
Introduction

Getting Started

Procedures (How To)

Drag and Drop

Configuration Parameters

Cryptography & Privacy Basics

The Main Window

The Key Management Window

About ViaCrypt PGP for Windows

Introduction
ViaCrypt PGP (Pretty Good Privacy) for Windows is a high security cryptographic program for
PCs running MS-Windows 3.1. ViaCrypt PGP allows people to exchange files or messages with
privacy, authentication, and convenience.

ViaCrypt PGP combines the convenience of the Rivest-Shamir-Adleman (RSA) public key
cryptosystem with the speed of conventional cryptography, message digests for digital signatures,
data compression before encryption, good ergonomic design, and sophisticated key management.
And ViaCrypt PGP performs the public-key functions faster than most other software
implementations.

Why Do You Need ViaCrypt PGP?

It's personal. It's private. And it's no one's business but yours. You may be planning a political
campaign, preparing your taxes, or negotiating a contract    Whatever it is, you don't want your
private electronic mail (e-mail) or confidential files read by anyone else. There's nothing wrong
with asserting your privacy. Privacy is as apple-pie as the Constitution.

Perhaps you think your e-mail is legitimate enough that encryption is unwarranted. If you really
are a law-abiding citizen with nothing to hide, then why don't you always send your paper mail on
postcards?    Why not submit to drug testing on demand?    Why require a warrant for police
searches of your house?    Are you trying to hide something by putting your mail inside
envelopes?

Do law-abiding citizens have any need to encrypt their e-mail? What if everyone believed that
law-abiding citizens should use postcards for their mail?    If some brave soul tried to assert his
privacy by using an envelope for his mail, it would draw suspicion. Perhaps the authorities would
open his mail to see what he's hiding. Fortunately we don't live in that kind of world, because
everyone protects most of their mail with envelopes. So no one draws suspicion by asserting their
privacy with an envelope. There's safety in numbers. Analogously, it would be nice if everyone
routinely used encryption for all their e-mail, innocent or not, so that no one drew suspicion by
asserting their e-mail privacy with encryption. Think of it as a form of solidarity.

Today, if the Government wants to violate the privacy of ordinary citizens, it has to expend a
certain amount of expense and labor to intercept and steam open and read paper mail, and listen
to and possibly transcribe spoken telephone conversation. This kind of labor-intensive monitoring
is not practical on a large scale. This is only done in important cases when it seems worthwhile.

More and more of our private communications are being routed through electronic channels.
Electronic mail is gradually replacing conventional paper mail. E-mail messages are just too easy
to intercept and scan for interesting keywords. This can be done easily, routinely, automatically,
and undetectably on a grand scale. International cablegrams are already scanned this way on a
large scale by the NSA.

We are moving toward a future when the nation will be crisscrossed with high capacity fiber optic
data networks linking together all our increasingly ubiquitous personal computers. E-mail will be
the norm for everyone, not the novelty it is today. The Government will protect our e-mail with
Government-designed encryption protocols. Probably most people will trust that. But perhaps
some people will prefer their own protective measures.

"PGP empowers people to take their privacy into their own hands.
There's a growing social need for it. That's why I wrote it."

Phil Zimmermann

About The Program

The user interface or 'front-end' of ViaCrypt PGP for Windows is designed to be easy-to-use, yet
powerful for both novices and 'power users'. Novices will appreciate the intuitive design of the
interface that 'leads you by the hand'. By clicking the "Encrypt" button, for example, ViaCrypt
PGP for Windows will lead you through a short series of simple, familiar dialog boxes, allowing
you to easily encrypt any file on your disk.

The 'back end' of ViaCrypt PGP for Windows is a combination of a DLL for certain key
management functions and a 'QuickWIn cryptographic kernel.

Getting Started
Starting ViaCrypt PGP For Windows

Double-click on the ViaCrypt PGP for Windows icon in the ViaCrypt PGP Program Manager
Group. The program should begin to run, displaying its Main Window.

Generating Your First Key

One of the first things you will want to do in order to use ViaCrypt PGP    is to generate your own
public/secret key pair. Choose the "Key Management" button on the Main Window. The Key
Management Window should appear:

Choose the "Generate your own key pair" button. ViaCrypt PGP for Windows will open a window
and prompt you for the information it needs to generate a new key pair.

At this point you are ready to begin using ViaCrypt PGP to digitally sign your files and messages,
and to send your public key to others with whom you want to communicate securely. Later, after
they have also sent you their public keys, you can send them encrypted e-mail messages.

Exchanging Keys With Colleagues

To communicate securely with a colleague, you'll both need to exchange keys with each other. In
order for your colleague to send you an encrypted file or message, you must provide your
colleague with a copy of your public key. And the reverse is also true:    To send an encrypted
message to a colleague, you will need his or her public key.

The Key Management Window contains two buttons that are used when exchanging keys. The
"Copy (Extract) key from keyring to file" is used to create a file containing a copy of your public
key. You can then send that file to your colleague.

When you receive the file containing your colleague's public key, the "Add key from file to your
keyring" button is used to add his or her key to your keyring.

Procedures (How To)
Encrypt a File

Sign a File

Encrypt and Sign a File

Decrypt a File

Verify a Digital Signature

Key Management

Running Windows Notepad

Changing Configuration Parameters (Settings)

Exiting The Program

Encrypt a File
Choose this button to encrypt any file on your disk.

1. Select the file you want to encrypt in the "Select FILE to Encrypt" dialog box.

2. Next, select the recipient(s) using the "Select Recipients" dialog box. The recipient's public
key will be used to encrypt the file. After the file is encrypted, only the recipient will be able
to decrypt it.

3. Using the "Save Encrypted File As" dialog box, specify a name for the encrypted file, or
accept the default.

4. Next you should see a "Working" box. You may also see briefly an icon representing the
cryptographic kernel near the bottom of your screen.

When the "Working" box disappears, your file has been encrypted.

See Also:
Making an Encrypted File "For Your Eyes Only"

Disabling ASCII Encoding

Suppressing Public Key Encryption

Leaving No Traces of Plaintext on the Disk

Sending ASCII Text Across Different Machine Environments

Encrypting a File Using Drag and Drop

Making an Encrypted File "For Your Eyes Only"
(When recipient decrypts file, output it to the screen, not to a file.)

Occasionally, you may be encrypting a file that you feel is sufficiently sensitive that upon
decryption, must be displayed directly on the recipient's screen and not written to disk.

To set the "For Your Eyes Only" flag in the encrypted file, choose the "Settings" button in the
Main Window. Then select the check box labeled:

Enable Advanced Options for Encrypt/Sign/Decrypt

Thereafter when you encrypt the file, an additional dialog box will be displayed:

Select the check box and choose OK. When the recipient decrypts the file, the following prompt
will appear:

This message is marked "For your eyes only". Display now (Y/n)?

If the recipient enters 'Y', the decrypted file will be displayed and not written to a file. This
feature is the safest way for you to prevent your sensitive message from being inadvertently left
on the recipient's disk.

Disabling ASCII Encoding
By default, ViaCrypt PGP for Windows will encode the encrypted and signed file in an ASCII
armor so that it consists entirely of ASCII characters. This makes it easy to send encrypted files
by e-mail.

You can disable this ASCII armor function, forcing ViaCrypt PGP to save the file as binary data.
Choose the "Settings" button, and de-select the check box labeled:

ASCII Armor PGP Output

Suppressing Public Key Encryption
Sometimes you just need to encrypt a file the old-fashioned way, with conventional single-key
encryption. ViaCrypt PGP's default mode is to use both conventional and public key encryption
together when encrypting a file.    It is a simple matter to 'turn off' the public key cryptography
and use just the conventional cryptography in ViaCrypt PGP.

To do so, choose the "Settings" button in the Main Window. Select the check box labeled:

Encrypt using IDEA only, not IDEA and RSA

When you encrypt a file while this option is selected, ViaCrypt PGP will prompt you for a pass
phrase to use as a conventional key to encipher the file. This pass phrase need not be (and, indeed,
should not be) the same pass phrase that you use to protect your own secret key. Note that
ViaCrypt PGP compresses the plaintext before encrypting it.

ViaCrypt PGP will not encrypt the file the same way twice, even if you use the same pass phrase
every time.

Leaving No Traces of Plaintext on the Disk
After ViaCrypt PGP makes a ciphertext file for you, you can have ViaCrypt PGP automatically
overwrite the plaintext file and delete it, leaving no trace of plaintext on the disk so that no one
can recover it later using a disk block scanning utility. This is useful if the plaintext file contains
sensitive information that you don't want to keep.

To wipe out the plaintext file after producing the ciphertext file, choose the "Settings" button on
the Main Window, and select the check box labeled:

Delete (Wipe) input file after encryption

Obviously, you should be careful with this option. Also note that this will not wipe out any
fragments of plaintext that your word processor might have created on the disk while you were
editing the message before running ViaCrypt PGP. Most word processors create backup files,
scratch files, or both. Also, it overwrites the file only once, which is enough to thwart
conventional disk recovery efforts, but not enough to withstand a determined and sophisticated
effort to recover the faint magnetic traces of the data using special disk recovery hardware.

Sending ASCII Text Across Different Machine
Environments

You may use ViaCrypt PGP to encrypt any kind of file: binary 8-bit data or ASCII text. Probably
the most common usage of ViaCrypt PGP will be for e-mail, when the plaintext is ASCII text.

ASCII text is sometimes represented differently on different machines. For example, on an MS-
DOS system, all lines of ASCII text are terminated with a carriage return followed by a linefeed.
On a Unix system, all lines end with just a linefeed. On a Macintosh, all lines end with just a
carriage return. This is a sad fact of life.

Normal unencrypted ASCII text messages are often automatically translated to some common
"canonical" form when they are transmitted from one machine to another. Canonical text has a
carriage return and a linefeed at the end of each line of text. For example, the popular KERMIT
communication protocol can convert text to canonical form when transmitting it to another
system. This gets converted back to local text line terminators by the receiving KERMIT. This
makes it easy to share text files across different systems.

By default, ViaCrypt PGP converts ASCII text to canonical form before it gets encrypted. At the
receiving end, the decrypted plaintext is automatically converted back to whatever text form is
appropriate for the local environment.

To disable this feature, choose the "Settings" button on the Main Window, and de-select the check
box labeled:

Use Canonical format for newlines on textfile

This mode is automatically turned off if ViaCrypt PGP detects that the plaintext file contains what
it thinks is non-text binary data.

For ViaCrypt PGP users that use non-English 8-bit character sets, when ViaCrypt PGP    converts
text to canonical form, it may convert data from the local character set into the LATIN1 (ISO
8859-1 Latin Alphabet 1) character set, depending on the setting of the CHARSET parameter in
the ViaCrypt PGP configuration file. LATIN1 is a superset of ASCII, with extra characters added
for many European languages.

Sign a File
Choose this button to digitally sign any file on your disk.

1. Select the file you want to sign in the "Select File to Sign" dialog box.

2. If you have more than one secret key on your secret keyring, ViaCrypt PGP will ask you to
select the key to use.

3. Using the "Save Signed File As" dialog box, specify a name for the signed file.

4. A dialog box will appear on your screen, asking you for your pass phrase.    Type your pass
phrase and press ENTER.

5. ViaCrypt PGP will then digitally sign your file:

See Also:
Format of Digitally Signed ASCII Text Files

Format of Digitally Signed Binary Files

Separating Signatures from Messages

Signing Files Using Drag and Drop

Format of Digitally Signed ASCII Text Files
When digitally signing a file containing only ASCII text, by default ViaCrypt PGP's output will
contain the ASCII text in its readable form, followed by the digital signature. The result will look
something like this:

-----BEGIN PGP SIGNED MESSAGE-----

Now is the time for all
good men to come to the
aid of their country.
-----BEGIN PGP SIGNATURE-----
Version: 2.7

iQBVAgUBLlkKnndnGF5n7PE9AQEDhQH+PPPJzXK4HvdgdlfMWVW2nWmQvpBBAIsZ
Z8TqP3/d6TrOfD1z5KCaUKjEfiY9NueWhGATr+eBL5qkyb+a/TKE0Q==
=wM76
-----END PGP SIGNATURE-----

You can force ViaCrypt PGP to compress the ASCII text and encode it and the digital signature in
an ASCII armor like so:

-----BEGIN PGP MESSAGE-----
Version: 2.7

owHrZAhlYmXUi+R5VZ4uEZf+5qMtI+O5x4z/LN5dum3AzMRzbkp2W+uLmTfeXTHb
wqfH8NaQI6CeZ4vM2r+yBQy/9+y4/9Bk47xlsV7XM5hCG93edT0w57/5luWtTMOa
2BK+ZCv91IrE3IKcVL2SihIGIPDLL1fILFYoyUhVKMnMTVVIyy9SSMzJUeDlSs/P
T1HITc1TKMlXSM4HSgFpkDJersTMFIX8NBAnswgoVZpXUlSpBwA=
=GuEy
-----END PGP MESSAGE-----

To do so, choose the "Settings" button on the Main Window, and:

1. De-select the check box labeled "Use Clearsig option for digital signatures"

2. Verify the "ASCII Armor PGP Output" check box is selected:

You can also force ViaCrypt PGP to save the signed file as a binary file. Choose the "Settings"
button on the Main Window, and deselect the check box labeled "ASCII Armor PGP Output"

Format of Digitally Signed Binary Files
By default, ViaCrypt PGP for Windows will encode the signed file in an ASCII armor so that it
consists entirely of ASCII characters. This makes it easy to send signed binary files, such as
spreadsheets and word-processing documents, by e-mail.

You can disable this ASCII armor function, forcing ViaCrypt PGP to save the signed file as binary
data. Choose the "Settings" button from the Main Window, and de-select the check box labeled:

ASCII Armor PGP Output

Separating Signatures from Messages
Normally, the file created by ViaCrypt PGP contains both the signed material and the digital
signature. This makes it convenient in simple cases to check signatures. It is desirable in some
circumstances to have signature certificates stored separately from the messages they sign (for
example, when you want to digitally sign a word processing document, but still be able to view it
with your word processor). To generate signature certificates that are detached from the signed
material, choose the "Settings" button on the Main Window and check the box labeled:

Enable Advanced Options for Encrypt/Sign/Decrypt

Then when you sign the file, an additional dialog box will be displayed:

Select the check box and choose OK. The title bar of the dialog box that follows will be "Save
Signature File As" instead of "Save Signed File As". Specify the name for the file containing just
the digital signature.

When signing files in this manner and sending them to someone, you need to send both files: the
file containing the signed material and the file containing the signature. The recipient must have
both files to check the file's integrity. When the recipient attempts to process the signature file,
ViaCrypt PGP notices that there is no text in the same file with the signature and prompts the user
for the filename of the text. Only then can ViaCrypt PGP properly check the signature integrity.

Encrypt and Sign a File
Choose this button to simultaneously encrypt and sign any file on your disk.

1. Select the file in the "Select File to Encrypt and Sign" dialog box.

2. Select the recipient using the "Select Recipients" dialog box.    The recipient's public key will
be used to encrypt the file. After the file is encrypted, only the recipient will be able to
decrypt it.

3. If you have more than one secret key on your secret keyring, ViaCrypt PGP will ask you to
select the key to use to sign the file.

4. Next specify a name for the encrypted and signed file using the "Save Encrypted and Signed
File As" dialog box.

5. A dialog box will appear on your screen, asking you for your pass phrase.    Type your pass
phrase and press ENTER.

6. ViaCrypt PGP will then encrypt and sign the file.

See Also:
Making an Encrypted File "For Your Eyes Only"

Disabling ASCII Encoding

Suppressing Public Key Encryption

Leaving No Traces of Plaintext on the Disk

Sending ASCII Files Across Different Machine Environments

Encrypting and/or Signing Files Using Drag and Drop

Decrypt a File
Choose this button to decrypt a file. If the file is also digitally signed, the signature will be
checked.

1. Select the file you want to decrypt using the "Select File to Decrypt" dialog box.

2. Using the "Save Decrypted File As" dialog box, specify the name for the decrypted file, or
accept the default.

3. A dialog box will appear on your screen, asking you to enter your pass phrase.    Type the
correct pass phrase and press ENTER.

4. ViaCrypt PGP will decrypt the file.

5. If the file is also digitally signed, the signature will be checked.

See Also:

Output Decrypted Text To Your Screen, not to a File

Decrypting a Message and Leaving the Signature On It

Preserving the Original Plaintext Filename

Decrypting Files Using Drag and Drop

Output Decrypted Text To Your Screen, not to a File
Occasionally, you may be decrypting an ASCII text file that you feel is sufficiently sensitive that
it must be displayed on your screen instead of written to your disk. In this case, choose the
"Settings" button in the Main Window, and select the check box labeled:

Enable Advanced Options for Encrypt/Sign/Decrypt

Thereafter, When you decrypt a file, an additional dialog box will be displayed:

Select the check box labeled:

Output decrypted file to the screen, not to a file.

If the decrypted file is ASCII text, it will be displayed on your screen one page at a time.

Decrypting a Message and Leaving the Signature On It
If the file you are decrypting is also digitally signed, you usually want ViaCrypt PGP to verify the
signature as well as decrypt the file. But sometimes you want to decrypt an encrypted file, leaving
the signature either

still attached, or:

in a separate file.

This may be useful if you want to send a copy of a signed document to a third party, perhaps re-
encrypting it.

To specify encrypted and signed files are to be decrypted only, choose the "Settings" button on the
Main Window, and select the check box labeled: "Enable Advanced Options for
Encrypt/Sign/Decrypt"    Thereafter when you decrypt a file, an additional dialog box will be
displayed:

Click on the parts of the window where the    appears for descriptions of each item in the
window:

Simply select the appropriate option from the "If encrypted file is signed" group of buttons, and
press OK. The file will be decrypted, and if it also contains a digital signature, the signature is
either left intact or placed in a separate file, depending upon your choice

Preserving the Original Plaintext Filename
Normally, you specify the name for the decrypted file, but you can tell ViaCrypt PGP you want to
preserve the original plaintext filename and use it as the name of the decrypted output file. This is
useful if ViaCrypt PGP is used on files whose names are important to preserve. To recover the
original names of files when decrypting, choose the "Settings" button on the Main Window, and
select the check box labeled:

Preserve original plaintext filename when decrypting

Verify a Digital Signature
Choose this button to verify the digital signature on a digitally signed file.

 For example, if you receive a file:

-----BEGIN PGP SIGNED MESSAGE-----

Now is the time for all
good men to come to the
aid of their country.
-----BEGIN PGP SIGNATURE-----
Version: 2.7

iQBVAgUBLlkKnndnGF5n7PE9AQEDhQH+PPPJzXK4HvdgdlfMWVW2nWmQvpBBAIsZ
Z8TqP3/d6TrOfD1z5KCaUKjEfiY9NueWhGATr+eBL5qkyb+a/TKE0Q==
=wM76
-----END PGP SIGNATURE-----

You can read the file, but you need an easy way to verify the digital signature attached to the
bottom.

1. ViaCrypt PGP will display a dialog box for you to specify the name of the signed file.

2. Next you should see a "Working" box. You may also see briefly an icon representing the
cryptographic kernel near the bottom of your screen.

3. When the "Working" box disappears, the results of the signature verification will appear in
the "Results" dialog box:

4. If the display If the "Results" box contains the phrase "WARNING: Bad signature...", it
indicates that the file may be corrupted (accidentally or intentionally), or the signature may be
a forgery.

See Also:
Detaching Signatures from Signed Files

Verifying Signatures Using Drag and Drop

Detaching Signatures from Signed Files
You may want to verify a digital signature, and at the same time separate the signature and the
signed data into two distinct files. To do so, choose the "Settings" button from the Main Window,
and select the check box labeled:

Enable Advanced Options for Encrypt/Sign/Decrypt.

Thereafter when you verify a digitally signed file, an additional dialog box will appear:

Select the check box. ViaCrypt PGP will first verify the signature. Then it will place the signature
in a file called:

filename.sig

where the filename portion is the same as that of the input file.

Key Management
Since the time of Julius Caesar, key management has always been the hardest part of
cryptography. One of the principal distinguishing features of ViaCrypt PGP is its sophisticated
key management. When you choose the "Key Management" button on the Main Window, the Key
Management Window appears. The Key Management Window provides all of the functions
associated with managing cryptographic key.

Generating your own key pair

Adding a key from a file to your keyring

Copy (Extract) a key from your keyring to a file

Removing a key from your keyring
Removing just one User ID from your key

Removing signatures from a key

Revoking your own key

Enabling or disabling a public key

Viewing keys on your public keyring

Viewing keys on your secret keyring

Viewing the Fingerprint of a key
Verifying a public key over the phone

Checking a key's signatures

Editing your User ID or Pass Phrase
Changing your pass phrase

Changing your User ID

Adding an additional User ID to your key

Removing just one User ID from your key

Signing / Cerifying someone's key

Editing a key's trust parameters

Running Windows Notepad
Use the "Run Notepad" button to run a copy of Windows Notepad. This is useful when you want
to create and encrypt a short message, or to view a text file you have just decrypted

You can also specify that some other editor is to be used in place of Notepad.    Add a line to the
[Settings] section of VPGPW.INI:

Editor=Your_Editor's_Path_and_Name

For example, if your editor is named "MYED.EXE" and is located in "C:\MYAPPS", then
specify:

Editor=c:\myapps\myed.exe

Note that ViaCrypt PGP doesn't do anything fancy. It just executes the string after the '=' when
you press the button on the Main Window.

Changing Configuration Parameters (Settings)
Two types of configuration parameters are available:

The Settings Window

Choose the "Settings" button on the Main Window to display the Settings Window. The
Settings Window provides access to the most common options. For example, you can
specify that decrypted files retain the same filename as was used before encryption. You
can also change the foreground and background colors of ViaCrypt PGP's windows.

CONFIG.TXT File

The configuration parameters in the CONFIG.TXT file are those that are not as
commonly used.    The CONFIG.TXT file should be in your VPGP directory (or in the
directory where you installed ViaCrypt PGP for Windows).    Configuration parameters in
CONFIG.TXT should be changed using NOTEPAD or some other editor.

Exiting The Program
Press the "Quit" button on the Main WINDOW to Exit ViaCrypt PGP.

Drag and Drop

Encrypting and/or Signing Files Using Drag and Drop

Decrypting Files Using Drag and Drop

Verifying Signatures Using Drag And Drop

Adding Public Keys to your Keyring Using Drag and Drop

Decrypting Files Using Drag and Drop
Dropping an encrypted file onto ViaCrypt PGP causes the same action as pressing the "Decrypt"
button in the Main Window, except that you are not asked to specify the file to decrypt. If the
encrypted file has also been signed, the signature will be checked unless you have specified
otherwise via the "Advanced Encrypt/Sign/Decrypt Options".

Encrypting and/or Signing Files Using Drag and Drop
Dragging a file from Windows File Manager and dropping it on ViaCrypt PGP's Main Window or
its icon is a convenient way to encrypt and/or digitally sign the file.

When you drop a file on the Main Window or icon, ViaCrypt PGP analyzes it. If the file does not
appear to have been created by ViaCrypt PGP, then it assumes you want to encrypt it, sign it, or
both. The following window is displayed:

Note that the file's name is displayed in the window's title bar. You can then select the operation to
perform.

Verifying Signatures Using Drag And Drop
Dropping a digitally signed file onto ViaCrypt PGP causes the same action as pressing the "Verify
Signature" button in the Main Window

Configuration Parameters
Two types of configuration parameters are available:

The Settings Window

CONFIG.TXT File

The Settings Window
The Settings Window appears when you choose the Settings button in the Main Window. The
Settings Window provides access to the most often needed configuration parameters.    Less often
used configuration parameters appear in the CONFIG.TXT file.

The Settings Window is Shown below.    Click on the parts of the window where the    appears
for descriptions of each item in the window:

CONFIG.TXT File
ViaCrypt PGP has a number of parameters that can be specified by the user in a special
configuration text file called "CONFIG.TXT". This file is normally in the VPGP directory. If you
installed ViaCrypt PGP for Windows in a different directory, then CONFIG.TXT will be in the
directory where ViaCrypt PGP for Windows resides.    The configuration parameters in
CONFIG.TXT should be changed using NOTEPAD or some other editor.

This file contains parameters used by the cryptographic kernal that is executed by the Windows
shell. Some of the parameters in CONFIG.TXT must be defined in a specific manner for ViaCrypt
PGP for Windows to work properly:

PARAMETER REQUIRED SETTING

ARMOR OFF (or not defined)
TEXTMODE OFF (or not defined)

Configuration parameters may be assigned integer values, character string values, or on/off
values, depending on what kind of configuration parameter it is. Text in configuration parameters
is case-insensitive. This means that "ENCRYPTTOSELF=YES" is the same as
"EncryptToSelf=Yes". A sample configuration file is provided with ViaCrypt PGP, so you can see
some examples.

In the configuration file, blank lines are ignored, as is anything following the '#' comment
character. Keywords are not case-sensitive. Here is a short sample fragment of a typical
configuration file:

TMP is the directory for PGP scratch files, such as
a RAM disk
TMP = "e:\"
Can be overridden by environment variable TMP.
Armor = on
Use -a flag for ASCII armor whenever applicable.
CERT_DEPTH is how deeply introducers may introduce
introducers.
cert_depth = 3

If some configuration parameters are not defined in the configuration file, or if there is no
configuration file, or if ViaCrypt PGP can't find the configuration file, the values for the
configuration parameters default to some reasonable value.

Configuration Parameters
TMP Directory Pathname for Temporary Files

LANGUAGE Foreign Language Selector

MYNAME Default User ID for Making Signatures

ENCRYPTTOSELF Always Include Yourself a Recipient for Encrypted Files

TEXTMODE Assuming Plaintext is a File

CHARSET Specifies Local Character Set for Text Files

ARMOR Enable ASCII Armor Output

ARMORLINES Size of ASCII Armor Multipart Files

KEEPBINARY Keep Binary Ciphertext Files After Decrypting

COMPRESS Enable Compression

COMPLETES_NEEDED Number of Completely Trusted Introducer Needed

MARGINALS_NEEDED Number of Marginally Trusted Introducers Needed

CERT_DEPTH How Deep May Introducers Be Nested

PAGER Selects Command to Display Plaintext Output

SHOWPASS Echo Pass Phrase to User

TZFIX Time Zone Adjustment

CLEARSIG Enable Signed Messages to be Encapsulated as Clear Text

VERBOSE Quiet, Normal, or Verbose Messages

INTERACTIVE Ask for Confirmation for Key Adds

PKCS_COMPAT Backwards Compatibility with Version 2.4

PUBRING Location for Your Public Keyring

SECRING Location for Your Secret Keyring

RANDSEED Location for Your Random Number Seed File

COMMENT Adding a Comment Line to the Output

Cryptography & Privacy Basics
Introduction to Cryptography

Beware of Snake Oil

A Peek Under the Hood
Random Numbers

ViaCrypt PGP's Conventional Encryption Algorithm

Data Compression

Message Digests and Digital Signatures

How to Protect Public Keys from Tampering

How Does ViaCrypt PGP Keep Track of Which Keys are Valid?

How to Protect Secret Keys from Disclosure

Protecting Against Bogus Timestamps

What if you Lose Your Secret Key?

Vulnerabilities
Compromised Pass Phrase and Secret Key

Public Key Tampering

"Not Quite Deleted" Files

Viruses and Trojan Horses

Physical Security Breach

Tempest Attacks

Exposure on Multi-User Systems

Traffic Analysis

Cryptanalysis

Recommended Reading Material

ViaCrypt PGP Files

ViaCrypt PGP Naming Conventions

Introduction to Cryptography
First, some elementary terminology. Suppose I want to send you a message, but I don't want
anyone but you to be able to read it. I can "encrypt", or "encipher" the message, which means I
scramble it up in a hopelessly complicated way, rendering it unreadable to anyone except you, the
intended recipient of the message. I supply a cryptographic "key" to encrypt the message, and you
have to use the same key to decipher or "decrypt" it. At least that's how it works in conventional
"single-key" cryptosystems.

In conventional cryptosystems, such as the U.S. Federal Data Encryption Standard (DES), a
single key is used for both encryption and decryption. This means that a key must be initially
transmitted via secure channels so that both parties can know it before encrypted messages can be
sent over insecure channels. This may be inconvenient. If you have a secure channel for
exchanging keys, then why do you need cryptography in the first place?

In public key cryptosystems, everyone has two related complementary keys, a publicly revealed
key and a secret key. Each key unlocks the code that the other key makes. Knowing the public
key does not help you deduce the corresponding secret key. The public key can be published and
widely disseminated across a communications network.

This protocol provides privacy without the need for the same kind of secure channels that a
conventional cryptosystem requires.

Anyone can use a recipient's public key to encrypt a message to that person, and that recipient
uses her own corresponding secret key to decrypt that message. No one but the recipient can
decrypt it, because no one else has access to that secret key. Not even the person who encrypted
the message can decrypt it.

Message authentication is also provided. The sender's own secret key can be used to encrypt a
message, thereby "signing" it. This creates a digital signature of a message, which the recipient
(or anyone else) can check by using the sender's public key to decrypt it. This proves that the
sender was the true originator of the message, and that the message has not been subsequently
altered by anyone else, because the sender alone possesses the secret key that made that signature.
Forgery of a signed message is infeasible, and the sender cannot later disavow his signature.

These two processes can be combined to provide both privacy and authentication by first signing
a message with your own secret key, then encrypting the signed message with the recipient's
public key. The recipient reverses these steps by first decrypting the message with her own secret
key, then checking the enclosed signature with your public key. These steps are done
automatically by the recipient's software.

Because the public key encryption algorithm is much slower than conventional single-key
encryption, encryption is better accomplished by using a high-quality fast conventional single-key
encryption algorithm to encipher the message. This original unenciphered message is called
"plaintext". In a process invisible to the user, a temporary random key, created just for this one
"session", is used to conventionally encipher the plaintext file. Then the recipient's public key is
used to encipher this temporary random conventional key. This public-key-enciphered
conventional "session" key is sent along with the enciphered text (called "ciphertext") to the
recipient. The recipient uses her own secret key to recover this temporary session key, and then
uses that key to run the fast conventional single-key algorithm to decipher the large ciphertext
message.

Public keys are kept in individual "key certificates" that include the key owner's user ID (which is
that person's name), a timestamp of when the key pair was generated, and the actual key material.
Public key certificates contain the public key material, while secret key certificates contain the
secret key material. Each secret key is also encrypted with its own password, in case it gets
stolen. A key file, or "key ring" contains one or more of these key certificates. Public keyrings
contain public key certificates, and secret key rings contain secret key certificates.

The keys are also internally referenced by a "key ID", which is an "abbreviation" of the public
key (the least significant 64 bits of the large public key). When this key ID is displayed, only the
lower 24 bits are shown for further brevity. While many keys may share the same user ID, for all
practical purposes no two keys share the same key ID.

ViaCrypt PGP uses "message digests" to form signatures. A message digest is a 128-bit
cryptographically strong one-way hash function of the message. It is somewhat analogous to a
"checksum" or CRC error checking code, in that it compactly "represents" the message and is
used to detect changes in the message. Unlike a CRC, however, it is computationally infeasible
for an attacker to devise a substitute message that would produce an identical message digest. The
message digest gets encrypted by the secret key to form a signature.

Documents are signed by prefixing them with signature certificates, which contain the key ID of
the key that was used to sign it, a secret-key-signed message digest of the document, and a
timestamp of when the signature was made. The key ID is used by the receiver to look up the
sender's public key to check the signature. The receiver's software automatically looks up the
sender's public key and user ID in the receiver's public key ring.

Encrypted files are prefixed by the key ID of the public key used to encrypt them. The receiver
uses this key ID message prefix to look up the secret key needed to decrypt the message. The
receiver's software automatically looks up the necessary secret decryption key in the receiver's
secret key ring.

These two types of keyrings are the principal method of storing and managing public and secret
keys. Rather than keep individual keys in separate key files, they are collected in keyrings to
facilitate the automatic lookup of keys either by key ID or by user ID. Each user keeps his own
pair of keyrings. An individual public key is temporarily kept in a separate file long enough to
send to your friend who will then add it to her key ring.

Beware of Snake Oil
Philip Zimmermann has this to say on the subject of encryption products and trust:

When examining a cryptographic software package, the question always remains,
why should you trust this product? Even if you examined the source code
yourself, not everyone has the cryptographic experience to judge the security.
Even if you are an experienced cryptographer, subtle weaknesses in the
algorithms could still elude you.

When I was in college in the early seventies, I devised what I believed was a
brilliant encryption scheme. A simple pseudorandom number stream was added
to the plaintext stream to create ciphertext. This would seemingly thwart any
frequency analysis of the ciphertext, and would be uncrackable even to the most
resourceful Government intelligence agencies. I felt so smug about my
achievement. So cock-sure.

Years later, I discovered this same scheme in several introductory cryptography
texts and tutorial papers. How nice. Other cryptographers had thought of the
same scheme. Unfortunately, the scheme was presented as a simple homework
assignment on how to use elementary cryptanalytic techniques to trivially crack
it. So much for my brilliant scheme.

From this humbling experience I learned how easy it is to fall into a false sense of
security when devising an encryption algorithm. Most people don't realize how
fiendishly difficult it is to devise an encryption algorithm that can withstand a
prolonged and determined attack by a resourceful opponent. Many mainstream
software engineers have developed equally naive encryption schemes (often even
the very same encryption scheme), and some of them have been incorporated into
commercial encryption software packages and sold for good money to thousands
of unsuspecting users.

This is like selling automotive seat belts that look good and feel good, but snap
open in even the slowest crash test. Depending on them may be worse than not
wearing seat belts at all. No one suspects they are bad until a real crash.
Depending on weak cryptographic software may cause you to unknowingly place
sensitive information at risk. You might not otherwise have done so if you had no
cryptographic software at all. Perhaps you may never even discover your data has
been compromised.

Sometimes commercial packages use the Federal Data Encryption Standard
(DES), a good conventional algorithm recommended by the Government for
commercial use (but not for classified information, oddly enough - hmmm).
There are several "modes of operation" the DES can use, some of them better
than others. The Government specifically recommends not using the weakest
simplest mode for messages, the Electronic Codebook (ECB) mode. But they do
recommend the stronger and more complex Cipher Feedback (CFB) or Cipher
Block Chaining (CBC) modes.

Unfortunately, most of the commercial encryption packages I've looked at use
ECB mode. When I've talked to the authors of a number of these
implementations, they say they've never heard of CBC or CFB modes, and didn't

know anything about the weaknesses of ECB mode. The very fact that they
haven't even learned enough cryptography to know these elementary concepts is
not reassuring. These same software packages often include a second faster
encryption algorithm that can be used instead of the slower DES. The author of
the package often thinks his proprietary faster algorithm is as secure as the DES,
but after questioning him I usually discover that it's just a variation of my own
brilliant scheme from college days. Or maybe he won't even reveal how his
proprietary encryption scheme works, but assures me it's a brilliant scheme and I
should trust it. I'm sure he believes that his algorithm is brilliant, but how can I
know that without seeing it?    In all fairness I must point out that in most cases
these products do not come from companies that specialize in cryptographic
technology.

There is a company in Utah that sells a package that cracks the built-in
encryption schemes used by many popular word processing and spreadsheet
programs. It doesn't simply guess passwords - it does real cryptanalysis. Some
people buy it when they forget their password for their own files. Law
enforcement agencies buy it too, so they can read files they seize. I talked to the
author of this program, and he said his program only takes a split second to crack
them, but he put in some delay loops to slow it down so it doesn't look so easy to
the customer. He also told me that the password encryption feature of a popular
and widely-used file compression program can often be easily broken, and that
his law enforcement customers already have that service regularly provided to
them from another vendor.

In some ways, cryptography is like pharmaceuticals. Its integrity may be
absolutely crucial. Bad penicillin looks the same as good penicillin. You can tell
if your spreadsheet software is wrong, but how do you tell if your cryptography
package is weak?    The ciphertext produced by a weak encryption algorithm
looks as good as ciphertext produced by a strong encryption algorithm. There's a
lot of snake oil out there. A lot of quack cures. Unlike the patent medicine
hucksters of old, these software implementors usually don't even know their stuff
is snake oil. They may be good software engineers, but they usually haven't even
read any of the academic literature in cryptography. But they think they can write
good cryptographic software. And why not?    After all, it seems intuitively easy
to do so. And their software seems to work okay.

Anyone who thinks they have devised an unbreakable encryption scheme either
is an incredibly rare genius or is naive and inexperienced.

I remember a conversation with a highly placed senior cryptographer with the
NSA. He said he would never trust an encryption algorithm designed by someone
who had not "earned their bones" by first spending a lot of time cracking codes.
That did make a lot of sense. I observed that practically no one in the commercial
world of cryptography qualified under this criterion. "Yes", he said with a self
assured smile, "And that makes our job at NSA so much easier."    A chilling
thought. I didn't qualify either.

The Government has peddled snake oil too. After World War II, the U.S. sold
German Enigma ciphering machines to third world governments. But they didn't
tell them that the Allies cracked the Enigma code during the war, a fact that
remained classified for many years. Even today many Unix systems worldwide

use the Enigma cipher for file encryption, in part because the Government has
created legal obstacles against using better algorithms.

The principal job of the US Government's National Security Agency is to gather
intelligence, principally by covertly tapping into people's private communications
(see James Bamford's book, "The Puzzle Palace"). The NSA has amassed
considerable skill and resources for cracking codes. When people can't get good
cryptography to protect themselves, it makes NSA's job much easier. NSA also
has the responsibility of approving and recommending encryption algorithms.
Some critics charge that this is a conflict of interest, like putting the fox in charge
of guarding the hen house. NSA has been pushing a conventional encryption
algorithm that they designed, and they won't tell anybody how it works because
that's classified. They want others to trust it and use it. But any cryptographer can
tell you that a well-designed encryption algorithm does not have to be classified
to remain secure. Only the keys should need protection. How does anyone else
really know if NSA's classified algorithm is secure? Are they deliberately selling
snake oil?

I'm not as certain about the security of ViaCrypt PGP as I once was about my
brilliant encryption software from college. If I were, that would be a bad sign.
But I'm pretty sure that ViaCrypt PGP does not contain any glaring weaknesses.
The crypto algorithms were developed by people at high levels of civilian
cryptographic academia, and have been individually subject to extensive peer
review. It's reasonably well researched, and has been years in the making. And I
don't work for the NSA. I hope it doesn't require too large a "leap of faith" to trust
the security of ViaCrypt PGP.

A Peek Under the Hood
Random Numbers

ViaCrypt PGP's Conventional Encryption Algorithm

Data Compression

Message Digests and Digital Signatures

Random Numbers
ViaCrypt PGP uses a cryptographically strong pseudorandom number generator for creating
temporary conventional session keys. The seed file for this is called    "randseed.bin". It too can be
kept in whatever directory is indicated by the PGPPATH environmental variable. If this random
seed file does not exist, it is automatically created and seeded with truly random numbers derived
from timing your keystroke latencies.

This generator reseeds the disk file each time it is used by mixing in new key material partially
derived with the time of day and other truly random sources. It uses the conventional encryption
algorithm as an engine for the random number generator. The seed file contains both random seed
material and random key material to key the conventional encryption engine for the random
generator.

This random seed file should be at least slightly protected from disclosure, to reduce the risk of an
attacker deriving your next or previous session keys. The attacker would have a very hard time
getting anything useful from capturing this random seed file, because the file is cryptographically
laundered before and after each use. Nonetheless, it seems prudent to at least try to keep it from
falling into the wrong hands.

If you feel uneasy about trusting any algorithmically derived random number source however
strong, keep in mind that you already trust the strength of the same conventional cipher to protect
your messages. If it's strong enough for that, then it should be strong enough to use as a source of
random numbers for temporary session keys. Note that ViaCrypt PGP still uses truly random
numbers from physical sources (mainly keyboard timings) to generate long-term public/secret key
pairs.

ViaCrypt PGP's Conventional Encryption Algorithm
As described earlier, ViaCrypt PGP "bootstraps" into a conventional single-key encryption
algorithm by using a public key algorithm to encipher the conventional session key and then
switching to fast conventional cryptography. So let's talk about this conventional encryption
algorithm. It isn't the DES.

Time, technology, and recent advances in cryptanalysis have taken their toll on the security of
DES. Eli Biham and Adi Shamir published a paper in the CRYPTO '92 proceedings describing an
attack upon DES using differential cryptanalysis. At CRYPTO '93, Michael Wiener of Bell
Northern Research in Ottawa presented a paper on a chip he designed that guesses DES keys at
high speed until it finds the right one. Using this chip, a processor could be built for about $1
million that would provide a solution in an average of 3.5 hours. This implementation could be
scaled to reduce the time to about 2 minutes.

ViaCrypt PGP does not use the DES as its conventional single-key algorithm to encrypt messages.
Instead, ViaCrypt PGP uses a different conventional single-key block encryption algorithm, called
IDEA. A future version of ViaCrypt PGP may support the DES as an option, if enough users ask
for it. But I suspect IDEA is much better than DES.

For the cryptographically curious, the IDEA cipher has a 64-bit block size for the plaintext and
the ciphertext. It uses a key size of 128 bits. It is based on the design concept of "mixing
operations from different algebraic groups". It runs much faster in software than the DES. Like
the DES, it can be used in cipher feedback (CFB) and cipher block chaining (CBC) modes.
ViaCrypt PGP uses it in 64-bit CFB mode.

The IDEA block cipher was developed at ETH in Zurich by James L. Massey and Xuejia Lai, and
published in 1990. This is not a "home-grown" algorithm. Its designers have a distinguished
reputation in the cryptologic community. Early published papers on the algorithm called it IPES
(Improved Proposed Encryption Standard), but they later changed the name to IDEA
(International Data Encryption Algorithm). So far, IDEA has resisted attack much better than
other ciphers such as FEAL, REDOC-II, LOKI, Snefru and Khafre. And preliminary evidence
suggests that IDEA may be more resistant than the DES to Biham & Shamir's highly successful
differential cryptanalysis attack. Biham and Shamir have been examining the IDEA cipher for
weaknesses, without success. Academic cryptanalyst groups in Belgium, England, and Germany
are also attempting to attack it, as well as the military services from several European countries.
As this new cipher continues to attract attack efforts from the most formidable quarters of the
cryptanalytic world, confidence in IDEA is growing with the passage of time.

A famous hockey player once said, "I try to skate to where I think the puck will be."    A lot of
people are starting to feel that the days are numbered for the DES. I'm skating toward IDEA.

It is not ergonomically practical to use pure RSA with large keys to encrypt and decrypt long
messages. Absolutely no one does it that way in the real world. But perhaps you are concerned
that the whole package is weakened if we use a hybrid public key and conventional scheme just to
speed things up. After all, a chain is only as strong as its weakest link. Many people less
experienced in cryptography mistakenly believe that RSA is intrinsically stronger than any
conventional cipher. It's not. RSA can be made weak by using weak keys, and conventional
ciphers can be made strong by choosing good algorithms. It's usually difficult to tell exactly how
strong a good conventional cipher is, without actually cracking it. A really good conventional
cipher might possibly be harder to crack than even a "military grade" RSA key. The attraction of
public key cryptography is not because it is intrinsically stronger than a conventional cipher - its

appeal is because it helps you manage keys more conveniently.

Data Compression
ViaCrypt PGP normally compresses the plaintext before encrypting it. It's too late to compress it
after it has been encrypted; encrypted data is incompressible. Data compression saves modem
transmission time and disk space and more importantly strengthens cryptographic security. Most
cryptanalysis techniques exploit redundancies found in the plaintext to crack the cipher. Data
compression reduces this redundancy in the plaintext, thereby greatly enhancing resistance to
cryptanalysis. It takes extra time to compress the plaintext, but from a security point of view it
seems worth it, at least in my cautious opinion.

Files that are too short to compress or just don't compress well are not compressed by ViaCrypt
PGP.

If you prefer, you can use PKZIP to compress the plaintext before encrypting it. PKZIP is a
widely-available and effective MS-DOS shareware compression utility from PKWare, Inc. Or you
can use ZIP, a PKZIP-compatible freeware compression utility on Unix and other systems,
available from Jean-Loup Gailly. There is some advantage in using PKZIP or ZIP in certain cases,
because unlike ViaCrypt PGP's built-in compression algorithm, PKZIP and ZIP have the nice
feature of compressing multiple files into a single compressed file, which is reconstituted again
into separate files when decompressed. ViaCrypt PGP will not try to compress a plaintext file that
has already been compressed. After decrypting, the recipient can decompress the plaintext with
PKUNZIP. If the decrypted plaintext is a PKZIP compressed file, ViaCrypt PGP automatically
recognizes this and advises the    recipient that the decrypted plaintext appears to be a PKZIP file.

For the technically curious readers, the current version of ViaCrypt PGP uses the freeware ZIP
compression routines written by Jean-loup Gailly, Mark Adler, and Richard B. Wales. This ZIP
software uses functionally-equivalent compression algorithms as those used by PKWare's new
PKZIP 2.0. This ZIP compression software was selected for ViaCrypt PGP mainly because it has
a really good compression ratio and because it's fast.

Message Digests and Digital Signatures
To create a digital signature, ViaCrypt PGP encrypts with your secret key. But ViaCrypt PGP
doesn't actually encrypt your entire message with your secret key - that would take too long.
Instead, ViaCrypt PGP encrypts a "message digest".

The message digest is a compact (128 bit) "distillate" of your message, similar in concept to a
checksum. You can also think of it as a "fingerprint" of the message. The message digest
"represents" your message, such that if the message were altered in any way, a different message
digest would be computed from it. This makes it possible to detect any changes made to the
message by a forger. A message digest is computed using a cryptographically strong one-way
hash function of the message. It would be computationally infeasible for an attacker to devise a
substitute message that would produce an identical message digest. In that respect, a message
digest is much better than a checksum, because it is easy to devise a different message that would
produce the same checksum. But like a checksum, you can't derive the original message from its
message digest.

A message digest alone is not enough to authenticate a message. The message digest algorithm is
publicly known, and does not require knowledge of any secret keys to calculate. If all we did was
attach a message digest to a message, then a forger could alter a message and simply attach a new
message digest calculated from the new altered message. To provide real authentication, the
sender has to encrypt (sign) the message digest with his secret key.

A message digest is calculated from the message by the sender. The sender's secret key is used to
encrypt the message digest and an electronic timestamp, forming a digital signature, or signature
certificate. The sender sends the digital signature along with the message. The receiver receives
the message and the digital signature, and recovers the original message digest from the digital
signature by decrypting it with the sender's public key. The receiver computes a new message
digest from the message, and checks to see if it matches the one recovered from the digital
signature. If it matches, then that proves the message was not altered, and it came from the sender
who owns the public key used to check the signature.

A potential forger would have to either produce an altered message that produces an identical
message digest (which is infeasible), or he would have to create a new digital signature from a
different message digest (also infeasible, without knowing the true sender's secret key).

Digital signatures prove who sent the message, and that the message was not altered either by
error or design. It also provides non-repudiation, which means the sender cannot easily disavow
his signature on the message.

Using message digests to form digital signatures has other advantages besides being faster than
directly signing the entire actual message with the secret key. Using message digests allows
signatures to be of a standard small fixed size, regardless of the size of the actual message. It also
allows the software to check the message integrity automatically, in a manner similar to using
checksums. And it allows signatures to be stored separately from messages, perhaps even in a
public archive, without revealing sensitive information about the actual messages, because no one
can derive any message content from a message digest.

The message digest algorithm used here is the MD5 Message Digest Algorithm, placed in the
public domain by RSA Data Security, Inc. MD5's designer, Ronald Rivest, writes this about MD5:

"It is conjectured that the difficulty of coming up with two messages having the same message

digest is on the order of 264 operations, and that the difficulty of coming up with any message
having a given message digest is on the order of 2^64 operations. The MD5 algorithm has been
carefully scrutinized for weaknesses. It is, however, a relatively new algorithm and further
security analysis is of course justified, as is the case with any new proposal of this sort. The level
of security provided by MD5 should be sufficient for implementing very high security hybrid
digital signature schemes based on MD5 and the RSA public key cryptosystem."

How to Protect Public Keys from Tampering
In a public key cryptosystem, you don't have to protect public keys from exposure. In fact, it's
better if they are widely disseminated. But it is important to protect public keys from tampering,
to make sure that a public key really belongs to whom it appears to belong to. This may be the
most important vulnerability of a public key cryptosystem. Let's first look at a potential disaster,
then at how to safely avoid it with ViaCrypt PGP.

Suppose you wanted to send a private message to Alice. You download Alice's public key
certificate from an electronic bulletin board system (BBS). You encrypt your letter to Alice with
this public key and send it to her through the BBS's e-mail facility.

Unfortunately, unbeknownst to you or Alice, another user named Charlie has infiltrated the BBS
and generated a public key of his own with Alice's user ID attached to it. He covertly substitutes
his bogus key in place of Alice's real public key. You unwittingly use this bogus key belonging to
Charlie instead of Alice's public key. All looks normal because this bogus key has Alice's user ID.
Now Charlie can decipher the message intended for Alice because he has the matching secret key.
He may even re-encrypt the deciphered message with Alice's real public key and send it on to her
so that no one suspects any wrongdoing. Furthermore, he can even make apparently good
signatures from Alice with this secret key because everyone will use the bogus public key to
check Alice's signatures.

The only way to prevent this disaster is to prevent anyone from tampering with public keys. If
you got Alice's public key directly from Alice, this is no problem. But that may be difficult if
Alice is a thousand miles away, or is currently unreachable.

Perhaps you could get Alice's public key from a mutual trusted friend David who knows he has a
good copy of Alice's public key. David could sign Alice's public key, vouching for the integrity of
Alice's public key. David would create this signature with his own secret key.

This would create a signed public key certificate, and would show that Alice's key had not been
tampered with. This requires you have a known good copy of David's public key to check his
signature. Perhaps David could provide Alice with a signed copy of your public key also. David is
thus serving as an "introducer" between you and Alice.

This signed public key certificate for Alice could be uploaded by David or Alice to the BBS, and
you could download it later. You could then check the signature via David's public key and thus
be assured that this is really Alice's public key. No impostor can fool you into accepting his own
bogus key as Alice's because no one else can forge signatures made by David.

A widely trusted person could even specialize in providing this service of "introducing" users to
each other by providing signatures for their public key certificates. This trusted person could be
regarded as a "key server", or as a "Certifying Authority". Any public key certificates bearing the
key server's signature could be trusted as truly belonging to whom they appear to belong to. All
users who wanted to participate would need a known good copy of just the key server's public
key, so that the key server's signatures could be verified.

A trusted centralized key server or Certifying Authority is especially appropriate for large
impersonal centrally-controlled corporate or government institutions. Some institutional
environments use hierarchies of Certifying Authorities.

For more decentralized environments, allowing all users to act as a trusted introducers for their

friends would probably work better than a centralized key server.

One of the attractive features of ViaCrypt PGP is that it can operate equally as well in either a
centralized environment with a Certifying Authority or the "organic", more decentralized
approach. ViaCrypt PGP tends to emphasize the latter. It better reflects the natural way humans
interact on a personal social level, and allows people to better choose who they can trust for key
management.

This whole business of protecting public keys from tampering is the single most difficult problem
in practical public key applications. It is the "Achilles heel" of public key cryptography, and a lot
of software complexity is tied up in solving this one problem.

You should use a public key only after you are sure that it is a good public key that has not been
tampered with, and actually belongs to the person it claims to. You can be sure of this if you got
this public key certificate directly from its owner, or if it bears the signature of someone else that
you trust, from whom you already have a good public key. Also, the user ID should have the full
name of the key's owner, not just her first name.

No matter how tempted you are - and you will be tempted - never, NEVER give in to expediency
and trust a public key you downloaded from a bulletin board, unless it is signed by someone you
trust. That uncertified public key could have been tampered with by anyone, maybe even by the
system administrator of the bulletin board.

If you are asked to sign someone else's public key certificate, make certain that it really belongs
to that person named in the user ID of that public key certificate. This is because your signature
on her public key certificate is a promise by you that this public key really belongs to her. Other
people who trust you will accept her public key because it bears your signature. It may be ill-
advised to rely on hearsay - don't sign her public key unless you have independent firsthand
knowledge that it really belongs to her. Preferably, you should sign it only if you got it directly
from her.

In order to sign a public key, you must be far more certain of that key's ownership than if you
merely want to use that key to encrypt a message. To be convinced of a key's validity enough to
use it, certifying signatures from trusted introducers should suffice. But to sign a key yourself,
you should require your own independent firsthand knowledge of who owns that key. Perhaps
you could call the key's owner on the phone and read the key file to her to get her to confirm that
the key you have really is her key -- and make sure you really are talking to the right person.

Bear in mind that your signature on a public key certificate does not vouch for the integrity of that
person, but only vouches for the integrity (the ownership) of that person's public key. You aren't
risking your credibility by signing the public key of a sociopath, if you were completely confident
that the key really belonged to him. Other people would accept that key as belonging to him
because you signed it (assuming they trust you), but they wouldn't trust that key's owner. Trusting
a key is not the same as trusting the key's owner.

Trust is not necessarily transferable; I have a friend who I trust not to lie. He's a gullible person
who trusts politicians not to lie. That doesn't mean I trust politicians not to lie. This is just
common sense. If I trust Alice's signature on a key, and Alice trusts Charlie's signature on a key,
that does not imply that I have to trust Charlie's signature on a key.

It would be a good idea to keep your own public key on hand with a collection of certifying
signatures attached from a variety of "introducers", in the hopes that most people will trust at least
one of the introducers who vouch for your own public key's validity. You could post your key

with its attached collection of certifying signatures on various electronic bulletin boards. If you
sign someone else's public key, return it to them with your signature so that they can add it to
their own collection of credentials for their own public key.

ViaCrypt PGP keeps track of which keys on your public key ring are properly certified with
signatures from introducers that you trust. All you have to do is tell ViaCrypt PGP which people
you trust as introducers, and certify their keys yourself with your own ultimately trusted key.
ViaCrypt PGP can take it from there, automatically validating any other keys that have been
signed by your designated introducers. And of course you may directly sign more keys yourself.
More on this later.

Make sure no one else can tamper with your own public key ring. Checking a newly signed
public key certificate must ultimately depend on the integrity of the trusted public keys that are
already on your own public key ring. Maintain physical control of your public key ring,
preferably on your own personal computer rather than on a remote timesharing system, just as
you would do for your secret key. This is to protect it from tampering, not from disclosure. Keep
a trusted backup copy of your public key ring and your secret key ring on write-protected media.

Since your own trusted public key is used as a final authority to directly or indirectly certify all
the other keys on your key ring, it is the most important key to protect from tampering. You may
wish to keep a backup copy on a write-protected floppy disk.

ViaCrypt PGP generally assumes you will maintain physical security over your system and your
keyrings, as well as your copy of ViaCrypt PGP itself. If an intruder can tamper with your disk,
then in theory he can tamper with ViaCrypt PGP itself, rendering moot the safeguards ViaCrypt
PGP may have to detect tampering with keys.

One somewhat complicated way to protect your own whole public key ring from tampering is to
sign the whole ring with your own secret key. You could do this by making a detached signature
certificate of the public key ring

How Does ViaCrypt PGP Keep Track of Which Keys are
Valid?

Before you read this section, be sure you have read the    section on "How to Protect Public Keys
from Tampering".

ViaCrypt PGP keeps track of which keys on your public key ring are properly certified with
signatures from introducers that you trust. All you have to do is tell ViaCrypt PGP which people
you trust as introducers, and certify their keys yourself with your own ultimately trusted key.
ViaCrypt PGP can take it from there, automatically validating any other keys that have been
signed by your designated introducers. And of course you may directly sign more keys yourself.

There are two entirely separate criteria ViaCrypt PGP uses to judge a public key's usefulness -
don't get them confused:

1) Does the key actually belong to whom it appears to belong?    In other words, has it been
certified with a trusted signature?

2) Does it belong to someone you can trust to certify other keys?

ViaCrypt PGP can calculate the answer to the first question. To answer the second question,
ViaCrypt PGP must be explicitly told by you, the user. When you supply the answer to question 2,
ViaCrypt PGP can then calculate the answer to question 1 for other keys signed by the introducer
you designated as trusted.

Keys that have been certified by a trusted introducer are deemed valid by ViaCrypt PGP. The keys
belonging to trusted introducers must themselves be certified either by you or by other trusted
introducers.

ViaCrypt PGP also allows for the possibility of you having several shades of trust for people to
act as introducers. Your trust for a key's owner to act as an introducer does not just reflect your
estimation of their personal integrity - it should also reflect how competent you think they are at
understanding key management and using good judgment in signing keys. You can designate a
person to ViaCrypt PGP as unknown, untrusted, marginally trusted, or completely trusted to
certify other public keys. This trust information is stored on your key ring with their key, but
when you tell ViaCrypt PGP to copy a key off your key ring, ViaCrypt PGP will not copy the trust
information along with the key, because your private opinions on trust are regarded as
confidential.

When ViaCrypt PGP is calculating the validity of a public key, it examines the trust level of all
the attached certifying signatures. It computes a weighted score of validity e.g. two marginally
trusted signatures are deemed as credible as one fully trusted signature. ViaCrypt PGP's
skepticism is adjustable - for example, you may tune ViaCrypt PGP to require two fully trusted
signatures or three marginally trusted signatures to judge a key as valid.

Your own key is "axiomatically" valid to ViaCrypt PGP, needing no introducer's signature to
prove its validity. ViaCrypt PGP knows which public keys are yours, by looking for the
corresponding secret keys on the secret key ring. ViaCrypt PGP also assumes you ultimately trust
yourself to certify other keys.

As time goes on, you will accumulate keys from other people that you may want to designate as
trusted introducers. Everyone else will each choose their own trusted introducers. And everyone

will gradually accumulate and distribute with their key a collection of certifying signatures from
other people, with the expectation that anyone receiving it will trust at least one or two of the
signatures. This will cause the emergence of a decentralized fault-tolerant web of confidence for
all public keys.

This unique grass-roots approach contrasts sharply with Government standard public key
management schemes, such as Internet Privacy Enhanced Mail (PEM), which are based on
centralized control and mandatory centralized trust. The standard schemes rely on a hierarchy of
Certifying Authorities who dictate who you must trust. ViaCrypt PGP's decentralized probabilistic
method for determining public key legitimacy is the centerpiece of its key management
architecture. ViaCrypt PGP lets you alone choose who you trust, putting you at the top of your
own private certification pyramid. ViaCrypt PGP is for people who prefer to pack their own
parachutes.

Note that while this decentralized, grass-roots approach is emphasized here, it does not mean that
ViaCrypt PGP does not perform equally as well in the more hierarchical, centralized public key
management schemes. Large corporate users, for example will probably want a central figure or
person who signs everyone else's keys.

How to Protect Secret Keys from Disclosure
Protect your own secret key and your pass phrase carefully. Really, REALLY carefully. If your
secret key is ever compromised, you'd better get the word out quickly to all interested parties
(good luck) before someone else uses it to make signatures in your name. For example, they
could use it to sign bogus public key certificates, which could create problems for many people,
especially if your signature is widely trusted. And of course, a compromise of your own secret
key could expose all messages sent to you.

To protect your secret key, you can start by always keeping physical control of your secret key.
Keeping it on your personal computer at home is OK, or keep it in your notebook computer that
you can carry with you. If you must use an office computer that you don't always have physical
control of, then keep your public and secret key rings on a write-protected removable floppy disk,
and don't leave it behind when you leave the office. It wouldn't be a good idea to allow your
secret key to reside on a remote timesharing computer, such as a remote dial-in Unix system.
Someone could eavesdrop on your modem line and capture your pass phrase, and then obtain
your actual secret key from the remote system. You should only use your secret key on a machine
that you have physical control over.

Don't store your pass phrase anywhere on the computer that has your secret key file. Storing both
the secret key and the pass phrase on the same computer is as dangerous as keeping your PIN in
the same wallet as your Automatic Teller Machine bank card. You don't want somebody to get
their hands on your disk containing both the pass phrase and the secret key file. It would be most
secure if you just memorize your pass phrase and don't store it anywhere but your brain. If you
feel you must write down your pass phrase, keep it well protected, perhaps even more well
protected than the secret key file.

And keep backup copies of your secret key ring - remember, you have the only copy of your
secret key, and losing it will render useless all the copies of your public key that you have spread
throughout the world.

The decentralized non-institutional approach ViaCrypt PGP supports for management of public
keys has its benefits, but unfortunately this also means we can't rely on a single centralized list of
which keys have been compromised. This makes it a bit harder to contain the damage of a secret
key compromise. You just have to spread the word and hope everyone hears about it.

If the worst case happens - your secret key and pass phrase are both compromised (hopefully you
will find this out somehow) - you will have to issue a "key compromise" certificate. This kind of
certificate is used to warn other people to stop using your public key. You can use ViaCrypt PGP
to create such a certificate by using the "Revoke your own key" button on the Key Management
Window. Then you must somehow send this compromise certificate to everyone else on the
planet, or at least to all your friends and their friends, et cetera. Their own ViaCrypt PGP software
will install this key compromise certificate on their public keyrings and will automatically prevent
them from accidentally using your public key ever again. You can then generate a new
secret/public key pair and publish the new public key. You could send out one package containing
both your new public key and the key compromise certificate for your old key.

Protecting Against Bogus Timestamps
A somewhat obscure vulnerability of ViaCrypt PGP involves dishonest users creating bogus
timestamps on their own public key certificates and signatures. You can skip over this section if
you are a casual user and aren't deeply into obscure public key protocols.

There's nothing to stop a dishonest user from altering the date and time setting of his own
system's clock, and generating his own public key certificates and signatures that appear to have
been created at a different time. He can make it appear that he signed something earlier or later
than he actually did, or that his public/secret key pair was created earlier or later. This may have
some legal or financial benefit to him, for example by creating some kind of loophole that might
allow him to repudiate a signature.

A remedy for this could involve some trustworthy Certifying Authority or notary that would
create notarized signatures with a trustworthy timestamp. This might not necessarily require a
centralized authority. Perhaps any trusted introducer or disinterested party could serve this
function, the same way real notary publics do now. A public key certificate could be signed by the
notary, and the trusted timestamp in the notary's signature would have some legal significance.
The notary could enter the signed certificate into a special certificate log controlled by the notary.
Anyone can read this log.

The notary could also sign other people's signatures, creating a signature certificate of a signature
certificate. This would serve as a witness to the signature the same way real notaries do now with
paper. Again, the notary could enter the detached signature certificate (without the actual whole
document that was signed) into a log controlled by the notary. The notary's signature would have
a trusted timestamp, which might have greater credibility than the timestamp in the original
signature. A signature becomes "legal" if it is signed and logged by the notary.

This problem of certifying signatures with notaries and trusted timestamps warrants further
discussion. This can of worms will not be fully covered here now. There is a good treatment of
this topic in Denning's 1983 article in IEEE Computer (see references). There is much more detail
to be worked out in these various certifying schemes. This will develop further as ViaCrypt PGP
usage increases and other public key products develop their own certifying schemes.

What if you Lose Your Secret Key?
Normally, if you want to revoke your own secret key, you can use the "Revoke your own key"
button to issue a revocation certificate, signed with your own secret key

But what can you do if you lose your secret key, or if your secret key is destroyed?    You can't
revoke it yourself, because you must use your own secret key to revoke it, and you don't have it
anymore. A future version of ViaCrypt PGP will offer a more secure means of revoking keys in
these circumstances, allowing trusted introducers to certify that a public key has been revoked.
But for now, you will have to get the word out through whatever informal means you can, asking
users to "disable" your public key on their own individual public keyrings.

Vulnerabilities
No data security system is impenetrable. ViaCrypt PGP can be circumvented in a variety of ways.
In any data security system, you have to ask yourself if the information you are trying to protect is
more valuable to your attacker than the cost of the attack. This should lead you to protecting
yourself from the cheapest attacks, while not worrying about the more expensive attacks.

Some of the discussion that follows may seem unduly paranoid, but such an attitude is
appropriate for a reasonable discussion of vulnerability issues.

Compromised Pass Phrase and Secret Key

Public Key Tampering

"Not Quite Deleted" Files

Viruses and Trojan Horses

Physical Security Breach

Tempest Attacks

Exposure on Multi-User Systems

Traffic Analysis

Cryptanalysis

Compromised Pass Phrase and Secret Key
Probably the simplest attack is if you leave your pass phrase for your secret key written down
somewhere. If someone gets it and also gets your secret key file, they can read your messages and
make signatures in your name.

Don't use obvious passwords that can be easily guessed, such as the names of your kids or spouse.
If you make your pass phrase a single word, it can be easily guessed by having a computer try all
the words in the dictionary until it finds your password. That's why a pass phrase is so much
better than a password. A more sophisticated attacker may have his computer scan a book of
famous quotations to find your pass phrase. An easy to remember but hard to guess pass phrase
can be easily constructed by some creatively nonsensical sayings or very obscure literary quotes.

For further details, see the topic "How to Protect Secret Keys from Disclosure".

Public Key Tampering
A major vulnerability exists if public keys are tampered with. This may be the most crucially
important vulnerability of a public key cryptosystem, in part because most novices don't
immediately recognize it. The importance of this vulnerability, and appropriate hygienic
countermeasures, are detailed in the topic "How to Protect Public Keys from Tampering".

To summarize:    When you use someone's public key, make certain it has not been tampered with.
A new public key from someone else should be trusted only if you got it directly from its owner,
or if it has been signed by someone you trust. Make sure no one else can tamper with your own
public key ring. Maintain physical control of both your public key ring and your secret key ring,
preferably on your own personal computer rather than on a remote timesharing system. Keep a
backup copy of both keyrings.

"Not Quite Deleted" Files
A potential security problem is caused by how most operating systems delete files. When you
encrypt a file and then delete the original plaintext file, the operating system doesn't actually
physically erase the data. It merely marks those disk blocks as deleted, allowing the space to be
reused later. It's sort of like discarding sensitive paper documents in the paper recycling bin
instead of the paper shredder. The disk blocks still contain the original sensitive data you wanted
to erase, and will probably eventually be overwritten by new data at some point in the future. If
an attacker reads these deleted disk blocks soon after they have been deallocated, he could
recover your plaintext.

In fact this could even happen accidentally, if for some reason something went wrong with the
disk and some files were accidentally deleted or corrupted. A disk recovery program may be run
to recover the damaged files, but this often means some previously deleted files are resurrected
along with everything else. Your confidential files that you thought were gone forever could then
reappear and be inspected by whomever is attempting to recover your damaged disk. Even while
you are creating the original message with a word processor or text editor, the editor may be
creating multiple temporary copies of your text on the disk, just because of its internal workings.
These temporary copies of your text are deleted by the word processor when it's done, but these
sensitive fragments are still on your disk somewhere.

The only way to prevent the plaintext from reappearing is to somehow cause the deleted plaintext
files to be overwritten. Unless you know for sure that all the deleted disk blocks will soon be
reused, you must take positive steps to overwrite the plaintext file, and also any fragments of it on
the disk left by your word processor. You can overwrite the original plaintext file after encryption
by using the "Delete (Wipe) input file after encryption" option on the Settings Window. You can
take care of any fragments of the plaintext left on the disk by using any of the disk utilities
available that can overwrite all of the unused blocks on a disk. For example, the Norton Utilities
for MS-DOS can do this.

Even if you overwrite the plaintext data on the disk, it may still be possible for a resourceful and
determined attacker to recover the data. Faint magnetic traces of the original data remain on the
disk after it has been overwritten. Special sophisticated disk recovery hardware can sometimes be
used to recover the data.

Viruses and Trojan Horses
An attack could involve a specially-tailored hostile computer virus or worm that might infect
ViaCrypt PGP or your operating system. This hypothetical virus could be designed to capture
your pass phrase or secret key or deciphered messages, and covertly write the captured
information to a file or send it through a network to the virus's owner. Or it might alter ViaCrypt
PGP's behavior so that signatures are not properly checked. This attack is cheaper than
cryptanalytic attacks.

Defending against this falls under the category of defending against viral infection generally.
There are some moderately capable anti-viral products commercially available, and there are
hygienic procedures to follow that can greatly reduce the chances of viral infection. A complete
treatment of anti-viral and anti-worm countermeasures is beyond the scope of this document.
ViaCrypt PGP has no defenses against viruses, and assumes your own personal computer is a
trustworthy execution environment. If such a virus or worm actually appeared, hopefully word
would soon get around warning everyone.

Another similar attack involves someone creating a clever imitation of ViaCrypt PGP that
behaves like ViaCrypt PGP in most respects, but doesn't work the way it's supposed to. For
example, it might be deliberately crippled to not check signatures properly, allowing bogus key
certificates to be accepted.

You should make an effort to get your copy of ViaCrypt PGP directly from ViaCrypt.

There are other ways to check ViaCrypt PGP for tampering, using digital signatures. You could
use another trusted version of ViaCrypt PGP to check the signature on a suspect version of
ViaCrypt PGP. But this will not help at all if your operating system is infected, nor will it detect if
your original copy of ViaCrypt PGP.EXE has been maliciously altered in such a way as to
compromise its own ability to check signatures. This test also assumes that you have a good
trusted copy of the public key that you use to check the signature on the ViaCrypt PGP
executable.

Physical Security Breach
A physical security breach may allow someone to physically acquire your plaintext files or
printed messages. A determined opponent might accomplish this through burglary, trash-picking,
unreasonable search and seizure, or bribery, blackmail or infiltration of your staff. Some of these
attacks may be especially feasible against grassroots political organizations that depend on a
largely volunteer staff.

Don't be lulled into a false sense of security just because you have a cryptographic tool.
Cryptographic techniques protect data only while it's encrypted - direct physical security
violations can still compromise plaintext data or written or spoken information.

This kind of attack is cheaper than cryptanalytic attacks on ViaCrypt PGP.

Tempest Attacks
Another kind of attack that has been used by well-equipped opponents involves the remote
detection of the electromagnetic signals from your computer. This expensive and somewhat labor-
intensive attack is probably still cheaper than direct cryptanalytic attacks. An appropriately
instrumented van can park near your office and remotely pick up all of your keystrokes and
messages displayed on your computer video screen. This would compromise all of your
passwords, messages, etc. This attack can be thwarted by properly shielding all of your computer
equipment and network cabling so that it does not emit these signals. This shielding technology is
known as "Tempest", and is used by some Government agencies and defense contractors. There
are hardware vendors who supply Tempest shielding commercially.

Exposure on Multi-User Systems
ViaCrypt PGP was originally designed for a single-user PC under your direct physical control. If
you run ViaCrypt PGP at home on your own PC your encrypted files are generally safe, unless
someone breaks into your house, steals your PC and convinces you to give them your pass phrase
(or your pass phrase is simple enough to guess).

ViaCrypt PGP is not designed to protect your data while it is in plaintext form on a compromised
system. Nor can it prevent an intruder from using sophisticated measures to read your secret key
while it is being used. You will just have to recognize these risks on multi-user systems, and
adjust your expectations and behavior accordingly. Perhaps your situation is such that you should
consider only running ViaCrypt PGP on an isolated single-user system under your direct physical
control.

Traffic Analysis
Even if the attacker cannot read the contents of your encrypted messages, he may be able to infer
at least some useful information by observing where the messages come from and where they are
going, the size of the messages, and the time of day the messages are sent. This is analogous to
the attacker looking at your long distance phone bill to see who you called and when and for how
long, even though the actual content of your calls is unknown to the attacker. This is called traffic
analysis. ViaCrypt PGP alone does not protect against traffic analysis. Solving this problem
would require specialized communication protocols designed to reduce exposure to traffic
analysis in your communication environment, possibly with some cryptographic assistance.

Cryptanalysis
An expensive and formidable cryptanalytic attack could possibly be mounted by someone with
vast supercomputer resources, such as a Government intelligence agency. They might crack your
RSA key by using some new secret factoring breakthrough. But civilian academia has been
intensively attacking it without success since 1978.

Perhaps the Government has some classified methods of cracking the IDEA    conventional
encryption algorithm used in ViaCrypt PGP. This is every cryptographer's worst nightmare. There
can be no absolute security guarantees in practical cryptographic implementations.

Still, some optimism seems justified. The IDEA algorithm's designers are among the best
cryptographers in Europe. It has had extensive security analysis and peer review from some of the
best cryptanalysts in the unclassified world. It appears to have some design advantages over the
DES in withstanding differential cryptanalysis.

Besides, even if this algorithm has some subtle unknown weaknesses, ViaCrypt PGP compresses
the plaintext before encryption, which should greatly reduce those weaknesses. The
computational workload to crack it is likely to be much more expensive than the value of the
message.

If your situation justifies worrying about very formidable attacks of this caliber, then perhaps you
should contact a data security consultant for some customized data security approaches tailored to
your special needs.

In summary, without good cryptographic protection of your data communications, it may have
been practically effortless and perhaps even routine for an opponent to intercept your messages,
especially those sent through a modem or e-mail system. If you use ViaCrypt PGP and follow
reasonable precautions, the attacker will have to expend far more effort and expense to violate
your privacy.

If you protect yourself against the simplest attacks, and you feel confident that your privacy is not
going to be violated by a determined and highly resourceful attacker, then you'll probably be safe
using ViaCrypt PGP. ViaCrypt PGP gives you Pretty Good Privacy.

Recommended Reading Material
1. Bruce Schneier, "Applied Cryptography: Protocols, Algorithms, and Source Code in C", John

Wiley & Sons, 1994

2. Dorothy Denning, "Cryptography and Data Security", Addison-Wesley, Reading, MA 1982

3. Dorothy Denning, "Protecting Public Keys and Signature Keys", IEEE Computer, Feb. 1983

4. Martin E. Hellman, "The Mathematics of Public key Cryptography,"    Scientific American,
Aug. 1979

5. Steven Levy, "Crypto Rebels", WIRED, May/Jun. 1993, page 54.

Other Readings:

6. Ronald Rivest, "The MD5 Message Digest Algorithm", MIT Laboratory for Computer
Science, 1991

7. Xuejia Lai, "On the Design and Security of Block Ciphers",    Institute for Signal and
Information Processing, ETH-Zentrum,    Zurich, Switzerland, 1992

8. Xuejia Lai, James L. Massey, Sean Murphy, "Markov Ciphers and Differential
Cryptanalysis", Advances in Cryptology - EUROCRYPT'91

9. Philip Zimmermann, "A Proposed Standard Format for RSA Cryptosystems", Advances in
Computer Security, Vol. III, edited by Rein Turn, Artech House, 1988

10. Paul Wallich, "Electronic Envelopes", Scientific American, Feb. 1993, page 30.

ViaCrypt PGP Files
This topic describes the files copied to your hard disk when ViaCrypt PGP was installed. The
changes made to your AUTOEXEC.BAT are also explained.

The SETUP program defaults to using a directory named VPGP on your hard drive as the location
for ViaCrypt PGP files. In addition, if SETUP finds an existing copy of PGP.EXE, its directory
will be as the default. You can specify a different directory if you wish. For the remainder of this
section, this directory will be referred to as the VPGP directory.

If SETUP finds certain files, it will rename them:

If SETUP Finds: It Will Be Renamed:
PGP.EXE PGPEXE.OLD
CONFIG.TXT CONFTXT.OLD
PGP.HLP PGPHLP.OLD

SETUP will then copy the following files into the VPGP directory:
VPGPW.EXE
VPGPW1.DLL
VPGPW.HLP
PGP.EXE
PGP.HLP
CONFIG.TXT
KEYS.ASC
PGPSIG.ASC

The following file will be copied to your Windows Directory:

VPGPW1.PIF

If Visual Basic 3.0 is not installed on your system, the following file will be copied to your
Windows Directory:

VBRUN300.DLL

If Visual Basic 3.0 is not installed on your system, the following file will be installed in your
Windows/System Directory:

CMDIALOG.VBX

AUTOEXEC.BAT Changes

The VPGP directory will be added to your PATH statement.

A "SET PGPPATH=" statement will be added, pointing to the VPGP directory.

A "SET TZ=" statement will be added containing timezone information.

ViaCrypt PGP Naming Conventions
This topic explains the naming conventions used in ViaCrypt PGP.

ViaCrypt PGP follows the rules in the following table when creating files:

Input
              Filename

Operation
              Performed

Output
              Filename

filename.any Encrypt/Sign
filename.pgp

or
filename.asc
(see Note 1)

filename.any
(see Note 2)

Decrypt/Verify
Signature

filename

n/a Copy (extract) key
filename.asc

or
filename.pgp
(see Note 1)

NOTE 1: The choice of suffix will be determined by the "ASCII Armor PGP Output" setting. If this
setting is ON, then the suffix will be ".ASC". If this setting is OFF, the suffix will be
".PGP".

NOTE 2: When "ASCII Armor PGP Output" is ON, and the size of the output file exceeds the
length specified by ARMORLINES, ViaCrypt PGP will create 2 or more files, each
containing a segment of the output . In this case the suffixes for the output files will be
".AS1", ".AS2", ".AS3", etc. When decrypting segments, it is important that the correct
suffixes be retained. If you are going to e-mail the segments, you should either include
the name and suffix of the segment in the 'subject' line of the e-mail message. Without the
correct suffixes, it will be extremely difficult for the recipient to decrypt your file.

Adding Public Keys to your Keyring Using Drag and Drop
Dropping a file containing someone's public key onto ViaCrypt PGP is an easy way to add their
key to your keyring. ViaCrypt PGP will perform the same actions as if you pressed the "Add key
from file to your keyring" button on the Key Management Window.

The Main Window
ViaCrypt PGP for Windows' Main Window is shown below.

Click on the parts of the window below where appears for descriptions of the function each
button performs.

Key Management Window
The Key Management Window is shown below.    Click on the parts of the window below where

 appears for descriptions of the function each button performs.

Setting: ASCII Armor PGP Output
Default: ON

Many electronic mail systems only allow messages made of ASCII text, not the 8-bit raw binary
data that ciphertext is made of. To get around this problem, ViaCrypt PGP supports ASCII
radix-64 format for encrypted files. This special format represents binary data by using only
printable ASCII characters, so it is useful for transmitting binary encrypted data through 7-bit
channels or for sending binary encrypted data as normal e-mail text. This format acts as a form of
"transport armor", protecting it against corruption as it travels through intersystem gateways such
as on Internet. It also appends a CRC (Cyclic Redundancy Check) to detect transmission errors.

Radix-64 format converts the plaintext by expanding groups of 3 binary 8-bit bytes into 4
printable ASCII characters, so the file grows by about 33%. But this expansion is acceptable
when you consider that the file was compressed more than that by ViaCrypt PGP before it was
encrypted.

Most Internet e-mail facilities prohibit sending messages that are more than 50,000 bytes long.
Longer messages must be broken into smaller chunks that can be mailed separately. If your
encrypted message is very large, and you requested radix-64 format, ViaCrypt PGP   
automatically breaks it up into chunks that are each small enough to send via e-mail. The chunks
are put into files named with extensions ".as1", ".as2", ".as3", etc. You can specify the maximum
size of these chunks using the "Armorlines" parameter in the CONFIG.TXT file.

If you want to digitally sign an ASCII text file so that the text remains readable and the digital
signature appears at the bottom, the following two configuration parameters should be on:

ASCII Armor PGP Output

Use Clearsig option for digital signature

Setting: Delete (Wipe) input file after encryption
Default: OFF

When ViaCrypt PGP makes a ciphertext file for you, you can have it automatically overwrite the
plaintext file and delete it. This leaves no trace of plaintext on the disk, so no one can recover it
later using a disk block scanning utility. This is useful if the plaintext file contains sensitive
information that you don't want to keep. The file is overwritten once with pseudo-random data,
then deleted.

Obviously, you should be careful with this option. Also note that this will not wipe out any
fragments of plaintext that your word processor might have created on the disk while you were
editing the message before running ViaCrypt PGP. Most word processors create backup files,
scratch files, or both. Also, it overwrites the file only once, which is enough to thwart
conventional disk recovery efforts, but not enough to withstand a determined and sophisticated
effort to recover the faint magnetic traces of the data using special disk recovery hardware.

Setting: Encrypt using IDEA only, not IDEA and RSA
Default: OFF

Sometimes you just need to encrypt a file the old-fashioned way, with conventional single-key
encryption. This approach is useful for protecting archive files that will be stored but will not be
sent to anyone else. Since the same person that encrypted the file will also decrypt the file, public
key encryption is not really necessary.

When you encrypt a file while this option is selected, ViaCrypt PGP will prompt you for a pass
phrase to use as a conventional key to encipher the file. This pass phrase need not be (and, indeed,
should not be) the same pass phrase that you use to protect your own secret key. Note that
ViaCrypt PGP compresses the plaintext before encrypting it.

ViaCrypt PGP will not encrypt the file the same way twice, even if you use the same pass phrase
every time. For a more detailed explanation, read "Introduction to Cryptography"

Setting: Use Canonical format for Newlines on textfile
Default: ON

You may use ViaCrypt PGP to encrypt any kind of plaintext file, binary 8-bit data or ASCII text.
Probably the most common usage of ViaCrypt PGP will be for e-mail, when the plaintext is
ASCII text.

ASCII text is sometimes represented differently on different machines. For example, on an MS-
DOS system, all lines of ASCII text are terminated with a carriage return followed by a linefeed.
On a Unix system, all lines end with just a linefeed. On a Macintosh, all lines end with just a
carriage return. This is a sad fact of life.

Normal unencrypted ASCII text messages are often automatically translated to some common
"canonical" form when they are transmitted from one machine to another. Canonical text has a
carriage return and a linefeed at the end of each line of text. For example, the popular KERMIT
communication protocol can convert text to canonical form when transmitting it to another
system. This gets converted back to local text line terminators by the receiving KERMIT. This
makes it easy to share text files across different systems.

But encrypted text cannot be automatically converted by a communication protocol, because the
plaintext is hidden by encipherment. To remedy this inconvenience, ViaCrypt PGP lets you
specify that the plaintext should be treated as ASCII text (not binary data) and should be
converted to canonical text form before it gets encrypted. At the receiving end, ViaCrypt PGP
automatically converts the decrypted plaintext back to whatever text form is appropriate for the
local environment.

This mode is automatically turned off if ViaCrypt PGP detects that the plaintext file contains what
it thinks is non-text binary data.

For ViaCrypt PGP users that use non-English 8-bit character sets, when ViaCrypt PGP    converts
text to canonical form, it may convert data from the local character set into the LATIN1 (ISO
8859-1 Latin Alphabet 1) character set, depending on the setting of the CHARSET parameter in
the ViaCrypt PGP configuration file. LATIN1 is a superset of ASCII, with extra characters added
for many European languages.

Setting: Use Clearsig option for digital signature
Default: ON

When digitally signing a file containing only ASCII text, it is usually desirable    for the ASCII
text to appear in readable form, followed by the digital signature, like this:

-----BEGIN PGP SIGNED MESSAGE-----

Now is the time for all
good men to come to the
aid of their country.
-----BEGIN PGP SIGNATURE-----
Version: 2.7

iQBVAgUBLlkKnndnGF5n7PE9AQEDhQH+PPPJzXK4HvdgdlfMWVW2nWmQvpBBAIsZ
Z8TqP3/d6TrOfD1z5KCaUKjEfiY9NueWhGATr+eBL5qkyb+a/TKE0Q==
=wM76
-----END PGP SIGNATURE-----

To achieve this set "ASCII Armor PGP Output" and "Use Clearsig option for digital signature"
ON.

If the Clearsig option is OFF, ViaCrypt PGP will compress and ASCII armor the text also, like
this:

-----BEGIN PGP MESSAGE-----
Version: 2.7

owHrZAhlYmXUi+R5VZ4uEZf+5qMtI+O5x4z/LN5dum3AzMRzbkp2W+uLmTfeXTHb
wqfH8NaQI6CeZ4vM2r+yBQy/9+y4/9Bk47xlsV7XM5hCG93edT0w57/5luWtTMOa
2BK+ZCv91IrE3IKcVL2SihIGIPDLL1fILFYoyUhVKMnMTVVIyy9SSMzJUeDlSs/P
T1HITc1TKMlXSM4HSgFpkDJersTMFIX8NBAnswgoVZpXUlSpBwA=
=GuEy
-----END PGP MESSAGE-----

Preserve original plaintext filename when decrypting
Default: OFF

When decrypting files, you normally specify an output plaintext filename using the appropriate
dialog box. For most files, this is a reasonable way to name the decrypted file, because you decide
its name when you decrypt it.

But when ViaCrypt PGP encrypts a plaintext file, it always saves the original filename and
attaches it to the plaintext before it compresses and encrypts the plaintext. Normally, this hidden
original filename is discarded by ViaCrypt PGP when it decrypts, but by turning this option ON,
you can tell ViaCrypt PGP you want to preserve the original plaintext filename and use it as the
name of the decrypted plaintext output file. This is useful if ViaCrypt PGP is used on files whose
names are important to preserve.

Setting: Enable advanced options for
Encrypt/Sign/Decrypt

Default: OFF

When you turn this option ON, a special "Advanced Options" window will appear each time you
encrypt, sign, or decrypt a file. The advanced options window will contain only the specific
advanced options that are applicable to the operation you are performing:

Encrypt Advanced Options:
When recipient decrypts file, output it to the screen, not to a file

Signing Advanced Options:
Put signature in a separate file

Decrypt Advanced Options:
If Encrypted File Is Signed:

Output decrypted file to the screen, not to a file.

Signature Verification Advanced Options:
Save signature in a separate file.

This advanced option is available when you decrypt a file using the "Decrypt" button. If the
encrypted file also has been digitally signed, the signature will automatically be checked. This is
the default action.

This advanced option is available when you decrypt a file using the "Decrypt" button. If the
encrypted file also has been digitally signed, the file will be decrypted only. The result will be a
digitally signed, compressed file.

This advanced option is available when you decrypt a file using the "Decrypt" button. If the
encrypted file also has been digitally signed, the file will be decrypted, and the digital signature
will be saved in a separate file.

Setting: Background Color
The "Background Color" button can be used to customize the background      color used in each
window. The colors of the various 'File Open' and 'File Save As' dialog boxes cannot be
customized.

NOTE: Windows requires that the background color behind text be a solid color, not a dithered
color. If you select a dithered color as the background color, you may notice that the background
color behind text is displayed slightly differently.

Setting: Text Color
The "Text Color" button can be used to customize the foreground color used in each window. The
colors of the various 'File Open' and 'File Save As' dialog boxes cannot be customized.

NOTE: Windows requires that the background color behind text be a solid color, not a dithered
color. If you select a dithered color as the background color, you may notice that the background
color behind text is displayed slightly differently.

Setting: Use for This Session Only
Choose the "This Session Only" button to save your newly-selected setting for this session only.
When you exit ViaCrypt PGP, the settings will return to their previous values.

Setting: Use as Defaults
Choose the "Use As Defaults" button to save your new settings as the defaults.

Setting: Cancel Button
Choose the "Cancel" button to revert to the settings in use before opening the Settings Window.

Adding a key from a file to your keyring
Choose this button on the Key Management Window to add someone's public key to your
keyring.

1. Select the file containing the key in the "Select File Containing Key To Add" dialog box:

2. A window will appear on your screen, asking you if you want to certify any of the keys in the
file.    If you want to certify one or more of the displayed keys, press 'y' and ENTER.

If the file contains more than one key, you will go through the remaining steps once for each
key:

3. ViaCrypt PGP will display a description of the key, and ask you if you want to certify it:

If you received this key via mail or e-mail, now would be a good time to telephone the key's
owner and ask them to read their key fingerprint to you over the telephone. The fingerprint
read to you should match the one in displayed after "Key fingerprint = ".

4. ViaCrypt PGP will then ask if you have verified that the key actually belongs to the person
specified by its User ID.    If it does, then press 'y' and ENTER. ViaCrypt PGP will then sign
or certify Bill's key with yours.

5. Enter your pass phrase in the dialog box so that ViaCrypt PGP can use your secret key to
digitally sign Bill's key.

6. Now that you have certified Bill's key, ViaCrypt PGP will ask you if you trust Bill to certify
other people's keys, becoming an introducer:

If the file contains more than one public key, then the above steps are repeated for each one added
to your public keyring. If the key is already on your key ring, ViaCrypt PGP will not add it again.
All of the keys in the keyfile are added to the keyring, except for duplicates. If the key being
added has attached signatures certifying it, the signatures are added with the key. If the key is
already on your key ring, ViaCrypt PGP just merges in any new certifying signatures for that key
that you don't already have on your key ring.

Copy (Extract) a key from your keyring to a file
Choose this button on the Key Management Window to create a file containing a copy of your
public key. You can also use this button to make a copy of any key on your public keyring.

When you create a file containing a public key, it typically looks like:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.7

mQBNAi5ZEk8AAAECAMaLvK2KWL9iYWSsfnXbZZ3YIW2CW1nJIS1VUgFYyTNYhYSX
MQYDvYjLtdZIVHdjmngWSfaQUcvf0H2Fz6ags5kABRG0DkpvZSBTY2htdWNrbGV5
=8iMp
-----END PGP PUBLIC KEY BLOCK-----

You can then use any medium of your choice (e-mail, snail-mail, sneaker-net, etc.) to send this
file to the person who needs it.

1. Specify the key you want to copy in the "Select Key to Copy (Extract)" dialog box.

2. In the Save Key As dialog box, specify the name of the file that will contain your key, or
accept the default

3. Next you should see a "Working" box.    You may also see briefly an icon representing the
cryptographic kernel near the bottom of your screen

When the "Working" box disappears, the specified file containing the selected key has been
created. If the key has any certifying signatures attached to it on your key ring, they are copied
along with the key. Any trust parameters attached to the key are not copied, because your private
opinions on trust are regarded as confidential.

Removing a key from your keyring
Choose this button to remove a public key from your public keyring. If your secret keyring also
contains a key with a matching user, you can optionally remove the key from your secret keyring
also.

You should also choose this button if your key contains multiple user IDs and you want to remove
one of them.

1. ViaCrypt PGP will display the "Select Key To Remove" dialog box.

2. A window will appear on your screen, asking you if you want the key removed.

3. If a secret key with a matching user ID is on your secret keyring, then ViaCrypt PGP asks you
if you want it removed too.

4. ViaCrypt PGP will ask you one more time, to make really sure you want the key removed
from your secret keyring (once it has been removed, there is no way to 'un-remove' it):

See Also:
Removing One User ID from your key

Removing just one User ID from your key
If a key has more than one user ID, you can choose the "Remove a key from keyring" button to
remove just selected user IDs from the key. For example, suppose your key contains two user IDs
reflecting two e-mail addresses:

Joe Schmuckley <joe@schmuckley.com>
Joe Schmuckley <12345.678@compuserve.com>

1. Choose the "Remove a key from keyring" button.

2. Select the key in the "Select Key To Remove" dialog box (Only the first, or primary user ID
for each key is displayed in the dialog box).

3. A window will appear on your screen, asking you if you want to remove the entire key.

4. Press 'n' (or 'N') and ENTER. (WARNING: If you press 'y', the entire key will be
removed.)

5. The key's user IDs will by displayed one at a time so that you can select the correct user ID to
remove

6. Because your secret key also contains your user ID, ViaCrypt PGP repeats the process for
your secret key.

7. ViaCrypt PGP will, ask you if you want to remove the entire secret key.

8. Press 'n' (or 'N') and ENTER. (WARNING: If you press 'y', the entire key will be removed
from your secret keyring.)

9. The key's user IDs will by displayed one at a time so that you can select the correct user ID to
remove

Removing signatures from a key
Choose this button to remove selected signatures from public keys. If, for example, your keyring
may contain a key that you have previously signed, but you no longer want in your 'chain of
introducers'. You can use this function to remove your signature from that person's key without
removing the key itself.

1. ViaCrypt PGP will display the "Select Key to Remove Signatures From" dialog box.

2. A window will appear on your screen, displaying the key.    Each of the key's signatures will
be displayed one-at-a-time, so you can select the specific signatures to remove.

Revoking your own key
Suppose your secret key and your pass phrase have somehow both been compromised. You have
to get the word out to the rest of the world, so that they will all stop using your public key. To do
this, you will have to issue a Key Compromise Certificate to revoke your public key.

Choose this button to revoke your key, and to optionally generate a Key Compromise Certificate.

1. If you have more than one secret key, you will be asked to select the key to revoke.

2. A window will appear on your screen, asking you to confirm that you want to permanently
revoke your key. After your key has been revoked, you cannot 'un-revoke' it.

3. You'll be asked to enter your pass phrase (you are the only one who can revoke your key):

4. You should then see a message "Key compromise certificate created".

NOTE: While the message indicates that the Key COMPROMISE Certificate has been
created, in actuality your key has simply been marked on your keyring as 'revoked'.    Actual
generation of the key compromise certificate occurs in the next step.

5. Next, you'll see a dialog box asking if you want to optionally generate the Key Compromise
Certificate.    If you choose NO, your key is still marked on your keyring as revoked, but no
Key Compromise Certificate is created. If you choose YES, then ViaCrypt PGP will create a
file containing the Key Compromise Certificate.

6. Specify the name of the file containing the Key Compromise Certificate, or accept the
default.

Visually, the Key Compromise Certificate looks identical to a key. It contains special information,
though, flagging it as a Key Compromise Certificate. This certificate bears your signature, made
with the same key you are revoking. You should widely disseminate this key revocation
certificate as soon as possible. Other people who receive it can add it to their public keyrings, and
their ViaCrypt PGP software then automatically prevents them from accidentally using your old
public key ever again. You can then generate a new secret/public key pair and publish the new
public key.

You may choose to revoke your key for some other reason than the compromise of a secret key. If
so, you may still use the same mechanism to revoke it.

Enabling or disabling a public key
While you cannot revoke other people's keys, you can disable them. Disabling a key does not
prevent you from using it, it simply warns you the key has been disabled whenever you try to use
it.

If the specified key has already been disabled, choosing this button will re-enable it.

1. ViaCrypt PGP will display the "Select Key to Disable/Enable" dialog box

2. A window will appear on your screen, asking you to verify the selection of the key to
disable/enable.

Viewing keys on your public keyring
Choose this button to display the keys on your public keyring. ViaCrypt PGP will display the
following dialog box containing the keys.

Click on the parts of the window below where appears for more information.

Viewing keys on your secret keyring
Choose this button to display the keys on your secret keyring. ViaCrypt PGP will display the
following dialog box containing the keys.

Click on the parts of the window below where appears for more information.

Viewing the Fingerprint of a key
Chose this button to view the fingerprint of any key

1. Select the key from the "Select Key" dialog box.

2. Next you should see a "Working" box. You may also see briefly an icon representing the
cryptographic kernel near the bottom of your screen

3. When the "Working" box disappears, it will be replaced with a box displaying the Key's user
ID, key ID, and fingerprint.

See Also:
Verifying a public key over the phone

Verifying a public key over the phone
If you get a public key from someone that is not certified by anyone you trust, how can you tell if
it's really their key?    The best way to verify an uncertified key is to verify it over some
independent channel other than the one you received the key through. One convenient way to tell,
if you know this person and would recognize them on the phone, is to call them and verify their
key over the telephone. Rather than reading their whole tiresome (ASCII-armored) key to them
over the phone, you can just read their key's "fingerprint" to them.

The key's fingerprint is a 16-byte digest of the public key components. Read this 16-byte
fingerprint to the key's owner on the phone, while they check it against their own. You can both
verify each other's keys this way, and then you can sign each other's keys with confidence. This is
a safe and convenient way to get the key trust network started for your circle of colleagues.

Checking a key's signatures
Choose this button to display a list of a key's digital signatures. This is a quick and easy way to
see who has signed/certified a key.

1. Select the key from the "Select Key to Check" dialog box:

2. Next you should see a "Working" box. You may also see briefly an icon representing the
cryptographic kernel near the bottom of your screen

3. When the "Working" box disappears, it will be replaced with a box displaying the key and its
signatures.

4. Choose the Close button to dismiss the dialog box.

Editing your User ID or Pass Phrase
Sometimes you may need to change your pass phrase, perhaps because someone looked over your
shoulder while you typed it in. Perhaps you may need to change your user ID, because you got
married and changed your name, or maybe you changed your e-mail address. Maybe you want to
add a second or third user ID to your key, because you may be known by more than one name, e-
mail address, job title, or other unique identifier.

Choose the "Edit User ID or Pass Phrase " button to:

Change your pass phrase

Change your user ID

Add additional user IDs to your key

See Also:

Removing One User ID from your key

Changing your pass phrase
1. If you have more than one secret key, ViaCrypt PGP will ask you to select the key to edit

2. A dialog box will appear on your screen, asking you to enter your pass phrase.    Type your
pass phrase and press ENTER.

3. Next, you will see the prompt asking you if you want to add a user ID .    Type 'n' and press
ENTER.

4. ViaCrypt PGP will ask you if you want to change your pass phrase.    Type 'y' and press
ENTER.

5. A dialog box will appear, prompting for your new pass phrase.

Changing your User ID
1. If you have more than one secret key, ViaCrypt PGP will ask you to select the key to edit

2. A dialog box will appear on your screen, asking you to enter your pass phrase.    Type your
pass phrase and press ENTER.

3. Next, you will see the prompt asking you if you want to add a user ID .    Type 'y' and press
ENTER.

4. ViaCrypt PGP will prompt you for the new user ID.    Enter your user ID the way you now
want it to appear, and press ENTER.

5. ViaCrypt PGP will ask if you want this new user ID to be the primary user ID.    Type 'y' and
press ENTER.

6. Since you don't want to change your pass phrase, enter 'n' at the prompt.

Adding an additional User ID to your key
1. If you have more than one secret key, ViaCrypt PGP will ask you to select the key to edit

2. A dialog box will appear on your screen, asking you to enter your pass phrase.    Type your
pass phrase and press ENTER.

3. Next, you will see the prompt asking you if you want to add a user ID .    Type 'y' and press
ENTER.

4. ViaCrypt PGP will prompt you for the new user ID.    Enter your user ID the way you now
want it to appear, and press ENTER.

5. ViaCrypt PGP will ask if you want this new user ID to be the primary user ID.    Type 'n' and
press ENTER.

6. Since you don't want to change your pass phrase, enter 'n' at the prompt.

The new user ID will be added to your key below the existing ones.

Signing / Cerifying someone's key
When you digitally sign, or certify, someone's key you are performing an important service. You
are publicly stating that you have verified the correspondence between the key and its owner.

If you are using ViaCrypt PGP for personal use, you would certify the keys of people whom you
trust as introducers, establishing your own 'pyramid of trust' with you at the top of the pyramid. If
you are using ViaCrypt PGP in a commercial setting, then you probably want to appoint someone,
such as the security officer, to be the corporate certifying authority. In this setting you would sign
the certifying authority's key. The certifying authority would, in turn, certify everyone's public
key.

1. ViaCrypt PGP will display the "Select Key to Sign" dialog box. From it, select the public key
you want to certify:

2. When you certify someone's public key, you are actually digitally signing it with your secret
key. If your secret keyring contains more than one key, then you will be asked to select the
secret key to use:

3. Awindow will appear on your screen, and you asked to verify that the key actually belongs to
the user specified by the user ID. Press 'y' and ENTER.

4. Enter your pass phrase in the dialog box.

5. Next, you are asked to make your own personal assessment of your confidence in Bill's
ability to faithfully follow the rules when certifying other people's keys:

Your trust for a key's owner to act as an introducer does not just reflect your estimation of their
personal integrity. Your response ("I don't know", "No", "Usually", or "Yes") reflects how
competent you think they are at understanding key management and using good judgment in
signing keys.

You can edit this value later.

Editing a key's trust parameters
Choose this button to edit a key's trust parameters.

1. ViaCrypt PGP will display the "Select Key to Edit" dialog box. From it, select the public key
whose trust parameters you want to edit:

2. A window will appear on your screen, asking you    to specify your level of trust un the key's
owner as an introducer.

Your trust for a key's owner to act as an introducer does not just reflect your estimation of their
personal integrity. Your response ("I don't know", "No", "Usually", or "Yes") reflects how
competent you think they are at understanding key management and using good judgment in
signing keys.

Generating your own key pair
Choose this button to generate your own public/secret key pair. Before anyone can send you an
encrypted message, you'll need to generate your own public/secret key pair, and provide the
sender with a copy of your public key    Your secret key is also needed when you digitally sign a
file.

1. A window will open on your screen, and in it ViaCrypt PGP will prompt you for a key size,
suggesting some good defaults:

2. Next, you are asked for a user ID.

3. Next, ViaCrypt PGP will ask for a pass phrase used to protect your secret key. No one can use
your secret key without this pass phrase. The pass phrase is like a password, except that it can
be a whole phrase or sentence with many words, spaces, punctuation, or anything else you
can type:

Do not lose this pass phrase. There is no way to recover it if you lose it. If you lose it, you
will no longer be able to use this key to decrypt your messages, or digitally sign messages
you send. If you forget it, forget it!

4. ViaCrypt PGP will next ask you to enter some random keystrokes to help it accumulate some
random bits for your keys:

5. Finally, ViaCrypt PGP will begin generating your key pair. This a lengthy process, and may
take several seconds. If your PC is a slower one, it may even take a few minutes. During this
process, you should see something like this on your screen. Don't worry if the display is not
exactly like the on shown:

When ViaCrypt PGP generates your first key pair, it will create a pair of files, called keyrings, to
hold your keys. Secret keys are on your secret keyring, a file typically named secring.pgp. Public
keys are on your public keyring, a file typically named pubring.pgp.

Never give your secret key or pass phrase to anyone else. For the same reason, don't make key
pairs for your friends. Everyone should make their own key pair. Always keep physical control of
your secret key, and don't risk exposing it by storing it on a remote timesharing computer. Keep it
on your own personal computer.

You should also digitally sign, or certify your own public key. By using your secret key to
digitally signing your public key, you protect against someone undetectably tampering with your
public key.

COMMENT
If you specify that ViaCrypt PGP's output is to be ASCII armored, you can add a comment line to
the output. For example, if your CONFIG.TXT contained the line:

COMMENT=This is a comment

Then ViaCrypt PGP's output would appear as:

-----BEGIN PGP MESSAGE-----
Version: 2.7
Comment: This is a comment

hEwCd2cYXmfs8T0BAf9QGGniB6rbyAX8Pczh2WkAwn95WUI6ZJ58zQV7pfRQkh/T
bolt/wl9egTrCpDhszBs6J1xRf8cdC08cA3JSzXTpgAAAF8RrysX7XuA9hpbBXVC
O3AqcWnSsH4FT24rEZ/1XWwFPCsbLxVmLth/uSX9CLOHYR7r4VdWxQjUdvmRh45a
zG5oPJotHqMfvVfsExkOr4mkNpssVvM9wasw0GBYADgoOQ==
=YfBN
-----END PGP MESSAGE-----

If you specify "+comment=comment" on the command line and your comment includes spaces,
enclose the entire comment in double quotes.

KEEPBINARY
Default setting:    KEEPBINARY = off

When ViaCrypt PGP reads a ".asc" file, it recognizes that the file is in radix-64 format and will
convert it back to binary before processing as it normally does, producing as a by-product a
"ViaCrypt PGP" ciphertext file in binary form. After further processing to decrypt the ".pgp" file,
the final output file will be in normal plaintext form.

You may want to delete the binary ".pgp" intermediate file, or you may want ViaCrypt PGP to
delete it for you automatically. You can still rerun ViaCrypt PGP on the original ".asc" file.

The configuration parameter KEEPBINARY enables or disables keeping the intermediate ".pgp"
file during decryption.

CERT_DEPTH
Default setting:    CERT_DEPTH = 4

The configuration parameter CERT_DEPTH specifies how many levels deep you may nest
introducers to certify other introducers to certify public keys on your public key ring. For
example, If CERT_DEPTH is set to 1, there may only be one layer of introducers below your own
ultimately-trusted key. If that were the case, you would be required to directly certify the public
keys of all trusted introducers on your key ring. If you set CERT_DEPTH to 0, you could have no
introducers at all, and you would have to directly certify each and every key on your public key
ring in order to use it. The minimum CERT_DEPTH is 0, the maximum is 8.

For further details, see "How Does ViaCrypt PGP Keep Track of Which Keys are Valid?"

LANGUAGE
Default setting:    LANGUAGE = "en"

ViaCrypt PGP displays various prompts, warning messages, and advisories to the user on the
screen. For example, messages such as "File not found.", or "Please enter your pass phrase:".
These messages are normally in English. But in future releases it will be possible to get ViaCrypt
PGP to display its messages to the user in other languages, without having to modify the ViaCrypt
PGP executable program.

CLEARSIG
Default setting:    CLEARSIG = on

Normally, unencrypted ViaCrypt PGP signed messages have a signature certificate prepended in
binary form. To send this through a 7-bit e-mail channel, radix-64 ASCII armor is applied ,
rendering the message unreadable to casual human eyes, even though the message is not actually
encrypted. The recipient must use ViaCrypt PGP to strip the armor off before reading the
message.

If the original plaintext message is in text (not binary) form, there is a way to send it through an e-
mail channel in such a way that the ASCII armor is applied only to the binary signature
certificate, but not to the plaintext message. This makes it possible to read the signed message
with human eyes, without the aid of ViaCrypt PGP. Of course, you still need ViaCrypt PGP to
actually check the signature.

This option is provided for in the Settings Window. It should not be set or altered here.

This message representation is analogous to the MIC-CLEAR message type used in Internet
Privacy Enhanced Mail (PEM). It is important to note that since this method only applies ASCII
armor to the binary signature certificate, and not to the message text itself, there is some risk that
the unarmored message may suffer some accidental molestation while en route. This can happen
if it passes through some e-mail gateway that performs character set conversions, or in some
cases extra spaces may be added to or stripped from the ends of lines. If this occurs, the signature
will fail to verify, which may give a false indication of intentional tampering. But since PEM lives
under a similar vulnerability, it seems worthwhile having this feature despite the risks.

Trailing blanks are ignored on each line in calculating the signature for text in CLEARSIG mode.

INTERACTIVE
Default Setting:    INTERACTIVE = off

Enabling this mode will mean that if you add a key file containing multiple keys to your key ring,
ViaCrypt PGP will ask for confirmation for each key before adding it to your key ring.

RANDSEED
If you want to specify a non-standard location for your random number seed file (randseed.bin,
add a line to your CONFIG.TXT file specifying its full path and filename, like this:

randseed=/usr/dab/pgp/myrandseed.bin

This is    useful when you need to keep randseed.bin on a floppy disk instead of on a hard disk.

VERBOSE
Default setting:    VERBOSE = 1

VERBOSE may be set to 0, 1, or 2, depending on how much detail you want to see from
ViaCrypt PGP diagnostic messages. The settings are:

0 Display messages only if there is a problem.

1 Normal default setting. Displays a reasonable amount of detail in diagnostic or advisory
messages.

2 Displays maximum information, usually to help diagnose problems in ViaCrypt PGP. Not
recommended for normal use. Besides, ViaCrypt PGP doesn't have any problems, right?

COMPLETES_NEEDED
COMPLETES_NEEDED - Number of Completely Trusted Introducers Needed

Default setting:    COMPLETES_NEEDED = 1

The configuration parameter COMPLETES_NEEDED specifies the minimum number of
completely trusted introducers required to fully certify a public key on your public key ring. This
gives you a way of tuning ViaCrypt PGP's skepticism.

For further details, see "How Does ViaCrypt PGP Keep Track of    Which Keys are Valid?"

PAGER
Default setting:    PAGER = ""

ViaCrypt PGP lets you view the decrypted plaintext output on your screen (like the Unix-style
"more" command), without writing it to a file using the "Output decrypted file to the screen, not
to a file" advanced option.

If you prefer to use a fancier page display utility, rather than ViaCrypt PGP's built-in one, you can
specify the name of a shell command that ViaCrypt PGP will invoke to display your plaintext
output file. The configuration parameter PAGER specifies the shell command to invoke to display
the file. For example,    you might want to use the popular MS-DOS shareware program "list.com"
to display your plaintext message. Assuming you have a copy of "list.com", you may set PAGER
accordingly:

PAGER = "list"

However, if the sender specified that this file is for your eyes only, and may not be written to disk,
ViaCrypt PGP always uses its own built-in display function.

COMPRESS
Default setting:    COMPRESS = on

The configuration parameter COMPRESS enables or disables data compression before
encryption. Normally, ViaCrypt PGP attempts to compress the plaintext before it encrypts it. You
may, however, choose to use some external compression routine with ViaCrypt PGP.

ViaCrypt PGP will recognize the compression used by most of the commonly available
compression programs, and skip its own compression step. In some cases, however, the 'signature'
of your external compression program may not be recognizable by ViaCrypt PGP. In that case, set
"COMPRESS=OFF" to disable ViaCrypt PGP's compression.

SECRING
If you want to specify a non-standard location for your secret, add a line to your CONFIG.TXT
file specifying its full path and filename, like this:

secring=/usr/dab/pgp/mysecring.pgp

This is    useful when you want to keep your secret keyring on a floppy disk instead of on a hard
disk, for example.

ARMORLINES
Default setting:    ARMORLINES = 720

When ViaCrypt PGP creates a very large ".asc" radix-64 file for sending ciphertext or keys
through the e-mail, it breaks the file up into separate chunks small enough to send through
Internet mail utilities. Normally, Internet mailers prohibit files larger than about 50,000 bytes,
which means that if we restrict the number of lines to about 720, we'll be well within the limit.
The file chunks are named with suffixes ".as1", ".as2", ".as3", ...

The configuration parameter ARMORLINES specifies the maximum number of lines to make
each chunk in a multipart ".asc" file sequence. If you set it to zero, ViaCrypt PGP will not break
up the file into chunks.

Fidonet e-mail files usually have an upper limit of about 32,767 bytes, so 450 lines would be
appropriate for Fidonet environments.

ENCRYPTTOSELF
Default setting:    NO

This is a convenient way to keep copies of files and messages you send. By setting
"ENCRYPTTOSELF=YES", the file will automatically be encrypted under your public key in
addition to the public key of the recipient you select. If your secret keyring contains more than
one key, you must use the MYNAME parameter to specify the key to use.

MYNAME
Default setting:    MYNAME = ""

The configuration parameter MYNAME specifies the default user ID to use to select the secret
key for making signatures. If MYNAME is not defined, the most recent secret key you installed
on your secret key ring will be used.

Since ViaCrypt PGP for Windows always prompts for the secret key if there is more than one, the
MYNAME parameter is seldom used. However, if you want to use ENCRYPTTOSELF and have
more than one secret key, you must define MYNAME.

TZFIX
Default setting:    TZFIX = 0

ViaCrypt PGP provides timestamps for keys and signature certificates in Greenwich Mean Time
(GMT), or Coordinated Universal Time (UTC), which means the same thing for our purposes.
When ViaCrypt PGP asks the system for the time of day, the system is supposed to provide it in
GMT.

But sometimes, because of improperly configured MS-DOS systems, the system time is returned
in US Pacific Standard Time plus 8 hours. Sounds weird, doesn't it?    Perhaps because of some
sort of US west-coast jingoism, MS-DOS presumes local time is US Pacific time, and pre-
corrects Pacific time to GMT. This adversely affects the behavior of the internal MS-DOS GMT
time function that ViaCrypt PGP calls. However, if your MS-DOS environmental variable TZ is
already properly defined for your timezone, this corrects the misconception MS-DOS has that the
whole world lives on the US west coast.

The configuration parameter TZFIX specifies the number of hours to add to the system time
function to get GMT, for GMT timestamps on keys and signatures. If the MS-DOS environmental
variable TZ is defined properly, you can leave TZFIX=0. Unix systems usually shouldn't need to
worry about setting TZFIX at all. If you are using some other obscure operating system that
doesn't know about GMT, you may have to use TZFIX to adjust the system time to GMT.

On MS-DOS systems that do not have TZ defined in the environment, you should make TZFIX=0
for California, -1 for Colorado, -2 for Chicago, -3 for New York, -8 for London, -9 for
Amsterdam. In the summer, TZFIX should be manually decremented from these values to
account for Daylight Savings Time.

It would be much cleaner to set your MS-DOS environmental variable TZ in your
AUTOEXEC.BAT file, and not use the TZFIX correction. Then MS-DOS gives you good GMT
timestamps, and will handle daylight savings time adjustments for you. Here are some sample
lines to insert into AUTOEXEC.BAT, depending on your time zone:

For Los Angeles: SET TZ=PST8PDT
For Denver: SET TZ=MST7MDT
For Arizona: SET TZ=MST7 (Arizona never uses

daylight savings time)
For Chicago: SET TZ=CST6CDT
For New York: SET TZ=EST5EDT

PUBRING
If you want to specify a non-standard location for your public keyring, add a line to your
CONFIG.TXT file specifying its full path and filename, like this:

pubring=/usr/dab/pgp/mypubring.pgp

This is    useful when you want to keep a department-wide or company-wide keyring on a LAN
server.

TMP
Default setting:    TMP = ""

The configuration parameter TMP specifies what directory to use for ViaCrypt PGP's temporary
scratch files. The best place to put them is on a RAM disk, if you have one. That speeds things up
quite a bit, and increases security somewhat. If TMP is undefined, the temporary files go in the
current directory. If the shell environmental variable TMP is defined, ViaCrypt PGP instead uses
that to specify where the temporary files should go.

MARGINALS_NEEDED
Default setting:    MARGINALS_NEEDED = 2

The configuration parameter MARGINALS_NEEDED specifies the minimum number of
marginally trusted introducers required to fully certify a public key on your public key ring. This
gives you a way of tuning ViaCrypt PGP's skepticism.

For further details, see "How Does ViaCrypt PGP Keep Track of    Which Keys are Valid?"

ARMOR
Default setting:    ARMOR = off

This configuration parameter causes ViaCrypt PGP to emit ciphertext or keys in ASCII Radix-64
format suitable for transporting through e-mail channels. Output files are named with the ".asc"
extension.

The ARMOR configuration parameter is provided for in the Settings Window, and should not be
set here.

TEXTMODE
Default setting:    TEXTMODE = off

If enabled, this parameter causes ViaCrypt PGP to assume the plaintext is a text file, not a binary
file, and converts it to "canonical text" before encrypting it. Canonical text has a carriage return
and a linefeed at the end of each line of text.

This feature is normally provided for in the Settings Window, and should not be altered in the
CONFIG.TXT file.

This mode will be automatically turned off if ViaCrypt PGP detects that the plaintext file contains
what it thinks is non-text binary data.

For further details, see    "Sending ASCII Text Files Across Different Machine Environments".

PKCS_COMPAT
Default Setting:    PKCS_COMPAT=1

In May of 1994, the Massachusetts Institute of Technology (MIT) began distribution of a PGP
version 2.6. MIT-PGP 2.6 is licensed for personal, non-commercial use along with other
restrictions. After September 1, 1994, messages created by MIT-PGP 2.6 are unreadable by earlier
versions of PGP, including ViaCrypt's previous version 2.4. This version (2.7) is designed to
maintain compatibility with ViaCrypt's previous version (2.4), as well as MIT-PGP 2.6.

ViaCrypt PGP Version 2.7 is able to correctly read and understand messages, signatures, and keys
generated by ViaCrypt PGP Version 2.4 and 2.7, as well as MIT-PGP 2.6.

By using the PKCS_COMPAT parameter either on the command line or in the CONFIG.TXT file,
ViaCrypt PGP Version 2.7 can generate output that is understandable by ViaCrypt PGP 2.4, MIT-
PGP 2.6, or both.

PKCS_COMPAT=1

Until September 1, 1994, ViaCrypt PGP version 2.7 generated output that is understandable by
both ViaCrypt PGP 2.4, ViaCrypt PGP 2.7, and by MIT-PGP 2.6.

After September 1, 1994, ViaCrypt PGP version 2.7 generates output that is readable by ViaCrypt
PGP 2.7 and MIT-PGP 2.6 only.

ViaCrypt PGP version 2.7 is able to understand output generated by ViaCrypt PGP 2.4 and 2.7, as
well as MIT-PGP 2.6 with no date restrictions.

PKCS_COMPAT=2

ViaCrypt PGP version 2.7 will generate output that is understandable by ViaCrypt PGP 2.4 and
2.7, as well as MIT-PGP 2.6 with no date restrictions.

ViaCrypt PGP version 2.7 is able to understand output generated by ViaCrypt PGP 2.4 and 2.7, as
well as MIT-PGP 2.6 with no date restrictions.

CHARSET
Default setting:    CHARSET = NOCONV

Because ViaCrypt PGP must process messages in many non-English languages with non-ASCII
character sets, you may have a need to tell ViaCrypt PGP what local character set your machine
uses. This determines what character conversions are performed when converting plaintext files
to and from canonical text format. This is only a concern if you are in a non-English non-ASCII
environment.

The configuration parameter CHARSET selects the local character set. The choices are
NOCONV (no conversion), LATIN1 (ISO 8859-1 Latin Alphabet 1), KOI8 (used by most
Russian Unix systems), ALT_CODES (used by Russian MS-DOS systems), ASCII, and CP850
(used by most western European languages on standard MS-DOS PCs).

LATIN1 is the internal representation used by ViaCrypt PGP for canonical text, so if you select
LATIN1, no conversion is done. Note also that ViaCrypt PGP treats KOI8 as LATIN1, even
though it is a completely different character set (Russian), because trying to convert KOI8 to
either LATIN1 or CP850 would be futile anyway. This means that setting CHARSET to
NOCONV, LATIN1, or KOI8 are all equivalent to ViaCrypt PGP.

If you use MS-DOS and expect to send or receive traffic in western European languages, set
CHARSET = "CP850". This will make ViaCrypt PGP convert incoming canonical text messages
from LATIN1 to CP850 after decryption.

For further details, see "Sending ASCII Text Files Across Different Machine Environments".

SHOWPASS
Default setting:    SHOWPASS = off

Normally, ViaCrypt PGP does not let you see your pass phrase as you type it in. This makes it
harder for someone to look over your shoulder while you type and learn your pass phrase. But
some typing-impaired people have problems typing their pass phrase without seeing what they are
typing, and they may be typing in the privacy of their own homes.

The configuration parameter SHOWPASS enables ViaCrypt PGP to echo your typing during pass
phrase entry.

Privacy means that only those intended to receive a message can read it.

Authentication means that messages that appear to be from a particular person can only have
originated from that person.

Convenience means that privacy and authentication are provided without the hassles of managing
keys associated with conventional cryptographic software. No secure channels are needed to
exchange keys between users, which makes ViaCrypt PGP easy to use. This is because ViaCrypt
PGP is based on a powerful new technology called public key cryptography.

It is not necessary to understand anything about cryptographic keys in order to use them, but a
short introduction to the concepts will make other things clearer.

In public key cryptosystems, like that used in ViaCrypt PGP, everyone has two different but
related, complimentary keys. The two keys are the public key and the secret key. Each key
unlocks the code that the other key makes. You would normally distribute your public key to
everyone you want to communicate with securely. You should never, however reveal your secret
key.

When someone wants to send you an encrypted message, their copy of ViaCrypt PGP will encrypt
the message using your public key. When you receive the message, your copy of ViaCrypt PGP
will decrypt it using your secret key. Since you are the only one who has your secret key, no one
can decrypt it except you.

If the file containing the key is on a different drive, select the drive you want from the Drives box.
In the directories box, choose the directory you want to view (Double-click the directory, or press
the UP ARROW or DOWN ARROW key to select the directory, then press ENTER). From the
list of files, select the file containing the key you want to add to your keyring.

Over the years a convention has developed for the syntax for CompuServe e-mail addresses in
ViaCrypt PGP user IDs. Replace the comma (',') with a period ('.') and append @compuserve.com
to it. For example, a person named "James R. Prideaux" with a CompuServe e-mail address of
12345,678 would specify his user ID as:

James R. Prideaux <12345.678@compuserve.com>

Why make a copy of your public key? . The concept is similar to e-mail:    If someone wants to
send you an e-mail message, they will need your public key to do so. Similarly, if someone wants
to send you an encrypted file, they will need your public key to do so. In addition, anyone who
wants to verify your digital signature will also need your public key.

Case-sensitive means that meaning that "JACK AND THE BEANSTALK" is not the same as
"Jack and the Beanstalk".

The "Working" message box appears while the cryptographic kernel is running.

The Save Key As dialog box appears below:

If you want to save the file on a different drive, select the drive you want from the Drives box. In
the Directories box, choose the directory in which you want to save the encrypted file. In the File
Name box, type a name for the file. While the default extension for the file's name will be .ASC
or .PGP, the filename you specify can have any extension you want. Choose the OK button.

Pick your RSA key size:
 1) 512 bits- Low commercial grade, fast but less secure
 2) 768 bits- High commercial grade, medium speed, good security
 3) 1024 bits- "Military" grade, slow, highest security
Choose 1, 2, or 3, or enter desired number of bits (up to 2048):

We suggest you choose option 3, a 1024-bit key. Even though it says "slow", today's higher
performance PCs mean the difference is not very noticeable, and the added security is worth it.

Generating an RSA key with a 1024-bit modulus...
You need a user ID for your public key. The desired form for this
user ID is your name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-mail address.
For example: John Q. Smith <12345.6789@compuserve.com>

Enter a user ID for your public key:

It's a good idea to use your full name as your user ID, because there is a greater assurance that it
is unique. Spaces and punctuation are allowed in your user ID. You should also put your e-mail
address, CompuServe ID, or some other unique identifier in <angle brackets> after your name.

This pass phrase is case-sensitive, This pass phrase will be needed each time you want to decrypt
a received message, or digitally sign a message you are sending. Your pass phrase should be
something that is easy for you to remember, but impossible for someone else to guess. To
continue the above example, James Prideaux might choose the pass phrase:

Percy eats unpeeled bananas

(Of course, we strongly recommend that you do not use this same pass phrase. Anyone trying to
guess your pass phrase will try this one as one of their first guesses.)

Your key pair is derived from large truly random numbers that are in turn derived mainly from
your mouse movements and measuring the intervals between your keystrokes. You should enter
some keystrokes that are reasonably random in their timing, and move the mouse around. Don't
simply hold down a single key and let the repeat function do the work for you.

While your key is being generated, ViaCrypt PGP will display a string of characters indicating its
progress:

...

..++++!..................

.............++++!EK
Key generation completed.

Each character has meaning:

. Number tested is not a prime number.
+ Number tested may be a prime number.
! Number tested is a prime number.
E Trying an exponent.
K Generating the components of your key.

Why add someone's public key to your keyring? The concept is similar to e-mail:    If you want to
send someone an e-mail message, you will need their e-mail address. Similarly, in order to send
someone an encrypted file or message, you will need their public key.

When you receive a file containing someone's public key, it typically looks like:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: 2.7

mQBNAi5ZEk8AAAECAMaLvK2KWL9iYWSsfnXbZZ3YIW2CW1nJIS1VUgFYyTNYhYSX
MQYDvYjLtdZIVHdjmngWSfaQUcvf0H2Fz6ags5kABRG0DkpvZSBTY2htdWNrbGV5
=8iMp
-----END PGP PUBLIC KEY BLOCK-----

You must add the key in this file to your public keyring in order to use it.

The key does not need to be isolated into a file by itself. The file can contain other ASCII text
before and after the public key block, and ViaCrypt PGP will find the key block.

Looking for new keys...
pub 1024/126CD8D5 1994/08/22 Bill Haydon <bill@5thfloor.circus.com>
Checking signatures...

Keyfile contains:
 1 new key(s)

One or more of the new keys are not fully certified.
Do you want to certify any of these keys yourself (y/N)?

The question "Do you want to certify any of these keys yourself?" is an important one. When you
certify a key, you are certifying the correspondence between the key and its owner.

Key for user ID: Bill Haydon <bill@5thfloor.circus.com>
1024-bit key, Key ID 126CD8D5, created 1994/08/22
Key fingerprint = A9 71 27 D7 C7 15 1A 57 4E CD 87 72 CA 0B 5D DE
This key/userID association is not certified.

Do you want to certify this key yourself (y/N)?

When you certify a key, you are certifying the relationship between the key and its owner. Using
the above example, you would be certifying that this key really belongs to Bill Haydon.

Looking for key for user 'Bill Haydon <bill@5thfloor.circus.com>':

Key for user ID: Bill Haydon <bill@5thfloor.circus.com>
1024-bit key, Key ID 126CD8D5, created 1994/08/22

READ CAREFULLY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solemnly certify that
the above public key actually belongs to the user specified by the
above user ID (y/N)?

In this example, you are being asked to verify that this key really belongs to "Bill Haydon
<bill@5thfloor.circus.com>".

You need a pass phrase to unlock your RSA secret key.
Key for user ID "ViaCrypt <70304.41@compuserve.com>"

Enter pass phrase:

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on
available evidence. If you think it does, then based on your
estimate of that person's integrity and competence in key management,
answer the following question:

Would you trust "Bill Haydon <bill@5thfloor.circus.com>"
to act as an introducer and certify other people's public keys to you?
(1=I don't know. 2=No. 3=Usually. 4=Yes, always.) ?

Your trust for a key's owner to act as an introducer does not just reflect your estimation of their
personal integrity. Your response ("I don't know", "No", "Usually", or "Yes") reflects how
competent you think they are at understanding key management and using good judgment in
signing keys.

Removing from key ring: 'c:\pgp\pubring.pgp', userid "0x6BF25893".

Key for user ID: Joe Schmuckley <joe@schmuckley.com>
512-bit key, Key ID 6BF25893, created 1994/08/24

Are you sure you want this key removed (y/N)?

Key or user ID is also present in secret keyring.
Do you also want to remove it from the secret keyring (y/N)?

Removing from key ring: 'C:\PGP\secring.pgp', userid "0x6BF25893".

Key for user ID: Joe Schmuckley <joe@schmuckley.com>
512-bit key, Key ID 6BF25893, created 1994/08/24

Are you sure you want this key removed (y/N)?

Removing from key ring: 'c:\pgp\pubring.pgp', userid "0xB9A00941".

Key for user ID: Joe Schmuckley <joe@schmuckley.com>
512-bit key, Key ID B9A00941, created 1994/08/24
Also known as: Joe Schmuckley <12345.678@compuserve.com>

Key has more than one user ID.
Do you want to remove the whole key (y/N)?

The key's user IDs are displayed one at a time so that you can select the correct user ID to
remove:

Remove "Joe Schmuckley <joe@schmuckley.com>" (y/N)? n

Remove "Joe Schmuckley <12345.678@compuserve.com>" (y/N)Y?
User ID removed from key ring.

Key or user ID is also present in secret keyring.
Do you also want to remove it from the secret keyring (y/N)? y

Press 'y' and ENTER.

Removing signatures from userid '0x126CD8D5' in key ring 'c:
\pgp\pubring.pgp'

Key for user ID: Bill Haydon <bill@5thfloor.circus.com>
1024-bit key, Key ID 126CD8D5, created 1994/08/22

Key has 1 signature(s):
sig CB768501 ViaCrypt <Phone (602) 944-0773>
Remove this signature (y/N)?

Key for user ID: Joe Schmuckley <joe@schmuckley.com>
512-bit key, Key ID DD28EF3B, created 1994/08/24

Do you want to permanently revoke your public key
by issuing a secret key compromise certificate
for "Joe Schmuckley <joe@schmuckley.com>" (y/N)?

(NOTE: While the prompt says you will be issuing a key compromise certificate, in actuality,
your key will simply be marked on your keyring as 'revoked'. Generating the Key Compromise
Certificate occurs in a later step.)

If you want to create the Key Compromise Certificate file on a different drive, select the drive
you want from the Drives box. In the Directories box, choose the directory in which you want to
save the encrypted file. In the File Name box, type a name for the file. While the default
extension for the encrypted file's name will be .ASC or .PGP, the filename you specify can have
any extension you want. Choose the OK button.

Key for user ID: Bill Haydon <bill@5thfloor.circus.com>
1024-bit key, Key ID 126CD8D5, created 1994/08/22

Disable this key (y/N)?

If the specified public key is already disabled, then you will instaed be asked if you want the key
reenabled.

The "Key ID" column contains the Key's ID.    The key ID is the least significant a 32 bits of the
key    hexadecimal number.    It it shown as a four-byte hexadecimal number.    While many keys
may share the same user ID, for all practical purposes no two keys have the same key ID.

The "Len" column contains the keys length in bits.

The "Creation date" column contains the date the key was generated.

The User ID column contains the user ID(s) for the key. Note that ViaCrypt's key contains four
user IDs.

Choose the Close button to dismiss the dialog box.

The line that begins with "pub" contains the key length, key ID, creation date, and user ID of the
key.

The line(s) that begin with "sig" contains the key ID and User ID of the keys used to sign/certify
this key.

Editing userid "0xB9A00941" in key ring: 'C:\PGP\pubring.pgp'.

Key for user ID: Joe Schmuckley <joe@schmuckley.com>
512-bit key, Key ID B9A00941, created 1994/08/24

You need a pass phrase to unlock your RSA secret key.
Key for user ID "Joe Schmuckley <12345.678@compuserve.com>"

Enter pass phrase:

Current user ID: Joe Schmuckley <joe@schmuckley.com>
Do you want to add a new user ID (y/N)?

Do you want to change your pass phrase (y/N)? y

Enter pass phrase:
Enter same pass phrase again:
Secret key ring updated...
(No need to update public key ring)

Enter the new user ID: Joe Schmuckley <12345.678@compuserve.com>

Make this user ID the primary user ID for this key (y/N)? y

Do you want to change your pass phrase (y/N)? n
Secret key ring updated...
Public key ring updated.

Looking for key for user '0x126CD8D5':

Key for user ID: Bill Haydon <bill@5thfloor.circus.com>
1024-bit key, Key ID 126CD8D5, created 1994/08/22

READ CAREFULLY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solemnly certify
that the above public key actually belongs to the user specified by
the above user ID (y/N)?

Using this example, you would be certifying that this key really belongs to Bill Haydon.

Would you trust "Bill Haydon <bill@5thfloor.circus.com>"
to act as an introducer and certify other people's public keys
to you?(1=I don't know. 2=No. 3=Usually. 4=Yes, always.) ?

Key for user ID: Bill Haydon <bill@5thfloor.circus.com>
1024-bit key, Key ID 126CD8D5, created 1994/08/22
This user is untrusted to certify other keys.
This key/userID association is fully certified.
 Axiomatically trusted certification from:
 David A. Barnhart <CIS:70275,1360>
Current trust for this key's owner is: untrusted

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on
available evidence. If you think it does, then based on your
estimate of that person's integrity and competence in key
management, answer the following question:

Would you trust "Bill Haydon <bill@5thfloor.circus.com>"
to act as an introducer and certify other people's public keys to
you? (1=I don't know. 2=No. 3=Usually. 4=Yes, always.) ?

This advanced option is available when you decrypt a file using the "Decrypt" button.
Occasionally, you may be decrypting an ASCII text file that you feel is sufficiently sensitive that
it must be displayed on your screen instead of written to your disk.    In this case, select this
option.    If the decrypted file is ASCII text, it will be displayed on your screen, one page at a
time.

If the signed file is on a different drive, select the drive you want from the Drives box. In the
directories box, choose the directory you want to view (Double-click the directory, or press the
UP ARROW or DOWN ARROW key to select the directory, then press ENTER). From the list of
files, select the signed file to verify.

This indicates when ViaCrypt PGP checked the file's digital signature and it was correct. A
correctly certified digital signature assures you that:

1. The files contents have not been altered since it was signed.

2. The file actually came from (or was signed by) the signer, provided you 'trust' the signer's
key.

This indicates that the file may be corrupted (accidentally or intentionally), or the signature may
be a forgery.

If the file you want to decrypt is on a different drive, select the drive you want from the Drives
box. In the directories box, choose the directory you want to view (Double-click the directory, or
press the UP ARROW or DOWN ARROW key to select the directory, then press ENTER). From
the list of files, select the file you want to decrypt.Next, you may specify a name for the decrypted
file, or accept the default:

If you want to save the decrypted file on a different drive, select the drive you want from the
Drives box. In the Directories box, choose the directory in which you want to save the decrypted
file. In the File Name box, type a name for the file. While the default extension for the decrypted
file's name will be .ASC or .PGP, the filename you specify can have any extension you want.
Choose the OK button.

File is encrypted. Secret key is required to read it.
Key for user ID: David A. Barnhart <CIS:70275,1360>
512-bit key, Key ID 67ECF13D, created 1993/07/29

You need a pass phrase to unlock your RSA secret key.
Enter pass phrase:

You should see a display similar to this one while ViaCrypt PGP decrypts your file:

Pass phrase is good. Just a moment......
Plaintext filename: C:\EXAMPLE

If the encrypted file is also digitally signed, you should see.

File has signature. Public key is required to check signature. .
Good signature from user "David A. Barnhart <CIS:70275,1360>".
Signature made 1994/08/22 22:49 GMT

This indicates ViaCrypt PGP checked the file's digital signature and it was correct. A correctly
certified digital signature assures you that:

The files contents have not been altered since it was signed.

The file actually came from (or was signed by) the signer. (Provided that you 'trust' the
signer's key.

If the display is:

WARNING: Bad signature, doesn't match file contents!

Bad signature from user . . .

This indicates that the file may be corrupted (accidentally or intentionally), or the signature may
be a forgery.

If the file you want to encrypt and sign is on a different drive, select the drive you want from the
Drives box. In the directories box, choose the directory you want to view (Double-click the
directory, or press the UP ARROW or DOWN ARROW key to select the directory, then press
ENTER). From the list of files, select the file you want to encrypt and sign.

One or more recipients may be selected.    To select multiple recipients, hold down the 'Ctrl' key
while clicking on your selections. Release the 'Ctrl' key, then choose the OK button.

If you want to save the file on a different drive, select the drive you want from the Drives box. In
the Directories box, choose the directory in which you want to save the file. In the File Name box,
type a name for the file. While the default extension for the encrypted and signed file's name will
be .ASC or .PGP, the filename you specify can have any extension you want. Choose the OK
button.

Pass phrase is good.
Key for user ID: David A. Barnhart <CIS:70275,1360>
512-bit key, Key ID 67ECF13D, created 1993/07/29
Just a moment....

Recipients' public key(s) will be used to encrypt.
Key for user ID: David A. Barnhart <CIS:70275,1360>
512-bit key, Key ID 67ECF13D, created 1993/07/29
.
Transport armor file: C:\EXAMPLE.ASC
Press any key to continue

If the file you want to sign is on a different drive, select the drive you want from the Drives box.
In the directories box, choose the directory you want to view (Double-click the directory, or press
the UP ARROW or DOWN ARROW key to select the directory, then press ENTER). From the
list of files, select the file you want to sign.

If you want to save the signed file on a different drive, select the drive you want from the Drives
box. In the Directories box, choose the directory in which you want to save the signed file. In the
File Name box, type a name for the file. While the default extension for the signed file's name
will be .ASC or .PGP Choose the OK button.

Pass phrase is good.
Key for user ID: David A. Barnhart <CIS:70275,1360>
512-bit key, Key ID 67ECF13D, created 1993/07/29
Just a moment....
Clear signature file: C:\PGP\CONFIG.ASC
Press any key to continue . . .

If the file you want to encrypt is on a different drive, select the drive you want from the Drives
box. In the Directories box, choose the directory you want to view (Double-click the directory, or
press the UP ARROW or DOWN ARROW key to select the directory, then press ENTER). From
the list of files, select the file you want to encrypt.

If you want to save the encrypted file on a different drive, select the drive you want from the
Drives box. In the Directories box, choose the directory in which you want to save the encrypted
file. In the File Name box, type a name for the file. While the default extension for the encrypted
file's name will be .ASC or .PGP Then choose the OK button.

Advanced Decrypt Options

Click on the parts of the window where the    appears for descriptions of each item in the
window:

About ViaCrypt PGP for Windows

ViaCrypt PGP for Windows

Version 2.7.1

April 13, 1995

Copyright 1993 - 1995 by ViaCrypt, a division of Lemcom Systems, Inc.

PGP Copyright 1990-1995 by Phillip Zimmermann (Except for Digisig+ Cryptographic Engine
and IDEA cipher)

Zip compression by Mark Adler and Jean-loup Gailly, used with permission

U.S. Patent numbers 4,200,770,    4,218,582,    4,405,829,    and 4,424,414 licensed exclusively by
Public Key Partners

U.S. Patent number 5,214,703 licensed by Ascom Tech AG.

ViaCrypt PGP is export restricted by the Office of Export Administration, United
States Department of Commerce and the Offices of Defense Trade Controls and
Munitions Control, United States Department of State.    ViaCrypt PGP cannot be
exported or reexported, directly or indirectly, (a) without all export or reexport
licenses and governmental approvals required by any applicable laws, or (b) in
violation of any prohibition against the export or reexport of any part of ViaCrypt
PGP.

