
IntCalc Help 2/11/93 Page #p

IntCalc
version 1.2

An RPN calculator.

Brought to you by:
The Office of Dubious Programming
Copyright © James Preston, 1993

IntCalc is shareware. If you like it, please send $10 to:
James Preston

1904 Miraplaza Ct. #23
Santa Clara, CA 95051

email: jsp@pls.amdahl.com

I’d appreciate it if you would include the version that you have (1.2)
and tell me how you acquired it.

IntCalc was developed using Symantec’s THINK C.

What’s new for version 1.2
• IntCalc now includes trigonometric functions. See A New Angle on IntCalc below for details.

What’s new for version 1.1
• Due to popular demand, IntCalc now comes in a Desk Accessory version. If you’re happy with the

application version, feel free to ignore or trash the DA, you won’t hurt my feelings. If you do want to use
it, please read the What you should know about the DA version section below first.

• IntCalc is now programmable. See The Power of Programming below for full details.
• The floating point mode now uses extended format (10-byte SANE, for those who know or care). This

allows for 16 decimal places of precision.
• For those with color Macs, the buttons are now color-coded in groups according to some rough idea of

functionality (e.g. all integer-only buttions are one color, all floationg-point only buttons are another
color). I tried to use pleasant (or at least non-gross) colors. I didn’t have time to provide user-definable
colors, but I did add an item under the Edit menu that lets you go back to plain black & white buttons if
you really don’t like my color choices. Also, the colors are stored in a ‘cctb’ resource, so if you know
how to use ResEdit, you can change the colors that way.

• An alternate format, using comma (“,”) as the radix character and period (“.”) as the separator is now
available (see the discussion of the SEP button below).

• “IntCalc data” will now be placed in the “Preferences” folder if it exists.
• IntCalc should now work properly on systems with more than one monitor (that is, you can drag the

windows anywhere on the available real estate, rather than being restricted to the main monitor as in
version 1.0).

Oh no, not another calculator tool!
Yes, but this one really does have some features I haven’t seen in other tools.
One problem I have with the calculators-on-computer I have seen is that they try to duplicate a calculator

exactly, including all its limitations. Why put a calculator on a computer if you don’t make use of the added
capabilities?

The IntCalc display shows you all four elements of the stack all the time, and is wide enough for all 32 bits
of a binary number.

It has an optional window that provides a second view of the stack with independent control of each
number’s base, so you can see a number in both decimal and hex (or any other two bases) at the same time.

It has another optional window that displays the contents of the 16 storage registers, so you can see what’s
where.

And, in addition to the expected binary, octal, decimal, and hexadecimal displays, IntCalc can also display
in ASCII.

IntCalc Help 2/11/93 Page #p
(On the other hand, to show that I am not immune from the “thinking too much like a calculator” syndrome, it

was brought to my attention that IntCalc would be more Mac-like if it allowed full editing of the stack and
register fields. Maybe in the next version.)

Oh, and despite the name, IntCalc does have floating point.

What you should know about the DA version
The first thing you might notice is that some of the buttons don’t look the same. In the application version, I

use a custom font to get the down arrow on the roll-down key, the double arrow in the x-y exchange key, and
some others. Unfortunately, fonts cannot be attached to a DA, so the DA version cannot use my custom font. I
did the best I could with the standard characters, but it’s still not the same. Another consequence of this is that,
for the DA version to look right, you need to have the Geneva font in size 10 installed in your system.

The next thing you might notice is that the auxiliary windows (alternate view, etc.) don’t have close boxes.
The problem is, I guess, that DAs were not designed to have multiple windows. So when the system sees a
click in the close box of any DA window, it just sends the DA a message to go away. I was unable to find a way
to detect which window’s close box really received the click. So you’ll have to use the calculator’s buttons to
dismiss the windows.

Nifty on-line help (or, what’s an LDZ button?)
For those who don’t read documentation, or those who just need a little memory boost once in a while,

IntCalc provides a little direct help. Hold down the command key and click and hold on a button. A little
window will popup with a short description of what that button does. (I know it’s not exactly System 7 balloon
help, but I did think of it before hearing about System 7, and I like the instant-access better than having to click
in the menu bar before and after. I’ve looked at what is necessary to implement balloon help, and it was non-
straightforward enough that I didn’t think it was worth it. If anyone really wants it, let me know and maybe I’ll
give it another try.)

Where the heck is the “=” button on this thing?
For those not familiar with the HP-style Reverse Polish Notation (RPN), I think your best bet would be to

find a friend who has an HP calculator and get a lesson, or at least borrow the instruction book. Oh, heck, I’d
better say a couple of words about it here, otherwise I can’t really call this “documentation”.

Briefly, the working part of the calculator consists of a four element stack. The elements are labeled X, Y, Z,
and T (don’t ask me about that last one, I just use HP’s names). When you type digits, the number goes into X.
When you are done typing a number, click the Enter button. This “pushes” the stack: The contents of X move
into Y, the contents of Y move into Z, the contents of Z move into T, and the contents of T go into the bit bucket.
Temporarily, X still contains the entered number. If the next button you click is a digit, it will overwrite what is
displayed in X. If, on the other hand, the next button you click is an operation, it will operate on what you see in
X.

Clicking on a binary operator (addition, subtraction, etc.) performs that operation on X and Y in the order Y
<op> X. So, for example, to compute 5-3, you would do the following:

Click (or type) 5
Click Enter (or type return or enter)
Click (or type) 3
Click (or type) -

At this point, the stack drops (the value in Z moves into Y; the value in T is copied into Z; T remains
unchanged) and the result (in this case 2) is put into X. The former value in X (in this case 3) is copied into a
special register called “last X”. This value can be recalled by clicking on the LSX button.

For unary operations, such as SHL, the result replaces the previous value of X and the rest of the stack is
unchanged. And again, the previous value of X is copied into the “last X” register.

For those who’d rather type than click
As expected, you can enter digits by typing. You can also enter ASCII characters this way, when the base

is ASC. The delete key acts just like the BSP button (or vice versa, depending on your point of view), and the
return and enter keys act just like the Enter button. In FLT mode, the e key acts like the EEX button. With an
extended keyboard, the clear key on the numeric keypad acts like the CLR button.

The “/”, “*”, “-”, and “+” keys perform division, multiplication, subtraction, and addition, respectively. Note,
however, that in ASC mode, these keys will instead enter the corresponding characters (otherwise, there would
be no way to get to those characters). If you have an extended keyboard, you can use the corresponding keys
on the numeric keypad to perform the operations.

IntCalc Help 2/11/93 Page #p
The command keys for undo, cut, copy, and paste are also enabled in IntCalc (see below for more

information on how cutting and pasting works in IntCalc).

From binary to ASCII to floating point
The five bases BIN (binary), OCT (octal), DEC (decimal), HEX (hexadecimal), and ASC (ASCII) are

collectively referred to as integer modes. Clicking on one of these buttons converts all elements of the stack
into the corresponding base (ok, for you sticklers, it doesn’t actually convert anything it just changes the base
used to interpret the bit pattern). You may also individually set each stack element to any of these bases via
the popup menus on the right.

FLT (floating point) mode is completely separate and may not be intermixed in the stack with the integer
modes. The popup menus are disabled when in FLT mode. When you click on the FLT button, you will be
prompted to click on a digit button to specify the number of digits to display to the right of the decimal point.
Note that, from within FLT mode, you can change the number of displayed decimal places by again clicking the
FLT button followed by the new number of places to display. This affects the display only; internally, the values
are always stored in full precision.

When IntCalc is changed from an integer mode to FLT mode or vice versa, the stack is not cleared and the
values therein are converted (as best they can be) from the old base to the new. Thus, if X contains a decimal
5, when you switch to FLT mode X will contain a floating point 5. The values are truncated when going from
FLT to an integer mode, so if X contains floating point 5.6, switching to decimal will give you an integer 5.

IntCalc v1.1 (and above) uses the Macintosh’s SANE extended precision floating point numbers, which are
10 bytes wide. The integer values are only 4 bytes wide. This means that when the main calculator is in FLT
mode, any values shown in the alternate view window (which is always in integer mode) are not meaningful,
since they only show a part of the corresponding floating point numbers.

Certain functions are valid in only one mode or the other. In integer mode, the “.” (decimal point), “√x”, “1/x”,
“y^x”, and EEX buttons are dimmed. Many other buttons do “double-duty”, that is, they show bit manipulation
functions in integer mode, and they show trigonometric and logarithmic functions in floating point. See The
double-duty buttons below for how these are handled during programming.

The LDZ button is not disabled in FLT mode because you might want it for the alternate view window. The
RMD button in FLT mode does a floating point remainder.

To comma or not to comma
To aid readability, IntCalc puts a comma between every three digits in DEC and FLT modes, and between

every four digits in BIN and HEX modes. If you’d rather see all the digits scrunched together, the SEP
(separators) button will toggle this display off and on.

The usage of the period for the radix mark and comma for the separator can be reversed by holding down
the option key while clicking on the SEP button. This allows IntCalc to conform to the numerical convention in
many countries.

If you prefer to always see all the digits, the LDZ button toggles the display of leading zeros. This applies
only to BIN, OCT, and HEX modes.

Squirreling things away for the future
IntCalc has sixteen storage registers. To store the value from X into a register, click the STO button

followed by one of the digit buttons (0 thru F). The value in X will be copied into the designated storage
register. To recall a value, click the RCL button followed by the digit button of the desired register. The stack
will be pushed, and the stored value will be entered into X.

The RGS button brings up a window showing the contents of the sixteen storage registers. Each will be
displayed in whatever the base of X was when it was stored. The CLEAR ALL button in this window will reset
all storage registers to zero.

Cutting and Pasting
Like all good Macintosh programs IntCalc allows cutting and pasting, via both the Edit menu and the

command-key equivalents.
Undo (not too surprisingly) reverses the last change to the stack.
Clear resets X to zero.
Cut and Copy copy X to the clipboard, with Cut having the added effect of clearing X.
Paste copies the clipboard to X, pushing the stack first (even if the calculator was in digit entry). IntCalc

looks at the characters to be pasted and tries to handle the pasting intelligently using the following rules:
If IntCalc is in floating point mode then

IntCalc Help 2/11/93 Page #p
It will attempt to interpret the value to be pasted as a floating point value. If it is not a valid floating point
value, nothing will be pasted.

If IntCalc is in an integer mode then
If the value to be pasted starts with “0x” then

If what follows the “0x” is a valid HEX value then
the base will be changed to HEX and what follows the “0x” will be pasted.
(This is standard C notation for indicating hex values. e.g. if the clipboard contains “0xA34F”
then the hexadecimal value “A34F” will be entered into X.)

else
the base will be changed to ASC and the first four characters of the value will be pasted
(including the “0x”). (e.g. if the clipboard contains “0xBACK” then “0xBA” will be entered into X
in ASC mode.)

If the value to be pasted contains all digits then
If the value is valid in the current base then

the value will be pasted in the current base.
else

the base will be changed to DEC and the value will be pasted.
else if the non-digit characters are valid HEX digits then

the base will be changed to HEX and the value will be pasted.
else

the base will be changed to ASC and the first four characters of the value will be pasted.

If the above seems a little confusing, just forget it. Most of the time when you paste something, you’ll know
what you’re doing and it will work the way you expect it. Only when something unexpected happens should
you need to refer to the above to find out wha’happened.

For those who occasionally make mistakes
When an invalid operation is attempted, such as division by zero or attempting to make a mask bigger than

the word size, IntCalc beeps and displays a little window with an error message in it telling you what went
wrong. The next time you click the mouse or type a key, this window will go away.

A change from version 1.0: Clicking on a button (or typing a key) while the error window is displayed will no
longer perform the action of that button or key.

If you know what the “C” stands for in “16C”, raise your hand
IntCalc duplicates the continuous memory feature by creating a file in the system folder called “IntCalc

data”. The following information is read from this file when you start IntCalc and stored into the file when you
quit:

The contents and base of each stack element.
The base of each stack element in the alternate view window.
The contents and base of all storage registers.
The contents of the lastx register.
The state of the leading zeros (LDZ button) and show separators (SEP button) flags.
The number of displayed digits in FLT mode.
The position on the screen of the calculator window, the registers window, and the alternate view
window.
The visibility state of the registers window and alternate view window.
The position and size of the programming window.
The program.
Whether the buttons are displayed in color on a color monitor.

You can also use the Save and Open menu items to create and restore your own data files, and, of course,
you can double click on a data file from the finder to start IntCalc with that data.

IntCalc v1.1 (and above) knows about the Preferences folder. When starting up, IntCalc looks first for
“IntCalc data” in the Preferences folder. If either the data file or the folder don’t exist, then IntCalc looks in the
system folder proper as before. When you quit, the data file will be written into the Preferences folder if the
folder already exists (IntCalc will never create the folder). Additionally, if the data file used to be in the system
folder, that file will be deleted.

IntCalc Help 2/11/93 Page #p
Don’t tell anyone, but I violated the interface standards

The auxiliary windows (alternate view, registers, and programming) should have been implemented as
“floating” windows, like the palette windows in drawing programs. But doing that is not at all straightforward, so
I just cheated a little. I implemented them as normal windows, but fudged a little so that they have some of the
properties of floating windows. Specifically, you don’t have to click in a window to activate it; clicking on a
button in an inactive window will both activate that window and operate the button (unless IntCalc is not the
active application). Also, all typing always goes to the main IntCalc window.

A New Angle on IntCalc
New with version 1.2 is the inclusion of trigonometric and logarithmic functions. They will show up in FLT

mode on all those buttons that formerly were just greyed out, integer-only buttons. The available functions
include sine, cosine, and tangent, as well as their corresponding arc functions and hyperbolic functions;
logarithms in base 10 and base e; e raised to any power; and a button to enter the value of pi.

For the trig functions, angles can be expressed in either degrees, radians, or grads (360 degrees = 2π
radians = 400 grads). The button for the current angular mode (on the upper left of the calculator) will have a
heavy border. When you switch between modes, numbers displayed in the calculator are not automatically
converted. You can use the four conversion buttons on the bottom left to manually convert among the three
units. Some conversions, e.g. degrees to grads, must be done in two steps, that is, degrees to radians then
radians to grads.

The Power of Programming
“Programming” IntCalc is simply a matter of recording a sequence of keystrokes. Almost all buttons can be

recorded in a program; the exceptions are BSP, RUN, CONT, SST, “?”, “Redisplay”, and “Clear Pgm”. In
addition to the usual calculator functions, there are several programming-specific buttons for handling
branching, looping, and subroutines. These are available on the programming window.

Creating a program. On the right side of the calculator body is a switch. The top part of the switch
indicates the current mode, which will be “calc” when you first run IntCalc. Click on the switch to enter
programming mode. The indicator will now read “prog” and the programming window will automatically come
up. In this mode, any button clicked or any key typed (with the exceptions noted above) is not executed, but
rather stored into the program at the current insertion point.

The double-duty buttons. Some of IntCalc’s buttons are now “double-duty”; they have one function in
integer mode and a different function in floating-point. When you enter programming mode, these buttons will
remain in whatever state they were in. If you need to program from the other set (e.g., the double-duty buttons
are showing their trig functions, but you want to program some bit-shifting functions), there is a button at the top
right of the programming window that will say either “use INT” or “use FLT”. Clicking on this button will toggle
the double-duty buttons between the integer set of functions and the trig/log set of functions. When you exit
from programming mode, the buttons will automatically revert to their original state.

Executing a program. Click on the RUN button, and your program will start executing from the beginning.
You can do this from either “calc” or “prog” mode. The X line on the calculator body will display “running”.
When the program finishes, IntCalc will beep, and all the displays will be updated. (I experimented with having
it update the displays as the program executed, rather than just displaying “running”, but it made the programs
run about three to five times slower.)

If you want to start executing from a particular label, hold down the option key and click RUN. You will be
prompted for a label. Click the button corresponding to the desired label, and the program will go there and
start executing. This enables you to have a number of independent sub-programs in the same program; each
can be accessed via its label.

Why a program stops. If a program encounters an error that prevents it from proceeding, such as an
illegal digit, or an attempted branch to a non-existent label, it will stop and put up the error window telling you
what went wrong.

If you want to deliberately stop a running program, perhaps because you think it might be in an infinite loop,
just type a key or click the mouse and the program will stop where it is.

Otherwise, when the program ends normally, IntCalc will beep and all the displays will be updated.
The program counter (PC). In the programming window, the program counter (PC) will show up as a “>”.

The PC points to the instruction that will be executed next. The PC indicator will walk through a LBL or a GTO;
that is, first you will see “>GTO 5”, then a click on the SST button (see below) will show “GTO>5”. However, it
will not walk through numbers. If you see “>12345”, clicking once on SST will still show “>12345”, even though
the “1” has executed and will show up in X. I emphasize that it is only the indicator that doesn’t move; the
program counter itself still moves forward.

IntCalc Help 2/11/93 Page #p
Starting up from where you are. Clicking on the CONT (continue) button will continue program execution

from the current PC.
Clicking on the SST (single-step) button will execute just the instruction at the PC, and then return control to

you.
Editing a program. Use the mouse to position the insertion point anywhere in the program. Use the BSP

button or the delete key to remove the instruction to the left of the insertion point. Click other buttons to insert
instructions at the insertion point. You’ll undoubtedly soon notice that if you click in the middle of a button-
mnemonic, the insertion point jumps the beginning of that mnemonic. You’ll also notice that if you try to select
something, IntCalc stubbornly ignores your selection and reverts to a single insertion point.

Why you can’t select anything in the programming window. This is likely to be a real sore point with
Mac purists, and I apologize for any frustration that it causes. The problem is that the text shown in the
programming window is not really text in the usual Macintosh sense. Instead of thinking of each character as a
discrete, editable unit, you should think of each button-mnemonic as a discrete unit.

Internally, the program is stored as a sequence of byte-size codes, one for each button. I write the text to
the programming window on the fly; the text itself is never actually looked at by the internals of IntCalc. If I
allowed you to delete any arbitrary sequence of characters, or insert into any arbitrary location, I would then
have to implement a full-blown parser to determine the meaning of the resultant text. I’m sure that anyone
familiar with writing compilers can appreciate why I didn’t really want to do that for this little calculator.

(So why didn’t I just disable the ability to make selections? I wish I could. But there is a single Macintosh
toolbox call that enables the positioning of the insertion point and also the making of selections. I can’t get one
without the other unless I write my own replacement for the toolbox routine, and that’s a little beyond me.)

Does your program suddenly look funny? I tried to make the program display logical and convenient; so
operators (like “+” or XOR) show up on a line by themselves; things followed by a label (like LBL or GTO)
include the label on the same line; the conditionals put the following instruction on the same line, to reinforce
the interpretation; and any sequence of digits gets put on one line, since it should be one number. But
occasionally, with various insertions and deletions, my internals lose track of my externals, and the program
display puts a carriage return where it doesn’t belong, or forgets to put one where it does. So if you ever see
two instructions on one line or anything else that doesn’t look right, just click the Redisplay button and the entire
display will be redone from the internal program. Let me hastily add that this should never happen; I did a lot of
testing, and tried to account for all possibilities. But experience has shown that there is usually at least one
user who will try something that the author never dreamed of. So the Redisplay button is provided just in case.

Getting around in the program. Simple unconditional branching is done via the GTO label instruction.
The label can be any single digit (0 thru 9, A thru F, or I [see below]). The branch will go to the LBL label
instruction with the matching label (it is not possible to branch to an arbitary instruction). If more than one LBL
exists with the same label, only the first one (closest to the beginning of the program) is accessible.

GSB label also branches to the corresponding LBL instruction, however execution automatically transfers
back to the instruction following the GSB when an RTN (return) instruction is encountered.

The mysterious “I” button. It’s for the index register. In “calc” mode, you can use it as just another
storage register. In “prog” mode, it’s used for indirect branching. The instruction “GTO I” will transfer control to
the label that corresponds to the value stored in the index register. So, for example, if the index register
contains 7, “GTO I” will branch to “LBL7”. Similarly, “GSB I” can be used to indirectly call a subroutine.

If the value in the index register is in floating point, only the integer portion is used. So, for example, if it
contains 1.5, the branch will go to LBL 1. If the value in the index register does not correspond to any existing
label, the program will stop with an error.

Conditional tests. The second and third columns of buttons on the programming window provide you with
eight different tests for various combinations of comparing X and Y or comparing X and zero. These follow the
“Do if true” rule: execution proceeds to the next instruction if the condition is true; execution skips the next
instruction if the condition is false. Usually, the most useful instruction to place after a condition is a GTO, but it
can be anything you want.

In the third column are two conditionals that work slightly differently. The DSZ (decrement and skip if zero)
and ISZ (increment and skip if zero) instructions are usually used to control a loop. For example, you store into
the index register the number of times you want the loop to execute. At the bottom of the loop, use the DSZ
followed by a GTO to the top of the loop. The DSZ will subtract one from the value in the index register and
store that new value back into the index register. If that value is equal to zero, the next instruction (the GTO)
will be skipped; otherwise it will be executed and the program will go through the loop again.

How the program gets data. You can write the program to get its data from the storage registers, in which
case you need to put the appropriate data into the appropriate registers before starting the program. You can
also write the program to get its data from the stack. In that case, you can either enter the data into the

IntCalc Help 2/11/93 Page #p
appropriate stack elements before starting the program, or you can use the PSE (pause) button to interrupt the
program at various places and enter the data as needed, then click the CONT button to continue.

Saving and getting programs. Programs are saved into IntCalc data files along with everything else. If
you have only one program, you need do nothing special; the program will be saved into “IntCalc data” and will
be there the next time you run IntCalc. You can also use the Save command to store specific programs, and
retrieve them with the Open command.

Cautions and limitations. No checking is done while you are entering a program to see if it will actually be
legal when executed. This means, for example, that you can freely enter a sequence like “DEC 12AB”.
However, when you run the program and the PC gets to the “A”, the program will stop and the error window will
popup informing you of the invalid digit. (Note that this behavior is slightly different than when you type an
invalid digit normally; when a program is running, you don’t get the first warning beep.)

The total size of an IntCalc program is limited only by the memory available in your Mac. However, you are
limited to only sixteen labels, so that might put a damper on writing really huge programs (and if you’re writing
something really huge, why are you doing it on a dinky little calculator anyway?)

Version history

October 25, 1990 Release of version 1.0

June 1992 Version 1.1
Bugs fixed:
1) If you stored something into memory in an integer mode, then restored it from FLT mode, the value was

not being converted.

Enhancements added:
1) DA version.
2) Programmability.
3) Floating point is now in extended format.
4) “IntCalc data” goes into “Preferences” folder if it exists.
5) Optional alternate radix format.
6) Color.
7) Multiple monitor support.

February 1993 Version 1.2
Enhancements added:
1) Trigonometric functions.
2) The regular “/”, “*”, “-”, and “+” keys can now be used to perform the corresponding operations (except

in ASC mode).

