
OMNIS Studio 2.4
Update

OMNIS Software
February 2000

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of OMNIS Software.

© OMNIS Software, Inc., and its licensors 2000. All rights reserved.
Portions © Copyright Microsoft Corporation.

OMNIS® is a registered trademark and OMNIS 7™, OMNIS Studio™, and OMNIS Web Client™ are
trademarks of OMNIS Software, Inc.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

Linux is a trademark of Linus Torvalds.

IBM and AIX is a registered trademark and OS/2 is a trademark of International Business Machines
Corporation.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

Acrobat is a trademark of Adobe Systems, Inc.

pORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

INFORMIX is a registered trademark of Informix Software, Inc.

EDA/SQL is a registered trademark of Information Builders, Inc.

CodeWarrior is a trade mark of Metrowerks, Inc.

Other products mentioned are trademarks or registered trademarks of their corporations.

Table of Contents 3

Table of Contents
ABOUT THIS MANUAL...7

OMNIS STUDIO 2.4 ..8

GETTING STARTED MANUAL ...8
APP BUILDER ..8
ORACLE 8..9

Logon..9
Server-specific Programming...9
New Datatypes..9
Datatype Mapping ..11
Troubleshooting..12

OMNIS STUDIO 2.1/2.3 ..14

DESIGN ENVIRONMENT ...14
New Welcome Application..14
New Tutorial ...15
File menu..16
Property Manager ..16
Delete Unused Variables ..16
Window Design Mode Sizing..17
Report Lines in Design Mode ...17
Notation Inspector ..17
IDE Tools..17
Component Store ..19
Icon Editor..21
SQL Browser...21
Version Control System ..21

OMNIS WEB CLIENT..22
New Web Components ..22
Movie Player ..25
Automatic Component Download.....................................26
Mac Web Client ..27
Remote Form Switching..27
Custom Cursors ..27
Pushbuttons with Icons...27
Improved Error Handling...28
Headed List boxes...28
Numeric edit fields..28
Serial Numbers ...28

4 Table of Contents

Redirecting the client when using HTML forms28
ATL based Active X...29
Apache Server Extension ..29
API Open Source ..29

PICTURES..30
True Color Shared Pictures..30
Picture Conversion ...31
Picture fields...33

WINDOW OBJECTS..33
Checkbox Lists..33
Masked Entry Fields...33
Tree Lists ..34
Tabbed Pane and Paged Pane Fields...............................34
Headed List Boxes ..35
$canresize… for Headed List Boxes and Grids35
Data and String Grids ..35
Mouse, key and status events ..35
Window Status Bars..36
External Components ...36

CLASS CACHING..38
REPORT OBJECTS..39

HTML Raw Text Object ..39
RTF Report Destination..39
External Components ...40

RUNTIME ENVIRONMENT ..40
$singleinstance ...40
The Windows Registry ..41
Startup Library Load Order ...41
Replacement Edit Menus ..41
DDE..41
Changing Separator Characters.......................................42

GRAPHS...42
Non-Visual Graph Object...42

MYSQL DAM ..43
ODBC ACCESS CONTROL...43

Table Access Control..43
Field Access Control ..44
User Interface...44
OMNIS SQL..45

SQL SERVER 7.0 ...45
PORT PROFILES..46

Port Profile Management ...47
Port Profiles at Runtime ...47

THE EURO CHARACTER...48
STRING TABLES...48

Table of Contents 5

WEB EXTERNALS ..49
SQL CLASSES...49

ERRATA ...50

REFERENCE ...51

FUNCTIONS..51
sys()...51
encstr()..51
decstr()..51
compress() ..52
uncompress() ..52

COMMANDS...52
Data Files ...52

WEB COMMANDS ..52
CGIDecode...53
CGIEncode ...54
FTPChmod ...54
FTPConnect..55
FTPCwd..55
FTPDelete...56
FTPDisconnect ...57
FTPGet ...57
FTPGetBinary ..58
FTPGetLastStatus...58
FTPList ...59
FTPMkdir ...60
FTPPut ...60
FTPPutBinary...61
FTPPwd..61
FTPReceiveCommandReplyLine62
FTPRename ..62
FTPSendCommand...63
FTPSetConfig ...63
FTPSite...64
FTPType ...65
HTTPClose ...65
HTTPGet...66
HTTPHeader ..67
HTTPOpen..69
HTTPPage ..69
HTTPParse ...70
HTTPPost ...71
HTTPRead ..73
HTTPSend...73

6 Table of Contents

HTTPServer..74
HTTPSetProxyServer..75
HTTPSplitHTML ..76
HTTPSplitURL..76
MAILSplit ...77
POP3Recv...80
POP3Stat ..81
SMTPSend ..82
TCPAccept..83
TCPAddr2Name..84
TCPBind ...84
TCPBlock..85
TCPClose..85
TCPConnect ...86
TCPGetMyAddr..87
TCPGetMyPort...87
TCPGetRemoteAddr ...88
TCPListen ...88
TCPName2Addr..89
TCPPing ...89
TCPReceive ..90
TCPSend...91
TCPSocket ..91
UUDecode ..92
UUEncode ..92
WebDevSetConfig...93

WEB COMMAND ERROR CODES..94
Platform Independent General Error Codes94
Platform Independent E-mail Command Error Codes95
Platform Independent FTP Command Error Codes.........96
Platform Independent HTTP Command Error Codes98
WinSock Error Codes ...98
Open Transport Error Codes..100
MacTCP Error Codes...104

About This Manual 7

About This Manual
This document describes the new features in OMNIS Studio 2.4 and the enhancments
added in Studio version 2.1, 2.2, and 2.3.

The information in this manual supplements that provided in the Using OMNIS Studio
manual, OMNIS Programming, and the OMNIS Web Client PDFs. In addition, it contains
some errata, and a reference section documenting new Web commands.

8 OMNIS Studio 2.4

OMNIS Studio 2.4
OMNIS Studio 2.4 includes the following new features.

Getting Started Manual
There is a new manual called Getting Started with OMNIS Studio. This book is aimed at the
first-time OMNIS Studio user, and provides the basic information and practical exercises to
get you up and running with OMNIS Studio. We recommend you work through this book
before reading the other manuals.

App Builder
The new OMNIS App Builder lets you build complete OMNIS applications from start to
finish. Its wizard-like environment lets you choose what you want to store in your database
or application, exactly how it will look, and it lets you decide what type and style of
windows you want your application to have. You can run the App Builder from the
Welcome application, available when you startup OMNIS, or from the main Tools toolbar.

The App Builder provides many different application templates for business and home use,
including invoices, contacts management, and many more. The templates in the App
Builder will be constantly updated; in fact, while you step through the App Builder it lets
you download any new or updated application templates from the OMNIS ftp site.

Oracle 8 9

Oracle 8
Support for Oracle 8 has been added under Windows 32 only. The Oracle8 DAM, named
doracle8.dll, has most of the existing functionality of the Oracle7 DAM and works in a very
similar way. The Oracle8 DAM has some added functionality to support the LOB datatypes
as well as improved performance, and supports Net Client v8.1.5 clientware. The new
DAM can be used against an Oracle7 server, using the recommended clientware, but you
will encounter the restrictions described below, mainly concerned with data type mapping
of large objects.

Logon
When logging on to an Oracle 8 server, the method is slightly different from previous
Oracle DAMs including the Oracle7 DAM. To log onto Oracle 8, the method is now:

Start session {doracle8}

Set hostname {dbora8}

Set username {scott}

Set password {tiger}

Logon to host (Omnis Character Set)

This differs from Oracle7 in that you do not have to specify any prefixes to the hostname
e.g. “@” and also the username and password can be specified in the relevant command
rather than as part of a connection string specified in the Set username command. This
logon procedure is more consistent with the procedures for other DAMs.

Server-specific Programming
The Oracle8 DAM does not contain any new server specific keywords. All of the keywords
that were available in the Oracle7 DAM are still available in the new DAM and the
functionality is the same.

New Datatypes
CLOBs, NCLOBs, and BLOBs
CLOBs, NCLOBs and BLOBs are new Oracle8 datatypes that deal with large objects.
Internal Large Objects or LOBs (specifically BLOBs, CLOBs, and NCLOBs) are stored in
the database tablespaces in a way that optimizes space and provides efficient access. These
LOBs have the full transactional support of the database server. The maximum length of a
LOB/FILE is 4 gigabytes. Internal LOBs have copy semantics. Thus, if a LOB in one row
is copied to a LOB in another row, the actual LOB value is copied, and a new LOB locator
is created for the copied LOB.

The Oracle8 DAM uses locators to point to the data of a LOB or FILE. These locators are
transparent as the DAM performs operations on the locator to insert, update, delete and

10 OMNIS Studio 2.4

fetch the values. This means that you only ever deal with the values of the lobs and not the
locators.

If you’re interested in working with the locators rather than just the values you can do using
PL/SQL in conjunction with the dbms_lob package. You’ll find more information in the
Oracle8i Supplied Packages Reference.

BFILES
External LOBs (FILEs) are large data objects stored in the server’s operating system files
outside the database tablespaces. FILE functionality is read-only. Oracle currently supports
only binary files (BFILEs). The Oracle8 DAM uses locators to point to the data of a FILE.
The FILE locator will be transparent to the user, as the DAM will return the value of the
external file and not the locator when performing transactions with the BFILE datatype.
Even though the BFILE datatype is read-only you can insert a directory alias and filename
into the column. These values are assigned to a single OMNIS binary variable and
separated by the ‘&’ symbol. The DAM will assign these values to the locator so that when
a fetch is performed on the locator the binary representation of the external file
corresponding to the alias and filename will be returned. An example is shown below.

; A Directory alias needs to be created on the server

; that points to an OS folder

Perform SQL {create or replace directory sound as 'c:\bfiles'}

; BFILE1 and BFILE2 are OMNIS variables of type Binary.

; The variable is calculated as

; ‘<DirectoryAlias>&<Filename>’.

Calculate BFILE1 as 'sound&wav2.wav'

Calculate BFILE2 as 'sound&wav3.wav'

Perform SQL {insert into bfiletest values(1,@[BFILE1],@[BFILE2])}

; We can now select the data back and this time we will

; receive the binary representation of the file. Wav1 and

; Wav2 are OMNIS variables of type Binary

Perform SQL {select * from bfiletest}

Fetch next row into { #1,Wav1,Wav2 }

; The values in contained in Wav1 and Wav2 can now be written

; to the local drive using the OMNIS Fileops commands

Calculate File as 'c:\windows\desktop\wavtest.wav'

Do Fileops.$createfile(File) Returns lErr

Do Fileops.$openfile(File) Returns lErr

Do Fileops.$writefile(Wav1) Returns lErr

Do Fileops.$closefile() Returns lErr

Oracle 8 11

Datatype Mapping
Omnis to Oracle
Omnis Datatype Oracle8 Datatype

Character/National <=2000 VARCHAR(n)

Character/National >2000 CLOB

Short date (all subtypes) DATE

Short time DATE

Date time(#FDT) DATE

Short Integer(0-255) NUMBER(3,0)

Long Integer NUMBER(11,0)

Short Number 0dp NUMBER(10,0)

Short Number 2dp NUMBER(10,2)

Number Floating dp FLOAT

Number 0..14dp NUMBER(16,0..14)

Boolean VARCHAR2(3)

Sequence NUMBER(11,0)

Picture BLOB

Binary BLOB

List BLOB

Row BLOB

Object BLOB

Item Reference BLOB

12 OMNIS Studio 2.4

Oracle to Omnis
Oracle Datatypes Omnis Datatypes

CHAR Character

VARCHAR2 Character

CLOB Character

NCLOB Character

BLOB Binary

BFILE Binary

LONG Character

RAW Binary

LONG RAW Picture

DATE Date time (#FDT)

NUMBER Number floating dp

NUMBER(10) Number floating dp

NUMBER(10,8) Number floating dp

NUMBER(18) Number floating dp

NUMBER(16,15) Number floating dp

NUMBER(18,15) Number floating dp

FLOAT Number floating dp

FLOAT(30) Number floating dp

Troubleshooting
Version restriction
The Oracle8 DAM is restricted to users of OMNIS Studio 2.0 and later versions. An
attempt to use the DAM with any prior version will result in a runtime error.

LONG datatypes
Long, Long Raw, and Long Varchar datatypes can no longer be used fully with the Oracle8
DAM. Whilst any existing data in these columns can still be selected, fetched and mapped
to binary variables, the DAM no longer inserts bind variables into columns of these types.
This is because any bound character or binary data larger than 2000k will be mapped to a
CLOB or BLOB type.

Transaction mode for new datatypes
When performing transactions that use the new LOB datatypes the transaction mode must
be set to either Automatic or Generic. This is because lob and file locators cannot be used
across transactions. The DAM performs functionality on these locators and when the

Oracle 8 13

transaction mode is either Automatic or Generic, the DAM controls when to commit the
command, which would be after all the LOB functionality has been performed. When the
transaction mode is Server, Oracle commits (or rollbacks) after every statement and any
LOB functionality performed by the DAM would result in an error.

14 OMNIS Studio 2.1/2.3

OMNIS Studio 2.1/2.3
This section contains the features and enhancements added to OMNIS Studio 2.1 and 2.3.

Design Environment
New Welcome Application
OMNIS Studio 2.2 and later has a new Welcome application that (when enabled) appears
when you first launch OMNIS. The new application has an entirely new interface, using
several of the new components, and has many new examples. The new Welcome library
also contains a completely new tutorial that uses the OMNIS Web Client and shows you
how to build an OMNIS web application in minutes.

The About screen in the Welcome application uses several of the new external components
available in OMNIS Studio 2.2 and later, including the new Roll Button. Most of the
browsers and help windows in the Welcome library use the new Document Viewer for
displaying Html pages and JPEG pictures.

Design Environment 15

The new Welcome application contains many topics for beginners and experienced OMNIS
users alike. Amongst its many new features, the Welcome app has a New Users section that
contains information about OMNIS and lets you access the new Tutorial. The Knowledge
Store lets you search the OMNIS help files and technical notes.

The New Users section contains information about the OMNIS IDE, the App Builder lets
you create simple home and business applications from scratch, OMNIS Web Solutions
describes how you can create web applications using the OMNIS Web Client, and the
Examples section contains many new examples showing the wealth of design features and
components available in OMNIS.

New Tutorial
The new tutorial is available under the New Users section in the Welcome application. To
run the tutorial, start OMNIS and click on the New Users button in the Welcome About
screen. You can read each step in the tutorial and then complete each task by placing the
tutorial window to the right side of your screen.

16 OMNIS Studio 2.1/2.3

The Tutorial shows you how to
create an OMNIS web application
using the OMNIS Web Client. The
sample OMNIS database and
finished library are available in the
Welcome/Tutorial folder.

File menu
The File menu in the development version of OMNIS now has New... and Open...
commands for creating and opening libraries.

Property Manager
The Property Manager context menu has two new items Copy properties and Paste
properties.

– Copy properties
is enabled when a single object's properties are being displayed in the Property
Manager. The option copies a list of the non-inherited properties of the object to the
clipboard.

– Paste properties
is enabled when there are copied properties on the clipboard. If you select it, it assigns
the properties listed on the clipboard to the objects currently displayed in the Property
Manager.

 These option let you transfer the properties of one object to another, or change the type of a
window object, by creating a new object, copying the methods and the properties from the
old object to the new object, and deleting the old object.

 Delete Unused Variables
 The context menu of the Variable pane in the method editor has a new item Delete Unused
Variables..., available by Right-clicking on the variable pane away from a variable line.
When selected, it opens a dialog from which you can select variables to delete. The dialog

Design Environment 17

displays the variables of the current type displayed in the variable pane, which are
potentially unused. This means the variables could still be in use, for example, they could
still be used in subclasses or notation.

 Window Design Mode Sizing
 If you hold down the Option/Alt key while resizing a design window, or a container field,
you disable floating of the fields it contains, for the basic floating types (all floating types
except the kEFposn... values; kEFposn floating still needs to occur, since this ties a field to
a particular location).

 Report Lines in Design Mode
 Report design mode now allows easier manipulation of report objects, via the ability to
insert and delete lines of objects in the report. This feature restores functionality that was
available in the OMNIS 7 report editor via Ctrl/Cmnd-clicking.

 Ctrl/Cmnd-click selects a line of objects, if you click on the report window background
rather than an object. The line highlights where there are no objects. If at this point, you
hold down the mouse and drag, you select a range of lines. Alternatively, after selecting a
line, ctrl/cmnd-shift click on another line will select the range of lines between the 2 clicks.

 When you select a line, selected objects become deselected. Similarly, when you select an
object, the selected line(s) become deselected.

 There are two new toolbar controls on the report design mode window:

– Delete Selected Lines
deletes all objects whose start position is on a selected line - this includes positioning
sections which are included in the range of objects selected, but excludes other
sections. The lines which contained these objects are removed, meaning that lines
below shift up.

– Insert Line
inserts an empty line before the first selected line.

 Notation Inspector
 The Notation Inspector now has a "move root up one level" item on the toolbar and menu.
This allows you to navigate up the tree starting from a point set using the magnifying glass
control.

 IDE Tools
 Adhoc Reports
 The adhoc reports tools menu and toolbar items are now toggles, which install and remove
the adhoc reports menu.

18 OMNIS Studio 2.1/2.3

 Totals Only Report
 You can now produce an Adhoc report of field totals only by selecting ‘Print totals only’
from the context menu. The report will only show totals for fields that have the ‘tot’
checkbox checked.

 Custom SQL
 You can now customize the SQL automatically generated for an Adhoc report, using the
‘Show SQL Statement’ context menu item. Enter the custom SQL into the ‘Custom SQL’
pane; a context menu is available for pasting in the default SQL. To build the report using
the custom SQL check the ‘Build Report Using Custom SQL’ checkbox and press ‘Rebuild
Output’ on the main ADHOC toolbar.

 Add-on tools
 There is a new Tools menu and toolbar item, for add-on tools. These are additional tools
implemented as OMNIS libraries, which are present in the Startup folder of the
development version. The add-on tools item is a hierarchical menu/toolbar pop-up menu,
which contains an entry for each add-on tool.

 You can implement your own add-on tool, by doing the following, and then placing the
library in the startup folder:

 Install the tool in $construct of the Startup_Task, by calling:

 $root.$modes.$installtool(kEnvToolAddOn, <Menu line text>,
<icon id>, <Menu line help bar text>)

 For example:

 $root.$modes.$installtool(kEnvToolAddOn,"&My Editor...",1710,
"Opens my editor")

 The icon id can be for an icon in #ICONS, or omnis/userpic, and is the icon used for the
menu line for the tool.

 The $installtool() method returns a non-zero number for success. The tool can use this
number as the first of 200 possible configuration item numbers in omnis.cfg, accessed
using the configuration notation methods described below. The returned number will be the
same each time the tool installs itself, provided it does not change the <Menu line text>; if
you delete omnis.cfg, you may get a different number, but this does not matter, since you've
also lost any configuration information the tool may have stored.

 When the user selects the add-on tool from the menu, OMNIS calls the method $exectool()
in the tool's startup task. This typically opens a window, or brings it to the front.

 There are a number of methods that let you save the window setup for your tool, or save
other information. The methods are:

– $root.$prefs.$getconfiglong(kEnvToolAddOn,item,defaultValue)
Returns the long integer configuration value <item>. If item is not present in
omnis.cfg, returns defaultValue.

Design Environment 19

– $root.$prefs.$setconfiglong(kEnvToolAddOn,item,value[,dosave])
Sets the long integer configuration value <item> to <value>. If dosave is true, it saves
omnis.cfg after setting the value; the default is not to save.

– $root.$prefs.$getconfigstring(kEnvToolAddOn,item,defaultValue)
Gets the string configuration value <item>. If the item is not present in omnis.cfg,
returns defaultValue.

– $root.$prefs.$setconfigstring(kEnvToolAddOn,item,value[,dosave])
Sets the string configuration value <item> to <value>. If dosave is true, it saves
omnis.cfg after setting the value; the default is not to save.

 Tool Configuration
 There is a new IDE option, accessed via Tools>>Options, called "idetools", on the General
tab of the Property Manager.

 If you click on the drop-down button, OMNIS displays a checkbox list, with an entry for
each library that has installed itself as a tool. This includes the new add-on tools described
above, and tools such as the VCS and SQL Browser. In the development version, these are
usually all or most of the libraries in the Startup folder. You can check or uncheck items in
the list, which opens or closes the appropriate library (and installs or removes its menu and
toolbar entries) when you click off the checkbox list or hit return. OMNIS remembers the
selected libraries in omnis.cfg, meaning that tool libraries in the startup folder only open at
startup if they are checked. This saves both startup time, and resources (memory, file
handles, buffers etc), since it enables you to select only the tools you will use.

 Note that this is not an assignable notation item, and it only affects the development version
of OMNIS (since tools only apply to development).

 Component Store
 External Component Defaults
 The Component Store can now contain classes which provide default settings used when
external components are added to a window or a report. These classes are:

– ?Remote Form Components
contains the default values for the OMNIS Web Client components.

– ?External Window Components
if present, contains the default values for external window components.

– ?External Report Components
if present, contains the default values for external report components.

 To add new components to any of these classes, you must use the clipboard to copy from
another library and paste to your class.

20 OMNIS Studio 2.1/2.3

 Wizard Support
 The names of classes in the Component Store no longer need to conform to special
conventions, as documented in the Using OMNIS Studio manual, with the exception of the
field classes: these have fixed names that start with an underscore.

 To replace the meaning of special names, there is now a new property of a class in the
Component Store, $componenttype. This is has one of 5 values, represented by constants:

– kCompStoreHidden
The class does not appear in the Component Store window

– kCompStoreNewClassDefault
The class is the initial default for creating a new class of its type

– kCompStoreTemplate
The class is a template from which a new class or classes can be created

– kCompStoreWizard
The class is a wizard

– kCompStoreDesignObjects
The class contains templates for design objects

 The difference between a wizard and a template is that a wizard will prompt you for
information required to create a class, whereas a template is simply copied to create the
new class.

 You can set $componenttype using the Notation Inspector, but is not visible using the class
Browser/Property Manager, since it only applies to classes in the Component Store library.
When the Component Store is displayed in the Browser, the class menu, and the class
context menu, have one extra line at the end, which let you change the Component Store
type of the class. When selected, it opens a small dialog, with radio buttons that enable you
to select one of the types described above.

 On the Class Browser, the class menu now has a new hierarchical menu, called Wizards,
below the New menu. This has entries for each class type which contains wizards,
templates or superclasses (via the $issupercomponent property), and each user class
category (for example Net objects or DB2 extenders). When you select an item on the
hierarchical menu, a dialog opens. Select the class, enter the name for the new class, and
press OK or double click. The dialog creates a new class, and if it has a wizard, runs the
wizard.

 Note that as a result of this change, some of the class groups now have fewer items in them,
e.g. the Net classes. The classes that were previously there are still available, but only by
using those which are displayed.

 The CompCopy utility has been updated to prompt you for the Component Store type of
your own Component Store classes.

Design Environment 21

 Icon Editor
 The File menu in the Icon Editor has a new hierarchical menu Open #ICONS. There is an
entry on this menu for each open library. If you select it, the editor opens #ICONS for that
library.

 The Image menu has a new item Find Icon…, which opens a small dialog in which you
enter an icon id. It searches for the icon in the currently open icon file/table, and displays it.

 SQL Browser
 The SQL Browser now updates its session list dynamically, reflecting sessions opened and
closed by other libraries.

 Version Control System
 Linked Classes Improvements
 You can now link a class or component to more than one project in the same operation.

 There is a new report to show which classes are linked to which projects.

 The VCS component browser has a new icon to show classes which are linked. This is only
shown in Detailed View and can be turned off from the VCS Options dialog.

 Multiple Class actions
 You can now delete or unlock multiple classes in a single operation.

 Multiple Project actions
 You can now delete or build multiple projects in a single operation.

 Create new Project Components
 You can now create new project components, from components in another project, using
drag and drop.

 New Reports
 There are 2 new reports. The Associated Components report, which shows which classes
are linked to which projects, and a report to show the privilege level of each user for each
component.

 Build Log
 The build log now displays a total build time at the completion of the build process.

22 OMNIS Studio 2.1/2.3

OMNIS Web Client
For OMNIS Studio 2.2 and 2.3 the OMNIS Web Client contained a number of
enhancements, including new and improved components for web forms, QuickTime 4
support, and general communications improvements. In addition, the web client now
provides automatic and dynamic download of new or out-of-date components. OMNIS
Studio now contains the full release version of the web client for Netscape Navigator
running under PowerMac and Linux.

New Web Components
OMNIS Studio 2.2 provides several new components for remote forms (web forms). You
can use any of these components in your own remote forms, but any component used in a
remote form must be available to the client. Using the new Automatic Component
Download functionality you can deploy the basic field components, contained in the
standard web client installer, and allow the client to download other components as
required. See the next section in this chapter for further details about Automatic Component
Download.

Note that all the new and updated web components are available and fully documented on
the OMNIS website under a new section in the Component Gallery.

All the new web components are available in the Component Store under the Web
Components button, and you can add them to your remote forms in exactly the same way
as any other component in OMNIS; a remote form has to be open in design mode to see the
components. Note all background and text web comps, such as the new Tile and Wash
comps, are under the Web Background Objects button in the Component Store. Having
added a web component to your remote form you can change its properties in the Property
Manager, usually under the Custom tab, like any other object or component in OMNIS.

OMNIS Web Client 23

Jpeg
The Jpeg component is for displaying jpeg pictures in remote forms. You can specify an
instance variable name in the dataname property of a Jpeg object.

Roll button

The Roll button is a new type
of graphical pushbutton that
highlights when you pass the
mouse over it. It is available as
a standard external component
for window classes, and as a
web component for remote
forms. The new Welcome
application uses the Roll button
component extensively.

Roll button has a number of properties to control the look and behavior of the object when
the mouse is placed over it. You can specify the image (outsideimage and insideimage)
and text (outsidetext and insidetext) to be displayed when the mouse is either inside (over)
or outside (not over) the roll button. You can also specify the text offset using the textx and
texty properties, and set the spacing of multi-line text using betweenlines.

Roll button reports the evIsInside and evClick events, which have to be enabled in the
events property for the object, as do all events for web objects.

Button Area
The Button area component is an invisible area on the screen that reports an evClick or
evDoubleClick event. Note you have to be enable these events in the events property for
the object. You can use a button area over graphics or text, and in most respects it behaves
like a standard button.

Timer
The Timer component triggers an evTimer event after a specified time and runs the
associated event method; note you need to be enable the event in the events property for the
object. You can specify a timervalue, which is interpreted using the setting of useseconds
which should be kTrue for seconds (the default) or kFalse for milliseconds.

24 OMNIS Studio 2.1/2.3

Tree

The Tree component presents a hierarchical list
of values that you can expand and collapse by
clicking on the nodes. The structure of the tree is
determined by a list variable associated with the
tree list and specified in its dataname property;
note for remote forms the list must be an instance
variable.

Several properties control the appearance of a tree list. When the shownodeicons property
is set (kTrue), you can select the defaultnodeicon and the expand/collapse node in
expandcollapseicon. Also you can position the node icons using nodeiconspos either on
the node, on the left, or as set by the system.

The Tree component generates several events, providing they are enabled in the events
property for the object. The events include:

� evWTreeNodeClick
triggered when a node is clicked

� evWTreeNodeDClick
triggered when a node is double-clicked

� evWTreeNodeExpand
triggered when a node is expanded

� evWTreeNodeCollapse
triggered when a node is collapsed

All these events can be detected in the $event() method for the tree list. All these events
return the pNodeIdent parameter containing the ident of the node clicked or expanded. See
the OMNIS Programming manual for details about tree list methods and in particular how
to structure the list variable behind the tree list object.

Calendar
The Calendar component displays the current
month in a grid and highlights today’s date. It has
many properties, which you can change in the
Property Manager, that let you control the
appearance of the calendar as a whole, and how
today is displayed.

OMNIS Web Client 25

The Calendar component generates some events, providing they are enabled in the events
property for the object. All the events can be detected in the $event() method for the object.
The events include:

� evDateChange
triggered when the date is changed

� evMonthReset
triggered when the month is changed

� evDateDClick
triggered when a date is double-clicked

Tile and Wash

The Tile and Wash components are under the Web
Background Components button in the Component
Store; note a remote form has to be open in design
mode to see the components.

The Tile component requires an iconid of the icon or
picture to be tiled. You can specify an id from the
#ICONS system table in the current library, but make
sure the page containing the object’s icon is included
in the iconpages property for the remote form.

The Wash component requires a startcolor and
endcolor to specify the colors, and you can specify
the wash direction.

Movie Player
The MoviePlayer component in OMNIS Studio 2.2 supports streaming video in the
OMNIS Web Client, and allows the playback of Quicktime version 3 and 4 movies and
sound files. The component has many properties which you can view and set in the
Property Manager. If you are unsure what a property does, show the Help tips for the
Property Manager (Right/Ctrl-click and select Help Tips option) and move your mouse
over the property to display its description.

The moviefile property lets you specify the name and path of a movie or sound file. The
movieurl property lets you specify the URL for a movie or sound file. Movies are streamed
from the web server, thus removing the need for the file to be completely downloaded
before viewing. Note you can only assign moviefile or movieurl, not both. Assigning one
will automatically clear the other one.

Many of the other properties of the Movie Player component are self-explanatory. However
the action property is required to allow you to control the movie or sound at runtime, since
the object has no methods. The action property takes a constant, one of the following:

26 OMNIS Studio 2.1/2.3

kQTActionNone No action

kQTActionPlay Plays the movie

kQTActionStop Stops the movie

kQTActionPause Pauses the movie

kQTActionReverse Plays the movie in reverse

kQTActionStepFwd Advances the movie by a single frame

kQTActionStepRev Reverses the movie by a single frame

kQTActionGotoFront Moves to the beginning of the movie

kQTActionGotoBack Moves to the end of the movie

If the client does not have Quicktime 3 or 4 installed, then a Quicktime "Get4" logo
displayed.

Automatic Component Download
The OMNIS Web Client now has the ability to download new or out-of-date components
when a remote form is first accessed. OMNIS achieves this by checking the version of all
components contained in a remote form against a database of components.

Component Database
The database of web components, called ctrlmgr.df1, is located in the Studio folder under
the main OMNIS folder in the development and server versions. The database contains a
record for each Web Client control for each platform. There is a new library ctrlmgr.lbs
also in the Studio folder which manages this data file. You can access the Web Component
Manager library using the Web Client option on the Tools add-ons menu. The component
manager lets you add, delete, or extract components in the data file, although note that you
can only add or extract on the platform to which the web component belongs. The
components in the data file are compressed, using the new compress function.

When a client using the OMNIS Web Client connects to the OMNIS server, it returns a list
of available components in the response to the connect request. The web client analyzes the
form and the components already installed on the client, and if it needs to downloads any
missing or out-of-date components. The web client prompts the user, asking them if they
want to download the new or updated component. Assuming the user affirms, the Web
Client downloads the component(s), and displays the remote form as usual.

Disabling Automatic Download
If you want to disable automatic component download, you can remove the ctrlmgr.df1
data file from the Studio folder.

Standard Web Client Installer
Note that the standard web client installer includes the standard form fields (formflds) and
background components (formback) only. All other components are downloaded to the

OMNIS Web Client 27

client using the automatic download capability, unless you build your own installer
containing some or all of the web components.

Compatibility
Old versions of the Web Client can safely be used against OMNIS Studio 2.2 servers which
use ctrlmgr.df1.

New versions of the Web Client can safely be used against OMNIS Studio 2.1 servers,
although of course no automatic download occurs.

Mac Web Client
OMNIS Studio 2.2 now contains a Netscape Navigator plug-in for MacOS and Linux. The
Mac Web Client works with Netscape and MS Internet Explorer, although there’s no secure
comms support in MS Internet Explorer.

Remote Form Switching
In OMNIS Studio 2.2 you can switch from one remote form to another without destructing
the form’s task using the $ctask.$changeform(new_form_name) task method. For example,
you could have an application containing a logon form and a payroll form. A user logs
using the logon form then you can switch to the payroll form, without the initial connection
and task being lost. Both forms would use the same remote task and task variables, and the
payroll form would know what user is logged on.

Custom Cursors
Objects in remote forms now support both custom and built-in cursors. You can create your
own cursor images and store them in the Userpic icon datafile, or the #ICONS system table
in the current library.

All standard form fields, such as pushbuttons, button areas, now have the cursor property.
You can enter the id of the image you want to appear as the cursor for the object. In
addition, the iconpages property for remote forms now lets you include cursor pages in the
icon pages that get sent to the client.

Pushbuttons with Icons
You can now assign a built-in or custom icon to a pushbutton in a remote form. You can
create your own icons and store them in the Userpic icon datafile, or the #ICONS system
table in the current library. To assign an icon to a pushbutton set its iconid property under
the Appearance tab in the Property Manager. Remember to include the name of the icon
page containing the button’s icon in the iconpages property for the remote form.

28 OMNIS Studio 2.1/2.3

Improved Error Handling
Certain errors returned by the Web Server previously resulted in potentially cryptic
messages, such as "Inconsistent response length". Many of these Web Server generated
errors actually come back from the Web Server as HTML. The OMNIS Web Client now
writes this HTML to a file called omnis_error.htm, and the OK message generated to report
the error contains the pathname of this file. Note that a subsequent error will overwrite the
same file. This may be useful when you are setting up and debugging you web server.

Headed List boxes
Headed list boxes for remote forms have a number of enhancements, including several new
properties.

Headed list boxes for remote forms have two new properties: aligncolumns and
alignheadings, which specify the alignment of each column or the list box heading. You
specify alignment as a string in the form XXX, where there is a character X for each
column, and each character X can be one of L, R, or C, for Left, Right and Center
alignment, respectively.

The column headings for a headed list box now respond to clicks. The enableheader
property enables clicks for heading buttons. A click generates an evHeaderClick event,
containing the column number in the pColumnNumber parameter.

The boldheader property controls whether the list box heading is shown bold or not.

The disableresizecolumns property disables column resizing.

Note headed list boxes now have a proper scroll range for their horizontal scroll bar.

Numeric edit fields
Numeric edit fields now use the client’s decimal point and thousands separator.

Serial Numbers
Up until now OMNIS web applications using the OMNIS Web Client were limited to 500
concurrent users. Now it’s possible to obtain a serial number that allows up to 10 times that
number. The multi-user section of such a new serial number is in the form “nnnX” and
means “ten times nnn” number of concurrent users can access the current OMNIS server.

Redirecting the client when using HTML forms
When using HTML forms (and not the web client), remote tasks can now return an URL in
the form http://... or https://…, to redirect the client's browser. In OMNIS Studio 2.1, the
omnisapi.dll/nph-omniscgi(.exe) always prefixed the return value from the remote task with
http://<server name>. It now only prefixes the URL if it does not start with http:// or
https://.

OMNIS Web Client 29

ATL based Active X
For OMNIS Studio 2.2 the OMNIS Web Client under Windows (ORFC.OCX) has been
replaced with ORFC.DLL. This provides one or two benefits for the web client.

The old OCX was built using MFC, but is now built using Microsoft ATL (Active
Template Library). This means that the web client on IE5 now scrolls correctly, and the
$showurl() method supports frames. The size of the control is also reduced to around 100K.

ATL has one side effect in that the MFC version let you resize the plugin at runtime in the
browser, but this is no longer supported. Therefore the HTML page must have the width
and height set correctly. This was always the case with all other web client versions
including the Windows Netscape plugin.

If you already deployed HTML pages for Win32 IE you may need to modify your pages to
work with the new client.

Apache Server Extension
An Apache Module or server extension for Linux is now available. The module is called
mod_omnis.so and can be found in the webclient/server folder in the main OMNIS tree.
The Apache module works with the Red Hat 6.0 version of Apache, and other Linux
distributions. This module is faster than the nph-omniscgi server extension.

To install the Apache module

• Copy mod_omnis.so to the Apache modules directory, e.g. on RedHat 6.0 this is
/etc/httpd/modules

• Add the following lines at the end of access.conf:

<Location /omnis_apache>

SetHandler omnis-apache

</Location>

• Add the following lines to httpd.conf, at the end of each block of similar directives:

LoadModule omnis_module modules/mod_omnis.so

AddModule mod_omnis.cpp

You then need to restart httpd (restarting the system is the simplest way to do this). After
installing the Apache module, you can address it using /omnis_apache in the
WebServerScript parameter of the Web Client Netscape Plug-in or ActiveX.

API Open Source
Source for the Omnisapi.dll, Nph-omniscgi.exe, and the Apache module is now available
on the OMNIS website via the Downloads area. This allows you to adapt the web

30 OMNIS Studio 2.1/2.3

extension(s) for your chosen operating system, e.g., for a different version of Linux other
than those currently supported by OMNIS Studio and the web client.

 Pictures
 True Color Shared Pictures
 OMNIS Studio now supports true color (24 bit) shared pictures. These are implemented
using the free source for PNG and ZLIB.

 PNG or “Portable Network Graphics”, is a standard picture format, with a portable free
source code implementation. ZLIB is a compression library, which also has a portable free
source code implementation. You can find out more about PNG at the Web site for the
World Wide Web Consortium, www.w3.org.

 The $sharedpictures library preference now has three values, set using the constants:

– kSharedPicModeNone
do not use shared pictures.

– kSharedPicMode256Color
use the 256 color shared pictures from earlier releases.

– KSharedPicModeTrueColor
use true color shared pictures.

 If you use shared pictures, you are now recommended to use true color, since this will
probably result in smaller stored images, and more realistic colors.

 The data file browser now has a hierarchical menu from which you can choose no shared
pictures, the old 256 color shared pictures, or true color shared pictures; this affects how
pictures are converted when reorganising.

 The window picture field and background picture object now have a $cachepicture
preference, which defaults to kTrue. When kTrue, and a shared picture is being displayed,
OMNIS keeps both the shared picture data, and a copy of the decompressed native OS
picture - this uses more memory but results in faster drawing.

 The reorganize data command has a new checkbox which only applies when the convert to
shared option is checked. It indicates convert to true color shared pictures.

 The Paste From File dialog now allows direct pasting of PNG files.

 Note that conversion of images to true color loses color depth, unless you convert on a
machine running in true color mode.

Pictures 31

 Picture Conversion
 There are some new functions that let you convert picture data between a range of different
formats. For OMNIS Studio 2.1 and later, these formats are:

– CS8
OMNIS colour shared picture format (256 colours), including the internal OMNIS
header.

– CS24
OMNIS colour shared picture format (16 million colours) , including the internal
OMNIS header.

– CSC8
This is a 256 colour compressed format, which is an 8 bit PNG rather than 24 bit PNG
format. Ideal for situations where images must have additional compression e.g. for
downloading to the OMNIS Web Client. Obviously, this format may reduce the colour
detail of an image that was originally 24 bit.

– PNG
PNG format (Raw, as written on disk)

– JPEG
JPEG format (Raw, as written on disk)

– PCX
PCX format (Raw, as written on disk)

 It is possible to add further formats using the external component interface.

 The new functions are listed in a group called Picture, on the Functions tab of the Catalog.
The functions are:

 pictconvto()
 pictconvto(Character SrcFormat,Binary Src,Character DstFormat)

 Converts the supplied binary data (with or without our internal header) from the supplied
source format to the supplied destination format. For example:

 Do pictconvto(“PCX”,myPcxData,”JPEG”) returns myJpegData

 This converts the PCX data in myPcxData to JPEG.

32 OMNIS Studio 2.1/2.3

 pictconvfrom()
 pictconvfrom(Character SrcFormat,Binary Src)

 Converts from the raw data and the specified format to a picture value, which can be used
in various OMNIS fields. For example, the following code lets you read a JPEG file from
disk and display it:

 ReadFile (“C:\MYFILE.JPG”) returns myJpegData

 Do pictconvfrom(“JPEG”,myJpegData) returns myJpegData

 Redraw {JPEG_CONTROL}

 pictformat()
 pictformat(Binary Src)

 Returns a character string which contains the format of the picture data supplied. For
example:

 pictformat(myJpegData) will return “JPEG”.

 Note that there are certain formats that pictformat cannot recognize (for example, OLE
data, GIF), and in these cases, pictformat returns an empty string.

 pictconvtypes()
 Returns a single column list, which contains all the picture conversion types registered with
OMNIS. For OMNIS Studio 2.1 and later, this contains the values
“CS8”,”CS24”,”PNG”,”JPEG” and “PCX”.

 Picture Conversion Example
 In the following example, we convert the 24 bit colour shared images in the background
picture objects of a remote form class, to the 8 bit PNG format CSC8.

 Set reference fref to $root.$libs.THIN.$remoteforms.rfBooks.$bobjs

 Set reference curBOBJ to fref.$first

 While curBOBJ

 If curBOBJ.$objtype=kBackpicture

 If pictformat(curBOBJ.$picture)="CS24"

 ; 24 Bit picture

 Calculate picture as curBOBJ.$picture

 Calculate pict256 as pictconvto("CS24",picture,"CSC8")

 Calculate curBOBJ.$picture as pict256

 End If

 End If

 Set reference curBOBJ to fref.$next(curBOBJ)

 End While

 Save class {THIN.rfBooks}

Window Objects 33

 Picture fields
 The OMNIS picture field has a new property, $rawpictformat. This property defaults to
<None>, in which case the picture field behaves as in previous versions. You can set it to
the value of one of the picture formats used for picture conversion, such as “JPEG”. It
indicates the type of the data that can be stored in the picture variable associated with the
picture field.

 If you set this property, the Paste from file option converts the pasted file to the specified
format.

 Window Objects
 Checkbox Lists
 You can now disable individual lines in a checkbox list. The check box list has a new
property, $statecolumn. It defaults to zero, which means all lines are enabled. $statecolumn
must be >= zero. If it is non-zero, and less than or equal to the number of columns in the
data list associated with the checkbox list, it identifies a column in the data list, which
specifies the state of each line. This column must contain numeric values. A value of zero
in this column means the line is disabled, and non-zero means the line is enabled. We
recommend that you use the values zero and one, so that we can possibly use other values
to provide additional feature(s) in future releases.

 Masked Entry Fields
 In previous versions, masked entry fields did not handle the localization of the decimal
point and thousands separator characters.

 To correct this, there are two new input mask characters:

 ‘*’ means the decimal point of a numeric value.

 ‘,’ means the thousands separator of a numeric value.

 If the input mask does not contain either of these two new characters, it will perform as in
previous versions, to maintain compatibility. Note that in previous versions, the new
characters were rejected as invalid, meaning that they do not introduce any compatibility
issues.

 If you use either or both of the new mask characters, OMNIS replaces each of them with
the currently localized decimal point or thousands separator character, before displaying the
mask.

 It is recommended that you do not mix the asterisk and the decimal point character in the
same mask, as results will be unpredictable.

34 OMNIS Studio 2.1/2.3

 Tree Lists
 The tree list object now supports $addafter() and $addbefore(), for nodes.

 The new runtime method $countall() recurses over the tree, and returns the total node
count.

 The new runtime method $getvisibleline(rItem) returns the line number of the supplied
node in the currently displayed list of nodes, or zero if the node is not visible.

 Tabbed Pane and Paged Pane Fields
 Delete pane
 There is a new context menu item on the window design mode context menu for a tabbed
/paged pane field. The new item Delete pane is available if there are two or more
tabs/pages, and if selected it will delete the current tab/page and all of the objects on that
tab/page, after confirming via a yes/no dialog. Note that it will not delete objects marked as
occurring on all panes.

 Runtime Methods
 $allpanes(Field Item Reference[,Boolean newval])

 This method allows you to set or get the “all panes” Boolean attribute for the given field
reference. If you supply newval the method sets “all panes” to newval. If you omit
newval, the method returns the current value of “all panes”. For example:

 ;; If myField is shown on all tabs turn off all tabs.

 If $cinst.$objs.TABPANE.$allpanes(myField)

 Do $cinst.$objs.TABPANE.$allpanes(myField,kFalse)

 EndIf

 $panenumber(Field Item Reference[,Integer newval])

 This method allows you to get or set the pane number which currently contains the
specified field. If you supply newval, the method sets the pane number of the field to
newval. If you omit newval, the method returns the pane number containing the field. For
example:

 ;; If myField is shown on tab 2 move it to tab 3

 If $cinst.$objs.TABPANE.$panenumber(myField)=2

 Do $cinst.$objs.TABPANE.$panenumber(myField,3)

 EndIf

Window Objects 35

 Headed List Boxes
 $columnheaderstyle(iColumnNumber[,summedStyleConstants]) is a new runtime method
of the headed list box, which sets or gets the additional styles to apply to the column header
of the specified column

 It lets you specify some additional styles to use when drawing a column header. Additional
means in addition to the field's text style (and bold if the bold header property is true).

 Call it with just the column number to return the current value for the column.

 $canresize… for Headed List Boxes and Grids
 There are two new properties which determine if rows and columns of certain objects can
be resized with the mouse at runtime. The $canresizeheader property of the headed list box
has been renamed $canresizecolumns.

 The complex grid, headed list box, data grid and string grid all have $canresizecolumns -
this is True for a new object created via the component store, and for existing grids.

 The complex grid also has the $canresizerows property.

 For the complex grid, these properties do not affect sizing between the header and the main
body of the grid, but they do affect sizing between the horizontal header or vertical header
and the main body of the grid.

 Data and String Grids
 Data and string grids have a new runtime method, $enablecolumn(), which can disable or
enable entry into a column which is not fixed (entry into fixed cells is always disabled).

– Grid.$enablecolumn(<column number>)
returns kTrue if the column is enabled, or kFalse if the column is disabled.

– Grid.$enablecolumn(<column number>, kFalse)
disables the column.

– Grid.$enablecolumn(<column number>, kTrue)
enables the column.

 Columns are initially enabled by default. Note that entry into a column is only enabled if
the enter data state of the window allows, and both the grid field property $enabled is
kTrue, and the column is enabled.

 Mouse, key and status events
 All window objects (except the report modify field) now have $mouseevents,
$rmouseevents, $keyevents, and $statusevents properties. This provides finer control than
in previous releases, where these properties are only available in the library preferences. An

36 OMNIS Studio 2.1/2.3

object now gets the relevant event if either its own property or the library preference is true.
These properties now appear on the Action tab of the Property Manager.

 Window Status Bars
 The window status bar now supports the $fieldstyle property.

 External Components
 Tray
 There is a new non-visual object in the Tray library, which provides an interface to the tray
in the Win32 task bar.

 QuickTime 3
 There is a QuickTime 3 component for the Win32 and Power Mac platforms.

 Document Viewer
 The Document Viewer is a new external component for viewing HTML documents in a
window class. It will be extended to display RTF as well as HTML in OMNIS Studio
version 3.0. The Document Viewer is used extensively in the new Studio 2.2 Welcome
application, to display the OMNIS help and tutorial Html files.

 When placed on a window you can change the properties of the HTML component under
the Custom tab in the Property Manager. The component does not have a dataname
property, rather you specify the path to an HTML text file in the filename property. You
can set the filename in design mode or set it dynamically at runtime.

 The HTML component has the following properties:

– $filename
pathname to the HTML to be displayed by the component

– $fontsizeadj (runtime only)
increases or decreases the size of the text in the current HTML file, in a range from -3
to 3 with the default being 0 (zero)

– $eventhwnd (runtime only)
returns the hwnd reference of the HTML component when an event is triggered

– $searchwords (runtime only)
contains a list of words that will be highlighted in the current HTML file; the words
should be separated by spaces; the specified words and the background page
surrounding the words are shown in their inverse

 The HTML component has the following methods:

– $startanimatescroll(horzscrollunits,vertscrollunits,interval)
scrolls the HTML component using the settings in horzscrollunits, vertscrollunits,
interval

Window Objects 37

– $stopanimatescroll()
stops scrolling the current HTML component

– $pathtoapi(path)
converts an Html file name and path to a disk name and path; uses the correct
separators for the correct operating system; performs the reverse of $pathtohtml()

– $pathtohtml(path)
converts a standard disk name and path to a full Html file name and path; performs the
reverse of $pathtoapi()

– $getselectedtext(text)
returns any text currently selected in the HTML component

 The HTML component reports many different events and you can write event handlers in
the object’s $event() method to handle them. When you create the HTML component from
the Component Store a template $event() method is inserted to handle the basic events in
the object at runtime. Note all the events for the HTML component return the ident of the
field as the first event parameter.

 The HTML component sends the following events:

– evAnimateScrollEnd
sent when the HTML component is finished scrolling; returns the parameters
pEventCode, pCtrlIdent

– evEventTag
sent when an embedded custom Html tag is read; returns the parameters pEventCode,
pCtrlIdent, pName, pValue

– evExecTag
sent when an embedded custom Html tag is executed; returns the parameters
pEventCode, pCtrlIdent, pTagName, pTagValues

– evHyperlink
sent when a hyperlink is clicked; returns the parameters pEventCode, pCtrlIdent,
pHRef, pName, pTarget, pTitle

– evImagePluginCreate
sent when an embedded image plugin is invoked, such as an embedded Jpeg object;
returns the parameters pEventCode, pCtrlIdent, pType, pProperties, pWindowRef,
pWidthRef, pHeightRef

– evPluginDestroy
sent when an embedded plugin is destroyed; returns the parameters pEventCode,
pCtrlIdent

– evSetTitle
sent when the Html document is read; returns the parameters pEventCode, pCtrlIdent,
pTitle

38 OMNIS Studio 2.1/2.3

– evXCompPluginCreate
sent when an embedded external component is invoked; returns the parameters
pEventCode, pCtrlIdent, pComponentLib, pComponentCtrl, pProperties, pWindowRef,
pWidthRef, pHeightRef

 For example, the following $event() method for the Html component sets the title of the
current window to the title of the Html file, and the method handles hyperlinks by
switching to the specified Html file in the evHyperlink event.

 On evSetTitle

 Do $cwind.$title.$assign(pTitle)

 On evHyperlink

 Do $cobj.$filename.$assign(pHRef)

 The following method traps the evHyperlink method and tests if the link is a link to an
OMNIS library; if it is a library it uses the $pathtoapi() method to convert the link to a file
path and opens the library, otherwise the method opens the specified Html document.

 On evHyperlink

 If pos(".lbs",pHRef)

 Calculate lOmnisLibPath as pHRef

 Do $cobj.$pathtoapi(lOmnisLibPath)

 Open library (Do not close others) {[lOmnisLibPath]}

 Else

 Do $cobj.$filename.$assign(pHRef)

 End If

 Class Caching
There is a new $root preference called $maxcachedclasses that controls how many classes
OMNIS keeps cached in memory. After OMNIS reads a class from disk, it adds it to the
class cache. If there are more than the number of classes specified in $maxcachedclasses in
the cache, OMNIS removes one of the unmodified and unused classes from the cache, if
there are any. Of course, this means that the next time the removed class is used, OMNIS
has to load it from disk again.

$maxcachedclasses allows you to reduce the number of times classes are reloaded from
disk, at a cost of greater memory usage, and some extra CPU time to manage the cache.
From our own testing, we have observed an improvement in the performance of some
applications (especially on the Mac platform), by increasing the cache size.

In OMNIS Studio 2.2 and earlier, $maxcachedclasses was fixed at 30. The default in 2.3 is
100. You can change the value, either using the notation, or using the
Tools>>Options/Preferences menu item.

To allow you to tune your application, there are 2 new sys functions:

Report Objects 39

� sys(190) returns the number of times OMNIS has loaded a class from disk and added it
to the cache.

� sys(191) returns the number of times OMNIS deleted a cache entry, when it added a
class to the cache, meaning that a class may need to be reloaded.

 Report Objects
 HTML Raw Text Object
 This is a new HTML report object, which inserts raw text into the HTML generated when
printing a report to HTML. It has two properties:

– $::text
 contains the calculation for the text.

– $addatend
set to kTrue if you require the text to be output at the end of the HTML table. If it is
kFalse the text will be output in the individual cells within a table.

 When the object outputs the value of $::text, it does not perform any character conversion
or insert any HTML markers.

 RTF Report Destination
 This is a new custom device which provides the ability to generate reports in RTF format
The RTF destination has four parameters, which you can access using the report destination
dialog. The options on the dialog include:

– Destination:
The output filename.

– Ignore Images:
Images are only supported in Word95 onwards, so if you are using old RTF readers
(for example write.exe on windows) you may want to check this option to produce
smaller image-free documents.

– Link Images:
Supported only in Word 95 onwards. This option places links in the document to JPEG
images, reducing the size of the RTF document file, but resulting in a document which
is not self-contained. If you do not check this option, the resulting document contains
embedded images.

– Convert multi-lines to single line:
Multi-line is difficult in RTF, as Word supports text boxes but other readers do not. If
you check this option, multi-line text will appear in a single line and wrap at the end of
the page. If you do not check this option, the RTF device simulates a text box, by
placing a carriage return at the end of each line, and setting the tab position of the next

40 OMNIS Studio 2.1/2.3

line so that it falls below the previous one. If users wish to reformat their document
after OMNIS has produced it, this may not be the best option.

 Note: The device does not perform any line drawing or background coloring, since these
are only possible in Word RTF format and not the standard RTF format.

 External Components
 You can now use runtime notation on external component report instance objects. For
example, this allows you to modify the properties of a graph on a report, on a per-record
basis.

 External components now use true color format when adding images to reports.

 Page Count
 There is a new page count external component, which allows you to include text such as
“Page M of N” in your reports. Obviously, when you use this component, output of the
report to the spooler is delayed until the report has been completely generated, since the
total page count is not known until then.

 Runtime Environment
 $singleinstance
 There is a new Boolean notation property, $prefs.$singleinstance. This property is only
applicable to the Win32 versions of OMNIS Studio, where it defaults to kFalse. If you set it
to kTrue, OMNIS will only let you start a single copy of OMNIS Studio from the folder
where OMNIS Studio is installed. This means that if you have 2 installations of OMNIS
Studio on your machine, they both have a $singleinstance property; one installation might
only allow a single instance, and the other might allow multiple instances.

 If the user starts OMNIS Studio for which $singleinstance is kTrue, and the instance is
already running, the initial instance of OMNIS Studio will be restored (if minimized) and
brought to the front. In this case, if the user opens OMNIS Studio by selecting a library
(e.g. double clicking on a library in Explorer), after coming to the front, the single instance
opens the library. It does not close any libraries which are already open.

 If you set $singleinstance to kTrue, and more than one instance of OMNIS Studio is already
open, these instances will be unaffected. The property does not apply until you try to start
another copy.

 $singleinstance is stored in the registry entries for the particular OMNIS Studio installation.

Runtime Environment 41

 The Windows Registry
 From OMNIS Studio 2.1, each installation of OMNIS Studio has its own registry entries. In
earlier versions, the key contained the major version number, but multiple installations of
the same major version shared the registry entries.

 Startup Library Load Order
 At startup, OMNIS now loads libraries in the startup folder, in case-insensitive alphabetical
order of their pathname. This provides you with the ability to control the order in which the
libraries start, by renaming library files.

 Replacement Edit Menus
 You can now provide a replacement edit menu, with lines that provide standard operations
such as copy and paste, and where these standard lines enable and disable according to the
current selection.

 There is a new command, Standard menu command, which allows you to select a standard
command such as copy or paste, to execute when the user selects a menu line.

 As a background, in the 1.x and 2.0 versions of OMNIS Studio, if you set the $event
method for a menu line to:

 Call method OBSOLETE COMMAND *Edit/11002

 and no other commands apart from comments, selecting the menu line causes OMNIS to
execute a standard OMNIS edit menu cut command.

 The new command "Standard menu command" behaves in exactly the same way, and
simply allows you to use standard menu commands without using an obsolete command.

 If you replace the standard edit menu, each line in the replacement menu which uses
Standard menu command (or the old Call method technique) now enables correctly for the
following commands: Undo, Cut, Copy, Paste, Clear, Select all, Paste from file, Insert
Object and Links.

 DDE
 Windows platforms only. In previous versions, DDE only worked with the most recently
opened non-private library. In OMNIS Studio 2.1 and later, there is a new notation item,
$root.$modes.$cddelib. This is the internal name of the library OMNIS uses for DDE. If
you do not assign this item, DDE behaves as in earlier versions. If you assign this item,
OMNIS uses the specified library for DDE, rather than the most recently opened non-
private library. When assigning $cddelib, the library must be one which is accessible to the
current task. You can set $cddelib to an empty string, to revert to the original functionality.

 Typically, you would use this in the startup task of your library, for example:

42 OMNIS Studio 2.1/2.3

 Calculate $root.$modes.$cddelib as $clib().$name

 When you close the library, OMNIS clears $cddelib. Note that you cannot assign this item
using the Notation Inspector.

 Changing Separator Characters
 In OMNIS Studio 2.2 and later, the $root.$prefs has a new method $separators() for getting
and setting the separators used in decimal numbers, function syntax, and import/export.

 Method Description

 $separators() When called with no arguments, $separators() returns the
current separator values into a 5 character string. The
characters in this string are:

 Character 1: the decimal point character

 Character 2: the decimal number thousands separator

 Character 3: the function parameter separator

 Character 4: the import/export decimal point character

 Character 5: the import/export comma delimiter character

 When called with a 5 character string, it sets the separator
characters from the values in the string.

 Graphs
 Non-Visual Graph Object
 The graphs component now provides a non-visual object, which can generate a graph and
store it in a picture variable. One key application of the non-visual object is generating
graphs on-the-fly, to return to a browser running the OMNIS Web Client.

 To use this object, add an Object variable to an OMNIS class, and set the subtype to
'Graph'. The object provides the ability to manage graph properties and methods, and draw
the graph into a picture variable, without needing a field on a window or report.

 The non-visual graph object has many of the methods and properties of its visual
counterpart; use the interface manager for more details. The key method is
$snapshot(width, height), which returns a picture value with the specified width and height.

 For example:

MySQL DAM 43

 Calculate graphObj.$dataname as MyList

 Calculate graphObj.$maintitle as "My Graph"

 Calculate graphObj.$majortype as kGRlines

 Calculate graphPict as graphObj.$snapshot(320,200)

 The $getobject method may be used from the graph object to manipulate the grouped
properties.

 MySQL DAM
An ODBC DAM for Linux which supports MySql was provided in OMNIS Studio version
2.3. See the OMNIS Programming manual for details about logging onto server DBMSs.

 ODBC Access Control
 ODBC Access Control is a new feature of the OMNIS data file ODBC driver. It is the
ability to restrict ODBC access to particular tables and fields, to particular users.

 This provides significantly greater control than the current public data property
implemented in OMNIS Studio 2.0 and OMNIS 7^3 Version 7.0.

 This feature is backwards compatible with the public data property.

 Table Access Control
 In Studio 2.0, the public data property is stored as a single byte in the data dictionary
information, which has the value zero for no access, or one for public access.

 In Studio 2.1 and later, there is a new 32 bit field at the end of the data dictionary
information for a file. The single byte used by the current public data property becomes
unused. We call the new 32 bit field the table access mask. Each bit in the mask
corresponds to a user group, and if a bit is set to true, the table belongs to that user group.
The mask can have any value, meaning that a table can belong to any subset of the 32 user
groups (note that OMNIS 7^3 version 7.1 will only support 31 groups).

 For example, you might decide to have user groups for Sales, Accounts, R&D and
Marketing. In other words, you assign 4 specific bits of the table access mask, to these
groups. A table can then belong to zero or more of these groups.

 You can set the value of the table access mask for a file class, in a similar way to setting the
public data property in version 2.0.

 You can store simple ODBC user profiles in a data file. The profiles are stored as a table,
ODBCUSERS, with three columns: ODBCNAME, ODBCPASSWORD and
ODBCACCESSMASK. You can administer this table using the ODBC Admin add-on tool.

44 OMNIS Studio 2.1/2.3

 An ODBC connection to an OMNIS data file has a user access mask, which identifies the
user group or groups to which the user belongs. A table is accessible on that connection if
the result of and'ing the user access mask, with the table access mask, is non-zero. Or, in
other words, the table is accessible to the user if the table and the user belong to at least one
common group. Inaccessible tables cannot be used in ODBC queries, and are not visible to
ODBC data dictionary queries.

 How do we set the user access mask? When a user logs on to a data file using ODBC, the
driver performs some additional checks. If there is not a table called ODBCUSERS, the
driver assigns a user access mask of 1 to the ODBC connection. This corresponds to the
current public data value, and allows for backwards compatibility. If there is a table called
ODBCUSERS, the driver requires <username> and <password> parameters in order to
connect. These are case insensitive, and are OMNIS driver specific ODBC keywords,
meaning that the driver will prompt for them (if allowed by the ODBC API), if they are not
in the configuration information for the data source. The driver looks up the user in the
ODBCUSERS table. If the user is not present, the connection cannot be established;
otherwise, the driver sets the user access mask for the connection to the value stored in the
ODBCUSERS row for the user.

 Note that if users store their passwords in data source definitions, the passwords will be
stored in an encoded form. However, another user could use the data source definition with
the encoded password to log on. Therefore, the best security occurs when users do not store
their passwords in data source definitions.

 Field Access Control
 An additional level of control is provided by field access control. The driver applies this
after identifying the tables which are accessible to the user.

 Each field has a field access mask. Again, this is a 32 bit mask. For backwards
compatibility, its initial value has all bits set to true, thereby enabling access to all fields in
accessible tables.

 You can modify the field access mask using the file class editor.

 The field access mask works just like the table access mask. A user can access a field if it
belongs to an accessible table (according to the definition above), and if the field and the
user belong to at least one common user group. Inaccessible fields cannot be used in ODBC
queries, and do not appear in ODBC data dictionary queries.

 User Interface
 The file class properties include the ODBC access mask, which can be modified via a
checkbox list.

 The file class editor has a control which drops down a checkbox list from which you can set
the field access mask.

SQL Server 7.0 45

 The data file browser displays the value of the table access mask in the slot listing. After
changing table or field access masks, you may need to update the data dictionary in the data
file using the data file browser or the update data dictionary command.

 Printing a file class or the slot listing now includes the access mask values.

 OMNIS SQL
 You can execute the following SQL with OMNIS SQL to set ODBC access masks:

 execute odbc.setaccess(Towns.Postcode,3)

 sets the mask of column Town.Postcode to 3 (the numeric value corresponding to the mask
group bits set). Similarly

 execute odbc.setaccess(Towns,3)

 sets the mask for table Towns. Also,

 execute odbc.getaccess(Towns) or
execute odbc.getaccess(Towns.Postcode)

 gets the access mask. You can retrieve the result of a successful getaccess using sys(139).
Note that sys(139) returns a negative value if bit 32 of the mask is set, since this is the sign
bit of a 32 bit signed integer.

 This only works when OMNISSQL is connected directly to a data file specified by the host
name.

 Notes
– A user can have an empty password.

– User names can comprise the characters 0-9, A-Z, a-z, _ and extended Ansi characters
>= 128.

– Passwords cannot contain the character ~.

– The ODBCUSERS table must have a table access mask with all bits set to true.

– The new ODBC Driver will be compatible with data files previously accessed by the
current OMNIS Studio 2.0/OMNIS 7^3 version 7.0 ODBC driver (we call this the old
driver from now on). The old driver will NOT be able to access data files containing
the new mask information - all tables in such a data file will become non-public, since
when OMNIS writes the new 32 bit table access mask to the data dictionary, it clears
the public data byte.

 SQL Server 7.0
 Support for MSSQLServer7.0 has been added to the ODBC DAM on all platforms. The
Microsoft Windows 32 bit drivers support the new additions to MSSQLServer7.0 such as

46 OMNIS Studio 2.1/2.3

varchar and char data lengths up to 8000 characters. Other drivers provided by vendors
such as Intersolv and Visigenic still place an upper limit of 255 for these types and data
retrieved exceeding this is truncated. This also occurs with the Microsoft 16 bit driver. The
latest Macintosh versions of the Intersolv and Visigenic SQL Server drivers do not return
date values correctly. The use of the Intersolv driver on 32 bit platforms can cause an
EXCEPTION_ACCESS_VIOLATION error to occur on the server when inserting into
columns of type ntext. Also the same error is generated from the Intersolv Macintosh driver
when manipulating the new Unicode types nchar and nvarchar. Use of these new types
should be avoided for these drivers.

 Port Profiles
 OMNIS Studio 2.0 and earlier versions let you configure ports using either the Set port
parameters method command, or the report destination dialog. The configuration options
available there map on to only a subset of the options possible using the operating system
port configuration API calls. As a result, there have been some problems related to port
configuration. The fact that Win16, Win32, and the Mac, all have different port
configuration data structures, further compounds the problems.

 A port profile is a named collection of information sufficient to completely describe the
operating system configuration of a port.

 Before going into detail, here is some clarification about a few points:

 All Macintoshes have 2 ports available, the printer port and the modem port. These ports
are both serial ports, and OMNIS stores separate configuration data for each port.

 Windows machines can have a number of ports, some of which are serial ports (e.g.
COM1:), and others which are parallel ports (e.g. LPT1:). OMNIS only remembers the
configuration data for a single port.

 Therefore, on the Windows platforms, the port profile information corresponds to the
information required to set the fields in a DCB for a serial port (Win16's DCB is different
to Win32's). There is no port profile for a parallel port, since it requires no operating
system configuration information.

 On the Mac platforms, the port profile information corresponds to the information required
to make the SerReset and SerHShake API calls.

 The information required to completely configure a port therefore comprises:

 1. The port profile (not required for parallel ports)

 2. Characters per inch.

 3. Lines per inch.

 The "Page sizes" entered on the corresponding tab of the report destination dialog for the
port destination remain unchanged.

Port Profiles 47

 Port Profile Management
 Each port profile is stored in a file. The sub-directory PORTS of the OMNIS folder
contains the port profiles.

 The port profile file contains:

– An indicator of the platform to which the profile corresponds - Win16, Win32 or Mac.
This allows for runtime sanity checking.

– The name of the profile, to be used in the report destination dialog, and as an argument
to the Set port parameters method command. We store this in the file, rather than use
the file name as the profile name, to allow for readable names on all platforms. Note
that profile names are not case sensitive.

– The profile data.

 Note that this means that each profile file only contains the data for a single platform.

 You can create and edit profiles using the port profile editor. The profile editor must run on
the platform for which the profiles are to be created. For Win32 and Power Mac
development versions, the port profile editor is an add-on tool. If you wish to edit port
profiles using a runtime version, there is a folder in the root of the Studio CD, called
RTTools, containing the editor library, which you copy to your hard disk, and open to run
the editor.

 Port Profiles at Runtime
 Report Destination Dialog
 When the report destination is port, the parameters tab of the dialog displays the port
configuration information. There is now a drop down list on this tab, which contains a list
of profile names, and one additional entry, "Use options below". When the latter is selected,
the port works in the same way as OMNIS Studio 2.0 and earlier. When a profile is
selected, OMNIS configures the port using the information in the profile. Note that the drop
down list and configuration fields on this tab are disabled if you select a parallel port.

 Set port parameters command
 You can now use

 Set port parameters {Profile name}

 When the command executes, it first checks the entire parameter string against the list of
profiles. If it matches an entry in the list, the command uses the profile to configure the
port; otherwise, the command treats the parameter string as a parameter list, and behaves
like OMNIS Studio 2.0 and earlier.

 Notation
 The relevant $port… notation such as $portparity is unassignable when a port profile is
selected.

48 OMNIS Studio 2.1/2.3

 There is one new assignable notation item, $portprofile, which defaults to empty for
backwards compatibility. This is the port profile for the current port on the Mac, or just the
single port profile on Windows.

 The Euro Character
 To support the Euro character, the character mapping table has been modified, which
provides cross-platform mapping of characters in libraries and data files, between the Mac
and Ansi character sets.

 The Euro is code position 0x80 in the Ansi character set.
The Euro is code position 0xDB in the Mac character set.

 The character mapping table used in previous releases maps characters as follows:

 Ansi 0x80 maps to Mac 0xA5
Ansi 0xAF maps to Mac 0xDB

 We have therefore swapped the mappings to that:
Ansi 0x80 maps to Mac 0xDB (the correct Euro mapping)
Ansi 0xAF maps to Mac 0xA5

 This means that the Ansi "overscore" character (like an underscore, but at the top of the
character cell) now maps to a Mac blob.

 Note that the Euro character is supported by Mac OS 8.5, and by some Win32 operating
systems. For details of Win32 support, go to www.microsoft.com – you may need to
download an update.

 String Tables
 You can now set up a string table which enables you to have multiple copies of the same
string. Typically, you would have a different copy of the string for a different language or
country. You can then select the current language or country at runtime.

 The add-on tools include the string table editor.

 There are functions listed under StringTable in the catalog, which let you change the
current language/country, and read strings for the current language/country.

 There is a StringLabel background object, which enables you to reference a string in the
string table from a label on a window or a report.

 Each string is identified by an id, and each language/country is identified by a column in
the string table.

Web Externals 49

 Web Externals
 The WEB externals have been replaced with a new implementation. This is essentially
compatible with the externals from previous releases, but see the updated documentation in
the Reference section of this document for details. In particular, there is a new approach to
handling MIME content, available on Win32 and the Power Mac only.

 SQL Classes
 If you define a list from a SQL class, the columns in the list have a new property
$excludefromwhere. This works in a similar way to the existing properties
$excludefromupdate and $excludefrominsert. It defaults to kFalse, but if you set it to kTrue,
OMNIS excludes the column from where clauses it generates. OMNIS only inspects this
property for columns which it normally includes in the where clause (often only a few, if
you are using primary keys).

50 Errata

 Errata
 The following errata section contains corrections to the printed and Adobe Acrobat
documentation.

Version Control System
 Build Completion Method
 This feature was actually present in Studio 2.0, but was omitted from the documentation.
You can specify a library that the VCS will open (and as a consequence run its startup
task), after a build has completed.

 To specify the library, use the code

 Do $root.$modes.$dotoolmethod(kEnvToolVcs,'$x_vcsBuildOption',['pathName'])

 where pathName is the full path name to the library. You can pass an empty string to clear
this setting.

 Building Locked Classes
 This feature was actually present in Studio 2.0, but was omitted from the documentation.

 You can indicate which classes will be locked in the built library i.e. which classes cannot
be developed any further or viewed in the IDE.

Graphs
 The graphs PDF file (graphs.pdf) refers to $group. This should actually be $::group.

$serialise
 The $serialise() method has been previously documented as $serialize.

Functions 51

 Reference
 The following information supplements that provided in the OMNIS Reference manual.

 Functions
 sys()
 These changes to the sys() function apply in OMNIS Studio 2.2 and later.

 sys(6)
returns 'U' if running on Linux/Unix.

 sys(8)
returns "UNIX" if running on Linux/Unix.

 sys(9)
returns the path separator for the platform as follows:

 \ (back slash) for Windows

 / (forward slash) for Linux/Unix

 : (colon) for Mac

 sys(116)
returns '1' if files names are all lowercase.

 encstr()
 encstr(string[,key]) encodes the string using the key. If omitted, OMNIS uses a default
value for the key.

 The return value of encstr is a string that is difficult to decode without knowing the key.
OMNIS uses encstr to encode passwords stored in the ODBCUSERS table, so that it is
impossible to use a hex editor to obtain a password from a data file (see the ODBC Access
Control section in this document).

 decstr()
 decstr(string[,key]) decodes the string using the key. If omitted, OMNIS uses a default
value for the key.

 Note that decstr(encstr(string,key),key) = string.

52 Reference

 compress()
 Compress is a new function in OMNIS Studio 2.2 and later.

 compress(binary) compresses the specified binary variable and returns the binary
compressed data. It uses the ZLIB compression algorithm to compress the binary variable.

 uncompress()
 Uncompress is a new function in OMNIS Studio 2.2 and later.

 uncompress(binary,uncompressed length) uncompresses the specified binary variable
(containing the result of a previous call to compress) and returns the binary uncompressed
data. Note you need to pass in the length of the original uncompressed data.

 Commands
Data Files
The Open data file and Prompt for data file commands have a new check box option "No
conversion by runtime". When checked, the runtime version of Studio will refuse to
convert the selected data file, if it needs converting.

 Web Commands
 This section describes the new Web commands which are supplied with OMNIS Studio 2.1
and later. These commands replace the old Web Enabler commands which previously
shipped with the OMNIS 7 and Studio products. The new command set is essentially
backwards compatible, and in most cases, code written using the old commands is source
code and binary compatible with the new commands. The major differences are:

– Various commands have new optional parameters. If such a parameter is omitted, the
behavior is that of the old command set.

– There are many new error codes. Not all of the old error codes are generated.

– FTPGetLastStatus has been renamed FTPSetConfig.

– WebDevError has been renamed WebDevSetConfig

– There is one new command: HTTPSetProxyServer.

– ALL commands now return an error status, which is ALWAYS less than zero if an
error has occurred. Moreover, ALL command errors (with the exception of the “call
would block” error) invoke the WebDevError method – see the command
WebDevSetConfig for details.

Web Commands 53

– ALL commands which accept a port, also accept a service name. On Windows, this is
resolved to a port number using the services file on the local system; on the Macintosh,
this is resolved using a hard-coded lookup table.

– You can now have blocking sockets on the Macintosh platforms. You can cause a
blocked WEB command to abort, using ctrl-break on Windows platforms, and
command-period on Macintosh platforms. For compatibility, all commands which
return a new socket, with the exception of TCPAccept (for example: TCPConnect,
HTTPGet), return a blocking socket on Windows, and a non-blocking socket on the
Macintosh. Use TCPBlock to change its state.

– The Content Manager commands (CM…) have not been replaced in the new command
set. There are new mechanisms provided by the MailSplit and Pop3Recv commands, to
handle MIME content (these are available on the Win32 and Power Macintosh
platforms only). You can still use the old CM… commands if you wish, but bear in
mind that the current version of these commands is the last that OMNIS Software will
ship.

– Similarly, the binfile commands (ReadBinFile and WriteBinFile) have not been
replaced. The current Fileops commands provide adequate functionality, and you
should use these instead.

 You can tell if your system has the new command set by looking in the external folder of
the OMNIS installation. If there is a single WEB external, named wecommnd, rather than
separate externals for FTP, HTTP etc., you have the new command set.

 CGIDecode
 Reversible: NO Flag affected: NO

 Parameters: Stream[,MapPlusToSpace {Default kTrue}]
 Returns: DecodedStream

 Syntax: CGIDecode(Stream[,MapPlusToSpace])

 You use CGIDecode to turn CGI-encoded text back into its original form. It is the inverse
of CGIEncode.

 When a client uses HTTP to invoke a script on a WEB server, it uses the CGI encoded
format to pass the arguments to the server. This avoids any ambiguity between the
characters in the argument names and values, and the characters used to delimit URLs, and
the argument names and values.

 stream is an OMNIS Character or Binary field containing the information to decode.

 MapPlusToSpace is a Boolean value. When kTrue, in addition to performing a standard
CGI decode operation, the command maps all instances of the ‘+’ character in the input
stream, to the space character.

 DecodedStream is an OMNIS Character or Binary field that receives the resulting CGI-
decoded representation of the stream argument.

54 Reference

 Note: The HTTPHeader, HTTPParse and HTTPPost commands automatically perform CGI
encoding or decoding, as appropriate.

 CGIEncode
 Reversible: NO Flag affected: NO

 Parameters: stream
 Returns: EncodedStream

 Syntax: CGIEncode(stream)

 When a client uses HTTP to invoke a script on a WEB server, it uses the CGI encoded
format to pass the arguments to the server. This avoids any ambiguity between the
characters in the argument names and values, and the characters used to delimit URLs, and
the argument names and values.

 You use CGIEncode to map text into the CGI encoded format.

 Stream is an OMNIS Character or Binary field containing the information to encode.

 EncodedStream is an OMNIS Character or Binary field that receives the resulting CGI-
encoded representation of the stream argument.

 Note: The HTTPHeader, HTTPParse and HTTPPost commands automatically perform CGI
encoding or decoding, as appropriate.

 FTPChmod
 Reversible: NO Flag affected: NO

 Parameters: Socket, Filename, Mode
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPChmod(Socket, Filename, Mode

 FTPChmod changes the protection mode of a remote file on the connected FTP server.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 Filename is an OMNIS Character field containing the pathname of the remote file.

 Mode is an OMNIS Character field containing the system-dependent file-protection
specifier to apply to the named file. Many FTP servers accept the Unix-style
Owner/Group/World 3-digit Read/Write/Execute scheme (for example, 754 = Owner
Read/Write/Execute, Group Read/Execute World Read-Only). Consult the documentation
for the remote system to determine the acceptable syntax for this argument.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

Web Commands 55

 FTPConnect
 Reversible: NO Flag affected: NO

 Parameters: ServerAddr, Username, Password [,Port]
 Returns: Socket (< 0 if an error occurs)

 Syntax: FTPConnect(ServerAddr,Username,Password[,Port]) Returns Socket

 FTPConnect establishes a connection to the specified FTP server.

 ServerAddr is an OMNIS Character field containing the hostname or IP address of the FTP
server.

 Username is an OMNIS Character field containing the user ID with which the command
will log on to the server.

 Password is an OMNIS Character field containing the password for the user ID.

 Port is an optional number or service name, which identifies the TCP/IP port of the FTP
server. If you omit this parameter, it defaults to 21, the standard FTP port. If you use a
service name, the lookup for the service will occur locally.

 Socket is an OMNIS Long Integer field, which receives the result of the command. If the
command successfully establishes a connection and logs on to the server, Socket has a value
>= 0; you pass this value to the other FTP commands, to execute requests on this
connection.

 FTPCwd
 Reversible: NO Flag affected: NO

 Parameters: Socket, NewDir
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPCwd(Socket,NewDir)

 FTPCwd changes the working directory for the specified FTP connection.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 NewDir is an OMNIS Character field containing the new working directory. The contents
of this string are system-dependent. FTPCwd accepts anything for this argument, but the
remote FTP server may not. Most FTP servers accept Unix-style path and file specifications
with path and file separated by slashes, such as

 /drive/user/subdirectory/filename.extension

 Most FTP servers accept the Unix conventions for abbreviations for special directory
specifications, that is, “..” for the next higher sub-directory, and “~userid” for the home
directory of a particular user ID.

56 Reference

 Some FTP servers also accept system-specific directory path formats, that is, Macintosh
colon-separated as in Macintosh HD:My Folder:My File or VMS-style path and file
specifications, as in SOME$DISK:[USER.SUBDIRECTORY]FILENAME.EXTENSION;1.

 Consult the documentation for the server to determine the authoritative acceptable directory
path specifications. When in doubt, try the Unix style.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 FTPDelete
 Reversible: NO Flag affected: NO

 Parameters: Socket, Filename
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPDelete(Socket, Filename) Returns Status

 FTPDelete deletes a file on the connected FTP server.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 Filename is an OMNIS Character field containing the pathname of the remote file to delete.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

Web Commands 57

 FTPDisconnect
 Reversible: NO Flag affected: NO

 Parameters: Socket
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPDisconnect(Socket)

 FTPDisconnect closes a connection to an FTP server.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 FTPGet
 Reversible: NO Flag affected: NO

 Parameters: Socket, RemoteFile, LocalFile [,FileType, Creator]
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPGet(Socket,RemoteFile,LocalFile[,FileType, Creator])

 FTPGet downloads a file from an FTP server. The file is transferred using the currently
specified transfer type of ASCII or binary, as specified by the FTPType command. It is
important that you set the transfer type correctly for each file you download, since an
incorrect transfer type will result in a bad downloaded copy of the file.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 RemoteFile is an OMNIS Character field containing the pathname of the remote file to
download.

 Note: The remote filename may not be acceptable to the local system.

 LocalFile is an OMNIS Character field containing the pathname of the downloaded file. If
the file already exists, FTPGet will overwrite it with the downloaded file.

 FileType and Creator are optional arguments, which the command uses on the Macintosh
platforms only. These specify a file type and creator for the downloaded copy of the file. If
you omit these arguments when calling FTPGet on a Macintosh, they default as follows:

• For ASCII transfer type: FileType = TEXT, Creator = ttxt

• For binary transfer type: FileType = TEXT, Creator = mdos

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

58 Reference

 FTPGetBinary
 Reversible: NO Flag affected: NO

 Parameters: Socket, RemoteFile, BinField
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPGetBinary(Socket,RemoteFile,BinField)

 FTPGetBinary downloads a file from an FTP server into an OMNIS binary variable. The
file is transferred using binary transfer mode.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 RemoteFile is an OMNIS Character field containing the pathname of the remote file to
download.

 BinField is an OMNIS Binary or Character field that will receive the contents of the remote
file.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 FTPGetLastStatus
 Reversible: NO Flag affected: NO

 Parameters: [ServerReplyText]
 Returns: Status

 Syntax: FTPGetLastStatus([ServerReplyText])

 FTPGetLastStatus returns status information corresponding to the last FTP command
executed.

 ServerReplyText is an optional OMNIS Character field parameter, into which
FTPGetLastStatus places the dialog that occurred on the connection to the FTP server, for
the last FTP command executed. For example, if you execute FTPPwd, and then call
FTPGetLastStatus, ServerReplyText might contain:

 -> PWD

 <- 257 “/” is current directory.

 Note that “->” prefixes text sent to the server, and “<-“ prefixes text received from the
server.

 Status is an OMNIS Long Integer field which receives the return status of the last FTP
command executed. This information is really redundant, but is provided for compatibility.
The value returned is one of the negative error codes.

Web Commands 59

 FTPList
 Reversible: NO Flag affected: NO

 Parameters: Socket, List [, Pathname, Mode]
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPList(Socket,List[,Pathname,Mode])

 FTPList lists files on the FTP server.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 List is an OMNIS List field containing a single column of type Character. This list receives
the file listing information, one line per file, returned by the remote FTP server. The list is
dependent on the type of the remote server and may be in long or short format, depending
on the Mode parameter.

 Note: Very often, FTP servers return long-format listings in a Unix file listing format. At a
minimum, this file information contains the filename, but usually includes other
information. The OMNIS method must parse this information to find the filename and other
information. For example

 ListItem

 total 123

 drwxr-xr-x 4 userid mygroup Jan 1 1999 .

 drwxr-xr-x 6 root root Jan 1 1999 ..

 -rw------- 1 userid mygroup Jan 16 1998 myfile

 -rw-r—r— 2 userid mygroup Jan 16 1998 myotherfile

 Where the columns in the character string correspond to protection, file size, username and
group of the file owner, the date last modified and the name of the file. The files “.” and “..”
represent the current and parent directories, respectively, which may neither be retrieved
nor changed.

 The file information may not be neatly spaced into columns as in this example. Columns
are separated with one or more spacing characters (space, tab, and so on).

 Pathname is an optional OMNIS Character field that contains a pathname or wildcard
specification for the files to include in the listing. If omitted, the default is to list all of the
files in the current directory on the FTP server.

 Mode is an optional numeric value which indicates whether the server should return a short
or long format listing. If omitted, it defaults to zero.

60 Reference

 Code Meaning

 0 Filename-only listing

 1 Long-format listing

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 FTPMkdir
 Reversible: NO Flag affected: NO

 Parameters: Socket, DirName
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPMkdir(Socket,DirName)

 FTPMkdir creates a new directory on the FTP server.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 DirName is an OMNIS Character field containing the pathname of the new directory to
create on the server.

 Note: The name of the new directory must follow the convention and file-naming rules of
the remote system. Not all users will have permissions to create new directories on arbitrary
directories on the remote system. Default file-access permissions apply to the new
directory.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 FTPPut
 Reversible: NO Flag affected: NO

 Parameters: Socket, LocalFile, RemoteFile
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPPut(Socket,LocalFile,RemoteFile)

 FTPPut uploads a local file to the FTP server. The file is transferred according to the
currently specified transfer type of ASCII or binary as specified by the FTPType command.
It is important that you set the transfer type correctly for each file you upload, since an
incorrect transfer type will result in a bad uploaded copy of the file.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 LocalFile is an OMNIS Character field containing the pathname of the file to upload.

Web Commands 61

 RemoteFile is an OMNIS Character field containing the pathname of the destination file on
the FTP server.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 FTPPutBinary
 Reversible: NO Flag affected: NO

 Parameters: Socket, BinField, RemoteFile
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPPutBinary(Socket,BinField,RemoteFile)

 FTPPutBinary uploads the contents of an OMNIS binary variable to a remote file on the
FTP server. The data is transferred using binary transfer mode.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 BinField is an OMNIS Binary or Character field containing the data to transfer.

 RemoteFile is an OMNIS Character field containing the pathname of the destination file on
the FTP server.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 FTPPwd
 Reversible: NO Flag affected: NO

 Parameters: Socket
 Returns: ServerDirectory (pathname if no error, or a number < 0)

 Syntax: FTPPwd(Socket)

 FTPPwd gets the pathname of the current directory on the FTP server.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 ServerDirectory is an OMNIS Character field that receives the pathname of the current
directory. If this is a number less than zero, an error occurred.

 Note: The value returned depends upon the operating system of the remote server. Many
FTP servers return a Unix-style pathname, but do not assume that this is the case.

62 Reference

 FTPReceiveCommandReplyLine
 Reversible: NO Flag affected: NO

 Parameters Socket

 Returns: Reply or a number < 0 if an error occurs

 Syntax: FTPReceiveCommandReplyLine(Socket)

 FTPReceiveCommandReplyLine returns the next line of the reply following an
FTPSendCommand. You have to determine if the reply is multi-line, and if so issue further
receive commands to get the remainder of the reply. FTPReceiveCommandReplyLine will
timeout after 60 seconds if it does not receive a reply.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 Reply is an OMNIS Character variable containing the reply from the server.

 For example:

 FTPSendCommand(lvSocket,'pwd') Returns #1

 FTPReceiveCommandReplyLine (lvSocket) Returns lvReply

 ; might return the string

 257 "/vol1/ftp/omnis/" is current directory

 FTPRename
 Reversible: NO Flag affected: NO

 Parameters: Socket, OldName, NewName
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPRename(Socket,OldName,NewName

 FTPRename renames a remote file.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 OldName is an OMNIS Character field containing the pathname of the file to rename.

 NewName is an OMNIS Character field containing the new pathname for the file

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 Note: Local filename conventions may not be acceptable to the remote system.

Web Commands 63

 FTPSendCommand
 Reversible: NO Flag affected: NO

 Parameters Socket, Command

 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPSendCommand(Socket,Command)

 FTPSendCommand sends a command to the FTP server.

 Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

 Command is an OMNIS Character variable containing the command and its parameters.

 Status is an OMNIS Long Integer field which receives the result of executing the
command.

 For example:

 FTPSendCommand(lvSocket,'pwd') Returns #1

 FTPReceiveCommandReply(lvSocket) Returns lvReply

 ; might return the string

 257 "/vol1/ftp/omnis/" is current directory

 FTPSetConfig
 Reversible: NO Flag affected: NO

 Parameters: Proc [,ActiveOnly {Default zero for no;1 for yes},68kPort1, 68kPort2]
 Returns: Status (0 if no error, < 0 if an error occurs)

 Syntax: FTPSetConfig(Proc[,68kPort1, 68kPort2])

 FTPSetConfig provides the FTP commands with configuration information.

 Proc is an OMNIS Character field containing the name of an OMNIS method used to
report the progress of FTP operations which transfer data (FTPGet, FTPGetBinary,
FTPList, FTPPut and FTPPutBinary); for example MYLIBRARY.MYCODE/MYPROC.
You can clear the current setting for the FTP progress proc, by passing an empty value.

 ActiveOnly is an optional parameter. A value of 1 causes all FTP to be active, rather than
the default, which is use passive FTP if the server supports it. Normally, you would not
select ActiveOnly FTP; this is provided as a possible work-around for servers with which
passive FTP is causing problems. You can find a fuller explanation below of passive and
active FTP.

 68kPort1 and 68kPort2 are optional parameters, which are only used on the 68k Macintosh
platform. If specified, they indicate a range of TCP/IP ports which the FTP data transfer

64 Reference

commands use cyclically to perform active FTP data transfer. You can find a fuller
explanation below of passive and active FTP.

 Status receives the result of executing this command.

 FTP data transfer commands call the progress proc (if specified) while data transfer is in
progress. This allows you to indicate progress to the user. The commands call the progress
proc with three parameters:

• Socket: the FTP socket on which the operation is occurring

• TransferredSoFar: the number of characters transferred so far, or for FTPList, the
number of lines received so far.

• TotalToTransfer: the total number of characters that need to be transferred; note that
this is only available when executing FTPPut or FTPPutBinary.

The 68kPort parameters are needed on the Macintosh 68k platform, because MacTCP does
not dynamically allocate port numbers when passively opening a connection. In practice,
you will probably not need to set these values, because by default, the FTP data transfer
commands always first attempt to use passive mode to transfer data. In passive mode, the
client initiates a data connection to the server. This is the recommended mode of operation
(see RFC1579, “Firewall Friendly FTP). Most FTP servers support passive mode, although
there are some which do not. In this case, if the attempt to use passive mode fails, the FTP
commands use active mode to transfer data. In this case, the server initiates the data
connection to a port on the client, and we therefore need a range of port numbers which the
commands can use for this purpose. The parameters 68kPort1 and 68kPort2 specify this
range of port numbers.

FTPSite
Reversible: NO Flag affected: NO

Parameters Socket, Parameters

Returns: Status (0 if no error, < 0 if an error occurs)

Syntax: FTPSite(Socket,Parameters) Returns Status

FTPSite issues a host specific SITE command to the FTP server.

Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

Parameters is an OMNIS Character variable containing the host specific command and its
parameters.

Status is an OMNIS Long Integer field which receives the result of executing the
command.

Web Commands 65

For example:

FTPSite (lvSocketNum,"FILETYPE=JES") Returns lvStatus

; issues the FTP command SITE FILETYPE=JES

FTPType
Reversible: NO Flag affected: NO

Parameters: Socket, FileType
Returns: Status (0 if no error, < 0 if an error occurs)

Syntax: FTPType(Socket,FileType)

FTPType specifies the type of data transfer used by FTPGet and FTPPut, as ASCII or
binary. In ASCII mode, line separators and other text formatting characters will be changed
to the characters required by the local or remote system. In binary mode, line separators and
other text formatting characters are not changed. If the information to be transferred is not
text, use FTPType to change the transfer mode to binary. Otherwise, binary files such as
archives, images, OMNIS Libraries, and executable files may be corrupted by the
processing of bytes that coincide with text-formatting characters.

Socket is an OMNIS Long Integer field containing a socket opened to an FTP server using
FTPConnect.

FileType is a number indicating the type of subsequent FTPGet and FTPPut transfers on
this socket.

Value Transfer Mode
kFalse/Zero ASCII

kTrue/One Binary

Status is an OMNIS Long Integer field which receives the result of executing the
command.

HTTPClose
See TCPClose – HTTPClose has identical behavior.

66 Reference

HTTPGet
Reversible: NO Flag affected: NO

Parameters: Hostname, URI[, CGIList, HeaderList, Service|Port]

Returns: Socket (< 0 if an error occurs)

Syntax: HTTPGet(Hostname,URI [,CGIList, HeaderList, Service|Port])

HTTPGet is a client command that submits a GET HTTP request to a Web server.

Hostname is a Character field containing the hostname or IP address of the Web server.

URI is a Character field containing the URI to GET from the Web Server. For example,
“/default.html”, or “/cgi-bin/mycgiscript”

CGIList is an optional parameter. It is an OMNIS list with two character columns. The list
contains the CGI arguments to be appended to the URI. There is one row for each CGI
argument. For example

Attribute Value

Name John Smith
City Podunk
Alive On
Submit Please

Note: Before the values are sent to the Web server, HTTPGet automatically performs any
CGI encoding required to pass special characters in the arguments. There is no need to call
the CGIEncode command.

HeaderList is an optional parameter. It is an OMNIS list with two character columns.. The
list contains additional headers to add to the headers of the HTTP GET request. Note that
the header name excludes the ‘:’, which HTTPGet inserts automatically when it formats the
header.

For example

Header name Value

User-Agent My Client

Content-type text/html

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to the port number specified in the hostname, or if none is
present, it defaults to 80, the default port for HTTP.

Socket receives the result of the request. HTTPGet opens a connection to the Web server,
and formats and sends an HTTP GET request to the server. If the command succeeds, it
returns the socket number for the connection to the WEB server; otherwise, it returns an

Web Commands 67

error number which is less than zero. After successfully issuing HTTPGet, you should call
HTTPRead to read the response from the server; ALWAYS call HTTPClose to close the
connection and free the socket.

HTTPGet adds the following header fields by default:

Attribute Value

Accept */*

User-Agent OMNIS Software – OMNIS

Note: After calling HTTPGet, you can call HTTPSend to send your own content, before
you read the response, provided that you include Content-type and Content-length headers
in the HeaderList.

HTTPHeader
Reversible: NO Flag affected: NO

Parameters: Socket, Status, HeaderList
Returns: Length (or a value < 0 if an error occurs)

Syntax: HTTPHeader(Socket,Status,HeaderList)

HTTPHeader is a server command that sends an HTTP standard header to an HTTP client,
for example, an OMNIS application or a Web browser. HTTP headers are normally hidden
from Web clients, but convey very useful information regarding the status and contents of
the Web page. An OMNIS method must send a header back to a connected Web browser in
order to have its results properly displayed.

Socket is an OMNIS Long Integer field containing the number of a socket that has already
been opened for a TCP/IP client, usually a Web browser or OMNIS application that
requires and can understand HTTP.

Status is an OMNIS Long Integer field containing an HTTP status code. The status code
may change the way in which any following HTML or other information displays on the
Web browser. The following table contains the status codes which HTTPHeader
recognises. Other status codes are accepted, but HTTPHeader then sends “Unknown status”
as the text for the code.

68 Reference

Code Meaning

200 The request was completed successfully

201 The request was a POST method and was completed successfully. Data was sent
to the server, and a new resource was created as a result of the request.

202 A GET method returned only partial results.

204 The request was completed successfully, but there is no new information. The
browser will continue to display the document from which the request
originated.

301 The requested URL has moved permanently

302 The requested URL has moved temporarily

304 The GET request included a header with an If-Modified-Since field. However,
the server found that the data requested had not been modified since the date in
this field. The document was not resent (the Web browser will probably display
it from cache).

400 The request syntax was wrong

401 The request requires an Authorization field but the client did not specify one.
Usually results in a username and password to be displayed

403 Access is forbidden

404 The request URL could not be found.

500 The server has encountered an internal error and cannot continue with the
request.

501 The server does not support this method

502 Bad gateway

503 Service unavailable

HeaderList is an OMNIS list with two character columns. The list contains the headers to
send. Note that HTTPHeader automatically sends some headers, so do not provide those
(see below).

At a minimum, for OMNIS to return normal Web-page HTML text to the client, you should
send a header containing the line:

Header name Value

Content-type text/html

HTTPHeader automatically includes the following lines in all HTTP response headers:

Web Commands 69

Attribute Value

Content-type text/html (only if the HeaderList does not contain a Content-type
header)

Date The current GMT date and time in HTTP header format

Server OMNIS

MIME-version 1.0

Length is an OMNIS Long Integer field which receives the number of characters sent, or an
error code less than zero.

HTTPOpen
Reversible: NO Flag affected: NO

Parameters: Hostname[, Service|Port]
Returns: Socket (< 0 if an error occurs)

Syntax: HTTPOpen(Hostname[,Service|Port])

HTTPOpen is a client command that opens an HTTP connection to a Web server.

Hostname is a Character field containing the hostname or IP address of an HTTP server.
For example:

www.myhost.com or 255.255.255.254

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to 80, the default port for HTTP.

If HTTPOpen succeeds, socket receives a positive number which is the socket for the new
connection to the server. Otherwise, socket receives a negative error code.

HTTPPage
Reversible: NO Flag affected: NO

Parameters: URL[, Service|Port]
Returns: Page

Syntax: HTTPPage(URL[,Service|Port])

A client command that retrieves the content of the Web page specified by the URL, into an
OMNIS Character or Binary variable.

Note: HTTPPage allows you to get HTML text source through a server, transparently and
without additional coding.

URL is an OMNIS Character field containing a standard Web page URL of the form
http://domaininfo.xxx/path/webpagepage

70 Reference

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to the port number specified in the URL, or if none is
present, 80, the default port for HTTP.

The primary role of HTTPPage is to grab, simply and quickly, the HTML text source of the
page specified by the URL. The URL may also specify a CGI name and arguments, but it is
simpler to access CGIs by using the HTTPPost or HTTPGet functions.

If an error occurs, the command returns a negative number to Page. Otherwise, Page
receives the contents of the specified URL. In other words, it receives the complete HTTP
response for the URL, including the status line and the headers.

HTTPParse
Reversible: NO Flag affected: NO

Parameters: Message, HeaderList, Method, HTTPVersion[, URI, CGIList]

Returns: Status (Zero for success, < 0 if an error occurs)

Syntax: HTTPParse(Message,HeaderList,Method,HTTPVersion[,URI,CGIList])

HTTPParse is a server command to parse HTTP header information from an incoming
request message.

Message is an OMNIS Character or Binary field containing the full text of an HTTP
request message.

HeaderList is an OMNIS list with two character columns. The list receives the headers
extracted from the request message, one line per header.

For example, after the call, the list might contain entries such as:

Attribute Value

Date The current GMT date and time in HTTP header

User-Agent NCSA Mosaic for the X Window System/2.4 libwww/2.12 modified

Accept /

Content-type application/x-www-form-urlencoded

Content-length 1234

Note: HTTPParse automatically strips the colons after the attribute names.

Method is an OMNIS character field that receives the type of HTTP method being
requested, for example, GET, POST, or HEAD.

HTTPVersion is an OMNIS Character field containing the version of HTTP. For example,
1.0.

Web Commands 71

URI is an OMNIS Character field that receives the name of the URI to be processed. At a
minimum, the URI is a single slash, so every URI returned from HTTPParse is of the form
/URLName.

Note: Due to the presence of the leading slash, a simple OMNIS equality string comparison
to the name of the URI fails. Use the pos() function or similar parsing mechanism to find
the URI name. The trailing question mark of a GET-method CGI, which separates the URI
path from the CGI arguments, is stripped by HTTPParse.

CGIList is an OMNIS list field with two character columns. It receives the CGI arguments
present in the request, either extracted from the URL, or extracted from content of type
“application/x-www-form-urlencoded”. For example, if the following HTML form is the
submitted from a browser:
Name:
City:
Are you alive?

and the user types in John Smith, Podunk and checks the City field, after HTTPParse,
CGIList contains:

Attribute Value

Name John Smith

City Podunk

Alive Yes

Submit Please

Note: Before the data is stored in the list, HTTPParse automatically decodes any CGI
encoding required to pass special characters. There is no need to call the CGIDecode
command.

HTTPPost
Reversible: NO Flag affected: NO

Parameters: Hostname, URI [,CGIList, HeaderList, Service|Port]

Returns: Socket (< 0 if an error occurs)

Syntax: HTTPPost(Hostname,URI [,CGIList, HeaderList, Service|Port])

HTTPPost is a client command that submits a POST HTTP request to a Web server.

Hostname is a Character field containing the hostname or IP address of the Web server.

URI is a Character field containing the URI to GET from the Web Server. For example,
“/default.html”, or “/cgi-bin/mycgiscript”

CGIList is an optional parameter. It is an OMNIS list with two character columns. The list
contains the CGI arguments to be posted to the URI. These will be sent as content of type

72 Reference

“application/x-www-form-urlencoded”. There is one row for each CGI argument. For
example

Attribute Value

Name John Smith
City Podunk
Alive On
Submit Please

Note: Before the values are sent to the Web server, HTTPPost automatically performs any
CGI encoding required to pass special characters in the arguments. There is no need to call
the CGIEncode command.

HeaderList is an optional parameter. It is an OMNIS list with two character columns.. The
list contains additional headers to add to the headers of the HTTP POST request. Note that
the header name excludes the ‘:’, which HTTPPost inserts automatically when it formats
the header.

For example

Header name Value

User-Agent My Client

Content-type text/html

Note that because CGI arguments are sent as content, you can only supply your own
Content-type and Content-length headers if you do not supply CGI arguments.

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to the port number specified in the hostname, or if none is
present, it defaults to 80, the default port for HTTP.

Socket receives the result of the request. HTTPPost opens a connection to the Web server,
and formats and sends an HTTP POST request to the server. If the command succeeds, it
returns the socket number for the connection to the WEB server; otherwise, it returns an
error number which is less than zero. After successfully issuing HTTPPost, you should call
HTTPRead to read the response from the server; ALWAYS call HTTPClose to close the
connection and free the socket.

HTTPPost adds the following header fields by default:

Web Commands 73

Attribute Value

Accept */*

Content-length The length of the content (Only if you supply CGI
arguments)

Content-type application/x-www-form-urlencoded (Only if you
supply CGI arguments)

User-Agent OMNIS Software – OMNIS

Note: After calling HTTPPost, you can call HTTPSend to send your own content, before
you read the response, provided that you include Content-type and Content-length headers
in the HeaderList.

HTTPRead
Reversible: NO Flag affected: NO

Parameters: Socket, Buffer [,Type]
Returns: ReceivedCharacterCount (< 0 if an error occurs)

Syntax: HTTPRead(Socket,Message[,Type])

HTTPRead is a client and server command that reads a complete HTTP request message or
response. Servers use it to read requests, and clients use it to read responses.

Socket is an OMNIS Long Integer field containing the socket number of an open HTTP
connection.

Buffer is an OMNIS Character or Binary field into which HTTPRead places the received
request or response.

Type is an optional parameter. It is a Boolean value, where zero indicates server behavior,
and non-zero indicates client behavior. If omitted, it defaults to zero.

ReceivedCharacterCount is an OMNIS Long Integer field which receives the number of
characters placed in Buffer. If an error occurs, an error code less than zero is returned here.

Note: HTTPRead always operates in blocking mode, and will timeout after a minute of
inactivity on the connection. The server reads until the HTTP request header is complete,
and it has received content of the correct size. The client behaves similarly, but will also
treat graceful closure of the connection as marking the end of the response.

HTTPSend
See TCPSend – HTTPSend has identical behavior.

74 Reference

HTTPServer
Reversible: NO Flag affected: NO

Parameters: WebProc[, Port]

Returns: Status (Zero for success, or < 0 if an error occurs)

Syntax: HTTPServer(WebProc[,Port])

HTTPServer invokes a listening socket on a specified port, to receive incoming HTTP
requests. This function shows an OMNIS working message with the count of accepted
connections. HTTPServer calls a user-specified OMNIS method each time a new
connection arrives. The user function receives the socket number for the new HTTP
connection.

WebProc is an OMNIS Character field containing the name of the OMNIS method to be
called when a connection arrives. The method receives one parameter, the number of the
socket for the new HTTP connection. For example, MYLIBRARY.MYCODE/MYPROC.

You may read and write to the parameter socket with HTTPRead, HTTPSend, or
HTTPHeader commands or a TCP equivalent (TCPSend; for example).

Port is an OMNIS Integer field that is optionally used to indicate the port number on which
HTTPServer listens for connections. If omitted, the port number defaults to 80.

Caution: You must close the socket with HTTPClose before quitting the OMNIS method.

The command returns an integer status, which is less than zero if an error occurs.

Stopping HTTPServer
Once started, HTTPServer runs indefinitely until it is stopped. There are two ways to stop
HTTPServer:

1. Press the Cancel button on the working message displayed by the command.

2. Set the OMNIS flag to false before returning from the WebProc method. Obviously,
you need to make sure the flag is true before returning, if you wish to process further
connections

Web Commands 75

HTTPSetProxyServer
Reversible: NO Flag affected: NO

Parameters: [Hostname,Service|Port]

Returns: Status (Zero for success, or < 0 if an error occurs)

Syntax: HTTPSetProxyServer([Hostname,Service|Port])

HTTPSetProxyServer is a client command which sets the HTTP proxy server to be used for
the client commands HTTPGet, HTTPPage, and HTTPPost. After specifying a proxy server
in this way, these commands connect to the proxy server rather than the Web server
indicated by their parameters. They then use a different HTTP syntax to request Web pages
via the proxy server.

Hostname is the hostname or IP address of the proxy server.

Service|Port is an optional parameter that specifies the service name or port number of the
proxy server. If you specify a service name, the lookup for the port number occurs locally.
If you omit this argument, it defaults to 8080.

To clear the proxy server setting, and subsequently connect directly to Web servers, call
this command with no (or empty) parameters.

The command returns an integer status, which is less than zero if an error occurs.

76 Reference

HTTPSplitHTML
Reversible: NO Flag affected: NO

Parameters: Message, TagtextList

Returns Status (Zero for success, or < 0 if an error occurs)

Syntax: HTTPSplitHTML(Message,TagtextList)

HTTPSplitHTML is a client function to parse the HTML from a Web page into an OMNIS
list. The HTML tags are parsed out of the text, so that it easier to write a program that grabs
the Web page content or interprets the tags from a form.

Message is an OMNIS Character or Binary field containing the text of the content portion
of a Web page, including HTML tags.

TagtextList is an OMNIS list defined to have three columns, all character. Column 1
contains the opening HTML tag, column 2 the actual page text, and column 3 the closing
HTML tag.

The command returns an integer status, which is less than zero if an error occurs.

HTTPSplitURL
Reversible: NO Flag affected: NO

Parameters: URL, Hostname, URI

Returns: Status (Zero for success, or < 0 if an error occurs)

Syntax: HTTPSplitURL(URL,Hostname,URI)

HTTPSplitURL is a server and client function which splits a full URL into a hostname and
a path (that is, a URI). Useful for following HREF links on pages.

URL is an OMNIS Character field containing a standard Web page URL of the form
http://host.mydomain.com/path/webpage.html

Hostname is an OMNIS character field that receives the hostname parsed out of the URL
argument. For example, given the URL, above, the hostname portion would be
host.mydomain.com

URI is an OMNIS Character field that receives URI parsed out of the URL. For example,
given the URL, above, the URI would be /path/webpage.html.

The command returns an integer status, which is less than zero if an error occurs.

Web Commands 77

MAILSplit
Reversible: NO Flag affected: NO

Parameters: Message, HeaderList, Body
Returns: Status (Zero for success, or < 0 if an error occurs)

Syntax: MAILSplit(Message,HeaderList,Body)

MAILSplit parses an Internet e-mail message. On the Win32 and Power Macintosh
platforms, it can also decompose MIME content.

Message is an OMNIS Character or Binary field containing the complete text of an Internet
e-mail message, including the header. Messages in this form are returned in the MailList
argument of the POP3Recv command. For example

Received: by omnis-software.com with SMTP; 12 Aug 1996 11:49:59 -0700
Received: (from someone@localhost) by netcom8.netcom.com (8.6.13/Netcom)
id LAA09789; Mon, 12 Aug 1996 11:46:45 -0700
Date: Mon, 12 Aug 1996 11:46:45 -0700
From: someone@somedomain.com (PersonalName here)
Message-Id: <199608121846.LAA09789@netcom8.netcom.com>
To: someoneelse@somedomain.com
Subject: This is an e-mail subject

Hello from OMNIS Software, Inc.

HeaderList is an OMNIS list with two character columns. The list receives the information
from the e-mail message header as attribute/value pairs. There is one row for each item in
the header. For example, assuming the e-mail message above:

Attribute Value

Received by omnis-software.com with SMTP; 12 Aug 1996 11:49:59 -0700

Received (from someone@localhost) by netcom8.netcom.com (8.6.13/Netcom)
id LAA09789; Mon, 12 Aug 1996 11:46:45 –0700

Date Mon, 12 Aug 1996 11:46:45 –0700

From someone@somedomain.com (PersonalName here)

Message-Id <199608121846.LAA09789@netcom8.netcom.com>

To Error! Reference source not found.

Subject This is an e-mail subject

Note: Two header lines may have the same attribute name. This is within the RFC822
message header specification. In this case, the HeaderList has two lines with the same
Attribute name, as with Received in the above example. Long header lines that are split and
continued in the message header are concatenated into one line in the list, as with the
second Received attribute in the above example. The colon at the end of the attribute is
stripped.

78 Reference

The Body parameter can be either an OMNIS character field or an OMNIS list.

If Body is an OMNIS character field, MailSplit returns the body of the e-mail message into
this variable, minus the header. In the example: Hello from OMNIS Software, Inc. Note,
however, that if the body contains MIME content, the HeaderList only receives headers up to and
excluding the MIME-Version header, and the body receives the rest of the message, starting with
MIME-Version. This allows you to use the old Content Manager CM… commands to analyse the
MIME content. This mechanism is no longer recommended, but is maintained for compatibility.

On the Win32 and Power Macintosh platforms, you can pass an OMNIS list as the Body parameter. In
this case, the HeaderList receives all of the headers, and the Body list receives either a single line
containing the message body (if the message does not have MIME content), or a line for each MIME
body part in the message body (if the message has MIME content). We discuss how MIME content is
handled in this way below.

The command returns an integer status, which is less than zero if an error occurs.

MIME Content
MIME content can be thought of as a tree, which has a single root node, the message. Each
node in the tree has a MIME type and a MIME subtype.

Non-leaf nodes have the type “multipart”, and these contain other nodes, which themselves
can be multipart. A non-leaf node does not contain data.

Leaf nodes have other types, such as “text” and “application”, and these contain data. The
type “message” can also be considered a container, but the MailSplit (and SMTPSend)
commands treat messages as leaf nodes. If you wish to decompose a message contained in
MIME content, you need to call MailSplit again for that message.

Each node in the tree is referred to as a body part.

The Body list receives a representation of the MIME content tree, with a line for each body
part. Before calling MailSplit, define a list with eight columns:

Web Commands 79

Column Contains

Level A long integer which indicates the level of this node in the
tree. The single root node has level zero. The next level
down is one, and so on. This will become clearer in some
examples below.

Content-type The type of this body part e.g. “text” or “multipart”

Content-subtype The sub-type of this body part e.g. “plain”

Filename The name of the file corresponding to this body-part. Used
for leaf-nodes which are file attachments.

Character data If the content-type is “text” or “message”, this column
contains the data. Leaf nodes only.

Binary data If the content-type is not “text”, “message” or “multipart”,
this column contains the data. Leaf nodes only.

Character-set The character set of the data. The commands only
understand us-ascii and iso-8859-1. The latter is equivalent
to the Ansi character set used on the Windows platforms.
Character data in any other character set will not be handled
correctly.

Content-Transfer-Encoding How the data is encoded: “base64”, “quoted-printable”,
“7bit” etc. The command handles decoding from base64 and
quoted-printable, meaning that the data in the character and
binary columns above has been decoded.

On the Power Macintosh, character data in the iso-8859-1
character set has been converted to the Macintosh character
set.

On both Win32 and the Power Macintosh, the command
replaces CRLFs with the OMNIS newline character.

Some example lists:

A message sent by a mailer such as Outlook Express, containing both text and HTML
versions of the message text:

Lev Content-
type

Content-
subtype

File Char Bin Char-
set

Encoding

0 multipart alternative

1 text plain From Bob iso-
8859-1

quoted-
printable

1 text html <!DOCTYPE
HTML…

iso-
8859-1

quoted-
printable

80 Reference

A message sent by a mailer such as Outlook Express, containing both text and HTML
versions of the message text, and having a single file attachment:

Lev Content-
type

Content-
subtype

File Char Bin Char-
set

Encoding

0 multipart mixed

1 multipart alternative

2 text plain From Bob iso-
8859-1

quoted-
printable

2 text html <!DOCTY
PE
HTML…

iso-
8859-1

quoted-
printable

1 application octet-
stream

app.h This
is
my
file
data
…

base64

POP3Recv
Reversible: NO Flag affected: NO

Parameters: Server, User, Pass, List[, Delete, StsProc, MaxMessages]

Returns: Status (Zero for success, or < 0 if an error occurs)

Syntax: POP3Recv(Server,User,Pass,MailList[,Delete,Status,MaxMessages])

POP3Recv retrieves Internet e-mail messages from a POP3 server into an OMNIS list. If an
error occurs, the command returns a value less than zero to Status; in this case, all mail may
not have been received. The socket opened to the POP3 server is always closed before the
command returns.

Server is an OMNIS Character field containing the IP address or hostname of a POP3 (Post
Office Protocol Level 3) server that will serve e-mail to the client running OMNIS.
Examples: pop3.mydomain.com or 255.255.255.254.

User is an OMNIS Character field containing the account that receives the mail on the
designated server. Usually an account user name, for example, Webmaster.

Pass is an OMNIS Character field containing the password for the account specified in the
User parameter, for example, Secret.

List is an OMNIS list field defined to contain a single column of type character. The
column receives the Internet e-mail messages, one per line. The column variable should be
large enough to receive the e-mail message, including the header. When using OMNIS 7,
the list should be defined with the store long data option selected.

Web Commands 81

Delete is an OMNIS Boolean field which, if true, indicates that the messages will be
deleted from the server once they have been downloaded into MailList. The default is false,
so messages remain on the server if the argument is omitted.

StsProc is an optional parameter containing the name of an OMNIS method that POP3Recv
calls with mail receive status messages. The method can display a status message while the
POP3 process proceeds. POP3Recv calls the method with no parameters, and the status
information in the variable #S1.

MaxMessages is an optional parameter which specifies the maximum number of messages
to be downloaded by this call to POP3Recv. If omitted, all available messages are
downloaded.

POP3Stat
Reversible: NO Flag affected: NO

Parameters: Server, User, Pass [,StsProc]
Returns: WaitingMessages (or an error code < 0)

Syntax: POP3Stat(Server,Username,Password[,StsProc])

The POP3Stat command retrieves the number of Internet e-mail messages waiting for a
particular user on a specified POP3 server. If an error occurs, the command returns a value
less than zero to WaitingMessages. The socket opened to the POP3 server is always closed
before the command returns.

Server is an OMNIS Character field containing the IP address or hostname of a POP3
server that will serve e-mail to the client running OMNIS. For example:
pop3.mydomain.com or 255.255.255.254.

User is an OMNIS Character field containing the account that receives the mail on the
designated server (usually an account user name, for example, Webmaster).

Pass is an OMNIS character field containing the password for the account specified in the
User parameter, for example, Secret.

StsProc is an optional parameter containing the name of an OMNIS method that POP3Stat
calls with status messages. The method can display a status message while the POP3
process proceeds. POP3Stat calls the method with no parameters, and the status information
in the variable #S1.

WaitingMessages is an OMNIS Long Integer field which receives an error status, or the
number of e-mail messages waiting to be collected on the specified server for the specified
account.

82 Reference

SMTPSend
Reversible: NO Flag affected: NO

Parameters: Server, From, To, Subject, Body[, CC, BCC, Name, StsProc, Pri, XtraHdrs]

Returns: Status (Zero for success, or < 0 if an error occurs)

Syntax: SMTPSend(Server,From,To,Subject,Body
[,CC,BCC,Name,StsProc,Pri,XtraHdrs])

SMTPSend sends an Internet e-mail message via an SMTP server. It returns a Status value
less than zero if an error occurs.

Server is an OMNIS Character field containing the IP address or hostname of an SMTP
server that will accept e-mail requests from the client running OMNIS, for example,
smtp.mydomain.com or 255.255.255.254.

From is an OMNIS Character field containing the RFC 822 Internet e-mail address that will
be placed in the header to identify the sender. Recipients can reply to this address, for
example, webmaster@www.omnis-software.com.

To is either an OMNIS Character field or an OMNIS list field. If the field is character, it
contains the RFC 822 Internet e-mail address to which the e-mail will be sent, for example,
webmaster@www.omnis-software.com. If the field is a list, it has a single character column,
which contains one RFC 822 Internet e-mail address per row.

Subject is an OMNIS character field containing the subject of the e-mail message.

Body is

• either an OMNIS Character or Binary field containing the body of the e-mail message;
the text appears as the actual e-mail message

• or (Win32 and Power Macintosh only) an OMNIS list containing MIME body-parts.
See the MailSplit command for a definition of the list. Note that you do not need to fill
in the character set and content encoding type columns. SMTPSend will automatically
use the ISO-8859-1 character set for text, the 7bit encoding for message content,
quoted-printable encoding for text content, and base64 encoding for all other content
types. If you wish to override this default behavior, you can.

CC specifies the carbon-copy recipients for the message. You pass this parameter in the
same way as the To parameter.

BCC specifies the blind carbon-copy recipients for the message. You pass this parameter in
the same way as the To parameter.

Name is an OMNIS Character field containing a personal name that will appear in the
header to identify the user by a more descriptive name than just the e-mail address, for
example, OMNIS Webmaster

StsProc is an optional parameter containing the name of an OMNIS method that
SMTPSend calls with status messages as submission of the message to the SMTP server

Web Commands 83

proceeds. The method can display a status message to the user. SMTPSend calls the
method with no parameters, and the status information in the variable #S1.

Pri is on OMNIS Short Integer field that sets the priority of the e-mail. It accepts a single
value in the range of 1 through 5, a 1 (one) indicating the highest priority.

XtraHdrs is an optional parameter which enables you to specify some additional SMTP
headers to be sent with the message. . It is a 2 column list. Column 1 is the header name
excluding the colon, and column 2 is the header value. For example, you could place
'Disposition-Notification-To' in column 1, and an email address in column 2, to send a
'Disposition-Notification-To' header. Note that SMTPSend does not validate the header, or
attempt to filter out illegal duplicates.

TCPAccept
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Socket (or an error code < 0)

Syntax: TCPAccept(Socket)

You use TCPAccept to accept an incoming connection request from another application.

The Socket parameter is a socket which is listening for incoming connections on a
particular port. You must create this socket using TCPSocket, bind a port (and implicitly
the local machine’s IP address) to it using TCPBind, and start listening for connections by
calling TCPListen, before you can call TCPAccept to accept incoming connections using
the socket.

TCPAccept is affected by the blocking state of the Socket parameter. If the Socket
parameter is blocking, TCPAccept waits until an incoming connection arrives, and then
returns a new Socket for the connection to the remote application. If the Socket parameter is
non-blocking, TCPAccept will return a new Socket if an incoming connection request is
already queued on the listening socket; otherwise, it will return the error status –10035,
which means that the call would block.

TCPAccept returns a long integer, which is either a new socket for the accepted connection,
or an error code less than zero. The new socket has the same blocking mode as the listening
socket. The listening socket continues to listen for further incoming connection requests.

84 Reference

TCPAddr2Name
Reversible: NO Flag affected: NO

Parameters: Address
Returns: Hostname (or an error code < 0)

Syntax: TCPAddr2Name(Address)

TCPAddr2Name is a domain name service command to resolve the hostname for a given IP
address.

Address is an OMNIS Character field containing the IP address to convert to a hostname.
The IP address is of the form 255.255.255.254

Hostname is an OMNIS Character field which receives a hostname which maps to the IP
address. The hostname is of the form machine[.domainame.dom]

Note: This command fails if the address of a Domain Name Server has not been defined for
your computer. Not all host IP Addresses may be known to the Domain Name Server. If the
Domain Name Server is busy or unavailable, the command times out and returns an error.
Defining often -used servers in a local host’s file or using a caching Domain Name Server
increases performance of this command.

TCPBind
Reversible: NO Flag affected: NO

Parameters: Socket, Service|Port
Returns: Status

Syntax: TCPBind(Socket,Service|Port)

TCPBind binds a socket created with TCPSocket to a particular local port.

Socket is an OMNIS Long Integer field, containing the number of the socket.

Service/Port is either an OMNIS integer field containing the number of the port to which
the socket should be bound, or an OMNIS character field containing the name of a service
which will be resolved to a port number by a local lookup.

Status is an OMNIS Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

Web Commands 85

TCPBlock
Reversible: NO Flag affected: NO

Parameters: Socket, Option
Returns: Status

Syntax: TCPBlock(Socket,Option)

The TCPBlock command makes a socket blocking or non-blocking.

The blocking state of a socket affects the commands TCPAccept, TCPReceive, TCPSend,
and HTTPSend. If you use TCPBlock to change the blocking state of sockets returned for
FTP connections, this could result in undesirable behavior of the FTP commands.

If a socket is blocking, the commands listed above wait until they can complete
successfully; in other words, a receive waits until it has received some data, a send waits
until it has sent some data, and an accept waits until an incoming connection request
arrives.

If a socket is non-blocking, the commands listed above will complete successfully if they
can do so immediately; if not, they will return the error code –10035, which means that the
command needs to block before it can complete successfully.

Socket is an OMNIS Long Integer field containing a number identifying a valid socket.

Option is an OMNIS integer field. Non-zero means non-blocking and zero means blocking.

Status is an OMNIS Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

TCPClose
Reversible: NO Flag affected: NO

Parameters: Socket[,Option]
Returns: Status

Syntax: TCPClose(Socket[,Option])

TCPClose closes, and depending on the Option, releases a Socket. When the socket is
connected, this will result in the closure of the connection to the remote application. All
new sockets returned by all Web commands, must eventually be released using TCPClose,
to avoid resource leakage.

The most brutal form of TCPClose is an abortive close. In this case, no consideration is
given to the state of the connection, or exchanges with the remote application, and the
socket is closed and released immediately. This form of TCPClose is recommended for use
in error handling situations.

The mildest form of TCPClose is a partial close. In this case, the socket is not released, and
you will need to call TCPClose again to release the socket. A partial close initiates a
disconnect of the TCP/IP connection, by sending a TCP/IP packet with the finish flag set.

86 Reference

This means that you can no longer send data to the remote application, but you can
continue to receive data. The remote application will be informed of the partial close, when
it receives zero bytes; in the case of the TCPReceive command, it will return a received
character count of zero. At this point, the remote application can continue to send data, and
when it has finished, it issues a complete close itself.

The remaining form of TCPClose is a complete close. In this form, TCPClose initiates a
close of the connection if necessary, receives data on the connection until no more is
available (to flush the connection), and releases the socket. This is recommended practice
for TCP/IP connections.

What does this mean in practice? Consider two applications A1 and A2, communicating
using TCP/IP. A1 can either do a partial close or a complete close. In both cases, A2 will
receive zero bytes, indicating that disconnection has been initiated. A2 can continue to
send, and when it has finished, it issues a complete close. A1 can receive the data sent by
A2 provided that it only issued a partial close. Eventually A1 will receive zero bytes, at
which point it issues a final complete close. At this point, the connection has been
gracefully closed, and the sockets used by both A1 and A2 have been released.

Socket is an OMNIS Long Integer field containing a number representing a previously
opened socket.

Option is an optional OMNIS Integer field, which has the value zero for a complete close, 1
for a partial close, and 2 for an abortive close. If omitted, it defaults to a complete close.

Status is an OMNIS Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

TCPConnect
Reversible: NO Flag affected: NO

Parameters: Hostname, Service|Port
Returns: Socket (or an error code < 0)

 Syntax: TCPConnect(Hostname, Service|Port)

TCPConnect establishes a TCP/IP connection to a remote application, and returns a new
socket representing that connection.

Hostname is an OMNIS Character field containing the hostname or IP address of the
system on which the remote application is running.

Service/Port is either an OMNIS integer field containing the number of the port on which
the remote application is listening for new connections, or an OMNIS character field
containing the name of a service which will be resolved to a port number by a local lookup.

Socket is an OMNIS Long Integer field that receives either the number of the new socket,
or an error code < 0.

Web Commands 87

Note: This differs from the more standard implementation of the sockets connect call.
Instead of creating a socket with one command (such as TCPSocket), then passing the
socket to a connect command, TCPConnect creates the socket and returns the socket
number in one step.

TCPGetMyAddr
Reversible: NO Flag affected: NO

Parameters: [Socket]
Returns: Address (or an error code < 0)

Syntax: TCPGetMyAddr([Socket])

TCPGetMyAddr is a domain name service command to resolve the IP address of the local
computer running OMNIS.

You can optionally pass a Socket, which corresponds to an open connection. In this case,
the command returns the local IP address bound to the local endpoint of the connection.
There are two cases where this is useful.

1. It is not a mandatory requirement that a WinSock API implementation can return the
local IP address, without a socket for an open connection. In this case it is likely that
TCPGetMyAddr will return 0.0.0.0.

2. If the local machine has more than one IP address, passing a socket eliminates
ambiguity, and returns the local IP address used for the open connection.

Address is an OMNIS Character field which receives the IP Address of the local host. The
IP address is of the form 255.255.255.254

TCPGetMyPort
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Port (or an error code < 0)

Syntax: TCPGetMyPort(Socket)

TCPGetMyPort is a command to return the number of the local TCP/IP port to which a
given socket is bound.

Socket is an OMNIS Long Integer field containing a connected socket, or a socket bound
to a port.

Port is an OMNIS Long Integer field which receives the port number, or an error code < 0.

88 Reference

TCPGetRemoteAddr
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Address (or an error code < 0)

Syntax: TCPGetRemoteAddr(Socket)

TCPGetRemoteAddr returns the IP address of the remote computer to which a given socket
is connected.

Socket is an OMNIS Long Integer field containing a connected socket.

Address is an OMNIS Character field which receives the IP Address of the host to which
the socket is connected. The IP address is of the form 255.255.255.254

TCPListen
Reversible: NO Flag affected: NO

Parameters: Socket
Returns: Status

Syntax: TCPListen(Socket)

TCPListen puts a socket created with TCPSocket into listening mode. When a socket is in
listening mode, it will acknowledge incoming connection requests addressed to the port
bound to the socket, and place them in a queue, ready to be accepted using TCPAccept.

Socket is an OMNIS Long Integer field containing the number of a socket that has been
bound to a port.

Status is an OMNIS Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

Web Commands 89

TCPName2Addr
Reversible: NO Flag affected: NO

Parameters: Hostname
Returns: Address (or an error code < 0)

Syntax: TCPName2Addr(Hostame)

TCPName2Addr is a domain name service command that returns the IP address for a given
Hostname.

Hostname is an OMNIS Character field containing a hostname to convert to an IP address.
The hostname is of the form machine[.domainame.dom]

Address is an OMNIS Character field which receives the IP Address corresponding to the
given hostname. The IP address is of the form 255.255.255.254

Note: This command fails if the address of a Domain Name Server has not been defined in
your computer. Not all host IP Addresses may be known to the Domain Name Server. If the
Domain Name Server is busy or unavailable, the command times out and returns an error.
Defining often-used servers to a local host’s file or using a caching Domain Name Server
increases performance of this command.

TCPPing
Reversible: NO Flag affected: NO

Parameters: Hostname[,Size,Timeout]
Returns: Milliseconds (or an error code < 0)

Syntax: TCPPing(Server[,Size[,Timeout]])

TCPPing sends an ICMP request packet to a specified IP address or named host. It returns
the round-trip packet time in milliseconds. If the host is unreachable or not available, the
command will return a negative error code.

Hostname is an OMNIS Character field containing the IP address or hostname of the host
to ping.

Size is an optional parameter. It is an OMNIS Long Integer field containing the size, in
bytes, of the packet to ping the specified host. Typical values are from 512 to 2,048 bytes.
The command makes sure the size is between 1 and 16k bytes, and will force sizes outside
this range to the minimum or maximum, appropriately. If omitted, Size defaults to 256.

Timeout is an optional parameter. It is an OMNIS Long Integer field containing the number
of milliseconds to use as a timeout value for the ping request. If the host is unavailable or
does not respond in the specified number of milliseconds, the TCPPing function cancels the
ping request and returns -1. If omitted, Timeout defaults to 3000.

Milliseconds is an OMNIS Long Integer field. When no error occurs, TCPPing returns the
number of milliseconds that it took to receive the ping response from the host. On very fast

90 Reference

LANs, it is possible that the ping can complete so quickly that the value may be 0 (zero). A
value of -1 (minus one) is returned if the ping times out. All other negative values are error
codes.

TCPReceive
Reversible: NO Flag affected: NO

Parameters: Socket, Buffer
Returns: ReceivedCharacterCount (or an error code < 0)

Syntax: TCPReceive(Socket,Buffer)

TCPReceive receives data on a connected socket.

Socket is an OMNIS Long Integer field containing the socket number of a connected
socket.

Buffer is an OMNIS Character or Binary field into which TCPReceive places the received
data.

TCPReceive receives data into the buffer, and then returns the number of received
characters to the OMNIS Long integer ReceivedCharacterCount. If an error occurs,
TCPReceive returns a negative error code. Note that zero can be returned to
ReceivedCharacterCount when graceful closure of the connection is initiated by the remote
application, and there is no more data to receive. See TCPClose for details.

Note: Non-blocking sockets return an error code of -10035 if no data is available. Some
implementations of socket libraries may have limits on the number of characters you can
receive at one time. Consult the documentation for your installed sockets libraries. You
may have to read data in multiple chunks to assemble an entire message. Always check the
number of characters returned to make sure there was no error.

Web Commands 91

TCPSend
Reversible: NO Flag affected: NO

Parameters: Socket, Buffer
Returns: SentCharacterCount (or an error code < 0)

Syntax: TCPSend(Socket, Buffer)

TCPSend sends data on a connected socket.

Socket is an OMNIS Long Integer field containing the socket number of a connected
socket.

Buffer is an OMNIS Character or Binary field containing the data to send on the socket.

TCPSend sends as much data as it can, and then returns the number of characters it sent to
SentCharacterCount, an OMNIS Long Integer field. If an error occurs, TCPSend returns a
negative error code

Note: Non-blocking sockets return an error code of -10035 if the socket cannot accept the
characters to send immediately. Some implementations of socket libraries may have limits
on the number of characters you can send at one time. Consult the documentation for your
installed sockets libraries. You may have to send a message in multiple chunks in order to
send a very long message. Always check the number of characters returned, to determine
how much of the buffer has actually been sent; if the value is less than the buffer size, you
need to call send again, to send the rest of the buffer.

TCPSocket
Reversible: NO Flag affected: NO

Parameters: None
Returns: Socket (or an error code < 0)

Syntax: TCPSocket()

TCPSocket creates a new socket. The only use of such a socket is to bind a port to it using
TCPBind, start listening on the port using TCPListen, and then accept incoming
connections using TCPAccept.

Socket is an OMNIS Long Integer field which receives the number of the allocated socket.
If an error occurs, the command returns a negative number.

92 Reference

UUDecode
Reversible: NO Flag affected: NO

Parameters: Stream,DecodedStream
Returns: Status

Syntax: UUDecode(Stream,DecodedStream)

UUDecode turns Uuencoded information back into text or binary information. It is the
inverse of UUEncode. Uuencoded information is commonly sent over the Internet in a
manner that preserves binary information.

Stream is an OMNIS Character or Binary field containing the information to UUDecode.

DecodedStream is an OMNIS Character or Binary field that receives the resulting
Uudecoded representation of the Stream argument. Because Uuencoding is generally used
for binary information, a Binary field is the norm.

Status is an OMNIS Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

UUEncode
Reversible: NO Flag affected: NO

Parameters: Stream,EncodedStream
Returns: Status

Syntax: UUEncode(Stream,EncodedStream)

UUEncode turns a stream into an encoded stream of 64-character lines of print-only ASCII
characters. The encoded version is approximately 1.25 times larger than the original.

Stream is an OMNIS Character or Binary field containing the information to UUEncode.

EncodedStream is an OMNIS Character or Binary field that receives the resulting
Uuencoded representation of the Stream parameter.

Status is an OMNIS Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

Web Commands 93

WebDevSetConfig
Reversible: NO Flag affected: NO

Parameters: [ErrorProc,CommsTimeout]
Returns: Status

Syntax: WebDevSetConfig([Proc,CommsTimeout])

The WebDevSetConfig command allows you to set some configuration options for the
WEB commands.

ErrorProc is the WebDevError method. WebDevError is an OMNIS method which ALL
of the other WEB commands call when an error occurs. WEB command execution is as
follows:

• Attempt to execute command

• If no error occurs, return successful status information.

• If an error occurs, and there is no WebDevError method, display an OK message to
report the command. Return the error code. Note: if you are using the command on a
server, it is undesirable for this OK message to be displayed ; in this case, set a
WebDevError method.

• If an error occurs, and there is a WebDevError method, call the WebDevError method.
Return the error code.

ErrorProc is an OMNIS Character field containing the name of the WebDevError method,
for example MYLIBRARY.MYCODE/MYPROC.

When a WEB command calls the WebDevError method, it passes it three parameters:

1. A character parameter containing an error message.

2. A long integer containing the error code.

3. A character parameter containing the WEB command name.

To clear the WebDevError method, either pass no parameters, or an empty first parameter,
to WebDevSetConfig.

You can also optionally pass CommsTimeout to this command. CommsTimeout is a long
integer, which specifies the number of seconds that WEB commands will wait to receive
data, before deciding that the remote application is not going to respond. Note: this time-
out does not apply to TCPReceive. WebDevSetConfig multiplies this value by 60, to
generate a value in 1/60th second ticks, and stores the resulting unsigned long integer. If you
pass an invalid value (such as zero), this will set the time-out to the default value of 60
seconds. If you do not pass a CommsTimeout parameter, the time-out remains unchanged.

The WebDevSetConfig command returns a long integer Status. Zero for success, or less
than zero if an error occurs.

94 Reference

Web Command Error Codes
The WEB commands return negative error codes. Some of the error codes map directly on
to the underlying API used for TCP/IP: namely, WinSock on the Windows platforms, Open
Transport on the Power Macintosh, and MacTCP on the Macintosh 68k. Such error codes
are platform specific. The remaining error codes are platform independent, and are
generated directly by the WEB commands. We list these first, followed by separate listings
of the WinSock, Open Tranport, and MacTCP error codes.

Platform Independent General Error Codes
These can apply to any command.

Error Code Error Text

-501 Incorrect argument type

-502 Error getting information about an argument

-503 Incorrect number of parameters

-506 Unrecognised command

-507 Error locking handle

-508 Bad list generated by command

-509 Bad socket passed to command

-510 Type of socket passed to command is invalid (e.g. FTP socket passed
to HTTP command)

-511 No address specified

-512 Could not open ICMP handle

-513 Could not start timer

-514 Service lookup failed (Mac only)

-515 Internet services provider not open (Mac only)

-516 The end-user cancelled the request

-517 Bad option passed to TCPClose

-518 No port bound to socket (Mac only)

-519 Socket is not listening - cannot accept (Mac only)

-521 Socket is not connected (Mac only)

Web Command Error Codes 95

-522 Timeout while waiting for response or request

-523 Badly formatted response from server

-524 Response from server is too short

-525 Response from server has incorrect syntax

-1010 Out of memory

-10035 The command would block

Platform Independent E-mail Command Error
Codes
Error codes marked with * are received in responses from the server, and then returned as
the result of command execution.

Error Code Error Text

-1218 Parameter passed to mail command is too long

-1219 Unrecognised response from SMTP server

-1220* SMTP: 211 System status, or system help reply

-1221* SMTP: 214 Help message

-1222* SMTP: 220 <domain> Service ready

-1223* SMTP: 221 <domain> Service closing transmission channel

-1225* SMTP: 251 User not local; will forward to <forward-path>

-1227* SMTP: 421 <domain> Service not available, closing transmission
channel

-1228* SMTP: 450 Requested mail action not taken: mailbox unavailable
[E.g., mailbox busy]

-1229* SMTP: 451 Requested action aborted: local error in processing

-1230* SMTP: 452 Requested action not taken: insufficient system storage

-1231* SMTP: 500 Syntax error, command unrecognized

-1232* SMTP: 501 Syntax error in parameters or arguments

-1233* SMTP: 502 Command not implemented

-1234* SMTP: 503 Bad sequence of commands

-1235* SMTP: 504 Command parameter not implemented

96 Reference

-1236* SMTP: 550 Requested action not taken: mailbox unavailable

-1237* SMTP: 551 User not local; please try <forward-path>

-1238* SMTP: 552 Requested mail action aborted: exceeded storage
allocation

-1239* SMTP: 553 Requested action not taken: mailbox name not allowed

-1240* SMTP: 554 Transaction failed

-1241 Error decoding quoted printable or base 64 encoded MIME data

-1242 Body part list is inconsistent - cannot build MIME content

-1244 POP3: error received from server

-1245 POP3: could not extract message size from response to LIST
command

-1246 POP3: message received from server is too large (does not match size
in LIST command response)

Platform Independent FTP Command Error
Codes
Error codes marked with * are received in responses from the FTP server, and then returned
as the result of FTP command execution.

Error Code Error Text

-1105* Need FTP account for storing files

-1106* Requested FTP action aborted: page type unknown

-1107* Requested FTP file action aborted. Exceeded storage allocation (for
current directory or dataset)

-1108* Requested FTP action not taken. File name not allowed

-1109* Requested FTP action aborted: local error in processing

-1110* FTP file not found, or no access to file

-1116 Parameter passed to FTP command is too long

-1117 Parameter passed to FTP command contains invalid characters

-1119* FTP Restart marker reply

-1120* FTP serviceready in nnn minutes

-1121* FTP data connection already open; transfer starting

Web Command Error Codes 97

-1122* FTP file status okay; about to open data connection

-1123* FTP user name okay, need password

-1124* Unrecognised FTP positive preliminary reply

-1125* Unrecognised FTP positive intermediate reply

-1126* Unrecognised FTP transient negative completion reply

-1127* Unrecognised FTP permanent negative completion reply

-1128 68k only: Server does not support passive FTP. Use FTPSetConfig to
allocate ports for active FTP

-1129 Could not extract server IP address and port from response to FTP
command PASV

-1130 FTP transfer type must be zero (for ASCII) or one (for binary)

-1131 FTP could not open local file

-1132 Error while FTP was reading or writing the local file

-1134* Need account for FTP login

-1135* Requested FTP file action pending further information

-1136* FTP service not available, closing control connection

-1137* Cannot open FTP data connection

-1138* FTP connection closed; transfer aborted

-1139* Requested FTP file action not taken. File unavailable (e.g., file busy)

-1142* Requested FTP action not taken. Insufficient storage space in system

-1143* Syntax error: FTP command unrecognized or too long

-1144* Syntax error in FTP parameters or arguments

-1145* FTP command not implemented

-1146* Bad sequence of FTP commands

-1147* FTP command not implemented for that parameter

-1148* Not logged in to FTP server

-1149* Unrecognised response from FTP server

98 Reference

Platform Independent HTTP Command Error
Codes
Error Code Error Text

-1154 Unable to determine end of HTTP header

-1161 Incomplete HTML tag

-1180 Parameter passed to HTTP command is too long

-1181 Post with CGI parameters sends CGI parameters as content: cannot
supply content-type/length header in header list

-1182 Received HTTP request is badly formatted

-1183 Received HTTP request does not contain the HTTP version

-1184 Received HTTP request contains badly formatted CGI parameters

-1185 Invalid HTTP status code - must be 1-999

-1186 The client HTTP application closed the connection

-1187 The client HTTP application did not send a Content-Length header

WinSock Error Codes
Error Code Error Text

-10004 Interrupted function call

-10009 Bad file descriptor

-10013 Permission denied

-10014 Bad address

-10022 Invalid argument

-10024 Too many open files

-10036 Operation now in progress

-10037 Operation already in progress

-10038 Socket operation on non-socket

-10039 Destination address required

-10040 Message too long

-10041 Protocol wrong type for socket

Web Command Error Codes 99

-10042 Bad protocol option

-10043 Protocol not supported

-10044 Socket type not supported

-10045 Operation not supported

-10046 Protocol family not supported

-10047 Address family not supported by protocol family

-10048 Address already in use

-10049 Cannot assign requested address

-10050 Network is down

-10051 Network is unreachable

-10052 Network dropped connection on reset

-10053 Software caused connection abort

-10054 Connection reset by peer

-10055 No buffer space available

-10056 Socket is already connected

-10057 Socket is not connected

-10058 Cannot send after socket shutdown

-10059 Too many references; cannot splice

-10060 Connection timed out

-10061 Connection refused

-10062 Too many levels of symbolic links

-10063 File name too long

-10064 Host is down

-10065 No route to host

-10066 Directory not empty

-10067 Too many processes

-10068 Too many users

-10069 Disk quota exceeded

100 Reference

-10070 Stale NFS file handle

-10071 Too many levels of remote in path

-10091 Network subsystem is unavailable

-10092 WINSOCK.DLL version out of range

-10093 Successful WSAStartup() not yet performed

-10101 Graceful shutdown in progress

-11001 Host not found

-11002 Non-authoritative host not found

-11003 This is a non-recoverable error

-11004 Valid name, no data record of requested type

Open Transport Error Codes
Error Code Error Text

-2014 Bad address

-2016 Device or resource busy

-2039 Destination address required

-2042 Protocol not available

-2043 Protocol not supported

-2048 Address already in use

-2050 Network is down

-2051 Network is unreachable

-2052 Network dropped connection on reset

-2053 Software caused connection abort

-2054 Connection reset by peer

-2055 No buffer space available

-2056 Socket is already connected

-2057 Socket is not connected

-2059 Too many references: can't splice

-2060 Connection timed out

Web Command Error Codes 101

-2061 Connection refused

-2064 Host is down

-2065 No route to host

-3150 A bad address was specified

-3151 A bad option was specified

-3152 Missing access permission

-3153 Bad provider reference

-3154 No address was specified

-3155 Call issued in wrong state

-3156 Sequence specified does not exist

-3157 A system error occurred

-3158 An event occurred - call Look()

-3159 An illegal amount of data was specified

-3160 Passed buffer not big enough

-3161 Provider is flow-controlled

-3162 No data available for reading

-3163 No disconnect indication available

-3164 No Unit Data Error indication available

-3165 A Bad flag value was supplied

-3166 No orderly release indication available

-3167 Command is not supported

-3168 State is changing - try again later

-3169 Bad structure type requested for OTAlloc

-3170 A bad endpoint name was supplied

-3171 A Bind to an in-use addr with qlen > 0

-3172 Address requested is already in use

-3173 Accept failed because of pending listen

-3174 Tried to accept on incompatible endpoint

102 Reference

-3175 Endpoint must be bound with a qlen parameter equal to 0

-3176 The address to which this endpoint is bound differs from that of the
endpoint that received the connection request

-3177 The maximum number of outstanding indications has been reached for
the endpoint

-3178 An unspecified protocol error occurred

-3179 Attempted synchronous call at interrupt time

-3180 The command was cancelled

-3200 Permission denied

-3201 Endpoint mapper or entity not found

-3202 No such resource

-3203 Interrupted system service

-3204 I/O error

-3205 No such device or address

-3208 Bad file number

-3210 Try operation again later

-3211 Cannot allocate enough memory to meet your request

-3212 Permission denied

-3213 Bad address

-3215 Device or resource busy

-3216 Attempt to register a port or other entity that already exists

-3218 No such device

-3221 Invalid argument

-3224 Not a character device

-3231 Broken pipe

-3233 Message size too large for STREAM

-3234 Call would block so was aborted

-3236 kEALREADYErr

-3237 Socket operation on non-socket

Web Command Error Codes 103

-3238 Destination address required

-3239 Message too long

-3240 Protocol wrong type for socket

-3241 Protocol not available

-3242 Protocol not supported

-3243 Socket type not supported

-3244 Operation not supported on socket

-3247 Address already in use

-3248 Can't assign requested address

-3249 Network is down

-3250 Network is unreachable

-3251 Network dropped connection on reset

-3252 Software caused connection abort

-3253 Connection reset by peer

-3254 No buffer space available

-3255 Socket is already connected

-3256 Socket is not connected

-3257 Can't send after socket shutdown

-3258 Too many references: can't splice

-3259 Connection timed out

-3260 Connection refused

-3263 Host is down

-3264 No route to host

-3269 A catastrophic error has occurred which probably renders the
underlying stream unusable

-3270 An Ioctlcommand has timed out instead of completing normally

-3271 Cannot allocate enough system resources to meet request

-3272 kEBADMSGErr

-3273 kECANCELErr

104 Reference

-3274 kENOSTRErr

-3275 kENODATAErr

-3276 kEINPROGRESSErr

-3277 kESRCHErr

-3278 kENOMSGErr

-3279 Client has not called InitOpenTransport or InitOpenTransportUtilities

-3280 The port your provider was using is disabled because it was
unregistered

-3281 The port your provider was using is disabled because it was ejected

-3282 TCP/IP stack improperly configured by the TCP/IP control panel

-3283 Configuration changed

-3284 The port your provider was using is disabled because the user switched

-3285 The port your provider was using is disabled because it lost the
connection

MacTCP Error Codes
Error Code Error Text

-23000 Bad network configuration

-23001 Bad IP configuration error

-23002 Missing IP or LAP configuration error

-23003 Error in MacTCP load

-23004 Error in getting address

-23005 Connection is closing

-23006 Invalid length

-23007 Request conflicts with existing connection

-23008 Connection does not exist

-23009 Insufficient resources to perform request

-23010 Invalid stream pointer

-23011 Stream already open

Web Command Error Codes 105

-23012 Connection terminated

-23013 Invalid buffer pointer

-24014 Invalid RDS or WDS structure

-23015 Open failed

-23016 Command timeout

-23017 Duplicate socket

-23032 Packet too large to send without fragmenting

-23033 Destination not responding

-23035 ICMP echo timed-out

-23036 No memory to send fragmented packet

-23037 Cannot route packet off-net

-23041 Name syntax error

-23042 Cache fault

-23043 No result procedure

-23044 No name server

-23045 Name not found

-23046 No answer

-23047 The domain name server returned an error

-23048 Out of memory

106 Index

Index
$addafter(), 34
$addbefore(), 34
$allpanes(), 34
$canresizecolumns, 35
$canresizeheader, 35
$canresizerows, 35
$cddelib, 41
$changeform(), 27
$columnheaderstyle(), 35
$countall(), 34
$enablecolumn(), 35
$excludefromwhere, 49
$getselectedtext(), 37
$getvisibleline(), 34
$keyevents, 35
$maxcachedclasses, 38
$mouseevents, 35
$panenumber(), 34
$pathtoapi(), 37
$pathtohtml(), 37
$rawpictformat, 33
$rmouseevents, 35
$separators(), 42
$serialise(), 50
$sharedpictures, 30
$singleinstance, 40
$startanimatescroll(), 36
$statusevents, 35
$stopanimatescroll(), 37

action property, 25
Add-on tools, 18
Adhoc reports, 17
Apache Server Extension, 29
App Builder, 8
ATL, 29
Automatic Component Download, 26

Component Database, 26

Button Area web component, 23

Calendar web component, 24
CGIDecode external command, 53
CGIEncode external command, 54
Checkbox lists, 33

Class Caching, 38
Colors

True colors, 30
CompCopy, 20
Component Store, 19
Components

Automatic download, 26
compress() function, 52
Compression functions, 52
Conversion, 52
CS24, 31
CS8, 31
CSC8, 31
ctrlmgr.df1, 26
ctrlmgr.lbs, 26
Cursors, 27
Custom Cursors, 27

DAMs
MySQL, 43

Data files, 52
Data grids, 35
DDE, 41
decstr() function, 51
defaultnodeicon property, 24
Delete Unused Variables, 16
Design environment, 14
Document viewer, 36

Edit menu, 41
encstr() function, 51
Entry fields

Masked, 33
Error codes

Web commands, 94
Error Handling, 28
Euro character, 48
evAnimateScrollEnd, 37
evDateChange, 25
evDateDClick, 25
eventhwnd property, 36
evEventTag, 37
evExecTag, 37
evHyperlink, 37
evImagePluginCreate, 37

Index 107

evMonthReset, 25
evPluginDestroy, 37
evSetTitle, 37
evWTreeNodeClick, 24
evWTreeNodeCollapse, 24
evWTreeNodeDClick, 24
evWTreeNodeExpand, 24
evXCompPluginCreate, 38
expandcollapseicon property, 24
External components, 36

Reports, 40
External Components, 19

File menu, 16
filename property, 36
fontsizeadj property, 36
formback, 26
formflds, 26
FTPChmod external command, 54
FTPConnect external command, 55
FTPCwd external command, 55
FTPDelete external command, 56
FTPDisconnect external command, 57
FTPGet external command, 57
FTPGetBinary external command, 58
FTPGetLastStatus external command, 58
FTPList external command, 59
FTPMkdir external command, 60
FTPPut external command, 60
FTPPutBinary external command, 61
FTPPwd external command, 61
FTPReceiveCommandReplyLine external

command, 62
FTPRename external command, 62
FTPSendCommand external command, 63
FTPSetProgressProc external command, 63
FTPSite external command, 64
FTPType external command, 65

Getting Started manual, 8
Graphs, 42

Headed list boxes, 28, 35
HTML

Document viewer, 36
HTML forms, 28
HTML raw text object, 39
HTTPClose external command, 65
HTTPGet external command, 66, 71
HTTPHeader external command, 67

HTTPOpen external command, 69
HTTPPage external command, 69
HTTPParse external command, 70
HTTPRead external command, 73
HTTPSend external command, 73
HTTPServer external command, 74
HTTPSplitHTML external command, 76
HTTPSplitURL external command, 76

Icon Editor, 21
iconpages property, 25, 27

JPEG, 31
Jpeg web component, 23

Key events, 35
kSharedPicMode256Color, 30
kSharedPicModeNone, 30
KSharedPicModeTrueColor, 30

Linux
Web Client, 22

Linux OS functions, 51
Lists

Checkbox lists, 33

Mac Web Client, 27
MAILSplit external command, 77
Masked entry fields, 33
Mouse events, 35
Movie Player, 25
moviefile property, 25
movieurl property, 25
MySQL DAM, 43

nodeiconspos property, 24
Notation Inspector, 17
Numeric edit fields, 28

ODBC, 43
Field Access Control, 44
Table Access Control, 43

OMNIS
Single instance, 40

OMNIS SQL, 45
OMNIS Web Client, 22

Automatic Component Download, 26
Mac version, 27

Open data file command, 52

108 Index

Open source
Web component API, 29

Oracle 8, 9
Datatype Mapping, 11
Logon, 9
New Datatypes, 9
Server-specific Programming, 9
Troubleshooting, 12

Page count, 40
Page panes, 34
PCX, 31
pictconvfrom(), 32
pictconvto(), 31
pictconvtypes(), 32
pictformat(), 32
Picture Conversion, 31
Picture fields, 33
Pictures, 30

True color shared pictures, 30
PNG, 31
POP3Recv external command, 80
POP3Stat external command, 81
Port profiles, 46
PowerMac

Web Client, 22
Preferences

$maxcachedclasses, 38
Prompt for data file command, 52
Property Manager, 16
Pushbuttons with Icons, 27

QuickTime 3, 36

Registry, 41
Remote Form Switching, 27
Report lines, 17
Report objects, 39
Roll button web component, 23
RTF

Report destination, 39
Runtime, 40

searchwords property, 36
Serial numbers, 28
shownodeicons property, 24
SMTPSend external command, 82
SQL Browser, 21
SQL classes, 49
SQL Server 7.0, 45

Startup
Library load order, 41

Status bars, 36
Status events, 35
String grids, 35
String tables, 48
sys() function, 51

Tab panes, 34
TCPAccept external command, 83
TCPAddr2Name external command, 84
TCPBind external command, 84
TCPBlock external command, 85
TCPClose external command, 85
TCPConnect external command, 86
TCPGetMyAddr external command, 87
TCPGetMyPort external command, 87
TCPGetRemoteAddr external command, 88
TCPListen external command, 88
TCPName2Addr external command, 89
TCPPing external command, 89
TCPReceive external command, 90
TCPSend external command, 91
TCPSocket external command, 91
Tile web component, 25
Timer web component, 23
Tool configuration, 19
Tray component, 36
Tree lists, 34
Tree web component, 24
True colors, 30
Tutorial, 15

uncompress(), 52
UUDecode external command, 92
UUEncode external command, 92

Variables
Deleting, 16

VCS, 21

Wash web component, 25
Web commands, 52

Error codes, 94
Web components, 22, 26
Web Components, 22
Web Enabler, 52
WebDevError external command, 93
Welcome application, 14
Window design mode, 17

Index 109

Window objects, 33
Windows Registry, 41

Wizard support, 20

	OMNIS Studio 2.4 Update
	About this manual
	OMNIS Studio 2.4
	Getting started manual
	App Builder
	Oracle 8

	OMNIS Studio 2.2/2.3
	Design Environment
	OMNIS Web Client
	Pictures
	Window objects
	Class caching
	Report objects
	Runtime environment
	Graphs
	MySQL DAM
	ODBC Access control
	SQL Server 7.0
	Port profiles
	The Euro character
	String tables
	Web externals
	SQL Classes

	Errata
	Reference
	Functions
	Commands
	Web commands
	Web command error codes

	Index

