
FRACTAL LAB KIT

By

Ronald Thomas Kneusel

version 3.0

September 9, 1994



Contents

1 Introduction 2

2 Fractals and IFS: an overview 4

3 Tutorial 10

4 Advanced Features 14

5 Using the Shell 20

A Reference 21

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : :

: : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

1.1 What is this all about? 2

1.2 Why not create a standard Macintosh application for all of this? 2

2.1 What about fractals and chaos? 5

2.2 What is IFS? 5

2.3 Finding the `magic' numbers for an IFS transformation 6

2.4 Getting Started 9

2.5 Setting up for Di�erent Sized Monitors 9

3.1 A Sample Session 10

3.2 Basic commands 10

3.3 Using the FindMap command 13

3.4 Writing your own fractals to disk 13

4.1 A very (very) brief introduction to programming in Forth 14

4.2 Putting it all together 15

4.3 The Sierpinski triangle, an example 16

4.4 Basic Forth words 17

A.1 Commands 21

A.2 Primitive commands 24

i






1

This manual and the software it describes are copyright

c

1994, Ronald Kneusel.

All Rights Reserved. No part of this manual or software may be copied in any form

without the expressed written consent of the author.

THE AUTHOR ASSUMES NO RESPONSIBILITY FOR ANY LOSS OR DAM-

AGE SUSTAINED BY THE USE OR MISUSE OF THIS SOFTWARE AND MAN-

UAL. CAVEAT EMPTOR.



Chapter 1

Introduction

archive.umich.edu

/mac/development/languages/

1.1 What is this all about?

1.2 Why not create a standard Macintosh appli-

cation for all of this?

The fractal lab kit is a command driven system for generating and investigating fractal

images. It is written using Chris Heilman's Pocket Forth , a small Forth interpreter for

the Macintosh. Pocket Forth is available via anonymous FTP from

in the directory .

The kit consists of a set of Forth words that allow the user to easily create fractals

based on IFS mappings. Because of it's small size and generality, it should run on

virtually all Macintosh computers. By entering simple commands the user can de�ne

maps, draw the resultant fractals in a variety of colors, show the orientation of the

mappings, measure positions within the image, and zoom in to view details. Fractals

using up to seven maps may be generated.

I used Forth for two reasons. First, I am still learning the language and thought that

this would be a good project towards that end. Secondly, I have used several fractal

programs in the past and while they are excellent at what they do, they are rigid and

in
exible. Creating a system like this in Forth seemed ideal. Forth is fast and highly

interactive. It is also small and very easily extended. Not only does the user have

all the fractal commands, but they also have all of Forth still at their disposal. A

little programming can quickly extend the existing capabilities. Pocket Forth was my

choice for several reasons, primarily, it is free and can be freely distributed, as well

as supporting 
oating point numbers to make life easier.

Kudos to Dr. Bruce Craven, University of Melbourne, Australia, for all his helpful

comments and suggestions for improving the program. Kudos also to Mr. Stephen

Gard, Australia, for his thorough testing of and enthusiasm for the program!

Fractal Lab Kit is freeware, if you use it and have any suggestions or comments

please let me know at the addresses below. I have plans for additional `modules'

2



Ron Kneusel

8725 West Burdick Ave.

Milwaukee, WI 53227

USA

kneusel@msupa.pa.msu.edu

or

rtk@herman.gem.valpo.edu

3

for investigating Mandelbrot and Julia sets, biomorph images, and chaos in one and

two dimensions. Your feedback will encourage me to continue. Even if you have no

speci�c comment, let me know where you are so I can follow the program. I like

postcards, but email is good too.



2

1 2

!1 !1

!1

!1

!1 !1

n

n

n n

n n

n

Object Dimension

�

� � � =

n =

= = � n

N

D N= =� = = =

D n =n = :

Chapter 2

Fractals and IFS: an overview

Derivation of the Cantor Set dimension

One possible de�nition of dimension, the self-similar dimension, is the ratio of the natural log

of the number of intervals N (in 1-d) of length needed to completely cover the set to the natural

log of the reciprocal of , taken in the limit that . In the case of the Cantor set = (1 3)

where is the `level' of the set. (Check: the second level has two sections of length 1 3 while the

next level has four sections of length 1 9 = (1 3) ) So the condition becomes . Also,

for the Cantor set, the number of intervals to cover the set at the level n is = 2 . (Check: at the

second level there are 2 = 2 intervals, at the third level there are 2 = 4 intervals and so on.) So

we write:

= lim ln ln(1 ) = lim ln 2 ln(1 (1 3) )

= lim ln2 ln3 = ln2 ln3 = 0 6309297536 . . .

A fractal is a geometric object with a non-integer dimension. We are used to thinking

in terms of Euclidean geometry, that is, in terms of points, lines, areas (surfaces), and

volumes (solids). Fractals do not easily �t in such a framework and are di�cult to

comprehend (at least for me). Common geometrical objects have integer dimensions:

point 0

line 1

plane 2

solid 3

but fractals have non-integer dimensions, like 0.63... etc. How can this be you say?

Let's look at the simplest fractal of them all, the Cantor set.

To create the Cantor set imagine a line of length 1. Now, remove the middle third

of that line. Remove the middle third of the two remaining lines. Continue removing

the middle third an in�nite number of times. When you are �nished the object you

will be left with is a fractal with a dimension that is not 0 (it's not a point) but is

less than 1 (a line from 0 to 1 would contain all points, clearly a cantor set does not)

and it can be shown that the �nal dimension is ln2/ln3 = 0.6309297536.....

4



Cantor set

2.1 What about fractals and chaos?

2.2 What is IFS?

5

The Cantor set, like other purely mathematical fractals, is completely self-similar.

That is, it looks identical on di�erent scales (actually it is independent of scale). Take

a piece of paper (you do have scrap paper near the computer, don't you?) and draw

the �rst few lines of the Cantor set, one below the other:

If you look at what you have just drawn you will notice that if you magnify a lower

level it will look like one above it, the entire set is made up of an in�nite number

of copies of itself. (In�nity shows up frequently when talking about fractals.) As

this is a simple fractal it is not terribly interesting; the program draws more complex

fractals where life is a little more exciting.

They are de�nitely odd, but fractals do turn up in many places in nature, the

nautilus shell (see the SPIRAL), your lungs and circulatory system (see the TREE),

etc. Some people even think that the distribution of matter in the universe is a fractal.

Fractals are often mentioned in connection with chaotic behavior of dynamical sys-

tems. The link comes from the fact that the �nal attractor (a strange attractor) of a

dissipative dynamical system is a fractal object. If you want to talk more about this,

contact me at the above address.

IFS (Iterated Function System) is the means by which the program generates images.

It was developed by Michael Barnsley. IFS involves de�ning a number of maps that

in some way determine what the �nal product will look like (more on that later). An

initial point is chosen (the origin is nice) and iterated (i.e. put it in - get something

out - put that something back in, etc.) . These are maps in the mathematical sense

- roughly, a way of transforming a collection of points into another space or back

into its own space as is the case here. The map used for each iteration is chosen at

random based on the assigned probability, the higher the probability the more likely

that map is to be chosen. After each iteration the resulting point is plotted. As this

process is continued the fractal image is built. Changing the probability of a map

can dramatically a�ect the resulting image, so it might take a bit to get the picture

`just right'.



*

0 0

0

0

0

0

 !  ! !  !

 !

x; y

x ; y

x

y

a b

c d

x

y

e

f

x ax by e

y cx dy f

e

f

2.3 Finding the `magic' numbers for an IFS trans-

formation

6

In mathematical terms a 2 dimensional map is most easily represented in matrix

form. A matrix is similar to the two dimensional arrays used in many programming

languages. If we have a starting point ( ) and we want to �nd the transformed

coordinates, ( ), we can write the transformation in this way:

= +

This is equivalent to writing two equations:

= + +

= + +

The 2x2 matrix controls the reorientation of the initial coordinate system while

the vector is an o�set to a new origin point for the map.

By way of example, I will show how to �nd the matrix values that generate what

has become known as the Mandelbrot Dragon. While the dragon is usually generated

according to a prescription (like the Cantor set above) it can also be found using two

mappings (i.e. two matrices).

Recalling that a fractal is made up of an in�nite number of copies of itself, we

need only specify the `�rst' copy and the IFS algorithm will �ll in the rest. Therefore,

imagine a square from 0 to 1, this is the starting point as it were. We must transform

the points from this square into a di�erent square (or squares), where the number of

transformations equals the number of `parts' that make up the fractal. The dragon

consists of two parts: a contracted 45 degree rotation of the coordinate axes and a

contracted -45 degree rotation (with a 
ip). Perhaps the best way to imagine this is

to picture an arrow: from 0 to 1, the head of the arrow is only a half head so we

can see if there is a 
ip as well as a rotation and translation. After some thought we

realize that we need something like the following to generate the dragon:

Again take a piece of paper and draw a 2 inch arrow as above, the head of the

arrow is on the right and the barb is pointing north. Now, draw another arrow from

the left edge of the �rst going at a 45 degree angle until it intersects an imaginary line

running north to south that passes through the midpoint of the �rst line. Draw the

barb of this arrow on the left side of the right endpoint of this line. Finally, complete

the triangle and draw the barb of this arrow on the left side and touching the head

of the second arrow. When you are �nished you will have something like Figure 2.1.

where the directions of the arrow heads are indicated. Finally, complete each of the

three squares de�ned by the arrows as one edge.

Now comes the fun part, how do we change the drawing into the numbers for the

maps? To �nd the maps we need to solve, for each map, two systems of three linear



1 2

1 2 1 2 1 2

1 2

1 2

1 2

1 1 2

1 1 2

1 1 2

2 1 2

a ; a

b ; b a ; a c ; c

A ;A

B ;B

C ;C

A a a a b e

B b a b b e

C c a c b e

A a c a d f

7

Figure 2.1: The maps necessary to create the Mandelbrot dragon.

equations since there are six numbers to �nd. To write the six equations we must

know where at least three points of the original square (the one from 0 to 1) map to

in the new maps. This is where the arrow head directions become important. The

arrow determines two points for us, the head and the tail, while the last point can

be either of the two corners of the original square and where they map to in the �nal

square. So, to this end, label the tail and head of the �rst arrow drawn ( ) and

( ) respectively, and label the corner of the square above ( ) as ( ). These

are the original three points, now label the corresponding points in the second square

(the one at a positive 45 degree angle to the �rst) as ( ) for the tail (in this case

they are the same point) and ( ) for the head. Label the farthest left corner of

the square ( ).

Once this is done, we can write the following six equations to determine the �rst

map:

= + +

= + +

= + +

and

= + +



0

0

0

0

�

�

� �

�

2 1 2

2 1 2

1 2

1 2 1 2 1 2

1 2 1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 1

1 1

1 1

1 2

1 2

1 2

1 2 1

1 2 1

1 2 1

1 2

1 2

1 2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 !  ! !  !

 !  ! !  !

B b c b d f

C c c c d f

x y x

y a ; a ;

b ; b ; c ; c ; A ;A ;

B ;B : ; : C ;C : ; :

a

A a

B b

C c

a a

b b

c c

b

a A

b B

c C

a a

b b

c c

e

a a A

b b B

c c C

a a

b b

c c

c d f

x

y

: :

: :

x

y

x

y

: :

: :

x

y

8

= + +

= + +

In order to get actual numbers we need to impose a coordinate system. Draw an

and axis where the �rst arrow goes from 0 to 1 on the axis and left edge of the

�rst square goes from 0 to 1 on the axis. In this coordinate system, ( ) = (0 0);

( ) = (1 0); ( ) = (0 1) and the points for the �rst map are ( ) = (0 0);

( ) = (0 5 0 5); ( ) = ( 0 5 0 5). The values for the matrix and vector are

found by solving the two systems. Cramer's rule allows the solutions to be written

as:

=

1

1

1

1

1

1

=

1

1

1

1

1

1

=

1

1

1

Where the vertical lines represent the determinant. There exists a corresponding set

for the , , and values. With these we �nd that the transformations are:

=

0 5 0 5

0 5 0 5

+

0

0

=

0 5 0 5

0 5 0 5

+

1

0

I will leave the actual solution as an exercise for the reader.

The last thing to consider is what sort of probability we want to assign to each

of these maps. Since there is no reason to favor one map to another we can in this



draw

Cathedral

512 x 342 512 x 384 640 x 480

512 x 384

screen

2.4 Getting Started

2.5 Setting up for Di�erent Sized Monitors

Chaos: The Making of a New Science

Fractal Lab Kit

Interactive mode

shell Using the Shell

Tutorial

Maps

Open File

Demo

Fractal Lab Kit

Fractal Lab Kit

9

case get away with a probability of 0.5 for each (remember, probabilities should add

to 1). This is not always the case, though.

There are many good books on fractals and chaos at all levels, check the local

book store or library. The book by John Gleik

is a good place to start, though it is lean on the technical aspect.

The IFS module includes the application and the documentation,

demo and maps folders. The program starts in (i.e. in Forth).

There is a mouse driven shell that you may use to adjust the settings and drawing, to

use it enter at the prompt. See the chapter for more information.

The examples in the do not use the shell.

The folder contains de�nitions for several fractals courtesy of Dr.Dale Snider,

UW-Milwaukee Department of Physics. Use under the menu to load the

maps. To use, enter the map name and the word . The folder contains a

color and black & white version of which draws a cathedral using fractals.

Examine the source code (in Forth) to see how it works. Unfortunately, it works best

on large screens... sorry Classic and SE users!

The commands you enter are really just Forth words. In fact, you are really using

Pocket Forth with the IFS words prede�ned, however, you need not be familiar with

Forth to use the program.

Upon startup will get the size of the main monitor's screen and set the

application window accordingly. However, the drawing parameters will be preset only

if the screen is , , or pixels. If you use a di�erent

sized monitor you will need to adjust the screen origin to make the most use of it as

will set up for a pixel screen if it does not recognize one

of the above monitor sizes.

If you are using a monitor other than the main monitor you will also need to

adjust the screen origin with the word to move the drawing region onto the

secondary monitor. By default, the main monitor is used.



Chapter 3

Tutorial

3.1 A Sample Session

3.2 Basic commands

open

fern green color on outlines draw

mouse

settings

o� outlines 0.178 0.034 origin .25 range cdraw

bye

ok

ok

ok

ok

Current plot origin ( 0.00000 , 0.00000 )

Current screen origin ( 100 , 330 )

Current x & y scale is 1.0000 : 1.0000

Axes are currently OFF

Draw Outlines is currently ON

Current number of maps = 5

ok

ok

In this sample session and what follows, things the user types are indicated in bold

while the computer's response is in plain text.

A list of the basic, and most interactive, commands are presented along with an ex-

ample of their use. These are the minimum commands necessary to use the program:

10

after double-clicking the Fractal Lab Kit icon

return

choose the IFS-Maps �le from the standard Mac open dialog

program loads the maps for the fern, draws the outlines of the maps, waits for a key-

press, and draws the fern in green until the user presses a key

program shows the true coordinates of the mouse pointer until the user presses a key

program zooms in to the second lea
et and generates a magni�ed image using a dif-

ferent color for each map until a keypress

program exits



11

draw

Draw a fractal based on the current maps. Press a key to stop.

E.g. green color fern draw

cdraw

Plots each map in a different color.

E.g. spiral cdraw

<n> edit

Edit the n-th map. Enter a new value or press return to leave the

existing value as is.

E.g. 2 edit

a = 0.5 ?-0.5 (new value)

b = -0.5 ?<return> etc.

zero-maps

Erase all twelve maps.

E.g. zero-maps

<color.name> color

Set the current drawing color to the color named. Valid colors are

black, wite, red, green, blue, yellow, cyan, magenta

E.g. magenta color

<n> maps

Set the number of maps to use to <n>.

E.g. 4 maps

<x> <y> origin

Set the origin to (x,y). X and Y are floating point numbers.

E.g. -0.354 .789 origin

<u> <v> screen

Set the screen origin to (u,v) (pixels).

E.g. 120 220 screen

<r> range

Set the range to <r> (floating point). The viewing window is a

square with the lower left corner as the origin and side length

as range.

E.g. 0.5 range

<x> <y> scale

Set the x-axis and y-axis scales to the floating point values given.

The default scale is 1.0 for a full screen image. Changing the scale

to a value less than one shrinks the image, greater than one expands

the image.

E.g. 2.0 2.0 scale

mouse



12

When issued, mouse will translate the position of the pointer into

an x,y coordinate allowing the user to 'see' where certain parts of

the image are. Clicking the mouse button will select that point as

the new origin and decrease the range by a factor of two.

on|off axes

Turn the coordinate axes (really a mark on the origin) ON or OFF.

E.g. off axes

on|off outlines

Set showing the map outlines on or off, press a key to continue

after viewing the outlines.

E.g. on outlines

settings

Show a list of the current origin, screen origin, range, scale, number

of maps and whether the axes and outlines are on or off.

E.g. settings

findmap

Allows the user to enter three initial coordinates and three image

coordinates and calculates the map for those values.

E.g. findmap

make

Puts the most recent values from findmap on the stack in order

for set. The user needs to add the probability and map number

before calling set.

E.g. make .333 1 set

<a> <b> <c> <d> <e> <f> <p> <n> set

Sets the parameters for a map. The letters a-f correspond to the

values for the matrix and offset vector, <p> is the probability for

the map and <n> is the map number. All values except <n> are to

be floating point numbers.

E.g. 0.5 -0.5 0.5 0.5 0.0 0.0 0.5 1 set

<m1> <m2> copy

Copy map number <m1> to <m2> without disturbing <m1>.

E.g. 2 5 copy

<m> delete

Delete map number <m> and move any other maps up in memory.

E.g. 3 delete

<m> insert

Insert a blank map before map <m>.

E.g. 1 insert

cls

Clear the window.



0 0 0 0 0 0

0 0 0 0

0 0

1 1 2 2

3 3

1 1 2 2 3 3

1 1 2 2

3 3

Fractal Lab Kit

TeachText

x y x ; y

x ; y

x ; y x ; y x ; y

x ; y x ; y

x ; y

3.3 Using the FindMap command

3.4 Writing your own fractals to disk

E.g. cls

bye

Exit Fractal Lab Kit.

E.g. bye

FindMap

findmap

make 0.5 1 set

findmap

make 0.5 2 set

2 maps 120 220 screen cdraw

FindMap

: myfractal ( give it a name, remember, comments in parentheses )

a b c d e f p 1 set ( enter the values for map 1 )

a' b' c' d' e' f' p' 2 set ( enter the values for map 2, etc. )

n maps ; ( `n' is the number of maps you are entering )

13

allows the user to �nd the parameters for a map by entering the coordinates

and where they map to. This example will use the FindMap command to calculate

the maps for the Mandelbrot Dragon.

With the program running enter . You will see be asked to enter the

coordinates of three points from the original map. The origin, the lower right and

upper left corners of the initial box (remember, it goes from 0..1 in both x and y)

make good starting places. Therefore, enter 0 for and 0 for , (1,0) for ( ),

and (0,1) for ( ). These are the default values. You do not need to enter a

decimal point with each number in this case, pressing return uses the value displayed.

For the image points, enter ( ) as (0,0), ( ) as (0.5,0.5) and ( ) as (-

0.5,0.5). The program will calculate the appropriate map and display its values. At

the prompt, enter to make this newly calculated map the �rst map.

Enter again and press return for each of the original points since we will

use the same ones as before. For the image points enter ( ) as (1,0), ( )

as (0.5,0.5) and ( ) as (0.5,-0.5). Then enter to �x this as the

second map. Lastly, enter to use two maps, adjust

the screen origin so the image will �t, and draw using color.

Unfortunately, is unable to write fractal maps to disk. Therefore,

when you use to create a new map you must write it down by hand. When

you are �nished designing a new fractal you can use any text editor, like ,

to create a �le to load the map from disk. Simply enter the skeleton code on the next

few lines, substituting your values for the letters indicated. See the structure of the

included fractals as an example.

Once loaded from disk, you need to enter the name of the fractal to load the maps

and you are ready to draw.



not

Pocket Forth

Chapter 4

Advanced Features

4 + 7 4 7 + 11

4 7 +

4 7 +

.

dup

.

only

not

+, -, *, /

f+, f-, f*, f/ f.

fswap

4.1 A very (very) brief introduction to program-

ming in Forth

Forth is an interpreted, stack based programming language known for its speed and

extensibility. This is not an attempt to completely teach Forth so much as to teach

a little about Forth so that the user who is unfamiliar with Forth can make some use

of the language.

Forth is a stack based language, data is manipulated using a stack that works in

a way very similar to the lunch trays in a cafeteria. The last tray in the stack is the

�rst one out. Because of this, all mathematical operations are in post�x format, i.e.,

instead of typing one would type which would leave the value on the

top of the stack. This illustrates an important thing to remember about using Forth,

anything that is entered is interpreted as either a word in the dictionary (more on

that later) or a number to be pushed on the stack, so entering told Forth to

push a on the stack followed by a and the word adds the top two stack items.

To see the value stored on the top of the stack use the word. Note that this is a

destructive operation, it prints the value at the top of the stack and removes it from

the stack as well. To see the top stack value but remove it you need to enter

to �rst duplicate the top item and then print it. By default, Forth only operates on

16-bit integers but Pocket Forth supports real numbers as well. Forth will interpret

a value as a real number if it contains a decimal point! It is therefore important

to enter a decimal point for every number that should be a real number and to

use one on numbers that should be integers.

Forth supports the standard arithmetic operations: (integers) and

(real numbers). Use to print the top of stack as a real number.

fdup duplicates the real number at the top of the stack while will switch the

top two real numbers on the stack. These few words will allow for using Forth as a

simple calculator. Forth, typically, does not support higher mathematical functions,

though does.

Forth derives its extensibility from the way in which programs are written. As

Forth interprets tokens from the input line (anything surrounded by spaces is a token)

it either pushes it on the stack as a number or looks it up as a word in its dictionary. A

14



<

>

f < f f f

f > f f f

4.2 Putting it all together

value name

not

hi lo body

lo hi

: ;

variable fvariable

constant fconstant

fvariable stddev

stddev 3.141592 fconstant PI pi

pi

stddev f@

stddev

@ f@

! f! 3 age ! 1.414 sqr2 f!

if else then do loop +loop

begin until begin while repeat

count @ 100 < if ." Yes, there is room" cr

else ." No, there is no room." cr then

count

fcompare -1 0

+1

fcompare

do for

do loop

r -1

+loop loop

Begin until begin while repeat

if

0 begin ." Hello" cr 1+ dup 99 > until

0 begin dup 100 < while ." Hello" cr 1+ repeat

15

Forth program, therefore, consists of adding de�nitions to the dictionary. De�nitions

are begin with the word and end with a word. Once de�ned, the word can be used

in subsequent de�nitions. Parameters are passed via the stack. Forth does allow for

the use of variables and constants, though these are slower than the stack. Use the

word (or ) followed by the name for the variable to create one.

Use ( or ) to de�ne a constant. Examples: typing

will create room in the dictionary for a 
oating point variable

named while typing will create a constant for .

Forth is case-insensitive. Constants are really special words that push the value on

the stack so that typing will cause the value to be pushed on the stack. However,

entering the name of a variable will NOT place its value on the stack, but rather, the

address where the variable is stored will be placed on the stack. To get the value of

a variable a two word combination must be used: will `fetch' the 
oating

point number stored at the address that places on the stack. Similarly, the

value of an integer variable is found using instead of . To store a value in a

variable, use or , or .

Forth uses several standard control structures: , or ,

, and . The phrase

will check whether the current value of is less than 100 or not. Forth supports ,

, and = for comparing integer values. Pocket Forth has a single word for comparing


oating point numbers, , which returns a if 1 2, if 1 = 2, and

if 1 2, where 1 and 2 are the top two stack numbers (assumed to be 
oating

point). It is important to note that unlike most other Forth words, does

remove the top two 
oating point numbers. The loop is similar to the

loops in other languages. As might be expected, the syntax is

where the index (pushed on the stack by the word ) will go from to . A

variation is to use instead of to jump by the value on the top of the stack

(which must be positive). and are for bottom

tested and top tested conditional loops. The condition is the same as for the

statement:

will print the word `Hello' 100 times. Similarly, this fragment will also print `Hello'

100 times:

The following examples will illustrate the creation of simple Forth words.

1. Averaging four numbers



x

3

y : e

x

x

stack e�ect comment

factoring

4.3 The Sierpinski triangle, an example

: ave4 ( a b c d -- average ) + + + 4 / ;

`--'

: averageN ( a1. ... aN. N -- average. )

dup >r ( save N on the return stack )

1- 0 do f+ loop ( adjust N and add the values )

r> ( get N off the return stack )

0 d>f f/ ; ( make it real and divide to find average )

>r

r>

0 d>f

fvariable x

: sqr ( x. -- x.*x. ) fdup f* ;

: cube ( x. -- x.^3 ) fdup fdup f* f* ;

: expf ( x. -- exp[x.] ) ( use Taylor series approx. )

fdup x f! 1.0 f+ x f@ sqr 2.0 f/ f+ x f@ cube 6.0 f/ f+ ;

: Y ( x. -- Y[x.] ) expf 3.4 f* ; ( keep x < 1 for accuracy )

expf

expt expf expt

16

Using integer arithmetic, sum the top four stack items and divide the result by

4. Illustrates comments which are anything surrounded by `()', note the space after

the `('. The comment given is known as a and shows the word's

e�ect on the stack. Initial stack items are on the left of the and the result is on

the right.

2. Averaging N 
oating point numbers

This example illustrates use of the return stack. The return stack is the place where

Forth places addresses to return to when the current word is done executing. While a

word is executing it is possible to use the return stack for temporary storage, but one

must be careful to make sure that all values placed on the stack by are removed

using before the word is done, otherwise Forth will attempt to return to who knows

where and will very likely crash. Integers are transformed into real numbers by the

two word sequence . This transforms the integer into a double length integer

and then into a real number.

3. Evaluating a function: = 3 4

This is an example of , the code for the square and cube could easily have

been left in the de�nition of but factoring them out made the de�nition shorter

and easier to read. In theory, according to some, a properly factored Forth program

combined with well chosen word names and stack e�ect comments should be nearly

self-documenting. By the way, Forth already has a word for calculating the expo-

nential, . Compare with to see how large can be before the error

introduced by truncating the Taylor series at becomes too great.

These examples are brief, but hopefully should be su�cient, especially when com-

bined with a list of Forth words, to allow you to write simple words to extend the

power of the program.

The Sierpinski Triangle is a commonly seen fractal consisting of a triangle made of

triangles. This will serve as an example of how the program can be extended by



1 1 2 2 3 3

1 1 2 2 3 3

4.4 Basic Forth words

x ; y ; x ; y ; x ; y

X ; Y ; X ; Y ; X ; Y

x1 y1 x2 y2 x3 y3

X1 Y1 X2 Y2 X3 Y3

initial image solve

initial

image

solve

make set

: sierpinski ( generates the Sierpinski Triangle)

( Set up initial values, for all maps )

0.0 0.0 1.0 0.0 0.0 1.0 initial

( First map )

0.0 0.0 0.5 0.0 0.0 0.5 image solve

make 0.333 1 set

( Second map )

0.5 0.0 1.0 0.0 0.5 0.5 image solve

make 0.333 2 set

( Third map )

0.25 0.5 0.75 0.5 0.25 1.0 image solve

make 0.333 3 set

( Show the maps )

page ." The Sierpinski maps: " cr showmaps

reset settings

key drop ( wait for a key press )

( Show outlines when drawing )

on outlines

( Reset the program and draw the fractal )

cdraw ;

17

adding words to the Forth dictionary. The triangle is made up of three maps that

divide the region 0..1 in x and 0..1 in y into three equal squares. We will develop

a Forth word that will �nd the maps for the triangle and then generate the fractal.

First, we must determine the maps. The �ndmap command's interactive nature is

unsuited to our task, fortunately, there are three `primitive' (i.e. non-interactive)

words that will perform the same task: , , and . These words

operate as follows:

Sets the initial points for �nding a map, ( ) ( ) ( ).

Sets the image points for �nding a map,( ) ( ) ( ).

Finds the values that will map the initial points to the image points.

These words, when combined with and , will allow us to create a single

Forth word to �nd all three maps at once. At this point, then, we can write:

Now before viewing the fractal show the maps, reset the program, show the settings,

and draw the outlines:

Try this word and see what happens.

Table 4.1 lists of some basic Forth words and their use. With these it should be

possible to de�ne your own words for use with the program.



-->

bold save

!pen

-to

open

?button

@mouse

save

Pocket Forth

Save Dictionary File

18

Table 4.1: Basic Forth words. Words in are speci�c to . The

command makes a permanent change in the application and should only be used on

a copy. It is equivalent to selecting from the menu.

Word Stack e�ect Use

swap ( a b { b a ) Switch top two stack items

dup ( a { a a ) Duplicate top of stack

over ( a b { a b a ) Bring 2nd to top

rot ( a b c { b c a ) Rotate stack items

variable ( { ) Make a variable of next token

constant ( a { ) Make a constant of next token

+, -, *, / ( a b { a.b ) Math, where . is an operation

mod ( a b { a mod b ) Remainder after dividing

drop ( a { ) Drop the top stack item

cr ( { ) Print a return character

space ( { ) Print a space (ASCII 32)

emit ( a { ) Print the character whose code is on the stack

." ( { ) Print text until a " found (de�nitions only)

. ( a { ) Print the top of stack

key ( { a ) Get a key, ASCII code on stack

bye ( { ) Exit from Forth

?terminal ( { b ) Has a key been pressed?

( ( { ) Start a comment (remember space)

( x y { ) Move the pen to (x,y) (pixels)

( x y { ) Line from current to (x,y)

page ( { ) Clear the screen

( { ) Load �lename, no spaces!

( { ) Load �le chosen in Mac dialog

( { t ) Mouse button down?

( { x y ) Push mouse position on stack

( { ) Save the current dictionary



Starting Forth

19

See the reference section for more words that are program speci�c. Words in bold

text are special to Pocket Forth and may not be available on other Forth systems,

though there will likely be something similar. Those interested in seriously learning

Forth (some swear that it is the best computer language there is) should get a hold

of the book by Leo Brodie (2nd ed. 1987), it is an excellent and

entertaining introduction.



Chapter 5

Using the Shell

Fractal Lab Kit

shell

Forth

Quit

Save Dictionary File

Fractal Lab Kit

Fractal Lab Kit

Forth

Help

forget shellcode

Cathedral

save

save

--> :maps:fern (load the maps from disk)

fern shell (load the maps & enter the shell)

a c

contains a mouse driven shell. The shell is a single Forth word

(named ) that allows you to use the mouse to set many of the parameters used

in generating fractals. The shell makes it easy to change settings, colors, edit and

calculate maps, and draw. The only thing the shell cannot do is load fractals from

disk. The use of the shell is straightforward, simply click on the command you want

to execute. Numerical data is entered at the bottom of the screen. When more than

one item of information needs to be entered you must press the `return' key after each

item. The application menu bar is disabled when the shell is running, use the

or commands to exit the shell or program.

The shell uses much of the memory available to Forth. This might cause a problem

if you are creating more sophisticated programs. You can eliminate the shell code

by entering when in interactive mode. This is exactly what the

demo program does. The code is erased from Forth's memory and will

be permanently erased should the word be entered after the code is cleared.

Alternatively, one could select from the menu instead of using

the word . This will write the current Forth dictionary into the application itself.

This should never be a problem since everyone runs from backup copies only, right?

This is also a way to create a version of that has more memory for

your own programs.

If you are designing a new fractal the shell will be handy since it lets you change

values quickly. Write your maps down though since has no ability to

save maps to disk! If you are manipulating a fractal stored on disk you must load

it in interactive mode (i.e. go to ), enter its name to load the maps, and then

enter the shell. For example, the following lines in interactive mode will load the fern

maps from disk and enter the shell to allow you to work with the fractal:

Try switching the signs of the and values in the �rst fern map to change the fern

into a weed. Use the command for a quick summary of the commands available

in the shell. Note that the help screen in interactive mode is di�erent than the one

in shell mode.

20



21

A.1 Commands

Appendix A

Reference

draw

Draw a fractal based on the current maps. Press a key to stop.

E.g. green color fern draw

cdraw

Except for plotting each map in a different color, it is the same as

draw.

E.g. spiral cdraw

<n> idraw or <n> icdraw

Same as draw and cdraw respectively except for iterating through

<n>*500 points. Useful for drawing a fractal and stopping without

user interaction.

<n> edit

Edit the n-th map. Enter a new value or press return to leave the

existing value as is.

E.g. 2 edit

a = 0.5 ?-0.5 (new value)

b = -0.5 ?<return> etc.

zero-maps

Erase all twelve maps.

E.g. zero-maps

<color.name> color

Set the current drawing color to the color named. Valid colors are

black, wite, red, green, blue, yellow, cyan, magenta

E.g. magenta color

<n> maps

Set the number of maps to use to <n>.



22

E.g. 4 maps

<x> <y> origin

Set the origin to (x,y). X and Y are floating point numbers.

E.g. -0.354 .789 origin

<u> <v> screen

Set the screen origin to (u,v) (pixels).

E.g. 120 220 screen

<r> range

Set the range to <r> (floating point). The viewing window is a

square with the lower left corner as the origin and side length

as range.

E.g. 0.5 range

<x> <y> scale

Set the x-axis and y-axis scales to the floating point values given.

The default scale is 1.0 for a full screen image. Changing the scale

to a value less than one shrinks the image, greater than one expands

the image.

E.g. 2.0 2.0 scale

mouse

When issued, mouse will translate the position of the pointer into

an x,y coordinate allowing the user to 'see' where certain parts of

the image are. Clicking the mouse button will select that point as

the new origin and decrease the range by a factor of two.

on|off clear

Turn clearing of page before drawing on and off. Default is on.

on|off axes

Turn the coordinate axes (really a mark on the origin) ON or OFF.

E.g. off axes

on|off outlines

Set showing the map outlines on or off, press a key to continue

after viewing the outlines.

E.g. on outlines

settings

Show a list of the current origin, screen origin, range, scale, number

of maps and whether the axes and outlines are on or off.

E.g. settings

findmap

Allows the user to enter three initial coordinates and three image

coordinates and calculates the map for those values.



23

E.g. findmap

make

Puts the most recent values from findmap on the stack in order

for set. The user needs to add the probability and map number

before calling set.

E.g. make .333 1 set

<a> <b> <c> <d> <e> <f> <p> <n> set

Sets the parameters for a map. The letters a-f correspond to the

values for the matrix and offset vector, <p> is the probability for

the map and <n> is the map number. All values except <n> are to

be floating point numbers.

E.g. 0.5 -0.5 0.5 0.5 0.0 0.0 0.5 1 set

<m1> <m2> copy

Copy map number <m1> to <m2> without disturbing <m1>.

E.g. 2 5 copy

<m> delete

Delete map number <m> and move any other maps up in memory.

E.g. 3 delete

<m> insert

Insert a blank map before map <m>.

E.g. 1 insert

cls

Clear the window.

E.g. cls

bye

Exit Fractal Lab Kit.

E.g. bye

mem

Show the available dictionary space. (Forth only has 32k)

E.g. mem

?origin, ?screen, ?scale, ?range, ?maps, ?axes, ?outline, ?clear

Show individual settings. settings calls each of these.

<n> show

Show the values of map <n>.

E.g. 3 show



A.2 Primitive commands

24

These commands (words) are `primitive' in the sense that they are called by the

regular command words. As they are standard Forth words they are available to the

user as well.

input ( -- a )

Get a 16-bit integer on the stack.

finput ( -- f b )

Get a floating point number on the stack and a boolean value that is

false if the user pressed the return key only, in which case the

number is 0.0.

#map->addr ( a -- addr )

Convert a number for a map into an address to the map location in

memory.

get ( offset map# -- value )

Get a value for a particular map. The offset is a branch into the

map, each value is 10 bytes long. The constants a,b,c,d,e,f and p

are defined to give the proper offset: c 3 get returns the c value

of the third map.

update ( value offset map# -- )

Put the value in the numbered map at the offset (use a-f or p).

print ( addr -- )

Print the map starting at addr.

wsize ( h v -- )

Resize the window to h pixels high and v pixels across.

dot ( u v -- )

Draw a dot on the screen at (u,v) (pixels).

plot ( x. y. -- )

Plot the point (x,y) on the screen.

plotto ( x. y. -- )

Draw a line from the last plotted point to (x,y).

determinant ( -- d )

Find the determinant of the 3x3 matrix whose values are stored

in the floating point variables d1 through d9. Values in the form:

[ [d1,d2,d3],[d4,d5,d6].[d7,d8,d9]].

x->d ( -- )

Copy the values in x1,y1 .. x3,y3 to the matrix d. Used to setup for



25

finding a map.

xy->uv ( x. y. -- u v )

Change real coordinates (x,y) into screen coordinates (u,v). Call

factor first.

factor ( -- )

Calculates redundant factors for xy->uv to speed drawing.

firstpoints ( -- )

Get the initial points for a map, interactive.

solve3x3 ( -- f. d. c. e. b. a. )

Solve for a map, calculated values on stack. Call either firstpoints

and imagepoints or initial and image before calling solve3x3.

outputmap ( f. d. c. e. b. a. -- )

Display map values on the stack on the screen.


