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INTRODUCTION

Coordinates2.3a is a Macintosh application which allows the user to convert coordinates from geodetic to Cartesian 
coordinate systems, and vice-versa. It will also compute distances along the ellipsoidal surface of the Earth and 
baseline distances as well as chord distances. All of these concepts are defined and described in this Read-Me file.

The program was written in FutureBasic™ (from Zedcor, Inc. of Tucson, AZ) and was benchmarked on a Mac 
660AV and an older Mac II (w/ Daystar 50 MHz PowerCache w/FPU). It has not been tested on PowerPC platforms, 
but presumably will work in 68k emulation mode.

What's New in Version 2.3a?

About  a  week after  the  first  public  release  of  Coordinates2.3a,  a  user  (thanks,  Traci!)  suggested that  a  useful 
capability would be to compute the coordinates of a distant point given the geodesic distance and azimuth (bearing).  
Never declining a good challenge, one could squeeze the task buttons a little closer together and write a new local  
function that would make the calculation. While making the modifications, it became apparent that handling routine  
events in the interface could be done a little better (i.e., the author is still climbing the learning curve!). A better way  
of handling window refreshes was made by moving all the drawing of the text and graphics into their own local  
function. The keyboard entry was beefed-up to allow the tab key to control movement between edit fields and the  
enter key to activate the outlined buttons, in the same way that one can in "mainstream" applications. Also, colors 
were added to the user-addressable edit fields (but refreshing them brings them back in B/W (The author will figure  
that one out someday!). A new chapter in this read me file explains how the coordinates are calculated given the  
location of a starting point and a distance and azimuth to a second point.

The remainder of this file describes the definitions, theory and source material from which I worked to create the 
application.

BACKGROUND AND HISTORY

As we are all well aware, we live on a (basically) round planet (although, believe it or not, chapters of the Flat Earth 
Society still exist!). For some scientists, engineers and surveyors, the exact shape of the planet is significant in their  
calculations. The study of the shape of planets falls under the discipline of  Geodesy, which itself falls under the 
realm of Geophysics–a branch of Earth Science. The history of Geodesy stretches all the way back to the early  
Egyptians and Aztecs, where it mixed intimately with astronomical observations. Of course, the classic tale that we 
all learned in primary school was the story of Eratosthenes, who in about 220 BC, noticed that on the longest day of  
the year, the Sun shone straight down a water well in the city of Syene, along the Nile (near present day Aswan). A 
year or two later, he noticed, again, on the longest day of the year, in the city of Alexandria (which is north of Syene) 
that a tall pole in the center of city still cast a shadow at mid-day. Using the Sun as a point source, he deduced that  
the only explanation for these occurrences was that the surface of the Earth must be curved. After riding repeatedly  
between Alexandria and Syene, he measured the distance between the two cities and then was able to calculate the  
diameter of the Earth. He came up with a value that was about 16% too large, but the fact remains that he deduced 
the round shape of the Earth 1800 years before Magellan sailed around the world, thereby proving the roundness of  
Earth!



Much can be found in the literature about the early history of the knowledge of the Earth's shape, which, in the 
earliest musings of scientific thinkers, was intertwined with Man's understanding of the cosmos and his developing  
cosmological model. For those seriously interested, I recommend Lindberg [1992] and Grant [1994] among others. 
Of the same ilk, but more on the popular side are:  Koestler [1959],  Ferris [1988] and  Harrison [1986]. Later, 
through the Renaissance, Geodesy got intermixed with cartography and mapping, see, e.g., Wilford [1981] and Hale 
[1994]. In the 20th century, Geodesy entered the space age with the launching of Sputnik. Its little transmitter,  
beeping its way around the world, gave scientists a chance to measure its Doppler frequency shift and hence derive  
certain basic parameters regarding the path it followed and to deduce the flattening of the Earth. Of course, the 
flattening had been theorized and detected long before the space age.

DEFINITIONS AND GENERAL THEORY

Much of the material given here can be found in any good volume dealing with Geodesy, such as Bomford [1980] or 
Vanicek & Krakiwsky [1986].

The Ellipsoidal Shape of the Earth

The simplest geometric description for the shape of the Earth is that of a sphere. However, a better approximation is  
that described by an oblate ellipsoid of revolution (which is sometimes called the spheroid). As shown in cross  
section in Figure 1, its equatorial radius (the semi-major axis, denoted by the letter "a") is larger than its polar axis 
(semi-minor axis, b). For the Earth, the semi-major axis value adopted by the International Earth Rotation Service in 
1992 (IERS-92) is a = 6378136.3 m. The ratio of the difference between the two axes taken with respect to the semi-
major axis is called the flattening, which is given by:

f =
a−b( )
a

=1−
b
a

(1)

Typically, the flattening is expressed as its reciprocal, which for IERS-92 is

1/f = 298.257 (2)

This means that the Earth's semi-minor axis is about three tenths of one percent smaller than its semi-major axis. Its  
not all that different, but for those who need to know the relative distance between points on the Earth's surface to an  
accuracy of a hundred meters or better, the flattening must be accounted for. My personal need was to distinguish 
changes in relative distances between points separated by thousands of kilometers in order to detect and monitor  
tectonic motion (see Smith et al. [1990]).

Another parameter commonly associated with ellipses and ellipsoids is called the first eccentricity. It is the distance 
between the center of the ellipse and one of it's foci divided by the semi-major axis:

e=
a2 −b2( )

1
2

a
(3a)

It is more common to use the square of the first eccentricity:

e2 =
a2 −b2( )
a2 =1−

b2

a2 =2 f−f2 (3b)
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Figure 1.   Cross-sectional  view of the Earth ellipsoid demonstrating the terms geodesic,  baseline and 
ellipsoidal chord. The case of the geodesic passing through one of the poles only occurs when points A and  
B lie on complementary longitudes. The Earth's flattening has been greatly exaggerated in this figure.

As seen in (3b), the eccentricity can be calculated on the basis of the flattening, thus only the semi-major axis and 
the flattening are the fundamental quantities from which most further calculations can be made.

Coordinate Systems

The simplest coordinate system is the Cartesian coordinate system defined by a triad of numbers (usually denoted as  
X, Y, and Z or X1, X2, and X3). A location in three-dimensional space can be assigned coordinates and relative 

distances and directions to other points in the same space can be easily determined. However, since we are creatures 
that exist on the outer surface of an ellipsoid, our minds are more receptive to the notion of distances along the  
surface rather than through a chunk of the Earth. For really short distances it doesn't matter, that's why regional  
surveyors rely on principles of plane trigonometry. Many short triangulation chains and level lines (say, < 20 km) do 
not require any special treatment to account for the curved surface of the Earth, a planar approximation is usually  
sufficient. Longer triangulation chains and level lines, sometimes spanning continents, require a "mapping", one way 
or another, onto a curved surface.

The natural coordinate system for a spherical planet would be to use spherical latitude and longitude, with angles  
being measured at the center of the Earth, as its origin. This could be used for the flattened Earth as well, but the  
system has difficulties in that the line connecting the surface point to the center of the Earth does not intersect the  
ellipsoidal surface at right angles, which causes problems if one is also measuring height. Optimally, surveyors and 
geodesists like to keep the local horizontal and vertical orthogonal to one another–it just makes for a cleaner way to 
treat the local coordinate frame. So, on an ellipsoidal Earth, geodetic latitude and longitude have been defined (see 
Figure 2). Of course, geodetic longitude is equivalent to spherical longitude since the Earth's Equator is a circle (as  
are  lines  of  equal
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Figure  2.  Definition  of  latitudes.  The  geodetic  latitude  is  denoted  φ,  and  is  the  angle  between  the 
equatorial plane and the line orthogonal to the ellipsoid. The reduced latitude is denoted θ. N denotes the 
radius of curvature in the prime meridian and is measured from the Z-axis to the point P on the ellipsoid.  
The height h, gives the distance from P to P', on the Earth's surface.

latitude). The geodetic latitude is related to the spherical latitude, sometimes called reduced latitude by the relation

tanφ =
tanθ

1−e2( )
1
2
=
a
b
tanθ (4)

Thus, by using geodetic latitude, longitude and the height above the ellipsoid, we gain a convenient orthogonal triad 
of coordinates by which each point in and around the Earth can be located in an intuitive way. One of the purposes  
of Coordinates2.3a is to make the transformation between this and the Cartesian coordinate system.

Lines upon the Ellipsoid: The Geodesic

The shortest line which lies on a sphere connecting two points on its surface is defined to be a  great circle. For 
example, on a sphere, the shortest path between New York and Istanbul (which are almost at the same latitude) is not 
via the latitude line connecting the two cities, 



but is along a line which passes just south of Iceland. One can easily prove this with a piece of string and a globe. 
We can easily visualize these great circles and understand that they define a plane which passes through the center of 
the sphere.

On an ellipsoidal Earth, the shortest line between two points is no longer a great circle. It is a strange geometric 
concoction (from differential geometry), called a geodesic. A geodesic line between two points does not lie in the 
plane defined by the two end points and the Earth's center. Weird, huh? That is why computing geodesic distances  
and azimuths is such a chore. We no longer can depend on the simple relationships from spherical trigonometry. The 
details of all the calculations are given below.

THE ALGORITHMS

Geodetic Coordinates to Cartesian Coordinates

The transformation from geodetic coordinates to Cartesian coordinates is straight forward. We are given, for a point  
on or near the Earth's surface the following:

φ geodetic latitude
λ longitude
h height above the ellipsoid

we desire to find the corresponding X, Y, and Z. These are found via the closed formulas:

X = N +h( )cosφcosλ

Y = N+h( )cosφsinλ (5)

Z = N 1−e2( )+ h[ ]sinφ

where N is the radius of curvature in the prime vertical (Figure 2), given by

N =
a

1−e2sin2 φ (6)

Cartesian Coordinates to Geodetic Coordinates

The computation from Cartesian to geodetic coordinates is much more complicated since equations (5) can not be  
easily inverted. Through the years, several iterative algorithms have been used and more recently, some very good 
closed ones have been derived. The one I've used for many years is the one by Bowring [1976]. The computation 
goes as follows.

First, an approximation for the reduced latitude is made via

    
tan θ =

Z
X 2 +Y2

 ⎛

 ⎝
 ⎜  ⎞

 ⎠
 ⎟ a
b
 ⎛
 ⎝

 ⎞
 ⎠ =

Z
X 2 +Y2

 ⎛

 ⎝
 ⎜  ⎞

 ⎠
 ⎟ 1
1−f
 ⎛
 ⎝
 ⎜  ⎞

 ⎠ (7a)

from this, using some trig identities we can compute



  
cosθ =

1

1+ tan2 θ
(7b)

  sin θ = 1−cos2θ (7c)

where the sign of the sinθ is the same as the sign of tanθ. These equations are used to calculate the geodetic latitude 
from

    

tan φ =
Z + e'2 bsin3 θ

X 2 +Y2 −e2acos3 θ
=

Z + a2 −b2( ) / b[ ]sin
3 θ

X 2 +Y2 − a2 −b2( ) / a[ ] cos
3 θ

(7d)

The longitude is calculated simply by

λ =tan −1 Y

X

 ⎛
 ⎝
 ⎜

 ⎞
 ⎠
 ⎟ (7e)

and the height is computed from

    
h =

X 2 +Y2

cosφ
−N (7f)

where N is given from equation (6) and the computation of λ are made using a function similar to a ATAN2 function 

from FORTRAN. Bowring notes that this algorithm should provide accurate latitudes to within 0.00000003" (< 1  

μm) for points near the Earth's surface (i.e. between -5000m and +10000m).

Geodesic Length Computations

As mentioned previously, the computation of the geodesic length and its associated azimuths is no trivial exercise. I 
have used the iterative algorithm devised by Vincenty [1975]. Bowring [1986] has devised a closed formulation, but 
I've not yet explored this algorithm, but hope to do so in the near future. A description of the Vincenty algorithm 
follows.

In this problem (known as the inverse problem, the direct problem is treated in the next chapter), we are given the 

latitudes  (φ1,  φ2)  and  longitudes  (λ1,  λ2)  of  two  points  on  the  Earth's  surface.  Height  is  irrelevant  in  the 

computation for geodesic lines on the ellipsoid. We assume that the point on the Earth's surface is reduced to the 

ellipsoidal surface by simply setting the height to zero.

First, we the difference the longitudes as a first approximation for the quantity δλ:

δλ =λ2 − λ1 (8a)

The iteration begins with the computation of intermediate values σ, α and σm by calculating the sin and cos terms, 

then using the ATAN2 function mentioned above. Also used, are the reduced latitudes, θ1, θ2, which can be found 

by inverting equation (4).



sin2σ = cosθ2 sinδλ( )
2
+ cosθ1 sinθ2 −sinθ1cosθ2 cosδλ( )

2
(8b)

cosσ =sinθ1sinθ2 −cosθ1 cosθ2 cosδλ (8c)

tanσ =
sinσ
cosσ (8d)

and

sinα =
cosθ1cosθ2 sinδλ

sinσ
(8e)

cos2σ m =cosσ −
2sinθ1 sinθ2

cos2 α
(8f)

These quantities are used in the following two equations to determine a new value of δλ, and make another iteration 

starting with equation (8b) until  the value  δλ reaches some convergence level (I  used 10-20, or 20 iterations, 

whichever comes first):

C =
f
16

cos2 a 4+ f 4 −3cos2α( )[ ] (8g)

L =δλ− 1−C( )fsinα σ +Csinσ cos2σm +Ccosσ −1+ 2cos2 2σm( )[ ]{ } (8h)

then δλ =L  and, as mentioned, the iteration begins again at equation (8b). Upon convergence, then the following 

expressions are evaluated to obtain the geodesic distance,  s,  and the azimuth from site 1 to site 2,  α1, and the 

azimuth from site 2 to site 1, α2:

s =bAσ −Δσ( ) (9a)

tanα1 =
cosθ2 sinδλ

cosθ1sinθ2 −sinθ1cosθ2 cosδλ
(9b)

tanα2 =
cosθ1sinδλ

−sinθ1cosθ2 + cosθ1sinθ2 cosδλ
(9c)

where

A=1+
u2

16384
4096 +u2 −768+u2 320 −175u2( )[ ]{ } (10a)

B=
u2

1024
256 +u2 −128+u2 74 −47u2( )[ ]{ } (10b)



u2 =
a2 −b2

b2 cos2α (10c)

Δσ =Bsinσ cos2σ m +
1

4
B cosσ −1 + 2cos2 2σ m( )[

 ⎧
 ⎨
 ⎩

−
1

6
B cos2σ m −3 + 4sin2 σ( ) −3 + 4cos2 2σ m( )

 ⎤
 ⎦
 ⎥

 ⎫
 ⎬
 ⎭ ⎪ (10d)

So, now I'm sure you can appreciate why this isn't so easy!

Coordinates of Second Point, Given Distance and Bearing

We now will treat the direct problem of long lines on the ellipsoid. In this case we are given the location (φ1,λ1) of a 

point and the geodesic length (s) and bearing (or azimuth, α1) to a second point. We want to compute the latitude 

and longitude (φ2,λ2) for the second point. Again, we follow Vincenty [1975] (borrowing equations from above, 

when needed) and use an iterative approach, which should yield coordinates with an accuracy of 0.00005" of arc.

The computations begin with a computation for the angular distance on the sphere from the equator to the first point  
(σ1). Using the reduced latitude, θ1, from equation (4) we write

  tan σ 1 =tanθ1 cosα1 (11)

and the azimuth of the geodesic at the equator

  sin α =cosθ1 sinα 1 (12)

Next, some auxiliary quantities are computed

    
u2 =

a2 −b2

b2 cos2 α (13a)

    
A =1+

u2

16384
4096 +u2 −768 +u2 320 −175 u 2( )[ ]{ } (13b)

    
B =

u2

1024
256 +u2 −128 +u2 74 −47u2( )[ ]{ } (13c)

Now we begin an iterative loop on σ, the angular distance between the two points on the sphere, until the change 
between iterations becomes negligible (a criteria of 1.E-10 or 20 iterations was used in the program). To start the  
iterations, a value of σ = s/(bA) is used. Then

    2σ m =2σ1 +σ (14)

    
Δσ =Bsinσ cos2σ m +

1
4
B cosσ −1+ 2 cos2 2σ m( )[

 ⎧
 ⎨
 ⎩



    
−
1
6
Bcos2σ m −3 +4sin2 σ( ) −3 + 4 cos2 2σ m( )

 ⎤

 ⎦
 ⎥
 ⎫
 ⎬
 ⎭ ⎪

(15)

  
σ =

s
bA

+ Δσ (16)

and the sequence goes back to equation(14) until it reaches convergence. Now, the latitude for the second point can 
be computed from

    

tan φ2 =
sinθ1 cosσ +cosθ1 sinσ cosα 1

1−f( ) sin2 α + sinθ1 sinσ −sinθ1 sinσ cosα( )
2

[ ]
1 2 (17)

The difference in longitude on the auxiliary sphere, δλs is given by

    
tan δλs =

sinσ sinα 1

cosθ1 cosσ −sinθ1 sinσ cosα1
(18)

Now using C from equation (8g) and other quantities computed here, we insert all these into equation (8h) to get the  
difference in longitude on the ellipsoid. The azimuth from the second point to the first (sometimes called back-
azimuth) is

  
tan α 2 =

sinα
−sinθ1 sinσ +cosθ1 cosσ cosα1

(19)

Again, for the computation of the inverse tangent function in equations (18) and (19), an ATAN2-type function has 
been used to insure proper quadrant placement. Vincenty notes that an approximation can be made by trimming  
equation (13b) back a bit, but this was not adopted here. The full expression given in equation (13b) was used.

Baselines and Chords

The rest is a piece of cake! The computation for the baseline distance,  b, is made in Cartesian space simply by 
extending the Pythagorean theorem to three-dimensions:

b = X2 −X1( )
2
+ Y2 −Y1( )

2
+ Z2 −Z1( )

2
(11)

The chord distance uses the same equation, but where the X, Y, and Z terms are computed for the reduced point on 
the ellipsoid. This is the ellipsoidal chord, not the spherical chord.

HOW TO USE COORDINATES2.3a

Once you've grasped the concepts discussed in the section on General Theory, then using the application is pretty 
much self evident. Upon launching the application, the user is faced with two sets of buttons. The six on the left side 
of the window define the task to be performed and the five on the right side define the ellipsoid to be used (or 
specified). If you forget to choose an ellipsoid, and one is needed for the task you've selected, then a reminder  
window will ask you to select an ellipsoid. The steps are quite simple.



Step 1: Select which task to perform from the set of six buttons on the left.

Step 2: Choose which ellipsoid to use (not needed for baseline calculations if you are working in Cartesian  
coordinates).

Step 3: Enter  in  coordinates  into  appropriate  fields  (the  ones  with  a  color  outline).  Be sure  to  select  the 
appropriate units (e.g., decimal degrees, degrees-minutes-seconds or X, Y, Z)

Step 4: Click the "Calculate" button and read answers in appropriate fields.

Step 5: To quit the program, either click on the "Quit" button or select "Quit" from the File menu.

That's all there is to it!

REACHING THE AUTHOR OF THIS APPLICATION

He can be reached via e-mail at the following addresses:

KD3RW@aol.com  or  jrobbins@geodesy2.gsfc.nasa.gov

Regular mail can be sent to

John Robbins
Hughes STX Corp.
7701 Greenbelt Road, Suite 400
Greenbelt, MD  20770   USA

Please notify him if you discover bugs or suspect incorrect answers.

Legal Junk:

The FutureBasic™ version of Coordinates2.3a was derived from a QuickBasic™ version on the author's own time 
and reflects upon only the opinions and expertise of the author. Neither the author nor Hughes STX can be held  
liable for any defects or deficiencies: i.e., use at your own risk. I have done my best to verify the results which this  
application produces,  but I  can not be held responsible for faulty results that  others may get.  This software is  
available for free distribution, but if you pass it along, please be sure this Read-Me file goes with the application.
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