
Patch 4.0.4 File Format 

Michael Hecht
AppleLink: SAS.HECHT
Internet: Michael_Hecht@mac.sas.com
April 8, 1993

This document describes the format of the resources contained in version 4.0.4 of a ResCompare 
self–applying patch.

To edit a patch file, use ResEdit with the supplied ResEdit Patch templates file. Simply 
open this file in ResEdit, along with a patch file, to provide editing templates for the patch 
resources.

'ZVER' resource
A self-applying patch contains patches for any number of versions of any number of files. There 
is a 'ZVER' resource for each file that is to be updated by the patch. The resource name is the 
prompt to be used when asking the user for this file.

NOTE The resource IDs for the 'ZVER' resource are not important and are randomly 
generated. Use ResEdit’s “View by Order in File” command to list these resources 
in the order they were appended to the patch, from bottom to top.

The 'ZVER' resource contains some header information describing the file to be patched, 
followed by a list of valid versions. Here is the complete structure of the 'ZVER' resource:

/* Information maintained for each file version */

struct {
ZVerFlags flags;
OSType fdType, fdCreator;
Size finalRsrcSize;
Str31 copyName;
short numVersions;

struct {
unsigned long fromVersion;
unsigned long toVersion;
short zapListID;
long totalMunges;

} theZapRef[];
} ZapVersion;



flags
A bitmask of flags that can be OR-ed together, with the following definitions:

/* Zap version flags */
enum {

kPatchACopy = 0x0001
} ZVerFlags;

kPatchACopy
If set, this flag indicates that the patch application should prompt the user to save a copy 
of the target file. The patch can provide a default name for the copy. If the user chooses to 
save the copy over the original, the patch is performed in–place, as though this flag were 
not set.

fdType, fdCreator
These fields are the type and creator of the target file. Only files matching this criteria are listed 
in the GetFile dialog. You can remove the creator criteria by setting the creator to 0.

finalRsrcSize
Final size in bytes of the file’s resource fork after patching. This field is used to determine if disk 
space is available to perform the patch.

copyName
If the kPatchACopy bit is set in the flags, this field is used as the default name for the copy 
of the target file.

numVersions
The number of version records to follow.

theZapRef[]
A list of version records. This list is searched to locate a  The version records use the following 
format:

fromVersion
The 4–byte version code this patch converts from.

toVersion
The 4–byte version code this patch converts to.

zapListID
The resource ID of the 'ZAP#' resource for this patch.

totalMunges
The total of all the numMunges fields in the corresponding 'ZAP#'. This info is used to calculate 
the goal for the status thermometer. 



'ZFIL' resource
Use a 'ZFIL' resource to automatically identify a file’s location without prompting the user. The 
file may be in a folder locatable by FindFolder. The resource ID of the 'ZFIL' resource must 
match the 'ZVER' resource ID. The file must also have the same fdType and fdCreator as 
listed in the 'ZVER' resource.

/* Will have the same ID as its corresponding ZVER */

typedef struct {
OSType folderType;
short numFileLocs;

struct {
short region;
Str31 name;

} theFileLoc[];
} ZapFileLocList;

folderType
A four–character type code recognized by FindFolder. The patch will search this folder on 
the system disk.

Set the folderType to a longword binary 0 (zero) to search for the target file by its full or 
partial pathname. Partial pathnames are resolved relative to the default volume and directory. The 
initial default volume and directory is the root directory of the system disk. To set folderType 
to zero with ResEdit, open an existing 'ZFIL' resource with the option key held down and change 
the first four bytes using the hex editor.

Set the folderType to a longword binary 1 to have the same effect as 0, but to reset the 
default volume and directory to its initial location first.

numFileLocs
The number of possible file names to follow.

theFileLoc[]
A list of file names. A list is used so multiple international spellings can be included. Each file 
name is accompanied by its region code, and the name corresponding to the current language of 
the system script is used.

region
The region code that identifies this name, or the constant kAnyRegion
(–1) to match any region. Region codes are listed in Inside Macintosh, Volume VI, p. 14–84, table 
14–10, in the <Packages.h> header file, and in ResEdit’s “Country Code” pop–up menu located 
in the 'vers' editor.

name



The file name to look for, localized for this language.

The patch will scan the file loc list looking for a region code that matches the region of the 
system script, or for the wildcard value kAnyRegion (–1).

If a file name cannot be found for the current region, the folder cannot be found, the requested 
file does not exist, or the file exists but its type and creator don’t match, the patch will prompt the 
user for the file. If the patch was able to determine a file name, it places the name as dialog 
substitution parameter “^0”, so you can use a prompt string of “Where is ^0?” to include the 
localized name in the prompt.

You can also provide a partial pathname, such as “:MyApp Folder:MyApp” to search a folder at 
the root level of the system disk named “MyApp Folder” for the “MyApp” application.

'ZAP#' resource
The 'ZAP#' resource contains a list of all resources that need to be patched, for a given version 
transition of a given file. The 'ZVER' contains a list of 'ZAP#' resource IDs. The resource name 
of the 'ZAP#' will be the name of the master file from which the patch was created. This name is 
not used by the patch and is for reference purposes only.

struct {
short numZaps;

/* Information maintained for each resource to be zapped */
struct {

short zapID;
ZapFlags flags;
ResType resType;
short resID;

/* These fields are used to verify the resources */
short resAttrs;
Size resSize;
Str255 resName;

} theZap[];
} ZapList;

numZaps
The number of zap records to follow. There is one for each resource to be patched.

zapID
The resource ID of the 'ZAP ' resource that holds the munge data for patching this resource. 
There is also a corresponding 'ZIS#' or 'ZIL#' resource with this ID, based on the setting of the 
shortMunges flag.

flags



A bitmask of flags that can be OR-ed together, with the following definitions:

/* Flags for use in the ZapRecord */
enum {

shortMunges = 0x0001,
needNotVerify = 0x0002,
verifyFailed = 0x0004,
alwaysUpdate = 0x0008

} ZapFlags;

shortMunges
If set, this flag indicates that both the master and update resource are less than 32K, and 
16–bit integers can be used for their offsets and lengths. Otherwise, 32–bit integers must 
be used. Most resources are less than 32K.

needNotVerify
If set, this flag indicates that, should resource verification fail, the patch application 
should perform the operation anyway in certain cases. If adding a resource that already 
exists, no change is made. If deleting a resource, the resource can be of any length if it 
exists. If changing a resource, no change is made.

verifyFailed
This flag is used internally during the patching process and should be set to 0.

alwaysUpdate
If set, this flag indicates that, should resource verification fail, the patch application 
should perform the operation anyway in all cases. If adding a resource that already exists, 
the entire resource is replaced. If deleting a resource, the resource can be of any length if 
it exists. If changing a resource, the resource’s size is adjusted to its size in the master file 
and the patch is applied anyway.

The needNotVerify bit must be set for alwaysUpdate to take effect.

resType, resID
This is the resource type and ID of the resource to be patched.

resAttrs
These are the expected resource attributes of the master resource. These attributes must match 
during resource verification.

resSize
This is the expected size of the master resource. If the resource is being added, this size will be 0. 
The sizes must match during resource verification.

resName



This is the expected name of the master resource. The names must match during resource 
verification.

'ZIL#' and 'ZIS#' resources
The 'ZIL#' and 'ZIS#' resources contain a list of munges, or patch operations to be performed on 
a resource. Their formats are identical, except the 'ZIL#' uses 32–bit offsets and lengths, while 
the 'ZIS#' uses 16–bit offsets and lengths. 'ZIS#' is typically used, except for extremely large 
(>32K) resources.

If masterLength is the same as updateLength (a typical occurrence), the 
updateLength is suppressed, and the high bit of masterLength is set by masking in the 
constant SameLengthFlag or ShortSameLengthFlag. For this reason, the supplied 
ResEdit templates for viewing these resources simply dumps the munge instructions as hex data.

/* 'ZIL#' */
struct {

short numMunges;
Size sizeofMunges;

struct {
long masterOffset;
long masterLength;
long updateLength;

} theMunge[];
} MungeList;

/* This flag is set on masterLength when updateLength is the same */
#define SameLengthFlag 0x80000000

/* 'ZIS#' */
struct {

short numMunges;
Size sizeofMunges;

struct {
short masterOffset;
short masterLength;
short updateLength;

} theMunge[];
} ShortMungeList;

/* This flag is set on masterLength when updateLength is the same */
#define ShortSameLengthFlag 0x8000

'ZAP ' resource
The 'ZAP ' resource (note trailing space) contain the actualmunge data that’s used for insert or 
replace patch operations.

/* ZAP  resource--the munge data to insert/replace */
#define ZapMungeType 'ZAP '


