
Contents

neoAccess™

Introductory Reference Manual
Version 3.0

Cross-Platform
Object Database

Component

Contents

Contents

.

1450 Fourth Street, Suite 12
Berkeley, CA 94710
(510) 524-5897
AppleLink: NeoLogic
CompuServe: 71762,214
AOL: NeoLogic
Internet: neologic@holonet.net

Contents

Contents

NeoAccess Introductory Reference Manual,
Version 3.0.5

By Bob Krause and Alexander Vladimirsky

Special thanks to Brian Blackman, Jean-
François Brouillet, Jeff Hokit, Suresh Kumar,
Paul Ossenbruggen, Mike Rockwell, Reede
Stockton and the hundreds of other developers
who have generously given us their criticism
and praise. NeoAccess would not be the rich
and robust tool that it is without their input and
support.

Contents

Contents

Bob Krause would also like to offer his warm
thanks to his family, Marc Bernstein, Tim
Duane, Robert Inchausti, Theresa McGlashan,
Lisa Piercey, Tim Standing, Larry Zulch, and
Laura Zulch for their support and
encouragement.

Copyright © 1992-1994 NeoLogic Systems.

All Rights Reserved. Printed in U.S.A.

NeoAccess and NeoLogic are trademarks of
NeoLogic Systems.

The NeoAccess Developer’s Reference Manual
is copyrighted and all rights reserved.
Information in this document is subject to
change without notice and does not represent a
commitment on the part of NeoLogic Systems.
The software described in this document is
furnished under a license agreement. The
document may not, in whole or in part, be

Contents

Contents

copied, photocopied, reproduced, translated, or
reduced to any electronic medium or machine-
readable form without prior consent, in writing,
from NeoLogic Systems.

NEOLOGIC SYSTEMS MAKES NO WARRANTIES,
EITHER EXPRESSED OR IMPLIED, REGARDING
THE ENCLOSED COMPUTER SOFTWARE PACKAGE,
ITS MERCHANTABILITY, OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF
IMPLIED WARRANTIES IS NOT PERMITTED BY
SOME STATES. THE ABOVE EXCLUSION MAY NOT
APPLY TO YOU. THIS WARRANTY PROVIDES YOU
WITH SPECIFIC LEGAL RIGHTS. THERE MAY BE
OTHER RIGHTS THAT YOU MAY HAVE WHICH
VARY FROM STATE TO STATE.

Contents

Contents

Table of Contents

Introduction
...
1

Welcome
..
1
Naming Conventions
..
2
Typographic Conventions
..
2

Overview
...
3

The Database
..
3

CNeoDatabase
..
3
Opening the Database
..
3
Committing Changes to the Database
..
3
Closing the Database
..
4

Contents

Contents

The Object
..
4

Application-Specific Objects
..
4
Creating an Object
..
5
Sharing an Object
..
5
Adding an Object to the Database
..
6
Locating Objects in the Database
..
6
Changing an Object
..
6
Removing an Object
..
7
Deleting an Object
..
7

The NeoAccess Development Experience
..
7

Who’s Who
..
7

NeoAccess Synergy
..
7

Contents

Contents

Preliminaries
...
9

Introduction
..
9
Environment-Neutral Frameworks
..
9
Adding and Removing References to an Object
..
10
Concurrency and Referential Integrity
..
13
Cross-Platform Development
..
14

Binary Compatibility of NeoAccess Files
..
15

Object I/O
..
16

Framework-Specific Subclasses of CNeoStream
..
17

Iterating over a List of Objects
..
17
Changing an Object
..
20
Btree Classes
..
20

Using Nodes

Contents

Contents

..
22

Index Classes
..
22

Primary and Secondary Indices
..
22
Consolidated Indices
..
25
Creating Application-Specific Index Classes
..
25

Object Versioning
..
27
Exception Handling
..
28
Temporary Objects
..
30

Contents

Contents

Object Caching
..
31
Threads and Asynchronous I/O
..
31
Laundry
..
33
Configuring NeoAccess
..
33

kNeoBusyTableSize
..
33
kNeoMaxIndice
..
33
kNeoMaxClasses
..
33
kNeoClassEntries
..
34
kCNeoDatabaseCurrVersion
..
34
kCNeoDatabaseQuantum
..
34
kNeoPurgeQuantum
..
34
kNeoReferTableSize
..
34
kNeoSubclassEntries

Contents

Contents

..
34
qNeo2P0FileFormat
..
35
qNeoLaundry
..
35
qNeoVersions
..
35

Debugging Tips
..
35

Rule #1
..
35
Define verify Methods for Your Persistent Classes
..
36
Add Debugging Code
..
36
Garbage Data
..
36
Dangling or Insufficient References
..
38
Block Move Errors
..
39
Function Overrides
..
39
Metaclasses and Class IDs
..

Contents

Contents

39
The value of gNeoDatabase
..
39
Heap Fragmentation in Pointer-Based Environments
..
40
You Have Source Code!
..
40

Changes in NeoAccess 3.0
..
41

Class and Variable Name Changes
..
41
Constants and Compile Time Symbols
..
41
Calling Sequences to NeoAccess Methods
..
42

Tutorial
...
43

Introduction
..
43
Laughs
..
43

The Persistent Classes
..
45

CNeoPersist
...

Contents

Contents

45
CNeoPersistNative
...
47
CNeoPartMgr
...
47
CPerson
...
48
CJoker
...
50
CJoke
...
53
CClown
...
55
CPie
...
56

The Laughs Application Class
..
58

The Constructor
...
58
Creating a Document
...
59

The Laughs Document Class
..
60

Creating a Document
...
61

Contents

Contents

Adding Objects to the Database
...
63
Locating Objects in a Database
...
65

Photographer’s Assistant
..
66

Contents

Contents

CNeoApp
...
67

Heritage
..
67
Introduction
..
67
Using CNeoApp
..
67

CNeoBlob
...
69

Heritage
..
69
Introduction
..
69
Using CNeoBlob
..
69

ENeoBlob
...
71

Heritage
..
71
Introduction
..
71
Using ENeoBlob
..

Contents

Contents

71
Subclassing ENeoBlob
..
71

CNeoDatabase
...
73

Heritage
..
73
Introduction
..
73

The Structure of a NeoAccess Database
..
73

The Database Header
...
74
The Free List
...
74
The Class List
...
74
Subclasses
...
75
Indices
...
75
Application Objects
...
75
Part Lists
...

Contents

Contents

76
Subclassing CNeoDatabase
..
76
Using CNeoDatabase
..
76

Creating and Opening a New Database
..
77
Opening a Pre-Existing Database
..
78
Committing a CNeoDatabase
..
79
Closing a CNeoDatabase
..
80
Making an Object Permanent
..
80
Locating an Object
..
81
Removing an Object
..
82
Fast File Space Allocation
..
83
Concurrency in a Multi-Threaded Environment
..
83
Object Caching
..
83

Contents

Contents

CNeoDoc
...
85

Heritage
..
85
Introduction
..
85
Using CNeoDoc
..
86

CNeoIndexIterator
...
87

Heritage
..
87
Introduction
..
87
Using CNeoIndexIterator
..
87

CNeoIterator
...
89

Heritage
..
89
Introduction
..
89
Using CNeoIterator
..
90

Contents

Contents

Subclassing CNeoIterator
..
90

CNeoMetaClass
...
91

Heritage
..
91
Introduction
..
91

Adding to the Metaclass Table
..
92
Multiple Inheritance
..
93
The getOne Function
..
93
The KeyManager Function
..
94
Metaclasses for Index Classes
..
95

Using CNeoMetaClass
..
95

CNeoMRSWSemaphore
...
97

Heritage
..
97

Contents

Contents

Introduction
..
97

CNeoMultiSemaphore
...
99

Heritage
..
99
Introduction
..
99

CNeoPartListIterator
...
101

Heritage
..
101
Introduction
..
101
Using CNeoPartListIterator
..
101

CNeoPartMgr
...
103

Heritage
..
103
Introduction
..
103
Using CNeoPartMgr
..

Contents

Contents

104

ENeoPartMgr
...
105

Heritage
..
105
Introduction
..
105
Subclassing CNeoPartMgr
..
106
Using ENeoPartMgr
..
106

CNeoPersist
...
107

Heritage
..
107
Introduction
..
107
Using CNeoPersist
..
107
Subclassing CNeoPersist
..
108

CNeoSelect
...
109

Heritage

Contents

Contents

..
109
Introduction
..
109
Using CNeoSelect
..
111
Subclassing CNeoSelect
..
111

CNeoStream
...
115

Heritage
..
115
Introduction
..
115
Using CNeoStream
..
115
Subclassing CNeoStream
..
116

CNeoSwizzler
...
117

Contents

Contents

Heritage
..
117
Introduction
..
117
Using CNeoSwizzler
..
117

CNeoThread
...
119

Heritage
..
119
Introduction
..
119

MacApp 3.1 Support
...
121

Introduction
..
121
MacApp-Specific Symbols and Classes
..
122

CNeoAppMA
...
123

Heritage
..
123
Introduction
..

Contents

Contents

123
Using CNeoAppMA
..
123

CNeoDocMA
...
125

Heritage
..
125
Introduction
..
125
Using CNeoDocMA
..
125

CNeoDatabaseMA
...
127

Heritage
..
127
Introduction
..
127

CNeoFileHandler
...
129

Heritage
..
129
Introduction
..
129

CNeoIteratorMA

Contents

Contents

...
131

Heritage
..
131
Introduction
..
131
Using CNeoIteratorMA
..
131

CNeoPersistMA
...
133

Heritage
..
133
Introduction
..
133
Using CNeoPersistMA
..
133
Subclassing CNeoPersistMA
..
134

MFC 2.5 Support
...
135

Introduction
..
135

Changes From Previous Versions
..
136
MFC Serialization Support

Contents

Contents

..
136

MFC-Specific Symbols and Classes
..
136
MFC-Specific Debugging & Exception Handling
..
136

CNeoAppMFC
...
137

Heritage
..
137
Introduction
..
137
Using CNeoAppMFC
..
137

CNeoDocMFC
...
139

Heritage
..
139

Contents

Contents

Introduction
..
139
Using CNeoDocMFC
..
139

CNeoPersistMFC
...
141

Heritage
..
141
Introduction
..
141

CNeoStreamMFC
...
143

Heritage
..
143
Introduction
..
143
Using CNeoStreamMFC
..
143

OWL 2.0 Support
...
145

Introduction
..
145
ObjectWindows-Specific Symbols and Classes
..

Contents

Contents

146
Changes From Previous Versions
..
146
Heritage
..
147
Introduction
..
147
Using CNeoAppOWL
..
147

CNeoDocOWL
...
149

Heritage
..
149
Introduction
..
149
Using CNeoDocOWL
..
149

CNeoPersistOWL
...
151

Heritage
..
151
Introduction
..
152
Using CNeoPersistOWL
..

Contents

Contents

152

CNeoStreamOWL
...
153

Heritage
..
153
Introduction
..
153
Using CNeoStreamOWL
..
153

PowerPlant 1.0 Support
...
155

Introduction
..
155
PowerPlant-Specific Symbols and Classes
..
156

CNeoAppPP
...
157

Heritage
..
157
Introduction
..
157
Using CNeoAppPP
..
157

CNeoDocPP

Contents

Contents

...
159

Heritage
..
159
Introduction
..
159
Using CNeoDocPP
..
159

CNeoDatabasePP
...
161

Heritage
..
161
Introduction
..
161

CNeoSemaphorePP
...
163

Heritage
..
163
Introduction
..
163

CNeoThreadPP
...
165

Heritage
..
165

Contents

Contents

Introduction
..
165

TCL 2.0 Support
...
167

Introduction
..
167
TCL-Specific Symbols and Classes
..
168

CNeoAppTCL
...
169

Heritage
..
169
Introduction
..
169
Using CNeoAppTCL
..
169

CNeoDocTCL
...
171

Heritage
..
171
Introduction
..
171
Using CNeoDocTCL
..

Contents

Contents

171

CNeoDatabaseTCL
...
173

Heritage
..
173
Introduction
..
173

CNeoPersistTCL
...
175

Heritage
..
175
Introduction
..
175
Using CNeoPersistTCL
..
175

CNeoStreamTCL
...
177

Heritage
..
177
Introduction
..
177
Using CNeoStreamTCL
..
177

zApp 2.1 Support

Contents

Contents

...
179

Introduction
..
179
Changes from Previous Versions
..
180
ZApp-Specific Symbols and Classes
..
180
Using NeoAccess with zApp for DOS
..
180

CNeoDocZA
...
181

Heritage
..
181
Introduction
..
181
Using CNeoDocZA
..
181

CNeoPersistZA
...
183

Heritage
..
183
Introduction
..
183
Using CNeoPersistZA

Contents

Contents

..
184

CNeoStreamZA
...
185

Heritage
..
185
Introduction
..
185
Using CNeoStreamZA
..
185

Photographer’s Assistant
...
187

Prefix
..
187
Introduction
..
187
NeoAccess
..
188
The NeoAccess Class Tree
..
190

1. CNeoDatabase
..
191
2. CNeoPersist
..
192

a. Adding an Object

Contents

Contents

...
193
b. Deleting an Object
...
193
c. Locating Objects
...
194
d. Changes to an Object’s State
...
194
e. Object Sharing
...
195

The NeoDemo Class Tree
..
195

1. Cutting, Copying and Pasting Images
..
196
2. Saving a Document
..
198
3. Searching for Images
..
198

Summary
..
200

Contents

Contents

Introduction

Welcome

Thank you for considering to develop your
applications using NeoAccess, the cross-
platform object-oriented database engine.
Applications based on NeoAccess store and
retrieve even the most complex application-
specific objects and data quickly and easily.
NeoAccess is a full featured object-oriented
database engine with incredible performance.

The programming interface to NeoAccess is
designed to keep visible complexity to a
minimum while providing a feature-rich
foundation on which to build and enhance
applications. Developers of object-oriented
systems are most productive when dealing with
classes and objects, not black-box procedural
libraries, which most databases are. NeoAccess
allows developers to access database
capabilities by subclassing and method

Contents

Contents

invocation.

Standard application frameworks include
classes that you can use to build the user-
interface portion of your application.
NeoAccess is a set of C++ classes that extends
these frameworks to provide the facilities for
the development of an application’s data model,
or back-end. Developers subclass and
instantiate NeoAccess classes to implement
those objects that need to persist across session
boundaries — that time between when the user
quits your application at night and starts it up
again eight hours later smelling of coffee and
Corn Flakes.

The first section of this manual presents you
with an introduction to the capabilities of
NeoAccess. Chances are that you’ve probably
heard the terms “object-oriented” and
“database” at least five times if you’ve been
involved in software development for more than
10 minutes. While we assume you have a

Contents

Contents

working knowledge of these terms, this section
explains how NeoLogic has fused these two
ideas into a very powerful development tool.
NeoAccess is very different from other database
engines, object-oriented or otherwise, so this
first section is required reading for everybody.

Following the introduction is a section titled
Preliminaries. Each topic in this section
discusses issues of interest which don’t relate
specifically to a NeoAccess class. You should
refer to these discussions when you need to
understand those aspects of the NeoAccess
Developer’s Toolkit.

The next section is a tutorial which discusses, in
great detail, the PowerPlant implementation of
the Laughs sample application. First time
NeoAccess developers are encouraged to read
this section carefully.

The final section includes a reprint of an article
written for Frameworks, the journal for object-

Contents

Contents

oriented developers on the Macintosh. This is a
factual, though rather tongue-in-cheek,
recounting of the development and
implementation of the Photographer's Assistant
sample NeoAccess application.

Contents

Contents

Naming Conventions

In order to enhance the readability of the source
code and avoid naming conflicts with system
software and your application code, all
NeoAccess source code and header files adhere
as closely as possible to the following set of
naming conventions:
• Instance (non-static) member names begin in

lower case.
• Class (static) member names begin in upper

case.
• Instance (non-static) data member names

begin with “f”.

• Class (static) data member names begin with
“F”.

• Global variable names begin with “gNeo”.

• Parameter variable names begin with “a”.

• Constant names begin with “kNeo”.

• Most class names begin with “CNeo”.
Contents

Contents

• The names of delegation class begin with
“ENeo”.

• Conditional compile symbols begin with
“qNeo”.

Typographic Conventions

The following typographic conventions are
followed throughout this manual:
• Source code examples and the names of

procedures, variables and constants are all set
using Courier type.

• Important technical terms are set using bold
type in defining sentences or first usage.

• Optional class, argument and variable names
are set using italic type.

• SMALL CAPS style is sometimes used for
emphasis.

Contents

Contents

Overview

The Database
Information on computers today is usually
stored in files. The operating system presents a
file as a single stream of bytes. This data stream
is typically read in and written out serially.
However, the file system also provides a
mechanism for “seeking” to particular locations
in the file.

Macintosh files consist of a data fork and a
resource fork. The data fork is the same as the
byte stream found on other systems. Resources
are chunks of data that are identified by a 4-byte
resource type and either a resource ID or a
resource name. The Macintosh Resource
Manager provides random access to resources.
The data fork, on the other hand, contains a
single stream of bytes. Other operating systems
that don’t support a resource fork may still have
resource files that provide capabilities similar to

Contents

Contents

Macintosh resources. But both mechanisms
have their limitations. The data fork is without
structure. The resource fork has structure but
the mechanism that provides that structure, the
native resource manager, is very inefficient
when the number of resources begins to grow.

CNeoDatabase
NeoAccess includes a class called
CNeoDatabase. CNeoDatabase stores objects
in a container. A container is a repository
which contains a NeoAccess database. In most
cases, NeoAccess uses a file’s data fork as its
container. But other types of containers might
also be used; like an OpenDoc or OLE
container.
Objects are the basic elements of object-
oriented applications. Think of them as
intelligent data. The CNeoDatabase class
organizes objects the way the application
references them, instead of just by a resource ID

Contents

Contents

or name. Fortunately, CNeoDatabase is also
very efficient. It doesn’t slow down when
dealing with a large number of objects the way
resource managers do.

Opening the Database
CNeoDatabase is a class of object. Just like any
other object, an instance of this class is created
by using the new operator. To access objects
contained in a CNeoDatabase, it must be open.
However, before it can be opened a path name
must be specified. This path is where the file
resides in the file system.

Committing Changes to the Database
When the contents of a database change —
objects have been added, deleted or changed —
these changes occur only in memory. The state
of the database on disk is not affected.

Contents

Contents

Changes only become permanent when the on-
disk state of the database is synchronized with
its in-memory state.

Closing the Database
A database object needs to be closed before the
application terminates. If any objects have been
added or changed, then the database needs to be
updated before it is closed.

The Object
As the name implies, object-oriented systems
deal primarily with objects. Objects are pieces
of intelligent data. The state of an object
consists not only of data values, but also the set
of operations that are defined for that data.

For example, a CNeoDatabase is an object. This
class of object contains state information: it
refers to an operating system file, it has a length
and an object count. But the real value of a
CNeoDatabase is that it does things for you

Contents

Contents

without your having to know how it does them.
For example, your application will ask the
database object to commit to disk the changes
that have been made in memory. Note that you
don’t need to know the details of how this
update process is performed. You just need to
know how to ask the database to do it. Object
classes centralize and isolate intelligence so that
complexity is minimized.

Application-Specific Objects
Application-specific objects encapsulate the
intelligence of your application. They are the
value that you add to the user experience. The
raison d’être of your application is to provide a
mechanism that allows users to manipulate
these objects.

Some application-specific objects are persistent
objects. Users create something that they can
come back to and work with again later. In
order for these object to persist, your

Contents

Contents

application needs to include a mechanism that
preserves the state of these objects after your
application has quit, and which can be used to
locate the objects again later.

It is important to remember that windows and
all the other components that make up the user
interface to your application are not the objects
that need to persist over time. Visual objects
disappear when the user quits the application.
What remains is the application-specific
content.

Historically most applications that support a
document architecture do so by using a fairly
rudimentary mechanism called a stream.
Streaming data back and forth between the
document and memory is sometimes called the
inhale/exhale approach to object persistence. All
persistent objects must be in memory while the
application is running. When the user chooses
the Save… menu item the application opens the
document file and serially writes every

Contents

Contents

persistent object in memory out to disk. The
process of reading a document involves
reopening the file and reading its entire contents
back into memory.

Most database systems provide application
builders with an API for reading and writing
data from database tables. But the information
returned by a database query is usually just a
data record, not an object. Object-oriented
developers need to write “wrapper routines” to
copy the individual fields of a record into the
data members of the application-specific
objects. Non-object database systems also force
developers to handle other bothersome logistics,
like keeping track of which objects have
changed: changed objects need to be kept
together so that the database can be updated to
reflect those changes, new objects need to be
kept somewhere else so that they can be added
to the database and references to shared objects
need to be tracked closely so that the objects

Contents

Contents

stay consistent. Updates

Contents

Contents

necessitate that another set of wrappers be
written to copy data back into the database
record format for writing back in the database.

Thankfully, applications written using
NeoAccess don’t need to worry about these
details. The approach taken by NeoAccess is
that objects should be viewed as having a set of
properties and a pliable state. Just as view
objects have properties that allow them to be
drawn on a screen or printer relative to other
objects, persistent objects are provided by
NeoAccess with persistence and sharing
properties. These properties allow objects to
maintain an association with a database. This
association, which can be easily built and
broken, allows objects to migrate freely
between disk and memory. An object’s API to
these properties deal with issues such as making
and breaking the object-database connection
(adding or deleting the object from a database),
locating and later freeing the object in memory,

Contents

Contents

object sharing, and maintaining relationships
between itself and other objects in a database.

NeoAccess includes a class of object called
CNeoPersist on which all persistent objects are
based. Built into this base class is intelligence
about managing the permanence of objects. It’s
easy to define application-specific classes based
on CNeoPersist, because most of the
complexity involved in adding, deleting and
locating objects in a CNeoDatabase has been
encapsulated in the base class. All you need to
add is the intelligence that makes the object
useful in your application. In essence,
persistence comes free, or at least at a very low
cost.

NeoAccess maintains a distinction between
persistent objects and permanent objects. A
persistent object is any object that can be
permanent. A permanent object is one which
has been added to a database. For example, an
application may create a new persistent object.

Contents

Contents

However, if the application quits without adding
this object to a database and then commits the
change, then the state of the object is not
permanent. So, while all permanent objects are
persistent, not all persistent objects are
permanent.

Creating an Object
Creating a persistent object is no different from
creating any other type of object; use the new
operator.

Sharing an Object
Suppose your application is a personal
productivity suite that includes calendar and
address book functions. A user may have the
calendar and address book open at the same
time and both of these components may refer to
a common persistent person object. Without a
sharing property built into the person class, the
calendar component of your application might
delete the person from memory not knowing

Contents

Contents

that the address book component still refers to
it. One way to avoid this difficulty might be to
have each component maintain a separate copy
of the object in memory, but that brings up other
concurrency issues.

The class CNeoPersist provides a sharing
property. Any persistent object, whether or not
it is permanent, can be shared using this facility.
A persistent object remembers how many
references there are to it. When an object is
brought into memory, either by creating it with
the new operator, getting a reference to it from
another component or locating a pre-existing
object from a database, the number of
references to the object is increased. The object
stays in memory until the last reference is
disposed of.

Contents

Contents

Adding an Object to the Database
At some point during the execution of your
application, you will decide that an object needs
to be made permanent. For example, in the
theoretical application used above, a user adds a
new person to the address book. When the time
comes to add an object to a database, your
application calls the database's addObject
method.

Locating Objects in the Database
Ultimately, the true value of a database is its
ability to locate objects quickly and easily when
you need them. The interface to the database
query mechanism needs to balance simplicity
with power. NeoAccess has an extensible
interface that provides both.

If the truth be told, object database usage so far
has not grown at a rate comparable to that of
relational systems a decade earlier. One of the
biggest reasons is that database applications are

Contents

Contents

designed under the assumption that data can be
retrieved using relational queries (which are
also called associative lookups). While object
databases execute referential queries (also
called parts explosions or ISAM) extremely
well, most do not even support relational
queries per se. NeoAccess is different. While
NeoAccess provides very powerful referential
query mechanisms, the most prevalent way to
locate objects is by relational query
mechanisms.

Objects in a NeoAccess database are organized
by class. This is analogous to the way that
relational systems store records in tables. So,
for example, all CCircle objects in a graphics
application would be indexed together, as would
all CSquares. But NeoAccess also knows how
classes are related to one another. It knows, for
example, that CCircle and CSquare have a
common parent class, CShape. Knowing the
genealogy of classes allows the query

Contents

Contents

mechanism to be much more powerful than a
purely relational system could ever be. By
performing a single database query, the screen
update method of our mythical graphics
application can locate all objects having a base
class of CShape that are in a particular update
region.

NeoAccess includes several static function
members including Find, FindEvery and
FindByID - for locating an object or group of
persistent objects. These methods can search a
specific class of objects, or a base class and all
of its subclasses. Your application-specific
subclasses of CNeoPersist can include
additional methods that provide similar
capabilities
(CShape::FindShapeByRegion, for
example).

As another example, suppose the personal
productivity application that was mentioned

Contents

Contents

before includes the ability to list all those
people that the user is scheduled to meet with
today. The day object or the calendar
component defines a method that locates the
proper set of person objects. This method, lets
call it FindTodaysPeople, locates all the
appointment objects for today, identifies the
people the appointments are with, and then
locates and returns those person objects. This
may sound complicated, but, in fact, it is quite
easy to implement.

Changing an Object
A distinction can be made between permanent
data members of an object and transitory ones.
Permanent members are those that make up the
permanent state of an object. A person object’s
address and phone number are permanent.
Transitory members are generally used for
housekeeping tasks while the object is in
memory. Pointers, reference counts and the like

Contents

Contents

are usually transitory values.

When the permanent state of an object changes
in memory, steps need to be taken to insure that
this change is reflected in the on-disk state of
the object. The method that changes the

Contents

Contents

value of a permanent data member should call
the object’s setDirty method to indicate that
the object’s state has changed and needs to be
updated on disk. This change will be committed
to disk when the database is later committed.

Removing an Object
Inevitably, your application will need to remove
objects from a database. The database's
removeObject method does this. An object
continues to exist in memory after it has been
removed. It can be manipulated just like any
other object. It can even be re-inserted in the
same or any other database at some later point.

Deleting an Object
A persistent object is deleted from memory by
using the unrefer method.

But unrefer’ing an object does not always
result in the object being deleted from memory.
Some other part of the application may still

Contents

Contents

refer to the object in memory. NeoAccess
insures that objects are deallocated from
memory only after all references have been
removed (by calling unrefer).

But there is yet another reason why objects may
remain in memory even after all the
application’s references to it have been deleted.
NeoAccess includes a very sophisticated object
cache, the purpose of which is to improve
object access times by minimizing disk activity.
NeoAccess may decide to keep an object in its
cache in case the application tries to access it
again. So locating the object the next time will
be fast. But don’t worry, the cache is purged
when application memory is low. So the object
cache will never cause your application to run
out of memory. Caching can improve access
times by as much as 20 times in some
situations. (Though your application’s mileage
may vary.)

Contents

Contents

The NeoAccess Development Experience

Who’s Who
A typical development team on a project using
NeoAccess has probably assigned specific
responsibilities to individuals or groups within
the team. It depends on the project, but most
teams of two or more people usually have a
“front-end” group and a “back-end” group. The
front-end group, which we usually refer to as
application developers, deal with user interface
issues. The back-end group, or database
developers, work on issues having to do with
how application objects are organized, stored
and accessed.

A great deal of effort has been put into
NeoAccess to make the developer experience of
both of these groups as enjoyable as possible.
But it is particularly important that complexity
and logistics be hidden from application
developers. This not only allows them to be as

Contents

Contents

productive as possible, but also allows them to
design and develop a front-end that is
decoupled from the specifics of how objects are
defined, organized and accessed in the back-
end.

NeoAccess Synergy

A car isn’t a car without a minimum set of parts:
wheels, a drivetrain and some way to control it.
These base components work synergistically to
build a higher level abstraction - a means of
transportation. (Of course any car salesman will
tell you that cars are much

Contents

Contents

more than simply a means of transportation.
They’re fast, comfortable and good looking. In
short, they’ve become status symbols.)

In much the same way, most mature application
frameworks are structured as a network of
subcomponents that each contribute to the
synergistic whole. Major subcomponents might
include event handling, document management,
geometry support and, of course, views.
Zooming in even further, each of these
subcomponents might be further dissected.

NeoAccess is itself a collection of lightweight
layered abstractions. At a base level there are
simply databases and persistent objects. This is
the rich soil within which higher level
abstractions are rooted. At the highest level is a
full featured object database. But the truly
unique power of NeoAccess is that the mid and
upper layer abstractions are completely
accessible to developers to exploit and extend.

Contents

Contents

It is this accessibility and extendibility that is
the most important advantage the object
systems provide over procedural systems.

Contents

Contents

Preliminaries

Introduction

This section contains reference material for
developing applications using NeoAccess.
Rather than force you to wade through the
complete interface definition, this section
provides a set of topics that are generally of
interest to developers. You can obtain more
detailed information by referring to specific
methods or classes in the object definition
sections that follow this one. Many of these
examples refer to the various sample
applications which are included with
NeoAccess.

Environment-Neutral Frameworks

NeoAccess is an object framework that provides
object persistence capabilities. This support is
provided as a set of C++ classes that extend
standard application frameworks on several

Contents

Contents

different platforms using a number of different
development environments and compilers. The
product was written to be environment-neutral
so as to facilitate portability. NeoAccess
portability is implemented through the use of
environment-specific classes and by using
compile-time symbols and typedefs.

CNeoBlobCNeoPersistOWLCNeoPersistTStreamableBase

CNeoBlob Inheritance Tree Using OWL

Consider the above diagram which shows a
simplified inheritance tree for the class
CNeoBlob when built using Borland’s
ObjectWindows Library (OWL) application
framework. The root of all streamable classes in
OWL is TStreamableBase, so naturally that is
CNeoBlob’s root class as well. Because blobs
are persistent objects CNeoBlob also inherits
from CNeoPersist. The immediate parent of
CNeoBlob is CNeoPersistOWL. This class
supplements CNeoPersist, which is framework-
neutral, with persistence support that is unique

Contents

Contents

to OWL. For example, all OWL classes should
support the isA and isEqual methods.

CNeoBlobCNeoPersistTCLCNeoPersistCObject

CNeoBlob Inheritance Tree Using TCL

Now consider the diagram immediately above
which again depicts the inheritance tree of
CNeoBlob, but this time under Symantec’s
THINK Class Library (TCL) application
framework. The TCL also has a single root
class, but it is called CObject. In this
environment CNeoBlob’s immediate parent is
CNeoPersistTCL. The environment-specific
support that this class provides is different than
that provided by CNeoPersistOWL.

Contents

Contents

Isolating environmental dependencies in
subclasses greatly improves portability. It also
reduces the complexity and increases the clarity
of environment-neutral classes.

Adding and Removing References to an
Object

The sharing property inherited from
CNeoPersist is useful whether an object is
permanent or not. However, care must be taken
to insure that references are properly added and
removed. This will ensure that an object is
deleted from memory only after all references
have been removed.

References can be added to an object by using
the referTo method of the object. A reference
is implicitly added to an object when it is
obtained from a database. When your
application has finished referring to it, it should
call unrefer to remove the reference.

Contents

Contents

N
OTE

There is an easy way to remember
which NeoAccess methods add
references to objects and which don’t.
The static FindByX methods all add a
reference, as do swizzler objects; all
other methods should not. Another way
to remember is that methods called
primarily by application developers
(again, the FindByX and swizzler
methods) add a reference before
returning an object, while methods
used primarily by database developers
(index-related methods and the like) do
not add a reference.

Consider the sample routines below:

void Masseuse(CNeoDatabase *aDatabase)
{
long index;

for (index = 0; index < 100; index++)
MassageObject(aDatabase, index);

Contents

Contents

}

void MassageObject(CNeoDatabase *aDatabase, const NeoID aID)
{
CNeoAppSpecific * object;

object = CNeoPersist::FindByID(aDatabase, kAppSpecificID, aID, FALSE,
nil, nil);

/**
 ** Do a bunch of stuff to the object.
 **/

/**
 ** Call unrefer to remove the reference we obtained from FindByID.
 **/
object->unrefer();
}

Contents

Contents

The function MassageObject massages the single object that is returned by FindByID. If the last argument of
FindByID were non-nil, then a reference would have been added to each object in the array. All of these
references need to be disposed of properly.

Consider what would happen if an error that caused a Failure were to occur in MassageObject between the
point where object was returned from the database and where the reference to object was removed. The object
would never be deleted because it would have one more reference than it should have.

There are several possible solutions to this dilemma. The body of MassageObject could be enclosed in a
NEOTRY block with a NEOCATCH block that removes the reference.

void MassageObject2(CNeoDatabase *aDatabase, const NeoID aID)
{
CNeoAppSpecific * object = nil;

NEOTRY {
object = CNeoPersist::FindByID(aDatabase, kAppSpecificID, aID,

FALSE, nil, nil);

/**
 ** Do a bunch of stuff to the object.
 **/

/**
 ** Send the object the unrefer to remove the
 ** reference we obtained from FindByID.
 **/
object->unrefer();
object = nil;

}
NEOCATCH {

if (object)
object->unrefer();

}
NEOENDTRY;
}

Unless the compiler supports C++ exceptions, the overhead of NEOTRY blocks is relatively high, both in terms of
code space and execution time. For this reason MassageObject2 is less than optimal.

Our third example, MassageObject3, removes the reference that is added by the database object, but adds a
reference using object’s autoReferTo method.

Contents

Contents

void Masseuse2(CNeoDatabase *aDatabase)
{
long index;

/**
 ** Remember the current state of the reference table.
 **/
checkpoint = CNeoPersist::GetCheckpoint();
NEOTRY {

for (index = 0; index < 100; index++)
MassageObject(aDatabase, index);

}
NEOCATCH {

/**
 ** Restore the state of the reference table
 ** by removing all the references that have
 ** been added since the checkpoint occurred.
 **/
CNeoPersist::ResetCheckpoint(checkpoint);

}
NEOENDTRY;
}

void MassageObject(CNeoDatabase *aDatabase, const NeoID aID)
{
CNeoAppSpecific * object;

object = CNeoPersist::FindByID(aDatabase, kAppSpecificID, aID, FALSE,
nil, nil);

/**
 ** Replace our object reference with one
 ** that is checkpointed.
 **/
object->autoReferTo();
object->unrefer();

/**
 ** Do a bunch of stuff to the object.
 **/

/**
 ** Send the object the autoUnrefer to remove the
 ** reference we obtained from autoReferTo.
 **/
object->autoUnrefer();
}

The methods autoReferTo and autoUnrefer are just like referTo and unrefer, respectively.

The method autoReferTo adds a pointer to the object to a reference table. The reference table is a global array.

Contents

Contents

Each occupied entry in this array points to an object that has had a reference added to it by autoReferTo. If an
object has had references added to it by autoReferTo more than once, then there will be multiple entries in the
reference table that point to the object.

Contents

Contents

The method autoUnrefer differs from unrefer in that autoUnrefer removes the object from the reference
table. The method autoUnrefer removes the reference from the LAST object in the table.

References to objects need to be removed from objects in the reverse order in which they were added. Care must
also be taken to remove references added by autoReferTo with autoUnrefer, and references added by
referTo have to be removed by unrefer.

NOTE

Don’t forget that the reference table is a global array of finite length. The methods
autoReferTo and autoUnrefer should not generally be used to add references to an
array of objects. The number of entries in an array is often indeterminate and may quickly
overflow the reference table.

Concurrency and Referential Integrity

Concurrency and referential integrity are two of
the more difficult issues for class designers to
solve in a general fashion. While recognizing
conflicts is relatively straightforward, resolving
them and avoiding deadlocks is not.

The CNeoPersist class has a property the allows
developers to signal and to recognize whether
an object is busy (i.e., in an inconsistent state).
An object’s busy state is kept consistent using
the same mechanism that keeps object
references up to date even if there is a failure.
See the topic “Adding and Removing
References to an Object” immediately above for

Contents

Contents

more information.

An object can be marked busy and unbusy by
using the setBusy and setUnbusy methods
respectively.

void ChangeObject(CAppSpecific *aObject)
{

/**
 ** Mark the object busy so that others realize
 ** that it may be inconsistent.
 **/
aObject->setBusy();

/**
 ** Call a routine that changes the state of the object
 ** in some round-about way.
 **/
ThrashObject(aObject);

/**
 ** Now that it is once again consistent,
 ** mark the object as no longer busy.
 **/
object->setUnbusy();
}

Contents

Contents

The CNeoPersist class definition also includes autoBusy and autoUnbusy methods that keep the busy state of
an object consistent in the event of a failure. Objects for which these methods are called are tracked by a busy table,
which is used the same way that the reference table is used for tracking object references.

void ChangeObject(CAppSpecific *aObject)
{

/**
 ** Mark the object busy so that others realize
 ** that it may be inconsistent.
 **/
aObject->autoBusy();

/**
 ** Call a routine that changes the state of the object
 ** in some round-about way.
 **/
ThrashObject(aObject);

/**
 ** Now that it is once again consistent,
 ** mark the object as no longer busy.
 **/
object->autoUnbusy();
}

The methods GetCheckpoint and ResetCheckpoint track and reset the state of the busy table and reference
table.

NOTE

It is the application’s responsibility to ensure that a NEOCATCH block be set up to capture
failures and restore objects to a consistent state. The ResetCheckpoint method simply
resets the busy state and reference count of those objects that have been set busy using
autoBusy or had references added using autoReferTo since the checkpoint was taken.

Cross-Platform Development

NeoAccess supports the development of cross-
platform applications. Cross-platform support
includes the use of environment-neutral classes
and their derivatives. Whereas other cross-

Contents

Contents

platform development environments rely
primarily on preprocessor macros and
conditional compilation to isolate compiler,
development environment and machine
dependencies, in NeoAccess these dependencies
have been isolated into environment-specific
classes. NeoAccess source code was organized
to make portability as easy as possible. Most
environment-specific aspects of NeoAccess are
isolated in environment-specific header files so
that these symbols can be redefined easily.
Moving NeoAccess to still other platforms,
Unix and OS/2 for example, has been greatly
simplified as a result.

Contents

Contents

While NeoAccess has been reworked to
improve portability, the overall complexity of
the API has also improved. You can continue to
write your application code in a machine-
dependent fashion, or take advantage of the
platform-independent features of NeoAccess to
help you develop applications in multiple
environments.

Binary Compatibility of NeoAccess Files

NeoAccess supports binary compatibility of
databases on any platform. What this means is
that users can create databases on any machine
and then copy that file to another kind of
machine and have the application on the second
machine open and manipulate it without
converting the database's internal format. This
incredibly powerful feature helps developers
that use NeoAccess build multi-platform
applications that produce documents that can be
used on any machine.

Contents

Contents

Binary compatibility is achieved by
standardizing the binary format of data in
NeoAccess databases. This standardization
approach, which is often called byte swapping,
has been used in network communication
protocols for years. It allows networked
machines to communicate in heterogeneous
environments.

015

31 0
short

long
0

char []

1 2 3

07

char

S EXP MANTISSA

3 3 2 0
1 0 2

NeoUFloat

S EXP MANTISSA

8 7 6 0
0 9 4

NeoULongDouble

S EXP MANTISSA

6 6 5 0
3 2 1

NeoUDouble

NeoAccess Standardized Data Formats
Contents

Contents

NeoAccess defines several macros which are
used to convert data to and from machine-
usable and NeoAccess standardized formats. If
the machine-usable format in a particular
environment is the same as the standardized
format, then these macros are trivial and the
symbol qNeoByteSwap is zero. One-byte
data types do not have to be converted because
the machine-usable format of signed and
unsigned characters is the same as the

Contents

Contents

standardized format in all environments that
NeoAccess currently supports. The macros for
converting short, long and floating point
formats are as follows:
NeoSwapShort(x) // swap 2-byte integer in place
NeoSwapShortInto(s, d) // swap 2-byte integer s into d
NeoSwapLong(x) // swap 4-byte integer in place
NeoSwapLongInto(s, d) // swap 4-byte integer s into d
NeoUFloat2Native(s, d) // copy NeoUFloat s to NeoFloat d
NeoNative2UFloat(s, d) // copy NeoFloat s to NeoUFloat d
NeoUDouble2Native(s, d) // copy NeoUDouble s to NeoDouble d
NeoNative2UDouble(s, d) // copy NeoDouble s to NeoUDouble d
NeoULDouble2Native(s, d) // copy NeoULongDouble s to NeoLongDouble d
NeoNative2ULDouble(s, d) // copy NeoLongDouble s to NeoULongDouble d

Object I/O

Most C++ compilers include a standard set of
classes which implement an input/output
facility which is referred to as a stream. The
most common stream class supports the transfer
of basic C data types such as integers, floating-
point numbers and character strings to and from
a file.

While streams have been around for some time,
our understanding of them continues to evolve.
We know, for example, that we need different

Contents

Contents

types of streams for different purposes.
Application-specific environments may benefit
from the use of a stream subclass which also
supports application-specific data types,
imaginary numbers for instance. Other
environments may find useful a stream that
transfers data not to a file but across a network
pipe or an inter-process communications
channel. As you can see from these two
examples, there are two dimensions in which
stream derivations can occur. One dimensions
addresses the type of data being accessed. The
other defines the source/destination of the data.

NeoAccess uses streams to address the issue of
where data is coming from or going to. The
abstract base class CNeoStream provides an
interface through which basic data types can be
read in or written out. This base class is
subclassed to derive another abstract stream
class, CNeoContainerStream. A container
stream is further subclassed to create

Contents

Contents

CNeoFileStream, which is used in reading from
and writing a file. Other subclasses of
CNeoContainerStream might be used to created
OpenDoc or OLE containers.

The interface to CNeoPersist, the base
persistence class of NeoAccess, includes a pair
of object serialization methods, readObject
and writeObject, which are used to
serialize the persistence state of objects to and
from NeoAccess streams. Subclasses of
CNeoPersist override these methods so that
their persistent data members are also preserved
and restored appropriately. For the most part,
readObject and writeObject methods
can be written without regard for the type of
stream being used. The advantage of this
approach is that a single set of methods can be
used to preserve and restore a class’s state to
any number of different stream types.

Some application frameworks which are

Contents

Contents

supported in the standard NeoAccess release
include their own set of stream classes. In order
to make use of these streams, persistent objects
in these frameworks usually need to override
their own set of serialization methods. In order
to avoid asking developers to override multiple
sets of serialization methods, NeoAccess
environment-specific support for these
frameworks often includes a stream class which
maps the native application framework’s stream
class into a

Contents

Contents

CNeoStream derivative which calls an object’s
readObject and writeObject methods.

The NeoAccess database class, CNeoDatabase,
provides an extremely powerful mechanism for
accessing persistent objects. These objects use
persistence properties provided by their base
class, CNeoPersist. And together these three
base classes — CNeoContainerStream,
CNeoDatabase and CNeoPersist — create an
incredibly powerful and high performance
database engine which is both extensible and
easy to use.

Framework-Specific Subclasses of
CNeoStream

Some application frameworks include their own
type of stream classes. Developers wishing to
read and write objects to these streams usually
need to override a set of methods in much the
same way that users of NeoAccess streams
override readObject and writeObject.

Contents

Contents

NeoAccess environment-specific support for
these frameworks include an environment-
specific subclass of CNeoStream which allows
developers to use both NeoAccess streams
classes as well as the framework-specific stream
classes without having to implement multiple
sets of serialization methods. Developers that
use framework-specific stream classes through
this interface can preserve and restore objects
using NeoAccess standard readObject and
writeObject methods.

Iterating over a List of Objects

Iterators can be used to iterate over a collection
of objects. Some application frameworks in
which NeoAccess is supported include their
own iterator classes. The collection classes of
still other frameworks include iteration methods
that support similar capabilities. The type of
collection that NeoAccess uses are called
extended binary trees (also called btrees). So

Contents

Contents

NeoAccess’s iterator classes extend the set of
iterator classes available to the developer to
include keyed iterators that can be used to
iterate over btrees. (See the CNeoIterator and
CNeoIndexIterator sections for more
information on NeoAccess’s iterator classes.)

Occasionally, an application needs to apply a
function to all objects of a class until a
particular condition is met. Situations where
this might be a useful thing to do include
serially searching for a particular object, or
counting objects having a specific state.

There are several different ways in which this
can be accomplished with NeoAccess. The
recommended way would be to create an
iterator object and iterate over the set of objects.
Another way would be to pass a function
pointer to one of the FindByX methods. Yet
another alternative would be to use the
database's doUntilObject method. This
final option is the one that we will discuss in the

Contents

Contents

remainder of this topic.

Imagine a situation where an application needs
to count the number of objects in a database.
You could do this simply and quickly by using
the database’s getObjectCount method, but
assume that the application would rather iterate
over each object and count each of them as they
are encountered. Consider the example given
below:

Contents

Contents

void *CountObject(CNeoNode *aNode, const short aIndex, void *aParam)
{
/**
 ** Count this object.
 **/
(*(long *)aParam)++;

return nil;
}

long CountObjects(CNeoDatabase *aDatabase)
{
long count = 0;

/**
 ** Count all objects in the database.
 **/
aDatabase->doUntilObject(nil, kNeoPersistID, TRUE, CountObject, &count);

return count;
}

Look first at the implementation of CountObjects. It calls the database object’s doUntilObject method. The
fourth argument of this call is a pointer to a function, CountObject, which is shown just above
CountObjects.

CountObject ignores its first two arguments, but treats its third as a pointer to a long integer variable, which is
incremented each time CountObject is called.

Let’s examine the parameters of doUntilObject closely. The first argument, which is nil, can refer to an
object in the class list to be searched. If it did refer to an object, then the function would be invoked for that object
and all objects following it in its class list. The fact that CountObjects has set it to nil indicates that
CountObject should be called for all objects of the class.

The second argument is a class ID. This indicates the class of objects to be searched. In this case, it has been set to
refer to the base persistent class CNeoPersist. If the first argument had not been nil, then the class to search would
have been the starting object’s class and this second argument would be ignored.

The third argument indicates whether objects that are subclasses of the class indicated by argument one or two
should also be searched. The fact that CountObjects has set this to TRUE means that all objects in the database
will be counted.

As we’ve already seen, the fourth argument is the function to be invoked. The parameters passed to this function
and the value it returns will be discussed in more detail in the example that follows this.

The fifth and final argument is a parameter value passed to CountObject, in this case a pointer to a long integer.
This can be any value that the application and function agree upon.

Let’s look at another example that makes use of the first two parameters and the return value.

Contents

Contents

class CMessage: public CNeoPersist {
public:

…
Boolean isPriority(void);

…
protected:

/** Instance Variables **/
long fPriority;

…
};

void *DisplayPriorityMsg(CNeoNode *aNode, const short aIndex,
const NeoLockType aLock, void *aParam)

{
Boolean done = FALSE;
CMessage * msg;

/**
 ** Get a pointer to the indicated object.
 **/
msg = (CMessage *)aNode->getObject(aIndex);
if (msg) {

/**
 ** If it is a priority message, then present it
 ** to the user.
 **/
if (msg->isPriority()) {

msg->autoReferTo();
done = DisplayMsg(msg);
msg->autoUnrefer();

}
}

/**
 ** Stop searching upon user request.
 **/
return (void *)done;
}

void DisplayPriorityMsgs(CNeoDatabase *aDatabase)
{
/**
 ** Present priority messages until the user says to stop.
 **/
aDatabase->doUntilObject(nil, kMessageID, FALSE,

(NeoTestFunc1 *)DisplayPriorityMsg, nil);
}

Consider a messaging application that a user has just launched. Its initialization process involves querying the user’s
message database to locate and present priority messages one at a time until the user says to stop.

Contents

Contents

This application defines a subclass of CNeoPersist, a grossly abbreviated definition of which is shown above. The
routine DisplayPriorityMsgs searches the message database by using the database's doUntilObject
method. It indicates that the routine DisplayPriorityMsg should be invoked for each message object in the
database.

Contents

Contents

The interesting part of this example is what happens in DisplayPriorityMsg. Notice that the first two
arguments are a pointer to a CNeoNode object and a short integer. The class CNeoNode is the abstract base class
of all btree nodes. It is used internally by NeoAccess to keep track of your application-specific objects in a
database.

The second argument to DisplayPriorityMsg indicates the specific object of interest to
DisplayPriorityMsg. The function CountObject in our first example didn’t need to refer to the object
itself, it was only interested in its existence. However, DisplayPriorityMsg needs to access the object
directly, so it uses the getObject method to obtain a pointer to it.

DisplayPriorityMsg is interested in the object only if it is a priority message. If not, then the function simply
returns.

Notice that the object has an additional reference added to it while the object is referenced by DisplayMsg. This
is because the getObject method of CNeoNode does not add a reference before returning the object. It is the
caller’s responsibility to do so. DisplayPriorityMsg uses the methods autoReferTo and autoUnrefer
to add and remove the reference. This example assumes that the caller of DisplayPriorityMsgs has set up
NEOTRY blocks and checkpoints to ensure the integrity of object reference counts.

The return value of DisplayMsg indicates whether the user is interested in seeing any additional priority
messages. The method doUntilObject stops immediately and returns to its caller any non-zero value returned
by the function.

Changing an Object

A property of permanent objects is their ability
to track when the value of a permanent data
member is changed. This allows them to update
their state on disk to match the modified state in
memory the next time changes are committed.
The methods of objects that modify these data
members should use the setDirty method to
mark the object as having been modified.

void CAppSpecific::setPermValue(const long aValue)
{
fPerm = aValue;

Contents

Contents

setDirty();
}

Btree Classes

One of the most powerful subcomponents of
NeoAccess is the extended binary trees (or
simply btree) that it uses to organize data.
While the general structure of a typical
NeoAccess database are discussed in greater
detail elsewhere, developers should know that
most the constructs such as classes and indices
are in fact btrees. As such, some of the more
powerful uses of NeoAccess can’t be realized
without first looking in greater detail at
NeoAccess’s btree capabilities. The abstract
base class on which all NeoAccess node classes
are based is CNeoNode.

Contents

Contents

Btrees are a type of collection class. Arrays and
linked lists are other collection classes that you
might have worked with before.

Inode

InodeInodeInode

Leaf Leaf Leaf Leaf Leaf

An Extended Binary Tree

A btree consists of a set of node objects
organized into a tree structure. Each node is a
separate C++ object with two or more branches
(we call these branches entries). The set of
nodes in a tree can be partitioned into two
groups, inodes and leaf nodes. Inodes provide
the tree with structure. They are the glue — the
means through which the individual index

Contents

Contents

nodes are connected. Leaf nodes provide the
tree’s content.

There are two general types of btree classes.
One whose entries refer directly to some other
target object is called a direct btree. We’ll call
btrees whose entries do not refer to target
objects indirect btrees. The target objects,
which tree nodes refer to, are sometimes called
the fruit of the tree.

Note that not all node entries are always in use.
The number of entries in a node that are used is
called its count. Note that if a node has any
unused entries, they are at the end of the entry
array of that node. The proportion of entries in a
tree that are used is referred to as the tree’s
density. The number of levels between the root
node and the leaf node furthest down in the tree
is referred to as the tree’s depth.

The root of a btree can itself be a leaf node.
Inodes are necessary only when the leaf entries

Contents

Contents

in the tree are contained in more than one leaf
object. Each leaf node in the figures shown in
this discussion can have up to four entries. The
figure below shows a tree with a single node
having a count of three. This node is both the
root and a leaf.

Leaf

A Single Node Extended Binary Tree

While a tree structure may initially seem like
unnecessary complexity, btrees are actually an
ideal construct on which to construct database
technology. While linked lists and arrays
provide optimal serial access times, no
construct can provide faster random access to
large collections than can btrees. Another
advantage btrees have over other collection
classes is that if a btree is persistent, then only
that portion of the tree that is of immediate
interest

Contents

Contents

needs be in memory at once. So persistent
btrees work well in limited memory situations,
even when dealing with huge collections of
objects.

Using Nodes

Extended binary trees consist of a hierarchy of
nodes. Each node has a header and a set of
entries. The class CNeoNode makes no
assumptions about how many entries are in a
node, their content or even the size of each
entry. This class simply provides a set of
abstract methods for manipulating the header
and entries of a node. Subclasses override these
methods to implement and manage the specific
capabilities of a node derivative.

Different kinds of btrees may contain many
different types of nodes. But most searching and
tree traversal methods are unaware of other
node types that it may refer to. They rely on the
abstract operations supported by CNeoNode to

Contents

Contents

perform specific tasks. For example, there are
situations where a method has a pointer to an
object of an indeterminate class and that method
would like to instantiate another node of that
same class. It would use the getAnother
method of the node to create an object of the
same type.

Inserting and deleting entries in a node,
expanding a tree to include more nodes or
collapsing a tree into fewer nodes, all of these
abstract operations are provided through the
CNeoNode interface.

Index Classes

Indices organize objects in some sorted order.
While other diagrams in NeoAccess
documentation show the structure of a database
depicted indices as a single block, they are in
fact (not surprisingly) btrees. The reason they
are btrees is that random searches need to be as
fast as possible, and no construct can provide

Contents

Contents

faster random access to large collections of
persistent objects than can btrees.

The order that objects are sorted in is
determined by its index classes. All index
classes are derived from CNeoNode. The
NeoAccess Developer’s Toolkit includes several
index classes. But in order to sort objects in
some application-specific fashion, by shoe size
for example, you need to define your own index
class.

Primary and Secondary Indices

Though all objects of a particular class are
usually grouped by class, NeoAccess provides
the ability to organize a class in more than one
sorting order. To illustrate how this feature
might be exploited, consider one way in which
the Macintosh Finder, the Windows File
Manager or any other hierarchical file system
might be implemented using NeoAccess.

Contents

Contents

Doc

App

Root

Sub

Sample File System Containment Hierarchy

Suppose the file system contained a set of four
files having a configuration as depicted in the
figure above. The file system assigns a 4-byte
value to uniquely identity each file. Each file
also tracks the identity of its parent. That is to
say, the class CFile has two indices.

For example, Sub is the parent of App, and Root
is the parent of both Doc and Sub. So in this
example file objects are sorted by file ID and by
parent ID. The parent ID of Root is zero
because it is the root of the file system tree.

The first index, which is called the primary
index and is always a direct btree, organizes file
objects by ID. Sorting objects by ID is in fact

Contents

Contents

the default sorting order of objects in a
NeoAccess database. The second index sorts
file objects by parent ID. Any index beyond the
primary index is called, not surprisingly, a
secondary index. Secondary indices are always
indirect btrees. (Direct and indirect btrees were
discussed in greater detail in the immediately
previous discussion titled “Btree Classes”.)

Classes are themselves btrees. (You’d be
amazed to find out how much of NeoAccess is
implemented as btrees). The entry of the class
node that refers to the CFile class keeps track of
all the indices of that class.

Contents

Contents

Class

CNeoIDIndex

Identity

Object Pointer

1 2 3 4

Root Doc Sub App

A File System’s Primary Index

The class node and primary index are depicted
in the above figure. Note how the class node
entry refers to the primary index tree whose leaf
entries refer to the file objects directly.

Contents

Contents

Class

CNeoIDIndex

Identity

Object Pointer

Root Doc Sub App

CNeoParentIndex

Identity

Parent Identity

1 2 3 4

1 2 3 4

0 1 1 3

A File System’s Complete Set of Indices

Contents

Contents

The second diagram shows that the CFile entry
of the class node actually refers to both index
trees. But note that the entries of the secondary
index don’t refer to the file objects directly.
Instead they contain the identity values
corresponding to entries in the primary index.
These identity values are used to locate the file
objects by using the primary index.

Locating an object using a secondary index is a
two step process. The first step involves
locating the proper entry in the secondary index.
The second step uses the value found in the
secondary index to locate the object using the
primary index.

Developers interested in knowing more about
NeoAccess index classes and how they are
defined and used should refer to the discussions
of the CNeoIDIndex, CNeoParentIndex, and
CNeoParentNNameIndex classes in the class
reference section of this document.

Contents

Contents

Consolidated Indices

It is sometime useful to sort all objects having a
given base class in a single index. Consider the
file system example once again. User usually
want to view a folder’s contents in alphabetical
order without regard for the type of the file. Yet
simply adding a third index to all classes having
a base class of CFile would result in all folder
objects being sorted separately from all
application or document objects.

A consolidated index is one which refers to all
objects having a common base class. This is in
contrast to the usual practice of organizing all
objects of each specific leaf class in a separate
index. A consolidated index is created by
configuring all metaclass objects of classes
having the common base class to have a index
root value equal to the class ID of the base
class. See the discussion of the setKey
method of the CNeoMetaClass class for more
information on creating a consolidated index.

Contents

Contents

Creating Application-Specific Index
Classes

Applications that wish to sort objects in an
application-specific order can do so by creating
their own index classes. This process is fairly
straightforward. The index classes included in
the Developer’s Toolkit serve as excellent
examples of how this might be done. The
default index class, CNeoIDIndex, is a primary
index that sorts objects in ascending order
according to object identity. A good example of
a secondary index is CNeoParentIndex.

In additional to the methods all CNeoNode
subclasses must override, all index classes need
to override the following methods as well;
getObject, insertObject,
removeObject and KeyManager. Primary
indices also need to override the
getChildIndex, remove and
setEntryParent methods.

Contents

Contents

KE

Y POINT

NeoAccess is among the fastest
commercial database engines available.
It uses a highly optimized binary
search algorithm to perform random
access searches. The only method of an
application-specific index class that are
called during these searches (other than
the I/O methods) is getObject. This
method may be called literally
hundreds or even thousands of times a
second during a search. For this reason
special care should be take to ensure
that it is implemented as efficiently as
possible.

Contents

Contents

forgetChildren(const short aIndex)
This method is called when the node entry of the specified child is being deleted. It’s purpose is
to break the bond that exists between parent and child objects in memory. This routine uses the
child object’s setParent method to break the child’s reference to the index, then it breaks its
reference to the child.

getChildIndex

The getChildIndex method simply iterates over the node’s entries until the given child
object is found.

getObject

The getObject method returns the object referred to by the specified entry. The entries of a
primary index, by definition, refer directly to target objects. While the entries of secondaries
refer to objects indirectly. As such, the implementation of the getObject method varies based
on whether the index is primary or secondary.

The entry of a primary index refers directly to the object if it is already in memory, in which
case getObject simply returns a pointer to it (without adding a reference!). If the object is not
in memory, then a new object must be allocated using the metaclass’s getOne function. The
newly allocated object’s readObject method is called to read the object’s state from a
location supplied by the index entry.

While secondary indices don’t refer to the target object directly, they do hold enough
information to locate the object using the primary index. The getObject method for these
indices creates a select key of a type supported by the primary index and calls the database's
findObject method.

KEY
POINT

The database's findObject method adds a reference to every object that
matches the given selection criterion. However, the object returned by an
index’s getObject method should not have a reference added. The
getObject method for secondary indices should therefore remove the
reference added by findObject before passing the object to back to the
caller. (A reference to an object is removed by using the object’s unrefer
method.)

insertObject

The process of adding an object to a database involves inserting an entry into each of the indices

Contents

Contents

for that given class of objects. NeoAccess determines the proper place in the index to add the
entry by performing a binary search. Once that location has been determined the
insertObject method is called to add the object in the proper place in the index node.

The implementation of insertObject simply fills in the fields of an index entry which is
allocated on the stack and then calls the index’s insertEntry method to actually insert the
entry into the node.

If all of the entries in the node are already in use then NeoAccess may need to add extra inodes
or leaf nodes to the index tree. This may result in a different node being at the root

Contents

Contents

of the tree. The return value of insertEntry refers to this new root if there is one. The
index’s insertObject method should return this value to its caller.

KeyManager

The metaclass of each index class must be set to refer to a key manager function. The general
structure of this function is often called a dispatch routine. Dispatch routines usually serve
multiple purposes. The first argument of a key manager function indicates which operation to
perform. A variable number of additional arguments may also be passed depending on the
operation requested. At a minimum all key manager functions must support the
kNeoCanSupport and kNeoGetKey operations.

The kNeoCanSupport operation may be called with one or two additional argument. If the
second argument is non-nil, then it is a pointer to a select key object. If this is the case, then
the key manager should return a Boolean value indicating whether or not this index class can
support a binary search using this type of select key. If the second argument is nil, then the
third argument should be a NeoSelectType enumeration and the key manager function
should return a Boolean indicating whether the index can support a binary search of that type.

The kNeoGetKey operation can be called with one additional argument. The second argument
is a pointer to a persistent object. The key manager function should return a select key that can
be used to uniquely locate the given object in the index.

remove

The remove method removes the index node and all objects that it refers to from the database
and frees the space in the database that the object occupied. This is actually quite a handy
method because everything that the node refers to also is removed. For example, if remove is
called on a node that is the root of an index, then the entire index tree and all the objects that it
refers to is also removed from the database.

KEY
POINT

This method should not be called directly. It should not be used to remove an
application-specific object from a database. Use
CNeoDatabase::removeObject instead.

setEntryParent

Primary index entries refer to objects, which refer back to the index. This bond between the
index and the target object needs to be established when an object is brought into memory.
Additionally, the bond may need to change should the parentage of an object change due to
additions or deletions in the index tree. The setParentEntry method of primary indices
simply sets the fParent data member of the target object to refer to the index node.

Contents

Contents

Object Versioning

NeoAccess includes constructs to facilitate the
sharing of objects within an application. The
object reference count and busy bit are two
mechanisms that help provide this support.

Contents

Contents

NeoAccess includes an additional construct
called versioning that provides even greater
concurrency support. Here’s how it works.

A persistent object’s commit method is used to
synchronize the on-disk state of dirty objects
with their in-memory state. When object
versioning is enabled (by defining the
qNeoVersions symbol when compiling
NeoAccess) persistent objects contain a
permanent data member, fVersion, which is
changed each time objects are updated on disk.

Client A Server Client BTime

t0

t4

t3

t2

t1

O1

O2

O2

O1

O1O1

O1

O1

O1 Refused!

O1

O1

O1

O1

O1

O1O2

Object State Transition Diagram for
Client/Server Application

Contents

Contents

The server portion of a client/server application
based on NeoAccess might make use of object
versioning to manage contention between two
clients that both attempt to modify a single
object. Consider the transition diagram shown
above. At time t1 client A requests the state of
object O. The server responds to this request by
returning the state O1. At t2 client B also
requests the current state of O. Given that the
state of the object has not been changed since
t1, O1 is returned. Client A modifies O and
commits the change at t3. The change is
accepted by the server because the object state
given by client A is O1. However, the act of
committing this change causes the state of O to
be set to O2. Client B attempts to submit its
own change to O at t4. However the object state
sent with this commitment is O1. If the server
were to accept this change it might cause the
change submitted by client A at t3 to be lost.
The server recognizes the version conflict and

Contents

Contents

refuses B’s change.

Other possible uses of versioning might include
a journalling-based recovery mechanism,
transaction processing support and dynamic
meta-object protocols.

Exception Handling

NeoAccess uses exceptions if something goes
wrong during an operation. An exception is an
abnormal condition that occurs during program
execution. Possible exception conditions
include running out of memory, or attempting to
read or write beyond the end of a file.
NeoAccess is designed to minimize the
occurrence of exceptions. However, should one
occur, NeoAccess will clean up as best it can
and then continue to signal the exception. Your
application objects should set up NEOTRY and
NEOTRYTO blocks to

Contents

Contents

capture and recover from an exception when it
occurs (NEOTRYTO blocks are described
below).

There are two types of exceptions that are most
likely to be raised by NeoAccess: resource
limits and programming errors. The frequency
of these conditions can be greatly reduced by
thoughtful design and implementation of your
application.

Resource limits occur when your application
exhausts a resource available to it. The resource
most commonly exhausted is memory.
NeoAccess, the class library and the operating
system all provide mechanisms for optimizing
memory usage and recovering from shortages.
See the topics “Temporarily Permanent
Objects” and “Purging Objects in the Cache”
for more information on memory management
in NeoAccess.

Another resource limit that is rarely

Contents

Contents

encountered, though you should be prepared for,
is file space. The length of a database will grow
as your application adds objects to it.
Eventually, the database could consume all the
available space on the volume. This situation is
problematic because NeoAccess will usually
encounter this error as it sets up to commit the
changes made to a database that already has too
many objects in it. The proper way to handle
this situation is to advise the user to either
remove some objects from the database or do a
SAVE AS of the database using another volume
that has enough file space to hold the database.

Programming errors may also cause exception
conditions. Of course all production
applications are sufficiently tested to eliminate
these errors before the application ships.
However, your applications should be prepared
for programming-induced exceptions to occur.

The traditional exception handling construct is a
NEOTRY block. A NEOTRY block takes the

Contents

Contents

following form:

/**
 ** Prepare to do something that may cause an exception.
 **/

NEOTRY {
/**
 ** Do something that may cause an exception.
 **/

}
NEOCATCH {

/**
 ** Do whatever it takes to clean up after yourself.
 **/

}
NEOENDTRY;

/**
 ** Do whatever it takes to clean up after yourself.
 **/

The problem with this construct is that the code inside the NEOCATCH block is often similar to (or exactly the same
as) the clean up code just below the NEOENDTRY statement.

Rather than duplicate this code, NeoAccess also provides a NEOTRYTO, NEOCLEANUP and NEOENDTRYTO
construct.

Contents

Contents

/**
 ** Prepare to do something that may cause an exception.
 **/

NEOTRYTO {
/**
 ** Do something that may cause an exception.
 **/

}
NEOCLEANUP {

/**
 ** Do whatever it takes to clean up after yourself.
 **/

}
NEOENDTRYTO;

This allows your application to avoid duplicating clean up code. Object code space is therefore reduced as well.

Temporary Objects

In the course of execution, some applications
generate vast amounts of intermediate results in
memory. Much of this data may be disposable,
as it can be reproduced at application startup
time using other persistent data. Offscreen
bitmaps in graphics programs or lookup tables
in algorithmically-intensive applications are two
situations where this might be the case. While
data of this sort can be recreated, in low-
memory situations it might be more efficient to
cache the data to disk rather than destroy it and

Contents

Contents

recreate it later.

NeoAccess makes it easy for an application to
organize and access application-specific
temporary data. So easy in fact, that you might
want to consider using it to organize and cache
objects that don’t persist after the application
quits. The advantage would be a potential
reduction in memory requirements because
these objects could be written to disk and then
be purged from memory when available
memory becomes critically low.

Marking an object temporary is done by setting
its fTemporary bit. Temporary objects are
managed in every way just like permanent
objects. As such, they can be added and
removed from a database using addObject
and removeObject, respectively. And they
need to be marked dirty when their in-memory
state is changed from their state on disk.

NeoAccess provides the ability to mark an

Contents

Contents

entire class of objects temporary by using the
database's markClassTemporary method.
All objects of a temporary class are removed
when the database is opened and closed —
whether or not the fTemporary bit of each
object is set. Objects belonging to a non-
temporary class but which have their
fTemporary bit set will be deleted when the
application calls the database's
removeTempObjects method with a non-
zero parameter value.

Contents

Contents

Object Caching

NeoAccess supports a very sophisticated object
caching mechanism which greatly improves
access times by minimizing disk activity.
NeoAccess keeps objects in memory even after
an application deletes its references to it. If the
application tries to access the object again later,
NeoAccess can locate it without having to
reread it from disk. Caching can improve access
times by as much as 20 times in some
situations. (Though your application’s mileage
may vary.)

The object cache uses memory not otherwise
being used by the application. This cache can
become quite large and consume a significant
portion of your application’s memory. By
default, the cache will use everything it can get
its hands on. In environments where virtual
memory is not available or where memory
allocation for an application is otherwise

Contents

Contents

bounded, NeoAccess provides a mechanism for
freeing objects in the cache when memory is
needed. The cache can be purged by calling the
purge method of a CNeoDatabase object.

void GetMemory(CNeoDatabase *aDatabase, const Size aNeeded)
{
aDatabase->purge(&aNeeded);
}

The single argument to purge is a pointer to a long that indicates how much memory is needed. The database will
attempt to free up at least enough memory to create a block of this size. Depending on how NeoAccess has been
configured, purge may free more memory than is currently needed. This is done in order to reduce the number of
times that low memory situations occur while trying not to reduce the usefulness of the object cache.

Some execution environments, such as pointer-based environments lacking robust virtual memory systems, require
that the size of the object cache be bounded. The size of the cache can be bounded. NeoAccess will limit the size of
the object cache to something close to the amount specified by the static variable
CNeoPersist::FCacheSize. If an allocation would cause the cache to exceed this limit, then the Purge
method of all open NeoAccess databases will be called to reduce the cache so that the allocation can occur.

Threads and Asynchronous I/O
Personal computer operating systems are
becoming ever more sophisticated. Modern
execution environments support asynchronous
i/o operations and multiple cooperative threads
of execution in a single process.

An asynchronous i/o function is one which
schedules i/o which may not be completed until

Contents

Contents

after the i/o function returns to its caller. The
application continues to execute during the time
between when the operation is scheduled and it
finally completes. The parameters passed to the
scheduling function includes a pointer to an i/o
completion routine, a function which will be
called by the operating system when the i/o
operation completes. An i/o completion routine
typically releases resources used while the i/o
operation was in progress.

A thread is an execution context within a
process. The execution environment of a
traditional application includes such things as;
the current instruction pointer (also called PC
value), an execution stack, a dynamic memory
pool (also called a heap), a set of static

Contents

Contents

memory values (also called globals), a set of
open files and so forth. Each thread in a multi-
threaded process has a separate PC value,
execution stack and set of globals. Though all
threads in a process share the same address
space and set of open files.

There are two general classes of threads,
cooperative threads and preemptive threads.
A cooperative thread operates much as
cooperative processes do; each thread runs
without interruption until it yields the processor
to some other thread of process.

NeoAccess includes optional support for
execution environments which allow for
asynchronous write operations to a file. When
enabled, this compile time option named
qNeoAsyncIO, can increase NeoAccess’s
overall throughput during the commit process.
The file stream class maintains a free list of
write buffers. The stream obtains a buffer from

Contents

Contents

the free list, fills it with data, schedules the
write operation and then continues execution
while the write to the file takes place. When a
write option completes, the completion routine
returns the buffer to the free list. In this way the
file stream is able to schedule as many
asynchronous write operations as there were
write buffers. If the stream requests another
write buffer when all of them are in use by
previously scheduled writes, the stream waits in
a tight loop until the completion routine of one
of the earlier scheduled write operations returns
a buffer to the free list.

While asynchronous write operations are
possible in this environment, asynchronous
reads are not. This is because the application
can not continue execution until a read
operation completes because it needs the results
of that read in order to proceed. However, it is
possible to take advantage of asynchronous
reads in a multi-threaded environment because

Contents

Contents

only the thread performing the read operation
needs that information on order to proceed.
Other threads are able to proceed. The potential
exists for dramatically increased overall
throughput through NeoAccess in such an
environment so long as other issues such as
concurrency and scheduling and context
switching (which are collectively referred to as
friction) don’t consume throughput gains.

NeoAccess’s cooperative multi-threading
support is enabled when built with the compile
time symbol qNeoThreads defined. In this
environment container streams obtain read and
write buffers from a free list shared by all open
container streams. Asynchronous write
operations are performed pretty much as
described above, with the one exception that
threads yield instead of looping when waiting
for a buffer to become available.

When operating in a multi-threaded
environment, database objects are protected

Contents

Contents

using a multiple-reader/single-writer
semaphore. Each method that enters the
database must first obtain a reference lock of a
type appropriate to the kind of database
operation being performed. Database query
operations begin by obtaining a read reference.
Database update operations need a write lock
before they can proceed. Attempting to obtain a
database lock may cause a thread to block.
Blocked threads will be made ready as the
resource they are trying to obtain becomes
available. The database’s lock and unlock
methods are used to obtain and free database
lock references.

Thread objects in a multi-threaded applications
which use NeoAccess must be derived from
CNeoThread subclass which is native to the
development environment being used. For
example, if the application is built using the
PowerPlant application framework, then
application-specific thread classes should has a

Contents

Contents

base class of CNeoThreadPP.

NeoAccess thread objects preserves the state of
various NeoAccess global variables between the
time the thread yields and when it regains
control. For example, the value of the global
variable gNeoDatabase, which refers to the
current database, can be different for each
active thread. These globals are preserved when
the thread yields the processor and restored
when the thread regains control.

Contents

Contents

Laundry
NeoAccess automatically keeps track of which
objects have changed in memory and therefore
need updating on disk. NeoAccess, in fact,
supports two mechanisms which it can use to
determine which objects need updating.
The most straightforward way is for it to simply
mark the object dirty and then at commit time
traverse the class list and index trees writing
dirty objects to disk.
Another scheme uses a construct called a
laundry list to keep track of all dirty objects.
Using a laundry list at commit time can be
much more efficient than not using one.
Laundry lists are enabled when NeoAccess is
compiled with the symbol qNeoLaundry
defined.

Configuring NeoAccess

NeoAccess is very configurable so that your

Contents

Contents

application operates at peak performance in its
unique execution environment. Much of this
configurability is due to the fact that when you
license NeoAccess you are given complete
source code. As the designer of NeoAccess, I
believe that I have provided you with the best
object-oriented database solution available.
However if you don’t agree, then you can
change whatever you don’t like. How’s that for
power!

kNeoBusyTableSize
The busy table is an array of pointers to objects
that have been set busy by calls to the
autoBusy method of CNeoPersist. The
number of entries in this table is defined by the
value of the kNeoBusyTableSize constant.
You should make sure that your application sets
this value high enough so that the table does not
overflow.

Contents

Contents

kNeoMaxIndice
This constant determines the maximum number
of indices that any class can have. The default
value of this compile time symbol is 4. If you
think that your application may include a class
having more than this number of indices, then
you should includes this value before shipping
your application.

KE

Y POINT

Contents

Contents

Changing the value of
kNeoMaxIndice may change the
format of your database on disk. For
this reason, the value of
kNeoMaxIndice should be set to a
safe maximum value before your
application goes into production.
Having said that, developers should
keep in mind that increasing the value
of kNeoMaxIndice by one will
increase the memory and file space
requirements of the application on
average by about 200 bytes.

kNeoMaxClasses
This constant determines the size of the
metaclass table. All application-specific class
ids should be between 20 and kNeoMaxClasses.
If your application requires more than 28

Contents

Contents

classes, then the value of kNeoMaxClasses
should be changed accordingly. The default
value of kNeoMaxClasses is 48.

kNeoClassEntries
This constant determines the maximum number
of entries that a CNeoClass object can contain.
Your application’s database may contain more
or fewer classes than this value. However, if
there are more than kNeoClassEntries,
then more than one CNeoClass object will be
needed and accessing classes will be minimally
slower.

kCNeoDatabaseCurrVersion
You should initially define the constant to be 1.
Each time the format of your database changes,
you will need to change this value and write a
routine that converts objects with changed
layouts to the new format.

Contents

Contents

kCNeoDatabaseQuantum
As objects are deleted, the file space they
occupied is tracked so that it can be reused.
Adjacent blocks of freed file space are
combined into a single larger block. Each block
is an entry in the database's free list. The value
of the kCNeoDatabaseQuantum constant
indicates the minimum size of a free block.
Setting it too low may result in many small
blocks of free space that are too small to be
reused. Setting the value too high may result in
inefficient use of file space.

kNeoPurgeQuantum
Permanent objects that have been read in from
or added to a database but disposed of by the
application are cached by the database object.
This cache enhances the performance of search
operations significantly. However, the cache
also uses up precious memory. When memory
becomes low, the new_handler or

Contents

Contents

GrowZone functions of the runtime
environment can ask the database object to
delete objects in the cache. Rather than free just
enough memory to satisfy the current memory
shortage, the database will free a chunk of
memory based on the value of the constant
kNeoPurgeQuantum. Setting this value too
low may cause time-consuming purge
operations to occur more frequently. Setting it
too high may reduce the effectiveness of the
object cache.

kNeoReferTableSize
The reference table is an array of pointers to
objects that have been referred to by calls to the
autoReferTo method of CNeoPersist. The
number of entries in this table is defined by the
value of the kNeoReferTableSize
constant. You should make sure that your
application sets this value high enough so that
the table does not overflow.

Contents

Contents

kNeoSubclassEntries
This constant determines the maximum number
of entries that a CNeoSubclass object can
contain. The subclass list is traversed when
locating objects of a base class and its
subclasses. Setting this value high enough will
minimize the tree depth of the subclass list.
However, setting it too high may result in
wasted file and memory space. In general, you
should leave it as it is.

Contents

Contents

qNeo2P0FileFormat
With the introduction of streams in version 2.2
of NeoAccess, the average size of a NeoAccess
database is reduced. This is possible because of
optimizations made in the database format of
some internal NeoAccess classes. However this
feature can be disabled, thereby preserving the
old database format used in earlier releases by
defining the compile-time symbol
qNeo2P0FileFormat.

qNeoLaundry
NeoAccess automatically keeps track of which
objects have changed in memory and therefore
need updating on disk. NeoAccess, in fact,
supports two mechanisms which it can use to
determine which objects need updating.
The most straightforward way is to simply mark
objects dirty and then at commit time traverse
the class list and index trees, writing any dirty
objects found to disk.

Contents

Contents

Another scheme uses a construct called a
laundry list to keep track of all dirty objects.
Using a laundry list at commit time can be
much more efficient than not using one.
We recommend that NeoAccess-based
applications be built with qNeoLaundry not
defined, though there may be some situations
where it may be more advantageous to use it.

qNeoVersions
When the qNeoVersions compile-time
symbol is defined, every persistent object has a
four-byte data member which is used as a
version number. Every time an object is marked
dirty, the object’s version number may change
to reflect the fact that the object’s state has
changed. This construct is most useful in shared
environments.
We recommend that applications be built with
qNeoVersions defined.

Contents

Contents

Debugging Tips

Great care has been taken in the design of
NeoAccess to make the programming interface
and documentation as clear as possible.
However our experience working with
developers are they built their first NeoAccess-
based products has shown us which areas
developers experience the most problems in
getting their applications to function properly.
The purpose of this section is to convey some
information that other developers have
experienced in the past.

Rule #1
Make sure that the compile time symbol
qNeoDebug is defined throughout the
development process.

NeoAccess source code has been instrumented
with countless assertions which verify the
integrity of the system. These assertions are
enabled when NeoAccess is built with

Contents

Contents

qNeoDebug defined. If for some reason you
experience a problem when doing development
with this symbol undefined, you will save
yourself countless hours of heartache by
rebuilding with qNeoDebug defined.

A significant downside to having qNeoDebug
defined is that NeoAccess will operate much
slower than when it is not defined. However
most applications will continue to function even
at these slower speeds.

Contents

Contents

Define verify Methods for Your
Persistent Classes

CNeoPersist has a virtual function, called
verify, which is conditionally compiled in
when qNeoDebug is defined. The purpose of
this method is to verify the consistency of the
object. It does this by making assertions, such
as:
NeoAssert(fRefCnt > 0); // Otherwise it wouldn’t be in memory

All subclasses of CNeoPersist should override verify. These overrides should make as many universal assertions
as possible about the state of the object and other objects which it might refer to. In most cases, the implementation
should end by returning the value of NeoInherited::verify(aValue).

The meaning of verify’s only argument varies depending on the type of object it is being called for. For node
classes, the argument is either nil or a pointer to the last entry in the immediately preceding leaf node in the btree.
For fruit objects, the argument is either zero or the length of the database file in bytes. The verify method of
these class should also return the same type of value that they take

KEY
POINT

The verify method is a const function. It should NEVER allocate memory nor bring in
objects from disk. Its purpose is to passively, though rigorously, verify the state of an object in
memory.

Add Debugging Code

While NeoAccess has been instrumented to verify during debugging the state of objects in memory, there is no
reason why developers can’t augmented this process by adding additional debugging code where trouble is
suspected.

The most prevalent form of debugging code found in NeoAccess is NeoAssert. This is a macro which generates
an error if the given assertion fails. Like this:

NeoAssert(microsoft == kNeoFriendly); // Usually fails.

Contents

Contents

NeoAssert is disabled when qNeoDebug is undefined.

Sometimes debugging code can’t be shoehorned into an assertion. These checks should be conditionally compiled
using the following construct.

#ifdef qNeoDebug
if (newRoot)

NeoNodeVerify(newRoot);
#endif

Garbage Data

Probably the most difficult type of problem to debug is when the developer believes that an object has been
committed to disk but contains garbage after it is read back in. Most commonly this is caused by either the object
NOT actually being written to disk or by it being written or read incorrectly.

Contents

Contents

One reason why an object may not be written to disk is that it’s not dirty. Remember, if you change the state of an
object’s permanent data member, then you must call the object’s setDirty method. Don’t just set the object’s
fDirty data member either. That’s not enough. You must call setDirty.

Another common cause of garbage data is errors in the readObject or writeObject methods of your
application-specific classes. These methods should both begin by immediately calling NeoInherited. This
should be followed by a call to an i/o method of the stream for each of the persistent data members of your class.
Don’t try to read or write the data members of the parent classes.

Also, verify that you are using the proper i/o method for the data member’s type. NeoIDs and NeoMarks are
longs, for example.

The order in which data members are read in are the same in which they are written out.

void CWidget::readObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::readObject(aStream, aTag);

fThingamabob = aStream->readLong();
fWidgetCount = aStream->readShort();
}

void CWidget::writeObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::writeObject(aStream, aTag);

aStream->writeLong(fThingamabob);
aStream->writeShort(fWidgetCount);
}

If you find that an object contains garbage data after it is read back in, then you should set breakpoints at the top of
the leaf class’s writeObject and readObject methods. When the debugger stops in the writeObject
method you should inspect and remember the values of the data members of the garbage data members. Also
remember the value of fMark, the location of the object on disk. Single step in the debugger to see that each data
member is written out as the proper type and in the proper order. Then continue execution until the debugger stops
in the readObject method for that same object as it is read back in. Verify that the fMark value is the same as
when it was written out. Finally, step through the readObject method of the class containing the garbage values
to verify that data members are being read back in as the same type and order they were written out.

At a very low level, NeoAccess is a memory manager – the type of space that it manages is file space. Just as
enough memory must be allocated to contain an object in memory, enough file space must be allocated for the
object on disk. Make sure that the getFileLength method is overridden by every concrete persistent class. This
method should return the maximum amount of file space which objects of that class will occupy on disk. If a data
member is variable length, like a string, then getFileLength should assume the maximum length that it can be.
If getFileLength returns a value which is too low to contain the persistent data members of an object then
writing this object to disk may cause other objects to be overwritten and corrupted.

Contents

Contents

KEY
POINT

The getFileLength method is a const function. The prototype for this function should
be EXACTLY as follows:

virtual long getFileLength(void) const;

KEY
POINT

C++ DOES NOT SUPPORT THE CONCEPT OF A VARIABLE LENGTH CLASS. NEITHER DOES
NEOACCESS. If one of your classes contains a variable length data member, like a string, but
you would prefer not to have to reserve file space for the maximum length of that data
member, then embed in your persistent class an ENeoBlob data member to store this variable
length data discontiguously from the object proper. See the discussion of the ENeoBlob class
in the reference section of this manual for more information.

Dangling or Insufficient References

The reference counting mechanism in NeoAccess minimizes application complexity. It allows objects to be easily
shared by different components within an application. But in order to make this mechanism work for them,
developers should pay special attention to insure that object references are properly added and removed.

A particular area of confusion with some developers is understanding when NeoAccess automatically adds
references to objects that it returns. There is an easy way to remember which NeoAccess methods add references to
objects and which don’t.

KEY
POINT

The static FindByX methods all add a reference, as do the swizzler objects; all other methods
do NOT. Another way to remember is that methods called primarily by application developers
(again, the FindByX methods) add a reference before returning an object, while methods used
primarily by database developers (index-related methods and the like) do not add a reference.
The methods of an iterator, such as nextObject and currentObject, do not add a
reference to the objects that they return.

If you find your code referencing an object with an invalid reference count or one that looks like it has been freed,
then there is a chance that you didn’t add an object reference when you should have and as a consequence, the
object was purged.

If you find your application is constantly running out of memory, then perhaps you’ve failed to remove references
to objects. Another possibility is that objects are being marked busy but never reset once they are in a consistent
state again.

Contents

Contents

Block Move Errors

The most common type of error after dangling pointers in any software is caused by incorrectly moving variable
length data blocks from one location in memory to another. If you are experiencing memory corruption problems
you should double check your pointer arithmetic for both the source and destination. Also, verify that you are in fact
moving the correct amount of data. And if you are working with handles, then make sure you’re doing the double
indirection properly.

Function Overrides

C++ virtual functions allow a derived class to override behavior provided by its base classes. This is an incredibly
powerful construct. It is the way in which polymorphic behavior is implemented in the C++ language.

When overriding a virtual function, developers need to make sure that the prototype of the override is exactly the
same as the function it is overriding. In particular, the const’ness of a function and its arguments are used by the
compilers to determine whether a function is an override or an entirely different function. For example, the
following two methods are different functions as far as C++ is concerned:

virtual NeoID getClassID(void) const;
virtual NeoID getClassID(void);

Another issue to consider is whether the implementation of the override should call the inherited method which it
overrode at some point, like this:

void CWidget::readObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::readObject(aStream, aTag);

fWidgetLong = aStream->readLong();
fWidgetCount = aStream->readShort();
}

Metaclasses and Class IDs

Some developer experience problems the first time they add an object of a particular class to a database. This can
sometimes be caused by the fact that a metaclass object for that class was not created when the application started
up. The constructor of your application class should create a metaclass object for each of your application-specific
persistent classes.

Every application-specific persistent class, even application-specific index classes, should be assigned a unique
class ID value between 20 and kNeoMaxClasses. You can change the value of kNeoMaxClasses if need be.
The default value is 48.

Finally, verify that each of your concrete persistent classes override the getClassID method and that it returns
the proper (and unique) class ID value.

The value of gNeoDatabase

NeoAccess supports the ability to have more than one database open at a time. Most database operations are calls to
CNeoDatabase methods. These methods automatically set the gNeoDatabase global variable to refer to this
database for the duration of the

Contents

Contents

method. However some methods which access the database, such as CNeoBlob’s getBlob method, assume that
gNeoDatabase set already set to refer to the database in which the blob is contained. Your application may
operate incorrectly if gNeoDatabase is not properly set. The safest way to insure that gNeoDatabase is always
set properly is to set it in the activation method of the document or window objects.

Heap Fragmentation in Pointer-Based Environments

Macintosh memory management is entering a potentially painful intermediate phase in its transition from a handle-
based environment to one which is pointer-based.

All major application frameworks on the platforms that NeoAccess supports are now pointer-based. While
framework developers are quickly taking advantage of this by using multiple inheritance and stack-resident and
embedded objects, application developers need to pay much closer attention to the issue of heap fragmentation than
was the case in handle-based environments.

The Macintosh Motorola 680X0 runtime architecture is in a particularly difficult phase in this transition. The
difficulty lies in the fact that 680X0 runtime architecture still allocates fixed amounts of memory within which
applications are expected to operate. Heap fragmentation in pointer-based applications can render 20-50% percent
of this memory inaccessible.

NeoAccess includes a mechanism which limits the amount of application memory used by the NeoAccess object
cache. The maximum size (roughly) of the cache can be configured at run time by changing the value of the static
variable CNeoPersist::FCacheSize. The approximate current size of the cache is defined by the static
variable CNeoPersist::FCacheUsed.

Macintosh developers might want to use temporary memory to allocate objects with a short life span. Temporary
memory is memory “borrowed” from the system heap. There are some rather restrictive conventions associated
with the use of temp memory. Consult the Macintosh technical documentation for complete details.

Believe it or not, as the overall mix of applications running at once becomes largely pointer-based, asking users to
turn on virtual memory becomes a viable option. Some of the sluggishness that has come to be associated with
Macintosh virtual memory in the past was due to “thrashing” caused when a heap consisting mostly of handles was
compacted.

In general, application developers should be aware that during this transitionary period memory management is an
issue that will require careful attention.

You Have Source Code!

Most database engines are black-box procedural libraries. When something goes wrong with these systems, the only
thing a developer has to go on is what it says in the documentation. NeoAccess is different. It has an open
architecture which was designed to be extended by developers. While NeoAccess’s programming interface was
designed to minimize visible complexity, if there is something about the system that you don’t understand, though
you’d like to, feel free to explore the internals of the engine itself.

Contents

Contents

Changes in NeoAccess 3.0

NeoLogic recognizes that developing
sophisticated software can take time. Rome was
not built in a day. This being the case, it is our
policy to minimize changes to the NeoAccess
programming interface between minor releases.
This results in a smooth transition path that
allows developers to begin a project using the
latest NeoAccess release but easily upgrade to
future releases as they become available. At the
same time, a delicate balance must be struck to
insure that NeoAccess can continue to evolve in
light a technological advances in the field.
Major NeoAccess updates may include changes
from the previous interface which are necessary
to support advanced features, frameworks and
architectures.

The following is a summary of the changes to
the programming interface introduced in
NeoAccess 3.0. Developers moving from

Contents

Contents

previous NeoAccess releases should carefully
review this list.

Class and Variable Name Changes
Existing customers have commented about the
names of several NeoAccess classes and
variable names. The name of the database class
in previous releases was called CNeoFile
instead of CNeoDatabase. The global variable
which refers to the current database object used
to be called gNeoFile instead of
gNeoDatabase. And the names of some
methods and data members also referred to the
database as a file. For example, NeoAccess
document classes included a newFile method
which is now called newDatabase and the
document’s fFile data member which exists
in some environments is now called
fDatabase.

The class CNeoPartMgr used to be called
CNeoPart.

Contents

Contents

The base class of all index classes used to be
CNeoIndex. This abstract base class has been
eliminated. All index classes now derive
directly from CNeoNode.

The mechanism in which consolidated indices
are supported in NeoAccess 3.0 differs from
previous releases. This eliminated the need for
the CNeoGenericIndex class.

Constants and Compile Time Symbols
The names of some constants and compile time
symbols have been changed from earlier
releases usually because they did not conform
to NeoAccess naming conventions. Changes
include the following:

New Name Old Name
kNeoNotFound

NeoNotFound
kNeoMemFull

NeoMemFull
kNeoNoError

NeoNoErr, noError

The ability to bound the maximum size of the
object cache used to be enabled only if the

Contents

Contents

compile time symbol qNeoBoundedCache
was defined. This capability is always enabled
and the need for the compile time symbol has
been eliminated.

The calling sequence to functions called by
NeoAccess for each object that matches a given
selection criteria used to vary based on whether
the compile time symbol

Contents

Contents

qNeoFastDoUntilObject was defined.
The protocol to thes functions is now constant
and the compile time symbol is not longer
needed.

Calling Sequences to NeoAccess Methods

The compare method of CNeoPersist classes
have been eliminated. As have the
compareEntry methods of CNeoNode
classes. The comparision functions used during
database search operations are now handled by
the compare functions of select objects. See
the discussion of the CNeoSelect class and its
derivatives for more information.

The calling sequence to persistent objects’
verify methods has changed. See the
“Debugging Tips” discussion earlier in this
section for more details.

The GetCurrentDatabase and
SetCurrentDatabase methods of

Contents

Contents

CNeoDatabase used to be called
GetCurrentFile and SetCurrentFile,
respectively.

The addDefaultClasses method of the
database class has been eliminated.

The getAnother and removeObject
methods of CNeoNode are no longer virtual.

The getSelectType method of CNeoSelect
is no longer virtual.

The addToList deleteFromList
methods of CNeoPartMgr take an object pointer
instead of a part list entry pointer.

Most CNeoNode subclasses no longer need to
override the forgetChild method.

The getNextSibling and
getPreviousSibling methods of
CNeoPersist have been eliminated. Most uses of
these methods should be converted to use
interator objects instead.

Contents

Contents

The prototype of persistent objects’ commit
method have changed. Their first argument used
to be a database object instead of a
CNeoContainerStream pointer.

The implementation of CNeoNode derivatives’
KeyManager method has changed
significantly. See the KeyManager discussion
in the CNeoMetaClass reference section for
more information.

Contents

Contents

Tutorial

Introduction

The structure and flow of control of
applications built using NeoAccess is different
in some ways from other applications. One
major difference is that most other applications
read in the entire contents of a file as the
document is created. As soon as the contents are
in memory the file is closed, only to be
reopened when changes are saved, at which
point the entire file is totally rewritten.
NeoAccess-based applications, on the other
hand, leave the file open during the life of the
document. Objects are brought into memory as
needed. Updating a database involves writing
out only those objects that have changed, not
the entire database.

A great deal of effort has gone into making
NeoAccess as easy to use as possible. The
structure of NeoAccess allows complexity to be

Contents

Contents

hidden from developers so they can be as
productive as possible.

The fact that NeoAccess is a cross-platform
database engine also contributes to some
differences in the way that an application is
structured. Every effort has been made to keep
the interface to NeoAccess classes as consistent
as possible across platforms. So even if you are
developing a cross-platform application using
different application frameworks, the
NeoAccess interface will stay pretty much the
same.

This section reviews a sample application,
called Laughs, which comes with the
NeoAccess Developer’s Toolkit. Carefully
reading with section will help you see how
NeoAccess is integrated into and used in an
application. While the sample used in this
discussion may not be available in your
development environment, you should still read
through this material as many of the principles

Contents

Contents

shown are applicable in all environments.

N
OTE

It might be a good idea to bring up the
Laughs project on your computer
screen as you read through this tutorial.
This will give you the opportunity to
peruse the source code in its entirety as
you progress through the tutorial.

Laughs

The NeoAccess Developer’s Toolkit includes
several versions of a sample application called
Laughs. The value of Laughs is its utter
simplicity. Its implementation is uncomplicated
because of its almost total lack of a user
interface; some versions doesn’t

Contents

Contents

even have an event loop. We’ll exploit this
clarity in the discussion that follows to illustrate
the steps developers take in building an
application that uses NeoAccess. While from a
user-interface perspective Laughs is simplistic,
it actually uses some of the more advanced
features of NeoAccess such as secondary
indices, part list and iterators. We’ll examine in
detail the PowerPlant version of Laughs. While
some aspects of this discussion are PowerPlant-
specific, the general principles and structure can
be applied to development in other
environments in which NeoAccess operates.

Laughs is a simple database application. The
first time it runs it creates a database to which it
adds some objects. Subsequent runs of Laughs
finds a pre-existing database from which it
retrieves and displays some of the objects the
database contains. As is the case with most C++
applications, main is a trivial routine. With the
exception of some initialization that PowerPlant

Contents

Contents

requires, main simply creates an application
object, runs it, and finally deletes it before
heading out the door.
int main(void)
{
CLaughsApp * app;

// PowerPlant asks that the following be done before creating an app.
InitializeHeap(1);
InitializeToolbox();
(void)new LGrowZone(20000);

// Create an application object, run it, then delete it.
app = new CLaughsApp();
app->Run();
delete app;

// Time to go home.
return 0;
}

The application class for Laughs is itself fairly plain. It is a subclass of the native NeoAccess application class. It
includes a constructor and an override of the Run method from the native application class.

The constant kLaughsSig is the signature of the application. The Macintosh Finder and file system both use this
in assigning the appropriate icon to the application file and for matching documents with the applications that
created them and are capable of opening them.

const OSType kLaughsSig = 'Neo6';

class CLaughsApp : public CNeoAppNative {
public:

/** Instance Methods **/
CLaughsApp(void);

virtual CNeoDoc * createDocument(void);
virtual void openDocument(FSSpec *aSpec);
};

We’ll look at the application class in more detail later. But first, let’s examine the bizarre personalities one finds in
Laughs.

Contents

Contents

The Persistent Classes

CNeoPersist CNeoPersistNative CJoke

CPie

CJoker

CClown
CPersonCNeoPartMgr

Inheritance Tree for Persistent Laughs Classes

Laughs defines five persistent classes: CNeoPersist, an optional class generically referred to as CNeoPersistNative,
CPerson, CJoker and CClown. These classes have the ancestral relationships depicted in the above diagram.

CNeoPersist

CNeoPersist is an important NeoAccess class. It provides general persistence properties to its subclasses.
CNeoPersist provides a comprehensive set of features. NeoAccess developers should be sure to review the
discussion of this powerful class in the reference section of this document. Just to understand what the basic issues
are, let’s take a cursory look at a few elements of this class. An abbreviated class definition of CNeoPersist might
appear as follows:

class CNeoPersist
{
public:

/** Instance Methods **/
virtual ~CNeoPersist(void) {}

virtual NeoID getClassID(void) const;
static CNeoPersist *New(void);

virtual long getFileLength(void) const;

/** I/O Methods **/
virtual void readObject(CNeoStream *aStream, const NeoTag aTag);
virtual void writeObject(CNeoStream *aStream, const NeoTag aTag);

/** Searching Methods **/
static void * FindEvery(CNeoDatabase *aDatabase,

const NeoID aClassID, const Boolean aDeeply,
NeoTestFunc1 aFunc, void *aParam,
const NeoLockType aLock);

static void * FindByID(CNeoDatabase *aDatabase,
const NeoID aClassID, const NeoID aID,
const Boolean aDeeply, NeoTestFunc1 aFunc,
void *aParam, const NeoLockType aLock);

/** Persistence Methods **/
virtual void setID(NeoID aID);
void setDirty(const NeoDirty aReason = kNeoChanged);

Contents

Contents

/** Concurrency Methods **/

Contents

Contents

void referTo(void);
NeoRefCnt unrefer(void);

void setBusy(void);
void setUnbusy(void);
};

The default destructor is significant because its virtual definition means that the destructors of all subclasses of
CNeoPersist will also be virtual.

Most persistent classes can be referred to by a unique class ID. A class ID is simply a four-byte value much like a
resource type. The pair of methods, getClassID and New, provide a two-way mapping between a class ID and
an object of that class. The instance method getClassID will return the class ID of a particular object. The class
method New is called to create an object of a particular class. Concrete subclasses of CNeoPersist should override
these functions to return the proper class ID and instance, respectively.

NeoAccess needs to determine the amount of file space taken up by objects of a particular class. It figures out an
instance’s file space requirements by calling getFileLength. Concrete subclasses will override this method.
These overrides will simply add the amount of file space needed to preserve the persistent attribute values of that
class to the requirements of the parent class.

NeoAccess utilizes a streams-based object serialization mechanism to preserve and restore the persistent state of
objects. Persistent classes override the readObject and writeObject methods to serialize and retrieve the
persistent values of the class.

The most significant value that NeoAccess provides that simple object persistence mechanisms can not is quick and
efficient access to specific objects in a potentially huge set of objects. The most common interface for accessing
objects is through static functions such as FindEvery and FindByID. Subclasses may provide other static
functions similar to these which provide simple access based on other selection criteria. The CShoe class of a shoe
store management application might, for example, include a static function, FindBySize, which locates shoe
objects by size.

Every persistent object is assigned an object ID. This ID can be unique among all objects of a particular class, or
there can be multiple objects having the same ID. NeoAccess organizes objects in a database primarily by class. The
default sorting order of all objects of a class is in ascending order by object ID. The ID of an object is set, not
surprisingly, by using the setID method. If the ID of an object isn’t set by the application, NeoAccess will assign
the object a unique ID when the object is added to the database.

Applications are often dynamic systems. The state of persistent objects change in response to user actions.
NeoAccess provides a simple mechanism to manage change. Methods that modify persistent attribute values use the
setDirty method to indicate that the object has changed and that that changed object needs to be committed to
disk. NeoAccess keeps track of all dirty objects and commits changes all at once. This means that a NeoAccess
database on disk is always consistent between one commit and the next. Some applications commit changes only
when the user chooses the Save or Save As… menu items. Others implement a much more urgent and frequent
policy.

A significant factor in limiting complexity in an application is the management of concurrency. One way to view
concurrency control sees it as a combination of: 1) shared access, 2) serialization of change and 3) cooperation to
accomplish a task. CNeoPersist includes two sets of methods which facilitate shared access and serialized change.
Getting

Contents

Contents

software components to cooperate in order to finish a task is the charter of dependency mechanisms which are often
provided by application frameworks and sophisticated collaborative computing constructs.

NeoAccess keeps track of which persistent objects the application has pointers to. This is done through the use of an
object reference count in every persistent object. The static methods FindEvery and FindByID, for example,
add a reference to every object they find. Application code uses the referTo and unrefer methods to keep this
reference count consistent. When one component of an application passes a persistent object pointer to another
component, the reference count of the object needs to be incremented accordingly. This is done by calling
referTo. Conversely, references can be deleted by calling the unrefer method. NeoAccess will take care of
deleting the object from memory once the last reference to it has been removed.

Serializing change is necessary in order to avoid putting an object in an inconsistent state due to concurrent
updating by two independent tasks. NeoAccess provides a simple mechanism for avoiding this type of
inconsistency through the use of the setBusy and setUnbusy methods. A task should check the busy state of
the object before trying to modify its state. If the object is not busy, the task should then mark the object busy to
signal that it is in an inconsistent state during the update process. The object should be marked unbusy once the
update is complete.

CNeoPersistNative

The core of NeoAccess was written to be environment-neutral so as to facilitate portability. NeoAccess portability is
implemented in part through the measured use of environment-neutral and environment-specific classes.

Consider the class diagram for persistent classes in Laughs. CNeoPersist is an environment-neutral class. That
means that the interface to CNeoPersist makes no assumptions about what environment it might be compiled or
used in. However, providing a seamless integration of CNeoPersist into some application frameworks might require
adding additional overrides beyond the general support provided in CNeoPersist.

Borland’s ObjectWindows Library (OWL) application framework, for example, asks that all concrete subclasses of
TObject override the isA method. One way to provide this support would be to compare an object’s class ID with
the given argument value. A basic implementation could do this simply by calling the object’s getClassID
method. This would eliminate the need for other persistent classes from also having to override isA.

NeoAccess provides this intimate level of support in numerous environments by optionally defining environment-
specific subclasses of CNeoPersist. The compile-time symbol CNeoPersistNative is defined to refer to this
subclass. All other persistent classes are meant to be subclasses of CNeoPersistNative. In environments which don’t
require an environment-specific subclass, CNeoPersistNative is simply equal to CNeoPersist.

CNeoPartMgr

Objects in memory often refer to other objects. In order to be effective, a database engine needs to provide
mechanisms for preserving these relationships between objects. NeoAccess includes several such mechanisms. A
class called CNeoPartMgr can be used to group objects into a collection called a part list. Application-specific
subclasses inherit this one-to-many grouping capability by deriving from CNeoPartMgr.

Contents

Contents

A part object can refer to zero or more subparts. These subparts may themselves be parts from which further
subsubparts descend. This hierarchical structure, which is sometimes called a containment hierarchy, is incredibly
useful to some applications. Indeed, one of the initial motivations for object database systems was just such a
construct for use in CAD/CAM applications. In order to illustrate part lists and their use in an application, the
personalities in Laughs descend from CNeoPartMgr.

Parts ListParts List

Inode

Part
Mgr

Object Object Object Object Object

Part Mgr with Attached Part List

CPerson

CPerson is a subclass of CNeoPartMgr. CPerson is an abstract class, which means that no objects of this class are
ever actually created in memory. Its purpose is to define those properties and responsibilities that all people have in
common. All people, for example, have a name and are able to pronounce their name on demand. Names can be a
maximum of 49 characters and are stored in the instance variable fName. Taking an optimistic view of the world,
everybody also has a skill, though CPerson leaves the definition of a particular person’s skill to specific subclasses.
The definition of CPerson is as follows:

Contents

Contents

class CPerson : public CNeoPartMgr
{
public:

CPerson(const CNeoString &aName = "\p");
void getName(CNeoString &aName) const {aName = fName;}
void printName(void) const;
void setName(const CNeoString &aName = "\p") {fName = aName;}
virtual void skill(void) const = 0;

/** I/O Methods **/
virtual void readObject(CNeoStream *aStream, const NeoTag aTag);
virtual void writeObject(CNeoStream *aStream, const NeoTag aTag);

protected:
CNeoString fName;
};

const NeoID kPersonID = 25;

const long kPersonFileLength = kNeoPersistFileLength + 50;

Note that kPersonID is the unique class ID for this class. Class ID values between 0 and 19 are reserved by
NeoAccess for use by the core engine. Class IDs for an application should begin at 20. Class IDs can never exceed
the value of kNeoClasses (which is defined in the header file for CNeoMetaClass). Some applications may need
to increase the value of kNeoClasses in order to meet this requirement.

The value of kPersonFileLength is the amount of file space needed to preserve attribute values of this class
and all of its parent classes. Subclasses of CPerson can use this value as a reference in determining the amount of
space they need.

The implementation of the CPerson constructor is simplicity itself. It simply takes the given name of this object.

CPerson::CPerson(char *aName)
{
fName = aName;
}

The method printName prints a line on stdout which states the person’s name.

void CPerson::printName(void) const
{
printf("Name is %s\n", fName);
}

NeoAccess includes a rather powerful and flexible streams mechanism which is similar to the iostreams library
which is a standard part of most C++ development environments. The two i/o methods of CPerson, readObject
and writeObject, are used primarily by NeoAccess to serialize data members. Each class which contains data
members the values of which must be preserved, must override these two methods to read in and write out these
values. The readObject method should also be overridden by classes which

Contents

Contents

contain “transient” data members which must be initialized each time an object is read in from disk.

NeoAccess streams are “typed”. This means that a datum is read in and written out according to its type. You would
use a stream’s readLong method to read a long integer and writeShort to write a short integer to the stream.
There are a number of advantages to this approach, the most significant is that it allows issues such as buffering and
byte-swapping to be encapsulated in the stream’s implementation and away from view of application developers.

void CPerson::readObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::readObject(aStream, aTag);

aStream->readString(fName, sizeof(fName));
}

void CPerson::writeObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::writeObject(aStream, aTag);

aStream->writeString(fName, sizeof(fName));
}

The implementations for readObject and writeObject methods of CPerson begin by giving the parent class
an opportunity to read/write its data members. Once this is done it calls the stream’s readString and
writeString methods to restore/preserve the name of this person.

When you read the more complete discussions of streams elsewhere in this document you’ll see that readObject
and writeObject can also be used to read and write streams other than just file streams. The value of aTag is
sometimes useful in these situations. We’ll ignore it during this tutorial.

CJoker

CJoker and CClown are two concrete subclasses of CPerson. Concrete classes are those for which objects can be
allocated during execution.

A joker is a type of person that is particularly good at telling jokes. (Actually, the jokes they know are not very
funny!) The definition of CJoker is as follows:

Contents

Contents

const NeoID kJokerID = 26;

class CJoker : public CPerson
{
public:

CJoker(char *aName = "");

static CNeoPersist *New(void);
NeoID getClassID(void) const;
long getFileLength(void) const;

void skill(void) const;
void forgetJoke(const CJoke *aJoke);
CJoke * getJoke(const long aIndex) const;
long getJokeCount(void) const {return getListCount();}
void learnJoke(CJoke *aJoke);
};

The constructor passes its arguments on to its parent, CPerson. We saw earlier that CPerson is a type of part class.
The constructor for CJoke specifies the base class of all subparts to be kJokeID (the class ID of joke objects) by
calling setObjClassID.

CJoker::CJoker(char *aName)
: CPerson(aName)
{
setObjClassID(kJokeID);
}

Concrete classes should override the New, getClassID and getFileLength methods to create the proper type
of objects and return the persistence particulars for the class, respectively. The implementations of these methods
are as expected.

CNeoPersist *CJoker::New(void)
{
return new CJoker;
}

NeoID CJoker::getClassID(void) const
{
return kJokerID;
}

long CJoker::getFileLength(void) const
{
return kPersonFileLength;
}

Teaching a joker a new joke is accomplished by using the method learnJoke. (Teaching it a joke that is actually
funny is beyond the scope of this tutorial!)

Contents

Contents

We already know that jokes are kept in the joker's part list. By default, parts are sorted in a list in ascending order by
ID, though other types of part lists can also be used to sort objects in some other order. Adding a joke to a joker's
part list involves simply calling the joker’s addToList method.

Contents

Contents

void CJoker::learnJoke(CJoke *aJoke)
{
// Add the joke to this joker's part list
addToList(aJoke);
}

Getting a joker to forget a joke is similar to the process of teaching it one. The forgetJoke method simply calls
the joker’s deleteFromList method. Note though, that removing a joke from a joker's part list does not remove
it from the database entirely. Jokes can be share (read: stolen) between jokers. Just because one joker decides to
forget a joke does not mean that all other jokers must as well.

void CJoker::forgetJoke(const CJoke *aJoke)
{
// Remove the joke from this joker's part list
deleteFromList(aJoke);

// Note: This joke is still in the database!
// To remove the joke completely, we would say...
// if (fMark)
// gNeoDatabase->removeObject(joke);
}

The skill method for jokers tells a joke. The joke it tells is chosen at random from the vast repertoire, which is
kept track of by the part list of the joker object. The method begins by determining how many jokes are in the
joker’s part list. If you look at the implementation of getJokeCount , it simply calls CNeoPart’s
getListCount method, which returns the number of entries in the part list. If it has any jokes to tell it selects one
by passing a random number between one and the number of jokes it knows to getJoke, which locates the joke
object in the database and returns a pointer to it. After the joke is delivered we remove our reference to it.

void CJoker::skill(void) const
{
long count = getJokeCount(); // How many jokes do I know?
CJoke * joke;

if (count) {
// Pick a joke at random.
joke = getJoke((rand()&0x7FFFFFFF) % count);
NeoAssert(joke);

printf("Tells jokes : ");
joke->printJoke();

// Don't forget to remove our reference to the joke.
joke->unrefer();
joke = nil;

}
else

printf("Tells Jokes, but has no jokes to tell.\n");
}

Contents

Contents

Now let’s take a look at what’s involved in retrieving a joke from a joker’s part list. The joker’s getJoke method
uses another powerful construct found in NeoAccess called an iterator. NeoAccess actually includes three iterator
classes. The base class, CNeoIterator, provides the base capabilities for iterating over NeoAccess btrees in memory.
The CNeoIndexIterator class is used to traverse a NeoAccess index. (The database's getIterator method can be
used to create and initialize an index iterator.) But the implementation of getJoke uses a CNeoPartListIterator to
iterate over the joke part list. We use the base part class’s getIterator method to obtain such an iterator.

CNeoIterator
CNeoPartListIterator

CNeoIndexIterator

NeoAccess Iterator Classes

A newly initialized iterator is positioned by its constructor to just before the first object in the list (or immediately
after the last object if the direction of the iterator is backwards). The leap method takes a signed value which
indicates how many objects to move forward or backward in the list. After leaping to the proper position in the list,
getJoke uses the iterator’s currentObject method to obtain a pointer the object which the iterator now refers
to. Be sure to note that currentObject does not add a reference to the object, so one needs to be added before a
pointer to the object can be returned to the caller of getJoke.

CJoke *CJoker::getJoke(const long aIndex) const
{
CJoke * joke;
CNeoPartListIterator *iterator = (CNeoIDListIterator *)getIterator();

// Randomly pick a joke
iterator->leap(aIndex);
joke = (CJoke *)iterator->currentObject();

// Iterators don't add references to objects. So we add one ourselves.
if (joke)

joke->referTo();

// Don't need this any more.
delete iterator;

return joke;
}

CJoke

Perhaps we've put the cart before the horse. Having looked at the powers of a joker, let's now go back and look at
what a joke really is. Its definition is as follows:

const NeoID kJokeID = 28;
const long kMaxJokeLength = 80;

Contents

Contents

class CJoke : public CNeoPersistNative
{
public:

CJoke(const char *aText = "");

static CNeoPersist *New(void);
virtual NeoID getClassID(void) const;
virtual long getFileLength(void) const;

/** I/O Methods **/
virtual void readObject(CNeoStream *aStream, const NeoTag aTag);
virtual void writeObject(CNeoStream *aStream, const NeoTag aTag);

void getJoke(char *aText) const
{strncpy(aText, fJoke, kMaxJokeLength -1);}

void printJoke(void) const;
void setJoke(const char *aText)

{strncpy(fJoke, aText, kMaxJokeLength -1);}

protected:
char fJoke[kMaxJokeLength];
};

CJoke is a concrete persistent class. As such, it is a derivative of CNeoPersistNative, and overrides the New,
getClassID and getFileLength methods to create the proper type of objects and return the persistence
particulars for the class, respectively. The implementations of these methods are once again no surprise.

CNeoPersist *CJoke::New(void)
{
return new CJoke();
}

NeoID CJoke::getClassID(void) const
{
return kJokeID;
}

long CJoke::getFileLength(void) const
{
return kPersistFileLength;
}

As we saw in the implementation of CPerson, the readObject and writeObject methods of CJoke begin by
calling NeoInherited, then read/write its single data member, the text of the joke.

void CJoke::readObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::readObject(aStream, aTag);

aStream->readString(fJoke, sizeof(fJoke));
}

Contents

Contents

Contents

Contents

void CJoke::writeObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::writeObject(aStream, aTag);

aStream->writeString(fJoke, sizeof(fJoke));
}

For completeness, we see that the getJoke, printJoke and setJoke methods are everything you would
expect them to be.

void CJoke::getJoke(char *aText) const
{
strncpy(aText, fJoke, kMaxJokeLength -1);
}

void CJoke::printJoke(void) const
{
char joke[64];

strcpy(joke, fJoke);
printf("%s\n", joke);
}

void CJoke::setJoke(const char *aText)
{
strncpy(fJoke, aText, kMaxJokeLength -1);
}

CClown

Clowns are every bit as entertaining as jokers. Their unique skill is throwing pies. The class is defined as follows:

const NeoID kClownID = 27;

class CClown : public CPerson
{
public:

CClown(char *aName = "", NeoID aID = 0);

static CNeoPersist *
New(void);

NeoID getClassID(void) const;
long getFileLength(void) const;

void skill(void) const;
void setPieType(char *aPieType) {strcpy(aPieType, fPietype);}

protected:
char fPietype[80];
};

const long kClownFileLength = kPersonFileLength + 80;

Contents

Contents

Contents

Contents

The constructor passes its arguments on to its parent, CPerson. It also designates Custard to be the default type of
pie that clowns throw.

CClown::CClown(char *aName, NeoID aID)
: CPerson(aName, aID)
{
setPieType("Custard");
}

Once again, the New, getClassID and getFileLength methods create the proper type of objects and return
the persistence particulars for the class, respectively. The implementations of these methods, shown below, are no
surprise.

CNeoPersist *CClown::New(void)
{
return new CClown;
}

NeoID CClown::getClassID(void) const
{
return kClownID;
}

long CClown::getFileLength(void) const
{
return kClownFileLength;
}

The skill method causes a pie to be thrown.

void CClown::skill(void) const
{
printf("Throws %s pies\n", fPietype);
}

And they said that you couldn’t teach an old clown new tricks. Use the setPieType to change the type of pie a
clown throws.

CPie

The definition and implementation of CPie is every bit as straightforward as one would expect of a concrete
persistent class. The class is defined as follows:

Contents

Contents

class CPie : public CNeoPersistNative
{
public:

CPie(const char *aFilling = "Custard");

static CNeoPersist *New(void);
virtual NeoID getClassID(void) const;
virtual long getFileLength(void) const;

/** I/O Methods **/
virtual void readObject(CNeoStream *aStream, const NeoTag aTag);
virtual void writeObject(CNeoStream *aStream, const NeoTag aTag);

void getFilling(char *aText) const
{strncpy(aText, fFilling, kMaxFillingName -1);}

void setFilling(const char *aText)
{strncpy(fFilling, aText, kMaxFillingName -1);}

protected:
char fFilling[kMaxFillingName];
};

CPie is a derivative of CNeoPersistNative, and overrides the New, getClassID and getFileLength methods
to create the proper type of objects and return the persistence particulars for the class, respectively. The
implementations of these methods are as follows.

CNeoPersist *CPie::New(void)
{
return new CPie();
}

NeoID CPie::getClassID(void) const
{
return kPieID;
}

long CPie::getFileLength(void) const
{
return kPersistFileLength;
}

The readObject and writeObject methods of CPie are as one would expect; call NeoInherited then
read/write its data member.

void CPie::readObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::readObject(aStream, aTag);

aStream->readString(fPieType, sizeof(fPieType));
}

Contents

Contents

void CPie::writeObject(CNeoStream *aStream, const NeoTag aTag)
{
NeoInherited::writeObject(aStream, aTag);

aStream->writeString(fPieType, sizeof(fPieType));
}

The Laughs Application Class

Now that the introductions are complete, let’s look at the implementation of CLaughsApp.

The Constructor

CLaughsApp::CLaughsApp(void)
{
CNeoMetaClass * meta;

// Note our file type so that we can be particular in get file dialog.
FFileType = kLaughsFileType;

// Let the games begin.
printf("Start Laughing...\n\n");

// Add the application-specific metaclasses to the metaclass table.
meta = new CNeoMetaClass(kNameIndexID, kNeoNullClassID, "\pCNameIndex",

CNameIndex::New, CNameIndex::KeyManager);

meta = new CNeoMetaClass(kNeoIDListID, kNeoNullClassID, "\pCNeoIDList",
CNeoIDList::New);

meta = new CNeoMetaClass(kPersonID, kNeoPersistID, "\pCPerson",
CPerson::New);

meta->setKey(kNeoSecondaryIndex, kNameIndexID);

meta = new CNeoMetaClass(kJokerID, kPersonID, "\pCJoker", CJoker::New);
meta->setKey(kNeoSecondaryIndex, kNameIndexID, kPersonID);

meta = new CNeoMetaClass(kJokeID, kNeoPersistID, "\pCJoke",
CJoke::New);

meta = new CNeoMetaClass(kClownID, kPersonID, "\pCClown", CClown::New);
meta->setKey(kNeoSecondaryIndex, kNameIndexID, kPersonID);

meta = new CNeoMetaClass(kPieID, kNeoPersistID, "\pCPie", CPie::New);

// Inject a little more randomness into what is about to occur.
srand((int)time(nil));
}

The constructor of the Laughs application begins by announcing that the fun is about to begin. This is followed by
the allocation of three metaclass objects.

Contents

Contents

A metaclass is a class that describes other classes. Each metaclass being allocated in Laughs describes important
properties of an application-specific persistent class. The first argument to the metaclass constructor is the class ID,
followed by the class ID of its parent’s class. The name of the class is also given, as is a pointer to the New method
for

Contents

Contents

the class. It’s very important that a metaclass object be allocated for every persistent class in an application. This
would seem to be a reasonable request given the straightforward nature of their construction. There’s no need to
keep pointers to the newly created metaclasses; they are automatically inserted in a metaclass table by their
constructor.

Note that a secondary index key is designated for the joker and clown classes. This is done by calling their
metaclass's setkey method. The first argument to setKey indicates that this is a secondary index. The second
argument is the class ID of the index class, which is kNameIndexID in both cases.

If a third argument is given to setKey, it must be the class ID of some base class. For example, the third argument
of the setKey call on the CJoker and CClown classes is kPersonID. This is an example of a consolidated index.
A consolidated index is one which refers to all objects having a common base class. All concrete person objects, be
they jokers or clowns, are all sorted in a single index in ascending order by name. See the discussion of
“Consolidated Indices” in the Preliminaries section and the CNeoMetaClass’s “Adding to the Metaclass Table”
discussion for more information on consolidated indices.

The end result of this metaclass configuration is that every joker and clown object added in the database will be
indexed primarily by ID (which is the default), while the secondary consolidated index will sort all CPerson
subclasses in the same index by name.

The last line of the constructor simply increases the randomness of the results we get when retrieving jokes and pies
from the database.

Creating a Document

Laughs’ createDocument method is called to create a new document. Most often this is because the application
is just starting up or because the user has selected the New… menu item. Your application should include a
createDocument method very much like this one.

The method begins by setting up a NEOTRY block to capture and recover from any failures which might occur as
the document is allocated or initialized. The NEOCATCH handler for this NEOTRY block cleans up before
propagating the failure to the next handler on the failure stack. The default handler usually displays a dialog box
indicating that the command could not be completed because of an error.

The arguments passed to the document constructor indicate whether the document needs to support printing,
whether the database being opened is a new database and whether it is a remote database. Laughs is simple enough
that it doesn’t support printing. For now we can assume that it is a new database being opened (as opposed to a pre-
existing one). The last argument is reserved for future use and should be FALSE.

Note that the NeoAccess database object is allocated by the constructor of CNeoDocNative, not by any application-
specific code.

Another interesting thing to note is that the construction of a database object is not the same as creating an operating
system file. In order to clarify this distinction, let’s consider for a moment the standard user experience when
creating a new word processing document. The user begins by launching the application, opening a new document
window and starting to type. It’s only after enough of the document has been typed that the user worries about
losing it to a system crash uses the Save As… menu item. It’s at this point that a file on disk is created and the
persistent objects that have been added to the database are committed. NeoAccess supports this user experience by
allowing developers to add, remove and search for objects in a database object which is not yet open or even
specified.

Contents

Contents

The only thing left to is to call the document’s newDatabase method to initialize the newly created document and
database.

CNeoDoc *CLaughsApp::createDocument(void)
{
CLaughsDoc * document = nil;

NEOTRY {
/*
 * Create your document.
 *
 * The arguments indicate whether the document is...
 * printable (FALSE),
 * a new database (TRUE),
 * remote (FALSE).
 */
document = new CLaughsDoc(FALSE, TRUE, FALSE);

/*
 * Call the document’s newDatabase method.
 */
document->newDatabase();

}
NEOCATCH {

/*
 * This exception handler gets executed if a failure occurred
 * anywhere within the scope of the above NEOTRY block. Since
 * this indicates that a new doc could not be created, we
 * check if an object had been allocated and if it has, delete
 * it. The exception will propagate up to the next exception
 * handler, which displays an error alert.
 */
if (document) {

delete document;
document = nil;

}
}
NEOENDTRY;

return document;
}

The Laughs Document Class

It is the charter of the document class of an application to consolidate the various information sources that the
document clients need to operate properly. In practice, this is a rather broad charter. Most documents have only a
single database to work with. But the document classes of many new applications also manage Publish & Subscribe
editions as well. Microsoft’s OLE 2 (Object Linking and Embedding) and Apple’s OpenDoc will push the evolution
of document classes further still.

Some frameworks, PowerPlant included, don’t include a document class. Regardless of the support for documents

Contents

Contents

provided by the application framework, NeoAccess includes a document class to manage most of the issues
associated with opening, closing and otherwise manipulating a NeoAccess database.

Contents

Contents

It’s interesting to note that applications built using NeoAccess rely much more heavily on the services of the
database class, CNeoDatabase, than do applications which simply “inhale” the entire contents of a file as it is
opened and “exhale” it back out in response to a Save command. NeoAccess applications bring objects into
memory on demand and purge them when memory reserves are low. A NeoAccess database is kept open for as long
as objects from that database are being accessed. And updating a NeoAccess database doesn’t necessarily involve
rewriting the entire database; only those objects that have changed in memory need to be written.

const OSType kLaughsFileType = 'Ne6d';

class CLaughsDoc : public CNeoDocRoot {
public:

CLaughsDoc(const Boolean aPrintable,
 const Boolean aNewFile,
 const Boolean aRemote);

virtual void buildWindow(void);
virtual void newDatabase(void);

void createObjects(void);
void printOut(void);
};

The constant kLaughsFileType is used, in combination with the application’s signature, by the Macintosh
Finder in choosing the appropriate icon for the document file. These values are ignored in less friendly
environments.

The constructor and buildWindow methods of the Laughs document class are trivial. The constructor simply
calls the parent’s constructor which initializes the document and database object. Most application will include a
more substantial buildWindow method which creates and initializes a window object to present the contents of
the document. Laughs is such a simple application that it doesn’t explicitly create a window. Instead, a text
windows is created automatically the first time printf is called.

The real meat of the Laughs document class is implemented in its newDatabase, createObjects and
printOut methods. Let’s take a look at those now.

Creating a Document

Earlier in this tutorial we saw that the document’s newDatabase method is called by the application’s
createDocument method immediately after creating the document. This method begins by setting up a NEOTRY
block to capture any failures that might occur. (This is included in the sample simply to illustrate the importance of
setting up NEOTRY blocks.)

Then it specifies a default location for the database on disk. The way in which a database is specified is often
environment-specific. Each framework and operating system provides different interfaces for specifying the file
system location. The PowerPlant database class, CNeoDatabasePP, includes a method, Specify, which takes a
name and a Macintosh directory ID. The name of the Laughs database file is always “Laughter”. A volume
reference number and directory ID of zero refers to the directory containing the Laughs application.

Contents

Contents

If a file exists in the specified location, as determined by the existsOnDisk method, then the database's
permissions are set to read only, otherwise they are set to read/write and a file of the proper type is created on disk.

The parent class’s newDatabase method is given an opportunity to do its thing before the file is actually opened.
Having opened the file with the proper permissions, the createObjects method is called to add objects to the
database. Otherwise, printOut is called to print its contents.

void CLaughsDoc::newDatabase(void)
{
NeoPerms permissions;
FSSpec fileSpec;

// Most applications don't hardcode the location of its file on
// disk. Laughs is so simple that it does.
fileSpec.vRefNum = 0;
fileSpec.parID = 0;
NeoStringCopy("\pLaughter", fileSpec.name);
fFile->Specify(&fileSpec);

fNewDatabase = !fFile->existsOnDisk();
if (fNewDatabase) {

fFile->create();
permissions = NeoReadWritePerm;

}
else

permissions = NeoReadPerm;

NeoInherited::newDatabase();

fFile->open(permissions); // Open the database.

if (fNewDatabase)
createObjects();

else
printOut();

// Commit the changes that we made to the database.
DoSave();

printf("\n\nDone!\n");
}

NeoAccess uses global variables sparingly. However the global gNeoDatabase must always be set to refer to
“the current database”. The document sets this value in its constructor. An application which has only one database
open at a time can always be assured of this variable being set properly. (While Laughs is, in fact, this simple, most
real applications are not.) In frameworks which use document classes the NeoAccess document class often set this
value when a document is activated. Developers should make sure that it is set properly in their applications.

Contents

Contents

Adding Objects to the Database

OK, let’s get some work done. The first time Laughs is run it ends up creating a new database named “Laughter” in
the same folder as the application. It then calls createObjects to add two CJoker objects and a CClown object
to the database. Each joke it taught a joke or two and each clown is given an arsenal of pies to dole out.

/***
* createObjects
*
* Add three objects to the database, two jokers and a clown.
*
***/
void CLaughsDoc::createObjects(void)
{
CJoke * joke1;
CJoke * joke2;
CPie * pie;
CJoker * joker;
CClown * clown;
CNeoDatabase * database = getDatabase();
CNeoString string;
char name[64];

// Tell them what we're about to do.
database->getName(string);
NeoBlockMove(&string[1], name, string[0]);
name[string[0]] = 0;
printf("Storing 2 Jokers & a Clown in \"%s\".\n", name);

// Know any good jokes? How 'bout this one...
joke1 = new CJoke("The world’s shortest poem: Flees. Adam had'em.");

// Add it to the database.
// Note: An object ID is assigned automatically by addObject.
database->addObject(joke1);

// Is this a joke???
joke2 = new CJoke("My dogs got no nose?");

// Add it to the database.
database->addObject(joke2);

// Create a joker object.
joker = new CJoker("\pJack");

// Teach it a couple of jokes.
joker->learnJoke(joke1);
joker->learnJoke(joke2);

// Add it to the database.
database->addObject(joker);

Contents

Contents

// Don't need this guy any more. Remove our reference to it.
joker->unrefer();
joker = nil;

// Create a clown.

Contents

Contents

clown = new CClown("\pFred");

// Add it to the database.
database->addObject(clown);

// Build up its arsenal.
pie = clown->bakePie("Jello");
pie->unrefer();
pie = clown->bakePie("Marshmellow");
pie->unrefer();
pie = clown->bakePie("Custard");
pie->unrefer();
pie = clown->bakePie("Cool Whip®");
pie->unrefer();
pie = clown->bakePie("Yogurt");
pie->unrefer();
pie = nil;

// Remember to remove our reference when we're done.
clown->unrefer();
clown = nil;

// Create another joker.
joker = new CJoker("\pHarry");

// Add it to the database.
database->addObject(joker);

// This guy steals jokes.
joker->learnJoke(joke2);

// Remove our reference to the joker and the jokes.
joker->unrefer();
joker = nil;
joke1->unrefer();
joke1 = nil;
joke2->unrefer();
joke2 = nil;
}

NeoAccess persistent objects are created just as all C++ objects are, by using the new operator. Each person object
is initialized with a name. Having done that, the object is added to the database using the database's addObject
method. Note that adding joker and clown objects, which have multiple indices and part lists, is just as easy as
adding the more basic joke and pie objects. What could be easier?

Once an object is added to the database, the pointer to it is no longer needed. In order to keep the reference count of
the object consistent, createObjects uses the unrefer method. And then, just for completeness, it sets the
pointer to nil.

NeoAccess makes a distinction between changing the state of a database in memory and updating the database on
disk to reflect those changes. The addObject method marks each object dirty so that its state is saved to disk
when the changes are committed. These changes are committed by the caller of createObjects by using the

Contents

Contents

database's commit method.

Contents

Contents

Notice how simple an application built using NeoAccess can be. There are absolutely no database administration
tasks to worry about. Application code doesn’t need to keep track of how objects are indexed, which ones are dirty,
or where in the database an object is actually located. NeoAccess takes care of all the details so that developers can
focus on the fun stuff.

Locating Objects in a Database

When Laughs finds a pre-existing database it opens the database and calls the application’s printOut method.
This method searches the database locating each object by using an index iterator to traverse the list of people in the
database by name.

/***
* printOut
*
* Find in turn each of the three objects in the database, two jokers
* and a clown.
*
***/
void CLaughsDoc::printOut(void)
{
CPerson * person;
CNeoNameSelect key("\p");
CNeoDatabase * database = getDatabase();
CNeoIndexIterator iterator(database, kPersonID, &key, TRUE, TRUE);
CNeoString string;
char name[64];

// Tell them what we're about to do.
database->getName(string);
NeoBlockMove(&string[1], name, string[0]);
name[string[0]] = 0;
printf("Restoring %ld Jokers & %ld Clowns from \"%s\".\n",

database->getObjectCount(kJokerID, FALSE),
database->getObjectCount(kClownID, FALSE), name);

person = (CPerson *)iterator.currentObject();
while(person) {

person->printName();
person->skill();
printf("\n");
person = (CPerson *)iterator.nextObject();

}
}

The clarity of Laughs has allowed us study the steps a developer must take in order to build a very simple
application that uses NeoAccess. This study has been unencumbered by user interface issues and many of the other
logistics which often complicate applications. But in some ways Laughs is too simple. It doesn’t use the normal
constructs for opening a pre-existing database. It doesn’t use iterators, multiple or application-specific indices,
blobs, part lists or any of the many other features which makes NeoAccess so useful to developers.

Contents

Contents

Photographer’s Assistant

The clarity of Laughs has allowed us study the
steps a developer must take in order to build a
very simple application that uses NeoAccess.
This study has been unencumbered by user
interface issues and many of the other logistics
which often complicate applications. But in
some ways Laughs is too simple. It doesn’t use
the normal constructs for opening a pre-existing
database, for example.

Interested readers should also read the last
section of this document, titled Photographer’s
Assistant. It discusses the NeoDemo sample
application which is included in the TCL-
specific portion of the NeoAccess Developer’s
Toolkit.

Contents

Contents

CNeoApp

Heritage
CNeoAppBase CNeoApp CNeoAppNative

The Heritage and Ancestry of CNeoApp

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks. As such, there are several
NeoAccess classes which must interface with
the application framework. CNeoApp is one of
these classes. It is an environment-neutral class.
The immediate base class of CNeoApp varies
depending on the application framework within
which NeoAccess is being built. The
environment-specific header file for the
framework will define the typedef
CNeoAppbase to be a synonym for this base
class.

Some application frameworks include an
application class from which the project-
specific class inherits. Some methods of this

Contents

Contents

base class may need to be overridden in order to
provide more natural and complete support for
CNeoApp subclasses. These overrides should
be implemented as an environment-specific
subclass of CNeoApp. The environment-
specific header file for the framework will
define the typedef CNeoAppNative to be a
synonym for this subclass.

Introduction

NeoAccess occasionally needs to interface with
environment-specific areas of the application
framework. The architecture of most standard
application frameworks usually delegates
primary responsibility for process state
manipulation, the scheduling and dispatching of
idle tasks and the handling of low memory
situations to the application object. The abstract
base class CNeoApp is designed to be a
subclass of the application framework’s
application class. CNeoApp includes a number

Contents

Contents

of pure virtual functions that are further
overridden by environment-specific subclasses
of CNeoApp. These virtual functions provide an
environment-neutral interface with which to
access these functional areas.

Using CNeoApp

There are situations that arise in NeoAccess
where some tasks need to be deferred until
some later point in time. These deferred tasks
are called chores. CNeoApp provides support
for tracking chores and seeing that they are
done during idle time. Your application

Contents

Contents

can make use of this facility by subclassing the
base class CNeoChore. Chores are scheduled,
dispatched and dequeued by calling
addChore, doChores and removeChore,
respectively. (Environment-specific subclasses
of CNeoApp call doChores at idle time.) The
methods getAppName and getAppVersion
return the application’s name and version
strings, respectively. The application’s
purgeCache method should be called in low
memory situations to free memory used by the
NeoAccess object cache.

Contents

Contents

CNeoBlob

Heritage
CNeoBlobCNeoPersist

The Heritage and Ancestry of CNeoBlob

Introduction

Developers strive to make everything in today’s
applications an object. But the fact remains that
not everything can be. In recognition of this
fact, NeoAccess provides an class called
ENeoBlob. Blobs are persistent objects that are
used to store and retrieve non-object entities.
ENeoBlob can be embedded as a data member
in subclasses of CNeoPersist to provide blob
management capabilities.

CNeoBlob is a “convenience class” which
delegates responsibility for managing blobs to a
data member of type ENeoBlob. This class is
included in the standard NeoAccess release for
backward compatibility reasons as well as

Contents

Contents

because is an excellent example of how a
CNeoPersist subclass might add blob
management capabilities by using ENeoBlob.

Using CNeoBlob

CNeoBlob can be used to “objectify” free-form
variable-length data. Applications can use the
capabilities of CNeoBlob by defining
subclasses of CNeoBlob.

A significant feature of the CNeoBlob class is
that the blob object and blob data are separate
on disk and in memory. So the blob object can
be brought into memory without having to have
the potentially much larger blob data portion in
memory. The object and data portions can be
allocated in non-contiguous locations in the
database as well.

There may be situations when the free-form
variable-length component of a blob is dirty or
in an inconsistent state though the “object” part
is not. This class includes mechanisms for

Contents

Contents

separately marking the object’s and data’s busy
and dirty states, as well as the ability to load
and purge the data portion separate from the
object.

Contents

Contents

ENeoBlob

Heritage
ENeoBlob

The Heritage and Ancestry of ENeoBlob

Introduction

Developers strive to make everything in today’s
applications an object. But the fact remains that
not everything can be. In recognition of this
fact, NeoAccess provides an class called
ENeoBlob. Blobs are persistent objects that are
used to store and retrieve non-object entities.
ENeoBlob can be embedded as a data member
in subclasses of CNeoPersist to provide blob
management capabilities.

Interested developers might want to refer to the
CNeoBlob documentation and source for
insights as to how ENeoBlob might be
embedded into a persistent object.

Contents

Contents

Using ENeoBlob

ENeoBlob can be used to “objectify” free-form
variable-length data. Applications can use the
capabilities of ENeoBlob by adding ENeoBlob
data members to persistent classes.

A significant feature of the ENeoBlob class is
that the blob object and blob data are separate
on disk and in memory. So the blob object can
be brought into memory without having to have
the potentially much larger blob data portion in
memory. The object and data portions can also
be allocated in non-contiguous locations in the
database as well.

There may be situations when the free-form
variable-length component of a blob is dirty or
in an inconsistent state though the “object” part
is not. This class includes mechanisms for
separately marking the object’s and data’s busy
and dirty states, as well as the ability to load
and purge the data portion separate from the

Contents

Contents

object.

Subclassing ENeoBlob

It may be useful subclass ENeoBlob to create
domain-specific blob classes. By far the mostly
sited use of blobs is for managing variable
length strings. A EString class could be used to
manage all persistent strings in an application.
Another useful ENeoBlob class would be an
image class. Some developers have even
created their own persistent variable length
array class by subclasses ENeoBlob.

Contents

Contents

CNeoDatabase

Heritage
CNeoDatabaseBase CNeoDatabase CNeoDatabaseNative

The Heritage and Ancestry of CNeoDatabase

CNeoDatabase is an environment-neutral class.
The immediate base class of CNeoDatabase
varies depending on the application framework
within which NeoAccess is being built. The
environment-specific header file for the
framework will define the typedef
CNeoDatabaseBase to be a synonym for
this base class.

Some application frameworks include abstract
base classes from which most application-
specific classes inherit properties. Some
methods of this base class may need to be
overridden in order to provide more natural and
complete support for CNeoDatabase subclasses.
These overrides should be implemented in an
environment-specific subclass of

Contents

Contents

CNeoDatabase. The environment-specific
header file for the framework will define the
typedef CNeoDatabaseNative to be a
synonym for this subclass.

Introduction

The Structure of a NeoAccess Database
CNeoDatabase usually stores objects in a file’s
data fork or other type of storage container (like
an OpenDoc or OLE container). From the
application developer’s perspective, a typical
NeoAccess database contains only application-
specific objects. In reality, a database contains
many other objects as well. These other objects
are used internally by NeoAccess to support the
rich set of features that the system provides to
developers. The database developer should be
aware of the containment hierarchy used by
NeoAccess to organize objects in a database.

Contents

Contents

File

Free Space Classes

Indices Subclasses

Application
Objects

Part ListsBlobs

The Containment Hierarchy of a NeoAccess
Database

The Database Header
NeoAccess reserves a certain amount of space
at the beginning of a database for a header. The
header is read into memory by NeoAccess when
the database is opened and a default header is
initialized when a new database is created.

The Free List
Deep in the bowels of the system, NeoAccess
provides a mechanism for managing the

Contents

Contents

efficient use of file space. This mechanism
works in much the same way that an operating
system’s low-level memory manager manages
main memory.

The simplest way to allocate file space is to
extend the database's length. But as objects are
added and later removed from the database,
opportunities to shrink the database, move
objects or reallocate freed space begin to
present themselves. NeoAccess takes advantage
of this potential by maintaining a list of free
space in a database. Not surprisingly, this is
called the free list.

As an application or database developer, there
will never be a need to know any details as to
how NeoAccess manages file space and the free
list. Though NeoAccess automatically takes
care of allocating and freeing space for objects
as they are added and removed from a database,
the database object includes methods that can
be used to allocate and free file space directly,

Contents

Contents

should the need arise.

The Class List
Objects in a NeoAccess database are typically
organized primarily by leaf class (the most
specific class). NeoAccess uses a class list to
keep track of the various classes of objects that
have been added to the database. An entry is
added to this list the first time an object of a
particular class is added to the database. For
more information on adding a class, see the
topic titled “Making an Object Permanent” later
in the CNeoDatabase discussion. The
information contained in a class helps
NeoAccess determine:

• the class’s 4-byte identity,

Contents

Contents

• how many objects of that class are
contained in the database,
• its ancestry and heritage (its super and
sub classes),
• whether or not all objects of a class are
temporary, and
• the order in which objects of the class
are sorted and accessed.

As is the case with the free list, there is rarely
any reason for developers to be aware of how
NeoAccess manages classes in a database. The
database object contains methods that
developers can use to access and manipulate
their state.

Subclasses
NeoAccess knows the inheritance hierarchy of
persistent classes. For example, a drawing
program based on NeoAccess knows that
CSquare is a subclass of CRectangle and that
CRectangle and CCircle are subclasses of

Contents

Contents

CShape. NeoAccess uses this information to
allow the developer to locate objects based on
any base class. So the drawing program can
locate all CShape objects that are located in a
document’s update region with a single call to
NeoAccess without regard for whether the
shape is a circle or a square.

Each class in a database can have a list of
subclasses. A class’s subclass list refers to other
classes that are based on the parent class.
Database developers needn’t be concerned with
the details of how subclasses are maintained
and manipulated.

Indices
While application-specific objects are organized
primarily by class, they may be sorted within a
class in any number of different ways. Database
developers define how a class of objects is to be
indexed. Every persistent class has a primary
index which defines the primary sorting order

Contents

Contents

of objects of that leaf class in the database. The
default primary index organizes objects by
identity. Each class can also have zero or more
secondary indices. You may want to refer to the
“Index Classes” discussion in the Preliminaries
section for more information.
For example, a genealogy application might
organize individuals primarily by name, and
secondarily by the father’s name and by the
mother’s name. This application would be able
to quickly locate all individuals based on name
or parentage. If individuals were only indexed
by name, then answering the question, “Who
are the children of Nancy Cotter?” would
involve reading in every person object in the
database. Indices are what make database
systems faster and more flexible than other
storage mechanisms.

But application developers can use the same
API to locate objects without regard for whether
the search can be performed quickly using an

Contents

Contents

index or whether it involves a linear search of
the objects in the class. The “only” tradeoff is
performance.

Application Objects

The purpose of using NeoAccess in object-
oriented applications is to facilitate the storage
and retrieval of application-specific objects,
thereby improving the overall architecture and
reducing the complexity of applications.

All application-specific persistent classes have a
base class of CNeoPersist. Classes that refer to
free-form variable-length data may have a data
member of type ENeoBlob or may themselves
be a subclass of CNeoBlob. Objects that
maintain references to collections of other
persistent objects should be based on
CNeoPartMgr. Btree classes, which include
both primary and secondary indices as well as
part lists, should be based on CNeoNode. Part
lists should either have an architecture similar

Contents

Contents

to CNeoIDList. See the sections of this

Contents

Contents

manual that discuss these particular base classes
for detailed information on how to create these
application-specific subclasses.

Part Lists

A CAD application may allow the user to deal
with a collection of parts as a single component.
In an even larger context, this component may
itself be a member of a sub-assembly, and so
on.

A drawing application may include the ability to
group shapes into a single construct that the
user can manipulate as a single object.

While most database applications require the
ability to locate objects by means of relational
queries using abstract selection criteria,
applications such as those just mentioned may
also require support for performing referential
queries. The use of this other type of construct
is often called a parts explosion. The collection
of parts referred to by a part manager is, not

Contents

Contents

surprisingly, called a parts list. Using
NeoAccess, application-specific grouping
objects should have a ENeoPartMgr data
member and parts list collection classes should
have a base class of, or have an architecture
similar to, CNeoIDList.

Subclassing CNeoDatabase

The developers of NeoAccess see two general
reasons to subclass CNeoDatabase:
• to provide environment-specific features,

and
• to add additional features beyond the scope

of the base implementation.

Environment-specific subclasses are defined in
order to more naturally support the features of a
given development environment. These
subclasses should override the close,
create, flush, getName, getPathName,
isOpen, open, setFileMark and

Contents

Contents

setLength methods.

A good example of a subclass that provides a
parallel feature set with the same programming
interface might be a multi-user database
implementation. A subclass of CNeoDatabase
would manage inter-application concurrency
issues in this scenario. It is hard to predict
which methods these types of subclasses may
need to override, but strong candidates include
addClass, addObject, close, create,
findObject, getClassCount,
getUnqiueID, markClassTemporary,
open, purge, removeObject and commit.
Complete consideration of the implementations
of these methods are beyond the scope of this
discussion because of the wide variety of
subclasses possible.

Using CNeoDatabase

A CNeoDatabase object is created just like any
other C++ object, by using the new operator. As

Contents

Contents

CNeoDatabase is an environment-neutral class,
creating a database object usually involves
instantiating an environment-specific subclass
of CNeoDatabase. To access objects contained
in a database, the database must be open.
However, before it can be opened a path name
must be specified. This path is where the
database resides in the file system. Most of the
specification methods of CNeoDatabase are
environment-specific. Refer to the methods
topic of this discussion and of the environment-
specific subclasses of

Contents

Contents

CNeoDatabase for more information on how to
specify a database in a particular development
environment.

Deep in the bowels of the system, NeoAccess
provides a mechanism for managing the
efficient use of file space. This mechanism
works in much the same way that an operating
system’s low-level memory manager manages
main memory. Though NeoAccess
automatically takes care of allocating and
freeing file space for objects as they are added
and removed from a database, the database
object includes methods, getSpace and
freeSpace, that can be used to allocate and
free file space directly should the need arise.

Application objects in a NeoAccess database
are typically organized primarily by leaf class
(the most specific class). The first time an
object of a particular class is added to the
database, the object’s class and indices are

Contents

Contents

implicitly added as well. The database object
includes a method, addClass, that developers
can use to explicitly add classes before any
objects of that class are added.

While application-specific objects are organized
primarily by class in a NeoAccess database,
they may be sorted within a class in any number
of different ways. For example, a genealogy
application might organize individuals primarily
by name, and secondarily by the father’s name
and by the mother’s name. This application
would be able to quickly locate all individuals
based on name or parentage. If individuals were
only indexed by name, then answering the
question “Who are the children of Nancy
Cotter?” would involve reading in every person
object in the database. Indices are what make
database system faster and more flexible than
other storage mechanisms.

Database developers define how a class of
objects is to be indexed. But application

Contents

Contents

developers can locate objects in a database
based on selection criteria with the same ease
whether or not the objects are indexed that way
or not. The ‘only’ tradeoff is performance.

When the contents of a database change —
objects have been added, deleted or changed —
these changes occur only in memory. The state
of the database on disk is not affected. Changes
only become permanent when the on-disk state
of the database is synchronized with its in-
memory state. This process is referred to as
committing the database or committing the
changes. The database's commit method is
used to commit changes.

A database object needs to be closed, by using
the database's close method, before the
application terminates. If any objects have been
added or changed, then the database needs to be
updated before it is closed.

Contents

Contents

Creating and Opening a New Database
Creating and initializing an environment-
specific derivative of CNeoDatabase is
straightforward, as is specifying a database path
and opening it. Consider the routine
createFile. In practice, the creation of a
native database object is usually done in the
constructor of the environment-specific
document class. It is shown here for
completeness.

Contents

Contents

CNeoDatabase *createFile(Str63 aName, short aVolNum, long aDirID)
{
CNeoDatabaseMA * database;

/**
 ** Allocate a new database object.
 **/
database = new CNeoDatabaseNative(kApplicationSig, kAppFileType);

/**
 ** Create a new database, and open it normally.
 **/
database->SpecifyHFS(aName, aVolNum, aDirID);
database->create();
database->open(fsRdWrPerm);

return database;
}

The first two calls create the database object and initialize it. The arguments passed to the constructor indicate the
creator and type of the database. The creator should be the application signature. The type is generally the document
file type of the application. The argument accepted by the constructor in your development environment may be
different. Refer to the discussion of that environment’s database class for more information.

There are several ways to specify a database's path. The method SpecifyHFS is used here. However, we have
also seen SFSpecify used in the description of CNeoDoc above. Several other database path specification
methods are also available. They are for the most part interchangeable, though the set available differs depending on
which development environment you’re using. Use the one that best suits the needs of your application.

Once the database name has been specified, use the create method to create the database.

Once the database has been created it can be opened. The argument to open specifies whether the database is to be
opened read only or for update. Obviously, a new database needs to be opened for update.

Opening a Pre-Existing Database

Opening a pre-existing CNeoDatabase is similar to opening a new one. Consider the routine openFile below. In
practice, the creation of a native database object is usually done in the constructor of the environment-specific
document class. It is shown here for completeness.

Contents

Contents

CNeoDatabase *openFile(const FSSpec *aFileSpec)
{
CNeoDatabaseNative * database;

/**
 ** Allocate a new database object and initialize it.
 **/
database = new CNeoDatabaseNative(kApplicationSig, kAppFileType);

/**
 ** Send the database a SpecifyFSSpec() message to set
 ** up the name, volume, and directory.
 **/
database->SpecifyFSSpec(aFileSpec);

/**
 ** Send the database an open() message to open it.
 **/
database->open(NeoReadWritePerm);

return database;
}

The first two calls create a database object native to the development environment and initialize it. The arguments
passed to the CNeoDatabaseNative constructor indicate the creator and type of the database.

There are several ways to specify a database's path. The method SpecifyFSSpec is used here. However, we have
also seen SFSpecify used in the description of CNeoDoc above. Several other database path specification
methods are also available. They are for the most part interchangeable, though the set available differs depending on
which development environment you’re using. Use the one that best suits the needs of your application.

Finally, once the database location is specified it can be opened. The argument to open specifies whether the
database is to be opened read only or for update.

Committing a CNeoDatabase

When the permanent state of a database's objects in memory changes, these changes need to be committed to the
database. This commit process is called database synchronization and is performed by the database object’s
commit method. Synchronizing a NeoAccess database is fast because only those objects that have been marked
dirty need to be updated on disk.

Boolean compress = FALSE;

/**
 ** Synchronize the database's contents.
 **/
database->commit(compress);

The single argument to this method indicates whether the commit process should attempt to reduce the size of the
database on disk. If the value of this argument is TRUE, then the

Contents

Contents

system will try to relocate each object in the database to a location closer to the beginning. If objects at the end of
the database can be relocated, then the overall size of the database can be reduced.

Closing a CNeoDatabase

The database object needs to be closed and deleted before the application terminates. If any objects have been added
or changed, then the database needs to be updated before it is closed. The routine closeFile is called after it has
been determined whether the database is dirty and, if so, whether the user has requested that the database's contents
be updated.

void closeFile(const Boolean aCommit)
{
/**
 ** Commit changes to the database's contents upon request.
 **/
if (aCommit)

database->commit(FALSE);

/**
 ** Send the database a close() message to close it.
 **/
database->close();

/**
 ** Delete the database object now that we’re done with it.
 **/
delete database;
database = nil;
}

The argument aCommit indicates whether the changes to the database should be committed before the database is
closed. Once the database is closed, the database object can be deleted.

Making an Object Permanent

Persistent objects become permanent by giving them an identity and adding them to a database. The database's
addObject method is used to perform this task.

CNeoPersist * object;
CNeoDatabase * database;

database->addObject(object);

If the object’s identity is zero, then an id unique to the database is assigned automatically when the object is added
to the database.

Contents

Contents

Locating an Object

The ability to locate objects based on specific selection criterion is probably the single most important function of a
database system. The interface to this mechanism needs to balance simplicity with power. NeoAccess provides an
extensible interface that offers both.

The CNeoPersist class includes Find, FindEvery and FindByID methods for locating an object or group of
objects. These methods can search a specific class of objects, or even search a base class and all of its subclasses.
Subclasses of CNeoPersist can include additional methods that provide similar capabilities tailored to the specific
needs of those subclasses.

The easiest and most common method for locating objects is FindByID. The following example illustrates several
possible uses:

void *CountObj(CNeoPersist *aObject, void *aParam)
{
(*(short *)aParam)++;

return nil;
}

Examples(void)
{
short count = 0;
NeoID classID = kAppSpecificID;
NeoID objectID;
CNeoNameSelect key(“\pTobias”);
CNeoArray * array;
CAppSpecific * object;
CNeoDatabase * database;

/**
 ** Locate a single object that is a member of the classID
 ** class and which has the indicated object ID.
 **/
object = CNeoPersist::FindByID(database, classID, objectID, FALSE);

/**
 ** Locate a single object that has a base class of classID
 ** and which has the indicated object ID.
 **/
object = CNeoPersist::FindByID(database, classID, objectID, TRUE);

array = new CNeoArray;
array->IArray(sizeof(CNeoPersist *));
/**
 ** Locate all those objects that are a member of the classID
 ** class and which has the indicated object ID.
 **/
CNeoPersist::FindByID(database, classID, objectID, FALSE, nil, array);

/**

Contents

Contents

 ** Count the number of objects that have a base class of classID
 ** and which has the indicated object ID.
 **/
CNeoPersist::FindByID(database, classID, objectID, TRUE, CountObj,

Contents

Contents

 &count);

/**
 ** Locate all those objects that have a base class of classID
 ** and which has the indicated name value.
 **/
CNeoPersist::Find(database, classID, &key, FALSE, nil, array);
}

The first call to FindByID locates in database a single object of class CAppSpecific having an object ID of
objectID. The fourth argument indicates that subclasses of CAppSpecific should not be searched. The fifth
argument can be a pointer to a function that is called for each object found. When this argument is nil, as it is in
this first example, then no function is called. The final argument is also nil, indicating that only the first object
found should be returned. If multiple objects having the given id exist in this class, then it’s not possible to predict
which of them will be returned.

The second call to FindByID is similar to the first except that if the object is not found in the base class,
CAppSpecific, then each of the subclasses of CAppSpecific are searched until a matching object is found.

The third call to FindByID is an example of searching for multiple objects from a single class. Notice that the
return value from this call is ignored. This is because the second from last argument is nil and the last argument
refers to an array object into which pointers to all objects having the given object id are added.

The fourth example of FindByID simply counts the number of objects of the given base class that have the
specified object id. The function CountObj is called for every matching object.

The final example uses the method Find to locate those objects of the specified class having the name “Tobias”.
The constructor for key initializes the selection to look for the name Tobias. This key is passed to Find to locate
the objects.

This final example is actually quite interesting because it shows the true power of NeoAccess’s searching
capabilities. The fact is that there isn’t a single line of code in all of NeoAccess that knows anything about how to
locate CAppSpecific objects based on a name field. And the Find method of CNeoPersist doesn’t know anything
about selection criteria based on a textual value. The searching mechanism of NeoAccess uses selection criteria
objects having a base class of CNeoSelect and persistent btree classes having a base class of CNeoNode to search
lists of objects sorted in orders supported by the index class based on selection criteria supported by the selection
class. CNeoNode can be subclassed to organize objects in some other application-specific fashion. CNeoSelect can
be subclassed to create other types of selection criteria.

Removing an Object

Objects come and objects go. Eventually your application may need to remove an object from a database. The
database's removeObject method takes care of all the details.

Contents

Contents

CNeoPersist * object;
CNeoDatabase * database;

/**
 ** Send the database the removeObject message
 ** to remove the indicated object.
 **/
database->removeObject(object);

This method removes the object from the database that it has been in and frees up the file space that the object used
to occupy.

NOTE

As is the case with all changes to a database, an object is permanently removed from a
database only after the database has been committed.

An object that has been removed from a database is still a persistent object. It needs to be disposed of when the
application no longer refers to it, though it can also be made permanent again at some later point.

Fast File Space Allocation

Some applications need to be able to allocate file space as quickly as possible. The setFastAllocation
method allows an application to set the allocation mode of the database to provide database space allocation at
standard speeds or extremely fast speeds. Fast allocation is achieved by ignoring the current state of the free list and
simply extending the length of the database to accommodate the allocation request.

Concurrency in a Multi-Threaded Environment

Some execution environments include cooperative threads of execution in a single process. NeoAccess includes an
optional feature which allows multiple threads to be in the database at any one time. This concurrency is managed
through the use of semaphores which manage concurrent access to shared objects and constructs. Database objects
are protected using a multiple-reader/single-writer semaphore. Each method that enters the database must first
obtain a reference lock of a type appropriate to the kind of database operation being performed. Database query
operations begin by obtaining a read reference. Database update operations need a write lock before they can
proceed. Attempting to obtain a lock reference may cause a thread to block. Blocked threads will be made ready as
the resource they are trying to obtain becomes available. The database’s lock and unlock methods are used to
obtain and free database lock references.

Object Caching

NeoAccess supports a sophisticated object caching mechanism which greatly improves access times by minimizing
disk activity. NeoAccess keeps objects in memory even after an application deletes its references to it. If the
application tries to access the object again later NeoAccess can locate it without having to reread it from disk.
Caching can improve access times by as much as 20 times in some situations. (Though your application’s mileage
may vary.)

Contents

Contents

The object cache uses memory not otherwise being used by the application. This cache can become quite large and
consume a significant portion of your application’s memory. By default, the cache will use everything it can get its
hands on. In environments where virtual memory is not available or where the memory allocation for an application
is otherwise bounded, NeoAccess provides a mechanism for freeing objects in the cache when memory is needed.
NeoAccess also includes a mechanism for limiting the amount of memory used by the object cache.

The cache can be purged by calling the purge method of a CNeoDatabase object. The single argument to purge
is a pointer to a long that indicates how much memory is needed. The database will attempt to free up at least this
much memory. Depending on how NeoAccess has been configured, purge may free more memory than is
currently needed. This is done in order to reduce the number of times that low memory situations occur while trying
not to reduce the usefulness of the object cache.

Some execution environments, such as pointer-based environments lacking robust virtual memory systems, require
that the size of the object cache be bounded. The size of the cache can be bounded. NeoAccess will limit the size of
the object cache to something close to the amount specified by the static variable
CNeoPersist::FCacheSize. If an allocation would cause the cache to exceed this limit, then the purge
method of all open NeoAccess databases will be called to reduce the cache so that the allocation can occur.

Contents

Contents

CNeoDoc

Heritage
CNeoDocNativeCNeoDocCNeoDocBase

The Heritage and Ancestry of CNeoDoc

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks. As such, there are several
NeoAccess classes which must interface with
the application framework. CNeoDoc is one of
these classes. It is an environment-neutral class.
The immediate base class of CNeoDoc varies
depending on the application framework within
which NeoAccess is being built. The
environment-specific header file for the
framework will define the typedef
CNeoDocBase to be a synonym for this base
class.

Some application frameworks include a
document class from which application-specific
document classes are derived. Some methods of

Contents

Contents

this base class may need to be overridden in
order to provide more natural and complete
support for CNeoDoc subclasses. These
overrides should be implemented in an
environment-specific subclass of CNeoDoc.
The environment-specific header file for the
framework will define the typedef
CNeoDocNative to be a synonym for this
subclass.

Introduction

The abstract base class CNeoDoc is designed to
be a subclass of the native application
framework’s document class. CNeoDoc
includes a few pure virtual functions that are
further overridden by environment-specific
subclasses of CNeoDoc. These virtual functions
provide an environment-neutral interface for
accessing the list of currently open documents.

N
OTE

Contents

Contents

Some application frameworks don’t
require the use of documents. The
CNeoDoc class is not used in these
situations. However, in these
environments the benefits provided by
CNeoDoc need to be done manually
instead.

Contents

Contents

Using CNeoDoc

Whenever a new document is created it is
assigned a unique four-byte identity and
threaded into a list of currently open documents.
The document is removed from the list when it
is deleted. The purpose of this list is to allow
documents to be accessed by document ID. The
static member function of CNeoDoc,
FindByID, is used to locate a document using
a document ID. ResetDocListHead is
called when the current database setting is
changed, usually when one document window
is deactivated and another activated. The
PurgeCache method is called when a certain
amount of memory needs to be obtained by
purging the object caches of the databases
associated with open documents. The
getDatabase and setDatabase methods
are used for locating and setting the database
object associated with a document.

Contents

Contents

CNeoIndexIterator

Heritage
CNeoIteratorBase CNeoIteratorNativeCNeoIterator CNeoIndexIterator

The Heritage and Ancestry of
CNeoIndexIterator

Introduction

There are several iterator classes that come
standard with NeoAccess. (See the discussion
of CNeoIterator for more information on
NeoAccess iterator classes.) These classes
greatly simplify the manipulation of btrees by
application developers. They all have a common
base class of CNeoIterator which supports a set
of operations that are similar to those provided
by most iterators. These operations include the
ability to traverse the collection forward and
backward, the ability to test whether there are
more items in the collection beyond the current
item and the ability to reset the iterator to the

Contents

Contents

beginning of the list again. NeoAccess iterators
are often called keyed iterators because of
their unique capability to iterate over a subset of
a collection based on an abstract select key.

CNeoIndexIterator is used to iterate over all
matching objects of a base class and optionally
all its subclasses.

Using CNeoIndexIterator

CNeoIterator and its subclasses are keyed
iterators that provide for the iteration over a list
of entries in a NeoAccess btree. These btrees
can be index trees, parts lists, or any other type
of btrees derived from nodes based on
CNeoNode and its subclasses. These iterators
support operations that are common to most
iterator classes. Initialize a newly created index
iterator by using CNeoIndexIterator. To
move to the next entry in the list use
nextObject. To move to the previous entry
in the list use previousObject. To get the

Contents

Contents

current object call currentObject.

Contents

Contents

CNeoIterator

Heritage
CNeoIteratorNativeCNeoIteratorBase CNeoIterator

CNeoPartListIterator

CNeoIndexIterator

The Heritage and Ancestry of CNeoIterator

CNeoIterator is an environment-neutral class.
The immediate base class of CNeoIterator
varies depending on the application framework
within which NeoAccess is being built. The
environment-specific header file for the
framework will define the typedef
CNeoIteratorBase to be a synonym for
this base class.

Some application frameworks include abstract
base classes from which all iterator classes
inherit properties. Some methods of this base
class may need to be overridden in order to
provide more natural and complete support for
CNeoIterator subclasses. These overrides
should be implemented in an environment-

Contents

Contents

specific subclass of CNeoIterator. The
environment-specific header file for the
framework will define the typedef
CNeoIteratorNative to be a synonym for
this subclass.

Introduction

The abstract base class CNeoNode and its
various derivatives can all be used to construct
various types of collection classes which are
generally called extended binary trees. Arrays
and linked lists are other examples of collection
classes which most developers are probably
familiar with. There are in fact ten’s or maybe
even a 100 or more different kinds of collection
classes and derivatives that are used in systems
today. Some are as basic as linear arrays, while
others are as complex as heuristic neural nets.
The diversity of collection classes is due to the
different requirements that each application has
in terms of performance and resource

Contents

Contents

utilization. Good developers, like all other good
craftsmen, use the right tool the for the job.

But, as is often the case, along with diversity
comes the potential for confusion and excessive
complexity. In keeping with the principle of
encapsulation, object developers should be able
to manipulate the contents of various types of
collections using a single common interface
without regard for how the contents are
organized internally. This is the motivation
behind iterator classes.

NeoAccess uses btrees as its primary collection
class because they have unique properties that
make them truly ideal for database systems.
NeoAccess’s iterator classes greatly simplify
the manipulation of btrees by application
developers. The iterator classes are

Contents

Contents

environment-neutral so they act as a natural
subclass of the native application framework’s
iterator class, if any. Because CNeoIterator is an
environment-neutral class it may, if applicable,
be a subclass of one of the application
framework’s iterator classes.

There are several iterator classes that come
standard with NeoAccess. They all have a
common base class of CNeoIterator. These
iterator classes support operations that are
similar to those provided by most iterators.
These operations include the ability to traverse
the collection forward and backward, the ability
to test whether there are more items in the
collection beyond the current item and the
ability to reset the iterator to the beginning
again.

CNeoIterators can also be used to iterate over a
subset of items that match a NeoAccess select
key and to apply a function to each item in the

Contents

Contents

list. (See the description of CNeoSelect for
more information on select keys.) NeoAccess
iterators are often called keyed iterators
because of this unique capability to iterate over
a subset of a collection based on an abstract
select key.

Some subclasses of CNeoIterator can even
iterate over all matching objects of a particular
base class and all subclasses, or iterate over all
matching items in a parts list. (See the
CNeoIndexIterator and CNeoIDListIterator
class for more information on the special
capabilities of these subclasses.)

Using CNeoIterator

CNeoIterator and its subclasses are keyed
iterators that provide for the iteration over a list
of entries in a NeoAccess btree. These btrees
can be index trees, parts lists, or any other type
of btrees derived from nodes based on
CNeoNode and its subclasses. Iterators support

Contents

Contents

operations that are common to most iterator
classes. Initialize a newly created iterator by
using the CNeoIterator constructor. To move to
the next or previous object in the list use
nextObject or previousObject,
respectively. To get the current object call
currentObject. Use more to test whether
there are additional objects in the list beyond
the current one. To apply a function to all
objects from the current one forward call
doUntil. This class also includes several
access methods to determine the direction of the
iterator (forward or backward), to obtain a
pointer to the select key associated with the
iterator, or to get a pointer to the current leaf
node. NeoAccess iterators are environment-
neutral so the native subclass of CNeoIterator
may support additional iterator operations
native to those environments. Subclasses may
override some of these methods or extend this
repertoire of operations and more naturally

Contents

Contents

extend the capabilities of the native application
framework.

Subclassing CNeoIterator

Concrete subclasses of CNeoIterator may need
to override some of its methods. These methods
include advance, currentObject, more,
nextObject, previousObject and
reset.

Contents

Contents

CNeoMetaClass

Heritage
CNeoMetaClass

The Heritage and Ancestry of CNeoMetaClass

Introduction

A metaclass is an object-oriented concept.
Metaclass objects define or describe other
classes. NeoAccess refers to metaclass objects
to obtain information about persistent classes.
In particular, a metaclass provides the following
information:
• the class’s class ID,
• a list of class IDs that refer to the class’s

superclass’s,
• the name of the class,
• the number of index keys the class

maintains in the database,
• the index type of each of the class’s

Contents

Contents

indices,
• a pointer to a function that creates and

initializes an instance of the class,
• a pointer to a function that manages

selection objects for index classes.

Contents

Contents

Class IDs

Reserved
by

NeoLogic

Application-Specific

1
2
3
4
...

21
22
23
...

kNeoClasses

The Layout of the Metaclass Table

Adding to the Metaclass Table
NeoAccess relies on an array of metaclass
objects to obtain information about persistent
classes. NeoAccess initializes part of this array
automatically when the application starts up.
Your application class must complete this
initialization process by adding application-
specific metaclass objects to the array.

Consider the following application class
constructor:
const long kAppSpecificID = 21;

CMyApp::CMyApp(void)

Contents

Contents

: CNeoAppNative()
{
CNeoMetaClass * meta;

/**
 ** Initialize the metaclass table with application-specific classes.
 **/
// Add CNeoAppSpecific class to metaclass table
meta = new CNeoMetaClass(kAppSpecificID, kNeoOffspringID,

 kAppSpecificName, CAppSpecific::New);
meta->setKey(kNeoPartIndex, kNeoSecondaryIndex);
…
}

The CMyApp constructor adds information about its application-specific classes to the metaclass table.
CNeoMetaClass objects are created, as all other objects are, by using the new operator.

The arguments to the CNeoMetaClass constructor refer to the class ID of the class, the class ID of the class’s
superclass, a pointer to the New function of that class and the name of the class. As a convenience, this initialization
method also adds the metaclass to the metaclass table.

Contents

Contents

By default, the primary index of application-specific persistent classes is CNeoIDIndex. The constructor initializes
metaclass to use this index class. To specify a different primary index or a specify additional secondary indices, the
setKey method of the metaclass is used. In the sample code shown above, CNeoAppSpecific objects are sorted
primary in ascending order by ID and secondarily by parent ID.

It is sometime useful to sort all objects having a given base class in a single index. A consolidated index is one
which refers to all objects having a common base class. This is in contrast to the usual practice of organizing all
objects of each specific leaf class in a separate index. A consolidated index is created by configuring all metaclass
objects of classes having the common base class to have a index root value equal to the class ID of the base class.
This is done by passing the class ID of the common base class as the third argument to the setKey method for
each of the concrete classes having that base class. See the discussion of the Laughs’ application constructor in the
Tutorial section for an example of how a consolidated index might be used.

KEY
POINT

The metaclass object for all superclasses must have already been added to the table before
adding a metaclass for a persistent class.

CNeoPersist CNeoPersistNative
CJoker

CClown
CPersonCNeoPartMgr

Sample Inheritance Tree for Persistent Classes

Consider, for example, the simple class tree shown above. The metaclass for CNeoPersist is
created automatically by the CNeoApp constructor. Metaclass objects for CNeoPart must be
added next, followed by CPerson, and finally CJoker and CClown.

Multiple Inheritance

Some development environments allow classes to be derived from more than one parent class. Metaclasses provide
a mechanism for defining the inheritance tree as it relates to persistence. By convention this tree often mimics the
C++ inheritance tree, though there are no constraints within NeoAccess that requires it to. Developers are free to
define the superclass of a persistent class without regard to the actual C++ ancestry. Multiple superclasses can also
be assigned to a persistent class whether or not the C++ class has more than one parent. The primary superclass of a
persistent class is given to the CNeoMetaClass constructor. Additional superclasses can be added by using the
setSuperclass method for the metaclass of a class. The maximum number of superclasses that any class can
have is defined by the compile-time constant kNeoMaxSuper. The value of this constant can be configured by
changing this value.

The getOne Function

A metaclass object maintains pointers to two functions for manipulating instances of the class: getOne and
KeyManager. The value of getOne needs to be set by all concrete persistent classes (that is, classes for which
instances may be instantiated or added to the database). The getOne function pointer should be set to a function
that allocates, initializes and returns a pointer to an object of that class. For example, the method

Contents

Contents

CAppSpecific::New below creates and initializes an instance of the CAppSpecific class.

CNeoPersist *CAppSpecific::New(void)
{
/**
 ** Allocate and initialize and return a new instance.
 **/
return new CAppSpecific();
}

The KeyManager Function

The other function pointer, KeyManager, needs to be set only for index classes. A key manager routine supports a
set of operations on selection criteria objects used by an index class. Only two operations are currently used by
NeoAccess. They are kNeoCanSupport and kNeoGetKey.

The kNeoCanSupport operation is called with three arguments. The first is of course the operation selector. The
second argument is a pointer to a select key object. When called with the kNeoCanSupport operation, the
KeyManager method should return a Boolean value indicating whether or not this index class can support a
binary search using this type of select key. If the second argument is nil, then every object will match so
KeyManager should return TRUE. If the index can not support a given select key, then KeyManager should call
NeoInherited, being careful to make sure the third argument passed to KeyManager is passed along with the
initial two. This third argument is a long integer having a value of either zero or 1. If it is 1 and the key is a complex
selection criterion, then CNeoNode::KeyManager may optimize the criterion by rearranging the terms of key.

Consider the KeyManager method of the CNeoIDIndex class shown below.

void *CNeoIDIndex::KeyManager(const NeoKeyOp aOp, ...)
{
va_list argptr; // pointer to argument list.
NeoSelectType selectType;
long optimize;
void * value = nil;
CNeoSelect * key;
CNeoPersist * object;

va_start(argptr, aOp);
switch (aOp) {
case kNeoCanSupport:

key = va_arg(argptr, CNeoSelect *);
selectType = (key ? key->getSelectType() : pNeoID);
if (selectType == pNeoID)

value = (void *)(unsigned char)TRUE;
else {

optimize = va_arg(argptr, long);
value = NeoInherited::KeyManager(kNeoCanSupport, key,

optimize);
}
break;

Contents

Contents

case kNeoGetKey:
object = va_arg(argptr, CNeoPersist *);
value = (void *)new CNeoIDSelect(object->fID);
break;

}
va_end(argptr);

return value;
}

The first argument of this method is the operation type. Its value indicates the operation this routine is being called
for. Each additional argument is obtained by using the varargs support of the native development environment.

The kNeoCanSupport operation takes two additional arguments; a pointer to a select key and a long Boolean
value. The implementation of this operation should return TRUE if nodes of this type can support a binary search
using the given key. The value of the last argument indicates whether the inherited KeyManager routine should try
to optimize the terms of the given key.

The kNeoGetKey operation can be called with one additional argument. The second argument is a pointer to a
persistent object. The KeyManager function should return a select key that can be used to uniquely locate the
given object in the index.

Metaclasses for Index Classes

The steps involved in creating metaclass objects for index classes are the same as for other classes except that the
last argument to the CNeoMetaClass constructor should refer to the KeyManager routine for that index class.
Consider the code below:

// Add CNeoIDIndex class to metaclass table
metaclass = new CNeoMetaClass(kNeoIDIndexID, kNeoNullClassID,

 kNeoIDIndexName, CNeoIDIndex::New,
 CNeoIDIndex::KeyManager);

Notice that the parent class of CNeoIDIndex is set to kNeoNullClassID. This indicates to NeoAccess that this
is a support class that is not itself indexed, which index classes never are.

Using CNeoMetaClass

NeoAccess relies on an array of metaclass
objects to obtain information about persistent
classes. NeoAccess initializes part of this array
when a database is opened. Your application
must complete this initialization process by

Contents

Contents

adding application-specific metaclass objects to
the array.

Contents

Contents

CNeoMRSWSemaphore

Heritage
CNeoSemaphoreNative

CNeoMRSWSemaphore

CNeoMultiSemaphore

The Heritage and Ancestry of
CNeoMRSWSemaphore

Introduction
Personal computer operating systems are
becoming ever more sophisticated. Modern
execution environments support asynchronous
i/o operations and multiple cooperative threads
of execution in a single process. (See the
discussions of the CNeoThread and
CNeoThreadNative classes in the reference
section of this document for more information
on multi-threaded execution environments.)

Semaphores are used to restrict entry into a
critical section of code. They control concurrent
access to shared resources in multi-threaded

Contents

Contents

runtime environments. NeoAccess includes
includes a set of environment-specific
semaphore class which are the abstract base
class for a set of special-purpose semaphore
classes. CNeoSemaphoreMac is the
environment-specific base semaphore class used
in all Macintosh-based development
environments except PowerPlant.

NeoAccess’s cooperative multi-threading
support is enabled when built with the compile
time symbol qNeoThreads defined. When
operating in this type of environment, database
objects are protected using a
multiple-reader/single-writer semaphore of type
CNeoMRSWSemaphore. Each method that
enters the database must first obtain a reference
lock of a type appropriate to the kind of
database operation being performed. Database
query operations begin by obtaining a read
reference. Database update operations need a
write lock before they can proceed. Attempting

Contents

Contents

to obtain a database lock may cause a thread to
block. Blocked threads will be made ready as
the resource they are trying to obtain becomes
available. The semaphore’s lock and unlock
methods are used to obtain and free these lock
references.

Contents

Contents

CNeoMultiSemaphore

Heritage
CNeoSemaphoreNative

CNeoMRSWSemaphore

CNeoMultiSemaphore

The Heritage and Ancestry of
CNeoMultiSemaphore

Introduction
Personal computer operating systems are
becoming ever more sophisticated. Modern
execution environments support asynchronous
i/o operations and multiple cooperative threads
of execution in a single process. (See the
discussions of the CNeoThread and
CNeoThreadNative classes in the reference
section of this document for more information
on multi-threaded execution environments.)

NeoAccess’s cooperative multi-threading
support is enabled when built with the compile
time symbol qNeoThreads defined. When

Contents

Contents

operating in this type of concurrent
environment, the individual entries of persistent
node objects need to be protected to prevent the
situation where more than one thread tries to
load the object referred to by a node entry.
Concurrency of access to node entries is
managed using a CNeoMultiSemaphore
semaphore. Each node object has a single
CNeoMultiSemaphore semaphore which is used
to manage access to all the entries of the node.

Contents

Contents

CNeoPartListIterator

Heritage
CNeoIteratorBase CNeoIteratorNativeCNeoIterator CNeoPartListIterator

The Heritage and Ancestry of
CNeoPartListIterator

Introduction

There are several iterator classes that come
standard with NeoAccess. (See the discussion
of the CNeoIterator class for more information
on NeoAccess iterator classes.) These classes
greatly simplify the manipulation of btrees by
application developers. They all have a common
base class is CNeoIterator which supports a set
of operations that are similar to those provided
by most iterators. These operations include the
ability to traverse the collection forwards and
backwards, the ability to test whether there are
more items in the collection beyond the current
item and the ability to reset the iterator to the

Contents

Contents

beginning of the list again. NeoAccess iterators
are often called keyed iterators because of
their unique capability to iterate over a subset of
a collection based on an abstract select key.

Using CNeoPartListIterator

CNeoPartListIterator is the base class used to
iterate over parts lists. It supports operations
which are common to most iterator classes.
Initialize a newly created part list iterator by
using CNeoPartListIterator. To move
to the next entry in the list use nextObject.
To move to the previous entry in the list use
previousObject. To get the current object
call currentObject.

Contents

Contents

CNeoPartMgr

Heritage
CNeoPartMgrCNeoPersist

The Heritage and Ancestry of CNeoPartMgr

Introduction

Relational systems organize data in tables on
which associative lookups can be performed.
While NeoAccess supports a powerful form of
associative lookup, probably the biggest
advantage it has over relational systems is the
speed and ease with which it is able to organize
and access objects in lists.

Contents

Contents

Parts ListParts List

Inode

Part

Object Object Object Object Object

A Part with a Direct Parts List

The use of this other type of access is often
called a parts explosion. NeoAccess includes a
class, ENeoPartMgr, which can be used to
group objects into a collection called

Contents

Contents

a parts list. Accessing objects in lists is
sometimes called referential access.
Application-specific grouping objects should
have a have a data member of class
ENeoPartMgr to which part list management
responsibilities are delegated.

CNeoPartMgr is a “convenience class” which
delegates responsibility for managing part lists
to a data member of type ENeoPartMgr. This
class is included in the standard NeoAccess
release for backward compatibility reasons as
well as because is an excellent example of how
a CNeoPersist subclass might add part list
management capabilities by using
ENeoPartMgr.

Using CNeoPartMgr

Initialize a newly created part by using the
CNeoPartMgr constructor. Use addToList to
add an entry to the parts list and
deleteFromList to delete an entry. Use

Contents

Contents

deleteList to remove the entire list from the
database and delete the part’s reference to it in
memory. Use doUntilPart to apply a
function to every entry in the list. Call
getListCount to obtain a count of the
number of entries in a parts list.

Contents

Contents

ENeoPartMgr

Heritage
ENeoPartMgr

The Heritage and Ancestry of ENeoPartMgr

Introduction

Relational systems organize data in tables on
which associative lookups can be performed.
While NeoAccess supports a powerful form of
associative lookup, probably the biggest
advantage it has over relational systems is the
speed and ease with which it is able to organize
and access objects in lists.

Contents

Contents

Parts ListParts List

Inode

Part

Object Object Object Object Object

A Part with a Direct Parts List

The use of this other type of access is often
called a parts explosion. NeoAccess includes a
class, ENeoPartMgr, which can be used to
group objects into a collection called a parts
list. Accessing objects in lists is sometimes
called referential access. Application-specific
grouping objects should have a have a data
member of class ENeoPartMgr to which part
list management responsibilities are delegated.

Contents

Contents

Subclassing CNeoPartMgr

The class ENeoPartMgr provides a grouping
property to classes that include ENeoPartMgr
data members. This class has been designed to
minimize the need to subclass it in order to
support application-specific part list types. For
example, it makes no assumptions about the
class of its associated parts list or the base class
of its fruit objects. Developers who feel the
need to subclass ENeoPartMgr for this purpose
should look instead into whether the parts list
class is in fact the class that needs to be
modified.

Using ENeoPartMgr

Initialize a newly created part by using the
ENeoPartMgr constructor. Use addToList to
add an entry to the parts list and
deleteFromList to delete an entry. Use
deleteList to remove the entire list from the

Contents

Contents

database and delete the part’s reference to it in
memory. Use doUntilPart to apply a
function to every entry in the list. Call
getListCount to obtain a count of the
number of entries in a parts list.

Contents

Contents

CNeoPersist

Heritage
CNeoBlob

CNeoNode

CNeoOffspring
CNeoPersistNative

CNeoPartMgr

CNeoPersistCNeoPersistBase

The Heritage and Ancestry of CNeoPersist

CNeoPersist is an environment-neutral class.
The immediate base class of CNeoPersist varies
depending on the application framework within
which NeoAccess is being built. The
environment-specific header file for the
framework will define the typedef
CNeoPersistBase to be a synonym for this
base class.

Some application frameworks include abstract
base classes from which most application-
specific classes inherit properties. Some
methods of this base class may need to be
overridden in order to provide more natural and

Contents

Contents

complete support for CNeoPersist subclasses in
these environments. These overrides should be
implemented in an environment-specific
subclass of CNeoPersist. The environment-
specific header file for the framework will
define the typedef CNeoPersistNative to
be a synonym for this subclass.

Introduction

CNeoPersist is an abstract base class that
provides its subclasses with the ability to
preserve their permanent state in a
CNeoDatabase database and to share objects
between application components. Object
integrity in this shared environment is supported
through the use of shared and exclusive locking
methods. By default, permanent objects are
organized in a database according to the object
class and sorted within each class based on
object identity, though virtually any
organization of objects can also be supported.

Contents

Contents

Objects in a database can be located quickly and
easily using binary search algorithms.

Using CNeoPersist

Object persistence and integrity is provided by
the abstract class CNeoPersist. A newly created
persistent object is created through the use of
the new operator. The object can be

Contents

Contents

made permanent by using the database's
addObject method. Making an object
permanent involves associating the object with
a database and assigning it an identity. An
identity is simply a value that, in conjunction
with the class of the object, can be used find the
object in the database. In order to
unambiguously refer to it, an object should have
a unique identity within its class within its
database. However, ambiguity may be desirable
in some situations, so finding all objects of a
given base class having a given identity is also
supported.

Typically, permanent objects are sorted within
their class in ascending id order. This allows the
use of binary searches to locate objects given an
id value. However custom indexing strategies
are also supported.

The database object’s removeObject method
breaks the association between database and

Contents

Contents

object. The process of removing an object from
a database involves deleting references to it in
the indices and freeing the file space that had
been allocated for it in the database.

The unrefer method supports the object’s
reference count mechanism. This method
decrements the reference count. If the count
goes to zero and the object is not locked, then
the object is purgeable. Purgeable objects can be
freed during purging. Purging, which is usually
invoked when memory is low, involves
traversing the database's data structures freeing
purgeable objects encountered until a large
enough block of memory can be allocated.

Subclassing CNeoPersist

Concrete subclasses of CNeoPersist need to
override some methods inherited from
CNeoPersist in order to take full advantage of
the inherited capabilities. The table given below
defines which methods should be overridden

Contents

Contents

and when.

Override Only if…
add

instances refer directly to other persistent objects or data
commit

instances refer directly to other persistent objects
getClassID

is a concrete class
getFileLength

is a concrete class
getValue

instances have data members accessible via tags
New

is a concrete class
purge

refers directly to other persistent objects or data
readObject

instances have data members
remove

instances refer directly to other persistent objects or data
verify

there are assertions to be made about instance state
writeObject

instances have persistent data members

Contents

Contents

CNeoSelect

Heritage
CNeoAEAddrNIDSelect

CNeoAEKeySelect

CNeoRangeSelectCNeoAndSelect

CNeoFreeSpaceSelect

CNeoOrSelect

CNeoParentNNameSelect

CNeoParentSelect

CNeoComplexSelect

CNeoLockSelect

CNeoObjectSelect

CNeoBooleanSelect

CNeoDoubleSelect

CNeoFloatSelect

CNeoLongDoubleSelect

CNeoIDSelectCNeoLongSelect

CNeoNameSelectCNeoNativeStringSelect

CNeoShortSelect

CNeoStringSelect

CNeoTypeSelect

CNeoSelect

The Heritage and Ancestry of CNeoSelect

Introduction

By this point you probably already recognize
the power and versatility provided by

Contents

Contents

NeoAccess’s flexible index classes. Indices
provide developers with great flexibility in

Contents

Contents

organizing objects. But the real power that a
database system should deliver is a versatile
accessing mechanism.

The search mechanisms provided by NeoAccess
use a very flexible selection mechanism based
on objects having a base class of CNeoSelect.
Subclasses of CNeoSelect can be designed to
create selection criteria objects with tremendous
power.

Sounds kind of whiz-bang but you’re a little
fuzzy on the concept, right? Let’s walk through
a couple of examples to see what this beast
really is and how it’s used. Consider the
CNeoPersist method FindByID. The
implementation of this method is actually quite
simple:

void *CNeoPersist::FindByID(CNeoDatabase *aDatabase,
const NeoID aClassID, const NeoID aID, const Boolean aDeeply,
NeoTestFunc1 aFunc, void *aParam, const NeoLockType aLock)

{
CNeoDatabase * database = aDatabase ? aDatabase : gNeoDatabase;
CNeoIDSelect key(aID);

return database->findObject(aClassID, &key, aDeeply, aFunc, aParam,

Contents

Contents

aLock);
}

CNeoIDSelect is a subclass of CNeoSelect. It is a type of selection criterion (also called select key) that is used to
locate objects based on their identity. In the code shown above, an id select key named key is allocated on the stack
and initialized with the value of aID.

The second argument to CNeoDatabase’s findObject method is an abstract selection criterion. A calendar
application may include a CMonth class that has a method FindByDate. The implementation of this method
would be very similar to the implementation of FindByID. Instead of declaring a CNeoIDSelect key, it would
declare one of class CDateSelect. The database object’s findObject method is equally capable of satisfying both
requests.

The next mystery is how CNeoDatabase satisfies a selection request using an abstract selection key. Adding a class
entry to a database involves making use of most of the information maintained by the metaclass for that persistent
class. The process of locating objects in the database begins by using the class id parameter of
CNeoDatabase::findObject to locate the proper class entry. A class entry knows about all the indices of that
class. The kNeoCanSupport operation of the KeyManager function of each index class (beginning with the
primary index) is queried to determine whether that index can be used to perform a binary search using the given
select key.

If the selection criterion is not supported by one of the indices, then the object list is traversed serially using that
index. As the search processes, the compare method of the selection key is called for objects in the list. For every
object that matches the select key, the aFunc parameter of CNeoDatabase::findObject is called until it
returns a non-nil value. If aFunc is nil but aParam is not, then aParam must refer to an array into which
every matching object is found. If both aFunc and aParam are nil, then a pointer to the first matching object is
returned by CNeoDatabase::findObject.

Contents

Contents

If the selection criterion is not supported by any of the indices, then the object list is traversed serially using the
primary index. The compare method of the select key is called for each object in the list. For every entry or object
for which kNeoExact is returned, the aFunc parameter of CNeoDatabase::findObject is called until it
returns a non-nil value. As is the case when doing binary searches, if aFunc is nil but aParam is not, then
aParam must refer to an array into which every matching object is found. If both aFunc and aParam are both
nil, then a pointer to the first matching object is returned by CNeoDatabase::findObject.

The process of designing an indexing strategy for an application involves balancing the costs and benefits of binary
searches using indices and serial traverses of a list. However, except for access times, the part of an application that
is trying to locate objects needn’t be aware of whether a search is performed linearly or serially.

So supporting the ability to locate objects using a specific kind of selection criterion you simply instanciate some
subclass of CNeoSelect which is to be the criterion and pass it to the database’s findObject. This can be made
even simpler by defining a “convenience” method much like FindByID.

Using CNeoSelect

If a selection criterion is supported by an index,
then an object list can be traversed serially
using that index. As a search processes, the
compare method of the select key is called for
objects in the list. If a selection criterion is not
supported by any of a class’s indices, then the
object list of that class is traversed serially using
its primary index.

Application developers typically don’t
manipulate select keys directly. Database
queries are usually performed by calling
“convenience” methods like FindByID,
FindByParent and application-specific

Contents

Contents

methods like these. Select objects can be
allocated on the stack as local variables. Key
objects obtained by using the kNeoGetKey
operation of an index class’s KeyManager
method should be properly disposed of.

Subclassing CNeoSelect

Subclasses of CNeoSelect override the
compare method to perform comparisons
based on the type of selections that they
support. Some subclasses that support memory
management optimizations might also override
operator new and operator delete.

Contents

Contents

CNeoStream

Heritage
CNeoStream CNeoContainerStream CNeoFileStream

The Heritage and Ancestry of CNeoStream

Introduction

Most C++ compilers include a standard set of
classes which implement an input/output
facility which is referred to as a stream. The
most common stream class supports the transfer
of basic C data types such as integers, floating-
point numbers and character strings to and from
a file.

While streams have been around for some time,
our understanding of them continues to evolve.
We know, for example, that we need different
types of streams for different purposes.
Application-specific environments may benefit
from the use of a stream subclass which also
supports application-specific data types, an

Contents

Contents

imaginary number for instance. Other
environments may find useful a stream that
transfers data not to a file but across a network
pipe or an inter-process communications
channel. As you can see from these two
examples, there are two directions in which
stream derivations can occur. One direction
addresses the type of data being accessed. The
other defines the source/destination of the data.

NeoAccess uses streams to address the issue of
where data is coming from or going to. The
abstract base class CNeoStream provides an
interface through which basic data types can be
read in or written out. This base class is
subclassed to build a stream class,
CNeoFileStream, for reading from and writing
to a file.

The NeoAccess database class, CNeoDatabase,
provides an extremely powerful mechanism for
accessing persistent objects. These objects use
persistence properties provided by their base

Contents

Contents

class, CNeoPersist. And together these three
base classes — CNeoContainerStream,
CNeoDatabase and CNeoPersist — create an
incredibly powerful and high performance
database engine which is both extensible and
easy to use.

Using CNeoStream

The greatest exposure to streams that
developers are likely to have is in the
implementations of the readObject and
writeObject methods of persistent classes.
The substance of these methods consist of calls
to the stream’s i/o methods. While in most

Contents

Contents

cases readObject and writeObject can
be implemented by simply using the stream’s
readChunk and writeChunk methods, we
recommend that developers use the methods
which aptly represent the type of data being
transferred. Use readLong and writeLong,
for example, when reading or writing a long
integer.

The openList and closeList methods are
sometimes used to establish the bounds of a list
of items. While the most commonly referred to
type of stream, CNeoFileStream, does not
require the use of these methods when reading
from and writing to disk, other types of streams
which may be used in the future may require
them. Developers are encouraged to use these
methods in their readObject and
writeObject implementations in order to
insure future compatibility.

The getStreamType method can be used to

Contents

Contents

determine the type of a stream. The
getStreamType method of every concrete
CNeoStream subclass returns a value unique to
that class of stream.

Some stream classes support the concept of a
creator and type. (This type differs from the
stream type returned by getStreamType.)
Developers can get and set these values by
using the getCreator, getType,
setCreator and setType methods.

Subclassing CNeoStream

CNeoStream is an abstract base class that has
been designed for easy subclassing. There are
only three pure virtual functions which a
subclass must provide in order to be concrete.
Those methods are getStreamType,
readChunk and writeChunk. Every
concrete stream subclass should override the
getStreamType method to return a unique
value which identifies that stream class. All

Contents

Contents

other i/o methods have a default
implementations which ultimately call
readChunk or writeChunk to perform the
actual i/o. Stream classes that use the NeoTag
values passed to i/o methods and those which
can not distill i/o operations down to simple
readChunk and writeChunk calls should
override the complete set of i/o methods.

Stream classes that use the length and mark
properties of the stream will need to override
the methods getLength, setLength,
getMark and setMark.

Some CNeoStream subclasses use data caching
algorithms to optimize the performance of their
i/o methods. These subclasses should also
override flush to flush this data from the
cache.

The table given below defines which methods
should be overridden and when.

Contents

Contents

CNeoSwizzler

Heritage
CNeoIDSwizzlerCNeoSwizzler

The Heritage and Ancestry of CNeoSwizzler

Introduction

One of the primary design goals in the
development of NeoAccess has been to keep
complexity in the developer interface at the
minimum. NeoAccess includes a class called
CNeoSwizzler that takes this goal to the limit.
Swizzlers are smart pointers. They’re actually
objects that look and act like pointers. But
they’re more powerful than standard C pointers
in that they can be used to refer to permanent
objects that might not even be in memory.

Using CNeoSwizzler

CNeoSwizzler is an abstract base class upon
which concrete derivatives are based. For the

Contents

Contents

most part, swizzlers can be used like any other
C pointer. They can be assigned to, compared
with and indirected through. But there are
additional methods that are used to manipulate
the special properties that swizzlers provide.
The getClassID method can be used to
obtain the class ID of the object that the
swizzler refers to. The getKey method can be
used to obtain a select key used to locate the
object in the database. The getObject
method will return a pointer to the object. And
purge will delete the swizzler’s reference to
the object in memory.

But the methods of a swizzler that are most
often used are its operator overloads. The
‘pointing to’ operator (‘->’) can be used to
indirect through to the object that the swizzler
refers to. The ‘not’ operator (‘!’) is overridden
to determine whether or not the swizzler refers
to a valid object.

Contents

Contents

CNeoThread

Heritage
CNeoThreadBase CNeoThread CNeoThreadNative

The Heritage and Ancestry of CNeoThread

Introduction
Personal computer operating systems are
becoming ever more sophisticated. Modern
execution environments support asynchronous
i/o operations and multiple cooperative threads
of execution in a single process.

An asynchronous i/o function is one which
schedules i/o which may not be completed until
after the i/o function returns to its caller. The
application continues to execute during the time
between when the operation is scheduled and it
finally completes. The parameters passed to the
scheduling function includes a pointer to an i/o
completion routine, a function which will be
called by the operating system when the i/o

Contents

Contents

operation completes. An i/o completion routine
typically releases resources used while the i/o
operation was in progress.

A thread is an execution context within a
process. The execution environment of a
traditional application includes such things as;
the current instruction pointer (also called PC
value), an execution stack, a dynamic memory
pool (also called a heap), a set of static memory
values (also called globals), a set of open files
and so forth. Each thread in a multi-threaded
process has a separate PC value, execution stack
and set of globals. Though all threads in a
process share the same address space and set of
open files.

There are two general classes of threads,
cooperative threads and preemptive threads.
A cooperative thread operates much as
cooperative processes do; each thread runs
without interruption until it yields the processor
to some other thread of process.

Contents

Contents

NeoAccess includes optional support for
execution environments which allow for
asynchronous write operations to a file. When
enabled, this compile time option named
qNeoAsyncIO, can increase NeoAccess’s
overall throughput during the commit process.
The file stream class maintains a free list of
write buffers. The stream obtains a buffer from
the free list, fills it with data, schedules the
write operation and then continues execution
while the write to the file takes place. When a
write option completes, the completion routine
returns the buffer to the free list. In this way the
file stream is able to schedule as many
asynchronous write operations as there were
write buffers. If the stream requests another
write buffer when all of them are in use by
previously scheduled writes, the stream

Contents

Contents

waits in a tight loop until the completion routine
of one of the earlier scheduled write operations
returns a buffer to the free list.

While asynchronous write operations are
possible in this environment, asynchronous
reads are not. This is because the application
can not continue execution until a read
operation completes because it needs the results
of that read in order to proceed. However, it is
possible to take advantage of asynchronous
reads in a multi-threaded environment because
only the thread performing the read operation
needs that information on order to proceed.
Other threads are able to proceed. The potential
exists for dramatically increased overall
throughput through NeoAccess in such an
environment so long as other issues such as
concurrency and scheduling and context
switching (which are collectively referred to as
friction) don’t consume throughput gains.

Contents

Contents

NeoAccess’s cooperative multi-threading
support is enabled when built with the compile
time symbol qNeoThreads defined. In this
environment container streams obtain read and
write buffers from a free list shared by all open
container streams. Asynchronous write
operations are performed pretty much as
described above, with the one exception that
threads yield instead of looping when waiting
for a buffer to become available.

When operating in a multi-threaded
environment, database objects are protected
using a multiple-reader/single-writer
semaphore. Each method that enters the
database must first obtain a reference lock of a
type appropriate to the kind of database
operation being performed. Database query
operations begin by obtaining a read reference.
Database update operations need a write lock
before they can proceed. Attempting to obtain a
database lock may cause a thread to block.

Contents

Contents

Blocked threads will be made ready as the
resource they are trying to obtain becomes
available. The database’s lock and unlock
methods are used to obtain and free database
lock references.

Thread objects in a multi-threaded applications
which use NeoAccess must be derived from
CNeoThread subclass which is native to the
development environment being used. For
example, if the application is built using the
PowerPlant application framework, then
application-specific thread classes should has a
base class of CNeoThreadPP.

NeoAccess thread objects preserves the state of
various NeoAccess global variables between the
time the thread yields and when it regains
control. For example, the value of the global
variable gNeoDatabase, which refers to the
current database, can be different for each
active thread. These globals are preserved when
the thread yields the processor and restored

Contents

Contents

when the thread regains control.

Contents

Contents

MacApp 3.1 Support

Introduction

NeoAccess is an object framework that provides
object persistence capabilities. This support is
provided as a set of C++ classes that naturally
extend standard application frameworks on
several different platforms using a number of
different development environments.
NeoAccess portability is implemented through
the use of environment-specific classes and by
using compile-time symbols and typedefs.

CNeoBlobCNeoPersistOWLCNeoPersistTStreamableBase

CNeoBlob Inheritance Tree Using OWL

Consider the above diagram which shows a
simplified inheritance tree for the class
CNeoBlob when built using Borland’s
ObjectWindows Library (OWL) application
framework. The root of all streamable classes in
OWL is TStreamableBase, so naturally that is

Contents

Contents

CNeoBlob’s root class as well. Because blobs
are persistent objects, CNeoBlob also inherits
from CNeoPersist. The immediate parent of
CNeoBlob is CNeoPersistOWL. This class
supplements CNeoPersist, which is framework-
neutral, with persistence support that is unique
to OWL. For example, all OWL classes should
support the isA and isEqual methods.

CNeoBlobCNeoPersist

CNeoBlob Inheritance Tree Using PowerPlant

Now consider the diagram immediately above
which again depicts the inheritance tree of
CNeoBlob, but this time under MetroWerks’
application framework, PowerPlant. PowerPlant
has a ‘mixin’ architecture which eliminates the
need for a single root class from which all other
classes are derived. There is no additional
support necessary in order to mix object
persistence into a class. In this environment
CNeoBlob’s immediate parent is CNeoPersist.

Contents

Contents

The environment-specific support for
PowerPlant-based applications is different than
that provided for OWL applications.

The type CNeoPersistNative is defined in all
environments to refer to the environment-
specific subclass from which all persistent
objects are based.

Isolating environmental dependencies in
subclasses greatly improves portability. It also
reduces the complexity and increases the clarity
of environment-neutral classes. This allows a
larger set of development efforts to access the
power of NeoAccess regardless of the
application framework being used. It also
means that developers using NeoAccess can
expect NeoAccess classes to include the same
set of features that other classes native to the
development environment support.

Contents

Contents

MacApp-Specific Symbols and Classes

The standard release of NeoAccess includes
support for Apple’s MacApp application
framework. This support is provided through
the use of environment-specific classes and
compile-time symbols and typedefs. The
include file NeoMacApp.h contains most of the
MacApp-specific symbols typedefs. MacApp-
specific subclasses include CNeoAppMA,
CNeoDocMA, CNeoFileHandlerMA,
CNeoDatabaseMA, CNeoIteratorMA and
CNeoPersistMA.

Contents

Contents

CNeoAppMA

Heritage
CNeoAppMACNeoAppTApplication

The Heritage and Ancestry of CNeoAppMA

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, MacApp being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoApp is an environment-
neutral class. The immediate base class of
CNeoApp varies depending on the application
framework. The base class of CNeoApp when
built using MacApp is TApplication. The
environment-specific header file for the
framework will define the typedef

Contents

Contents

CNeoAppbase to be a synonym for this base
class.

The MacApp-specific header file defines the
typedef CNeoAppNative to be a synonym for
CNeoAppMA. Customer-specific application
classes should have a base class of
CNeoAppNative.

Introduction

NeoAccess occasionally needs to interface with
environment-specific areas of the application
framework. The most standard application
frameworks usually delegate primary
responsibility for process state manipulation,
the scheduling and dispatching of idle time and
the handling of low memory situations to the
application object. The abstract base class
CNeoApp is designed to be a subclass of the
application framework’s application class.
CNeoApp includes a number of pure virtual
functions that are further overridden by

Contents

Contents

environment-specific subclasses of CNeoApp.
These virtual functions provide an environment-
neutral interface with which to access these
functional areas.

Using CNeoAppMA

There are situations that arise in NeoAccess
where some tasks need to be deferred until
some later point in time. These deferred tasks
are called chores. All environment-specific
derivatives of CNeoApp include functions for
tracking chores and seeing that they are
performed during idle time. Chores are
scheduled, dispatched and dequeued by calling

Contents

Contents

addChore, doChores and removeChore,
respectively. The application’s purgeCache
method should be called in low memory
situations to free memory used by the
NeoAccess object cache.

All environment-specific application classes
should include three static functions,
HideWindow, MoveWindow and
ShowWindow, which are used to hide, move
and show application windows in that
environment.

CNeoAppMA also overrides the DoIdle and
DoMakeFile methods to execute chores at
idle time and to instantiate and initialize a
MacApp-specific derivative of CNeoDatabase.

Contents

Contents

CNeoDocMA

Heritage
CNeoDocMATDocument CNeoDoc

The Heritage and Ancestry of CNeoDocMA

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, MacApp being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDoc is an environment-
neutral document class. The immediate base
class of CNeoDoc varies depending on the
application framework. The base class of
CNeoDoc when built using MacApp is
TDocument. The environment-specific header
file for the framework will define the typedef

Contents

Contents

CNeoDocBase to be a synonym for this base
class.

The MacApp-specific header file defines the
typedef CNeoDocNative to be a synonym for
CNeoDocMA. Application-specific document
classes should have a base class of
CNeoDocNative.

Introduction

The abstract base class CNeoDoc is designed to
be a subclass of the native application
framework’s document class (which under
MacApp is TDocument). CNeoDoc includes
pure virtual functions that are further overridden
by CNeoDocMA. These virtual functions
provide an environment-neutral interface for
accessing the list of currently open documents.

Using CNeoDocMA

MacApp document objects refer to their
associated file objects through a mechanism

Contents

Contents

called a file handler. File handler objects
abstract away the specifics of how files are
manipulated. The MacApp support within
NeoAccess includes a special type of file
handler for manipulating NeoAccess databases.
The DoMakeFileHandler method of
CNeoDocMA creates and initializes a
CNeoFileHandler object.

Contents

Contents

Many operations which are quite difficult to
implement using the standard MacApp
document class are trivial using NeoAccess.
The DoNeedDiskSpace, DoRead and
DoWrite methods are implemented in a few
simple lines of code. DoNeedDiskSpace
simply calls the database object’s getLength
method to determine the size of the database.
NeoAccess-based applications bring objects
into memory as they are needed rather than all
at once. As such, the DoRead simply calls
NeoInherited to read the application’s print
record. CNeoDocMA’s DoWrite method calls
the database object’s commit method to write
out to disk all permanent objects that are dirty.

Whenever a new document is created it is
assigned a unique four-byte identity and
threaded into a list of currently open documents.
The document is removed from the list when it
is deleted. The purpose of this list is to allow the

Contents

Contents

set of open documents to be accessed via
various selection criteria. The static member
function FindByFSSpec is used to locate a
document using a file specification.

Contents

Contents

CNeoDatabaseMA

Heritage
TFile CNeoDatabase CNeoDatabaseMA

The Heritage and Ancestry of
CNeoDatabaseMA

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, MacApp being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDatabase is an
environment-neutral database class. The
immediate base class of CNeoDatabase varies
depending on the application framework. The
base class of CNeoDatabase when built using
MacApp is TFile. The environment-specific

Contents

Contents

header file for the framework will define the
typedef CNeoDatabaseBase to be a
synonym for this base class.

The MacApp-specific header file defines the
typedef CNeoDatabaseNative to be a
synonym for CNeoDatabaseMA. Application-
specific database classes should have a base
class of CNeoDatabaseNative.

Introduction

See the discussion of the class CNeoDatabase
for information on what NeoAccess database
objects are and how they are used and
subclassed.

Contents

Contents

CNeoFileHandler

Heritage
CNeoFileHandlerTFileHandlerTObject

The Heritage and Ancestry of CNeoFileHandler

Introduction

Each file–based document in MacApp is
associated with an instance of TFileHandler,
which manages disk file access for the
document. The TFileHandler object sends
messages to instances of TFile to do the actual
work of file I/O. However, the way in which
NeoAccess databases are accessed differs
greatly from the way they are traditionally
accessed in MacApp-based applications. When
opening a file, MacApp applications in the past
would open a file, read the entire contents into
memory (inhale) and then close the file. When
saving changes to the file, applications would
rewrite the entire contents of the file back out to

Contents

Contents

disk (exhale).

NeoAccess-based applications should use the
file handler subclass CNeoFileHandler. This
derivative file handler, together with
CNeoAppMA and CNeoDocMA, will provide
much of the support necessary to effectively use
NeoAccess databases in a MacApp
environment.

Contents

Contents

CNeoIteratorMA

Heritage
CNeoIteratorCIterator CNeoIteratorMA

CNeoIDListIterator

CNeoIndexIterator

The Heritage and Ancestry of CNeoIteratorMA

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, MacApp being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoIterator is an environment-
neutral iterator class. The immediate base class
of CNeoIterator varies depending on the
application framework. The base class of
CNeoIterator when built using MacApp is
CIterator. The environment-specific header file

Contents

Contents

for the framework will define the typedef
CNeoIteratorBase to be a synonym for
this base class.

The MacApp-specific header file defines the
typedef CNeoIteratorNative to be a
synonym for CNeoIteratorMA. Application-
specific iterator classes should have a base class
of CNeoIteratorNative.

Introduction

See the discussion of the CNeoIterator class for
information on NeoAccess iterators.

Using CNeoIteratorMA

NeoAccess’s iterator classes are based on
CIterator when built under MacApp. Subclasses
of CIterator are expected to override the More
and Reset pure virtual functions of CIterator.
The CNeoIteratorMA implementation of More
simply calls more, and Reset simply calls
reset.

Contents

Contents

CNeoPersistMA

Heritage
CNeoBlob

CNeoNode

CNeoOffspring
CNeoPersistMA

CNeoPartMgr

CNeoPersistCNeoPersistBase

The Heritage and Ancestry of CNeoPersistMA

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, MacApp being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoPersist is an environment-
neutral persistence class. The immediate base
class of CNeoPersist varies depending on the
application framework. Its base class when built

Contents

Contents

using MacApp is TObject. The environment-
specific header file for the framework will
define the typedef CNeoPersistBase to be a
synonym for this base class.

The MacApp-specific header file defines the
typedef CNeoPersistNative to be a
synonym for CNeoPersistMA. Application-
specific persistence classes should have a base
class of CNeoPersistNative.

Introduction

See the discussion of the CNeoPersist class for
information on NeoAccess persistence and how
it is provided by CNeoPersist.

Using CNeoPersistMA

The only properties that NeoAccess’s persistent
classes inherit from MacApp’s TObject base
class the ability to clone. Use the Clone
method to clone a persistent object and all the
objects that it refers to. Use ShallowClone

Contents

Contents

to simply clone the persistent object itself.

Contents

Contents

Subclassing CNeoPersistMA

All subclasses of CNeoPersistMA should also
override the Clone and ShallowClone
methods if they include data members that need
special attention during the cloning process.

Contents

Contents

MFC 2.5 Support

Introduction

NeoAccess is an object framework that provides
object persistence capabilities. This support is
provided as a set of C++ classes that naturally
extend standard application frameworks on
several different platforms using a number of
different development environments.
NeoAccess portability is implemented through
the use of environment-specific classes and by
using compile-time symbols and typedefs.

CNeoBlobCNeoPersistMFCCNeoPersistCObject

CNeoBlob Inheritance Tree Using MFC

Consider the above diagram which shows a
simplified inheritance tree for the class
CNeoBlob when built using Microsoft
Foundation Classes (MFC) application
framework. The root of all classes in MFC is
CObject, so naturally that is CNeoBlob’s root
class as well. Because blobs are persistent

Contents

Contents

objects, CNeoBlob also inherits from
CNeoPersist. The immediate parent of
CNeoBlob is CNeoPersistMFC. This class
supplements CNeoPersist, which is framework-
neutral, with persistence support that is unique
to MFC. For example, all persistent MFC
classes should support the Serialize and
Dump methods.

CNeoBlobCNeoPersist

CNeoBlob Inheritance Tree Using PowerPlant

Now consider the diagram immediately above
which again depicts the inheritance tree of
CNeoBlob, but this time under Metrowerks
application framework, PowerPlant. PowerPlant
has a ‘mixin’ architecture which eliminates the
need for a single root class from which all other
classes are derived. There is no additional
support necessary in order to mix object
persistence into a class. In this environment
CNeoBlob’s immediate parent is CNeoPersist.
The environment-specific support for

Contents

Contents

PowerPlant-based applications is different than
that provided for MFC applications. The type
CNeoPersistNative is defined in all
environments to refer to the environment-
specific subclass from which all persistent
objects are based. Isolating environmental
dependencies in subclasses greatly improves
portability. It also reduces the complexity and
increases the clarity of environment-neutral
classes. This allows a larger set of development
efforts to access the power of NeoAccess
regardless of the application framework being
used. It also means that developers using
NeoAccess can expect NeoAccess classes to
include the same set of features that other
classes native to the development environment
support.

Contents

Contents

Changes From Previous Versions

As of NeoAccess version 3.0, there is no need
for MFC-specific subclass of CNeoDatabase.
Developers use the CNeoDatabase class directly
in their applications. However, for compatibility
with earlier versions and to enable easier cross-
platform development, the compile-time
symbols CNeoDatabaseMFC and
CNeoDatabaseNative are defined as
synonyms of CNeoDatabase. (Correspondingly,
CNeoDatabaseMFCH and
CNeoDatabaseNativeH are synonymous
with CNeoDatabaseH.)

MFC Serialization Support

The compile time symbol qNeoSerialMFC is
defined whether CNeoPersistMFC and its
subclasses include support for MFC’s
serialization mechanism. This mechanism is
enabled when qNeoSerialMFC is defined.

Contents

Contents

For more information about MFC’s object
serialization support, refer to the MFC CObject
and CArchive classes.

MFC-Specific Symbols and Classes

NeoAccess includes support for development
using the Microsoft Foundation Classes
application framework. This support is provided
through the use of environment-specific classes
and compile-time symbols and typedefs. The
include files NeoIBMPC.h, NWin.h, NVC.h,
and NMFC.h contain IBM-PC -specific,
Windows-specific, MS Visual C++ specific, and
MFC-specific symbols and typedefs,
respectively. MFC-specific subclasses include
CNeoAppMFC, CNeoDocMFC,
CNeoPersistMFC and CNeoStreamMFC.

MFC-Specific Debugging & Exception
Handling

MFC provides many debugging helper macros

Contents

Contents

(like ASSERT, TRACE and ASSERT_VALID).
All of these macros can be used with
NeoAccess and with any classes derived from
CNeoPersistMFC. MFC also provides debug
versions of the new and delete operators.
These overrides can be used to detect memory
leaks in your application. NeoAccess supports
the use of those debugging constructs. Standard
exception handling in MFC is implemented
through the use of the TRY, CATCH, and
END_CATCH macros. You can still use
TRY/CATCH blocks to perform exception
handling in NeoAccess; however, NeoAccess
also provides an alternative set of exception-
handling blocks such as
NEOTRY/NEOCATCH/NEOENDTRY, and
NEOTRYTO/NEOCLEANUP/NEOENDTRYTO.
(See the “Exception Handling” discussion in the
Preliminaries section of this document for more
information on NeoAccess’s support for
exceptions.)

Contents

Contents

CNeoAppMFC

Heritage
CNeoAppMFCCNeoAppCWinApp

The Heritage and Ancestry of CNeoAppMFC

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, Microsoft Foundation Classes, or
MFC, being one of them. This cross-
development support is implemented in part
through the use of environment-neutral base
classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoApp is an environment-
neutral class. The immediate base class of
CNeoApp varies depending on the application
framework. The base class of CNeoApp when
built using MFC is CWinApp. The
environment-specific header file for the

Contents

Contents

framework will define the typedef
CNeoAppBase to be a synonym for this base
class.

The MFC-specific header file defines the
typedef CNeoAppNative to be a synonym for
CNeoAppMFC. Customer-specific application
classes should have a base class of
CNeoAppNative.

Introduction

NeoAccess occasionally needs to interface with
environment-specific areas of the application
framework. The architecture of most standard
application frameworks usually delegates
primary responsibility for process state
manipulation, the scheduling and dispatching of
idle time and the handling of low memory
situations to the application object. The abstract
base class CNeoApp is designed to be a
subclass of the application framework’s
application class. CNeoApp includes a number

Contents

Contents

of pure virtual functions that are further
overridden by environment-specific subclasses
of CNeoApp. These virtual functions provide an
environment-neutral interface with which to
access these functional areas.

Using CNeoAppMFC

There are situations that arise in NeoAccess
where some tasks need to be deferred until
some later point in time. These deferred tasks
are called chores. All environment-specific
derivatives of CNeoApp include functions for
tracking chores and seeing that they are

Contents

Contents

performed during idle time. Chores are
scheduled, dispatched and dequeued by calling
addChore, doChores and removeChore,
respectively. The application’s purgeCache
method should be called in low memory
situations to free memory used by the
NeoAccess object cache. CNeoAppMFC also
overrides the OnIdle method to ensure that
chores are performed at idle time.

Contents

Contents

CNeoDocMFC

Heritage
CNeoDocMFCCNeoDocCDocument

The Heritage and Ancestry of CNeoDocMFC

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, MFC being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.
The base class CNeoDoc is an environment-
neutral document class. The immediate base
class of CNeoDoc varies depending on the
application framework. The base class of
CNeoDoc when built using MFC is
CDocument. The MFC-specific header file
defines the typedef CNeoDocNative to be a

Contents

Contents

synonym for CNeoDocMFC. Application-
specific document classes should have a base
class of CNeoDocNative.

Introduction

CNeoDoc includes pure virtual functions that
are further overridden by CNeoDocMFC. These
virtual functions provide an environment-
neutral interface for accessing the NeoAccess
database object associated with the document.
CNeoDocMFC also provides overrides for
several virtual methods of CDocument.

Using CNeoDocMFC

CNeoDocMFC is the environment-specific
NeoAccess document class for applications
built using the MFC framework. The methods
that it overrides are necessary in order to
provide native document support for
NeoAccess-based applications built using MFC.

The methods getDatabase and

Contents

Contents

setDatabase are used to refer to the
database object of the document. They are
included in order to provide NeoAccess classes
with a environment-neutral interface for
referring to the database of a document.

Contents

Contents

CNeoPersistMFC

Heritage
CNeoBlob

CNeoNode

CNeoOffspring
CNeoPersistMFC

CNeoPartMgr

CNeoPersistCObject

The Heritage and Ancestry of
CNeoPersistMFC

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, Microsoft Foundation Classes, or
MFC, being one of them. This cross-
development support is implemented in part
through the use of environment-neutral base
classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoPersist is an environment-
neutral persistence class. The immediate base

Contents

Contents

class of CNeoPersist varies depending on the
application framework. Its base class when built
using MFC is the root class, CObject. The
environment-specific header file for the
framework will define the typedef
CNeoPersistbase to be a synonym for this
base class. The MFC-specific header file
defines the typedef CNeoPersistNative to
be a synonym for CNeoPersistMFC.
Application-specific persistence classes should
have a base class of CNeoPersistNative.

Introduction

The only methods that CNeoPersistMFC
overrides are the virtual methods of CObject.
See the discussion of the CNeoPersist class for
information on NeoAccess persistence and how
it is provided by CNeoPersist. Developers can
use Serialize method for MFC-style
serialization of the object. Other methods of
CNeoPersistMFC are used to provide full

Contents

Contents

support for MFC debugging mechanisms. (See
the Diagnostics section in the MFC Class
Library User's Guide for more information
about the debugging features of MFC.)

Contents

Contents

CNeoStreamMFC

Heritage
CNeoStreamMFCCNeoStream

The Heritage and Ancestry of CNeoStreamMFC

Introduction

Most application frameworks, the MFC
included, provide a streams mechanism to
serialize the state of objects and other data.
Classes of objects that can be serialized to a
stream usually need to override a set of
methods, much like CNeoPersist’s
readObject and writeObject methods,
to preserve and restore the values of persistent
data members.

NeoAccess uses streams to address the issue of
where data is coming from or going to. The
abstract base class CNeoStream provides an
interface through which basic data types can be
read in or written out.

Contents

Contents

NeoAccess’s MFC-specific support includes an
environment-specific stream class which
eliminates the need for subclasses of
CNeoPersistMFC to override the Serialize
method. The stream, CNeoStreamMFC, maps
operations that would normally call an object’s
Serialize method to instead call its
readObject and writeObject methods.

Using CNeoStreamMFC

There is really nothing that an application
developer needs to do in order to take advantage
of NeoAccess’s stream mapping support in the
MFC. A call to a persistent object’s
Serialize method will invoke the
CNeoPersistMFC implementations. The
implementation of these methods will cause the
MFC-based stream (e.g. CArchive) to be
mapped into a CNeoStreamMFC. After that the
persistent object’s readObject or
writeObject method is called with a

Contents

Contents

CNeoStreamMFC as the first argument.

Please note, however, that NeoAccess itself is
not using CNeoStreamMFC internally and
developers need not use it to store data in the
standard NeoAccess database file. This class
stream class is provided to facilitate
inputting/outputting of CNeoPersistMFC's
subclasses to the streams included with MFC
(i.e. subclasses of CArchive).

Contents

Contents

OWL 2.0 Support

Introduction

NeoAccess is an object framework that provides
object persistence and database capabilities.
This support is provided as a set of C++ classes
that naturally extend standard application
frameworks on several different platforms using
a number of different development
environments. NeoAccess portability is
implemented through the use of environment-
specific classes and by using compile-time
symbols and typedefs.

CNeoBlobCNeoPersistOWLCNeoPersistTStreamableBase

CNeoBlob Inheritance Tree Using OWL

Consider the above diagram which shows a
simplified inheritance tree for the class
CNeoBlob when built using Borland’s
ObjectWindows Library (OWL) application

Contents

Contents

framework. The root of all streamable classes in
OWL is TStreamableBase, so naturally that is
CNeoBlob’s root class as well. Because blobs
are persistent objects, CNeoBlob also inherits
from CNeoPersist. The immediate parent of
CNeoBlob is CNeoPersistOWL. This class
supplements CNeoPersist, which is framework-
neutral, with persistence support that is unique
to OWL. For example, all OWL streamable
classes should support the
Streamer::Write and Streamer::Read
methods. (Please see section 'ObjectWindows-
Specific Symbols and Classes' below for
additional information about the NeoAccess
inheritance tree under OWL and about the
symbol qNeoOWLPersist.)

CNeoBlobCNeoPersist

CNeoBlob Inheritance Tree Using PowerPlant

Now consider the diagram immediately above

Contents

Contents

which again depicts the inheritance tree of
CNeoBlob, but this time under Metrowerks’
PowerPlant application framework. PowerPlant
has a ‘mixin’ architecture which eliminates the
need for a single root class from which all other
classes are derived. There is no additional
support necessary in order to mix object
persistence into a class. In this environment
CNeoBlob’s immediate parent is CNeoPersist.
The environment-specific support for
PowerPlant-based applications is different than
that provided for OWL applications.

The type CNeoPersistNative is defined in all
environments to refer to the environment-
specific subclass from which all persistent
objects are based.

Contents

Contents

Isolating environmental dependencies in
subclasses greatly improves portability. It also
reduces the complexity and increases the clarity
of environment-neutral classes. This allows a
larger set of development efforts to access the
power of NeoAccess regardless of the
application framework being used. It also
means that developers using NeoAccess can
expect NeoAccess classes to include the same
set of features that other classes native to the
development environment support.

ObjectWindows-Specific Symbols and
Classes

NeoAccess includes support for version 2.0 of
Borland’s ObjectWindows application
framework. This support is provided through
the use of environment-specific classes and
compile-time symbols and typedefs. The
include files NeoIBMPC.h, NWin.h,
NBorland.h, and NObjWin.h contain IBM-PC

Contents

Contents

-specific, Windows-specific, Borland C++
specific, and OWL-specific symbols and
typedefs, respectively. ObjectWindows-specific
subclasses include CNeoAppOWL,
CNeoDocOWL, CNeoPersistOWL and
CNeoStreamOWL.

Object Windows 2.0 moved away from the
"single root" approach used in earlier OWL
releases. However, streamable classes still
needs to be derived from TStreamableBase in
order to support OWL-style
streaming/persistence. By default, OWL-style
persistence is disabled by NeoAccess. As such,
by default CNeoPersist has no superclass. If you
would prefer to retain OWL streaming
capabilities for CNeoPersistOWL then you
should define the compile time symbol
qNeoOWLPersist at the top of the file
\NEO\INCLUDES\IBMPC\OWL\NOBJWIN.
H. In this case CNeoPersist inherits from
TStreamableBase and CNeoPersistOWL

Contents

Contents

implements the Streamer::Write and
Streamer::Read methods.

Changes From Previous Versions
As of NeoAccess version 3.0, there is no need for OWL-specific subclass of CNeoDatabase.
Developers use the CNeoDatabase class directly in their applications. However, for
compatibility with earlier versions and to enable easier cross-platform development, the
compile-time symbols CNeoDatabaseOWL and CNeoDatabaseNative are defined as
synonyms of CNeoDatabase. (Correspondingly, CNeoDatabaseOWLH and
CNeoDatabaseNativeH are synonymous with CNeoDatabaseH.)

Contents

Contents

CNeoAppOWL

Heritage
CNeoAppOWLCNeoAppTApplication

The Heritage and Ancestry of CNeoAppOWL

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, Borland’s ObjectWindows, or
OWL, being one of them. This cross-
development support is implemented in part
through the use of environment-neutral base
classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoApp is an environment-
neutral class. The immediate base class of
CNeoApp varies depending on the application
framework. The base class of CNeoApp when
built using OWL is TApplication. The
environment-specific header file for the

Contents

Contents

framework will define the typedef
CNeoAppBase to be a synonym for this base
class.

The OWL-specific header file defines the
typedef CNeoAppNative to be a synonym for
CNeoAppOWL. Your application classes should
have a base class of CNeoAppNative.

Introduction

NeoAccess occasionally needs to interface with
environment-specific areas of the application
framework. The architecture of most standard
application frameworks usually delegates
primary responsibility for process state
manipulation, the scheduling and dispatching of
idle time and the handling of low memory
situations to the application object. The abstract
base class CNeoApp is designed to be a
subclass of the application framework’s
application class. CNeoApp includes a number
of pure virtual functions that are further

Contents

Contents

overridden by environment-specific subclasses
of CNeoApp. These virtual functions provide an
environment-neutral interface with which to
access these functional areas.

Using CNeoAppOWL

There are situations that arise in NeoAccess
where some tasks need to be deferred until
some later point in time. These deferred tasks
are called chores. All environment-specific
derivatives of CNeoApp include functions for
tracking chores and seeing that they are

Contents

Contents

performed during idle time. Chores are
scheduled, dispatched and dequeued by calling
addChore, doChores and removeChore,
respectively.

The application’s purgeCache method should
be called in low memory situations to free
memory used by the NeoAccess object cache.

CNeoAppOWL also overrides the
IdleAction method ensure that chores are
performed at idle time.

Contents

Contents

CNeoDocOWL

Heritage
CNeoDocOWLTDocument CNeoDoc

The Heritage and Ancestry of CNeoDocOWL

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, PowerPlant being one of them.
This cross-development support is implemented
in part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDoc is an environment-
neutral document class. OWL 2.0 supports a
powerful document/view model and CNeoDoc
is derived from OWL's standard TDocument
class.

The OWL-specific header file defines the

Contents

Contents

typedef CNeoDocNative to be a synonym for
CNeoDocOWL. Application-specific document
classes should have a base class of
CNeoDocNative.

Introduction

CNeoDoc includes pure virtual functions that
are further overridden by CNeoDocOWL.
These virtual functions provide an environment-
neutral interface for accessing the NeoAccess
database object associated with the document.
CNeoDocOWL also overrides some virtual
methods of TDocument to provide NeoAccess
specific functionality in response to
document/view events.

Using CNeoDocOWL

CNeoDocOWL is the environment-specific
NeoAccess document class for applications
built using the OWL framework. The methods
that it overrides are necessary in order to

Contents

Contents

provide native document support for
NeoAccess-based applications built using
ObjectWindows.

The methods getDatabase and
setDatabase are used to refer to the
database object of the document. They are
included in order to provide NeoAccess classes
with a environment-neutral interface for
referring to the database of a document.

Contents

Contents

CNeoPersistOWL

Heritage
CNeoBlob

CNeoNode

CNeoOffspring
CNeoPersistOWL

CNeoPartMgr

CNeoPersistTStreamableBase

The Heritage and Ancestry of CNeoPersistOWL

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, Borland’s ObjectWindows, or
OWL, being one of them. This cross-
development support is implemented in part
through the use of environment-neutral base
classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoPersist is an environment-
neutral persistence class. The immediate base

Contents

Contents

class of CNeoPersist varies depending on the
application framework. ObjectWindows 2.0
moved away from the "single root" approach.
However, one still needs to derive his classes
from TStreamableBase in order to support
OWL-style streaming/persistence for his
classes. By default, NeoAccess does not support
OWL-style persistence; thus, by default
CNeoPersist does not have any superclass.
However, if you would prefer to retain OWL
streaming capabilities for CNeoPersistOWL
then you should define qNeoOWLPersist
symbol at the top of the file
\NEO\INCLUDES\IBMPC\OWL\NOBJWIN.
H. In this case CNeoPersist inherits from
TStreamableBase and CNeoPersist OWL
implements the Streamer::Write and
Streamer::Read methods which allows
OWL-style persistence support.

The environment-specific header file for the
framework will define the typedef

Contents

Contents

CNeoPersistBase to be a synonym for the
base class, if any.

The OWL-specific header file defines the
typedef CNeoPersistNative to be a
synonym for CNeoPersistOWL. Application-
specific persistence classes should have a base
class of CNeoPersistNative.

Contents

Contents

Introduction

See the discussion of the CNeoPersist class for
information on NeoAccess persistence and how
it is provided by CNeoPersist.

Using CNeoPersistOWL

The only methods that CNeoPersistOWL
overrides are the streaming methods which are
necessary to support OWL-style persistence.

N
OTE

If the compile time symbol
qNeoOWLPersist is not defined,
then CNeoPersistOWL is defined to be
the same as CNeoPersist and the
symbol CNeoPersistBase is not
defined.

Contents

Contents

CNeoStreamOWL

Heritage
CNeoStreamOWLCNeoStream

The Heritage and Ancestry of
CNeoStreamOWL

Introduction

Most application frameworks, the OWL
included, provide a streams mechanism to
serialize the state of objects and other data.
Classes of objects that can be serialized to a
stream usually need to override a set of
methods, much like CNeoPersist’s
readObject and writeObject methods,
to preserve and restore the values of persistent
data members.

NeoAccess uses streams to address the issue of
where data is coming from or going to. The
abstract base class CNeoStream provides an
interface through which basic data types can be

Contents

Contents

read in or written out.

NeoAccess’s OWL-specific support includes an
environment-specific stream class which
eliminates the need for subclasses of
CNeoPersistOWL to override the
Streamer::Write and Streamer::Read
methods. The stream, CNeoStreamOWL, maps
operations that would normally call an object’s
Streamer::Write and Streamer::Read
methods to instead call its readObject and
writeObject methods.

Using CNeoStreamOWL

There is really nothing that an application
developer needs to do in order to take advantage
of NeoAccess’s stream mapping support in the
OWL. A call to a persistent object’s
Streamer::Write and Streamer::Read
methods will invoke the CNeoPersistOWL
implementations. The implementation of these
methods will cause the OWL-based stream (e.g.

Contents

Contents

opstream or ipstream) to be mapped into a
CNeoStreamOWL. After that the persistent
object’s readObject or writeObject
method is called with a CNeoStreamOWL as
the first argument.

Please note, however, that NeoAccess itself is
not using CNeoStreamOWL internally and
developers need not use it to store data in the
standard NeoAccess database file. This class

Contents

Contents

stream class is provided to facilitate
inputting/outputting of CNeoPersistOWL's
subclasses to the streams included with OWL.

Contents

Contents

PowerPlant 1.0 Support

Introduction

NeoAccess is an object framework that provides
object persistence capabilities. This support is
provided as a set of C++ classes that naturally
extend standard application frameworks on
several different platforms using a number of
different development environments.
NeoAccess portability is implemented through
the use of environment-specific classes and by
using compile-time symbols and typedefs.

CNeoBlobCNeoPersistOWLCNeoPersistTStreamableBase

CNeoBlob Inheritance Tree Using OWL

Consider the above diagram which shows a
simplified inheritance tree for the class
CNeoBlob when built using Borland’s
ObjectWindows Library (OWL) application
framework. The root of all streamable classes in
OWL is TStreamable, so naturally that is
CNeoBlob’s root class as well. Because blobs

Contents

Contents

are persistent objects, CNeoBlob also inherits
from CNeoPersist. The immediate parent of
CNeoBlob is CNeoPersistOWL. This class
supplements CNeoPersist, which is framework-
neutral, with persistence support that is unique
to OWL. For example, all OWL classes should
support the isA and isEqual methods.

CNeoBlobCNeoPersist

CNeoBlob Inheritance Tree Using PowerPlant

Now consider the diagram immediately above
which again depicts the inheritance tree of
CNeoBlob, but this time under MetroWerks
application framework, PowerPlant. PowerPlant
has a ‘mixin’ architecture which eliminates the
need for a single root class from which all other
classes are derived. There is no additional
support necessary in order to mix object
persistence into a class. In this environment
CNeoBlob’s immediate parent is CNeoPersist.
The environment-specific support for
PowerPlant-based applications is different than

Contents

Contents

that provided for OWL applications.

The type CNeoPersistNative is defined in all
environments to refer to the environment-
specific subclass from which all persistent
objects are based.

Isolating environmental dependencies in
subclasses greatly improves portability. It also
reduces the complexity and increases the clarity
of environment-neutral classes. This allows a
larger set of development efforts to access the
power of NeoAccess regardless of the
application framework being used. It also
means that developers using NeoAccess can
expect NeoAccess classes to include the same
set of features that other classes native to the
development environment support.

Contents

Contents

PowerPlant-Specific Symbols and Classes

The standard release of NeoAccess includes
support for MetroWerks PowerPlant application
framework. This support is provided through
the use of environment-specific classes and
compile-time symbols and typedefs. The
include file NeoPowerPlant.h contains most of
the PowerPlant-specific symbols typedefs.
PowerPlant-specific subclasses include
CNeoAppPP, CNeoDocPP and
CNeoDatabasePP.

Contents

Contents

CNeoAppPP

Heritage
CNeoAppPPCNeoAppLApplication

The Heritage and Ancestry of CNeoAppPP

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, PowerPlant being one of them.
This cross-development support is implemented
in part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoApp is an environment-
neutral class. The immediate base class of
CNeoApp varies depending on the application
framework. The base class of CNeoApp when
built using the PowerPlant is LDocApplication.
The environment-specific header file for the
framework will define the typedef

Contents

Contents

CNeoAppbase to be a synonym for this base
class.

The PowerPlant-specific header file defines the
typedef CNeoAppNative to be a synonym for
CNeoAppPP. Customer-specific application
classes should have a base class of
CNeoAppNative.

Introduction

NeoPersist occasionally needs to interface with
environment-specific areas of the application
framework. The architecture of most standard
application frameworks usually delegates
primary responsibility for process state
manipulation and the scheduling and
dispatching of idle time. The abstract base class
CNeoApp is designed to be a subclass of the
application framework’s application class.
CNeoApp includes a number of pure virtual
functions that are further overridden by its
environment-specific subclasses. These virtual

Contents

Contents

functions provide an environment-neutral
interface with which to access these functional
areas.

Using CNeoAppPP

There are situations that arise in NeoAccess
where some tasks need to be deferred until
some later point in time. These deferred tasks
are called chores. All environment-specific
derivatives of CNeoApp include functions for
tracking chores and seeing that they are

Contents

Contents

performed during idle time or sooner. Chores
are scheduled, dispatched and dequeued by
calling addChore, doChores and
removeChore, respectively.

All environment-specific application classes
should include three static functions,
HideWindow, MoveWindow and
ShowWindow, which are used to hide, move
and show application windows in that
environment.

The ChooseDocument method presents the
user with a standard dialog box with which to
choose a database to open. If successful, it calls
OpenDocument which verifies that the
document hasn’t already been opened.

CNeoAppPP overrides the
MakeNewDocument, OpenDocument,
StartUp and UseIdleTime methods which
are inherited from the two PowerPlant base
classes, LDocApplication and LBroadcaster, to

Contents

Contents

instantiate and open PowerPlant-specific
derivatives of CNeoDoc.

Contents

Contents

CNeoDocPP

Heritage
CNeoDocPPCNeoDoc

The Heritage and Ancestry of CNeoDocPP

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, PowerPlant being one of them.
This cross-development support is implemented
in part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDoc is an environment-
neutral document class. The base class of
CNeoDoc when built using PowerPlant is
LSingleDoc. The PowerPlant-specific header
file, NeoPowerPlant.h, defines the typedef
CNeoDocNative to be a synonym for
CNeoDocPP. Application-specific document

Contents

Contents

classes should have a base class of
CNeoDocNative.

The PowerPlant-specific header file defines the
typedef CNeoDocNative to be a synonym for
CNeoDocPP. Application-specific document
classes should have a base class of
CNeoDocNative.

Introduction

CNeoDoc includes pure virtual functions that
are further overridden by CNeoDocPP. These
virtual functions provide an environment-
neutral interface for accessing the list of
currently open documents.

Using CNeoDocPP

CNeoDocPP is the environment-specific
NeoAccess document class for applications
built using the PowerPlant framework. The
methods that it overrides are necessary in order
to provide native document support for

Contents

Contents

NeoAccess-based applications built using
PowerPlant.

Whenever a new document is created it is
assigned a unique four-byte identity and
threaded into a list of currently open documents.
The document is removed from the list when it
is deleted. The purpose of this list is to allow
documents to be accessed by their order in the
list, by document ID or by their file
specification. The static member functions

Contents

Contents

FindByFSSpec, FindByWindow and
FindTop are used to refer to a document by
file specification, window object or order,
respectively. NeoAccess’s base document class,
CNeoDoc, provides a FindByID method
which allows documents to be referred by
identity.

DoSave and DoAESave are overridden so that
any changes to objects in the database are
committed properly. The GetDescriptor method
returns a Pascal string containing the title of the
document. ListenToMessage handles low
memory situations by purging the database's
object cache accordingly. openFile is called
to open an existing database on disk.
newDatabase is called when a new empty
document is created.

The methods getDatabase and
setDatabase are used to refer to the
database object of the document. The isDirty

Contents

Contents

and setDirty methods are used to test and
set the modification state of the document,
respectively. Both sets of methods are included
in order to provide NeoAccess classes with a
environment-neutral interface for referring to
properties of a document.

Contents

Contents

CNeoDatabasePP

Heritage
CNeoDatabaseLFile CNeoDatabasePP

The Heritage and Ancestry of CNeoDatabasePP

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, the PowerPlant being one of them.
This cross-development support is implemented
in part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDatabase is an
environment-neutral database class. The
immediate base class of CNeoDatabase varies
depending on the application framework. The
base class of CNeoDatabase when built using
PowerPlant is LFile. The environment-specific
header file for the framework will define the

Contents

Contents

typedef CNeoDatabaseBase to be a
synonym for this base class.

The PowerPlant-specific header file defines the
typedef CNeoDatabaseNative to be a
synonym for CNeoDatabasePP. Application-
specific database classes should have a base
class of CNeoDatabaseNative.

Introduction

See the discussion of the class CNeoDatabase
for information on what NeoAccess database
objects are and how they are used and
subclassed.

Contents

Contents

CNeoSemaphorePP

Heritage
CNeoSemaphorePP

CNeoMRSWSemaphore

CNeoMultiSemaphore

The Heritage and Ancestry of
CNeoSemaphorePP

Introduction
Personal computer operating systems are
becoming ever more sophisticated. Modern
execution environments support asynchronous
i/o operations and multiple cooperative threads
of execution in a single process. NeoAccess’s
cooperative multi-threading support is enabled
when built with the compile time symbol
qNeoThreads defined.

Semaphores are used to restrict entry into a
critical section of code. They control concurrent
access to shared resources in multi-threaded
runtime environments. NeoAccess includes

Contents

Contents

includes a set of environment-specific
semaphore class which are the abstract base
class for a set of special-purpose semaphore
classes. CNeoSemaphorePP is the environment-
specific base semaphore class used in the
PowerPlant development environment.

When operating in a multi-threaded
environment, database objects are protected
using a multiple-reader/single-writer semaphore
having a leaf class of CNeoMRSWSemaphore.
Each method that enters the database must first
obtain a reference lock of a type appropriate to
the kind of database operation being performed.
Database query operations begin by obtaining a
read reference. Database update operations need
a write lock before they can proceed.
Attempting to obtain a database lock may cause
a thread to block. Blocked threads will be made
ready as the resource they are trying to obtain
becomes available. The database’s lock and
unlock methods are used to obtain and free

Contents

Contents

database lock references.

Concurrent access to individual entries in
CNeoNode subclasses is controlled in multi-
threaded runtime environments by a single
CNeoMultiSemaphore object which is a data
member of the node. A single
CNeoMultiSemaphore object can control access
to up to 32 individual node entries.

Contents

Contents

CNeoThreadPP

Heritage
LThread CNeoThread CNeoThreadPP

The Heritage and Ancestry of CNeoThreadPP

Introduction

See the discussion of the CNeoThread class for
information on what threads are and the level of
support provided for threads in NeoAccess.

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, the PowerPlant being one of them.
This cross-development support is implemented
in part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoThread is an environment-
neutral lightweight thread class. The immediate

Contents

Contents

base class of CNeoThread varies depending on
the development environment. The base class of
CNeoThread when built using the PowerPlant
application framework is LThread. The
environment-specific header file for the
framework will define the typedef
CNeoThreadBase to be a synonym for this
base class.

The PowerPlant-specific header file defines the
typedef CNeoThreadNative to be a
synonym for CNeoThreadPP. Application-
specific database classes should have a base
class of CNeoThreadNative.

Contents

Contents

TCL 2.0 Support

Introduction

NeoAccess is an object framework that provides
object persistence capabilities. This support is
provided as a set of C++ classes that naturally
extend standard application frameworks on
several different platforms using a number of
different development environments.
NeoAccess portability is implemented through
the use of environment-specific classes and by
using compile-time symbols and typedefs.

CNeoBlobCNeoPersistOWLCNeoPersistTStreamableBase

CNeoBlob Inheritance Tree Using OWL

Consider the above diagram which shows a
simplified inheritance tree for the class
CNeoBlob when built using Borland’s
ObjectWindows Library (OWL) application
framework. The root of all classes in OWL is
TObject, so naturally that is CNeoBlob’s root
class as well. Because blobs are persistent

Contents

Contents

objects, CNeoBlob also inherits from
CNeoPersist. The immediate parent of
CNeoBlob is CNeoPersistOWL. This class
supplements CNeoPersist, which is framework-
neutral, with persistence support that is unique
to OWL. For example, all OWL classes should
support the isA and isEqual methods.

CNeoPersistTCLCNeoPersistCObject CNeoBlob

CNeoBlob Inheritance Tree Using the TCL

Now consider the diagram immediately above
which again depicts the inheritance tree of
CNeoBlob, but this time under Symantec’s
application framework, the TCL. The root class
from which all other classes are derived in the
TCL is CObject. In this environment
CNeoBlob’s immediate parent is
CNeoPersistTCL. The environment-specific
support for TCL-based applications is different
than that provided for OWL applications.

The type CNeoPersistNative is defined in all

Contents

Contents

environments to refer to the environment-
specific subclass from which all persistent
objects are based.

Isolating environmental dependencies in
subclasses greatly improves portability. It also
reduces the complexity and increases the clarity
of environment-neutral classes. This allows a
larger set of development efforts to access the
power of NeoAccess regardless of the
application framework being used. It also
means that developers using NeoAccess can
expect NeoAccess classes to include the same
set of features that other classes native to the
development environment support.

Contents

Contents

TCL-Specific Symbols and Classes

The standard release of NeoAccess includes
support for Symantec’s THINK Class Library
application framework. This support is provided
through the use of environment-specific classes
and compile-time symbols and typedefs. The
include file NeoTCL.h contains most of the
TCL-specific symbols typedefs. TCL-specific
subclasses include CNeoAppTCL,
CNeoDocTCL, CNeoDatabaseTCL,
CNeoPersistTCL and CNeoStreamTCL.

Contents

Contents

CNeoAppTCL

Heritage
CNeoAppTCLCNeoAppCApplication

The Heritage and Ancestry of CNeoAppTCL

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, TCL being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoApp is an environment-
neutral class. The immediate base class of
CNeoApp varies depending on the application
framework. The base class of CNeoApp when
built using the TCL is CApplication. The
environment-specific header file for the
framework will define the typedef

Contents

Contents

CNeoAppbase to be a synonym for this base
class.

The TCL-specific header file defines the
typedef CNeoAppNative to be a synonym for
CNeoAppTCL. Customer-specific application
classes should have a base class of
CNeoAppNative.

Introduction

NeoAccess occasionally needs to interface with
environment-specific areas of the application
framework. The architecture of most standard
application frameworks usually delegates
primary responsibility for process state
manipulation, the scheduling and dispatching of
idle time and the handling of low memory
situations to the application object. The abstract
base class CNeoApp is designed to be a
subclass of the application framework’s
application class. CNeoApp includes a number
of pure virtual functions that are further

Contents

Contents

overridden by its environment-specific
subclasses. These virtual functions provide an
environment-neutral interface with which to
access these functional areas.

Using CNeoAppTCL

There are situations that arise in NeoAccess
where some tasks need to be deferred until
some later point in time. These deferred tasks
are called chores. All environment-specific
derivatives of CNeoApp include functions for
tracking chores and seeing that they are

Contents

Contents

performed during idle time or sooner. Chores
are scheduled, dispatched and dequeued by
calling addChore, doChores and
removeChore, respectively.

The application’s purgeCache method should
be called in low memory situations to free
memory used by the NeoAccess object cache.

All environment-specific application classes
should include three static functions,
HideWindow, MoveWindow and
ShowWindow, which are used to hide, move
and show application windows in that
environment.

CNeoAppTCL also overrides the
createDocument, CreateDocument and
OpenDocument methods to instantiate and
open TCL-specific derivatives of CNeoDoc.

The MemoryShortage method handles low-
memory situations and the Quit method is

Contents

Contents

called when the application is quitting.

Contents

Contents

CNeoDocTCL

Heritage
CNeoDocTCLCDocument CNeoDoc

The Heritage and Ancestry of CNeoDocTCL

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, the TCL being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDoc is an environment-
neutral document class. The immediate base
class of CNeoDoc varies depending on the
application framework. The base class of
CNeoDoc when built using the TCL is
CDocument. The environment-specific header
file for the framework will define the typedef

Contents

Contents

CNeoDocBase to be a synonym for this base
class.

The TCL-specific header file defines the
typedef CNeoDocNative to be a synonym for
CNeoDocTCL. Application-specific document
classes should have a base class of
CNeoDocNative.

Introduction

The abstract base class CNeoDoc is designed to
be a subclass of the native application
framework’s document class (which under the
TCL is CDocument). CNeoDoc includes pure
virtual functions that are further overridden by
CNeoDocTCL. These virtual functions provide
an environment-neutral interface for accessing
the list of currently open documents.

Using CNeoDocTCL

CNeoDocTCL is the environment-specific
NeoAccess document class for applications

Contents

Contents

built using the THINK Class Library. The
methods that it overrides are necessary in order
to provide native document support for
NeoAccess-based applications built using the
TCL.

Whenever a new document is created it is
assigned a unique four-byte identity and
threaded into a list of currently open documents.
The document is removed from the list when it
is deleted. The purpose of this list is to allow
documents to be accessed by their

Contents

Contents

order in the list, by document ID or by their file
specification. The static member functions
FindByFSSpec and FindTop are used to
refer to a document by file specification and
order, respectively. NeoAccess’s base document
class, CNeoDoc, provides a FindByID method
which allows documents to be referred by
identity.

Most of the methods that are a part of
CNeoDocTCL are overrides of functions
inherited from CDocument, the base TCL
document class. The Activate method is
overridden to ensure that the value of the
NeoAccess global variable called
gNeoDatabase always refers to the database
of the current document. DoSave and
DoSaveAs are overridden so that any changes
to objects in the database are committed
properly. ProviderChanged handles low
memory situations by purging the database's

Contents

Contents

object cache accordingly. OpenFile is called
to open an existing database on disk. NewFile
is called when a new empty document is
created.

The methods getDatabase and
setDatabase are used to refer to the
database object of the document. They are
included in order to provide NeoAccess classes
with a environment-neutral interface for
referring to the database of a document.

Contents

Contents

CNeoDatabaseTCL

Heritage
CDataFile CNeoDatabase CNeoDatabaseTCLCFileCObject

The Heritage and Ancestry of
CNeoDatabaseTCL

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, the TCL being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDatabase is an
environment-neutral database class. The
immediate base class of CNeoDatabase varies
depending on the application framework. The
base class of CNeoDatabase when built using
the TCL is CDataFile. The environment-specific

Contents

Contents

header file for the framework will define the
typedef CNeoDatabaseBase to be a
synonym for this base class.

The TCL-specific header file defines the
typedef CNeoDatabaseNative to be a
synonym for CNeoDatabaseTCL. Application-
specific database classes should have a base
class of CNeoDatabaseNative.

Introduction

See the discussion of the class CNeoDatabase
for information on what NeoAccess database
objects are and how they are used and
subclassed.

Contents

Contents

CNeoPersistTCL

Heritage
CNeoBlob

CNeoNode

CNeoOffspring
CNeoPersistTCLCNeoPersist

CNeoPartMgr

The Heritage and Ancestry of CNeoPersistTCL

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, the TCL being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoPersist is an environment-
neutral persistence class. The newest releases of
the TCL may use a mixin structure which
eliminates the need for a single base class from

Contents

Contents

which all other classes are derived. As such,
CNeoPersist doesn’t have a base class when
built in the TCL environment.

The TCL-specific header file defines the
typedef CNeoPersistNative to be a
synonym for CNeoPersistTCL. Application-
specific persistence classes should have a base
class of CNeoPersistNative.

Introduction

See the discussion of the CNeoPersist class for
information on NeoAccess persistence and how
it is provided by CNeoPersist.

Using CNeoPersistTCL

The only methods that CNeoPersistTCL
overrides are PutTo and GetFrom which
provide support for the “Object I/O” streams
mechanism. The CNeoPersistTCL overrides of
these methods encloses Object I/O streams into
a NeoAccess stream which maps PutTo and

Contents

Contents

GetFrom calls to writeObject and
readObject calls, respectively.

Contents

Contents

This allows CNeoPersistTCL subclasses to be
serialized using either type of stream by just
overriding readObject and writeObject.

Contents

Contents

CNeoStreamTCL

Heritage
CNeoStreamTCLCNeoStream

The Heritage and Ancestry of CNeoStreamTCL

Introduction

Most application frameworks, the TCL
included, provide a streams mechanism to
serialize the state of objects and other data.
Classes of objects that can be serialized to a
stream usually need to override a set of
methods, much like CNeoPersist’s
readObject and writeObject methods,
to restore and preserve the values of persistent
data members.

NeoAccess uses streams to address the issue of
where data is coming from or going to. The
abstract base class CNeoStream provides an
interface through which basic data types can be
read in or written out.

Contents

Contents

NeoAccess’s TCL-specific support includes an
environment-specific stream class which
eliminate the need for subclasses of
CNeoPersist to override the GetFrom and
PutTo serialization methods. The stream,
CNeoStreamTCL, maps operations that would
normally call an object’s GetFrom method to
instead call its readObject method.
Operations that would call PutTo now call
writeObject.

Using CNeoStreamTCL

There is really nothing that an application
developer needs to do in order to take advantage
of NeoAccess’s stream mapping support in the
TCL. A call to a persistent object’s PutTo or
GetFrom methods will invoke the
CNeoPersistTCL implementations. The
implementation of these methods will cause the
TCL-based stream to be mapped into a
CNeoStreamTCL. The persistent object’s

Contents

Contents

readObject or writeObject method will
be called with a CNeoStreamTCL as the first
argument.

Contents

Contents

zApp 2.1 Support

Introduction

NeoAccess is an object framework that provides
object persistence capabilities. This support is
provided as a set of C++ classes that naturally
extend standard application frameworks on
several different platforms using a number of
different development environments.
NeoAccess portability is implemented through
the use of environment-specific classes and by
using compile-time symbols and typedefs.

CNeoBlobCNeoPersistZACNeoPersistzStorable

CNeoBlob Inheritance Tree Using zApp

Consider the above diagram which shows a
simplified inheritance tree for the class
CNeoBlob when built using Inmark’s zApp
application framework. The root of all
streamable classes in zApp is zStorable, so
naturally that is CNeoBlob’s root class as well.
Because blobs are persistent objects CNeoBlob

Contents

Contents

also inherits from CNeoPersist. The immediate
parent of CNeoBlob though is CNeoPersistZA.
This class supplements CNeoPersist, which is
framework-neutral, with persistence support
that is unique to zApp. For example, all
persistent zApp classes can support the io
method.

CNeoBlobCNeoPersistOWLCNeoPersistTStreamableBase

CNeoBlob Inheritance Tree Using OWL

Now consider the diagram immediately above
which again depicts the inheritance tree of
CNeoBlob, but this time under Borland’s
ObjectWindows (OWL) framework. OWL has a
single root class for all streamable objects,
which is called TStreamableBase. In this
environment CNeoBlob’s immediate parent is
CNeoPersistOWL. The environment-specific
support that is provided by this class is different
than that provided by CNeoPersistZA.

Isolating environmental dependencies in

Contents

Contents

subclasses greatly improves portability. It also
reduces the complexity and increases the clarity
of environment-neutral classes. This allows a
larger set of development efforts to access the
power of NeoAccess regardless of the
application framework being used. It also
means that developers using NeoAccess can
expect NeoAccess classes to include the same
set of features that other classes native to the
development environment support.

Contents

Contents

Changes from Previous Versions
As of NeoAccess version 3.0, there is no need for a zApp-specific subclass of CNeoDatabase.
Developers use the CNeoDatabase class directly in their applications. However, for
compatibility with earlier versions and to enable easier cross-platform development, the
compile-time symbols CNeoDatabaseZA and CNeoDatabaseNative are defined as
synonyms of CNeoDatabase. (Correspondingly, CNeoDatabaseZAH and
CNeoDatabaseNativeH are synonymous with CNeoDatabaseH.)

Version 3.0 introduces significant expansion of CNeoDocZA interface in order to provide
extended support for writing MDI applications under zApp. However, use of MDI components
of zApp increases total size of the application. Thus, we require zApp DOS developers to use
some DOS extender to make more than 640K of memory available to NeoAccess based
applications. (See section Using NeoAccess with zApp for Dos for more information about
changes in zApp support under DOS.)

ZApp-Specific Symbols and Classes

The standard release of NeoAccess includes
support for Inmark’s zApp application
framework. This support is provided through
the use of environment-specific classes and
compile-time symbols and typedefs. The
include files NeoIBMPC.h, NWin.h (or NDos.h
for DOS developers), NVC.h (or NBorland.h
for Borland C++ users), and NZapp.h contain
IBM-PC -specific, operating system-specific,
compiler specific, and zApp-specific symbols
and typedefs, respectively. zApp-specific

Contents

Contents

subclasses include CNeoDocZA,
CNeoPersistZA, CNeoStreamZA and a special
chore class. These chores can be configured to
be executed once and deleted or executed
repeatedly at idle time. The environment-
specific subclass for the CNeoApp is not
provided as zApp does not provide derivable
base classes for this purpose.

Using NeoAccess with zApp for DOS

Starting from NeoAccess release 3.0 NeoAccess
includes an extensive support for MDI
applications with zApp. However, use of MDI
components of zApp increases total size of the
application. Thus, we require zApp for DOS
developers to use some DOS extender to make
more than 640K of memory available to
NeoAccess based applications. The makefiles
provided with NeoAccess assume that you are
using Phar Lap 286 DOS extender. If you intend
to use some other DOS extender then you have

Contents

Contents

to modify the default makefiles. Also, if you
intend to use Phar Lap with Borland C++
version 4, please make sure that you have
release 3.04 or later of Phar Lap product.

If you are using DOS text or DOS graphics
versions of zApp you should replace the
TEMPLATE.MAK file that is provided by
Inmark with those included with NeoAccess.
DOS text developers should use
\NEO\DEMO\ZAPP\DOS\TEMPLATE.DT.
DOS graphics developers should use
\NEO\DEMO\ZAPP\DOS\TEMPLATE.DG.

Contents

Contents

CNeoDocZA

Heritage
CNeoDocZACNeoDoc

The Heritage and Ancestry of CNeoDocZA

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, zApp being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing of these neutral classes
to provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoDoc is an environment-
neutral document class. zApp does not currently
include any document classes. Thus, CNeoDoc
inherits from zEvH to provide zApp native
event-handling support.

The zApp-specific header file defines the

Contents

Contents

typedef CNeoDocNative to be a synonym for
CNeoDocZA. Application-specific document
classes should have a base class of
CNeoDocNative.

Introduction

CNeoDoc includes a couple pure virtual
functions that are further overridden by
CNeoDocZA. These virtual functions provide
an environment-neutral interface for accessing
the NeoAccess database object associated with
a document.

Using CNeoDocZA

CNeoDocZA is the environment-specific
NeoAccess document class for applications
built using the zApp framework. The methods
that it overrides are necessary in order to
provide native document support for
NeoAccess-based applications built using zApp.

Whenever a new document is created it is

Contents

Contents

assigned a unique four-byte identity and
threaded into a list of currently open documents.
The document is removed from the list when it
is deleted. The purpose of this list is to allow
documents to be accessed by their order in the
list, by document ID or by their file
specification. NeoAccess’s base document
class, CNeoDoc, provides a FindByID method
which allows documents to be referred by
identity.

Contents

Contents

The methods getDatabase and
setDatabase are used to refer to the
database object of the document. They are
included in order to provide NeoAccess classes
with a environment-neutral interface for
referring to the database of a document.

As zApp does not include any support for
Document/View model, CNeoDocZA has to
provide all the necessary event-handling
methods. Developers should ensure that this
methods are called whenever any document
event (e.g., FileOpen command) occurs. (See
sample applications Laughs and Neo for
examples of how this can be done.) The
onNew, onOpen, onSave, onSaveAs, and
onClose methods should be called to handle
FileNew, FileOpen, FileSave, FileSaveAs, and
FileClose commands/events respectively.
CNeoDocZA also has a pure virtual method
getWindow which should be overridden by

Contents

Contents

application specific documents to return a
pointer to zMDIFrameWin associated with this
document.

Contents

Contents

CNeoPersistZA

Heritage
CNeoBlob

CNeoNode

CNeoOffspring
CNeoPersistZA

CNeoPartMgr

CNeoPersistzStorable

The Heritage and Ancestry of CNeoPersistZA

NeoAccess is a persistence framework that has
been designed to extend standard application
frameworks, the zApp being one of them. This
cross-development support is implemented in
part through the use of environment-neutral
base classes. Environment-specific classes are
defined by subclassing these neutral classes to
provide a richer feature set that more fully
integrates NeoAccess into that environment.

The base class CNeoPersist is an environment-
neutral persistence class. The immediate base
class of CNeoPersist varies depending on the
application framework. Some frameworks

Contents

Contents

derive all of their classes from a single root
class. zApp does not use that approach.
However, one still needs to derive classes from
zStorable in order to support zApp-style
streaming (also referred to as persistence) of
those classes. By default, NeoAccess does not
support zApp-style persistence; thus, by default
CNeoPersist does not have a superclass. The
compile time symbol qNeoZappPersist is
automatically defined when NeoAccess is
compiled in the environment where the compile
time symbol Z_NP is not defined. In this case
CNeoPersist inherits from zStorable and
CNeoPersistZA implements the io method
which allows zApp-style persistence support.
(See the Persistence section of zApp
Programmer's Guide for more information
about zApp-style persistence.) The
environment-specific header file for the
framework will define the typedef
CNeoPersistbase to be a synonym for the

Contents

Contents

base class, if any.

The zApp-specific header file defines the
typedef CNeoPersistNative to be a
synonym for CNeoPersistZA. Application-
specific persistence classes should have a base
class of CNeoPersistNative.

Introduction

See the discussion of the CNeoPersist class for
information on NeoAccess persistence and how
it is provided by CNeoPersist.

Contents

Contents

Using CNeoPersistZA

The only method that NeoAccess’s persistent
classes override from zApp’s zStorable base
class is io. The io method is a virtual function
that must be overridden to implement the input
and output of class data.

Contents

Contents

CNeoStreamZA

Heritage
CNeoStreamZACNeoStream

The Heritage and Ancestry of CNeoStreamZA

Introduction

Most application frameworks, the zApp
included, provide a streams mechanism to
serialize the state of objects and other data.
Classes of objects that can be serialized to a
stream usually need to override a set of
methods, much like CNeoPersist’s
readObject and writeObject methods,
to preserve and restore the values of persistent
data members.

NeoAccess uses streams to address the issue of
where data is coming from or going to. The
abstract base class CNeoStream provides an
interface through which basic data types can be
read in or written out.

Contents

Contents

NeoAccess’s zApp-specific support includes an
environment-specific stream class which
eliminates the need for subclasses of
CNeoPersistZA to override the io method. The
stream, CNeoStreamZA, maps operations that
would normally call an object’s io method to
instead call its readObject and
writeObject methods.

Using CNeoStreamZA

There is really nothing that an application
developer needs to do in order to take advantage
of NeoAccess’s stream mapping support in the
zApp. A call to a persistent object’s io method
will invoke the CNeoPersistZA
implementations. The implementation of these
methods will cause the zApp-based stream (e.g.
zArchive) to be mapped into a CNeoStreamZA.
After that the persistent object’s readObject
or writeObject method is called with a
CNeoStreamZA as the first argument.

Contents

Contents

Please note, however, that NeoAccess itself is
not using CNeoStreamZA internally and
developers need not use it to store data in the
standard NeoAccess database file. This class
stream class is provided to facilitate
inputting/outputting of CNeoPersistZA's
subclasses to the streams included with zApp
(i.e. subclasses of zArchive).

Contents

Contents

Photographer’s Assistant

Prefix

This section was originally printed under the
title “NeoAccess, Object Persistence Made
Simple” in the Fall, 1992 issue of Frameworks,
the journal of software developers using object
technology, published by the Software
Frameworks Association, formally called
MADA. It was written in the first person by
NeoAccess’s primary architect, Bob Krause, as
a factual, though rather tongue-in-cheek,
recounting of the development of the NeoDemo
sample program, which is referred to here as
“Photographer’s Assistant”.

Even the name raises the hair on the back of the
uninitiated’s necks — Object-Oriented
Database Engine. Though it is new to
Macintosh developers, an ODBMS named
NeoAccess is generating quite a bit of

Contents

Contents

excitement because it is both powerful and easy
to use. This article shows how you can use it to
reduce resource requirements, provide
exceptional performance, organize objects and
their relationships to one another and allow
you to focus on those aspects of your
application that make it truly unique.

Introduction

So you have this way cool idea for a new
Macintosh application, right? One that will
change the way that people use and think about
their Mac. You’ve gone on the obligatory walks
on the beach and hikes in the woods to flesh out
the details of how you’re going to implement
this beast. You want to do it right, so first off
you know that the app is going to be object-
oriented and that you are going to use either the
THINK Class Library, PowerPlant or MacApp
as an application framework.

But a problem has begun to set in. Way cool

Contents

Contents

app’s need to manipulate complex sets of
objects with intricate inter-relationships. That’s
fine, but the state of some of these objects need
to be preserved across this gulf referred to as
session boundaries — that time between when
the user quits your application at night and
starts it up again eight hours later smelling of
coffee and Corn Flakes. You knew that you
were going to need to implement Save As and
Open menu items; you just didn’t think it was
going to be so complicated. I mean, look at
Greg Dow’s Art Class. That was easy, wasn’t it?

The more you think about it, the more
complicated the issues become. You need a file
format. A file format! What has that got to do
with way cool? OK, OK, focus… You can just
put all instances of a particular class together in
the file, then immediately follow that with the
next class, and so on. That gets the data written
out to the file. (You can worry about subclasses
and variable length objects later, right?) But

Contents

Contents

what about the inter-relationships that exist
between objects in memory? Don’t those need
to be saved so that they can be recreated when
the objects are read back in? You’ve got one-to-
one, one-to-

Contents

Contents

many and many-to-many connections that need
to be maintained. And if each object is written
out one after another, then they need to be read
in serially as well. When you get right down to
it, you need to read in the entire file at once.
Otherwise the app needs to do this dance every
time it tries to reference an object — Is the
object in memory? No? Then go back to the
beginning of the file to read it in… If you don’t
do that then your application partition is going
to be 2MB. Even under System 7 that’s a lot of
memory. And you know that virtual memory
isn’t an option. What a nightmare!

You finally decide that the Macintosh and
object-oriented programming have not yet
evolved far enough to support way cool ideas.
Or if something like this can be done it has to
be by a team of 40 engineers in a cold room up
in Redmond. It’s still a good idea. Maybe when
Bedrock shows up…

Contents

Contents

NeoAccess

Each and every developer that has tried to write
an app has had to face the issue of persistence.
It is a difficult problem with many
complications. Up until recently every
developer has had to face the issue alone. But in
this article I would like to show you how to use
NeoAccess, an object-oriented database /
persistence mechanism that developers can
embed into their applications.

As a freelance consultant for many years, I was
running through this nightmarish scenario over
and over again. I bit the bullet a few times and
developed a structured file format, came up
with an organization on disk and wrote routines
to read and write data. But on the next project I
still ended up using only a portion of this code.
It seemed that every project was different. Each
had a different set of objects that need to be
saved, different accessing needs and patterns
and different relationships to maintain.

Contents

Contents

I finally said enough is enough and developed
an object persistence mechanism, indeed, full
blown database engine called NeoAccess.
Because of my previous experiences, I’ve
designed the system to be versatile. I make no
assumptions about the type of data that needs to
persist or the connections between them. Things
are very optimized toward storing and retrieving
objects, but un-formatted, variable-length blobs
of data can also be mixed in. I also tried to
avoid making assumptions about how objects
are organized in the system. How are objects
sorted? How are they indexed? How do objects
relate to one another? Are they accessed serially
or randomly? There are defaults, but for the
most part, these questions can be answered by
the application designer. The programming
interface is designed to show minimum visible
complexity. Years of consulting on object-
oriented projects have shown that no matter
how sophisticated a company’s products may

Contents

Contents

be, the one thing they all share is a common
struggle to minimize complexity. Of course
performance is also a major concern. I
wondered whether it was possible to provide
versatility and performance in the same system.
Now I believe that it is, and NeoAccess is proof
of that. Finally, the system was designed with
portability in mind. The first version of
NeoAccess was developed using THINK C
(which wasn’t even real C++!) and the THINK
Class Library. It has since gone cross-platform.
It is supported in numerous development
environments including MacApp 3.0 and 3.1,
PowerPlant, QuickApp, ObjectWindows and
zApp. And it will be moved to Bedrock if/when
it shows up. You might even be seeing it under
Prograph.

In this article I’m going to show how to use
NeoAccess in a way cool application that Bob
Ackerman and I built (using the TCL) that I’ve
nicknamed Photographer’s Assistant (its real,

Contents

Contents

though less imaginative, name is NeoDemo).

So check this out… I’ve got this mythical
photographer friend, Toby, who likes to use the
Mac in his work. He has his film developed by
a service bureau that also digitally scans

Contents

Contents

his photographs and presses them onto CD-
ROMs. The images are stored on the CD in a
database that is readable by Photographer’s
Assistant.

My app displays images in a window that looks
like the standard scrapbook DA on steroids. I’ve
added a lot of extra fields that the DA doesn’t
have so that Toby can keep track of which
camera, lens and film he used to take a shot. He
has a journal that he keeps all this information,
in which he enters into NeoDemo when the CD
arrives. The elephant image shown below is a
good example.

Contents

Contents

FIGURE 1 - NEODEMO WINDOW

The window is titled “Safari Images” because
that is the name of the database that the images
and ancillary data are in. Just above the image is
the image title, “Charging Elephant” (there’s a
great story to go along with this one…). Toby

Contents

Contents

can scroll through all the images in the database
using the scrollbar. The indicator just below the
scrollbar on the left side shows that this is the
first of three images. The indicator on the right
shows that its format is PICT. The fields in the
lower portion of the window were set by Toby.
He took the picture on September 2, 1992 with
his Nikon using a 150mm lens, and so on. He
has assigned this picture a catalog number and a
set of keywords. The keywords are handy
because NeoDemo has a nice feature that allows
him to find all images that have a common
keyword, like all animal images, or all those
taken in Kenya.

Contents

Contents

The flag control in the bottom right-hand corner
of the window opens up the search feature.
When the flag is down the window expands to
include a text edit in which to enter a keyword,
a popup to indicate the kind of images to
include in the search (PICT, TIFF, GIF or Any),
and a find button to start the search.

FIGURE 2 - EXTENDED NEODEMO WINDOW

Multiple windows can be open at once. That
way you can copy an image from one document
to another. This is how Toby creates a database
to send back to the service bureau for printing

Contents

Contents

with just a single image in it. Not only is the
image copied, but so is the technical info like
where it was shot and how. That way all the
information about the image stays with it. Of
course if the scrap is pasted into some other
application that doesn’t know about image
objects, then only the PICT data is carried over.

The NeoAccess Class Tree

CDataFile CNeoDatabase CNeoDatabaseTCLCFile

CNeoPersistTCLCNeoPersist
CObject

FIGURE 3 - SIMPLIFIED NEOACCESS CLASS
TREE

Let’s look under the covers to see how
NeoAccess works. The best place to start is by
looking at the definitions of some of its classes.
The current version of the TCL includes an
abstract class, CObject, from which all other
classes descended. CObject’s prospects for a
continued existence are dim though. Most
frameworks are heading toward a “mix-in”
approach which eliminates the need to a single

Contents

Contents

common root class. The class CDataFile is a
member of the core suite of classes in the
THINK Class Library. CDataFile provides
know-how for manipulating the data fork of
Macintosh files as an extensible and randomly
accessible stream of bytes.

In order to make it easy to port, NeoAccess’s
core classes were designed to be environment-
neutral. CNeoDatabase, for example, is an
environment-neutral class. That means that the
interface to CNeoDatabase makes no
assumptions about what environment it might
be used in. However, providing a seamless
integration of CNeoDatabase into the

Contents

Contents

TCL might require adding additional overrides
beyond the general support provided in
CNeoDatabase.

NeoAccess provides this intimate level of
support in numerous environments by defining
environment-specific subclasses of
CNeoDatabase and other key classes.
NeoAccess defines the symbol
CNeoDatabaseNative to refer to the
environment-specific database class for a
particular environment (CNeoDatabaseTCL in
our case).

CNeoPersist is environment-neutral as well.
The symbol CNeoPersistNative refers to the
environment-specific class from which all
persistent subclass are derived. In environments
which don’t require an environment-specific
subclass, CNeoPersistNative is simply equal to
CNeoPersist.

Contents

Contents

1. CNeoDatabase

The class CNeoDatabase builds on the
capabilities of CDataFile to provide a
mechanism for storing, organizing and
retrieving persistent objects.

If you consider for a moment what the
responsibilities of the Macintosh File Manager
are, you get a pretty good picture of the kinds of
things that the CNeoDatabase class does as
well. The File Manager manages allocation
blocks on a volume. Most of a volume’s blocks
are used to store information contained in files;
resources and data. The rest of the space is
either unused or used to store volume catalog
and extents information and desktop-
management related data — the organization of
folders and files, a list of used blocks, a list of
blocks allocated to a particular database, the
locations of folder windows on the desktop and
the shape and location of icons in windows —
all of this needs to be magically maintained for

Contents

Contents

the user.

The primary objectives of the File Manager is to
reliably administer a volume without burdening
the user (or developer) with unnecessary details.
The overall efficiency with which it
accomplishes these tasks is a major concern. It
has to be versatile enough to satisfy the needs of
its clients (the Finder and other application
programs). And finally, it needs to be built in
such a way that it can evolve in response to
future needs.

Instead of managing allocation blocks on a
volume, CNeoDatabase supervises space in a
database. Most of this space is used to store the
permanent data members of persistent objects.
But most of the complexity of CNeoDatabase’s
charter involves the manipulation of its internal
data structures. Just as the File Manager must
track folders and their contents, CNeoDatabase
must keep track of classes, subclasses and
objects. Classes are related to one another to

Contents

Contents

create a class hierarchy. Objects are organized
using indices. Finally, CNeoDatabase keeps
track of the free space in the database.

CNeoDatabase’s primary objectives are very
similar to that of the File Manager. Reliability
and minimizing visible complexity top the list,
followed closely by performance. But it also
needs to be versatile and be capable of evolving
in future directions.

Many of the capabilities of CNeoDatabase, such
as specifying, opening and closing a Macintosh
file, getting and setting the file mark and the file
length are actually provided in whole or in part
by its parent classes. I won’t go into too much
detail on what they do or how they do it. The
operations we would like to consider are those
having to do with objects, classes and the
management of file space.

In order to access objects contained in a
database, a developer must understand how

Contents

Contents

information is organized. Figure 4 presents a
schematic illustration of the reference hierarchy
within NeoAccess.

Contents

Contents

File

Free Space Classes

Indices Subclasses

Application
Objects

FIGURE 4 - SIMPLIFIED NEOACCESS REFERENCE
TREE

Information is typically organized in a database
primarily by class. C++ and most other object-
oriented languages support the concept of
inheritance. So does NeoAccess. When you
define a subclass in C++ you indicate its parent
class. When you add object of a particular class
to a database NeoAccess also records what its
parent class is. NeoAccess uses this information
to maintain a tree that usually matches the C++
inheritance tree.

Objects are organized within a database
according to class. This organization is

Contents

Contents

supported by a construct called an index.
Indices keep objects in sorted order. There is a
default collating sequence, but the sort order
can be changed to support the needs of the
application. NeoAccess even provides the
ability to maintain multiple indices of a class.
Though developers rarely need to know the
details, indices are implemented as extended
btrees. This allows NeoAccess to locate objects
quickly by using binary search algorithms.

2. CNeoPersist

Application-specific objects encapsulate the
intelligence of your application. They are the
value that you add to the Macintosh. The raison
d’être of your application is to provide a
mechanism that allows users to manipulate
these objects. The important application-
specific objects are generally persistent objects.
Users create something that they can come back
to and work with again later. In order for this to

Contents

Contents

happen, applications need to include a
mechanism that preserves the state of these
objects after the application has quit, and which
can be used to locate the objects again later.

Using NeoAccess, all persistent classes are
based on the class CNeoPersist. The methods
and data members of CNeoPersist provide the
know-how and state that allows NeoAccess to
manage an object’s persistence. The abbreviated
class definition of CNeoPersist given below
shows the kind of operations one might use to
manipulate an object’s persistence.
class CNeoPersist {
public:

/** Instance Methods **/
CNeoPersist(void);

virtual ~CNeoPersist(void);
virtual NeoID getClassID(void) const;

/** I/O Methods **/
virtual void readObject(CNeoStream *aStream, const NeoTag aTag);
virtual void writeObject(CNeoStream *aStream,

Contents

Contents

const NeoTag aTag);
virtual Boolean commit(CNeoDatabase *aDatabase,

 const Boolean aCompletely,
 const Boolean aCompress);

/** Searching Methods **/
static void * Find(CNeoDatabase *aDatabase, const NeoID aClassID,

 CNeoSelect *aKey, const Boolean aDeeply,
 NeoTestFunc1 aFunc = nil, void *aParam = nil,
 const NeoLockType aLock = kNeoDefaultLock);

static void * FindByID(CNeoDatabase *aDatabase,
const NeoID aClassID, const NeoID aID,
const Boolean aDeeply,
NeoTestFunc1 aFunc = nil,
void *aParam = nil,
const NeoLockType aLock = kNeoDefaultLock);

/** Persistence Methods **/
virtual void add(void);
virtual void remove(void);
virtual void relocate(const NeoMark aNewMark);
void setDirty(const NeoDirty aReason = kNeoChanged);

/** Concurrency Methods **/
void referTo(void);
void unrefer(void);
void autoReferTo(void);
void autoUnrefer(void);

/** Instance Variables **/
NeoID fID; // Symbolic ID of this object
Boolean fLeaf : 1; // True if not an inode.
Boolean fRoot : 1; // Is the root of the tree?
Boolean fBusy : 1; // Object being manipulated
NeoDirty fDirty : 2; // Memory/file states differ
NeoMark fMark; // Location in database
CNeoPersist * fParent; // Object’s parent
NeoRefCnt fRefCnt; // Purgeable when zero
};

a. Adding an Object

Let’s look at some of the methods under the “Persistence Methods” category. The method add allocates space for
the object in the database and verifies that the object has a non-zero identity. An object’s identity is a 4-byte value
often used to uniquely identify an object in the database. By default, objects of a particular class are sorted in
ascending order by id value. So an object’s identity may be important. But note that the object’s add method is not
the method an application developer would use to make an object persistent. When we look at the database class a
bit later you’ll see that its addObject method, which eventually calls the object’s add method, should be used
instead.

Contents

Contents

b. Deleting an Object

Immediately below add is the method remove. Inevitably, an application will need to delete objects from a
database. But again, application developers use the database's

Contents

Contents

removeObject method to remove an object from the database. The object’s remove method is called during
this process to free the file space allocated for the object being removed. Note though, that an object continues to
exist in memory after it has been removed from a database. It can be manipulated just like any other object. It can
even be re-inserted in the same or any other database at some later point.

c. Locating Objects

We’ll come back and discuss some of the other persistence methods in a moment. But first let’s look at a couple of
methods under “Searching Methods”. FindByID is used to locate an object (or set of objects) having a given
identity. For example, an image object refers to a camera by its id. NeoDemo uses FindByID to locate the camera
using the following call:

camera = (CNDCamera *)CNeoPersist::FindByID(gNeoDatabase, kNDCameraID,
aCameraID, FALSE);

The first argument is the database to search. The global variable gNeoDatabase always refers to the database for
the current document. The second argument is the class of object we’re looking for. In this case, we’re looking for a
camera. The constant kNDCameraID is the class id used to refer to the CNDCamera class. Just as an object’s
identity is defined by an object id, class ids refer to classes. The third argument is the identity of the camera object
we are looking for. The fourth argument indicates whether all subclasses of CNDCamera should be searched as
well. This ability to search for an object according to any of its base classes is very useful. In this example there are
no subclasses of CNDCamera, so this argument is false.

FindByID is capable of locating a camera very quickly because camera objects are indexed by identity. This
means that NeoAccess can use a binary search, which is very fast. But sometimes an application needs to locate
objects using a selection criterion that is not a key. For example, Toby often looks at only those images that have a
particular keyword. It is fairly easy for NeoDemo to do this even though images are not indexed by keyword. That’s
because the database object has a very powerful method, findObject, which can be used to locate objects based
on any criteria you can imagine. NeoAccess optimizes queries to search the database using a index if at all possible.
But if the search can’t be done using an index, like searching for an image by keyword, then a linear search of the
database is done.

d. Changes to an Object’s State

Another common occurrence in an application is when the permanent state of an object changes. For example, Toby
may add a keyword to an image. That changes the object’s state. This change needs to propagate back to the
database. When the keyword list of an object is changed, the object’s setDirty method is called. This marks the
object as being different than its state in the database. Newly added objects are also marked dirty by NeoAccess. If
dirty objects are not written back out to the database, then they revert back to their previous state when the database
is closed and then reopened. The process of synchronizing the on-disk state of objects with their in-memory state is
performed by the commit method of the database object. It is called in NeoDemo when Toby does a Save or Save
As. Notice that applications don’t need to keep track of which objects are dirty; NeoAccess does that for them. And
unlike most persistence mechanisms which rewrite the

Contents

Contents

entire database at once, only those objects that are dirty need to be written out when saving a database.

e. Object Sharing

CNeoPersist provides a sharing property to its subclasses that greatly simplifies intra-application concurrency
issues. Every persistent object has a reference count which is used to insure that an object is not deleted from
memory while there are still references to it. The reference count is initialized to one when an object is instantiated.
A reference is automatically added by the database's addObject method and by the searching methods, and is
decremented by the database's removeObject method. When the object’s unrefer method is call the count is
decremented, but the object is only freed if the reference count is zero (meaning all references are deleted). The end
result is that one component of an application doesn’t need to be aware of whether an object that it refers to is
referred to by another component. The object stays in memory as long as it needs to, and no longer.

As you can see, adding, removing, locating and changing objects in a NeoAccess database is fairly easy. Notice that
the logistics of how objects are organized and where they are located in the database is for the most part transparent
to the programmer. Also note that only those objects that are of immediate interest to the application need to be in
memory. Yet simplicity and compactness does not compromise versatility. Indeed, applications such as NeoDemo
are object-driven, so versatility is increased while complexity is reduced.

The NeoDemo Class Tree

Now that we have an understanding of what
NeoAccess does, let’s take a look at how
NeoDemo uses these capabilities. The first thing
to consider is the set of persistent classes that
the application defines and their relationship to
the CNeoPersist class and to one another.

CNDGIFImage

CNDPICTImage

CNDTIFFImage

CNDImageCNeoBlob

CNDCamera

CNeoPersistTCLCNeoPersist

FIGURE 5 - NEODEMO PERSISTENT CLASS TREE

As you might expect, CNeoPersistTCL is the

Contents

Contents

base class of all persistent classes. One of its
immediate subclasses is called CNeoBlob.
Though object-oriented developers strive to
make everything an object; the fact remains that
not everything can be. NeoAccess provides an
abstract class, CNeoBlob, in recognition of this
fact. CNeoBlob is an abstract base class of
persistent objects that is used to store and locate
free-form, variable-length, non-object entities in
a NeoAccess database.

If you include the environment-specific and
environment-neutral derivatives of CNeoPersist,
there are a total of eight classes in NeoDemo’s
database. Five of these are specific to
NeoDemo. These application-specific classes
are of two general types; images and cameras.
There is one camera class and a base image
class with three subclasses; CNDImagePICT,
CNDImageTIFF and CNDImageGIF. The
image classes are based on CNeoBlob. It is
significant to note that the only difference

Contents

Contents

between a PICT image and a

Contents

Contents

TIFF image is the implementation of their
draw method. The other capabilities and data
members are inherited from CNDImage.

Class objects are added to the database in
CNeoDemoDoc::NewFile around the time it
is created. I would like to extend NeoDemo so
that Toby can add new cameras to the database.
But for now the four cameras that he typically
uses are added automatically at the time the
classes are added.
exposure[0] = -125; /* 1/125 second */
camera = new CNDCamera("\pKodak", 1, exposure);
camera->fID = 3;
((CNeoDatabase *)itsFile)->addObject(camera);
camera->unrefer();

Notice how simple it is to add a camera object. The exposures array which indicates the shutter speeds supported by
the camera is filled in first. Then a new camera object is created and initialized. The method addObject is used to
add the camera to the database. We no longer need to refer to a object once it is added to the database, so we call
unrefer to remove our reference to it.

1. Cutting, Copying and Pasting Images

NeoAccess provides a streams-based mechanism for reading and writing objects. The abstract base class
CNeoStream provides an interface through which basic data types can be read in or written out. This base class is
subclassed to build a file stream class, CNeoFileStream, for preserving and restoring objects in a file, and a TCL-
specific class, CNeoScrapStream, for reading from and writing to the clipboard.

The interface to CNeoPersist, the base persistence class of NeoAccess, includes a pair of object serialization
methods, readObject and writeObject, which are used to serialize the persistence state of objects to and
from NeoAccess streams. Subclasses of CNeoPersist override these methods so that their persistent data members
are also preserved and restored appropriately. For the most part, readObject and writeObject methods can
be written without regard for the type of stream being used. The advantage of this approach is that a single set of
methods can be used to preserve and restore a class’s state to any number of different stream types.

Contents

Contents

The method CNeoDemoDoc::doCutCopy puts an image object onto the scrap using a scrap stream.

Contents

Contents

Boolean CNeoDemoDoc::doCutCopy(const Boolean aCut)
{
Boolean pass = TRUE;
Handle scrap = nil;
CNDImage * image;
CNeoScrapStream stream('IMGE'); // stream object that reads images

if (!fIndex) // If there is no current image
return pass; // then there is nothing to do.

image = getImage(fIndex); // Get the current image.
if (image) { // It better be there!

updateImage(image); // Just in case user has changed it.

image->writeObject(&stream, kNeoAllTag); // Write it to scrap.

if (aCut) { // Is this a Cut operation?
((CNeoDatabase*)itsFile)->removeObject(image);
removeImage(fIndex); // Remove image from the database.

}
image->unrefer(); // Remove our reference to it.
pass = FALSE; // No need to pass this command on.

}

return pass;
}

The blob portion is written to the scrap as format PICT data. Any application capable of using the image in PICT
format should be able to accept this type of scrap. The other data members of CNDImage, such as photographer and
exposure data, are written as format IMGE data. NeoDemo is the only one that understands this format. But having
the image object in the scrap allows Toby to copy an image from one NeoDemo document to another without losing
this data.

Images are added by pasting them into a document in the method doPaste. The arguments to readObject refer
to the input stream and the amount of data to read. The value kNeoAllTag means to get all you can get.

image->readObject(&stream, kNeoAllTag);

pict = (PicHandle)image->getBlob();
if (pict) {

showBorders(TRUE);
((CNeoDatabase *)itsFile)->addObject(image);// add it to database
setItems(image); // OK, so let's see it
pass = FALSE; // don’t pass it on

}
else { // false paste

fImageArray->DeleteItem(fIndex); // remove from array
fIndex--; // go back to previous

}
image->unrefer(); // remove reference

Contents

Contents

Scrap data of format IMGE is available only if the scrap was put there by NeoDemo. If the image came from some
other app that doesn’t support IMGE data (a.k.a., everybody else), then the image object is initialized with default
data. The actual image is in the standard PICT format. The method CNeoBlob::readObject calls the stream’s
readBlob method to copy this free form data off of the scrap.

2. Saving a Document

After a new image is pasted into a document, Toby needs to enter the technical details about where it was shot and
under what conditions. This changes the state of the image object in memory. Each time a permanent data member
of an image changes, the setDirty method is called to mark the object as needing updating in the database.
Database updating in NeoDemo occurs when the Save or Save As menu items are selected.

The method DoSave is where the actual database update occurs. Most of the details having to do with committing
changes is taken care of by the DoSave method of CNeoDocTCL, NeoAccess’s TCL-specific document class. The
only thing left for CNeoDemoDoc to worry about is whether all the data has been copied out edit fields of the
dialog box.

Boolean CNeoDemoDoc::DoSave(void)
{
CNDImage * image;

if (itsWindow &&
fIndex) {
image = getImage(fIndex);
if (image) {

updateImage(image);
image->unrefer();

}
}

return NeoInherited::DoSave();
}

Objects can be added, deleted and searched for in a memory-based CNeoDatabase object before a Macintosh file
has been specified and opened for it. CNeoDocTCL::DoSave calls DoSaveFileAs to specify and open the
database when this is the case. Updating the database is done with a call to the database's commit method. The
single argument to this call indicates whether the database object should attempt to reduce the amount of file space
the database uses on disk. This may slow down the commitment operation but can reduce the database's size
dramatically if objects have been deleted.

3. Searching for Images

The usefulness of assigning keywords to images is that NeoDemo includes a facility for selecting a subset of images
having a given data format and keyword. Toby asked for this because, though a database may contain hundreds or
even thousands of images at a time, he may be interested in only those of a particular type, like PICT, having a
specific keyword.

Contents

Contents

short CNeoDemoDoc::setSelectionByKeyword(const NeoID aClassID,
char *aKeyword)

{
CNeoKeywordSelect * key;

// get current data into image object before starting search
updateImage(nil);

emptyImageArray();

key = getKeywordKey(aKeyword);
((CNeoDatabase*)itsFile)->findObject(aClassID, key,

 (aClassID == kNDImageID),
 CNDImage::GetImageID,
 (void *)fImageArray);

fIndex = 0;
fScrollObj->itsHorizSBar->SetMaxValue(fImageArray->numItems -1);

if (fImageArray->numItems > 0)
gotoImage(1, FALSE);

else
setItems(nil);

return fImageArray->numItems;
}

CNeoDemoDoc::setSelectionByKeyword is called when the Find button of the extended window is
pressed. The arguments indicate the class id of the images to look for (kNDImagePICTID, kNDImageTIFFID,
kNDImageGIFID or kNDImageID to indicate all types) and the keyword of interest.

The getKeywordKey method normalizes the given keyword to lower case and creates a corresponding select key
which is passed to the database's findObject method to locate images having the given keyword.

The search mechanisms provided by NeoAccess use a very powerful and flexible selection mechanism based on
objects having a base class of CNeoSelect. CNeoKeywordSelect is a subclass of CNeoSelect. It is a type of
selection criterion (also called select key) that’s used to locate objects based on their identity.

The first argument to findObject is the class id of objects to search. This value was passed to
setSelectionByKeyword. The second argument is the select key. The third argument being TRUE indicates
that all subclasses of the class referred to by the first argument should also be searched. So when the base class is
CNDImage, then all images classes are searched. The fourth argument is a pointer to the function to be applied to
each object in turn. Finally, the last argument is a pointer to data shared between the caller of findObject and
the function. This can be anything, but in this case it is an array pointer into which the object id of each object
having the keyword will be placed.

Contents

Contents

void *CNDImage::GetImageID(CNeoPersist *aObject,
 const NeoLockType aLock, void *aParam)

{
CNDImage * image;

image = (CNDImage *)aObject;

((CArray *)aParam)->InsertAtIndex(&(image->fID), 0x7FFFFFFF);

return nil;
}

The function applied to each object, GetImageID, is quite simple. Its arguments are a pointer to an image object
and a pointer to the results array. The object id of each image is added to the end of the results array.

Summary

Photographer’s Assistant was a very
straightforward little application to write. The
vast majority of code written for it is necessary
to support the user-interface. The storage and
retrieval of persistent data and objects in the
application is all handled by NeoAccess. This
simple application can be used as a pumped up
scrapbook if you like. But its real value is as an
example of how easily the issue of object
persistence can be addressed using NeoAccess.

Contents

