
or destructed its $destruct() method is called. Any code that you place in the $destruct()
method for a class is executed as the instance is closed or destructed. When you open a
class, either using a command or the $open() method, you can send parameters to the
$construct() method.

Fields can also contain a $construct() method. These are called in the order of the fields on
the window, and before the class $construct() method. You can use this $construct()
method to change the field as it is instantiated.

Window Classes
When you open a window class in OMNIS Studio you create an instance of the class. You
can open a window class using the Open window instance command or the $open()
method. You can open multiple instances of the same window class, providing they are all
given unique names when you open them. Each window instance can have its own set of
instance variable values which means you can display different sets of data in different
windows at the same time. The $iwindows group contains all the current window
instances, while the $windows group contains all the window classes in your library.

You can define class and instance variables for window classes. Window class variables
are visible to the window class and all its instances, and instance variables are visible only
to the instance they belong to.

You can add multiple methods to a window class, as well as the fields and objects in the
window. The class methods for a window control the window as a whole, including the
$construct() and $destruct() methods which manage the construction and destruction of
the instance, and the $control() method which handles events in the window. Also you can
use window class methods as custom properties and methods for the window.

Each window field can have multiple methods, including one called $event() used for
handling events in the field. You can also use the field methods as custom properties and
methods for the field. The field methods belong to the window class and share the same
class and instance variables.

14 Chapter 1—What’s New?

Window Fields
When you create a window class, the Component Store contains all the different field
types and window objects available in OMNIS Studio. Many new types of window field
have been added, including the following types.

List and Grid Fields
The OMNIS 7 V3 table field has been renamed the complex grid field and works in very
much the same way as before. The standard list field has been renamed the list box field.
In addition to these changes many other list and grid field types have been added. string
and data grids let you display character and numeric data in spreadsheet form, check lists
display a column of check boxes to indicate selected lines, icon arrays show columns and
rows of icons in large or small view, and tree lists display hierarchical lists containing
expandable nodes.

Tab and Page Fields
Tab panes and page panes contain a number of pages on which you can place other fields
and controls. The tab strip field displays a number of tabs which the user can select and
deselect.

Modify Report and Screen Report Fields
Modify report fields let you display a report class on an open window, which lets users
change and move objects on the report. Screen report fields let you print a report to a
window field, rather than the standard destinations such as the printer or to a file.

Group Fields
Shape fields, group boxes, and scroll boxes let you group other fields and objects on your
window. Shape fields can also detect events including mouse clicks.

Report Classes
In OMNIS Studio when you print a report class, an instance of the class is created. The
report instance exists for as long as it takes to send the report to the printer, or for a screen
report until you close it. You can create any number of report instances, either from the
same report class or any other report class.

You can use the $open() method or the Prepare for Print command to open a report
instance, and you can terminate a report using the $close() method or the End Print
command. The $ireports group contains all the report instances that are currently being
processed. The most recently created report instance is at the top of the $ireports group.

You can send a list of parameters to the $construct() method when you open the report
instance using the $open() method. You can send data to a report instance using the Print
report or Print record commands. The Print commands have an option Do not finish other

New Classes and Objects 15

reports which lets you print multiple report instances, one after another. Without this
option any reports already in progress are terminated.

You can specify a report instance name for the Print record and End print commands. The
default is to print or end the most recently started report.

Message Driven Reports
Having opened a report instance with the $open() method you can print your data using
the Print report command, or for finer control, you can use a series of Print record
commands followed by an End print command. Alternatively, you can send print messages
to a report instance using the notation. For example, you can send a $printrecord()
message to print a record to the report instance, or send an $endprint() message to finish
the report. You can override the default handling for these messages by writing your own
custom methods with the same name. You enter these custom methods in the class
methods for the report class.

Every report field and section can contain a $print() method. When $print() is called for a
particular section it calls the $print() method for all the fields in that section. You can
send a parameter with the $print() message to override the default positioning of the
section. You can write your own custom $print() methods for each field and section on a
report. You enter these methods in the field methods for a report class. For any custom
$print() method you can include the Do default command to run the default processing.

Subwindows
A subwindow is a new type of window field in which you can display another window
class. The window class displayed in a subwindow field can contain one or more fields.
For example, it could contain a set of general-purpose buttons and methods that you could
reuse throughout your application as a subwindow on any number of other windows.

In design mode a subwindow field appears as a single field which you can move and resize
like any other field. In runtime, all the fields and background objects in the subwindow
become active fields on the parent window, so the user is not aware that they are from
another class.

Regarding events, a subwindow is treated as a window within a window. Events that occur
in the subwindow are handled by the subwindow event handling methods and then by the
parent window event handling methods.

Field Styles
In OMNIS Studio you can format fields and text objects using styles. A field style is a style
definition, like a word-processing or DTP style, that you can apply to window and report
objects. Each field style contains a definition of its name, font, size, type style, and
alignment. You can specify different combinations of text properties for each platform

16 Chapter 1—What’s New?

under the same style name, so objects will display in the appropriate font and point size
depending on the current operating systems.

OMNIS Studio provides some default styles for standard entry fields, pushbuttons, and
lists, but you can add your own styles. The style for a particular window or report object is
stored in its fieldstyle property. You can create as many field styles as you like and store
them in the #STYLES system table. Having set up the styles in the style table, you can
copy the table to any library and use its styles throughout your whole application.

Menu Classes
The user interface elements of a menu and its methods have been separated in
OMNIS Studio. There is a separate menu editor in which you create the lines for your
menu, and you edit the methods for each menu line in the method editor. You can install a
menu instance on the main menu bar, create a hierarchical menu, a popup menu, or create
your own context menus using a menu class.

When you install or open a standard menu, popup, or context menu, using the $open()
method or an Install command, an instance of the menu class is created. You can install or
open any number of menus, and create multiple instances of the same menu class. You can
also add menus to the menubar of a window class.

The $imenus group contains the currently installed menu instances. The $objs group for a
menu class or menu instance contains a list of menu lines for the menu. A menu can have
a $construct() method which is executed when the menu is installed or opened.

Toolbar Classes
A toolbar class is a new type of class that defines the contents of a toolbar. A toolbar class
contains the buttons and controls for the toolbar and the methods for each control. When
you install or open a toolbar using the Install toolbar command or the $open() method you
create an instance of the toolbar class. The $itoolbars group contains the currently
installed toolbars.

You can install an instance of a toolbar into any of the four main docking areas in the
OMNIS application window, or toolbars can be floating. You can also install toolbars into
a docking area contained in a window class.

Code Classes
A code class is a new type of class that you can use as a general code repository. Code
classes can contain variables and methods only; they do not have a user interface. You can
call the methods in a code class from anywhere in your application using the Do code
method command. In practice you can put a method in a code class and call it from a

New Classes and Objects 17

menu or a toolbar: this saves you defining the method twice and is easier to maintain. The
$codes group contains all the code classes in your library.

You cannot instantiate a code class and hence code classes do not have instance variables.
When you call a method in a code class the instance containing the Do code method
command remains the current instance. Therefore you can use $cinst in the code class
method to refer to the calling instance.

Object Classes
An object class is a new type of class that lets you create your own structured data objects.
Their structure, behavior, and the type of data they can hold is defined in the variables and
methods that you add to the object class.

Object classes can contain custom methods, and class and instance variables. You can
create an object variable based on an object class that has the data structure set up in the
class. For example, you can create a single instance variable in a window class, based on
an object class, which uses the variables and methods defined in the object class. Object
classes also support inheritance; you can make a subclass from an object class, which
inherits the methods and variables from the superclass.

External Components
OMNIS Studio includes a completely new external components API which supports many
different types on component, including ActiveXs, DLLs, OLE-aware objects, and MacOS
Code Fragments. You can add external components to the Component Store and use them
in your applications. You can get these components from many different sources,
including the Internet, but OMNIS provides a few to get you started.

You can also create your own external components; if you use the OMNIS external
components API you can use the same code to recompile for the various platforms
supported in OMNIS. The OMNIS components API is documented in the OMNIS
External Components manual, available from the OMNIS website.

18 Chapter 1—What’s New?

New GUI
The OMNIS 7 V3 development environment has been completely redesigned in
OMNIS Studio. Some of the tools have been greatly enhanced to take full advantage of the
new object technology, while others have been added to make your job of designing an
application even quicker and easier. This section introduces some of the new tools and,
where possible, compares them with the V3 environment. Note that the development shell
available in V3 is removed and replaced by the tools described in this section.

Browser
The V3 Format Browser has been replaced with a Browser that lets you create and
examine libraries and classes. Each icon in the Browser represents a single object, either a
library or class depending on the current view. You can show multiple instances of the
Browser window, which lets you copy classes from one library to another.

The Browser in large icon mode, showing the classes in the current library

You can show the Browser in large or small icon view, or a detailed view that displays
your classes in a table format which you can sort by class, date, class type, and so on.

New GUI 19

Component Store
The Component Store is an all-purpose repository for the objects you need to build
OMNIS applications. It contains class templates and wizards, field and background
objects, and external components. You can create a new object in your library by dragging
the object from the Component Store and dropping it onto your library in the Browser. For
window classes you can drag fields and other controls from the Component Store onto
your window.

The Component Store showing class templates

The objects in the Component Store are stored in a component library which you can edit
to change the base classes in OMNIS. You can also add external components to the
Component Store, including ActiveXs, DLLs, and Code Fragments.

20 Chapter 1—What’s New?

Property Manager
The V3 Attribute Inspector has been removed and replaced with the Property Manager and
Notation Inspector. You use the Property Manager to display the object properties,
including libraries, classes, window fields, and external components. You change the
properties of an object by typing a new value into the Property Manager, or by selecting
one from a droplist or palette of preset values. You can click on most objects in OMNIS
and change their properties in the Property Manager.

The Property Manager showing a palette of choices for the window background pattern

New GUI 21

Notation Inspector
The Notation Inspector lets you view the complete OMNIS object tree from the $root
object down. You can expand and collapse each branch of the tree to display the objects in
your system or any libraries you have open. The Notation Inspector shows individual
objects such as classes and window fields and displays the full notation for these objects.
You can click on an object in the Notation Inspector and view its properties in the
Property Manager.

You can drag the notation for an object from the Notation Inspector to a calculation field,
and you can copy it to the clipboard. You can also click on an object with the Notation
Search tool to view its notation in the Notation Inspector.

22 Chapter 1—What’s New?

The Notation Tree showing the contents of an open library

Method Editor
In OMNIS Studio procedures are renamed methods. The procedure editor available in V3
has been greatly enhanced and is renamed the method editor. You can add methods to
most types of object using the method editor. You also use the method editor to add
variables to objects. You no longer declare variables in your code, rather you type their
names straight into the variable pane in the method editor. You can inspect the value of
any variable or field by Right-clicking on it, and you can monitor values by adding
variables to the watch variable pane.

New GUI 23

The Method Editor showing a code class method

The method editor has chroma coding, which uses different colors in your code to
represent different programming constructs, comments, parameters, and keywords. You
use the method editor to create task, code, object, and table classes, and to edit the field
and class methods for other types of class including windows and reports.

24 Chapter 1—What’s New?

Context Menus
Context menus are a useful shortcut when you want to modify an object, or change your
development environment. You can open context menus from almost anywhere in OMNIS
by Right-clicking on an object or window; the term “Right-click” is used throughout the
OMNIS manuals and means you click with the right mouse button under Windows, or
hold down the Ctrl and click the mouse under MacOS. For example, you can add a
method to an object by right-clicking in the method editor, and you can change the view of
the Browser using a context menu.

Browser showing its context View menu

The options in a context menu will vary depending on the context of the object or tool you
click on, but you will always get the options you need.

New GUI 25

View Menus
Most of the design tools in OMNIS Studio have a View menu. View menus are context-
sensitive menus that let you change or rearrange the current window. When you change
how a tool is displayed you can save its setup using the Save Window Setup option in the
View menu for the tool. You can also popup View menus as context menus by Right-
clicking on the tool.

The View menu on the Browser menu bar

26 Chapter 1—What’s New?

Tooltips and Helptips
Many of the design tools in OMNIS Studio have tooltips and helptips. A tooltip is a short
title or description for a toolbar control, and a helptip is a longer description for something
like a property in the Property Manager. You can show or hide these tooltips or helptips
from the tool’s context or View menu. When you move your mouse over a button or object,
OMNIS Studio will display the tip.

A Tooltip A Helptip on the Property Manager

New GUI 27

Catalog
The Field Names window available in V3 is replaced by the Catalog. It lists all the
variables and fields in your library, together with the functions, constants, and event
messages available in OMNIS Studio. The Catalog also lists the constants and functions
for external components. You can open the Catalog by pressing F9/Cmnd-9, as in earlier
versions of OMNIS.

The Catalog showing the Data Type constants

28 Chapter 1—What’s New?

Inheritance Tree
OMNIS Studio supports inheritance which lets you create a subclass from another class in
your library. The original class is the superclass of the subclass. You can view the
superclass/subclass relationships of the classes in your library using the Inheritance Tree.

When you select a class in the Browser and open the Inheritance Tree it opens with that
class selected, showing its superclasses and subclasses if any are present.

New GUI 29

Data File Browser
The Data File Browser replaces various V3 data file tools, including the Data File Tools
submenu in the Utilities menu and the old Data File Browser in the development shell.
You can view OMNIS data files in the browser with large or small icons or in a detailed
view.

The Data File Browser lets you create new data files, open or close existing data files, and
make a particular data file the current data file. It also lets you check and reorganize your
OMNIS data, and create, rename, or delete data file slots.

The Data File Browser showing the data slots in an open data file

30 Chapter 1—What’s New?

SQL Object Browser
The SQL Object Browser replaces various SQL tools available in V3 and combines their
functionality into one Browser which you can access from the Tools menu. The SQL
Object Browser lets you create and open sessions, logon, create new SQL objects such as
tables and views, store SQL statements, and perform user administration functions.

The SQL Object Browser showing two open sessions

The SQL Object Browser lets you logon to many different databases including Sybase,
Informix, and Oracle. You can also connect to an OMNIS data file using OMNIS SQL.
When you are logged on you can view and modify the objects in your database using the
SQL Object Browser. See the Using OMNIS Studio and OMNIS Programming
manuals for further details about managing your server or OMNIS database using the SQL
Object Browser.

What’s been renamed? 31

Chapter 2—What’s
Changed?

This chapter lists the tools, functions, commands, attributes, and other parts of OMNIS
that have been renamed, removed, or made obsolete in OMNIS Studio.

What’s been renamed?
In OMNIS Studio some existing objects have been renamed while other features have
changed to comply with object-oriented terminology or standard industry usage. This
section lists all the objects or features that have been renamed or changed.

The major changes are as follows

q formats are renamed classes

q procedures are renamed methods

q table fields on a window are renamed complex grids

These particular changes mean that all objects, attributes, and commands that use these
words have also been renamed. For example, $cformat becomes $cclass, the function fdif()
becomes cdif(), $cproc becomes $cmethod, and $tabsection becomes $gridsection.

Other terminology or features have changed, as follows

q under MacOS only, you should Ctrl-click and not Option-click to open variable and
context menus

q attributes are separated into properties and methods, for example, $forecolor is a
property, $makelist() is a method; note that methods have parentheses to further
distinguish them from properties

q standard attributes, such as $name, are now referred to as common properties

q the drag and drop constants kDrop... are renamed kAccept...

q list fields you place on windows have been renamed list box fields; OMNIS Studio
now includes many different list and grid field types

q the parameter variable type Field name has been renamed Field reference

32 Chapter 2—What’s Changed?

q tables on server databases are now referred to as server tables to distinguish them
from table classes, hence Describe server table command

q open windows, installed toolbars and menus, and printed reports are called instances,
therefore some notation has been renamed or added, for example, $winds becomes
$iwindows and contains all the current window instances

For your convenience, the following sections list all the objects that have been renamed.
You don’t have to do anything within your application to accommodate these changes,
OMNIS Studio converts all these objects automatically. However, when you enter literals,
such as notation strings, you will have to remember to use the new terminology.

General
Old name New name (or equivalent)

File format file class

Window format window class

Report format report class

Menu format menu class

Search format search class

Format Browser Browser (displays classes and libraries)

Field Names list Catalog

Attribute Inspector Property Manager

procedure editor method editor

format variables class variables

Functions
Old name New name

fdif() cdif()

fundif() cundif()

What’s been renamed? 33

Attributes
Many attributes have been renamed and are now referred to as properties, or in some cases
methods. The following table lists the major changes.

Old name New name Description

$actnoproc $actnomethod property of a pushbutton

$canfocus $canfocusbuttons focus for buttons, radio buttons, and check
boxes

$cformat $cclass the current class, a property of $root

$controlproc $controlmethod returns true if the task or class has a
$control() method

$controltype $objtype the type of toolbar control

$controlwidth $width width of the toolbar control

$cproc $cmethod the current method

$curlist $clist the current list, a property of $root.$modes

$curreport $creport the current report, a property of
$root.$modes

$cursearch $csearch the current search, a property of
$root.$modes

$enablemenu $enablemenuandtoolbars enables or disables menus and toolbars

$format $class class containing the object

$formatdata $classdata binary representation of the class

$formats $classes object group containing all the classes in
the library

$formattype $classtype the type of class

$fvardefs $cvardefs group of class variable definitions

$fvars $cvars group of class variables

$isfloating $allowdrag whether or not you can drag a toolbar out
of a docking area

$proc $method the method containing the object

$procs $methods group of methods for the object: classes,
fields, and other objects can now have
multiple methods

$proctext $methodtext all command lines for the method returned
as text

34 Chapter 2—What’s Changed?

Old name New name Description

$showselected $multipleselect if true shows multilple selected list lines

$table $grid grid field containing the object

$tabsection $gridsection grid section containing the object

$winds $iwindows group of window instances

Constants
The following constants have been renamed.

Old name New name

kcursDrag kcursDragObject

kDropAll kAcceptAll

kDropButton kAcceptButton

kDropComboBox kAcceptComboBox

kDropDroplists kAcceptDropList

kDropEdit kAcceptEdit

kDropPicture kAcceptPicture

kDropPopMenu kAcceptPopMenu

kDropStdList kAcceptList

kDropTable kAcceptGrid

kerrBadproctext kerrBadmethodtext

kFieldname kFieldreference

kListobj kListBox

kNoDrop kAcceptNone

kTabcolheader kGridcolheader

kTabheader kGridheader

kTable kSystemtable

kTableobj kComplexgrid

kTabnone kGridnone

kTabrest kGridrest

kTabrow kGridrow

Note that the constant kTable which represents an OMNIS system table has been renamed
kSystemtable. There is a new constant called kTable which represents the new table class.
Also kTableobj which represents a window field type has been renamed kComplexgrid.

What’s been renamed? 35

Commands
The following commands have been renamed.

Old name New name

Call procedure Call method

Clear format variables Clear class variables

Clear procedure stack Clear method stack

Clear search format Clear search class

Clear timer procedure Clear timer method

Close print file Close print and export file

Delete format Delete class

Duplicate format Duplicate class

Make file format from table Make file class from server table

Modify format Modify class

Modify procedures Modify methods

New format New class

Open window Open window instance

Optimize procedure Optimize method

Print format Print class

Prompt for print file Prompt for print and export file

Prompt for search format Prompt for search class

Quit all procedures Quit all methods

Quit procedure Quit method

Reinitialize search format Reinitialize search class

Rename format Rename class

Revert format Revert class

Save format Save class

Set ‘About...’ procedure Set ‘About...’ method

Set format description Set class description

Set print file Set print and export file

Set timer procedure Set timer method

Test data with search format Test data with search class

36 Chapter 2—What’s Changed?

External Commands
Generally, the names of external commands have been split into separate words to make
them more readable.

Old name New name

CallDLL Call DLL

CallXCMD Call XCMD

ChangeWorkDir Change working directory

CloseFile Close file

CopyFile Copy file

CreateDirectory Create directory

CreateFile Create file

DeleteFile Delete file

DIROPS Get Files Get files

DIROPS Get Folders Get folders

DoesFileExist Does file exist

GetFile Get filename

GetFileInfo Get file info

MoveFile Move file

OpenFile Open file

PutFile Put filename

ReadFile Read file as character

RegisterDLL Register DLL

SetCreatorType Set creator type

SplitPathname Split pathname

WriteFile Write file as character

Note ReadFile and WriteFile have been renamed to Read file as character and Write file
as character, and Read file as binary and Write file as binary have been added to
supplement these commands.

What’s been removed? 37

What’s been removed?
This section describes the objects and features available in OMNIS 7 V3 that have been
removed or are no longer supported in OMNIS Studio. Some items have been removed
without replacement, while others have been superseded by more streamlined
functionality.

General Features
External Areas and Graphs
The external area field type has been removed in OMNIS Studio. However, you can add
external objects to your environment using the new external components interface. For
example, in V3 you could place a graph on your window using an external area, but in
OMNIS Studio graphs are implemented as external components, available in the
Component Store.

Ad hoc Reports
Ad hoc reports have been removed from the core product and replaced by a separate
OMNIS library which you can load and use like any other library. All commands and
notation associated with the old ad hoc report engine have also been removed. The new ad
hoc report library will convert your old ad hoc report files, although some of the text
formatting will be lost.

Publish and Subscribe
Support for Apple’s Publish and Subscribe has been removed in OMNIS Studio. All
commands and notation associated with publish and subscribe have also been removed.

Color System Table
The #COLORS system table and all corresponding notation have been removed. In
OMNIS Studio an object stores its color as an RGB value. The color constants have
specific RGB values. Generally you should use the color constants to set colors, but you
can use the rgb() function to set the color of an object.

Fixed Column Lists
The Store Long Data option has been removed from the Define list command. Therefore
all lists store unlimited lengths of data by default, and each column is only restricted by its
data type and length defined in the variable or field representing the list column. You can
still restrict the length of an individual column using Variablename/Length in the Define
list command, but this notation does not work for the new $define() or $definefromtable()
list methods.

38 Chapter 2—What’s Changed?

Design Menu
The Design menu has been removed and replaced by the Tools and View menus. Also
context menus replace many of the Design menu features. To popup a context menu, right-
click on the area you’re working in.

Design and SQL Shell
The Design Shell has been removed, but some parts of the shell, such as the VCS, are
available in OMNIS Studio as separate products.

The SQL Shell has been removed in its OMNIS 7 V3 form and is replaced by a new library
that includes the SQL Object Browser and Logon Manager.

Tool Palette and Field Attributes Tool Box
In V3 when you created a field or double-clicked on a field the tools palette and field
attributes tool box opened. These tools no longer exist and have been replaced by the
Component Store and Property Manager. For example, you used to change the color of an
object in the tools palette which you now do via the Property Manager. You create
different types of field from the Component Store and you change the properties of an
object in the Property Manager. If you double-click on a field in OMNIS Studio the
method editor opens which lets you add methods to the object.

Mixed Case Field Names
The Mixed case field names library preference $mixedfieldnames has been removed. All
file class field names can be mixed case by default.

Modify Menus
The Modify menus for classes (formats) have been removed from the main menu bar. In
many cases these menus now appear on the appropriate class editor window. For example,
the Modify method menu is now available in the method editor menu bar. Context menus
also replace menu items in the old Modify menus.

Help Data File
The Help data file, which supplied help for menu lines and other interface elements, has
been removed. Also the Help message command has been removed. However, most visible
objects such as window fields and menu lines contain the helptext property in which you
can enter help messages. When you convert your application help messages are transferred
to the helptext property in the converted field.

Toolgroups
Toolgroups have been removed in OMNIS Studio. Groups of toolbar controls are no
longer stored with a window or menu, rather they are stored in separate toolbar classes.
When you convert your application toolgroups are removed from their old window or

What’s been removed? 39

menu format and converted to toolbar classes. Much of the old toolgroup notation has been
removed and replaced by more generic class notation.

Table Fields
Table fields have been renamed complex grids, and much of the old table field notation
has either been renamed or removed. In most cases grid field notation has been replaced
by more generic object notation. For example, $tabrobjs the group of table row objects has
been removed and replaced by $objs containing all the objects in the grid field. The
$rowsection property and #INSIDE have also been removed from grid fields.

Split Bars
Split bars have been removed from window classes, including the properties $hsplitbar
and $vsplitbar.

Format Header Object
The $head object has been removed from all classes (formats), including window and
report classes. All objects and notation that appeared under the header object in V3 now
appears directly under the class itself. Therefore when you reference window and report
objects using the notation you no longer need to include $head. The header object for file
classes is also removed, but $datahead is retained for file classes.

MSMail
Support for MSMail has been removed, including all MSM external commands.

Hash Variables
The following hash variables are no longer supported in OMNIS Studio and do not appear
in the Catalog. For converted libraries only, these hash variables and the V3 event
mechanism continue to work provided the library preference $v3events is set to kTrue. For
new OMNIS Studio libraries you should write event handling methods using the new
event codes. See the Catalog or OMNIS Help for a complete list of event codes.

Hash variable Equivalent event code

#AFTER evAfter

#BEFORE evBefore

#BEFORE1 None

#BEFORE2 None

#CANCEL evCancel

#CLICK evClick

#CLOSE evClose

#DCLICK evDoubleClick

40 Chapter 2—What’s Changed?

Hash variable Equivalent event code

#DELETE evStandardMenu

#DISABLED evDisabled

#DRAGREF event parameter

#DROP evDrop

#EDATA None

#EDIT evStandardMenu

#EF None

#EFLD None

#EM None

#EN None

#ENABLED evEnabled

#ER None

#FIND evStandardMenu

#HIDDEN evHidden

#HOLD evMouseHold

#HSCROLLED evHScrolled

#INSERT evStandardMenu

#INSERTCV evStandardMenu

#INSIDE None

#KEY evKey

#KEYPRESS evKeyPress

#LCHANGED evRowChanged

#MAXIMIZED evMaximized

#MFIELD None

#MINIMIZED evMinimized

#MODIFIED None

#MOUSEDOWN evMouseDown

#MOUSEENTER evMouseEnter

#MOUSELEAVE evMouseLeave

#MOUSEUP evMouseUp

#MOVE evMoved

#NEXT evStandardMenu

What’s been removed? 41

Hash variable Equivalent event code

#OK evOk

#PREVIOUS evStandardMenu

#RESIZE evResized

#RESTORED evRestored

#RHOLD evRMouseHold

#RMOUSEDOWN evRMouseDown

#RMOUSEUP evRMouseUp

#SENT evSent

#SHOWN evShown

#SKEY evKey

#STAB evStab

#VSCROLLED evVScrolled

#WCLICK evWindowClick

Attributes
Many attributes have been removed, some without replacement. The following table lists
the important ones.

Attribute Alternative, if available...

$3dInterface None; all windows and buttons have a 3d interface

$allowdrop None

$ansiforascandchr None

$autonameswindow the Field Names window is replaced by the Catalog which
does not pop up when required as before, you press
F9/Cmnd 9 to open the Catalog

$autopubs and $autosubs Publish and Subscribe and all associated notation has been
removed

$autoscroll None

$blockcarets None; caret in picture fields is replaced with dotted line

$checkboxsize None

$colheader $showheader, $showhorzheader, $showvertheader

$colorlookup None

$colormap None

42 Chapter 2—What’s Changed?

Attribute Alternative, if available...

$colors None

$controlcallproc $methods; toolbar controls can now contain multiple
methods

$controlinitchoice None

$controlinitdisable None

$controllist $dataname of the list

$controllistcalc $calculation for toolbar control

$controlpos objects in toolbar are listed in $objs for the class

$controls $objs contains all the objects in toolbar class

$datahead the data header object has been removed from all classes
except file classes; its contents are now contained in the
class itself

$dateformats edit the #DFORMS table directly

$decimalpoint None

$defaultsizes None

$defaultwindowcolor None; all windows and buttons have a 3d interface

$dlib $designtaskname sets the design task name

$fieldname $name is the object name of the field, $dataname is the
name of the field or variable for the field

$filedotfieldseparator None

$floating floating report fields have been removed

$functionseparator None

$groupname and $groups $name for a toolbar class, $itoolbars lists the installed
toolbars in the main docking areas

$hasfocus $cfield is the current field

$head the header object has been removed from all classes; its
contents are now contained in the class itself; $datahead for
a file class remains

$hsplitbar window split bars have been removed

$isexport $exportformat sets the data format; default is kEXnone
which means the report does not export its data

$libvars and $libvardefs library variables have been removed and replaced by task
variables contained in $tvars (task variables)

$mixedfieldnames all fields now have mixed case names by default

What’s been removed? 43

Attribute Alternative, if available...

$noadhocs $loadadhocs OMNIS preference that returns whether or not
your serial number allows access to ad hoc reports

$newcontrolbehavior None

$pixheight use $height of the object

$protected None; you can no longer protect a class

$radiobuttonsize None

$reportfonts use field styles to implement cross-platform fonts

$rowsection use a group field or scroll box to implement scrollable field

$thousands None

$showhelpcodes the help data file has been removed

$state $checked sets the checked status of a toolbar control

$tab..., $tabc..., $tabh...,
and $tabr... (table field
notation)

notation for grid field, including $objs and $bobjs
containing the fields and background objects in the grid
field

$toolbar the group of OMNIS toolbars has been removed from the
$root preferences

$toolgroup toolbars are separate classes

$toolowner None

$v2combos None

$visondonotgray None

$vsplitbar window split bars have been removed

$windowfonts use field styles to implement cross-platform fonts

Constants
The following constants have been removed.

Old constant Alternative, if available...

kExternalarea external areas have been removed; use
external components

44 Chapter 2—What’s Changed?

Commands
Several commands have been removed in OMNIS Studio. Some commands are
commented out with the message COMMAND REMOVED BY CONVERTER while
others are removed altogether. The following commands have been removed.

Old command Alternative usage, if available...

Call external with return value Call external Returns command

Call procedure with return value Converted to Call method Returns command
although you should use Do method

Clear format variables when closed Clear class variables in $close() method

Do not clear format vars when closed None

Do not pass event Quit event handler Discard event command

Format variable Declare class variable in method editor

Help message $helptext property for menus and menu lines
or $tooltip for toolbar and window objects

Install hierarchical menu $cascade property for a menu line

Library variable Declare task variable in method editor

Local variable Declare local variable in method editor

New ad hoc report Ad hoc reports are now an OMNIS library

Open window maximized Open window instance /MAX command

Open window minimized Open window instance /MIN command

Other parameters are optional None

Parameter Declare parameter variable in method editor

Print ad hoc report Ad hoc reports are now an OMNIS library

Quit procedure (flag clear) Quit method returns kFalse command

Quit procedure (flag set) Quit method returns kTrue command

Quit to enter data Quit event handler command

Replace standard Design menu None (the Design menu has been removed)

Set design library $designtaskname for the class

What is Obsolete? 45

What is Obsolete?
Objects or commands that are marked OBSOLETE in OMNIS Studio are objects that are
no longer supported in this version and are included for converted libraries only; they will
be removed in the next major release of the product. When creating new libraries, you
should not use anything marked OBSOLETE. You should use an alternative command or
function, or if posssible use the equivalent notation.

Constants
The following data export formats have been removed without replacement. Use one of the
remaining export formats, such as tab-delimited.

Constant

kEXdBase_OBSOLETE

kEXdif_OBSOLETE

kEXlotus_OBSOLETE

kEXsylk_OBSOLETE

Attributes
A few properties (attributes) have been made obsolete. Obsolete properties are marked
“$was_oldname” where oldname is the old name of the attribute. For example, you may
see the property $was_visondonotgray in converted libraries.

46 Chapter 2—What’s Changed?

Commands
In V3, some commands, such as Enable fields and Queue click, used to take a field
number as a parameter. These commands have been made obsolete and replaced with
equivalent commands that take a field name or list of field names as a parameter. Where
possible you should exchange the obsolete commands for the new ones.

The following table lists the commands that have been made obsolete. They appear in the
command list in the method editor under the Obsolete commands group.

OBSOLETE command Alternative usage, if available...

Call method (was Call procedure) Do method or Do code method command

Clear task control method
 (was Clear library control procedure)

rename/remove task $control method

Clear window control method
 (was Clear window control procedure)

rename/remove window $control method

Disable fields field-number Disable fields field-name(s)

Enable field field-number Enable field field-name(s)

Hide design & commands menus Design menu has been removed

Hide fields field-number Hide fields field-name(s)

Load page setup None

Make file class from server table
 (was Make file format from table)

None

Map fields to host Fetch next row var1,var2,... command

Queue click field-number Queue click field-name

Queue double-click field-number Queue double-click field-name

Queue scroll field-number Queue scroll field-name

Queue set current field field-number Queue set current field field-name

Redraw named fields Redraw command or $redraw method

Redraw numbered fields Redraw command or $redraw method

Redraw windows Redraw command or $redraw method

Send to a window field field-number Send to a window field field-name

Set return value Quit method Returns return-value

Set task control method
 (was Set library control procedure)

enter $control method in task class

Set window control method
 (was Set window control procedure)

enter $control method in window class

What is Obsolete? 47

OBSOLETE command Alternative usage, if available...

Show fields field-number Show fields field-name(s)

SNA do not perform default action Quit event handler Discard event

SNA perform a Cancel Quit event handler, Queue cancel

SNA perform a shift-tab Quit event handler, Queue tab (Shift)

SNA perform a tab Quit event handler, Queue tab

SNA perform an OK Quit event handler, Queue OK

SNA perform command Quit event handler Discard event, Call
method

SNA perform default action Quit event handler Pass to next handler

SNA remain on current field Quit event handler Discard event

SNA set current field Quit event handler Pass to next handler,
Do $ctarget.$assign(NewTargetField)

Store window None

Test if command available None

48 Chapter 3—Conversion and Compatibility

Chapter 3—Conversion
and Compatibility

This chapter describes how you convert your application created with OMNIS 7 Version 3
or an earlier version and discusses the compatibility of converted libraries in
OMNIS Studio.

The vast majority of OMNIS applications will convert to OMNIS Studio without error.
However, some complex applications will require attention following conversion. The
trace log reports any errors during conversion and you can use the information in this
chapter to fix your libraries.

Converting your old OMNIS
Applications

OMNIS 7 Version 2 or earlier
If you want to convert an application created with OMNIS 7 Version 2 or earlier you must
convert it to OMNIS 7 Version 3 first and then open it in OMNIS Studio. There is a
demonstration copy of OMNIS 7 Version 3 supplied with OMNIS Studio that you can use
to convert your old applications to V3. You can convert OMNIS 5, OMNIS 7 Version 1,
and OMNIS 7 Version 2 libraries to V3. Having converted your library to V3, you can
convert your library to OMNIS Studio as described in this chapter.

OMNIS 7 Version 3
If you want to convert an application created with OMNIS 7 Version 3 you simply open it
in OMNIS Studio. OMNIS 7 Version 3 libraries are converted to OMNIS Studio
automatically.

WARNING When you open a V3 library in OMNIS Studio, all library files and data files
are converted to OMNIS Studio, and all V3 formats are converted to OMNIS classes.
After conversion you cannot use these converted libraries and data files with earlier
versions of OMNIS. Therefore, make sure you have a secure backup of your application
before you convert it to OMNIS Studio.

Converting Libraries and Data Files 49

Converting Libraries and Data Files
To convert a library created with OMNIS 7 Version 3 you simply open it in
OMNIS Studio.

To convert an OMNIS 7 V3 library

• Make a backup copy of your V3 library

• Start OMNIS Studio and open the Browser

• Select the Library>>Open option in the Browser menu bar and open your library

You cannot drag a V3 library icon onto the OMNIS Studio program icon to open and
convert the library. You must convert a library by opening it in OMNIS Studio using the
Library>>Open option in the Browser. Following conversion you can drag a library icon
onto the program icon to open the library.

When you attempt to open a V3 library in OMNIS Studio you will get the following
message

If you answer Yes to this message and continue the conversion process you will get
another message

The conversion process is complex and it is essential that you have a secure backup copy
of your library before you convert it. Furthermore, after conversion your library file may be
up to 60% larger than before, therefore you need sufficient disk space to accommodate
your converted library. Note that small V3 libraries may not grow at all.

50 Chapter 3—Conversion and Compatibility

If you answer Yes to the second message and proceed with conversion, OMNIS Studio
starts to convert your whole library. While your library is being converted OMNIS Studio
shows you its progress, and displays the Trace Log recording any conversion errors (see
below). For small libraries, containing only a few formats, conversion will not take long.
However for large complex libraries OMNIS Studio may take several minutes to convert
your library.

Note that OMNIS Studio will convert a V3 library that is locked, without warning.
However it will not alert you that the library is locked until it has finished converting the
library.

Converting Data Files
OMNIS Studio will convert data files created with OMNIS 3 Version 3 automatically.
When you open a V3 data file, or your converted library attempts to open an old data file,
you will get the following message

It is essential that you have a secure backup copy of your data file before you convert it. A
very large data file may take several minutes to convert and may require reorganizing.

Old Data Formats
If you have an old data file created with OMNIS 3+, OMNIS Quartz, or OMNIS 5 you
must convert it to OMNIS 7 Version 3 data format before loading it in OMNIS Studio. To
do this, load your old data file in the demonstration copy of OMNIS 7 Version 3 supplied
with OMNIS Studio.

Trace Log
When you convert a library, OMNIS Studio will open the trace log to record any errors
during conversion. Where an error or problem occurs, the converter will insert a comment
“CONVERTER ERROR: Could not convert...” and the trace log will tell you to “Search
class for CONVERTER ERROR to find problem(s)”. In this case, you can use Find and
Replace under the Edit menu to search the specified class for “CONVERTER ERROR”.
Note that you can double-click on a line in the Trace Log to open the class containing the
error, and similarly, you can double-click on a line in the Find and Replace Log to go to
the specified item, including a method line containing the error.

Converting Libraries and Data Files 51

Viewing the Contents of your Converted Library
When OMNIS Studio has finished converting your library it will appear in the Browser as
a single icon.

To view the classes in your library

• Double-click on the library icon

or

• In the Browser, select your library and choose the View>>Down One Level menu
item from the Browser menu bar, or click on the Down One Level button

Another Browser window opens showing the contents, the classes, in your converted
library. You can hide and show different types of class using the Browser Options
available under the View menu.

52 Chapter 3—Conversion and Compatibility

To change the Browser options

• Select the View>>Browser Options menu item on the Browser menu bar, or press
F7/Cmnd-7

You can select Include All types of class in the Browser, or click the Exclude All and
check only those classes you want to display. Note that the default is to display all the
available classes, except the system tables.

Default Internal Library Names
When you open your library in OMNIS Studio the disk file name of the library becomes
the default internal library name. When you convert a library the disk file name becomes
the internal library name of the converted library.

You use the default internal library name to reference classes outside the current library
using the notation LIBNAME.CLASSNAME. Even if you rename your library file on disk
the default internal name is unchanged. However, you can assign a new name to the
$defaultname library preference.

Format Conversion
When you convert a library to OMNIS Studio all V3 formats are converted to the new
OMNIS class types automatically. For example, a V3 file format will convert to a new file
class, and a report format will convert to a new report class.

If your old library contains a STARTUP menu, OMNIS Studio converts it to a new menu
class called STARTUP and adds a task class called Startup_Task to your library. The
startup task is run automatically when you open your library and installs the STARTUP
menu.

If your old library contains toolgroups, these are removed by the converter and replaced
with new toolbar classes with the name T_OLDWINDOWNAME or T_OLDMENUNAME

depending on whether they were associated with a window or menu format.

Please refer to the remainder of this chapter for details about specific types of format and
library objects and how they convert in OMNIS Studio.

Format Data
You must convert V3 libraries as a whole: you cannot convert individual V3 formats to the
new class types by copying a V3 format to an OMNIS Studio library. The notation
$classdata.$assign(), and functions cdif() and cundif() will generate an error if the source
of the data is a V3 format.

Menu Formats 53

Format and Class Names
OMNIS Studio does not allow trailing spaces in class names, and notation containing such
names will fail. Therefore you should strip out the trailing spaces. Generally you should
avoid putting spaces and non-alphanumeric characters in all class names.

Menu Formats
When you convert a V3 library to OMNIS Studio each menu format is converted to a new
menu class of the same name. The new menu class contains two sets of methods: Line
methods and Class methods. The procedures in the old menu format become Class
methods in the new menu class. Each Line method in the new menu class calls the
appropriate class method.

The Procedure line 0 in the old menu becomes the $construct() method in the new menu
class, which is executed when the menu is installed. The new menu class has the same
number of menu lines as the original menu format and the text and other properties, such
as initially checked, and initially enabled, also remain the same. The format variables in
the old menu format become class variables in the menu class.

Calls by name to Procedure 0 of an old menu now fail because the method is now called
$construct().

The Disabled if no current record and Quit all when selected menu line options are
removed without replacement.

With previous versions there were times when a menu was installed and Procedure 0 was
not called, for example, if it was installed as a hierarchical menu. This is no longer the
case, the $construct() method is always executed whenever a menu is installed, that is, a
menu instance is constructed. For example, the $construct() method of hierarchical and
context menus is called when the instance is created.

Call procedure command
In V3 you may have used menu procedures as general-purpose procedures that you called
from elsewhere in your library. In OMNIS Studio the Call procedure command has been
renamed Call method and is marked as OBSOLETE, but continues to work in converted
libraries. The command now uses a method name and not a procedure number as before.
All Call procedure commands which used a procedure number are changed wherever
possible to Call method MethodName, although some failures may occur as follows: where
a method in a different library is called, when indirection is used, where ambiguous names
are involved, where an old window procedure has no name and was called by number
alone, and where a numeric name or a name containing special characters is used. In these
special cases the original Call procedure command will now fail.

54 Chapter 3—Conversion and Compatibility

It is also possible that your converted library will contain two or more methods with the
same name, although in V3 they may have had different procedure numbers.
OMNIS Studio converts all procedure numbers to method names so you will have resolve
duplicate names manually.

Procedure Numbers
To help you debug a converted library you can show the V3 procedure numbers using the
View>>Show V3 Method Numbers menu option in the method editor menu bar. This
option places a number in parentheses next to each method name. This facility is for
converted libraries only; you should not use method numbers to call methods, use method
names.

Menu Commands
In OMNIS Studio you must specify a menu instance name and not the class name for most
menu commands. When you use the Install menu command you specify the name of the
menu class to be installed and you can assign an instance name. If you omit the instance
name it defaults to the class name.

The Replace standard menu, Remove menu, Test for menu installed, Enable menu,
Disable menu, Enable menu line, Disable menu line, Check menu line, and Uncheck menu
line commands all take an instance name and not a class name.

References to all standard menus beginning with an asterisk, such as *File, are no longer
supported. Therefore all menu commands that refer to standard menus will be commented
out. For example Install menu *Utilities will be commented out with the line COMMAND
REMOVED BY CONVERTER.

The Install hierarchical menu command has been removed and the converter will
comment out any occurrences. It has been replaced by the $cascade property which is a
property of a menu line. The converter will set the $cascade property to the menu class
name for the appropriate menu line. To view or set the $cascade property, open your
converted menu class, click on the menu line that contained the hierarchical menu, open
the Property Manager. The cascade property appears under the General tab for the menu
line.

The Build installed menus list command now builds a list of current menu instances
installed on the main menu bar.

The $construct() method of any menu, including the startup menu, is always called when
the menu is instantiated. Therefore the “Do not call startup procedure” option has been
removed from the Open library command.

Library Control Procedures and Tasks 55

Menu Notation
LIBRARY.$menus contains all the menu classes in your library, and $root.$imenus
contains all the current menu instances, listed in the order they appear on the main menu
bar. Hierarchical, popup, window menus, and context menus are not included in $imenus.

A menu class and a menu instance have the $objs group containing the menu lines in the
menu class.

STARTUP Menu and Startup Task
When you convert a V3 library containing a STARTUP menu, the menu format is
converted to a new STARTUP menu class, and a new task class called Startup_Task is
added. These new classes combine to give the same functionality as the old STARTUP
menu format.

The procedures in the old STARTUP menu format are converted into methods and placed
in the new STARTUP menu class. The procedures in the old menu format become Class
methods in the new menu class. Each Line method in the new menu class simply calls the
appropriate class method.

The Startup_Task is a special type of class. A startup task is opened automatically and the
$construct() method is executed when you open a library. In converted libraries the
$construct() method of the Startup_Task contains an Install menu STARTUP command
that installs the new STARTUP menu class. You can put any code you want to run when
your library is opened in the $construct() method of the startup task.

Library Control Procedures and Tasks
Library control procedures are no longer supported and are replaced by task $control()
methods. The Set and Clear library control procedure commands are renamed to Set and
Clear task control method and are marked as OBSOLETE. This causes few compatibility
problems if you create a single startup task for your library and open all instances in this
task. However the All libraries and No windows open options have been removed which
may cause compatibility failures when you convert your library.

Library and Format Variables
When you convert a V3 library to OMNIS Studio, all library variables are converted to
task variables, and all format variables are converted to class variables. Local and
Parameter variables are unchanged and are inserted in the appropriate method.

The Library variable, Format variable, Local variable and Parameter commands have
been removed without replacement. You no longer declare variables in your code using a

56 Chapter 3—Conversion and Compatibility

command, rather you add a variable name and definition to the variable pane in the
method editor. Variables defined in procedures in your old library are removed and listed
in the variable pane for the appropriate class or method.

The Clear format variables when closed and Do not clear format vars when closed
commands have been removed without replacement. When you convert your library they
are commented out by the converter. However you can use a Clear class variables
command in the $close() method for a window to clear class variable values.

Variables Notation
The notation groups $libvars and $libvardefs have been removed. The notation groups
$fvars and $fvardefs are renamed $cvars and $cvardefs. Conversion only happens for
tokenized code and not for literals. For example, if $fvars occurs in a literal within square
brackets it will not be changed by the converter.

Changing Variable Types
In OMNIS Studio whenever you try to enter a variable with the same name as an existing
variable of another type, the following message is displayed

where [Class] can be any of variable type.

If you answer “Yes” the original variable is removed, and all tokenized references to it are
changed to reference the new variable. This occurs for all types of variable. If you answer
“No” OMNIS Studio lets both variables coexist.

Generally you should avoid using the same name for variables of a different type.

Window Formats and Classes 57

Window Formats and Classes
When you convert a library in OMNIS Studio, all window formats are converted to
window classes. All the window fields and objects in the old window format are converted
and added to the new class, and all procedures are converted to methods. When you open a
window class in OMNIS Studio you create an instance of the class.

Window Instances
In OMNIS Studio you can open multiple instances of the same window class providing
they are given unique names. You use the instance name and not the class name to
identify an open window with the notation or for most window commands. The Open
window command has been renamed to Open window instance command. When you open
a window using this command or the notation you can assign it an instance name. If you
omit the instance name the class name is used by default, but the same name cannot be
used twice. When you use the Open window instance command you can add /* after the
class name to create an instance name on the fly, and repeated calls to the command Open
window instance MyWin/* will assign a unique name to each window instance. However
you can open a window instance using the $open() method and return a reference to each
instance created. For example, Do MyWin.$open(‘*’,kWindowCenter,param1,param2)
Returns WinRef will open the window MyWin in the center and return a reference to the
instance, assuming WinRef is of type Item reference.

The Open window maximized and Open window minimized commands have been removed.
In their place, the Open window instance command now takes a /MAX and /MIN
parameter to maximize or minimize the window instance. Also the /STACK and
/CENTER parameters have been shortened to /STK and /CEN.

The Close window, Store window, Test for window open, Queue bring to top and Queue
close commands take a window instance name and not a class name as parameter. For
compatibility you can specify a full class name, such as libname.windowname. In this case
the instance name is taken as the simple name of the class.

The Build open window list command builds a list containing the names of the open
window instances. The $name property of an open window now returns its instance name
and not the class name.

The object group $winds has been renamed to $iwindows, and contains all the currently
open window instances in the order in which they were opened. $cwind contains the name
of the current window instance, and $windows contains all the window classes in your
library.

58 Chapter 3—Conversion and Compatibility

Window Procedures and Methods
The procedures contained in an old window format are converted to methods in the
converted window class, but they are separated into Field methods and Class methods.
Each field can now contain multiple methods and the class itself has its own set of
methods.

The converter copies each numbered procedure for existing fields and creates a new field
method and removes the original procedure in the converted window class. This means
that any code which called them directly will now fail. All the remaining methods not
belonging to fields are placed in the class methods for the window class.

In OMNIS Studio you create and edit field and class methods in separate method editors.
You can right-click on a field or window background to edit the field or class methods for
the window class. As a shortcut, you can double-click on a field or window background to
open the field or class methods for the window class. The method editor title bar for class
methods is named “Window ClassName Class Methods” and for field methods it is named
“Window ClassName Field Method FieldName”.

In V3 the name of a procedure was taken from the field name or text for a pushbutton.
When you changed the name or text of a field the procedure name was changed
automatically. This functionality has been removed in OMNIS Studio, although the initial
field name is still derived from the name of the field. Since methods are now identified by
name it’s not appropriate for OMNIS to change method names once they’ve been defined.

There will be some compatibility failures with notation which alters methods for a
window. For example, notation such as

Do $cwind.$methods.xxx.$methodtext.$assign()

will now alter the window class method and not the field method, and

Do $cwind.$objs.xxx.$method.$methodtext.$assign()

will alter the field method and not the window class method.

Field and Button Procedures
Events for fields and other window objects are now controlled by a method called $event()
contained in the field; this is called the event handling method. All procedures behind
pushbuttons, button areas, and so on, are converted to $event() methods and placed in the
Field methods for the field or window object. The converter adds an $event() method to
most types of field, but it may not contain any code.

Initialization Procedures and $construct()
In OMNIS Studio classes that you can instantiate, including window, report, menu, and
toolbar classes, can contain a $construct() method and a $destruct() method. These

Window Formats and Classes 59

methods handle the construction and destruction of the window instance. When you
convert your library, the converter renames the window initialization procedure or
Procedure 0 (line zero in procedures for the window) to $construct(). This method is
executed automatically when you open the window instance. Consequently if elsewhere in
your library the initialization procedure was called by name, this will fail after it is
renamed $construct(). If your window initialization procedure contained a Set window
control procedure command, this is retained for backward compatibilty but marked as
OBSOLETE and continues to set up the specified method as the window control method
containing your old event handling code.

There may be some compatibility problems due to $construct() being called directly as the
instance is constructed unlike the V3 initialization procedure which was pushed on the
stack. This may cause problems with libraries that make assumptions about the order and
timing of events in your library.

Window Control Procedures
In V3 you could specify a particular procedure to be a control procedure for either a
window format or a library using the commands Set window control method and Set task
control method respectively. These commands are retained for backward compatibility in
converted libraries, but are marked OBSOLETE and you should not use them in new
libraries.

In OMNIS Studio events for a window field are handled in a method called $event()
placed behind the field. Events for the window itself are also handled in a method called
$event() that you add to the window class methods. Therefore the $event() method for a
window is the equivalent of the V3 window control procedure. Windows can also have a
$control() method which handle events passed to it from the $event() methods for fields in
the window. Furthermore tasks can have a $control() method which handle events passed
to it from window $control() or $event() methods.

For converted libraries only, a window control procedure set up using the Set window
control method OBSOLETE command will continue to work, assuming $v3events is
kTrue, and will override a $control() method in the window if there is one.

See the OMNIS Programming manual for a complete description of the new event handling
system.

Window Field Names
In OMNIS Studio you should refer to a window field using its object name, that is, the
name specified in its name property, and not its dataname, field number, or ident number.
You should specify the data name of the field, that is, the variable or file class field name
behind the field, in the dataname property for the field. To refer to a field on a window
you can use its object name, windowname.name, or the full notation for a window field.

60 Chapter 3—Conversion and Compatibility

The windowname is the name of the window instance. A simple fieldname parameter is
assumed to refer to a field on the topmost window instance, whereas the notation
windowname.fieldname identifies a field on a particular window instance. Also you can
use the full notation or square bracket notation to refer to any field or window instance.

This change affects a number of commands including the Test for field visible and Test for
field enabled commands which now take a window field name. When you convert a
library containing these commands the field numbers are converted correctly.

The SNA set current field, Queue set current field and Send to window field commands
now take a window field name. These commands are converted correctly if they used a
field number. However, if they specified a dataname or used indirection they will not be
converted and are left unchanged as OBSOLETE commands.

The commands Hide Fields, Show fields, Enable fields, and Disable fields now take a
window field name or list of field names instead of a field number or range of numbers.
The old commands have been made OBSOLETE and replaced with equivalent commands
that take a field name or list of field names as a parameter. These commands are converted
correctly if they used a single field number, that is, the specified field number is converted
to a window field name. However, if they specified a range of fields they will not be
converted and are left unchanged as OBSOLETE commands.

Table fields
In V3 you could implement a group field using a table field with its rowsection turned off.
Support for rowsection has been removed. Such group fields convert to the new Group
field type containing the objects in the old table field.

Exceptions for table fields, now renamed grid fields, are implemented in a different way in
OMNIS Studio. Existing grid field exceptions in converted libraries will no longer work.
The new grid field exceptions are described in the OMNIS Programming manual in the
Window Programming chapter.

Picture Fields
Block carets in picture fields have been replaced by a dotted line. When a picture field gets
the focus it displays a dotted line around its border.

Window Redrawing
The window redrawing mechanism has changed in OMNIS Studio. The appearance of an
open window can change when you use notation or when you use a Redraw command to
show the current value of a field or variable. Such changes in appearance were queued in
V3 until the window was refreshed, that is, V3 waited for user input or for a repeat, while

Window Formats and Classes 61

or for loop to be executed. Consequently, some windows were not refreshed when required
or they were refreshed too often while executing a loop.

In OMNIS Studio the following changes have been made that affect window redrawing.

q A window is not redrawn when you change the value contained in a field’s dataname

q Refreshes no longer happen at While, Repeat or For loops

q The old Redraw commands are replaced by a single Redraw command

q a $redraw() method has been added for window fields, open windows, and $root

q all windows currently open are always refreshed when OMNIS stops and waits for
user input, including at Enter data and when an OK or Yes/No message is displayed

$redraw() method
Window fields, open windows, and $root now contain a $redraw(setcontents,refresh)
method. $root.$redraw() redraws all window instances currently open. The setcontents
parameter causes the contents of the field, window or all windows to be reset, and the
refresh parameter causes the window or windows to be refreshed. If you omit the
setcontents and refresh parameters, OMNIS defaults to $redraw(kTrue,kFalse), which
means the contents of the field is reset, but the change would not be visible.

Redraw commands
The various Redraw commands in V3 are replaced by a single Redraw command which
accepts a list of fields or window names. The list of names can contain simple field or
window names or names prefixed with a library name. The Redraw command resets the
contents of the specified fields or windows, and if you check the Refresh now option the
window or windows containing those fields are redrawn immediately.

The Redraw windows, Redraw named fields, and Redraw numbered fields commands are
marked as OBSOLETE and you should not use them in new libraries. The Redraw lists
and Redraw menus commands are unchanged.

Calculate command and Redraw field
The Redraw field option has been removed from the Calculate command. When you
convert a library that uses this option the converter will insert a comment after the
Calculate line. You should replace this comment with the appropriate Redraw command.

62 Chapter 3—Conversion and Compatibility

Toolgroups and Toolbars
In V3 toolbar controls were stored as toolgroups within a window or menu format. In
OMNIS Studio toolgroups have been removed. Groups of toolbar controls are stored as
separate toolbar classes.

The converter removes each toolgroup from window or menu formats and converts them
to individual toolbar classes called T_OLDWINDOWNAME or T_OLDMENUNAME,
where OLD..NAME is the name of the converted window or menu format. Existing
references to the old V3 toolgroups are changed to reference the new toolbar classes. The
method behind each control in the new toolbar class calls the corresponding method in the
old window or menu format. For example, a button in a converted toolbar class will
contain an $event() method containing a Call method to the appropriate method in a
window or menu class.

Events
OMNIS Studio introduces a completely new event handling mechanism that supersedes
the V3 events mechanism. In OMNIS Studio an event is reported as a series of parameters
to the event handling methods contained in an object. For example, a click on a field is
reported as an evClick event and is sent to the $event() method behind the field. Event
handling methods behind the objects in your library can contain the On command plus an
event code to detect and handle specific events. For a complete description of the new
event handling system, see the OMNIS Programming manual.

There is a new library preference called $v3events that enables or disables the old events
system. In converted libraries $v3events is kTrue by default, which means your libraries
will function as before. For example, in converted libraries the SNA commands and old
message variables such as #BEFORE and #AFTER continue to work.

If you want to make sure v3 events are enabled in your converted library, you can insert
the following line in the $contruct() method of the Startup task

Do $clib.$prefs.$v3events.$assign(kTrue)

If you create a new library in OMNIS Studio, $v3events is turned off and the old events
system and message variables will not work.

The message variables, such as #CLICK, #AFTER, #MOUSEENTER, will work in
converted libraries, but they have been removed from the Catalog and you should not use
them in new libraries.

Note that the global hash variables such as #L1, #S1, #1..#60 still appear in the Catalog
and continue to work as before, but you should avoid using them in new libraries. For

Events 63

example, instead of using #L1 you can declare a list variable in a task, class, instance, or
method to give you a list of the required scope.

Control Procedures and Events
In OMNIS Studio events for a window field are handled in a method called $event()
placed behind the field. Events for the window itself are also handled in a method called
$event() that you add to the window class methods. For example, events such as evToTop
are handled in the $event() method for the window. The $event() method for a window is
the equivalent of the V3 window control procedure. Windows can also have a $control()
method which handle events passed to it from the $event() methods for fields and objects
in the window. Furthermore tasks can have a $control() method which handle events
passed to it from window $control() or $event() methods.

For compatibility the Set window and Set task control method OBSOLETE commands
continue to work in converted libraries and will override their corresponding $control()
methods if present. You can comment out the old Set window and Set task control method
OBSOLETE commands and enter your own $control() method for a window or task class.

Field Events
In V3 field events were sent to the procedure behind the field, then to the window control
procedure, and then to the library control procedure. In OMNIS Studio events for a
window field are sent to the field method called $event(), to the window $control()
method, and to the task $control() method. The $event() and $control() methods can
contain On commands to handle specific events at the appropriate level.

In OMNIS Studio, a control method is called only if the field that received the original
event doesn’t contain a handler for that event, or if the field event method explicitly passes
control to the window control method. You can use the Quit event handler command with
the Pass to next handler option to pass an event up the event chain.

The new event mechanism contains only one event code evBefore to detect when the
cursor enters a field; you cannot distinguish #BEFORE1 and #BEFORE2 as in V3.

Window Events
Window classes can contain a method called $event() which is used to detect events in the
window, such as clicks on the window background. Window events are sent to the $event()
method and then to the task $control() method. To help avoid compatibility failures, if
$v3events is on and there is no $event() method in the window class, window events are
sent to the window $control() method.

#TOTOP and #BEFORE are now simple notification messages so #ER values are no
longer sent with these.

64 Chapter 3—Conversion and Compatibility

The new event mechanism contains only one event code evToTop to detect when a
window comes to the top; you cannot distinguish #TOTOP1 and #TOTOP2 as in V3.

Menu Events
In V3 some events associated with menus were sent to the library control procedure if no
user windows were open. These events are no longer sent. Each menu line contains an
$event() method which is used to detect events for the menu line, that is, $event() is called
when the menu line is selected.

Enter Data Events
The disabled field events with #EM=6, #EM=7 or #ER>4000 are no longer reported and
have no equivalent new event code. However #ER>3000 is still reported as an equivalent
to evMouseDown on a disabled field. When a new event has no V3 equivalent #EM is sent
as zero.

The #ER values in the range 5003 to 5009 are no longer reported for the OMNIS database
buttons (Next, Previous, and so on), instead these generate an evStandardMenu event,
which causes #ER to be in the range 16002 to 16008.

OMNIS Database Events
In converted libraries, the database events, such as #NEXT and #PREVIOUS, still work as
before provided the $v3events preference is turned on.

SNA Commands
In converted libraries when $v3events is on you can use the SNA commands for events
which support SNA in V3. However for new types of events SNA is not supported. You
should avoid using the SNA commands in your event handling methods. To simulate their
functionality, you should use the Quit event handler(Discard event) command to discard
an event and perform whatever next action is required.

To assist with compatibility, when you use an SNA command in an event handler the
current event is discarded (with the exception of SNA perform default action). This rule
applies only for those events which support SNA in V3 and continue to support it in
OMNIS Studio. For all new types of event the SNA commands are ignored.

Popup Menus and Events
In OMNIS 7 Version 3.5, #CLICK was called on the button down event rather than the
mouse up event, as in older V3 versions. This ensured that the Popup menu command
worked inside a window control procedure, especially under MacOS. In OMNIS Studio
#CLICK and evClick, its replacement, both occur on the mouse up event. Therefore popup

List Variables 65

menus implemented in V3.5 no longer work in OMNIS Studio. However in
OMNIS Studio you should use context menus to implement menus that poup over
windows or window objects.

List Variables
In V3 each list column referenced a field or variable name, and commands such as Load
from list copied the column values into their field or variable names. These variable names
are held in the $dataname for the column, which is the equivalent of the V3 $fieldname.
Lists defined in V3 still have datanames, but lists with a class or columns defined using
$cols.$add(column_name,type,subtype,length) no longer have datanames.

If you use Load from list, Replace line in list, and so on, for a list without datanames it is
necessary to use parameters with these commands to denote where the values are to go to
or come from. For example

q list_name.column_name
refers to the data item stored in the specified column for the current row. This is
standard notation very much like ‘table_name.column_name’.

q list_name.row_number.column_name
can be used instead of list(“column_name”,row_number) to refer to a particular data
item in a list and avoids having to quote the column name.

The different meanings of “list_name.column_name” and “list_name.row_number” are
potentially ambiguous and OMNIS Studio resolves the ambiguity by taking character
values to be column names and everything else to be row numbers. This is mainly a
problem with square bracket notation. Therefore, if a character variable such as CHAR1
contains a row number you must use “LIST.[CHAR1+0]” and not “LIST.[CHAR1]”.

The items “list_name.column_name” and “list_name.row_number.column_name” are
notation so, in common with all notation, if the list is a file class field you must use
“file_name.field_name” to refer to the list and not “field_name”. This is irrespective of the
state of the $uniquefieldnames library preference.

Storing item references in a list
OMNIS Studio lets you store item references in a list. This feature introduces some minor
incompatibilities, which apply to both list and row variables.

If an item reference is specified as a list column using the Define list or Define list from
table commands, or the $define() or $definefromtable() methods, the column type for that
column becomes item reference. The values stored in, or extracted from, item reference
columns are obtained using Set reference, rather than using the $assign() method. This
applies to:

66 Chapter 3—Conversion and Compatibility

q adding lines to a list using Add line to list, Insert line in list, Replace line in list or
$assigncols()

q loading a value from a list using Load line from list or $loadcols()

q $makelist() if a column which evaluates to an item reference is assigned

q $appendlist() and $insertlist() when loading the column values for columns of type
item reference

Individual list elements which belong to a column of type item reference act in the same
way as an item reference variable. So you use the Set reference command to set up the
item reference (if not already set up by Add line to list, $assigncols(), and so on) and
normal usage refers to the referenced item. Therefore

Calculate FRED as ‘OBJECT1’

Set reference MyRef to $cinst.$objs.FIELD1

Add line to list LIST (FRED,MyRef)

Report Formats and Classes
In OMNIS Studio when you print a report class you create an instance of the report.
Report instances contain a $objs and $sorts group containing the objects and sort fields for
the report instance. You can use $sorts to determine when subtotal and page breaks will
occur, although the report instance itself does not carry out the sorting. You cannot use the
$add() and $remove() methods on a report instance since the report has started printing.

Measurement systems for a report instance are slightly different than for a report class.
Measurements for the instance are held in output device coordinates and then rounded to
inches or cms.

Report Totals
In V3 the capability existed to include a field aggregate value in a calculation or square
bracket notation in a subtotal or total section by simply using the name of the field. A
limitation of the V3 implementation was that each field could have only one type of
aggregate calculated.

In OMNIS Studio each report field contains the methods $total(), $average(),
$minimum(), $maximum(), and $count(). To use these aggregate methods, you specify the
dataname of the field followed by the method name. For example, myField.$total()
provides the running subtotal and total values for the field, and myField.$average()
provides the average for the field. These methods only work for subtotals and totals
sections, and replace the need to use a calculation or square bracket notation.

Help Messages 67

Record and Page Count Variables
The property $reccount has been added replacing #R. It contains the number of record
sections printed. You can use $reccount.$total() in a subtotal section to obtain the number
of records included in that set of subtotals.

Also $pagecount has been added replacing #P. It contains the page number of the current
printing position, and is the same as $cposition.$page.

In addition $subvariable has been added replacing #SUBFLD. It holds the name of the
subtotal variable when a subtotal or subtotal header section is being printed.

Export Formats
The report export formats kEXdif, kEXsylk, kEXdBase, and kEXlotus have been marked
as OBSOLETE and you should not use them in new libraries. The $exportformat property
now takes kEXcommas, kEXtabs, kEXopl, and kEXodt only. Note that you cannot change
the export format once the report has started printing.

Report Fields
The Data Field Name of a report field is now the dataname and the corresponding notation
is changed from $fieldname to $dataname. For a report field, $dataname is the variable or
file class field name of the report field. For a report sort field, $dataname returns the name
of the variable being sorted.

Help Messages
The Help message command has been removed. However, window fields contain the
tooltip property and menu lines contain the helptext property in which you can enter short
descriptive messages. When you convert a library, help messages behind window fields are
transferred to the tooltip property for each window object, and messages contained in
menu formats are converted to the helptext property for the new menu class and each
menu line.

68 Chapter 3—Conversion and Compatibility

Icons
The icon data file supplied with OMNIS Studio, called OMNISPIC.df1, contains the icons
used throughout the OMNIS Studio development environment and in your own window
fields and toolbar controls. Each icon in the icon data file has a unique ID. When you want
to add an icon to an object you set its $iconid property.

OMNIS Studio provides an icon editor that lets you create your own icons for picture
buttons, toolbar controls, and so on. You should not edit OMNISPIC.df1 or add your own
icons to this data file, rather you should add your own icons to a separate data file called
USERPIC.df1. If you edit the icons or change the IDs in OMNISPIC.df1 the correct icons
will not appear in OMNIS Studio or your libraries.

The OMNISPIC.df1 data file supplied with OMNIS Studio has a completely different
format from the one supplied with OMNIS 7 Version 3. Therefore you cannot use the old
OMNISPIC.df1 data file in OMNIS Studio unless you convert it to the new format.

The icon data file called USERPIC.df1 supplied in the Icons folder is the old
OMNISPIC.df1 file converted to the new format. This ensures that your converted
libraries have the correct icons for all picture buttons and other controls. However
following conversion some objects in your library may have the wrong icons since the
OMNISPIC data file gets priority over USERPIC in ID conflicts.

If you haven’t changed the old OMNISPIC.df1 file at all you don’t need to do anything,
that is, ignore the following section. However if you’ve changed your old OMNISPIC.df1
file or added icons to it, you will need to convert it and replace the USERPIC.df1 data file
supplied in OMNIS Studio. Before you convert your old OMNISPIC.df1 file, make sure
you have a secure backup.

To convert your old OMNISPIC data file

• Quit OMNIS Studio

• Remove or rename the USERPIC.df1 file supplied with OMNIS Studio in the Icons
folder

• Restart OMNIS Studio

• Select the Tools>>Icon Editor option on the main menu bar

• Select the File>>Convert Old OMNISPIC option in the Icon Editor

• Find and select your old OMNISPIC.df1 file

Colors 69

• Go to the Icons folder in the main OMNIS folder and save the converted file as
USERPIC.df1

• Restart OMNIS Studio

When you restart OMNIS Studio the USERPIC.df1 file will be loaded automatically. If
you want to add icons to OMNIS Studio you should add them to the USERPIC.df1 data
file or #ICONS in your library, as described in the Using OMNIS Studio manual.

OMNIS icon data files now support full page icons in which you specify their size.

Colors
In V3 the color of an object was stored as a number between 1 and 272 corresponding to a
color in the OMNIS color system table. The #COLORS system table and all associated
notation has been removed. Colors are now represented using RGB values, therefore an
object stores its color as an RGB value. All code in your old library that tries to set the
color index of an object will now fail, and the color of some objects will be different in
your converted library.

In OMNIS Studio you can use the color constants, which represent specific RGB values, to
set the color of an object. For example, to make an object yellow you can use the kYellow
constant, or set its RGB value to 255,255,0. In OMNIS Studio an object cannot be
transparent, that is, it cannot be set to have no color; most window objects default to
kDefaultColor, kColor3dFace, or kColorWindow which ensures the objects have the
correct color, particularly under different operating systems.

Graphs
External areas have been removed in OMNIS Studio, and are replaced by external
components. Consequently any graphs in your old library will be removed. The converter
cannot convert the graphs in your library, therefore you will have to replace them with
graph external components available in the Component Store.

Ad hoc Reports
The V3 ad hoc report engine has been removed from the core product and replaced by a
separate library which you can load and use like any other library. The new ad hoc report
library will convert your old ad hoc report files, although some of the formatting will be
lost. Fields in ad hoc reports now use the $formatmode and $formatstring properties, and
the converter will set these properties for you depending on the type of field.

70 Chapter 3—Conversion and Compatibility

Note that ad hoc reports are stored as library files, with the .AHR file extension, therefore
when you open an old ad hoc report file OMNIS will prompt you to convert the library.

DAMs and External Names
All Data Access Modules, or DAMs have been renamed in OMNIS Studio; their names
now begin with the letter “D”. For example, the Oracle DAM is now called Doracle.dll
under Windows, or dORACLE under MacOS. When you convert a library all DAM names
are changed automatically, but you may need to change any references in strings or
elsewhere in your library. For example, the Start session command converts to the new
names. All DAMs are found in the EXTERNAL folder.

Likewise all externals, including extended command and function packages, have been
renamed in OMNIS Studio; their names now begin with the letter “X”. OMNIS Studio
loads certain externals automatically so you don’t need to make any changes, but you may
need to change any references to externals in your own libraries. If an external is missing
or cannot be found references to it will fail causing a runtime error.

Commands Removed by Converter
When you convert your library the converter will remove certain commands without
replacement. See the What’s been removed section for a complete list of commands that
have been removed.

The converter will comment out any commands that have been removed in
OMNIS Studio. For example the commands Other parameters are optional, and Clear
class variables when closed have been removed and will now appear in your code like this

; Other parameters are optional ;; COMMAND REMOVED BY CONVERTER

; Clear class variables when closed ;; COMMAND REMOVED BY CONVERTER

Checking Methods in a Converted
Library

You can check the methods in a converted library using the method checker. The method
checker is available under the Tools menu on the main OMNIS menu bar. It can check the
code in a converted library for syntax errors, unused variables, methods without code, and
commands that are removed by the converter.

Note that the method checker does not correct the code in a converted library
automatically, it simply reports any errors and potential problems in your code.

Checking Methods in a Converted Library 71

You must open your library in OMNIS Studio to convert the library before opening it in
the method checker. When you open the method checker it will load your converted
library, and any other libraries you have open.

To check the methods in a converted library

• Select the Tools>>Method Checker menu item from the main OMNIS menu bar

• Double-click on your converted library to open the Select Classes dialog

• Select the classes in your converted library that you want to check, or click on the
Select all classes button

• Click on the Check button to start checking

The method checker works through the classes you selected displaying their statistics in
the Method Checker Error Log. You can cancel checking at any time by pressing Ctrl-
Break/Cmnd-period.

When checking is complete, you can sort the log by clicking on one of the headers in the
list. You can print the log or save it to a text file. You can show a summary of the errors
for each class by clicking on the Show Summary button.

The method checker searches for many different problems, but for converted libraries the
following error messages may apply. For a complete list of error messages, see the
OMNIS Programming manual.

Missing extended command or function
A missing extended command or function was encountered, either not loaded or installed:
these show in your code beginning with the letter “X”. Your converted library may contain
a reference to an extended command or function that has been removed in OMNIS Studio.

Class variable with the same name as a task variable
Could cause precedence problems at the class level.

Named method with no code
Check to see if this method is required. The converter removes certain commands no
longer supported in OMNIS Studio leaving empty methods. OMNIS Studio also adds a
$construct() method to each class which at this stage may contain no code.

Obsolete command
You should not use obsolete commands: remove them from your code. For example, you
can replace Call method with Do method or Do code method.

Command removed by converter
In converted libraries certain commands are commented out: you may need to enter an
alternative command.

72 Chapter 3—Conversion and Compatibility

Reference to hash variable
Avoid using hash variables: replace with variable of appropriate scope.

Index 73

Index
#CLICK, 62, 64
#COLORS system table, 37, 69
#NEXT, 64
#PREVIOUS, 64

$construct() method, 13, 53, 58
$destruct() method, 13
$event(), 63
$head, 39
$redraw() method, 61
$root

Viewing $root in the Notation Inspector,
21

$v3events, 62

Ad hoc reports, 37, 69
Attributes

Obsolete, 45
Removed, 41
Renamed, 33

Browser, 18

Calculate command
Redraw field option, 61

Call procedure command, 53
Catalog, 27
Changes

What’s Changed?, 31
Checking methods in converted libraries, 70
Class methods, 53
Classes, 6, 11

Viewing them in the Browser, 18
Code classes, 16
Color system table, 37, 69
Commands

Obsolete, 46
Removed, 44
Removed by converter, 70
Renamed, 35

Compatibility, 48
Component Store, 19
Components

Viewing them in the Component Store, 19
Constants

Obsolete, 45
Removed, 43
Renamed, 34

Context menus, 24
Control procedures, 55, 59, 63
Conversion, 48

Data files, 50
Events, 62
Formats, 52
Libraries, 49
OMNIS 7 Version 2 or earlier, 48
STARTUP menu, 55
Toolgroups, 62
Using the trace log, 50

Converting your old OMNIS applications, 48

DAMs, 70
Data File Browser, 29
Data files

Converting, 49
Database events, 64
dataname property, 59
Default internal library name, 52
Design menu, 38

Enter data events, 64
Events, 10, 62
Export formats, 67
External areas, 37
External commands

Renamed, 36
External names, 70

Field events, 63
Field names, 59
Field styles, 15
Format header object, 39
Format variables, 55
Formats, 31

Conversion, 52
Functions

74 Index

Renamed, 32

Graphs, 37, 69
Grid fields, 14
Group fields, 14
GUI, 18

Hash variables
Removed, 39

Help data file, 38
Help message command, 67
Helptips, 26

Icon editor, 68
Icons, 68
Inheritance, 10
Inheritance Tree, 28
Initialization procedures, 58
Install hierarchical menu command, 54
Instances, 7
Internal library names, 52
Item references, 65

Libraries, 6
Converting, 49
Viewing them in the Browser, 18

Library components, 19
Library control procedures, 55
Library variables, 55
Line methods, 53
List fields, 14
List variables, 65
Lists

Store Long Data option, 37

Menu classes, 16, 53
Menu commands, 54
Menu events, 64
Menu formats, 53
Menu notation, 55
Messages

in reports, 15
Object Orientation, 9

Method checker, 70
Method Editor, 22
Methods, 6, 22
Modify menus, 38
Modify report fields, 14

MSMail, 39

name property, 59
Notation Inspector, 21

Object orientation
and Events, 10
in OMNIS Studio, 5
Inheritance, 10
Libraries and Classes, 6
Messages, 9
Properties and Methods, 6
Tasks, 8
Variables, 7

Obsolete, What is, 45
OMNIS Studio new GUI, 18
OMNIS Studio object orientation, 5
Open window command, 57
Option-clicking

under MacOS, 31

Page panes, 14
Picture fields, 60
Popup menus, 64
Procedure 0, 53
Procedure numbers, 54
Procedures, 31, 53, 58
Properties, 6

Viewing Properties in the Property
Manager, 20

Property Manager, 20
Publish and Subscribe, 37

Redraw command and method, 60
Redraw commands, 61
Removed

What's been removed, 37
Renamed, What's been, 31
Report classes, 14, 66
Report fields, 67
Report formats, 66
Report instances, 66
Report totals, 66
Right-clicking

Context menus, 24

Schema classes, 12
Screen report fields, 14

Index 75

Show V3 Method Numbers menu option, 54
SNA commands, 64
SQL Object Browser, 30
STARTUP menu, 55
Startup task, 55
Store Long Data option, 37
Subwindows, 15

Tab panes, 14
Table classes, 12
Table fields, 31, 39
Table fields used as group fields, 60
Task classes, 11
Tasks, 8, 55
Toolbar classes, 16, 62
Toolgroups, 38, 62
Tooltips, 26
Trace log, 50

Variable types, 56
Variables, 7, 55, 65
Variables notation, 56
View menus, 25

What’s been renamed?, 31
What’s changed?, 31
What’s New?, 5
Window classes, 13, 57
Window control procedures, 59
Window events, 63
Window field names, 59
Window fields, 14
Window formats, 57
Window instances, 57
Window procedures, 58
Window redrawing, 60

How to use this manual
The on-line documentation is designed to make the task of identifying and accessing
information about OMNIS Studio as easy and intuitive as possible.

You can navigate this document, or find topics, in a number of different ways.

Bookmarks
Bookmarks mark each topic in a document. To view the bookmarks in this
document, click on the Bookmark icon on the Acrobat toolbar or select the
View>>Bookmarks and Page menu item.

Click on an arrow icon to open or close a topic, and click on a topic name or double-click a
page icon to move directly to a topic.

Thumbnails
Thumbnails are small images of each page in the document. To view the
Thumbnails in this document click on the Thumbnails button on the Acrobat
toolbar, or select the View>>Thumbnails and Page menu item.

You can click on a thumbnail to jump to that page. Also you can adjust the view of the current
page by moving and/or sizing the gray page-view box shown on the current thumbnail.

Links
Links in this document connect related information or take you to a specific location in the
document. Links are indicated with blue italic text. To jump to a related topic, move the pointer
over a linked area (the pointer changes to a pointing finger) and simply click your mouse. Try
it!

To return to your last view or
location, click on the Go back
button on the Acrobat toolbar.

Browsing
You can use the Browse buttons on the Acrobat toolbar to
move back and forth through the document on a page by
page basis. You can also click on the Go Back to return to
your last view or location.

Find
You can find a text string using the Tools>>Find menu item. To find the next occurrence of the
text you can use the Tools>>Find Again option. If you reach the end of the document, you can
use the Ctrl-Home key to go to the beginning and continue your find.

Search
If you have the Acrobat Search plug-in (available under the Tools>>Search menu in some
versions of Acrobat Exchange and Reader), you can use the Studio Index to perform full-text
searches of the entire OMNIS Studio on-line documentation set. Searching the Studio Index is
much faster than using the Find command, which reads every word on every page in the current
document only.

To Search the Studio Index, select Tools>>Search>>Indexes to locate
the Studio Index (Studio.pdx) on the OMNIS CD. Next, select
Tools>>Search>>Query to define your search text: you can use Word
Stemming, Match Case, Sounds Like, wildcards, and so on (refer to the
Acrobat Search.pdf file for details about specifying a query). In the Search Results window,
double-click on a document name (the first one probably contains the most references). Acrobat
opens the document and highlights the text. To go to the next or previous occurrence of the
text, use the Search Next or Search Previous button on the Acrobat toolbar.

Grabbing Text from the Screen
You can cut and paste text from this document into the clipboard using the
Text tool. For example, you could copy a code segment and paste it into the
OMNIS method editor.

Getting Help
For more information about using Acrobat Reader see the PDF documents installed with the
Reader files, or select the Help menu on the main Reader menu bar.

	OMNIS STUDIO CONVERSION
	About This Manual
	Chapter 1--What's New?
	Object Orientation in OMNIS€Studio
	Libraries and Classes
	Properties and Methods
	Variables
	Instances
	Tasks
	Messages
	Events
	Inheritance

	New Classes and Objects
	Task Classes
	Schema and Table Classes
	Construct and Destruct Methods
	Window Classes
	Window Fields
	List and Grid Fields
	Tab and Page Fields
	Modify Report and Screen Report Fields
	Group Fields

	Report Classes
	Message Driven Reports

	Subwindows
	Field Styles
	Menu Classes
	Toolbar Classes
	Code Classes
	Object Classes
	External Components

	New GUI
	Browser
	Component Store
	Property Manager
	Notation Inspector
	Method Editor
	Context Menus
	View Menus
	Tooltips and Helptips
	Catalog
	Inheritance Tree
	Data File Browser
	SQL Object Browser

	Chapter 2--What's Changed?
	What's been renamed?
	General
	Functions
	Attributes
	Constants
	Commands
	External Commands

	What's been removed?
	General Features
	Hash Variables
	Attributes
	Constants
	Commands

	What is Obsolete?
	Constants
	Attributes
	Commands

	Chapter 3--Conversion and Compatibility
	Converting your old OMNIS Applications
	OMNIS€7 Version€2 or earlier
	OMNIS€7 Version€3

	Converting Libraries and Data Files
	Converting Data Files
	Trace Log
	Viewing the Contents of your Converted Library
	Default Internal Library Names

	Format Conversion
	Format Data
	Format and Class Names

	Menu Formats
	Call procedure command
	Menu Commands
	Menu Notation
	STARTUP Menu and Startup Task

	Library Control Procedures and Tasks
	Library and Format Variables
	Variables Notation
	Changing Variable Types

	Window Formats and Classes
	Window Instances
	Window Procedures and Methods
	Field and Button Procedures
	Initialization Procedures and $construct()
	Window Control Procedures
	Window Field Names
	Table fields
	Picture Fields
	Window Redrawing

	Toolgroups and Toolbars
	Events
	Control Procedures and Events
	Field Events
	Window Events
	Menu Events
	Enter Data Events
	OMNIS Database Events
	SNA Commands
	Popup Menus and Events

	List Variables
	Storing item references in a list

	Report Formats and Classes
	Report Totals
	Record and Page Count Variables
	Export Formats
	Report Fields

	Help Messages
	Icons
	Colors
	Graphs
	Ad hoc Reports
	DAMs and External Names
	Commands Removed by Converter
	Checking Methods in a Converted Library

	How to use this manual
	Bookmarks
	Thumbnails
	Links
	Browsing
	Find
	Search
	Grabbing text from the screen
	Getting Help
	Start manual

