
The AppleEvent Builder/Printer

Apple Events The Æ Builder/Printer
Version 1.3.3

Jens Peter Alfke
11 October 1993

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

AppleScript Team
© Apple Computer, Inc. 1991–1993

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Contents

Contents... iii
Introduction..1

OK, What Is It? 1

What’s New? 2

How To Call the Functions..3

AEBuild 3

AEBuildParameters 4

AEBuildAppleEvent 4

AEPrint 5

Descriptor-String Syntax... 6

Basic Types 6

Coercion 7

Lists 8

Records 8

Apple Events 9

Substituting Parameters 10

Descriptor-String Grammar..11

An Example & Timing Comparison... 13

C Code Using Object-Packing Library 13

Descriptor String 15

AEBuild Call 16

Timing Conclusions 17

The Demo Program.. 18

The Header Files...19

AEBuild.h 19

AEBuildGlobals.h 20

AEPrint.h 20

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Introduction

OK, What Is It?

Even with the helpful Object Support Library routines that assemble common Apple event
object descriptors, building descriptors and events is still a pain. I’ve written a library of two
functions that make it quick and easy to build or display Apple event descriptors and the
Apple events themselves.

The AEBuild function takes a format string — a description in a very simple language of an Apple event descriptor —

and generates a real descriptor (which could be a record or list or event) out of it. The AEPrint function does the

reverse: given an Apple event descriptor, list or record, it prettyprints it to a string. (The resulting string, if sent to
AEBuild, would reproduce the original AEDesc structure.)

AEBuild can plug variable parameters into the structures it generates — as with printf, all you do is put marker

characters in the format string and supply the parameter values as extra function arguments.

The benefits of using this library are fourfold:

i It’s easier for you to write the code to build Apple event structures. You only have to remember one

function call and a few simple syntax rules. Your resulting code is also easier to understand.
i As of version 1.2, your code is even faster: AEBuild is three to four times as fast as the regular Apple

Event Manager routines at constructing complex structures. (Your mileage may vary.)
i Your code is smaller: the code for AEBuild and the AEStream library is about 6k in size, and the

overhead for each call is minimal. (Most of the descriptor string consists of the same four-letter codes you’d be

using in your program code anyway, and the strings can even be stored in resources for more code savings.)
i AEPrint helps in debugging programs, by turning mysterious AEDesc structures into human-

readable text.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

What’s New?

In version 1.3:

• A new function, AEPrintSize, computes how long the string built by AEPrint would be, without actually

creating it. This is useful if you want to allocate storage for the string dynamically.

• AEPrint no longer truncates hex dumps (of unknown descriptors) after 32 bytes.

And in version 1.3.2:

• AEPrint no longer uses the stdio library. This should help reduce code size (and eliminate some problems in code

resources) but to do it I had to cripple floating-point display. Floating-point descriptors now print as the integer part
followed by “.XXXX”.

And in version 1.3.3:

• After a brilliant suggestion by Rob Dye, AEPrint now uses the built in float-to-text coercion to display floating-point

descriptors.

• Fixed a possible problem with AEBuild input strings containing Return characters, in the MPW version of the library.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

How To Call the Functions

These are all C functions. They all take variable number s of
arguments, so they’d be difficult or impossible to call from Pascal,
anyway. (And remember, kids: there are no Pascal compilers for
the PowerPC chip…)

AEBuild

OSErr
AEBuild(AEDesc *desc, const char *descriptorStr, ...),
vAEBuild(AEDesc *desc, const char *descriptorStr, void *args);

AEBuild reads a null-terminated descriptor string (usually a constant, although it could come from anywhere), parses it

and builds a corresponding AEDesc structure. (Don’t worry, I’ll describe the syntax of the descriptor string in the next

section.) If the descriptor string contains magic parameter-substitution characters (“@”) then corresponding values of the

correct type must be supplied as function arguments, just as with printf.

(vAEBuild is analogous to vprintf: Instead of passing the parameters along with the function, you supply a

va_list, as defined in <stdarg.h>, that points to the parameter list. It’s otherwise identical.)

AEBuild returns an OSErr. Any errors returned by Apple Event Manager routines while building the descriptor will be

sent back to you. The most likely results are memFullErr and errAECoercionFail. Also likely is

aeBuildSyntaxErr, resulting from an incorrect descriptor string. (Make sure to debug your descriptor strings,

perhaps using the demo application, before you put them in programs!)

The basic version of AEBuild just reports that a syntax error occurred, without giving any additional information. If you

want to know more (perhaps the string came from a user, to whom you’d like to report a helpful error message) you can

use the other version of the library. This version includes a wee bit of extra code, and two global variables that will

contain useful information after a syntax error:

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
extern AEBuild_SyntaxErrType

AEBuild_ErrCode;
extern long

AEBuild_ErrPos;

AEBuild_ErrCode is an enumerated value that will contain a specific error code. The error codes are defined in

AEBuild.h. AEBuild_ErrPos will contain the index into the descriptor string at which the error occurred: usually one

character past the end of the offending token.

AEBuildParameters

OSErr AEBuildParameters(AppleEvent *event, const char *descriptorStr, ...);

AEBuildParameters adds parameters and/or attributes to an existing Apple event. descriptorStr specifies the

parameters (required and optional) and attributes. Its syntax is described below (see especially the Apple Event Descriptor
Strings subsection); it’s almost the same as the syntax for AEBuild, with a few additions and modifications.

(vAEBuildParameters is analogous to vprintf: Instead of passing the parameters along with the function, you

supply a va_list, as defined in <stdarg.h>, that points to the parameter list. It’s otherwise identical.)

AEBuildAppleEvent

AEBuildAppleEvent(AEEventClass theClass, AEEventID theID,
DescType addressType, void *addressData, long addressLength,
short returnID, long transactionID,
AppleEvent *event,
const char *descriptorStr, ...);

AEBuildAppleEvent is like AEBuild but builds an Apple event, including parameters and attributes. Or, you could

say that it’s like AEBuildParameters but creates the event from scratch.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Most of the parameters are just like the parameters to AECreateAppleEvent, although you pass the target address

data directly, instead of via a pre-built descriptor. The resulting Apple event will appear in the event parameter.

descriptorStr specifies the parameters (required and optional) and attributes. The syntax is described below (see

especially the Apple Event Descriptor Strings subsection); it’s almost the same as the syntax for AEBuild, with a few

additions and modifications.

(vAEBuildAppleEvent is analogous to vprintf: Instead of passing the parameters along with the function, you

supply a va_list, as defined in <stdarg.h>, that points to the parameter list. It’s otherwise identical.)

AEPrint

OSErr AEPrint(AEDesc *desc, char *bufStr, long bufSize);

AEPrint reads the Apple event descriptor desc and writes a corresponding descriptor string into the string pointed to

by bufStr. It will write no more than bufSize characters, including the trailing null character. Any errors returned by

Apple Event Manager routines will be returned to the caller; this isn’t very likely unless the AEDesc structure is

somehow corrupt.

The descriptor string produced, if sent to AEBuild, will build a descriptor identical to the original one. AEPrint tries to

detect AERecords that have been coerced to other types and print them as coerced records. Structures of unknown type

that can’t be coerced to AERecords are dumped as hex data.

AEPrint can also print complete Apple events as well as regular descriptors. The syntax of the resulting string for an

event is like that used by AEBuildParameters and AEBuildAppleEvent, except that:

• The string begins with the event class and ID separated by a backslash.

• the parameter list is surrounded by curly braces.
• Attributes are also displayed; they look like parameters but are preceded by “&”s.

u The builder functions do not accept this event syntax yet. u

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

AEPrintSize

OSErr AEPrintSize(AEDesc *desc, long *bufSizeNeeded);

AEPrintSize computes the buffer size that AEPrint would require if given the same descriptor. (The size is equal to

the string length, plus 1 byte for the trailing null.) This is handy for pre-flighting AEPrint, if you want to allocate the

buffer dynamically instead of relying on one of fixed size .

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Descriptor-String Syntax

The real meat of all this, of course, is the syntax of the descriptor
strings. It’s pretty simple: basic data types like numbers and strings
can be described directly, and then built up into lists and records.
I’ve even provided a pseudo-BNF grammar (next section) for those
of you who actually enjoy reading those things.

Basic Types

The fundamental data types are:

Type Examples Type-code Description

Integer 1234
-5678

'long' or

'shor'
A sequence of decimal digits, optionally

preceded by a minus sign.

Enum/Type
Code

whos
longint
'long'
<=
'8-)'
‘ZQ 5’
m

'enum'

(Use coercion to

change to
'type')

A magic four-letter code. Will be truncated or

padded with spaces to exactly four characters.

If you put straight or curly single-quotes

around it, it can contain any characters. If not,
it can’t contain any of: @‘'“”:-,([{}])

and can’t begin with a digit.

String “A String.”
“Multiple lines
are okay.”

'TEXT' Any sequence of characters within open and

close curly quotes. Won’t be null-terminated.

Hex Data «4170706C65»
«0102 03ff
 e b 6 c»

??

(Must be coerced

to some type)

An even number of hex digits between French

quotes (Option-\, Option-Shift-\). Whitespace

is ignored.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

u Yes, you have to use the actual four-letter codes for enums, type codes, keywords and object types, instead of the

mnemonic constants. Luckily the codes are semi-mnemonic anyway. I did it this way to avoid the massive overhead,

both in code size and execution speed, of a symbol table. You can find the definitions of the constants in the text file

“AEObjects.p”, which is part of the Apple Events Object Support Library. u

Coercion

Any basic element (except a hex string) by itself is a descriptor, whose descriptorType is as
given in the table. You can coerce a basic element to a different type by putting it in
parentheses with a type-code placed before it. Here are some examples:

sing(1234)
type(line)
long(CODE)
hexd(“A String”)
'blob'(«4170706C65»)

u Coercions of numeric values are effected by calling AECoerceDesc; if the coercion fails, you’ll get an

errAECoercionFail error returned to you. Coercions of other types just replace the descriptorType field of

the AEDesc. u

u Hex strings must be coerced to something, since they have no intrinsic type. u

You can also coerce nothing, to get a descriptor with zero-length data:

emty()

Even the type can be omitted, leaving just (), in which case the type is 'null'.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Lists

To make an AEDescList, just enclose a comma-separated list of descriptors in square brackets. For example:

[123, -456, “et cetera”]
[sing(1234), long(CODE),
 [“wheels”, “within wheels”]]
[]

The elements of a list can be of different types, and a list can contain other lists or records (see below) as elements.

Lists cannot be coerced to other types; the type of a list is always 'list'.

Records

An AERecord is indicated by a comma-separated list of elements enclosed in curly braces. Each element of a record

consists of a keyword (a type-code, as described under Basic Types) followed by a “:”, followed by a value, which can be

any descriptor: a basic type, a list or another record. For example:

{x:100, y:-100}
{'origin': {x:100, y:-100}, extent: {x:500, y:500},
 cont: [1, 5, 25]}
{}

The default type of a record is 'reco'. Many of the Apple Events Object Model structures are AERecords that have been

coerced to some other data type, like 'indx' or 'whos'. You can coerce a record structure to any type by preceding it

with a type code. For example:

rang{ star: 5, stop: 6}

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

s Warning Coercing to an existing type, such as 'bool' or 'TEXT', is a bad idea.

Anyone parsing the descriptor (including AEPrint) will recognize the type and assume that the data

has the normal interpretation, which in this case it wouldn’t. Bad to awful things would happen.

Don’t do it.

Apple Events

The syntax of the formatting string for an entire Apple event (as passed to
AEBuildAppleEvent) is almost identical to that of a record. Each keyed element specified in the string becomes a

parameter or attribute of the event. The differences are:

• There are no curly-braces at the beginning and end of the string.

• The character “~” before a parameter keyword makes it optional.

Here’s an example of how to construct an Open Selection event for the Finder:

AliasHandle parent, itemToOpen;
const OSType finderSignature = 'MACS';
AppleEvent event;
OSErr err;

// Construct the aliases here (not shown)

err= AEBuildEppleEvent(
'FNDR', 'SOPE',
typeApplSignature, @finderSignature, sizeof(finderSignature),
kAutoGenerateReturnID, kAnyTransactionID,
&event, // Event to be created
"----: alis(@@), fsel: [alis(@@)]", // Format string

parent, // param for 1st @@
itemToOpen // param for 2nd @@

);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Substituting Parameters

To plug your own values into the midst of a descriptor, use the magic “@” character. You can use “@”

anywhere you can put a basic element like an integer. Each “@” is replaced by a value taken from the parameter list sent to

the AEBuild function. The type of value created depends on the context in which the “@” is used: in particular, how it’s

coerced.

Type Coerced to: Type of fn parameter read: Comments:

No coercion AEDesc* A plain “@” will be replaced with a descriptor

parameter.

Numeric (bool, shor,

long, sing, doub, exte)

short, short, long, float,

short double, double

Remember that THINK C’s double

corresponds to type 'exte'!

TEXT char* Pointer to a null-terminated C string.

Any other type long followed by void* Expects a length parameter followed by a

pointer to the descriptor data.

s Important Note particularly: that TEXT parameters must be null-terminated strings,

although the resulting descriptor data will not be null-terminated; and that the general case expects

two parameters: the data’s size and location. s

In addition, you can substitute data from a handle by using two @ signs. An “@@” parameter will read a single handle from the parameter list

and use the data pointed to by that handle as the value of the descriptor. The “@@” must be coerced so that AEBuild will

know what type to make the descriptor; however, the type coerced to can be anything (the table above is ignored.)

This mechanism is still a bit limited, and may well be improved in the future.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Descriptor-String Grammar

Since no language, however small, can be taken seriously unless it
comes fully equipped with a formidable-looking BNF grammar
specification, I here present one. No attempt has been made to
prevent Messrs. Backus and/or Naur from rolling over in their
respective graves.

Character Classification:

whitespace ‘ ’, ‘\r’, ‘\n’, ‘\t’
digit 0 … 9
paren, bracket,
braces (,), [,], {, }
single-quote '
double quotes “, ”
hex quotes «, »
colon :
comma ,
at-sign @
identchar any other printable character

Tokens:

ident ::= identchar (identchar | digit)*—Padded/truncated

' character* ' to exactly 4 chars

integer ::= [-] digit+ —Just as in C

string ::= “ (character)* ”

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

hexstring ::= « (hexdigit | whitespace)* » —Even no. of digits, please

Grammar Rules for AEBuild:

formatstring ::= obj —This is the top level of syntax

obj ::= data —Single AEDesc; shortcut for (data)
structure —Un-coerced structure
ident structure —Coerced to some other type

structure ::= (data) —Single AEDesc
[objectlist] —AEList type

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
{ keywordlist } —AERecord type

objectlist ::= «blank» —Comma-separated list of things

obj [, obj]*

keywordpair ::= ident : obj —Keyword/value pair
keywordlist ::= «blank» —List of said pairs

keywordpair [, keywordpair]*

data ::= @ —Gets appropriate data from fn param
integer —'shor' or 'long' unless coerced
ident —A 4-char type code ('type') unless coerced
string —Unterminated text; 'TEXT' type unless coerced
hexstring —Raw hex data; must be coerced to some type!

Grammar Rules for AEBuildAppleEvent:

eventstring ::= evtkeywordlist —Top level syntax for AEBuildAppleEvent

evtkeywordpair ::= [~] ident : obj —Keyword/value pair

evtkeywordlist ::= «blank» —List of said pairs

evtkeywordpair [, evtkeywordpair]*

There. Now it’s all crystal-clear, right?

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

An Example & Timing Comparison

As an example, I’ll take a C function to generate an object
descriptor (taken from a Pascal example in the Object Model ERS,
fleshed out and with gobs of error checking added) and turn it into a
call to AEBuild. The object descriptor we want to generate is:

First line of document 'Spinnaker' whose first word is 'April'

and whose second word is 'is'

Then I’ll execute both functions and compare their execution times.

C Code Using Object-Packing Library

OSErr
BuildByHand(AEDesc *dDocument, AEDesc *theResultObj)
{

OSErr err;
AEDesc dObjectExamined, dNum, dWord1, dWord2, dAprilText, dIsText,

 dComparison1, dComparison2, dLogicalTerms, dTheTest, dLineOne, dTestedLines;

dObjectExamined.dataHandle = /* Zero things to start out with so we can safely */
dNum.dataHandle = /* execute our fail code if things don't work out */
dWord1.dataHandle =
dWord2.dataHandle =
dAprilText.dataHandle =
dIsText.dataHandle =
dComparison1.dataHandle =
dComparison2.dataHandle =
dLogicalTerms.dataHandle =
dTheTest.dataHandle =
dLineOne.dataHandle =
dTestedLines.dataHandle =

NIL;

if(err= AECreateDesc('exmn', NIL, 0, &dObjectExamined))
goto fail;

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
if(err= MakeIndexDescriptor(1,&dNum))

goto fail;

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
if(err= MakeObjDescriptor('word', &dObjectExamined, formIndex, &dNum,

false, &dWord1))
goto fail;

if(err= AECreateDesc('TEXT', "April", 5, &dAprilText))
goto fail;

AEDisposeDesc(&dNum);
if(err= MakeIndexDescriptor(2,&dNum))

goto fail;
if(err= MakeObjDescriptor('word', &dObjectExamined, formIndex, &dNum,

true, &dWord2))
goto fail;

if(err= AECreateDesc('TEXT', "is", 2, &dIsText))
goto fail;

if(err= MakeCompDescriptor('= ', &dAprilText, &dWord1, true, &dComparison1))
goto fail;

if(err= MakeCompDescriptor('= ', &dIsText, &dWord2, true, &dComparison2))
goto fail;

if(err= AECreateList(NIL, 0, false, &dLogicalTerms))
goto fail;

if(err= AEPutDesc(dLogicalTerms, 1, dComparison1))
goto fail;

if(err= AEPutDesc(dLogicalTerms, 2, dComparison2))
goto fail;

AEDisposeDesc(&dComparison1);
AEDisposeDesc(&dComparison2);

if(err= MakeLogicalDescriptor(&dLogicalTerms, 'AND ', true, &dTheTest))
goto fail;

if(err= MakeObjDescriptor(classLine,&dDocument,formTest,&dTheTest,true,
&dTestedLines))

goto fail;

if(err= MakeIndexDescriptor(1,&dLineOne))
goto fail;

if(err= MakeObjDescriptor(classLine, &dTestedLines, formIndex, &dLineOne,
true, theResultObj))

goto fail;
return noErr;

fail: /* Clean up in case we couldn't build it */
AEDisposeDesc(theResultObj);
AEDisposeDesc(&dObjectExamined);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
AEDisposeDesc(&dNum);
AEDisposeDesc(&dWord1);
AEDisposeDesc(&dWord2);
AEDisposeDesc(&dAprilText);
AEDisposeDesc(&dIsText);
AEDisposeDesc(&dComparison1);
AEDisposeDesc(&dComparison2);
AEDisposeDesc(&dLogicalTerms);
AEDisposeDesc(&dTheTest);
AEDisposeDesc(&dLineOne);
AEDisposeDesc(&dTestedLines);

return err;
}

MPW 3.2b5 C compiled this into 816 bytes of object code.

I found that the average time to execute this function was 0.0188 seconds (Quadra 700) or 0.0113 seconds (IIfx).1† Use this figure for

comparison only; your times may vary. The timing is especially dependent on the number of blocks in the heap, since so many block

allocations and disposals are happening.

Descriptor String

obj{ want:type('line'),
 from: obj{ want: type('line'), from: @, form: 'test',
 seld: logi{
 term: [comp{ relo:=, obj1:“April”,
 obj2:
 obj{ want:type('word'), from:exmn(), form:indx, seld:1 }},
 comp{ relo:=, obj1:“is”,
 obj2:
 obj{ want:type('word'), from:exmn(), form:indx, seld:2 }}
],
 logc:AND
 }
 },
 form: 'indx',
 seld: 1
}

1† Yes, it really took half again as long on a Quadra! I think that cache flushing during the PACK call is responsible. (It barely slows

down at all when you disable the caches.)

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

AEBuild Call

char descriptor[] = /* Same descriptor string as above. Note clever */
"obj{ want:type('line')," /* method used to break string across lines. */
 "from: obj{ want: type('line'), from: @, form: 'test'," /* Note parameter here */
 "seld: logi{"
 "term: [comp{ relo:=, obj1:“April”,"
 "obj2:"
 "obj{ want:type('word'), from:exmn(), form:indx, seld:1 }},"
 "comp{ relo:=, obj1:“is”,"
 "obj2:"
 "obj{ want:type('word'), from:exmn(), form:indx, seld:2 }}"
 "],"
 "logc:AND"
 "}"
 "},"
 "form: 'indx',"
 "seld: 1"
"}";

void PackWordDesc(AEDesc *dDocumentObject) /* “Spinnaker” descriptor is a parameter */
{

err = AEBuild(&theResultObj,
descriptorString,
dDocumentObject); /* AEDesc* parameter for "@" */

}

MPW 3.2b5 C compiled this into 42 bytes of object code, plus 310 bytes of data storage for the string.

I found that the average time to execute this function was 0.0049 seconds (Quadra 700) or 0.0070 seconds (IIfx). Use this figure for

comparison only; your times may vary. The timing is dependent on the number of blocks in the heap, since heap blocks are being

allocated and resized.

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

Timing Conclusions

With previous versions of this library, there was a 70% increase in execution time when using
the AEBuild routine. After delivering the bad news, I wrote:

However, if speed does become an issue, there is always the option of turbocharging AEBuild by

having it directly build descriptors without going through the Apple Event Manager functions at all. This

would save an incredible number of Memory Manager calls and probably increase performance
severalfold. Anyone using AEBuild will get all these improvements for free.

This is exactly what I did in version 1.1. In fact, I wrote a library (AEStream) to do it, so you can do it too. It’s easy.

AEBuild is now 1.5 to 4 times as fast (depending on CPU) as the using the Apple Event Manager and/or Object

Packing Library routines. (This means that AEStream was responsible for a threefold speed-up in AEBuild. Not bad,

when you take into account other overhead like parsing the format string!)

Needless to say, if you were already using AEBuild you get this speed increase absolutely free. Enjoy!

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The Demo Program

I’ve included a demonstration program in the distribution. This is a
program I used to debug the library. It reads a line of input, uses
AEBuild to translate it into an AEDesc, uses AEPrint to translate
the AEDesc back into a string, and prints each resulting string.
Error codes are reported, including syntax-error messages. The
source code is provided in case you want to see how the functions
are called.

s Warning The demo tool does not handle parameter substitution (the “@” character). If

you try to substitute parameters, messy and unpleasant things may happen. Use some numeric value
in place of parameters, and then replace it with “@”s after you paste the string into your program. s

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer

The Header Files

Here for your convenience are printouts of the header files as of 21
July 1992.

AEBuild.h

#define aeBuild_SyntaxErr 12345 /* Let's get an Official OSErr code someday */

typedef enum{ /* Syntax Error Codes: */
aeBuildSyntaxNoErr = 0, /* (No error) */
aeBuildSyntaxBadToken, /* Illegal character */
aeBuildSyntaxBadEOF, /* Unexpected end of format string */
aeBuildSyntaxNoEOF, /* Unexpected extra stuff past end */
aeBuildSyntaxBadNegative, /* "-" not followed by digits */
aeBuildSyntaxMissingQuote, /* Missing close "'" */
aeBuildSyntaxBadHex, /* Non-digit in hex string */
aeBuildSyntaxOddHex, /* Odd # of hex digits */
aeBuildSyntaxNoCloseHex, /* Missing "»" */
aeBuildSyntaxUncoercedHex, /* Hex string must be coerced to a type */
aeBuildSyntaxNoCloseString, /* Missing "”" */
aeBuildSyntaxBadDesc, /* Illegal descriptor */
aeBuildSyntaxBadData, /* Bad data value inside (…) */
aeBuildSyntaxNoCloseParen, /* Missing ")" after data value */
aeBuildSyntaxNoCloseBracket, /* Expected "," or "]" */
aeBuildSyntaxNoCloseBrace, /* Expected "," or "}" */
aeBuildSyntaxNoKey, /* Missing keyword in record */
aeBuildSyntaxNoColon, /* Missing ":" after keyword in record */
aeBuildSyntaxCoercedList, /* Cannot coerce a list */
aeBuildSyntaxUncoercedDoubleAt /* "@@" substitution must be coerced */

} AEBuild_SyntaxErrType;

// In all the "v..." functions, the "args" parameter is really a va_list.
// It's listed as void* here to avoid having to #include stdarg.h.

// Building a descriptor:

OSErr
AEBuild(AEDesc *dst, const char *src, ...),

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
vAEBuild(AEDesc *dst, const char *src, const void *args);

The AppleEvent Builder/Printer

The AppleEvent Builder/Printer
// Adding a parameter to an Apple event:

OSErr
AEBuildParameters(AppleEvent *event, const char *format, ...),
vAEBuildParameters(AppleEvent *event, const char *format, const void *args);

// Building an entire Apple event:

OSErr
AEBuildAppleEvent(AEEventClass theClass, AEEventID theID,

DescType addressType, const void *addressData, long addressLength,
short returnID, long transactionID, AppleEvent *result,
const char *paramsFmt, ...),

vAEBuildAppleEvent(AEEventClass theClass, AEEventID theID,
DescType addressType, const void *addressData, long addressLength,
short returnID, long transactionID, AppleEvent *resultEvt,
const char *paramsFmt, const void *args);

AEBuildGlobals.h

/*
* AEBuildGlobals.h Copyright ©1991 Apple Computer, Inc.
*/

extern AEBuild_SyntaxErrType
AEBuild_ErrCode; /* Examine after AEBuild returns a syntax error */

extern long
AEBuild_ErrPos; /* Index of error in format string */

AEPrint.h

/*
* AEPrint.h Copyright ©1991 Apple Computer, Inc.
*/

OSErr AEPrint(AEDesc *desc, char *bufStr, long bufSize);

The AppleEvent Builder/Printer

