
Writing Extensions

Introduction

BBEdit has a facility for calling code modules which are not part of the application itself. The main reason for this
facility is so that users and third-party programmers can add specific functionality to BBEdit which goes beyond
BBEdit’s own charter. For example, one such code module might prepend Usenet attributions to each line in a
selected range of text. This is a useful function, but its not of interest to everyone.

General Guidelines

BBEdit extensions are built as standalone code resources of type ‘BBXT’. The capability to build such resources is
an integral part of THINK C and THINK Pascal. Users of MPW can also build standalone code resources, but with
less ease.

There may be any number of extensions per file, and extensions can use their own resources. Also, BBXT resources
can be of any resource ID, since BBEdit manages the extensions in such fashion that resource name or ID conflicts
don’t happen. Each BBXT resource in a file should have a name as assigned by ResEdit’s “Get Info” command; this
name will appear under the Extensions menu in BBEdit..

Note: If there are BBXT resources from different files with the same name, users may become confused. Neither I
nor BBEdit will arbitrate extension names.

When BBEdit starts up, it takes account of the extensions in the “BBEdit Extensions” folder. The BBEdit Extensions
folder can reside in the same folder as BBEdit itself. Under System 6, the BBEdit Extensions folder can also reside
in the system folder on the startup disk; under System 7, the BBEdit Extensions folder can also reside in the
Extensions folder in the system
folder on the startup disk.

Files containing extensions must be of type ‘BBXT’. The creator can be anything you like, although files with a
creator of ‘R*ch’ will have a standard icon. (You can, of course, create bundle resources and icons to give the files
any icons you desire.)

BBEdit extensions should be as friendly as possible. They should take great care to release any memory that they
allocate while running, and they should leave no windows on the screen after they return to BBEdit. In general,
BBEdit extensions should be considered one-shot text filters: they do their thing, then exit. They should put no
menus in the menu bar, and should not have an event loop. (They can call ModalDialog. It’s recommended that you
use, or layer on top of, the standard filter that BBEdit provides.)

Note: If you wish, you can write an extension that launches a driver; if this is the case, the driver can have a window
which resides in BBEdit’s own layer.

You should assume that any callback will move memory. This means that if you keep pointers into any relocatable
blocks, or pass addresses inside relocatable blocks as function arguments, you should lock the block first. For
maximum friendliness, move it high with MoveHHi() first.

Extensions can put up modal dialogs and alerts, provided they’re taken down again before the extension exits; they
can also call Standard File or any system services necessary, as long as no attempt is made to bring another
application to the front.

Programming Interface

Given all of these constraints, what can extensions do?

The answer is: pretty much any transformation on a window’s text that they please.

The interface to BBEdit is kept in a structure known as an ExternalCallbackBlock. This structure begins
with a 16-bit integer which is the version number of the callback block. If the callback block passed to you is higher
than one you know about, then there is additional functionality available that you probably don’t know about.
Conversely, if the version number is less than the one you know about, some functionality that your extension
requires may not be available.

The current callback interface version is 2.

Here is the C structure definition for an ExternalCallbackBlock:

typedef struct {
short version;

// version 1 callbacks

pascal Handle (*GetWindowContents)(WindowPtr w);

pascal void (*GetSelection)(long *selStart, long *selEnd, long
*firstChar);

pascal void (*SetSelection)(long selStart, long selEnd, long
firstChar);

pascal void (*GetDocInfo)(WindowPtr w, Str255 fName, short *vRefNum,
long *dirID);

pascal long (*GetModDate)(WindowPtr w);

pascal Handle (*Copy)(void);

pascal Handle (*Paste)(Handle pasteText);

// version 2 callbacks

/* Text-Editing stuff */
pascal long (*GetLastLine)(void);

pascal long (*GetLineNumber)(long selection);

pascal long (*GetLineStart)(long selection);

pascal long (*GetLineEnd)(long selection);

pascal long (*GetLinePos)(long line);

pascal void (*Insert)(char *text, long len);

pascal void (*Delete)(void);

/* Getting and Setting window text */
pascal void (*SetWindowContents)(WindowPtr w, Handle h);

pascal void (*ContentsChanged)(WindowPtr w);

/* Reading file text */

pascal Handle (*GetFileText)(short vRefNum, long dirID, Str255 fName,
Boolean *canDispose);

/* Direct user-interface calls */
pascal Boolean (*GetFolder)(Str255 prompt, short *vRefNum, long

*dirID);

pascal Boolean (*OpenSeveral)(Boolean sort, short *file_count,
StandardFileReply ***files);

pascal DialogPtr (*CenterDialog)(short dialogID);

pascal Boolean (*StandardFilter)(DialogPtr d, EventRecord
*event, short *item);

pascal void (*FrameDialogItem)(DialogPtr d, short item);

pascal WindowPtr (*NewDocument)(void);

pascal WindowPtr (*OpenDocument)(void);

/* Utility Routines */
pascal Handle (*Allocate)(long size, Boolean clear);

pascal long (*FindPattern)(char *text, long text_len, long
text_offset, char *pat, long pat_len, Boolean case_sensitive);

pascal void (*ReportOSError)(short code);

/* Preference routines */
pascal void (*GetPreference)(ResType prefType, short req_len, void

*buffer, short *act_len);

pascal void (*SetPreference)(ResType prefType, short req_len, void
*buffer, short *act_len);

/* Progress routines */
pascal void (*StartProgress)(Str255 str, long total, Boolean

cancel_allowed);
pascal Boolean (*DoProgress)(long done);
pascal void (*DoneProgress)(void);

} ExternalCallbackBlock;

Each field of the callback block is a pointer to a routine. Each routine is called with the Pascal calling convention; in
the following descriptions the pascal keyword is omitted for clarity.

Handle (*GetWindowContents)(WindowPtr w);

returns a handle to the text in the window pointed to by w. This routine should only be called on windows
which have a window kind of userKind.

void (*GetSelection)(long *selStart, long *selEnd, long *firstChar);

Sets the 32-bit integers pointed to by the arguments to the character offsets of the start of the selection, the
end of the selection, and the first visible character in the active editing window.

void (*SetSelection)(long selStart, long selEnd, long firstChar);

Sets the selection range and first visible character in the active editing window to the values passed. If
firstChar is -1, the selection range will be centered in the window.

void (*GetDocInfo)(WindowPtr w, Str255 *fName, short *vRefNum, short
*dirID);

Returns information about the window pointed to by w. If the window corresponds to a document that
doesn’t exist on disk, then fName will be an empty string, and vRefNum and dirID will be set to zero.
This routine should only be called on windows with a window kind of userKind.

long (*GetModDate)(WindowPtr w);

Returns the modification date (in Macintosh time) of the document whose window is pointed to by w. If the
document is saved on disk, then the last-modified time of the file is returned; otherwise the time of last edit
is returned. This routine should only be called on windows with a window kind of userKind.

Handle (*Copy)(void);

Returns a handle to a copy of the text enclosed by the current selection in the active document. The caller
is responsible for disposing of this handle when finished with it.

Handle (*Paste)(Handle pasteText);

Pastes the text in the handle pointed to by pasteText into the current selection range of the active
document. The caller is responsible for disposing of this handle when finished with it.

long (*GetLastLine)(void);

Returns the number of lines in the active editing document.

long (*GetLineNumber)(long selection);

Returns the line number of the character offset indicated by selection.

long (*GetLineStart)(long selection);

Returns the character offset of the beginning of the line that selection is on.

long (*GetLineEnd)(long selection);

Returns the character offset of the end of the line that selection is on.

long (*GetLinePos)(long line);

Returns the character offset of the beginning of line.

void (*Insert)(char *text, long len);

Inserts the len characters pointed to by text in the current selection range of the active editing document.

void (*Delete)(void);

Deletes the characters enclosed by the selection range in the active editing document.

void (*SetWindowContents)(WindowPtr w, Handle h);

Replaces the contents of the document designated by w with the contents of the handle h.

Note: after calling SetWindowContents, the handle belongs to the window, and must not be disposed.
Also, if you modify the contents or size of the handle pointed to by h after using it in a
SetWindowContents() call, be sure to call ContentsChanged() for w.

void (*ContentsChanged)(WindowPtr w);

This routine should be called if you directly modify the text returned from a GetWindowContents()
call.

Handle (*GetFileText)(short vRefNum, long dirID, Str255 fName, Boolean
*canDispose);

Loads the contents of the designated file’s data fork into memory, and returns a handle to those contents. If
there was an error (insufficient memory, file system error, etc), GetFileText() will return NIL.

The canDispose argument will be set to TRUE if the text was loaded from disk, FALSE if the text
belongs to an open window. In the event that canDispose is TRUE, then you should dispose of the text
(or use it in a SetWindowContents() call). If canDispose is FALSE, then you must not dispose
the handle, or else you’ll crash BBEdit. Also, you must not modify the contents of the handle if
canDispose is FALSE.

Boolean (*GetFolder)(Str255 prompt, short *vRefNum, long *dirID);

Displays a Standard File dialog box for choosing a folder. Returns TRUE if a folder was selected, FALSE if
the user clicked the Cancel button. The vRefNum and dirID of the chosen folder are returned in
vRefNum, and dirID, respectively.

Boolean (*OpenSeveral)(Boolean sort, short *file_count, StandardFileReply
***files);

Displays a Standard File box for choosing multiple files at once. Returns TRUE if the user chose any files,
FALSE if the Cancel button was clicked. If sort is TRUE, then the files returned will be sorted in
alphabetical order; otherwise, the files will be returned in the order the user added them to the list.

The number of files chosen will be returned in file_count, and a handle to a list of
StandardFileReply records (system 7 style) will be returned in files.

DialogPtr (*CenterDialog)(short dialogID);

Loads the dialog box indicated by dialogID and centers it on the screen. The dialog ID should
correspond to a dialog which is available in the extension’s resource file, and nowhere else. (The resource
map chain is configured such that none of your dialog IDs can conflict with BBEdit’s.)

Boolean (*StandardFilter)(DialogPtr d, EventRecord *event, short *item);

This standard filter performs some useful standard behavior, such as outlining the default button with a
thick border, and handling activates and deactivates for BBEdit’s own windows. It is strongly
recommended that you pass this pointer as the filterProc argument when calling ModalDialog()
or Alert(). If you’re writing custom dialog filters in your extension, you should call this routine directly
after doing your own preprocessing.

void (*FrameDialogItem(DialogPtr d, short item);

This routine will draw a rectangle around the dialog item specified. If the item is a line, a line will be drawn
using true gray.

WindowPtr (*NewDocument)(void);

Opens a new untitled document, and returns a pointer to its window. This document becomes the current
document. Will return NIL if for some reason the window couldn’t be opened.

WindowPtr (*OpenDocument)(void);

Puts up BBEdit’s standard Open dialog for choosing a file. If the user confirms the dialog and the document
is successfully opened, returns a pointer to its window. Will return NIL if the user cancels the dialog or if
an error occurred while opening. (If some system error occurs, BBEdit will pose the alert box.)

Handle (*Allocate)(long size, Boolean clear);

Allocates and returns a handle of size bytes. If the clear argument is TRUE, the handle will be zeroed.
The handle returned will be a real handle, but may reside in MultiFinder temp memory. As with any handle,
you should avoid locking handles returned by Allocate() for any length of time, and you should
dispose of the handle before returning.

long (*FindPattern)(char *text, long text_len, long text_offset, char
*pat, long pat_len, Boolean case_sensitive);

Searches the text buffer pointed to by text for the string of characters pointed to by pat. text_len is
the amount of text to search. text_offset is the position relative to the start of the text to start
searching. pat_len is the length of the string to match. If case_sensitive is TRUE, then the case of
potential matches will be checked.

FindPattern() will return the offset relative to the start of the text that the string was found. If the
string was not found, FindPattern() will return -1.

void (*ReportOSError)(short code);

Displays an alert box with the proper OS error message corresponding to the OS result code given in code.
This is handy for reporting filesystem errors, out of memory, and things of that sort.

void (*GetPreference)(ResType prefType, short req_len, void *buffer,
short *act_len);

void (*SetPreference)(ResType prefType, short req_len, void *buffer,
short *act_len);

The GetPreference and SetPreference calls are for extensions to use to save and retrieve
extension-specific information across runs. The settings are stored in the BBEdit Prefs file as resources.

GetPreference will retrieve the preference data stored in the resource of prefType, resource ID 128, and
copy the contents of that resource into the data pointed to by buffer. In all cases, req_len represents
the maximum number of bytes which will be copied. (Warning: the amount of data allocated in buffer, be
it a static structure or a handle, must be equal to or greater than req_len, or else havoc will occur.) The
word pointed to by act_len will be filled in with the actual number of bytes copied; this is always less
than or equal to req_len. If act_len is negative, the value in act_len is an OS error code (usually
resNotFound if you’re calling GetPreference with a virgin Preferences file).

SetPreference is the complement of GetPreference; it writes out the data in buffer to a
resource of type resType, id 128. req_len and act_len behave as for GetPreference.

void (*StartProgress)(Str255 str, long total, Boolean cancel_allowed);
Boolean (*DoProgress)(long done);
void (*DoneProgress)(void);

StartProgress, DoProgress, and DoneProgress are used in concert to provide simple progress
dialog functionality for your extension.

You should call StartProgress at the beginning of a long operation. str will be displayed in the
progress dialog. total is an indicator of the overall length of the process. For example, you could pass the
number of lines you’re processing, or the number of bytes you’re processing, or some other scalar
indication of the length of the process. If cancel_allowed is TRUE, then DoProgress will return
TRUE if the user pressed Command-Period (and thus wants to cancel the process).

During your processing, you should call DoProgress as often as you wish. The argument you pass to
DoProgress reflects the amount, in terms of the total argument to StartProgress, that has been
completed. If you passed TRUE as the cancel_allowed argument to StartProgress, and the user
has pressed Command-Period, DoProgress will return TRUE. If this happens, you should abort your
processing. If you passed FALSE as the cancel_allowed argument to StartProgress, you can
ignore the result of DoProgress, but you should still call it as frequently as you can.

When your process is complete, you should call DoneProgress. This callback will remove the progress
dialog from the screen. You should always match a StartProgress call with a DoneProgress call,
and you should never call DoneProgress without having called StartProgress.

Note: BBEdit uses a heuristic to determine whether it’s worthwhile to display the progress dialog. For this
reason, the progress dialog may not be displayed during shorter processes.

For examples of how to use the various callbacks, look at the sources to the standard extensions in the “Extension
Sources” folder.

Writing Extensions with THINK Pascal

Some additional files are included with the standard BBEdit extensions; these files will make it easier to write
extensions using THINK Pascal 4.0 and later.

The files “DialogUtilities.p” and “ExternalInterface.p” are the Pascal interfaces to the dialog utilities and external
interface code; the “DialogUtilities.Lib” and “ExternalInterface.Lib” files are libraries which contain the glue code.
“HelloWorld.p” and “Prefix.p” are Pascal versions of the Hello World and Prefix/Suffix Lines externals.

The Pascal-based interface takes account of the fact that you can’t call function pointers directly, as you can in C. To
work around this problem, ExternalInterface.p declares library calls which have the same name as the corresponding
fields in the C structure declaration of an ExternalCallbackBlock. To make a callback, just call the library routines.

Note: In order for the library routines to work correctly, you will need to call “PrepareCallbacks” with the
“callbacks” argument to your external.

To avoid name-space collisions with Pascal and Toolbox library routines, the following callbacks have different
names when used from Pascal:

- “Copy” becomes “CopyText”
- “Paste” becomes “PasteText”
- “Insert” becomes “InsertText”
- “Delete” becomes “DeleteText”
- “Allocate” becomes “AllocateMemory”

In addition, a revised version of THINK Pascal’s “RSRCRuntime.Lib” library is supplied. This version of the library
fixes a bug which prevented multi-segment code resources (which BBEdit extensions must be, because they have
global data) from working.

For details on the construction of a typical Pascal-based extension, see the “Pascal HelloWorld” and “Pascal Prefix”
projects and their associated source files. Take particular note of the files in each project and the settings in the “Set
Project Type...” dialog.

Demo Extensions

In addition to 827 and Prefix lines, the following demo extensions are supplied:

Concatenate Files

Concatenate Files is a simple extension which demonstrates more of BBEdit’s extension facilities. This extension
poses an “Open Several…” dialog in which you can specify a number of text files. The files you designate will be
concatenated and the text of all of them will be placed in a new untitled window (provided that there is enough
memory).

Educate Quotes

Educate Quotes is a simple extension which converts straight quotes in your document into “smart” quotes, just as if
you had manually gone through the document and re-typed all of the quotation marks with Smart Quotes turned on
for the document.

Hello World

Hello World is a trivial extension that creates a new untitled document window with the text “Hello World” in it. It
is purely a demo, with no useful function whatsoever.

Copy Lines Containing
Cut Lines Containing

These extensions will search through the current document for lines which contain the search string that you enter in
the dialog box. Each line found will be placed in the Clipboard. If you use “Cut Lines Containing”, each line will
also be deleted from the document.

