

Informed Designer
Forms Automation

Shana Corporation
9744 - 45th Avenue
Edmonton, Alberta, Canada
T6E 5C5

Telephone: (403) 433-3690
Fax: (403) 437-4381
e-mail: info@shana.com
Web: http://www.shana.com

®

na

-

t
-

-

e

© Copyright Shana Corporation 1996
 All rights reserved.

Informed, Informed Designer, and Informed
Manager are registered trademarks of Sha
Corporation. Informed logo and Informed
Filler are trademarks of Shana Corporation.

Portions of this software are copyright 1991
1996 by INTERSOLV, Inc.

International ProofReader™ English tex
proofing system © 1995 by INSO Corpora
tion. All rights reserved. Reproduction or
disassembly of embodied algorithms or data
base prohibited.

Portions of this software are copyright 1996
Altura Software, Inc.

QuickHelp™ is licensed from Altura Soft-
ware, Inc. End-User is prohibited from tak-
ing any action to derive a source cod
equivalent of QuickHelp, including reverse
assembly or reverse compilation.

All other trademarks are property of their
respective owners.

00-0551-000
9-4-96

Introduction

I-2 Introduction

.
.

.
.

 effi-
 many
n for

bute,

ily.
trol,
orms
hange.

era-

ner
elec-

g
.

g,
t

he fea-
ughly
tion

onfig-

Introduction
With the advancement of computer technology and forms software, electronic forms offer an
cient, intelligent, and secure alternative to the traditional paper based forms systems used in
organizations. Shana Corporation offers the complete cross-platform electronic forms solutio
each step in the paper forms process—from the design stage to “fill, sign, and send.”

Informed Designer and Informed Filler together provide everything you need to design, distri
fill, route, approve, submit, and track electronic forms.

Informed Designer
Informed Designer gives you flexible tools to draw professional quality forms quickly and eas
With advanced drawing tools, powerful graphics manipulation commands, and precision con
you have all you need to produce appealing, picture perfect forms on your computer. Since f
are stored electronically, you now have more freedom to change your forms as your needs c

If you want to design paper forms to be filled out by hand or with a typewriter, then Informed
Designer is all you need. You can design forms for in-house printing, or you can prepare cam
ready artwork for your commercial printer.

When you’re ready to move from paper forms to an electronic forms solution, Informed Desig
provides all the features you need to design intelligent form templates, ready to be filled out
tronically with Informed Filler. Use Informed Designer’s powerful tools and functions to make
your forms automatically calculate, format, lookup, and check information for the person usin
Informed Filler. You can also configure forms for electronic signing by using digital signatures

Although Informed Filler is required to fill out and save forms electronically, you can test your
forms using Informed Designer’s Test mode. This allows you to make sure that your formattin
calculations, and other intelligent features work properly without having to switch to a differen
application.

The Informed Designer Manual Set
The Informed Designer manual set is designed to provide you with a complete reference to t
tures and capabilities of Informed Designer. The manuals combine text and graphics to thoro
document every aspect of the software. In addition to your Informed Designer Forms Automa
manual, the set also contains the following:

■ The Informed Designer Getting Started Guide provides you with information on installing and
registering Informed Designer, and also describes the minimum hardware and software c
urations required to use the Informed Designer application.

Informed Designer

The Informed Designer Manual Set

Introduction I-3

 .
 .

 .

 the
wing
lec-

. Gen-

ling

nd

s to
rn

used

id the

 to

s by

late
 new

y are

they

ber

ll

.

■ The Informed Designer Design and Graphics manual provides a complete reference to
Informed Designer’s design and graphics features. Instructions are given for every step in
form design process, including preparing the drawing area of the template, using the dra
tools, adding graphics, and printing. You also learn how to mail form templates using an e
tronic mail system.

About This Manual
This manual includes a complete reference to Informed Designer’s forms automation features
eral topics are organized in the following chapters:

■ Chapter 1, “Adding Intelligence To Your Forms,” describes Informed Designer’s data hand
capabilities. You’ll learn how to add “intelligent” features to your form templates.

■ Chapter 2, “Using Digital Signatures.” explains Informed’s digital signature capabilities, a
describes how to configure a template for electronic signing.

■ Chapter 3, “Customizing Menus,” provides information on how to configure a form’s menu
create a simpler and more familiar environment for the Informed Filler user. You’ll also lea
about the different menu item types and their uses.

■ Chapter 4, “Using Buttons,” describes Informed Designer’s Button tool and how it can be
to draw and configure buttons on a form to perform specific actions

■ Chapter 5, “Routing,” explains how to configure suggested routes for your templates to a
Informed Filler user in addressing and mailing completed forms.

■ Chapter 6, “Form Tracking,” introduces Informed’s form tracking feature and explains how
configure forms for tracking throughout your organization.

■ Chapter 7, “Authorizing Templates,” explains how to protect the integrity of electronic form
authorizing templates for use in your organization.

■ Chapter 8, “Form Template Distribution and Revision,” describes Informed’s built-in temp
distribution features and provides guidelines for distributing both new form templates and
revisions of templates.

■ Chapter 9, “Using Formulas,” teaches you how to create formulas and describes how the
used to calculate and check information, and provide dynamic tabbing on a form.

■ Chapter 10, “Using Functions,” describes each of Informed’s powerful functions and how
help you create sophisticated formulas.

■ Chapter 11, “Using Informed Number Server,” teaches you how to configure Informed Num
Server for use with templates filled out with Informed Filler.

■ Chapter 12, “Using AppleScript,” provides an overview of Informed’s AppleScript scripting
capabilities and describes in detail how you can customize forms using AppleScript. You’

About This Manual

I-4 Introduction

 .
 .

 .

that

sion

 and

on-
 below

g of
bsec-

l
ders,

ds are
and is
ner’s

ne.
.
learn how to use Informed Designer’s Scripts command to attach scripts to templates so
they can be configured to run when the Informed Filler user invokes certain actions.

■ Chapter 13, “Informed 4D Externals,” explains how to configure lookups and form submis
with any 4th DIMENSION database.

Conventions Used in This Manual
This section describes the conventions used in this manual to ensure that you can easily find
understand the information you need to perform specific tasks with Informed Designer.

Finding Information

In addition to the table of contents at the beginning of this manual, you’ll also find a table of c
tents at the beginning of each chapter, listing the main sections in that chapter. The example
shows the table of contents for Chapter 5, “Routing.”

■ Suggested Routes 5-3

■ Suggested Routes for Multiple Platforms 5-3

■ Adding, Changing, and Removing Suggested Routes 5-4

■ Controlling the Data Format 5-8

■ Using Mail Cells 5-9

Inside each chapter, the main topics are highlighted in a gray bar like the one at the beginnin
this section, making it easy for you to quickly scan a page to find the topic of your choice. Su
tions for each topic are highlighted with a large, bold font.

Notes

Throughout this manual, you’ll see paragraphs of text highlighted in gray boxes with the labe
“Note” in the left margin. These notes contain important information such as warnings, remin
and specific conditions to be aware of. The example below shows a typical note.

Commands and Control Names

When specific instructions on how to perform a certain task are given in this manual, comman
shown in a different typeface from the rest of the text. The name of the menu where the comm
found is also given in each instance. For example, when learning how to use Informed Desig
Cell palette, you’ll read the following text:

Conventions Used in This Manual

Note Important information about Informed Designer appears in highlighted gray boxes like this o

Introduction I-5

 .
 .

 .

o

gle
at sur-

.

s show
ox or

 Mac
 next
.

“You can show the Cell palette by choosing Cell Palette from the Show submenu under Layout. T
hide the Cell palette, click its close box or choose Cell Palette again.”

The names of controls such as buttons and settings on dialog boxes are always shown in sin
quotes. For lengthy control names, this helps to differentiate the control name from the text th
rounds it. For example:

“When setting preferences for Informed Designer’s spell checking feature, you can select the
‘Always provide alternative spellings’ checkbox.”

Cross-platform Issues

Although this manual has tried to be platform neutral, the cross-platform nature of Informed
requires that special care be taken when documenting certain features of Informed Designer

Throughout this manual you’ll see screens of dialog boxes and windows. Some of the screen
Windows dialog boxes and windows, others are from the Mac OS. In cases where a dialog b
window is substantially different between the two platforms, both versions are shown.

When a specific feature of Informed Designer is only applicable to one platform (Windows or
OS), an icon depicting either the Windows or Mac OS platform is displayed in the left margin
to the description of the feature as shown below.

The Windows Metafile format is not supported on the Mac OS.

I-6 Introduction

 .
 .

 .

.

1

Adding Intelligence To Your Forms

In this chapter:

■ Overview 1-2

■ Cells 1-4

■ Type Options 1-6

■ Entry Options 1-7

■ Tab Order 1-9

■ Cell Types 1-15

■ Indexes 1-33

■ Calculations 1-35

■ Default Values 1-37

■ Auto-incrementing Numbers 1-39

■ Using Lookups 1-47

■ Data Verification 1-63

■ Choices 1-68

■ Cell Help 1-72

■ Form Submission 1-73

■ Using the Cell Palette 1-86

■ Cell Report 1-90

■ Testing Your Form Template 1-91

1-2 Adding Intelligence To Your Forms

.
.

.
.

arn
’ll
ity
 with

tion is
u fill
ture.

. By
 data

,
uld

f accu-

1Adding Intelligence To Your Forms
This chapter introduces and explains Informed Designer’s data-handling capabilities. You’ll le
about cells and how they act as place holders for information when you complete a form. You
also learn how to add ‘intelligent’ features to your forms. Features such as calculations, valid
checks, choices lists, and help messages are designed to help the person filling out the form
Informed Filler.

Overview
When you draw a form, you use the Field and Table tools to create the blanks where informa
typed. Each field and table column contains a cell—a holding place for information. When yo
out a form, a cell can hold information such as a name, number, date, time, picture, or signa

Informed’s data intelligence features make it easy for the Informed Filler user to fill out a form
using these features, you can have Informed Filler automatically format, calculate, and verify
so that the user doesn’t have to (the terms information and data are interchangeable). For example
you could use a formula to calculate the discount amount or the total on an invoice, or you co
use the formatting options to automatically add a currency symbol and two decimal places o
racy to a number.

Overview

Sold To Ship ToABC Company
12345 - 123 St
New York, NY
15243

Date Terms Ship ByPO No.

INVOICE

Qty Part Description Price Ext.

Shipping
Total

Mr. Smith
8273 Long Way
San Francisco, CA
27363

Mr. Smith
27364 Short Way
San Francisco, CA
82734

11/14/96 Cash UPS

2 872 Gadgets 79.23 158.46
12 231 Widgets 771.10 9,253.20

$9,419.66

8.00

Invoice # 552Auto-incrementing
numbers

Default to
today’s date

Lookup in another
data source

Signature cell for
electronic signing

Format with commas,
decimals, and currency

Offer a list of choices

Calculate cells

Adding Intelligence To Your Forms 1-3

 .
 .

 .

 Tab-
enu.

 normal

short-
t and
Mac
pplica-
the
d,

lso

ng

ler
le,
an

so
rent

re
on
-

es-
.

You add intelligent features to your form by using the Cell, Format, Value, Check, Conditional
bing, Lookup, and Help Message commands. These commands are found in the Settings m

Data Intelligence Commands

The commands described in this chapter are accessible from menus and are selected in the
way: By using the mouse or by typing keyboard equivalents where they exist.

On both Windows and Mac OS compatible computers, clicking the mouse button provides a
cut to selecting various commands. With any tool selected, position the pointer over an objec
click the right mouse button (Windows) or click the mouse button while pressing the Ctrl key (
OS) to display a pop-up menu. The pop-up menu contains the settings commands that are a
ble to the type of object. For example, if you position the pointer over a field object and click
right mouse button, you’ll see a pop-up menu containing the Cell, Format, Value, Check, Fiel
Combs, Checkbox, Type, Paint, Cut, Copy, Clear, and Object commands.

Command Description

Cell

Format

Value

Check

Conditional
Tabbing

Lookup

Help Message

Use the Cell command to set the name and tab position of a cell. You can a
configure type options, data entry options, and attach choice lists to make it
easier for Informed Filler users to enter the cell’s value.

Use the Format command to choose the type of information that a cell will
hold. The nine allowable cell types are text, character, number, name, date,
time, boolean, picture, and signature. Each cell type offers different formatti
options for controlling the exact format.

You can set up formulas so that certain cells are automatically calculated or
filled in with default values. Informed Filler can automatically increment a
number each time the user fills out a new record. This is useful for numbers
such as statement or invoice numbers.

Use the Check command to enter error checking criteria so that Informed Fil
can automatically check for errors when the user fills out a form. For examp
you might want to restrict the discount amount on a sales slip to no more th
ten dollars.

Not only can you customize the tabbing order of cells on a form, you can al
configure dynamic tabbing so that the tab order changes depending on diffe
conditions.

With lookups, you can configure a form to read information from other forms
and other information systems such as SQL databases. This powerful featu
allows you to integrate a set of related forms and link them to other informati
services in your organization. For example, you could read inventory or cus
tomer information into your invoice form.

You can provide a custom help message for each cell on your form. Help m
sages can provide useful information to the person who fills out the form.

1-4 Adding Intelligence To Your Forms

 .
 .

 .

ouse

 Cell

 cells
an hold
he
d for-

d tab
below

at the

.

To select a command, drag the pointer to highlight the command, then click or release the m
button.

The Cell palette also provides shortcuts to many commands. For a detailed description of the
Palette, see “Using the Cell Palette.”

Cells
You create a cell each time you draw a field or place a new column in a table. Field and table
are identical in all respects except one: a field cell holds a single value, whereas a table cell c
multiple values, one for each row in the table. Remember though, you can’t name or format t
individual rows in a table cell differently; all rows in a table cell have the same name, type, an
matting options.

You can display or hide the cells in the drawing window. When a cell is showing, its name an
position (see next sections) are displayed with the type attributes set for that cell. The figure
illustrates a field with and without its cell showing.

To display the cells in the drawing window, choose Cell Names from the Show submenu under
Layout. When the cells are displayed, you’ll see a checkmark beside Cell Names indicating th
cells are showing. To hide the cells, choose Cell Names again to remove the checkmark.

Cells

Adding Intelligence To Your Forms 1-5

 .
 .

 .

le

gner
nize
alled

ell that

_).

e,

f
.

.

For information about the appearance of fields and tables, see “The Field Tool” and “The Tab
Tool,” in Chapter 6 of your Informed Designer Design and Graphics manual.

Cell Names

Each cell on your form must be named uniquely. When you create a new cell, Informed Desi
automatically names the cell ‘CellX,’ where X is the next available number. It’s easier to recog
a cell if you give it a descriptive name (a cell called ‘Discount’ is more recognizable than one c
‘Cell31’).

You can change a cell’s name using the Cell command. To change a cell’s name, select the c
you want to rename, then choose Cell... from the Settings menu. This dialog box will appear:

Type the cell’s new name in the ‘Cell name’ text box and click ‘OK.’ When you click ‘OK,’
Informed Designer will check that the new name is valid according to these rules:

■ A cell name must begin with a letter (a-z, or A-Z).

■ Each character in a cell name must be a letter, number, space, or underscore character (

■ A cell name can be no longer than 255 characters.

■ A cell name cannot contain any reserved words.

If Informed Designer detects an error in the cell name, or if another cell already has that nam
you’ll be alerted with a message.

Informed Designer’s Cell palette provides an alternate, and often more convenient, method o
changing a cell’s name. See “Using the Cell Palette” later in this chapter for more information

1-6 Adding Intelligence To Your Forms

 .
 .

 .

 or
uto-

ill

mine
n
 data

yed

ont,
ow
the
gs

to a
ress

n

.
As explained in Chapter 6 of your Informed Designer Design and Graphics manual, each field and
column cell has a title as part of the structure of fields and tables. When you draw a new field
table, titles are initially set to “Title.” When you change a cell’s name, Informed Designer will a
matically change the field or column title to match the cell title, if you have never explicitly
changed the title yourself. If you rename a cell that’s used in a formula, Informed Designer w
automatically change the cell’s name in the formula too.

Type Options
You can set type options for each cell on your form. By setting a cell’s type options, you deter
factors such as the color of the data in a cell, whether or not the person filling out the form ca
make changes to the appearance of the data in a cell, and whether or not the type size of the
will shrink to fit the cell if the user enters more information than will fit in the cell area.

Font, Size, and Type Style

When the Informed Filler user fills out a form, the information they type into each cell is displa
using the cell’s type attributes that you’ve chosen (see “The Cell Section” and “ The Column Sec-
tions” in Chapter 5 of your Informed Designer Design and Graphics manual). These attributes
include the font, font size, type style, alignment, and leading.

For each cell, you can control whether or not the person filling out the form can change the f
font size, and type style of the information being entered. For example, you might want to all
style changes so that words or letters can be underlined. To allow such options, click any of
‘Allow font change,’ ‘Allow size change,’ or ‘Allow style change’ checkboxes on the Cell Settin
dialog box. These options apply to all cell types except Signature and Picture.

Auto-Shrink

The ‘Allow auto-shrink’ checkbox controls another type option. When you enter information in
cell, you can enter more information than will actually fit in the cell area. Normally, when you p
Tab to move to the next cell, the information that doesn’t fit is hidden.

If you check the ‘Allow auto-shrink’ option, Informed will shrink the type size of the informatio
so that it fits entirely in the cell area when you print your form.

Type Options

Adding Intelligence To Your Forms 1-7

 .
 .

 .

 cell
color,
 but-

.

en
t
are its
ated

as
e
 val-

cell
ecom-
sage

.

Data Color

You can choose a color with which to display cell values. The data color setting applies to all
types with the exception of Picture. Pictures always appear in their original color. To select a
click the ‘Data color’ drop-down list on the Cell Settings dialog box, and hold down the mouse
ton.

Position the pointer over the desired color on the color palette and release the mouse button

Entry Options
Informed Designer’s data entry options allow you to determine how information is entered wh
the Informed Filler users fills out a form. You can specify cell attributes such as whether or no
entering a cell value is optional, recommended, or required, and whether or not a cell can sh
memorized values with similar cells in other forms. You can also set a cell to hold only calcul
or default values, instead of values entered by the user.

Entry Status

Check formulas, as explained in “Data Verification,” allow you to specify sophisticated formul
that can test for a variety of errors as the Informed Filler user fills out a form. For simple, mor
common error conditions, the entry status feature allows you to check for blank values where
ues are either required or recommended.

If a particular cell value is mandatory, select ‘Required’ from the ‘Entry is’ drop-down list. If a
value is not mandatory but you’d like to suggest to the user that one be entered, select the ‘R
mended’ option instead. If the Informed Filler user neglects to enter a value in the cell, a mes
will appear in a dialog box indicating that a value is required or recommended.

Entry Options

1-8 Adding Intelligence To Your Forms

 .
 .

 .

d. Once
e user
 Filler

on the

,

ser

ll Pal-
d by

ll.
s.

 per-
 fea-

t the

hase

el

d
e a
 other
ed.
nd the
.
The message is displayed when the user tabs to a different cell or when the record is accepte
the message appears for the first time (for a particular cell), it will not appear again unless th
later changes the value again or, for required values, when the record is accepted. Informed
will not allow the user to accept a record if a required cell value has not been entered.

As a shortcut, you can select the ‘Required’ entry status by clicking the corresponding button
Cell palette. For more information, see “Using the Cell Palette” later in this chapter.

Display Only

Informed Designer allows you to decide whether or not a cell’s value can be changed by the
Informed Filler user. You might want some cells to hold only their calculated or default values
while you might allow other cells to hold values entered by the user.

If you check the ‘Display only’ feature for a cell, Informed Filler won’t let the user change that
cell’s value when forms are filled out. The cell will be excluded from the tab order and if the u
tries to type in the cell, a beep will sound.

You can also change the ‘Display only’ setting for a cell using the Value command and the Ce
ette. Visually, Informed Designer shows you which cells have the ‘Display only’ option selecte
displaying a cell’s frame in red.

Shared Memorization

“Default Values” later in this chapter, explains how you can specify a default value for any ce
This feature is useful if a cell’s default value is known in advance and is the same for all user

Many forms contain information that is specific to the person filling out the form. For any one
son, this information is usually the same for each form they fill out. Informed Filler provides a
ture that allows the person filling out a form to specify a cell’s default value. Chapter 3, of the
Informed Filler User’s Manual explains how the user can choose the Memorize command to se
default value for a cell.

Often different types of forms will contain some common information. For example, both purc
requisition and travel expense forms contain cells for employee information. For a particular
employee, this information is the same on every form, both for purchase requisitions and trav
expense forms.

The ‘Memorization is shared’ option allows you to specify that a cell is to share its memorize
value with similar cells on other forms. This means that the Informed Filler user can memoriz
cell’s value once and have the memorized value automatically take effect for the same cell on
forms. A cell’s memorized value is shared only if the ‘Memorization is shared’ option is select
The memorized value is shared only with cells on other forms that have the same cell name a
‘Memorization is shared’ option selected.

Adding Intelligence To Your Forms 1-9

 .
 .

 .

ab

, or by

ose

n the

alid

 well.

ne or
w a
ion 1.

.

Tab Order
Each time you create a new cell, Informed Designer assigns the next available tab position to that
cell. On your form, the tab position of all the cells together determines the form’s tab order; that is,
the order that you tab from one cell to the next when you fill out or edit a form. The cell with t
position 1 is entered first, then the cell with tab position 2, and so on.

You can change a form’s tab order with the Cell command, the Change Tab Order command
using the Tab tool.

Use the Cell command to reposition a cell in the tab order. To do this, select the cell and cho
Cell... from the Settings menu. When the Cell dialog box appears, type the new tab position i
‘Tab position’ text box.

After you enter the new tab position, click ‘OK’ to change the selected cell. If you enter an inv
tab position, Informed Designer will alert you with a message.

Changing the tab position of one cell automatically changes the tab position of other cells as
It’s like removing the cell from the tab order list, then re-inserting it back in a new position.

Tabbing in Tables

The tab order for tables is handled differently than for fields. Although a table is made up of o
more column cells, all the column cells share a common tab position. For example, if you dra
table with three columns as the first object on your form, all three columns will have tab posit

Tab Order

ABC Company
12233-44 Ave.
New York, NY
98765

INVOICE

Sold To Ship To

Date Terms PO Number Ship Via

Signature

Qty Description Price

Shipping

Total

No.

1 2

3 54 6

7

8
9

The circled numbers
indicate the order in
which tabbing will occur.

Change a cell’s tab position
by typing here.

1-10 Adding Intelligence To Your Forms

 .
 .

 .

 of the
g able

able
ical

s.
e name
filling
ntire

n the

e this
nter/
.
Although the columns in a table all share the same tab position, you can control the direction
tabbing. The tab order within a table can be either across the rows or down the columns. Bein
to tab in different directions makes it easier to fill out certain types of forms. For example, a t
on an invoice form usually has columns such as ‘Quantity,’ ‘Part Number,’ and ‘Price.’ The log
order for filling out the form would be to tab across the rows and enter the quantity, part number,
and price for each item being sold.

To set a table’s tab direction to go across the rows, choose Table... from the Settings menu, then
click the ‘Across rows’ radio button on the Table Settings dialog box.

Other types of forms are filled out easier by tabbing down each column rather than across the row
For example, travel expense forms sometimes use columns for each day of the week, with th
of each expense listed beside the rows on the table. Instead of tabbing across the rows and
out the ‘Breakfast’ expense for each day, it’s more convenient for the user to tab down one e
column and fill out all the expenses for that day, and then go on to the next column.

To set a table’s tab direction to go down the columns, click the ‘Down columns’ radio button o
Table Settings dialog box.

If the tab direction for a table is set to go across the rows, the Informed Filler user can overrid
by pressing the Enter (Windows) or Return (Mac OS) key instead of the Tab key. Pressing E
Return moves down the columns rather than across the rows.

Tab across the rows

Tab down the columns

Adding Intelligence To Your Forms 1-11

 .
 .

 .

 in a
ving

gs dia-

g
ble
es a
nly

 order
.

Phone

er
 to the
igh-

w in tab

each
king
tion of

ition to
f your

-

.

Tables on forms usually have multiple rows. However, it’s not always the case that every row
table is used when a form is filled out, so Informed allows the user to leave a table without ha
to tab through excess empty rows. You use the ‘Leave table when’ option on the Table Settin
log box to specify when tabbing will leave a table.

By default, the ‘Leave table when’ option is set to ‘Entire row is blank.’ This means that tabbin
leaves a table after tabbing through one empty row. To change this option, click the ‘Leave ta
when’ drop-down list and select the ‘First column is blank’ item. This means that tabbing leav
table after tabbing out of the first column of an empty row. The ‘Leave table when’ option is o
available when the tabbing direction is set to ‘Across rows.’

The Tab Tool

Informed Designer’s tool palette contains the Tab tool. This tool allows you to change the tab
of the cells on your form by simply clicking and dragging the pointer from one cell to another

Suppose you have three cells on your form: Name (tab position 1), Fax (tab position 2), and
(tab position 3). You might want to change the Phone cell so that it is in tab position 2.

With the Tab tool selected, position the pointer over the Name cell (tab position 1). The point
changes into a hand. Click the cell and hold the mouse button down while dragging the hand
Phone cell. A gray line follows the hand to indicate which cell you are moving from. When a h
lighted border appears inside the Phone cell, release the mouse button. The Phone cell is no
position 2 and the Fax cell has changed to tab position 3.

The Change Tab Order Command

The tab order of a form is commonly based on the top-left through bottom-right positioning of
cell; that is, cells are generally filled out from left to right, starting at the top of a form and wor
downwards. Informed Designer provides a command that lets you easily reorder the tab posi
cells in this manner.

The Change Tab Order command changes the tab position of cells to match their relative pos
each other. You can reorder all cells or only selected ones on a single page or on all pages o
form. To use this command, choose Change Tab Order... from the Arrange menu or simply double
click the Tab tool. The Change Tab Order dialog box will appear.

1-12 Adding Intelligence To Your Forms

 .
 .

 .

ons
ption,
l’

e
ant to
l to

to the
em

each
2

ou
nd-
ab
.

To reorder only the selected cells, choose the ‘Selected cells only’ option. The other two opti
allow you to reorder all cells on the current page, or all cells on all pages. After choosing an o
click ‘OK’ to perform the command. To cancel the Change Tab Order command, click ‘Cance
instead.

Quick-Tabs

When the Informed Filler user fills out a form, pressing the Tab key moves from one cell to th
next. Pressing the Shift-Tab key moves them in the opposite direction. Often the user might w
move directly to a particular cell on a form without having to pass through each individual cel
get there. The Quick-Tab feature allows the user to bypass the normal tab order of a form.

By pressing the F2 key (Windows) or Command-Tab keys (Mac OS), the user moves directly
next Quick-Tab cell. Pressing Shift-F2 (Windows) or Command-Shift-Tab (Mac OS) moves th
to the previous Quick-Tab cell instead. To make a Quick-Tab cell, select the cell and choose Cell...
from the Settings menu.

Click the ‘Quick tab’ checkbox, then click ‘OK’ to dismiss the dialog box.

Use the Quick-Tab feature when your form is divided into sections. By making the first cell in
section a Quick-Tab cell, the user can easily move from one section to the next by pressing F
(Windows) or Command-Tab (Mac OS) when the form is filled out.

In all tables, the first column is automatically a Quick-Tab cell, regardless of whether or not y
select the Quick-Tab option. If the Quick-Tab option is selected for a column cell, F2/Comma
Tab will tab from row to row. The first field cell following a table is also automatically a Quick-T
cell.

Select this option on the Cell Settings dialog
box to make the selected cell a Quick Tab.

Adding Intelligence To Your Forms 1-13

 .
 .

 .

ick-
.

you
aster

pear on
 Instead

 the

t sec-
you
e
t sec-
y to

rticu-
hat
bbing

 if so,
e. If

l fol-

pplies
oes
.

The Cell palette provides an alternative, and often more convenient method of setting the Qu
Tab attribute for a cell. For more information, see “Using the Cell Palette” later in this chapter

Master Page Cells

When you fill out a multi-page form, Informed will automatically change pages for you when
tab between cells on different pages. Like all cells on your form, the cells that appear on the m
page also have a tab position. However, since the items on the master page automatically ap
all pages of your form, there’s no need to change pages when you tab to a master page cell.
you’ll remain on the current page.

For more information about the master page, see “The Master Page” section in Chapter 4 of
Informed Designer Design and Graphics manual.

Conditional Tabbing

By configuring a cell to have conditional tabbing, you allow the Informed Filler user to tab pas
tions of the form that are not relevant to the information that they are entering. For example,
could specify a tabbing condition for ‘Local’ and ‘Out of Town’ checkboxes on a travel expens
form. If the user selects the ‘Local’ checkbox and then tabs from that cell, they would tab pas
tions for claiming expenses such as ‘Hotel Accommodation’ and ‘Airline Travel,’ and go directl
sections for claiming expenses such as ‘Parking’ and ‘Fuel.’

You specify various tabbing conditions by writing a tab formula. A tab formula applies to a pa
lar cell and determines where tabbing should move when the Informed Filler user tabs from t
cell. The result of the formula can be either the name or the tab position of the cell to which ta
should move.

A tab formula can make use of Informed’s powerful formulas and functions capabilities. For a
detailed description of these features, please see Chapters 9 and 10 of this manual.

The example formula below tests whether or not the checkbox cell “Married” is checked and,
returns “Spouse Name,” the name of the cell in which the user enters his or her spouse’s nam
Married is unchecked (that is, false), the formula returns “Employer,” the name of the first cel
lowing the section for married applicants.

If Married then
 "Spouse Name"
Else
 "Employer"
End

The purpose of the above tab formula is to automatically tab past a section on the form that a
only to married applicants when the ‘Married’ checkbox cell is not checked. If a tab formula d

1-14 Adding Intelligence To Your Forms

 .
 .

 .

re the

ame of
.

re or
ree
try in
ser-

into a

ill
hile
ithin

ia-
or-
the error.

ise,
.
not return a result, then tabbing will move to the next cell in the tab order. If Spouse Name we
cell following Married (in tab order), then the following formula would work just as well.

If Not Married then
 "Employer"
End

The above examples demonstrate how a tab formula can return a cell's name to identify the n
the cell to move to. A tab condition formula can also return the tab position of the cell instead

To specify the tab formula for a particular cell, select the cell, then choose Conditional Tabbing...
from the Settings menu. The Conditional Tabbing dialog box appears.

You enter the formula by typing in the large text box. You can resize the dialog box to show mo
less of the tab conditions formula. Informed Designer makes it easy to enter complex, error-f
formulas. Instead of typing cell names, functions, and operators, you can double-click any en
any of the corresponding scrolling lists. The entry is inserted into the formula at the current in
tion point. You can move between the lists on the dialog box by pressing Tab. When you tab
list, a bold frame appears around it to indicate that it’s selected.

If you double-click to enter a function that has one or more parameters, Informed Designer w
automatically position the insertion point at the first parameter. If you double-click a function w
holding down the Alt (Windows) or Option (Mac OS) key, the parameter names are included w
parentheses.

If you click the checkmark button while entering a formula, or if you click ‘OK’ to dismiss the d
log box, Informed Designer will check to make sure that the formula is valid. The formula is f
matted properly, and if any errors are detected, a message appears describing the nature of

Note In a conditional tabbing formula, the name of the cell to move to must be in quotes. Otherw
the value of that cell will be used as the name.

Adding Intelligence To Your Forms 1-15

 .
 .

 .

ether
atches
 type
ave
.

type,

.

Cell Types
This section describes Informed’s cell types and the options associated with each one. Altog
there are nine different cell types. When you create a cell, you should set its type so that it m
the information that the cell is intended to hold. For example, if a cell holds a number, then its
should be number. That way, you can use the cell in arithmetic calculations, and you could h
Informed Filler validate numbers that are entered into the cell when the user fills out the form

The following table lists the nine cell types with examples.

Cell Types

Use the Format command to change the type and formatting options of a cell. To set a cell’s
select the cell, then choose Format... from the Settings menu. The Format dialog box appears,
allowing you to choose a type from the ‘Type’ drop-down list.

Cell Types

Cell Type Examples

Text
Character
Number
Name
Date
Time
Boolean

Picture

Signature

Business form #29
(555) 555-1212
101
Mr. John Smith
10/25/89
14:20
Yes

12345 - 123 Street, A Big City
02983-1283
$12,550.75
Jones, Mr. Tom F.
Wednesday, November 8, 1989
03:15:04 PM

1-16 Adding Intelligence To Your Forms

 .
 .

 .

ns for
l. To

h cell
ects”

le
 the
 make

s
 Field

ee the

ng
 Cell

 or a
ol
.

When you select a different type, the Format dialog box changes to show the available optio
that type. After you select the cell type and any options, click ‘OK’ to change the selected cel
cancel the Format command, click ‘Cancel’ instead.

You can change the type and format of two or more cells at the same time. Simply select eac
before choosing the Format command. For more information, see the “Changing Multiple Obj
section, in Chapter 7 of your Informed Designer Design and Graphics manual.

Using the Format command, you can change the default cell type and format for field and tab
cells (the default settings determine the type and formatting options of new cells). To change
default settings, deselect all objects and choose the Format command. Any changes that you
on the Format dialog box will be set for any cells that you draw thereafter. If the Pointer tool i
selected, the default settings are changed for both the Field and Table tools. If only one of the
or Table tools is selected, the defaults are changed for that tool only. For more information, s
“Changing Default Settings” section, in Chapter 7 of your Informed Designer Design and Graphics
manual.

As a shortcut, you can select the Format command as well as various cell types and formatti
options by clicking different buttons on the Cell palette. For more information, see “Using the
Palette” later in this chapter.

Text

Use the Text cell type for cells that hold textual information such as an address, a comment,
memo. The Text cell type allows the Informed Filler user to enter any letter, number, or symb
from the keyboard into a cell.

Adding Intelligence To Your Forms 1-17

 .
 .

 .

ords
n

ll

 can
ength

,
w line
y for

 pre-

ecause
e Tab

 type
.

Case Options
A variety of options control the case of letters in a text cell. Use the case options to convert w
or letters to upper or lower case. To use a case option, click the ‘Case options’ checkbox the
choose one of the four possible options by clicking the appropriate radio button.

The first three options convert the first letter only, the first letter of all words, or all letters of a
words to upper case. The last option converts all letters of all words to lower case.

Entry Options
Entry options for the Text cell type allow you to control whether or not the Informed Filler user
press the Enter (Windows) or Return (Mac OS) key to start a new line. You can also limit the l
of a text cell to a specific number of characters.

For new cells, the ‘Allow Return characters’ option is set to ‘when text will fit.’ With this setting
the Informed Filler user can press the Enter (Windows) or Return (Mac OS) key to start a ne
only if there is enough room in the cell for another line. To allow the use of the Enter/Return ke
new lines regardless of the size and content of the cell, select the ‘always’ option instead. To
vent this use of the Enter/Return key, select the ‘never’ option. When the Informed Filler user
presses the Enter/Return key and the use of this key for adding new lines is not permitted (b
of the ‘Allow Return characters’ setting), Informed Filler will act as though the user pressed th
key instead and tab to the next cell in tab order.

Note Although numbers can be entered in a text cell, these values are still treated as text. If you
intend to store numbers in a cell and use them in arithmetic formulas, use the Number cell
instead.

1-18 Adding Intelligence To Your Forms

 .
 .

 .

 enter
a mes-

ter val-
one

 valid

or
to type

nsists
n the

e
e,
s set
 data
r
.
To limit the length of a text cell to a specific number of characters, select the ‘Limit length to’
checkbox and enter a number in the text box provided. If the Informed Filler user attempts to
more characters than specified by this limit, a beep will sound. If a second attempt is made,
sage is displayed in a dialog box indicating the length limit.

Character

The Character cell type also stores textual values. However, unlike the Text cell type, charac
ues must match a specific format that you define. Use the Character cell type to store teleph
numbers, zip codes, or any values that are always formatted exactly the same way.

Character Format
A character format is a sequence of characters that rigidly defines the length and format of a
cell value. Each character can be either a data character or a literal. Each data character represents
a character position where a value must be supplied. A literal is a format character such as a dash
a parenthesis. When entering data into a character cell, the Informed Filler user doesn’t have
literal characters; Informed Filler inserts them automatically.

In the example telephone number format shown in the previous figure, the character format co
of ten data characters (the digits), and four literals (the space, dash, and parentheses). Whe

Note The character format is used only to format values that the Informed Filler user enters or
changes. If Informed Filler displays a character value that was formatted differently than th
current character format for the cell, the value will display in its original format. For exampl
you could make a change to a “Phone number” cell on a form so that its character format i
to include the area code instead of the phone number only. If the new form is used to view
entered using the original form, the “Phone number” cell will still display the phone numbe
without the area code, until the user explicitly changes the value in that cell.

Adding Intelligence To Your Forms 1-19

 .
 .

 .

, dash,
d cor-

n a cell
 a num-
re

r by
se
. You
racter

ws a
or
es.

nd ‘}’
r lit-

t four
eated

sed in a
you
h
.

Informed Filler users enter a telephone number, they need only supply the digits. The space
and parentheses are inserted automatically. Informed Filler will also ensure that what is type
rectly matches the format of a telephone number.

Each data character in a character format defines the valid set of characters for that position i
value. For example, since the second character in the telephone number character format is
ber sign (#), then only the digits ‘0’ through ‘9’ are allowed in that character position. There a
four predefined data characters symbols. They’re shown in the table below.

Data Characters

If the predefined data characters aren’t suitable, then you can define your own data characte
enclosing the set of allowable characters within the ‘<’ and ‘>’ delimiters. For example, suppo
that only the characters ‘1’ through ‘9’ were allowed as the first digit in a telephone area code
couldn’t use the number sign (#) data character because it allows the digit ‘0’ as well. The cha
format below uses a custom defined data character.

(<123456789>##) ###-####

You can also group and repeat data characters or literals. If a number between 2 and 99 follo
data character or literal, that character (or literal) is repeated that many times in the format. F
example, if ‘#3’ appears in a format, this means that the number sign (#) is repeated three tim

(#3) #3-#4

To group two or more characters in a character format, enclose the characters within the ‘{’ a
delimiters. You can repeat a group of characters the same way you repeat a data character o
eral—by following the group with a number between 2 and 99. In the example below, the las
digits of the telephone number character format are represented by a group of two digits rep
twice.

(###) ###-{##}2

The characters ‘A,’ ‘a,’ ‘#,’ ‘?,’ ‘<,’ ‘>,’ ‘{,’ ‘},’ and ‘O’ through ‘9’ are called special characters.
They’re special because, as described above, they each have a predefined meaning when u
character format. If you want to include a special character as a literal in a character format,
must precede it with the escape character. Informed Designer’s escape character is the backslas
symbol (\).

Data Character Allowable Characters (character set)

A
a
#
?

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
Any character

1-20 Adding Intelligence To Your Forms

 .
 .

 .
ode of
rackets

ted as lit-

ormat
 by

lt value

e

ode. If
 dis-
at,
racters

e
.
Suppose that you want to use brackets (‘{…}’) instead of parentheses to surround the area c
a telephone number. You would use the escape character in the character format (because b
are special characters).

\{###\} ###-####

Since the escape character precedes each of the bracket symbols, the brackets are interpre
erals and not as group delimiters.

Informed Designer provides a list of common character formats. You can choose a common f
by double-clicking an entry in the scrolling list of choices. Or you can create your own format
typing directly in the ‘Character format’ text box.

Default Format
Each character cell can have a default format. The default format doesn’t represent the defau
of the cell (see Calculations and defaults). Instead, it’s used when someone filling out your form
types an incomplete value. If the user enters an incomplete value, Informed Filler will fill in th
missing characters with those found in the default format.

In the example telephone number format, the default format is used to supply a default area c
the Informed Filler user types the value ‘5551273,’ Informed Filler will fill in the area code and
play ‘(408) 555-1273.’ The digits typed are matched with the characters in the character form
starting at the right end and working to the left. Since only seven of the ten required data cha
are entered, the remaining three are obtained from the default format.

The ‘Match from’ option controls which direction the characters you type are matched with th
characters in the character format.

3725 5 5 1

(# #### #) # # # — #

(4 0000 8) 0 0 0 — 0

When you type 5551273,
this is what happens:

Character
format:

Default
format:

The result: (408) 555-1273

Adding Intelligence To Your Forms 1-21

 .
 .

 .

er-
mple,
ction

type
alert

ws
r and

alue’

 the
n.

be

ll be
.

It’s important to choose the proper direction when you supply a default character format. Oth
wise, Informed Filler will use the wrong default characters to complete a typed value. For exa
the value ‘5551273’ would be displayed as ‘(555) 127-3000’ if you changed the matching dire
from right to left.

You enter a default format by typing the value in the ‘Default format’ text box. The value you
must match the character format. If you type an invalid default format, Informed Designer will
you with a message. To choose the match direction, click the appropriate radio button.

Testing Your Character Format
To confirm that you’ve entered the correct format values and options, Informed Designer allo
you to test your format before dismissing the Format dialog box. After you enter the characte
default formats, and choose the match direction, you can enter a sample value in the ‘Test v
text box. The converted value is shown under the Formatted Value heading.

The following table gives a few examples. If the value under the ‘Entry’ column doesn’t match
format, you’ll see the word ‘Error’ (and a message) under the ‘Informed Filler Displays’ colum

Example Formats

* Is equivalent to ‘###-###-###.’

If you enter an invalid character format, default format, or test value, the formatted value will
blank. When you click ‘OK’ to dismiss the Format dialog box, Informed Designer will check to
make sure that the character format and default format are valid. If an error is detected, you’
warned with an alert.

Character Format Default Format Match Entry Informed Displays

(###) ###-####
(###) ###-####
(###) ###-####
A# #A#
####
####
###?
###?
{#3-}2#3*
AA-#3
AA-#3
AA-#3
The \answer is ##.

(415) 000-0000

0000
0000
0000
0000

XL-000
XL-000
XL-000

Left
Right
Right
Left
Right
Right
Right
Left
Left
Right
Right
Right
Right

4154561234
4561234
1234
t5t4r4
12
12a
12a
12a
123456789
534
XM534
X8534
23

(415) 456-1234
Error - not enough characters
(415) 000-1234
T5T 4R4
0012
Error - ‘a’ doesn’t match
012a
Error - ‘a’ doesn’t match
123-456-789
XL-534
XM-534
Error - ‘8’ doesn’t match
The answer is 23.

1-22 Adding Intelligence To Your Forms

 .
 .

 .

its of
 small-

mbols.

ou
(‘0’) is
n
.
Number

Use the Number cell type to store number values. You can display numbers with up to 18 dig
precision. The largest number that you can store accurately is 999,999,999,999,999,999. The
est is -999,999,999,999,999,999.

Number Format
Like the Character cell type, you describe the format of a number cell using a sequence of sy
You can choose from a list of common number formats, or you can create your own.

When you create a number format, you type special symbols in a form that represents how y
want the number to look. Each symbol has a defined meaning. For example, the symbol zero
used as a digit placeholder. The number format ‘000’ formats any number value to produce a
equivalent number that’s at least three digits long.

Common Number Formats
Number Format Entry Informed Displays

General

000

###.##

###.00

#,###.00

123
123.309
-1523.001
0
12
1234
1.2
53.215
1.2
1500.379
1500.379
5

123
123.309
-1523.001
000
012
1234
1.2
53.22
1.20
1500.38
1,500.38
5.00

Adding Intelligence To Your Forms 1-23

 .
 .

 .

bers
ccu-
aning,

 sym-
xam-
ed

d
aren-
ive,
ts

ed
al
rt

at
dec-

ys

,
.

The ‘General’ number format is a special format that makes use of no formatting options. Num
entered using this format are displayed as typed with a maximum of nine decimal places of a
racy. Other formats consist of special characters and symbols, each of which has its own me
as described below.

Symbol Meaning

In addition to these symbols, you can also include literal characters before and after the digit
bols in a number format. A literal character appears unchanged in a formatted number. For e
ple, the number format ‘Acc. No. 0000’ would always format to the characters ‘Acc. No.’ follow
by a four digit number.

Informed Designer allows you to enter a different number format for the positive, negative, an
zero forms of a number. This feature allows you to use custom negation indicators such as p
theses or the letters ‘Dr.’ Simply separate the individual formats—in the order positive, negat
then zero—with the semi-colon symbol (;). The table below shows a variety of number forma
with examples.

Symbol Meaning

0

#

*

.

,

A digit placeholder. If a number has fewer digits than zeros in the format, Inform
Filler inserts extra zeros. If the number has more digits to the right of the decim
place than zeros in the format, Informed Filler rounds the number’s fractional pa
to the number of decimal places in the format.

A digit placeholder. This symbol follows the same rules as zero above, except th
extra zeros aren’t displayed if the number has fewer digits on either side of the
imal than there are number signs (#) in the format.

Like the zero symbol, the star (*) is a digit placeholder. However, if a digit is not
supplied for the corresponding character position in the number, Informed displa
a star (*) instead of a zero.

The decimal point. The position of this symbol in the number format determines
how many digits are displayed to the left and right of the decimal point.

Thousands separator. If this symbol appears on either side of the decimal point
Informed inserts thousands separators on that side in the formatted number.

1-24 Adding Intelligence To Your Forms

 .
 .

 .

ry in

the
 dig-
bol to

ter the
ic

our

ar that
ost
n adja-
.
Number Formats

To enter a number format, type directly in the ‘Number format’ text box, or double-click an ent
the scrolling list of common number formats.

Currency
If you want Informed to automatically add a currency indicator to a formatted number, check
‘Show currency’ checkbox. The currency symbol appears immediately to the left or right of the
its in the number depending on the standard used in your country. Informed knows which sym
use.

Auto-decimal
For floating point numbers (numbers with at least one decimal place of accuracy), you can en
decimal point yourself, or Informed can insert it for you. This option is often found on electron
calculators. It’s commonly used for entering currency values.

Using Auto-decimal

To use the auto-decimal option, click the ‘Auto-decimal’ checkbox. The person who fills out y
form can always override this feature by entering a decimal point when a number is typed.

Decimal style
You can display the decimal point of a number as the decimal point symbol, or as a vertical b
extends from the top edge to the bottom edge of the cell. Although the decimal point is the m
common choice, the vertical decimal bar is often used on table columns to line up numbers o
cent rows.

Number Format Entry Informed Displays

#,##0.00Cr;#,##0.00Dr;zero

#,##0.00;(#,##0.00);0

Acc. No. 0000
Balance due is #,##0.00;Credit is #,##0.00;Nil balance

123.45
-6251.32
0
-12345
0.00
15
15.75
-1500
0

123.45Cr
6,251.32Dr
zero
(12,345.00)
0
Acc. No. 0015
Balance due is 15.75
Credit is 1,500.00
Nil balance

Number Format Auto-decimal Entry Informed Displays

#,##0.00 No
Yes
Yes
Yes

12345
12345
10000
1234.5

12,345.00
123.45
100.00
1,234.50

Adding Intelligence To Your Forms 1-25

 .
 .

 .

 the
he
he

rtical
ar,
ute,
r more

n your

out a

 or cal-
 price
lay

he
The

elect
.

To choose a decimal style, select your choice from the ‘Display decimal as’ drop-down list.

When you choose the vertical decimal bar option, Informed Designer automatically positions
line according to the current type attributes of the cell, and the number of decimal places in t
cell’s number format. If you change any of these settings, Informed Designer will reposition t
line as necessary.

You can select a cell’s vertical decimal bar and change its appearance. Like line objects, a ve
decimal bar has pen shade, line width, and line style attributes. To select a vertical decimal b
click the line with the Pointer tool. The line will shimmer when it’s selected. To change an attrib
choose a new setting from a Style submenu, or use the Paint command in the Style menu. Fo
information about paint attributes and how to change them, see the “Paint Settings” section, i
Informed Designer Design and Graphics manual.

Displaying Zero Values
When a form is filled out with Informed Filler, values appear only when the user types in the
blanks, or when cells are calculated or filled in with default values. This is analogous to filling
form by hand or with a typewriter.

Sometimes you want to display the number zero in a cell even if a value hasn’t been entered
culated. Maybe you want to show a zero amount in the extension cell even if the quantity and
values are blank. If you check the ‘Show zero when blank’ checkbox, Informed Filler will disp
the zero value when the cell is empty.

Testing Your Number Format
You can test your number format before you dismiss the Format dialog box. After you enter t
number format and choose your options, enter a sample number in the ‘Test value’ text box.
formatted number is shown under the ‘Formatted value’ heading.

Note When you use the vertical bar option, number values are always right aligned, even if you s
center or left alignment.

1-26 Adding Intelligence To Your Forms

 .
 .

 .

er

ames

me, a
lowed.
 also
nd suf-

her the
posi-
t the

parts
 cell,
 to
his
.
If you enter an invalid number format or test value, Informed Designer will clear the formatted
value. If you click ‘OK’ to dismiss the Format dialog box and an error is detected in the numb
format, you’ll be alerted with a message.

Name

If a cell will contain a person’s name, use the Name cell type. The Name cell type displays n
using a format that you define.

A name has up to five parts: a prefix (such as Mister or Professor), a first name, a middle na
last name, and a suffix (such as Junior). Multiple prefixes, middle names, and suffixes are al
You can display a part in long or abbreviated form, or you can hide a part altogether. You can
display the surname before all other parts, or in its usual position between the middle name a
fix.

Check the name parts that you want to include in the name format. For those parts, select eit
long or abbreviated form by clicking the appropriate radio button. Then choose the surname
tion by clicking either of the ‘First’ or ‘Last’ radio buttons. The sample name changes to reflec
format that you choose.

When the users fill out a name cell, Informed Filler will match the parts that they type with the
in the name format. If the user types a name in a format that’s different from the format of the
Informed Filler will automatically change what they type to match the correct format. In order
correctly identify the parts of a name, Informed Filler refers to a list of prefixes and suffixes. T
list can be found in Appendix A.

Adding Intelligence To Your Forms 1-27

 .
 .

 .

BC and
ample,
For

g spe-
ol
.

Date

Use the Date cell type to store date values. You can store any date between roughly 30,000
30,000 AD. Date cells can be used in formulas and in functions that manipulate dates. For ex
the AddDays function adds a certain number of days to an old date to calculate a new date.
information about formulas and functions, see Chapters 9 and 10.

You can display date values in any format you like. You describe the format of a date by typin
cial symbols in a form that represents how you want the date to look. For example, the symb
‘MONTH’ represents the month spelled in capital letters (for example ‘JANUARY’).

Common Date Formats

* Missing parts are filled in using today’s date.

Date Format Entry Informed Displays

M/D/YY

MM/DD/YYYY
MON-D-YY

Month D, YYYY
Mon. D/YY
Dy, Mon D, YYYY
MON-D-YYYY AD
MONTH, YY
MMDDYY

Jan 14 96
15/08/96
1*
3/9/89
2/17/92
June 3 90
3/15/88
9/21/91
111891
2/14/520 bc
7/78
10/2/90

1/14/96
8/15/96
1/1/96
03/09/1989
FEB-17-92
JUN-3-90
March 15, 1988
Sep. 21/91
Sun, Nov 18, 1991
FEB-14-520 BC
July, 78
100290

1-28 Adding Intelligence To Your Forms

 .
 .

 .
 create
at. The

u can

nd dis-
ate

,’
date

e

ist, or
date

.

.
A date has four components: the day of week, the day of month, the month, and the year. You
a date format by combining symbols that represent these components in any order and form
following table describes each symbol.

Symbol Meaning

When you combine two date components, you separate them with a separator character. Yo
use the slash (/), comma (,), space (), decimal (.), or dash (-) separator characters.

When the user types a date value, Informed Filler interprets the different date components a
plays them using the format of the date cell. If you don’t type a component that’s part of the d
format, Informed Filler inserts the corresponding component of today’s date. For example, if
today’s date is February 15th, 1996, and you type the value ‘1’ using the date format ‘M/D/YY
Informed Filler will display ‘2/1/96.’ The current month and year are inserted to complete the
value.

When you use a date format with a four-digit year (YYYY), Informed Filler will always fill in th
current century if you enter a two digit year.

You can choose one of the common date formats by double-clicking an entry in the scrolling l
you can create your own format by typing in the ‘Date format’ text box. If you enter an invalid
format, Informed Designer will alert you with a message.

Symbol Meaning

D
DD or 0D
M
MM or 0M
Month
MONTH
month
Mon
MON
mon
YY
YYYY
Day
DAY
day
Dy
DY
dy
AD or BC
ad or bc

The day of month without a leading zero (1 - 31).
The day of month with a leading zero (01 - 31).
The month of year without a leading zero (1 - 12).
The month of year with a leading zero (01 - 12).
The month of year spelled with the first letter capitalized (January - December)
The month of year spelled in capital letters (JANUARY - DECEMBER).
The month of year spelled in small letters (january - december).
The abbreviated month of year with the first letter capitalized (Jan - Dec).
The abbreviated month of year in capital letters (JAN - DEC).
The abbreviated month of year in small letters (jan - dec).
The year displayed as a two-digit number.
The year displayed as a four-digit number.
The day of week spelled with the first letter capitalized (Sunday - Saturday).
The day of week spelled in capital letters (SUNDAY - SATURDAY).
The day of week spelled in small letters (sunday - saturday).
The abbreviated day of week with the first letter capitalized (Sun - Sat).
The abbreviated day of week in capital letters (SUN - SAT).
The abbreviated day of week in small letters (sun - sat).
The abbreviated era in capital letters.
The abbreviated era in small letters.

Adding Intelligence To Your Forms 1-29

 .
 .

 .

ate
te is

n

 it rep-
e time
e to

 spe-
ol
time
.

Testing Your Date Format
You can test your date format before you dismiss the Format dialog box. After you type the d
format that you want, enter a sample date value in the ‘Test value’ text box. The formatted da
shown under the ‘Formatted value’ heading. If you enter an either an invalid date format or a
invalid sample value, Informed Designer will clear the formatted value.

Time

Use the Time cell type to store time values. A time value can range from 0:00:00 to 23:59:59;
resents the time of day. Time cells can be used in formulas and with functions that manipulat
values. For example, the function ADDMINUTE adds a certain number of minutes to an old tim
calculate a new time. For information about formulas and functions, see Chapters 9 and 10.

You can display time values in any format you like. You describe the format of a time by typing
cial symbols in a form that represents how you want the time to look. For example, the symb
‘HH’ represents the hour of day in 12 hour format. The following table shows some common
formats.

1-30 Adding Intelligence To Your Forms

 .
 .

 .

r. You
d for-

r. You

com-
nent
 ‘8’

st, or
ime
.
Common Time Formats

* Missing parts are filled in with zero.

A time value has four components: the hour, the minute, the second, and the AM/PM indicato
create a time format by combining symbols that represent these components in any order an
mat. The table below describes each symbol.

Symbol Meaning

When you combine two time components, you must separate them with a separator characte
can use the colon (:), decimal (.), or space () separator characters.

When the Informed Filler user types a time value, Informed Filler interprets the different time
ponents and displays them using the format of the time cell. If the user doesn’t type a compo
that’s part of the time format, Informed Filler inserts a zero for them. For example, if they type
using the time format ‘HH:MM,’ Informed Filler will display ‘08:00.’

You can choose one of the common time formats by double-clicking an entry in the scrolling li
you can create your own format by typing in the ‘Time format’ text box. If you enter an invalid t
format, Informed Designer will alert you with a message.

Time Format Entry Informed Displays

HH:MM

H:MM
HH MM SS
H24:MM

H:MM:SS PM

M:SS

5 34
5:34:15
5*
5:34
17:3:23
3:14
3:14 PM
9 45
3:10 AM
14:50
09:40

05:34
05:34
05:00
5:34
5 03 23
3:14
15:14
9:45:00 AM
3:10:00 AM
2:50:00 PM
9:40

Symbol Meaning

H
HH or 0H
H24
HH24 or 0H24
M
MM or 0M
S
SS or 0S
AM or PM
am or pm

The hour in 12 hour form without a leading zero (1 - 12).
The hour in 12 hour form with a leading zero (01 - 12).
The hour in 24 hour form without a leading zero (1 - 23).
The hour in 24 hour form with a leading zero (01 - 23).
The minute without a leading zero (1 - 59).
The minute with a leading zero (01 - 59).
The second without a leading zero (1 - 59).
The second with a leading zero (01 - 59).
Include the AM/PM indicator in capital letters.
Include the AM/PM indicator in small letters.

Adding Intelligence To Your Forms 1-31

 .
 .

 .

me
e is
alid

olean

rs
e,

g.

ool-
e
.

Testing Your Time Format
You can test your time format before you dismiss the Format dialog box. After you type the ti
format that you want, enter a sample time value in the ‘Test value’ text box. The formatted tim
shown under the Formatted Value heading. If you enter either an invalid time format or an inv
sample value, Informed Designer will clear the formatted value.

Boolean

The Boolean cell type stores values that are True or False. You can display the value of a bo
cell as ‘Yes’ or ‘No,’ ‘True’ or ‘False,’ or ‘On’ or ‘Off.’

With the Boolean cell type, Informed Filler will ensure that the person filling out the form ente
only the values that are appropriate for the selected style. If the user types only part of a valu
Informed Filler will convert it to its full form. For example, if they type the letter ‘n’ while using
the Yes/No style, Informed Filler will convert the value and display ‘No.’

To choose a boolean format, click one of the radio buttons under the ‘Boolean format’ headin

Note The Boolean cell type is appropriate for use with Informed’s checkbox feature since, like B
ean cells, a checkbox can represent one of two values. For information on checkboxes, se
“Checkboxes” in Chapter 7 of your Informed Designer Design and Graphics manual.

1-32 Adding Intelligence To Your Forms

 .
 .

 .

any

nu, or

),

ew
tory

tself.
age
d, the
.
Picture

The Picture cell type allows you to reserve space on your form for pictures. A picture can be
image created with virtually any drawing program. When filling out a form, instead of typing a
value in a picture cell, the user pastes an image using the Paste command from the Edit me
imports a picture using the Insert File command from the Cell menu.

Informed Filler supports the following picture formats in picture cells: Windows Bitmap (.BMP
Windows Metafile (.WMF), Macintosh PICT (.PCT), and Encapsulated PostScript (.EPS).

The Windows Metafile format is not supported on the Mac OS.

By using a picture cell, the person filling out your form can enter a different picture on each n
completed form. For example, on your inventory form you could store a picture of each inven
item.

Often the size of the picture that’s pasted into a picture cell is larger than the size of the cell i
Informed Designer allows you to resize or crop the image so that it fits in the cell. When an im
is cropped, the area that doesn’t fit in the cell is hidden. If you choose the resize option instea
image is reduced proportionally to a size that fits completely in the cell.

Note Unlike cells of other types, you can’t index picture cells. See “Indexing Cells” later in this
chapter for more information.

Adding Intelligence To Your Forms 1-33

 .
 .

 .

ell to
ell is
d
 com-

r by

 elec-
, or
n the
ase

 to
s of
splay

eption

lly see
 find
.

When a form is filled out with Informed Filler, pressing the Tab key moves the user from one c
the next. When they move to a picture cell, the frame of the cell flashes to indicate that the c
currently active. When the Informed Filler user chooses the Insert File command, the standar
Open dialog box appears, prompting to select a file. As a shortcut to choosing the Insert File
mand, the user can select the picture cell and press Enter (Windows) or Return (Mac OS).

While a picture cell is active, the user can clear it by pressing the Backspace or Delete key, o
choosing the Clear command in the Edit menu.

Signature

The Signature cell type allows you to create a cell that can be used to sign the data on forms
tronically with digital signatures. Each signature cell can be configured to sign the entire form
parts of the form. Although the signature cell is created in Informed Designer, you actually sig
form in Informed Filler. For a detailed discussion of the signature capabilities of Informed, ple
see Chapter 2, “Using Digital Signatures” and Chapter 7 “Authorizing Templates.”

Indexes
Each time a form is filled out with Informed Filler, the information that the user types is added
the data document’s database of records. A data document can contain potentially thousand
records. Informed Filler’s Find command lets you search through the database to find and di
particular records.

Each cell that you create on a form (by drawing fields and tables) can be indexed with the exc
of signature cells and picture cells. An index is a pre-sorted list of cell values that Informed Filler
maintains automatically as you add, remove, and change records. Although you never actua
an index, you can certainly notice its effect when you use Informed Filler’s Find command to
forms.

Indexes

Original

Cropped

Resized

1-34 Adding Intelligence To Your Forms

 .
 .

 .

r data
 Filler
arch-

ells)
rs.

llow-

type
values
orm. If
.
If a cell is indexed, Informed Filler can search quickly through thousands of records to find a
matching value. Depending on the speed of your computer and the number of records in you
document, searching can be as fast as one or two seconds. If a cell is not indexed, Informed
has to examine the cell value on each record individually in order to find those that match. Se
ing can take considerably longer if the cell is not indexed.

Indexing a Cell

You index a cell by clicking the ‘Indexed’ checkbox on the Cell dialog box. Select the cell (or c
that you want to index, then choose the Cell... from the Settings menu. The Cell dialog box appea

Click the ‘Indexed’ checkbox, then click ‘OK’ to dismiss the Cell dialog box.

With the exception of picture and signature cells, you can index any cell on your form. The fo
ing table describes how values of each different cell type are indexed.

Indexing Cells

It’s important that you choose the correct cell type for the indexed cells on your form. A cell’s
determines not only the type of information that the cell can store, but also the order that cell
are sorted. For example, suppose that a cell called ‘Date’ stores the ship date on an invoice f

Cell Type Index Method

text
character
name
number
date or time
boolean

Each word is indexed separately
The entire character value is indexed
Each name part is indexed
The numeric value is indexed
The date or time value is indexed
The boolean value is indexed

Click the ‘Indexed’ checkbox
to index the selected cell.

Adding Intelligence To Your Forms 1-35

 .
 .

 .

, the

e each
ove,
 those

s a per-

ount
u can

o pro-
func-
ic to
func-
.

the cell’s type is Text, cell values would be sorted alphabetically. By using a date cell instead
cell would be sorted chronologically rather than alphabetically.

When you create a form, care must be taken to properly select which cells are indexed. Sinc
index adds to the size of your document and affects how quickly Informed Filler can add, rem
and change records, you shouldn’t overuse indexes. As a general rule, you should index only
cells that are intended to be used commonly for searching. They usually include cells such a
son’s name, or the identification number of a form (the invoice number, for example).

Calculations
Often a cell gets its value by manipulating other information on a form. For example, the disc
amount on a sales slip is calculated as the discount rate times the total purchase amount. Yo
use a calculation so that the value is filled in automatically for the Informed Filler user.

In addition to mathematical calculations, you can also manipulate other types of information t
duce a calculated result. Informed Designer provides a comprehensive set of operators and
tions that make it easy to create sophisticated calculations. You can even use if-then-else log
calculate different results under certain conditions. For detailed information on formulas and
tions, see Chapters 9 and 10 respectively.

To create a calculation, first select the cell that you want to calculate, then choose Value... from the
Settings menu. The Value dialog appears.

Calculations

Calculate the discount amount as:
‘Sub Total * Discount Rate’

1-36 Adding Intelligence To Your Forms

 .
 .

 .
n
ner

es
e cells

r for-

ing to
ould be
nt to

, the
), the
, see

, if a
 type
sult
ing

 the
ed in

a text
rmu-
any of
at the
.
You create a calculation by typing a formula in the formula text box. First select the calculatio
option by choosing ‘Calculation’ from the ‘Type’ drop-down list. As a shortcut, Informed Desig
will automatically select the ‘Calculation’ type when you type the first character of a formula.

A formula is like a mathematical equation. You combine operators and functions with cell nam
and constants to produce a new result. For example, to create a calculation that multiplies th
‘Sub Total’ and ‘Discount Percentage,’ you would enter this formula:

Sub Total * Discount Percentage

This formula uses the multiplication operator (*) to return the product of the two values. Othe
mulas could use additional operators and any of Informed’s powerful functions.

Suppose that instead of entering the discount rate, you would like to calculate its value accord
the total purchase amount. If the total purchase amount is less than $50, the discount rate sh
0.05 (5%). Otherwise, the rate should be 0.15 (15%). The formula below uses the IF stateme
calculate the correct value.

If Sub Total < 50 Then
 0.05
Else
 0.15
End

The first line of the formula checks the value of the ‘Sub Total’ cell. If its value is less than 50
result of the formula is 0.05. If its value is not less than 50 (that is, greater than or equal to 50
result of the formula is 0.15 instead. For a complete discussion about formulas and functions
Chapters 9 and 10.

The result of a calculation formula should match the type of the cell that it sets. For example
cell’s calculation formula adds two numbers, the cell’s type should be number. If the resulting
of a calculation is different than the cell’s type, Informed will try to automatically convert the re
to the cell’s type. For more information, see the “Type Compatibility” section in Chapter 9, “Us
Formulas.”

You can use the ‘Display only’ feature to prevent someone filling out your form from changing
value of a calculated cell. This feature is also available on the Cell dialog box, and is describ
detail in the “Entry Options” section of this chapter.

Entering a Calculation Formula

As described earlier in this section, you create a calculation by typing a formula in the formul
box on the Value dialog box. Informed Designer makes it easy to enter complex, error-free fo
las. Instead of typing cell names, functions, and operators, you can double-click any entry in
the corresponding scrolling lists on the Value dialog box. The entry is inserted in the formula

Adding Intelligence To Your Forms 1-37

 .
 .

 .

tab

ill
hile
ithin

ou

ia-
or-
the error.

a
 a dif-
 default

rent
pe
.

current insertion point. You can move between the scrolling lists by pressing Tab. When you
into a list, a bold frame appears around it to show that it’s selected.

If you double-click to enter a function that has one or more parameters, Informed Designer w
automatically position the insertion point at the first parameter. If you double-click a function w
holding down the Alt (Windows) or Option (Mac OS) key, the parameter names are included w
parentheses.

You can also enter a cell’s name by clicking the cell in the drawing window. This is useful if y
don’t know the name of the cell, but you can see it in the drawing window.

If you click the checkmark button while entering a formula, or if you click ‘OK’ to dismiss the d
log box, Informed Designer will check to make sure that the formula is valid. The formula is f
matted properly, and if any errors are detected, a message appears describing the nature of

Default Values
A default value is a value that Informed Filler automatically fills in each time the user fills out
new form. However, unlike calculations, a default value doesn’t change unless the user types
ferent value. Use a default value whenever a cell often has the same value. For example, the
value for the date cell on an invoice could be today’s date.

There are three different types of default values. They are:

■ creation date

■ creation time

■ constant value

‘Creation date’ and ‘Creation time’ default value types are used for automatic entry of the cur
date or time when the Informed Filler user fills out a new form. The ‘Constant value’ default ty
requires that you specify the default value itself.

Default Values

Place the insertion point at
the proper location...

...double click an entry in
one of the scrolling lists...

...the entry appears
in the formula.

1-38 Adding Intelligence To Your Forms

 .
 .

 .
oose
,’ or

ult

 For
lt value.

 on

rm is
.
To create a default value, first select the cell that you want to have the default value, then ch
Value... from the Settings menu. On the Value dialog box, select ‘Creation date,’ ‘Creation time
‘Constant value’ from the ‘Type’ drop-down list.

When you select the “Constant value” type, a text box appears allowing you to enter the defa
value.

The default value that you enter should be appropriate for the type of cell to which it applies.
example, if the default value applies to a number cell, be sure to enter a number as the defau

After selecting the default type and, for constant values, entering the default value, click ‘OK’
the Value dialog box. To cancel the Value command, click ‘Cancel’ instead.

Note The values of cells that are checkboxes automatically default to unchecked when a new fo
filled out. To specify the “checked” default value, enter “True,” “Yes,” or “On.”

Adding Intelligence To Your Forms 1-39

 .
 .

 .

identifi-
igner

r any
’
r each

 next
 appli-
 from’

her
-ins
.

Auto-incrementing Numbers
Forms such as invoices, time sheets, and purchase orders are often numbered uniquely for
cation purposes. Each time a new form is filled out, a new number is assigned. Informed Des
provides a number of ways to automatically generate these numbers.

Other sections of this chapter explain how you can specify calculations and default values fo
cell using Informed Designer’s Value command. By selecting ‘Auto-increment’ from the ‘Type
drop-down list on the Value dialog box, you can configure a cell to be assigned a new numbe
time the Informed Filler user fills out a new form.

There are several different methods with which Informed Filler can obtain new numbers. The
available number can be stored in the form template itself, or it can be obtained from another
cation or data source. You choose a method by selecting a choice from the ‘Assign next value
drop-down list.

The first two options, ‘This template’ and ‘Apple event application,’ are built into Informed
Designer and Informed Filler. The ‘Apple event’ option is available only on the Mac OS. All ot
options correspond to the data access plug-ins that you have installed in your Informed plug
folder.

Auto-incrementing Numbers

1-40 Adding Intelligence To Your Forms

 .
 .

 .
er
mber
e
lly

es

from
red

 a
y 1
alue in

ber
 is to
on
lues
nt

g the
 can

uest
ing

at
e
com-
.
Informed Filler’s Cell menu contains the Assign Next Value command. The Informed Filler us
can select an auto-incrementing cell and choose this command to manually obtain a new nu
and enter it in the cell. If you choose the ‘New record is added’ option from the ‘Get next valu
when’ drop-down list on Informed Designer’s Value dialog box, Informed Filler will automatica
enter the next available number when the user adds a new record.

Storing the Number in the Form Template

With the ‘Assign next value from’ drop-down list set to ‘This template,’ Informed Designer stor
the next available number in the form template document itself.

Each time Informed Filler assigns a new number to a cell, the next available number is read
the form template document and entered in the cell. The number is then incremented and sto
back in the form document.

To set the next available number, enter a value in the ‘Next value’ text box. This value can be
number or an alpha-numeric value. By default, Informed Filler will increment the next value b
each time a number is assigned. You can change the increment amount by typing a different v
the ‘Increment’ text box.

If your form will be used by more than one person, you might want to prevent the same num
from being assigned to two different forms filled out by two different users. One way to do this
link the auto-incrementing cell to a database or application that can act as a central distributi
point for new numbers. Alternatively, you might consider combining the number with other va
on the form (the user’s employee number, for example), to ensure uniqueness among differe
users.

Linking to Apple Event Applications

An Apple event aware application is an application that can send and receive messages usin
Apple event capability of the Mac OS operating system. Two Apple event aware applications
communicate with each other using this method.

Informed Filler can use Apple events to communicate with another application in order to req
and obtain new values for auto-incrementing cells. However, only certain applications, includ

Note If the user of your form is often mobile and not connected to the application or database th
supplies new numbers, the ‘Manually only’ setting might be more appropriate. That way, th
Informed Filler user can choose to assign numbers manually using the Assign Next Value
mand, and do so only when a connection is active.

Adding Intelligence To Your Forms 1-41

 .
 .

 .

an
, this
ver-
r 11,

ppli-

e

k

t
u must
ose

st
.

Informed Number Server and 4th DIMENSION by ACIUS (using the Informed 4D External) c
understand the specific Apple events that Informed Filler uses to communicate. Furthermore
method of linking is available only on Mac OS compatible computers using system software
sion 7.0 or later. For detailed information about Informed Number Server, please see Chapte
“Using Informed Number Server.”

With the ‘Assign next value from’ option set to ‘Apple event application,’ you can choose an a
cation to link the selected cell to.

To select an application, click the ‘Choose Application’ button. Informed Designer displays th
Program Linking dialog box.

Choose the computer that’s running the application, then select the application itself and clic
‘OK.’ The name of the application will appear next to the ‘Choose Application’ button.

Since a single application—such as Informed Number Server—can generate several differen
sequences of numbers (for example, one for invoices, one for purchase orders, and so on), yo
specify which particular number to link the auto-incrementing cell to. To do this, click the ‘Cho
Table’ button. (In database terminology, a file of information is often referred to as a table.)

Note Before you can link an auto-incrementing cell to an Apple event aware application, you mu
run the application and open the correct database or data file.

1-42 Adding Intelligence To Your Forms

 .
 .

 .

 one
ch table
e then

Table’

 link
y an
ed to
e the

ith

rs

 uses
 this
nt
 to
.

Most applications—like Informed Number Server—act like a single DBMS and offer access to
or more databases. When you select a database, the third list shows the available tables. Ea
delivers a corresponding sequence of numbers. Select the appropriate table (or number) nam
click ‘OK.’ The names of the DBMS, the database, and the table appear next to the ‘Choose
button.

Errors While Testing or Filling Out Forms
Although Informed Designer can check to make sure that you don’t make mistakes when you
an auto-incrementing cell to an Apple event aware application, there are several reasons wh
auto-increment can fail to work properly. For example, suppose that an auto-increment is link
a particular application, and that application is not running on the correct computer. Or mayb
application doesn’t have the correct database or data file open.

Errors can occur when you test a form with Informed Designer or when forms are filled out w
Informed Filler. There are three basic types of errors.

■ The application to which an auto-incrementing cell is linked cannot be found.

■ The application to which an auto-incrementing cell is linked is available, but an error occu
while requesting the next value.

■ System 7 (or later) is not running but is required in order for the auto-increment to work.

It’s normal to expect the ‘application not found’ message in certain situations. Since Informed
the name of the computer to find the application to which an auto-incrementing cell is linked,
error will occur if you change the computer’s name, or if you move the application to a differe
computer with a different name. You’ll see an error message the first time Informed attempts
obtain the next value for the auto-incrementing cell.

Adding Intelligence To Your Forms 1-43

 .
 .

 .

the

nk

at
ed.

m that
urred.
 from
er,

o fix
ow

are
or

nd data
 com-
na to
 new

to a
.

The message dialog box contains the ‘Look,’ ‘Skip,’ and ‘Disable’ buttons. You can try to find
required application by clicking the ‘Look’ button. You’ll see the Program Linking dialog box
shown earlier. If you successfully find the correct application, Informed will automatically re-li
the auto-incrementing cell before continuing. If you click ‘Skip’ or ‘Disable,’ the link will be
ignored and no attempt will be made to find the missing application. ‘Skip’ ignores the link th
time only which means the error message will appear the next time a new number is request
Clicking ‘Disable’ ignores the link until the next time the form template document is opened.

The second type of error can occur when the required application is available but an error fro
application is detected. The application may provide information about the error that has occ
For example, if you’ve configured an auto-incrementing cell to obtain the next invoice number
Informed Number Server, but Informed Number Server is unable to find the requested numb
you’ll see this error message:

If you click the ‘Retry’ button, Informed Filler will attempt to request the next value again. This
option is useful if the application is running on a different computer since you might be able t
the problem there and then continue. As explained earlier, the ‘Skip’ and ‘Disable’ options all
you to ignore the error. Clicking ‘Skip’ ignores the error one time only, whereas the ‘Disable’
option ignores the error until the next time the form document is opened.

The third type of error will occur if you’re not running System 7. Auto-incrementing cells that
linked to Apple event aware applications work only if you’re using system software version 7
later, of the Mac OS operating system.

Linking to Other Data Sources

Informed’s data access plug-ins are designed to allow access to a wide range of databases a
sources. They include support for many of the standard desktop database formats as well as
mon SQL databases such as Oracle and Sybase. Informed’s plug-in architecture allows Sha
continually develop new plug-ins and update existing plug-ins to support new databases and
standards in data access.

When you choose an item from the ‘Assign next value from’ drop-down list that corresponds
data access plug-in, a ‘Configure’ button appears on the Value dialog box.

1-44 Adding Intelligence To Your Forms

 .
 .

 .

tion
tion

cific
sist of a
n is

ec-
.

Clicking ‘Configure’ displays a configuration dialog box that allows you to specify the connec
information and data source-specific instructions for the selected data source. The configura
dialog box for the Oracle data access plug-in is shown below.

With most databases, it is necessary to provide connection information in addition to the spe
instructions that are to be carried out by the data source. Connection parameters usually con
user ID, a password, and information that identifies the data source or server. This informatio
specific to the data source that you’re linking to and is specified by clicking the ‘Define Conn
tion’ button.

Adding Intelligence To Your Forms 1-45

 .
 .

 .

ect
nk.

 user

figured

be
ac
ed

u to
or the

urce
se or
.

If you enter all necessary connection parameters here, Informed Filler will automatically conn
for the user when a new value is requested. You can, however, leave optional parameters bla
Leaving a parameter, such as the user ID or password, blank means that the Informed Filler
will be requested to enter this information when a new value is requested.

The details of connecting to a data source are the same regardless of whether the link is con
for an auto-incrementing cell, a lookup, or for submitting a completed form. The details of the
Define Connection dialog box as well as other relevant data source-specific information can
found in the on-line document “DGRPLG.PDF” (Windows) or “Informed Designer Plug-ins” (M
OS). This document is automatically installed when you install Informed Designer and is view
using Acrobat Reader (also included with Informed Designer).

Once you’ve defined the connection to the data source, a large text box appears allowing yo
enter the appropriate instructions for obtaining and incrementing the next available number f
auto-incrementing cell.

Note Before you can configure an auto-incrementing cell to an external data source, the data so
(a dBase file, for example) must already exist. Informed Designer will not create the databa
data source for you.

1-46 Adding Intelligence To Your Forms

 .
 .

 .

ample,
le’s

 that
he next
ing a
enti-
e

le
umber

, and 3,
n are

 For
f an

 the
-
iple

ble
.

The text that you enter is specific to the type of data source that you are connecting to. For ex
if you’re connecting to an Oracle database, you’ll enter SQL statements that conform to Orac
syntax.

Regardless of which type of data source you’re connecting to, the statements or instructions
you enter should instruct the data source to return and increment a single value, that being t
available number for the auto-incrementing cell. That value is then placed in the cell by includ
return locator following the data source-specific instructions. A return locator is a means of id
fying one of potentially many return values, along with the cell on the form into which the valu
should be placed.

A return locator is specified as the name of a cell enclosed within double less-than and doub
greater-than characters. The cell name is preceded by a number and the “@” symbol. The n
identifies the return value and the cell name identifies the cell into which the value should be
placed. If, for example, the data source returns three values, you would use the numbers 1, 2
respectively, to identify those values. Since the instructions for an auto-increment configuratio
intended to return a single value, the number preceding the “@” symbol will most often be 1.
example, the statements below instruct an Oracle server to return and increment the value o
Oracle sequence number named ‘po_num.’

select po_num.nextval from dual;
<<1@PONumber>>

The ‘select’ statement returns a single result. The return locator “<<1@PONumber>>” places
return value in the cell named “PONumber.” Although uncommon, the instructions for an auto
incrementing cell can return multiple values if desired. By using multiple return locators, mult
return values can be placed in multiple different cells on the form.

If you want to include a cell’s value in the instructions, simply enter the cell’s name within dou
less-than and double greater-than characters.

Adding Intelligence To Your Forms 1-47

 .
 .

 .

h the
e from
re-
atabase
ng
t be dif-

ting
S

ns, the
This

re the
ail-

e
e the
d

med

tform,
rsion

her
stem
L data-

ed to
 helps
.

Configuring for Multiple Platforms

Many of the databases and data sources that Informed can link with are accessible from bot
Windows and Mac OS platforms. However, the details of accessing a database or data sourc
each of the platforms might be different. For example, suppose that you’re linking an auto-inc
menting cell to an Oracle database. For Mac OS users, you might be accessing the Oracle d
using the Mac OS Oracle client software (SQL*NET), whereas on Windows you might be usi
ODBC instead. The specific parameters needed to connect to the database, therefore, migh
ferent depending on which platform the Informed Filler user is using.

Since the ‘Apple event’ option is available only on the Mac OS, the linking of an auto-incremen
cell to an Apple event-aware application takes effect only for Informed Filler users with Mac O
compatible computers. For accessing databases or data sources through data access plug-i
dialog box for configuring an auto-incrementing cell contains a drop-down list with the items ‘
platform’ and ‘All platforms.’

For each different data access plug-in, Informed Designer knows if the configuration details a
same or different for the two platforms. If they’re the same, the ‘All platforms’ option will be av
able and the auto-incrementing cell you configure on one platform will function on both.

If the configuration details are different for each platform, ‘This platform’ will be the only choic
available in the drop-down list. For accessing these types of databases, you have to configur
auto-incrementing cell on one platform, then move the form template to the other platform an
repeat the configuration. Informed Designer stores the configuration for both platforms. Infor
Filler uses the configuration that corresponds to the user’s platform.

Although it may be necessary to configure an auto-incrementing cell twice, once on each pla
the resulting form template document is still a platform neutral document. That is, a single ve
of the template will work with Informed Filler on both platforms. Informed Filler automatically
uses the configuration information that’s appropriate for the user’s platform.

Using Lookups
Lookups are an important time saving feature. Information that exists on other forms, or in ot
databases or information systems can be looked up as forms are filled out. An information sy
can range anywhere from a small desktop database, to a high capacity, high performance SQ
base running on a mainframe. By using lookups, you reduce the amount of data entry requir
complete a form. This increases the productivity of Informed Filler users, reduces errors, and
to ensure that the information entered is current.

Using Lookups

1-48 Adding Intelligence To Your Forms

 .
 .

 .
ation.
nt

nts
ail-
at you

xam-
um-

e

e
g box.

ialog
pter.
.
There are several different methods with which Informed Filler can access and look up inform
Informed Designer’s Lookup dialog box contains a drop-down list that lists each of the differe
methods.

The ‘Data Document’ connection type allows you to look up information in other data docume
containing data for other forms. The ‘Apple events’ and ‘AppleScript’ connection types are av
able only on the Mac OS. All other connection types correspond to the data access plug-ins th
have installed in your plug-ins folder.

How it Works

Lookups are configured for individual cells that contain the information to be looked up. For e
ple, if you want Informed Filler to look up inventory information when the user enters a part n
ber on an invoice form, you’d configure the cell that contains the part number to perform the
lookup. This cell is called the lookup cell. While filling out forms with Informed Filler, typing a
part number would trigger the lookup and, in turn, fill in the related inventory information in th
appropriate cells on the form.

Configuring a lookup is a three step procedure:

■ Select the lookup cell and choose the Lookup command

■ Choose the connection type

■ Specify the configuration details

The Lookup dialog box contains controls for selecting the connection type and configuring th
lookup. Select the lookup cell then choose the Lookup command to display the Lookup dialo

As a shortcut, you can also click the Lookup button on the Cell palette to display the Lookup d
box. For more information about the Cell palette, see “Using the Cell Palette” later in this cha

Adding Intelligence To Your Forms 1-49

 .
 .

 .

 will
ple-

ys-

r plug-

tem

ion
nt’
ple-

o
differ-

 way,
ing.

 titled

ect a
en the
ct and
 your

 to

match
l on a
he
match
.

The ‘Connection type’ drop-down list contains a list of all available connection types. This list
always include ‘Data document’ and, on the Mac OS, ‘Apple events’ and ‘AppleScript.’ The Ap
Script option is available only if AppleScript is installed and active (AppleScript comes with S
tem 7.5 or later).

Other connection types correspond to the data access plug-ins that you have installed in you
ins folder. They might include ‘Oracle,’ ‘Sybase,’ ‘ODBC,’ as well as others.

The first connection type is ‘No Lookup.’ To clear a previously configured lookup, select this i
then click ‘OK’ on the Lookup dialog box.

When you select a connection type, the Lookup dialog box changes to display the configurat
controls and settings appropriate for that type of connection. For example, the ‘Data docume
connection type has controls for selecting a data document and linking cells, whereas the Ap
Script option allows you to select a script.

Once you’ve selected the connection type and specified all configuration settings, click ‘OK’ t
save the lookup settings. The following sections describe the procedures for configuring the
ent types of lookups.

Data Document Lookups

Information can be looked up in data documents containing information for other forms. That
information that has already been entered on a different form can be looked up to avoid retyp

With the ‘Data Document’ connection type selected, the Lookup dialog box contains a button
‘Choose Data Document.’

Clicking ‘Choose Data Document’ displays the standard Open dialog box allowing you to sel
data document. The document that you select is the one in which information is looked up wh
lookup is performed. Informed Designer reads the list of cells in the data document you sele
displays them in a list labelled ‘Remote data.’ A second list contains the names of the cells on
form template. With a data document selected, the ‘Choose Data Document’ button changes
‘Clear Lookup.’ You can click this button to clear the linking information.

When the user enters a value in the lookup cell, Informed Filler searches for that value in the
cell in the data document. For example, you might enter an invoice number in the lookup cel
packing slip to look up common information in a corresponding invoice form and enter it on t
packing slip. The invoice number cell in the invoice data document would be selected as the

1-50 Adding Intelligence To Your Forms

 .
 .

 .
he

xt to

p into
okup

u
cu-

at no

u use
u-
, the
 two

 opti-
ore
.
cell. Choose the match cell by first clicking the ‘Choose Match Cell’ button. A list containing t
cells in the remote data document appears.

Select the appropriate cell in the list then click ‘OK.’ The name of the match cell will appear ne
the ‘Choose Match Cell’ button on the Lookup dialog box.

The match cell in the lookup data document must be a field cell. You cannot perform a looku
a table cell. When a lookup is performed, Informed Filler searches through all records in the lo
data document comparing the value entered on the form with that of the match cell.

The ‘If no match’ drop-down list contains two options. The option you choose determines how
Informed Filler will function if the search for a lookup value fails. If you choose the ‘Use next
value’ option, Informed Filler will use the next higher value in the lookup data document. If yo
choose the ‘Do not lookup’ option, Informed Filler won’t copy any cell values from the data do
ment and will instead clear the linked cells on the form and display a dialog box indicating th
match was found.

The lower section of the Lookup dialog box contains two lists separated by three buttons. Yo
these lists to link cells on the form (under ‘Cells to replace on form’) with cells in the data doc
ment in which the lookup is performed (under ‘Remote data’). When the lookup is performed
linked cells are filled with the corresponding values of the cells in the data document. You link
cells by clicking one in each of the two lists, then clicking the ‘Link’ button.

Note The time that it takes Informed Filler to perform a lookup varies depending on how many
records are in the lookup data document and whether or not the match cell is indexed. For
mal performance, be sure to index the match cell. See “Indexes” earlier in this chapter for m
information.

Adding Intelligence To Your Forms 1-51

 .
 .

 .

th an
k.’

com-
ns—
to

tions.
nts
r-

nnect
n-

gure
ing
.

To indicate that two cells are linked, Informed Designer shows the remote cell in the left list wi
arrow pointing to the cell on the form. To unlink a cell, select it in the left list, then click ‘Unlin
Clicking the ‘Unlink All’ button unlinks all cells.

Apple Event Lookups

Apple events is an IAC (inter-application communications) capability that’s available only on
puters running version 7.0 or later of the Mac OS. Apple events allows two different applicatio
either on the same computer or on two different computers connected to the same network—
communicate directly with each other.

The ‘Apple events’ connection type is used to link lookups to other Apple event aware applica
Linking, however, works only with applications that understand the specific type of Apple eve
that Informed uses to communicate. 4th DIMENSION by ACIUS (using the Informed 4D Exte
nals) is one such application.

Configuring an Apple event connection involves selecting the application and database to co
to, and linking cells on your form with fields in the remote database. With the ‘Apple event’ co
nection type selected, a button titled ‘Choose Application’ appears on the Lookup dialog box.

The Apple event application to which you’re linking a lookup must be running when you confi
the lookup. Click the ‘Choose Application’ button to select this application. The Program Link
dialog box appears.

1-52 Adding Intelligence To Your Forms

 .
 .

 .

rk. If
igner

ogram
ation

. For
ation
able.
s, and

ble to

 in
 see
 to one
lect the
’ but-
.

The application can be running on any Mac OS compatible computer connected to the netwo
the application is running on a computer other than the one that you’re running Informed Des
on, that computer must have a name, and it must have program linking turned on. On the Pr
Linking dialog box, choose the computer that’s running the application, then select the applic
itself and click ‘OK.’

A database or accounting system might contain several different files or tables of information
example, many accounting systems maintain customer, vendor, inventory, and invoice inform
in separate files. In database terminology, a file of information is commonly referred to as a t
The individual pieces of information contained in a table—such as a customer’s name, addres
terms—are called fields.

Once you’ve selected an application, click the ‘Choose Table’ button to choose a particular ta
look up into. You’ll see a dialog box listing the available options.

Depending on the application that you’ve selected, you may or may not see different options
each list. If you select a DBMS (database management system) in the leftmost list, you may
several databases to choose from. Many applications act like a single DBMS and offer access
or more databases. When you select a database, the third list shows the available tables. Se
appropriate table, then click ‘OK.’ The name of the table will appear next to the ‘Choose Table
ton and the ‘Remote data’ list will contain the fields in that table.

Adding Intelligence To Your Forms 1-53

 .
 .

 .

ation
pose
 part

own

and
 was
tch

 the

ist.
.

Click the ‘Choose Match Field’ button to select the match field. This is the field that the applic
will search through to find a matching value when the lookup is performed. For example, sup
that you’re setting up an inventory lookup to fill in the description and price of an item when a
number is typed. The match field would be the part number field in the inventory table of the
accounting system or database.

Select the appropriate field in the list. As with data document lookups, the ‘If no match’ drop-d
list controls the action Informed Filler takes if the requested lookup value is not found by the
lookup application. If you choose the ‘Use next value’ option, Informed Filler will use the next
higher value. If you choose the ‘Do not lookup’ option, Informed Filler won’t copy any values
will instead clear the linked cells on the form and display a dialog box indicating that no match
found. After selecting the match field and ‘If no match’ option, click ‘OK.’ The name of the ma
field will appear next to the ‘Choose Match Field’ button on the Lookup dialog box.

To specify which cells on the form are filled in when the lookup is performed, you link cells in
‘Cells to replace on form’ list with fields in the ‘Remote data’ list.

Clicking the ‘Link’ button links the selected cell in the left list with a selected field in the right l
Clicking ‘Unlink’ clears the link instead. To unlink all cells, click the ‘Unlink All’ button.

1-54 Adding Intelligence To Your Forms

 .
 .

 .

t Mac

 spe-
e,
ike
in the

tered in
e File-

uter
box
.
AppleScript Lookups

AppleScript provides a flexible method of integrating different applications. AppleScript is the
basis of the Mac OS open scripting environment. It provides the means of integrating differen
OS applications at a very high level. This integration, however, works only with other Mac OS
applications that also support AppleScript, such as Claris’ FileMaker Pro.

You create an AppleScript lookup by writing a script. The script instructs an application to find
cific information and copy it back onto the form. Since AppleScript is itself a scripting languag
AppleScript lookups are very flexible, making it easy to customize forms for specific needs. L
any lookup, an AppleScript lookup is triggered whenever the user enters or changes a value
lookup cell.

The example script below searches in a FileMaker Pro database for the customer number en
a cell called ‘CustNo.’ The customer’s address and phone number are copied from fields in th
Maker Pro database back into cells on the form.

-- initialize some AppleScript variables
copy "" to theName
copy "" to theAddress
copy "" to thePhone

-- copy the customer number entered on the form to a variable
tell application "Informed Filler™"

copy Cell "CustNo" of Window "Invoice" to theCustNo
end tell

-- search in the FileMaker Pro database for the customer
tell application "FileMaker Pro" of machine "Accounting"

show (every Record whose Cell "Customer Number" = theCustNo) ¬
of Window "Customer Database"

if (Count class Record) of Window "Customer Database" > 0 then
copy Cell "Name" of Window "Customer Database" to theName
copy Cell "Address" of Window "Customer Database" to theAddress
copy Cell "Phone" of Window "Customer Database" to thePhone

end if
end tell

-- copy the results back onto the form
tell application "Informed Filler™"

copy theName to Cell "Name" of Window "Invoice"
copy theAddress to Cell "Address" of Window "Invoice"
copy thePhone to Cell "Phone" of Window "Invoice"

end tell

The AppleScript connection type is available only if you’re using a Mac OS compatible comp
with AppleScript installed. With the AppleScript connection type selected, the Lookup dialog
contains a button titled ‘Choose Script.’

Adding Intelligence To Your Forms 1-55

 .
 .

 .

ripts
llows

ialog
alog

 Click-
. For
g
ck-

he

s and
ell as
Shana
d new

m-
.

Rather than entering an AppleScript script on the Lookup dialog box, you do so using the Sc
command in the Configure submenu of Informed Designer’s Settings menu. This command a
you to add, name, remove, and edit scripts. When you click ‘Choose Script’ on the Lookup d
box, the list of scripts that have been added to the form template are presented in another di
box.

You can select a script, or, as a convenience, you can click ‘Edit Scripts’ to add a new script.
ing ‘Edit Scripts’ is a shortcut to choosing the Scripts command from the Configure submenu
detailed information on adding, naming, editing, and removing scripts, see Chapter 12, “Usin
AppleScript.” For a comprehensive description of the AppleScript language and important ba
ground information, please see the AppleScript Language Guide (from Apple Computer Inc., avail-
able separately).

After selecting a script, click ‘OK’ on the dialog box. The script name appears to the right of t
‘Choose Script’ button.

Linking Through Data Access Plug-Ins

Informed’s data access plug-ins are designed to provide access to a wide range of database
data sources. They include support for many of the standard desktop database formats as w
common SQL databases such as Oracle and Sybase. Informed’s plug-in architecture allows
to continually develop new plug-ins and update existing plug-ins to support new databases an
standards in data access.

Note Since only Informed Filler understands AppleScript scripts, AppleScript lookups cannot be
tested using Informed Designer’s Test mode. You must use Informed Filler on a Mac OS co
patible computer to test an AppleScript lookup.

1-56 Adding Intelligence To Your Forms

 .
 .

 .
ialog

pes
 only

less
r
 lookup

at you

box.
types,

ecific
sist of a
n is
e is

ect
k.
user
.
When you choose a connection type that corresponds to a data access plug-in, the Lookup d
box changes to reflect the specific configuration details for that type. For many connection ty
there are two methods of configuration: “Easy” and “Custom.” Some connection types provide
one of these methods.

The “Easy” method is intended to provide an easy-to-use method of configuration. Although
flexible, it usually requires very little knowledge of the technical details of the data source. Fo
example, no knowledge of Sybase’s SQL language is necessary when configuring a Sybase
using the Easy configuration method.
The “Custom” method of configuration provides much more flexibility, but often requires more
knowledge of the data source. Configuring a custom Sybase lookup, for example, requires th
enter an actual SQL query.

After choosing a connection type, a single button appears near the top of the Lookup dialog
The title of this button is specific to the type of connection you choose. For many connection
the button title is ‘Define Connection.’

With most data sources, it is necessary to provide connection information in addition to the sp
instructions that are to be carried out by the data source. Connection parameters usually con
user ID, a password, and information that identifies the data source or server. This informatio
specific to the data source that you’re linking to. The Define Connection dialog box for Sybas
shown below.

If you enter all necessary connection parameters here, Informed Filler will automatically conn
for the user when the lookup is performed. You can, however, leave optional parameters blan
Leaving a parameter, such as the user ID or password, blank means that the Informed Filler
will be requested to enter this information when the lookup is performed.

Adding Intelligence To Your Forms 1-57

 .
 .

 .

ther the
 The
orma-

gner

nce
ttings
ration
reen

n
gura-

ols
and
e to

s that
GR-

ally
ded

xam-
you.
.

The details of connecting to a particular type of data source are the same regardless of whe
link is configured for a lookup, an auto-incrementing cell, or for submitting a completed form.
details of the Define Connection dialog box as well as other relevant data source-specific inf
tion can be found in the on-line document “DGRPLG.PDF” (Windows) or “Informed Designer
Plug-ins” (Mac OS). This document is automatically installed when you install Informed Desi
and is viewed using Acrobat Reader (also included with Informed Designer).

If additional configuration information is needed (which is the case for most data sources), o
you’ve defined the connection, the Lookup dialog box will change to show the controls and se
for either of the Easy or Custom configuration methods. If both the Easy and Custom configu
methods are supported by the selected connection type, you’ll see the Easy configuration sc
with a button near the bottom-left of the dialog box titled ‘Custom.’

Clicking the ‘Custom’ button switches the Lookup dialog box to show the Custom configuratio
screen. The button title changes to ‘Easy.’ Clicking ‘Easy’ switches you back to the Easy confi
tion screen.

Easy Configuration
If a plug-in supports the Easy configuration method, after you’ve defined the connection, the
Lookup dialog box will change to show additional buttons and two scrolling lists. These contr
make it very easy to configure the lookup. Once you’ve specified the necessary parameters
links, Informed Designer automatically generates the instructions required by the data sourc
perform the lookup.

Depending on which connection type you’ve selected, the titles of buttons and the dialog boxe
appear when you click them may vary. These details can be found in the on-line document “D
PLG.PDF” (Windows) or “Informed Designer Plug-ins” (Mac OS). This document is automatic
installed when you install Informed Designer and is viewed using Acrobat Reader (also inclu

Note Before you can link a lookup to an external data source, the data source (a dBase file, for e
ple) must already exist. Informed Designer will not create the database or data source for

1-58 Adding Intelligence To Your Forms

 .
 .

 .
ection

stores
ay

h table
ble,

lance.

lumn
ells on

elect
l appear
ata’

t the

ce to
d that
.
with Informed Designer). The examples shown in this section correspond to the Sybase conn
type.

For many types of databases and data sources, information is stored in “tables.” Each table
information about a particular type of object or entity. For example, an accounting database m
have separate tables for customers, vendors, inventory items, and the chart of accounts. Eac
contains columns of information. Each column stores one value of information. A customer ta
for example, might have separate columns for the customer number, name, address, and ba

When a lookup is performed, the value that the Informed Filler user types is looked up in a co
of a table. If a match is found, the values of other columns are returned and entered in other c
the form. To select the lookup table, click the ‘Choose Table’ button.

For Sybase lookups, multiple dialog boxes will appear when you click ‘Choose Table,’ one to s
a database and one to select a table. Once you’ve selected a table, the name of the table wil
next to the ‘Choose Table’ button, and the columns in that table will be listed in the ‘Remote d
scrolling list.

Click ‘Choose Match Column’ to select the match column. This is the column in the table tha
database will search through to find a matching value when the lookup is performed.

Note In order to choose a table, it is necessary that Informed Designer connect to the data sour
obtain the list of available tables. Be sure that the connection has been properly defined an
the database or data source is available before you click ‘Choose Table.’

Adding Intelligence To Your Forms 1-59

 .
 .

 .

cify
ote
lls to
e
ght
e on

n
 of the
, you
tom-
alog
any

r
ill
.

Select the match column, then click ‘OK.’ The name of the match column appears beside the
‘Choose Match Column’ button on the Lookup dialog box.

The scrolling lists titled ‘Cells to replace on form’ and ‘Remote data’ are used together to spe
which cells on the form are filled in with information returned from the data source. The ‘Rem
data’ list contains the names of the columns that are available from the data source. The ‘Ce
replace on form’ list contains all cells on the form template. To specify that a cell value is to b
replaced with a return value, simply select the cell in the left list and the return value in the ri
list, then click the Link button. The name of the return value will appear in the ‘Cells to replac
form’ list with an arrow pointing towards the cell name.

To unlink one cell, select the cell then click ‘Unlink.’ To unlink all cells, click ‘Unlink All.’

Custom Configuration
Some data sources support only the Custom configuration method. The Custom configuratio
method is much more flexible compared to the Easy method, but it requires more knowledge
database or data source. For data sources that support both Easy and Custom configuration
switch between the two methods by clicking the ‘Custom’ / ‘Easy’ button located near the bot
left of the Lookup dialog box. With the Custom configuration method selected, the Lookup di
box changes to contain a large text box (in addition to the ‘Define Connection’ button). For m
types of data sources, you’ll also see a button titled ‘Auto-Generate.’

Note If the structure of the tables or columns or other elements of the data source changes afte
you’ve chosen a table, be sure to choose the table again. In doing so, Informed Designer w
connect to the data source and obtain the current database structure.

1-60 Adding Intelligence To Your Forms

 .
 .

 .

to per-
nect-

that
p an

t you
 the

harac-
mber.”

return
ing a
.

The Custom configuration method requires that you enter text that instructs the data source
form the lookup. The text that you enter is specific to the type of data source that you are con
ing to. For example, if you’re connecting to a Sybase database, you’ll enter SQL statements
conform to Sybase’s syntax. The example shown below queries a Sybase database to looku
employee’s number and return her name, department, and extension.

Regardless of the type of data source you’re connecting to, the statements or instructions tha
enter should instruct the data source to return one or more values. To include a cell’s value in
instructions, simply enclose the cell name within double-less than and double-greater than c
ters. In the example shown above, the select statement includes the value of the cell “EmpNu

The values returned from the data source are entered in other cells on the form by including
locators following the data source-specific instructions. A return locator is a means of identify
return value, along with the cell on the form into which the value should be entered.

Adding Intelligence To Your Forms 1-61

 .
 .

 .

le
umber

, and 3,

e’ but-
pro-
if you

m’

ing
m
ti-

tton.
ils can
”

is

h the
e from
 an

 Mac OS
 The
ing on

the
 and

.

A return locator is specified as the name of a cell enclosed within double less-than and doub
greater-than characters. The cell name is preceded by a number and the “@” symbol. The n
identifies the return value and the cell name identifies the cell into which the value should be
placed. If, for example, the data source returns three values, you would use the numbers 1, 2
respectively, to identify those values.

Data sources that support both Easy and Custom configuration will contain an ‘Auto-Generat
ton on the Custom Lookup dialog box. Clicking this button will automatically generate the ap
priate instructions according to the current Easy configuration settings. This feature is useful
want to change—or customize—the effect of the Easy configuration in a small way.

After completing the Easy configuration, switch to the Custom method by clicking the ‘Custo
button at the bottom-left of the Lookup dialog box. Then click the ‘Auto-Generate’ button.
Informed Designer will examine the current Easy configuration and generate the correspond
instructions. These instructions will appear in the large text box as though you had typed the
yourself. If the text box already contains instructions, they will be replaced with those automa
cally generated.

Data sources that do not support Easy configuration can also include the ‘Auto-Generate’ bu
The action taken depends on the particular connection type that you’ve selected. These deta
be found in the on-line document “DGRPLG.PDF” (Windows) or “Informed Designer Plug-ins
(Mac OS). This document is automatically installed when you install Informed Designer and
viewed using Acrobat Reader (also included with Informed Designer).

Configuring for Multiple Platforms

Many of the databases and data sources that Informed can link with are accessible from bot
Windows and Mac OS platforms. However, the details of accessing a database or data sourc
each of the platforms might be different. For example, suppose that you’re linking a lookup to
Oracle database. For Mac OS users, you might be accessing the Oracle database using the
Oracle client software (SQL*NET), whereas on Windows you might be using ODBC instead.
specific parameters needed to connect to the database, therefore, might be different depend
which platform the Informed Filler user is using.

The Lookup dialog box contains a drop-down list with the items ‘This platform’ and ‘All plat-
forms.’

For each different connection type, Informed Designer knows if the configuration details are
same or different for the two platforms. If the connection type is supported on both platforms
the configuration details are the same on both, the ‘All platforms’ option will be available. The
lookup you configure on one platform will function on both.

1-62 Adding Intelligence To Your Forms

 .
 .

 .
 only

kup on
.
ura-

ng
em-
on-

 con-
e, sup-
eleted.

pple

form-

tion.
rent
ired
rform

nd
ment
gram

ica-
-

r the
e
.
If the configuration details are different for each platform, or if the connection type is available
on the platform you’re using, ‘This platform’ will be the only choice available in the drop-down
list. For accessing these types of databases and data sources, you have to configure the loo
one platform, then move the form template to the other platform and repeat the configuration
Informed Designer stores the configuration for both platforms. Informed Filler uses the config
tion that corresponds to the user’s platform.

Although it may be necessary to configure a lookup twice, once on each platform, the resulti
form template document is still a platform neutral document. That is, a single version of the t
plate will work with Informed Filler on both platforms. Informed Filler automatically uses the c
figuration information that is appropriate for the user’s platform.

Lookup Errors

Although Informed Designer can check to make sure that you don’t make mistakes when you
figure a lookup, there are several reasons why a lookup can fail to work properly. For exampl
pose that a lookup is linked to a particular data document, and the document is accidentally d
Or maybe the application or database required by a lookup is not running.

Errors can occur while you test a lookup with Informed Designer, or as you fill out forms with
Informed Filler. For the three connection types that are built into Informed (Data document, A
event, and AppleScript), there are five basic types of errors. They are:

■ The lookup data document or application cannot be found.

■ The data document or application is available, but an error occurs while configuring or per
ing the lookup.

■ System 7 (or later) is not running and is required for Apple event lookups.

■ AppleScript is not installed and is required for AppleScript lookups.

■ There’s an error in your AppleScript script.

For Apple event lookups, Informed uses the name of the computer to find the lookup applica
An error will occur if you change the computer’s name, or if you move the application to a diffe
computer with a different name. Similarly, an error will occur if the lookup data document requ
by a lookup cannot be found. You’ll see an error message when Informed Filler attempts to pe
the lookup for the first time.

The dialog box that appears contains the buttons ‘Look,’ ‘Skip,’ and ‘Disable.’ You can try to fi
the required lookup data document or application by clicking the ‘Look’ button. For data docu
lookups, you’ll see the standard Open dialog box. For Apple event lookups, you’ll see the Pro
Linking dialog box instead. If you successfully find the correct lookup data document or appl
tion, Informed will automatically re-link the lookup before continuing. If you click ‘Skip’ or ‘Dis
able,’ the error will be ignored and no attempt will be made to find the missing document or
application. ‘Skip’ ignores the error that time only which means the error message will appea
next time the lookup is attempted. The ‘Disable’ option ignores the error until the next time th
form document is opened.

Adding Intelligence To Your Forms 1-63

 .
 .

 .

e
ppear
l the

le but
e
pple
nting

s

here
e

e-
-

e. For

ue in
le, on
e than

a—
e alert
.

When you choose the Lookup command to change the configuration of an existing lookup, th
lookup data document or application must be available. If it’s missing, an error message will a
with options to look for the document or application, clear the lookup and continue, or cance
Lookup command.

The second type of error can occur when the lookup data document or application is availab
an error of some sort is detected. For Apple event lookups, the lookup application may provid
information about the particular error that has occurred. For example, if you’ve configured an A
event lookup to read inventory information from an accounting system, but the required accou
database is not open, you’ll see an error message indicating so.

If you click the ‘Retry’ button, Informed will attempt to perform the lookup again. This option i
useful if the lookup application is running on a different computer (from the one that you’re
running Informed Designer or Informed Filler on), since you might be able to fix the problem t
and then continue. As explained earlier, the ‘Skip’ and ‘Disable’ options allow you to ignore th
error. Clicking ‘Skip’ ignores the error one time only, whereas the ‘Disable’ option ignores the
error until the next time the form document is opened.

The third and fourth types of errors will occur if you’re not running System 7 (or later) or Appl
Script when Informed Filler attempts to perform an Apple event or AppleScript lookup, respec
tively. An error will also occur if there are mistakes in your AppleScript lookup script.

Data Verification
In “Cell Types” earlier in this chapter, you learned about cell types and formatting options. By
choosing the correct cell type, you can restrict a cell’s values to those that match the cell typ
example, date cells accept only valid date entries.

Informed Designer allows you to further restrict the allowable values for any cell. Often the val
a cell must be within a certain range or it must conform to specific data entry rules. For examp
a sales slip you might want to restrict the value entered in the discount amount cell to no mor
ten percent of the total sale.

By using Informed Designer’s Check command, you can create a check formula for any cell on
your form. A check formula tests for error or warning conditions. The result of a check formul
which must be True or False—indicates whether or not a cell’s entry is valid. You can even us
dialogs and help messages to describe error conditions.

Data Verification

1-64 Adding Intelligence To Your Forms

 .
 .

 .

with
st be
ntry,

n 2 dol-
ula

of
 evalu-
ill be
ound

ple,
D’

ted.

e IF
ue or
s a

at

hip-
the IF
.
Check Formulas

Like calculation formulas, you create a check formula by combining operators and functions
cell names and constants to produce a new result. The resulting type of a check formula mu
boolean. That is, a check formula must return True or False. A True result indicates a valid e
whereas a False result represents an invalid value.

Suppose that the shipping charge cell on an invoice should accept only numbers greater tha
lars. Assuming that the shipping charge cell is called ‘Shipping,’ you could use the check form
shown below.

Shipping >= 2

This formula uses the ‘greater than or equal to’ comparison operator (>=) to test if the value
‘Shipping’ is at least 2. When a person enters or changes the ‘Shipping’ value, the formula is
ated using the new value. If the value is greater than or equal to 2, the result of the formula w
True and the value will be accepted. Otherwise, the formula will return False and a beep will s
to indicate that an error has been detected.

You can use Informed’s logical operators to combine more than one test condition. For exam
suppose that the shipping charge must also be less than or equal to 10 dollars. Using the ‘AN
operator, you could combine the two test conditions into one formula.

Shipping >= 2 AND Shipping <= 10

Only values that are greater than or equal to 2 AND less than or equal to 10 would be accep

It’s often easier to understand the effect of a check formula if you change the format to use th
statement. With the IF statement, you can test for different conditions and explicitly return a Tr
False result. For example, the check formula below is equivalent to the example which allow
shipping charge between 2 and 10 dollars.

If Shipping >= 2 AND Shipping <= 10 Then
 Return True
Else
 Return False
End

If the condition between the words ‘If’ and ‘Then’ is true, then the formula returns the result th
follows the word ‘Then.’ If the condition is false, then the result that follows the word ‘Else’ is
returned instead. The word ‘Return’ is optional. It can precede the result of a formula.

Often you’d like to test a cell using other cell values on your form. For example, maybe the s
ping charge applies only to customers outside of New York state. The following formula uses
statement to test the value of the ‘State’ cell.

Adding Intelligence To Your Forms 1-65

 .
 .

 .

e
 0.

mple,

e,
st cell

show

l
 scroll-
n
 list, a
.

If State <> 'NY' Then
 Return Shipping >= 2 AND Shipping <= 10
Else
 Return Shipping = 0
End

If the value of ‘State’ is not equal to (<>) the value ‘NY,’ then the formula proceeds to test if th
shipping amount is between 2 and 10. Otherwise, the formula tests for a shipping amount of

If a check formula doesn’t return a result, the formula’s result is assumed to be True. For exa
if the value of ‘State’ equals ‘NY,’ then the check formula below would return the True value.

If State <> 'NY' Then
 Shipping >= 2 AND Shipping <= 10
End

You can use check formulas to test other types of information too. You can compare date, tim
name, and boolean values, and use any of Informed’s powerful functions to manipulate and te
values. For a complete discussion of formulas and functions, see Chapters 9 and 10.

Entering a Check Formula

To create a check formula, first select the cell that you want to check, then choose Check... from the
Settings menu. The Check dialog box appears.

You enter a check formula by typing in the formula text box. You can resize the dialog box to
more or less of the check formula.

Informed Designer makes it easy to enter complex, error-free formulas. Instead of typing cel
names, functions, and operators, you can double-click any entry in any of the corresponding
ing lists on the Check dialog box. The entry is inserted into the formula at the current insertio
point. You can move between the lists on the dialog box by pressing Tab. When you tab into a
bold frame appears around it to indicate that it’s selected.

1-66 Adding Intelligence To Your Forms

 .
 .

 .
ill
hile
ithin

ou

ia-
or-
the error.

lert

d

 a
t the
rmula

rect

e
w is a
.
If you double-click to enter a function that has one or more parameters, Informed Designer w
automatically position the insertion point at the first parameter. If you double-click a function w
holding down the Alt (Windows) or Option (Mac OS) key, the parameter names are included w
parentheses.

You can also enter a cell’s name by clicking the cell in the drawing window. This is useful if y
don’t know the name of the cell, but you can see it in the drawing window.

If you click the checkmark button while entering a formula, or if you click ‘OK’ to dismiss the d
log box, Informed Designer will check to make sure that the formula is valid. The formula is f
matted properly, and if any errors are detected, a message appears describing the nature of

Alert Dialogs and Help Messages

Informed Designer allows you to supply optional messages in any check formula. By using a
dialogs and help messages, you can explain to someone filling out your form why an error
occurred, or you can provide helpful reminders of important instructions that must be followe
when certain information is entered.

Alert Dialogs
An alert is a dialog box that contains a text message. If you include the words ‘with Alert’ and
message within quotation marks following the result of a check formula, Informed will conduc
alert when the cell is checked (see “Evaluating Check Formulas”). For example, the check fo
below uses an alert dialog to report an error when an invalid shipping amount is entered.

If Shipping >= 2 AND Shipping <= 10 Then
 Return True
Else
 Return False with Alert 'The shipping charge
 must be between 2 and 10 dollars.'
End

When the formula is evaluated, the result will be True if the value of ‘Shipping’ is within the cor
range. If the value is out of range, the formula will return False and you’ll see this dialog box:

By using the IF statement, you can use different alerts under different conditions. In the abov
example, the alert is shown only when the formula detects an incorrect shipping amount. Belo
more complicated example.

Adding Intelligence To Your Forms 1-67

 .
 .

 .

nder
s with a
check

) is
 be

te
or and
t
Since

ur
 by

 the
t recent

e
.

Suppose that the discount amount on an invoice can be no higher than 15% for purchases u
$5,000, and no higher than 20% for purchases $5,000 and over. Suppose also that purchase
discount higher than 15% must be accompanied with a supervisor’s signature. Consider the
formula shown below.

If TotalSale < 5000 Then
 If Discount Rate > 0.15 Then
 Return False with Alert 'The discount rate
 cannot exceed 15%.'
 End
Else
 If Discount Rate > 0.20 Then
 Return False with Alert 'The discount rate
 cannot exceed 20%.'
 Elseif Discount Rate > 0.15 Then
 Return True with Alert 'This purchase requires a

supervisor’s signature.'
 End
End

The first IF statement tests whether or not the total sale amount (in the cell called ‘TotalSale’
less than $5,000. For sales under $5,000, an alert is used only if the discount rate is found to
greater than 15%. Since this is an error condition, the formula returns a False result.

If the total sale amount is greater than or equal to $5,000, the formula tests for a discount ra
higher than either 20% or 15%. If the discount rate is higher than 20%, an alert reports the err
the formula returns False. If the discount rate is greater than 15% but less than 20%, an aler
reminds the person filling out the form that the purchase must be approved by a supervisor.
this is not an error condition, the formula returns True and not False.

Help Messages
In the section “ Cell Help,” you’ll learn how to create a custom help message for any cell on yo
form. While entering data in a cell on a form, the help message for that cell can be displayed
choosing Informed Filler’s Help command. This command is available in Informed Designer’s
Form menu while you test your form.

When a check formula causes an alert to be displayed, Informed Filler will automatically add
alert text to the custom help message for the cell. Therefore, you can always see a cell’s mos
alert message by displaying the help message.

If you replace the word ‘Alert’ with the word ‘Help’ in a check formula (as described above), th
alert won’t be displayed when the check formula is evaluated.

If Shipping >= 2 AND Shipping <= 10 Then
 Return True
Else
 Return False with Help 'The shipping charge
 must be between 2 and 10 dollars.'
End

1-68 Adding Intelligence To Your Forms

 .
 .

 .
age for

rma-

ell to
ating

will

ers to
rced
pt-

 order
e, the

 a
e
.
If an invalid shipping amount is entered, the quoted message will be added to the help mess
the cell being checked.

For more information about help messages and the Help command, see “Cell Help.” For info
tion about testing your form template, see “Testing Your Form.”

Evaluating Check Formulas

When a form is filled out with Informed Filler, pressing the Tab key moves the user from one c
the next. Each time they enter a different cell value, Informed Filler checks the value by evalu
the cell’s check formula. If the check formula returns False, a beep will sound and the users
remain at the current cell with the incorrect value selected.

Once an error condition has been detected (as described above), Informed Filler will allow us
proceed to other cells, even if they don’t enter a correct value first. Therefore, the user isn’t fo
to correct the mistake before moving to other cells. However, Informed Filler won’t allow acce
ing, printing, or mailing a form with incorrect values.

Choices
Often a cell will take on a variety of common values. For example, the shipping method on an
form might be Mail, UPS, or Federal Express. Instead of typing the shipping method each tim
Informed Filler user can select an entry from a list of common choices.

Informed Filler can present a list of choices using either of two methods: a floating palette, or
drop-down list. Both allow the Informed Filler user to pick a choice directly from the list, or typ
the first few characters of the desired choice.

Choices

Adding Intelligence To Your Forms 1-69

 .
 .

 .

e the
e used
eral dif-
e and

ists

lso
red

it in

log
t,

ialog

.

With Informed Designer, creating and using a choice list is a two step process. First, you nam
choice list and specify each of the choices. Then you specify which cells the choice list is to b
with. By creating a choice list as a separate step, a single choice list can be used among sev
ferent cells. That way, when you need to change the items in a choice list, you can do so onc
have the change take effect for multiple cells.

Editing Choice Lists

To create or delete a choice list, and to add, remove, or change items in a choice list, select
Choices... from the Configure submenu under Informed Designer’s Form menu. The Choice L
dialog box appears.

The Choice Lists dialog box contains various controls to add, remove or edit choice lists. It a
contains a scrolling list that displays the names of any choice lists that you’ve already configu
for the current form. To add a new choice list, click ‘New.’ To edit an existing choice list, click
the scrolling list, then click ‘Edit,’ or simply double-click it in the scrolling list. When you click
‘New’ to add a new choice list, or ‘Edit’ to change an existing choice list, the Edit Choices dia
box appears (see “Editing Choices” below). To remove a choice list, click it in the scrolling lis
then click ‘Remove.’

Editing Choices
When you create a new choice list or edit an existing list, you do so using the Edit Choices d
box. With this dialog box you can add new choices, or delete or change existing choices.

1-70 Adding Intelligence To Your Forms

 .
 .

 .

t box

ter no

t; the
ge the

any

values.
dialog

ice is
For
rne
e text
t

ion on
fferent
da. You
lue of
uble
.

The current choices appear in the scrolling list. To add a new choice, type the entry in the tex
below the scrolling list and click ‘New.’ The new choice is added to the list in sorted order.
Although there’s no limit to the number of choices a cell can have, we recommend that you en
more than 50.

To change or remove an existing choice, first select the choice by clicking it in the scrolling lis
selected choice appears in the text box. To remove the selected choice, click ‘Delete.’ To chan
selected choice, type the new value then click ‘Change.’

After you’ve entered all of the choices, click ‘OK’ to close the Choices dialog box. To discard
changes, click ‘Cancel’ instead.

Choice Items
Each item in a choice list can be an actual choice value or a formula that returns one or more
If you know each choice item in advance, simply add them one at a time on the Edit Choices
box.

You can add descriptive text to a cell’s list of choices that won’t appear in the cell once a cho
made. You do this by separating the descriptive text from the choice by two vertical bars (||).
example, if you want the code 0001 to appear in the shipping cell each time you select Airbo
Express, enter the choice “Airborne Express || 0001.” When a user selects the choice, only th
to the right of the vertical bars, in this example “0001”, will appear in the cell. In the choice lis
itself, the actual choice will appear within parentheses to the right of the descriptive text.

By using formulas, you can create dynamic choice lists that change based on other informat
the form. For example, suppose that the available shipping methods for invoiced goods are di
depending on whether the goods are shipped to a destination in the United States or in Cana
might enter a formula that returns a different list of ship method choices depending on the va
the Country cell. When you enter a formula, you must place it within double less-than and do
greater-than characters as shown in the following example.

Adding Intelligence To Your Forms 1-71

 .
 .

 .

e
nd
ter

 a
s.

f
ly
fine a
ox

infor-

ws

 the
r sim-

vely,
at
.

<<If Country="USA" Then Return {"FedEx","UPS","Purolator","Mail"} ElseIf
Country="Canada" Then Return {"FedEx","Mail"} End>>

The above formula returns the four ship methods “FedEx,” “UPS,” “Purolator,” and “Mail” if th
value of the Country cell is “USA.” If Country is “Canada,” the formula returns only “FedEx” a
“Mail.” When using formulas for choice items, you enter the formula in the same place you en
choice values—in the text box on the Edit Choices dialog box.

Configuring Choices for a Cell

Simply defining a choice list does not activate it for a particular cell. To configure a cell to use
choice list, select the cell then choose Cell... from the Settings menu. The Cell dialog box appear

The ‘Choice list’ drop-down list contains the items ‘No choices,’ ‘New List...,’ and the names o
any choice lists that you have created. To configure a cell to use a particular choice list, simp
select the name of the list from the ‘Choice list’ drop-down list. As a convenience, you can de
new choice list by selecting the ‘New List...’ item. Doing so displays the Edit Choices dialog b
with which you can name the choice list and add, remove, or edit choice items. For detailed
mation on editing a choice list, see “Editing Choices” earlier in this chapter.

When you select a choice list, other options become available. The ‘Style’ drop-down list allo
you to pick from two different methods of presenting choices to the Informed Filler user. They
include ‘Floating Palette’ and ‘Drop-down List.’

Both styles allow the Informed Filler user to pick a choice either by selecting one directly from
list, or by typing the first few characters of the choice item. To select a choice directly, the use
ply clicks the item on the floating palette or selects the item from the drop-down list. Alternati
as the user types a value in the cell, Informed Filler will automatically enter the choice item th

1-72 Adding Intelligence To Your Forms

 .
 .

 .
f

.’ If
e

ter
will
 val-

plate.
ctions.
puter,

t box,

igner’s
 select-

Bal-
ble
.
matches most closely. For the floating palette option, this effect of typing occurs regardless o
whether or not the palette is visible.

The ‘Auto display palette’ option is available only if the ‘Style’ option is set to ‘Floating palette
you select this option, Informed Filler will automatically display the palette of choices when th
user tabs to or selects the cell.

The ‘Allow other values’ option controls whether or not Informed Filler will allow the user to en
values other than those in the choice list. If you leave this option unchecked, Informed Filler
restrict entries to one of those in the choice list. To allow other values, select the ‘Allow other
ues’ option.

Cell Help
Informed Designer allows you to create a custom help message for any cell on your form tem
Use a help message whenever the information in a cell requires explanation or special instru
Help messages are displayed on dialog boxes or, if you are using a Mac OS compatible com
they also appear in balloons.

To enter a help message for a cell, select the cell that you want to change, then choose Help
Message... from the Settings menu. The Help Message dialog box will appear.

A help message can be as long as you like. If you enter more lines than the height of the tex
you can use the scroll bar to scroll the message text up or down.

The help messages you create are available to users in Informed Filler, and in Informed Des
Test mode. When you test a form in Informed Designer you can display the help message by
ing the cell and choosing the Help command in the Form menu.

Cell Help

Note Balloon help on the Mac OS sets limitations on the amount of text that can be displayed. If
loon help does not display the full amount of text in your help message it will still be availa
on the Help dialog box.

Adding Intelligence To Your Forms 1-73

 .
 .

 .

 help
cell. A

ve
ns

tom help
d line on

he

 cell (as
s the

 a
ata,
orms

 Con-
.

If you’re using a Mac OS compatible computer with System 7 or later, you can also display a
message by choosing the Show Balloons command from the Help menu and pointing at the
balloon will appear showing the cell’s help message.

Check Formulas and the Help Dialog

As discussed in “Alert Dialogs and Help Messages,” by creating a check formula, you can ha
Informed Filler automatically display a message or warning when different data entry conditio
are met.

When a check formula uses an alert or help message, the message is added to the cell’s cus
message. The check formula message is separated from the cell’s help message by a dashe
the Help dialog box.

The check formula message will remain part of the help message until the person filling out t
form changes the cell’s value. For example, if the Informed Filler user enters a cell value that
causes an alert message to display, the message will be added to the Help dialog box for that
described above). If they change the value so that the cell’s check formula no longer display
alert, the alert message will be removed from the Help dialog box.

Form Submission
Automated forms submission allows the Informed Filler user to easily transfer form data from
completed form—or record—into another information system without the need to rekey the d
and without having to follow cumbersome and often complex import and export procedures. F
can be submitted by simply selecting Informed Filler’s Submit command.

There are several methods with which Informed Filler can submit forms. Informed Designer’s
figure Submit dialog box contains a drop-down list that lists each of the different methods.

Form Submission

1-74 Adding Intelligence To Your Forms

 .
 .

 .

ther
-ins

sion
ct to
rmine

figur-

 the

his

config-
 con-
ipt
.

The ‘Apple events’ and ‘AppleScript’ connection types are available only on the Mac OS. All o
connection types correspond to the data access plug-ins that you have installed in your plug
folder.

How it Works

Form submission requires configuration with Informed Designer. You configure forms submis
using the Configure Submit command. You specify the type of connection with which to conne
the submission destination as well as various linking parameters. The linking parameters dete
how information is transferred from the form to the submission destination.

Configuring a form for submission is a three step procedure:

■ Choose the Submit command from the Configure submenu under Form

■ Choose the connection type

■ Specify the configuration details

The Configure Submit dialog box contains controls for selecting the connection type and con
ing submission. If your computer uses the Mac OS, you’ll always see the ‘Apple events’ and
‘AppleScript’ connection types. You’ll also see the other connections types that correspond to
data access plug-ins you have installed in your plug-ins folder.

The first connection type is ‘No Submit.’ To clear a previously configured submission, select t
item then click ‘OK’ on the Configure Submit dialog box.

When you select a connection type, the Configure Submit dialog box changes to display the
uration controls and settings appropriate for that type of connection. For example, the Oracle
nection type has controls for defining the connection and linking cells, whereas the AppleScr
option allows you to select a script.

Adding Intelligence To Your Forms 1-75

 .
 .

 .

o
ferent

ata-
d only
muni-

a-

tion
. With
e

.
ox
.

Once you’ve selected the connection type and specified all configuration settings, click ‘OK’ t
save the configuration. The following sections describe the procedures for configuring the dif
types of form submission.

Apple Event Submission

Informed allows you to submit completed forms to Apple event aware applications such as d
bases and accounting systems. This feature works only with computers using the Mac OS, an
with applications that understand the specific type of Apple events that Informed uses to com
cate. 4th DIMENSION by ACIUS (with the Informed 4D external installed) is one such applic
tion.

Configuring form submission using the Apple event connection involves selecting the applica
and database to connect to, and linking cells on your form with fields in the remote database
the ‘Apple event’ connection type selected, a button titled ‘Choose Application’ appears on th
Configure Submit dialog box.

The application to which you link a form must be running when you configure the connection
Click the ‘Choose Application’ button to select this application. The Program Linking dialog b
appears.

1-76 Adding Intelligence To Your Forms

 .
 .

 .

rk. If
igner
gram
ation

l see

a-
ble—

ou
base.
bmit-

.

The application can be running on any Mac OS compatible computer connected to the netwo
the application is running on a computer other than the one that you’re running Informed Des
on, that computer must have a name and it must have program linking turned on. On the Pro
Linking dialog box, choose the computer that’s running the application, then select the applic
itself and click ‘OK.’ When you click ‘OK,’ Informed Designer verifies that the application you
selected supports the required Apple events to communicate with Informed. If it doesn’t you’l
a message indicating so.

Many applications store different types of information in different files or tables. A file of inform
tion is commonly referred to as a table. The individual pieces of information contained in a ta
such as the invoice number, date, and terms of an invoice—are called fields.

When you link a form to an application, you’re required to specify which table the information
should be stored in. For example, if you’re linking an invoice form to an accounting system, y
have to specify that the information will be stored in the invoices table in the accounting data
That way, the application will know how to store the information when a completed form is su
ted with Informed Filler. You select a table by clicking the ‘Choose Table’ button. A dialog box
appears listing the options available.

Adding Intelligence To Your Forms 1-77

 .
 .

 .

you
 click

ote

u
ing

on.
 an

k

ed

the

.

Most applications act like a single DBMS and offer access to one or more databases. When
select a database, the third list shows the available tables. Select the appropriate table, then
‘OK.’ The name of the table will appear next to the ‘Choose Table’ button and the ‘Links to rem
data’ list will show the fields in that table.

You use the two scrolling lists to link the cells on your form with the fields in the table that yo
selected. When you use Informed Filler to send a completed form to the application, this link
information is used to ensure that the right values are stored in the right places in the table.

To link two items, select a cell in the left list and a field in the right list, then click the ‘Link’ butt
When a field is linked, Informed Designer shows the cell in the ‘Links to remote data’ list with
arrow pointing towards the field.

To unlink a field, select it in the right list, then click the ‘Unlink’ button. To unlink all fields, clic
the ‘Unlink All’ button.

For most tables, certain information is required when you send a completed form with Inform
Filler. For example, when you send an invoice to an application, it might be required that you
include values for fields such as the customer number, invoice number, date, and terms. On
Configure Submit dialog box, a check mark under ‘Req.’ next to a field in the ‘Links to remote
fields’ list indicates that a cell must be linked to that field.

1-78 Adding Intelligence To Your Forms

 .
 .

 .

 by
rt it
ritten
S

se.

utton

g the
mand
nfig-
nother
.
AppleScript Submission

Like AppleScript lookups, you configure form submission via the AppleScript connection type
writing a script. The script instructs an application to copy information from the form and inse
into another application. Since AppleScript is actually a scripting language, a script can be w
to accomplish virtually any task. The AppleScript connection type is available only on Mac O
compatible computers with AppleScript installed.

The example below shows a script that submits a new customer into a FileMaker Pro databa

-- copy cells on form to AppleScript variables
tell application "Informed Filler™"

copy cell "Company Name" to theCoName
copy cell "Address" to theAddress
copy cell "City" to theCity
copy cell "State" to theState
copy cell "ZIP" to theZIP
copy cell "Phone" to thePhone
copy cell "Contact" to theContact

end tell

-- create a new record in the FileMaker Pro database with data from form
tell application "FileMaker Pro v3.0v3"

create new record at window "Customer Database" ¬
with data {theCoName, theAddress, theCity, ¬
theState, theZIP, thePhone, theContact}

end tell

With the AppleScript connection type selected, the Configure Submit dialog box contains a b
titled ‘Choose Script.’

Rather than entering an AppleScript script on the Configure Submit dialog box, you do so usin
Scripts command in the Configure submenu of Informed Designer’s Settings menu. This com
allows you to add, name, remove, and edit scripts. When you click ‘Choose Script’ on the Co
ure Submit dialog box, the list of scripts that have been added to the form are presented in a
dialog box.

Adding Intelligence To Your Forms 1-79

 .
 .

 .

 Click-
. For
g
round
-

oose

s and
ell as
Shana
d new

e Sub-
nec-

pes

less
r
n to

, you

it dia-
nnec-
.

You can select a script, or, as a convenience, you can click ‘Edit Scripts’ to add a new script.
ing ‘Edit Scripts’ is a shortcut to choosing the Scripts command from the Configure submenu
detailed information on adding, naming, editing, and removing scripts, see Chapter 12, “Usin
AppleScript.” For a comprehensive description of the AppleScript language and useful backg
information, please see the AppleScript Language Guide (from Apple Computer Inc, available sep
arately).

After selecting a script, click ‘OK’ on the dialog box. The script name appears next to the ‘Ch
Script’ button on the Configure Submit dialog box.

Submission Through Data Access Plug-Ins

Informed’s data access plug-ins are designed to provide access to a wide range of database
data sources. They include support for many of the standard desktop database formats as w
common SQL databases such as Oracle and Sybase. Informed’s plug-in architecture allows
to continually develop new plug-ins and update existing plug-ins to support new databases an
standards in data access.

When you choose a connection type that corresponds to a data access plug-in, the Configur
mit dialog box changes to reflect the specific configuration details for that type. For many con
tion types there are two methods of configuration: “Easy” and “Custom.” Some connection ty
provide only one of these methods.

The “Easy” method is intended to provide an easy-to-use method of configuration. Although
flexible, it usually requires very little knowledge of the technical details of the data source. Fo
example, no knowledge of Sybase’s SQL language is necessary when configuring submissio
Sybase using the Easy configuration method.

The “Custom” method of configuration provides much more flexibility, but often requires more
knowledge of the data source. When configuring custom submission to Sybase, for example
are required to enter an actual Sybase SQL query.

After choosing a connection type, a single button appears near the top of the Configure Subm
log box. The title of this button is specific to the type of connection you choose. For many co
tion types, the button title is ‘Define Connection.’

1-80 Adding Intelligence To Your Forms

 .
 .

 .

ecific
sist of a
n is
e is

ect
aving

 be

her the
 The
orma-

gner

nce
rols
stom

ina-
ta
.

With most data sources, it is necessary to provide connection information in addition to the sp
instructions that are to be carried out by the data source. Connection parameters usually con
user ID, a password, and information that identifies the data source or server. This informatio
specific to the data source that you’re linking to. The Define Connection dialog box for Sybas
shown below.

If you enter all necessary connection parameters here, Informed Filler will automatically conn
for the user when a form is submitted. You can, however, leave optional parameters blank. Le
a parameter, such as the user ID or password, blank means that the Informed Filler user will
requested to enter this information when a form is submitted.

The details of connecting to a particular type of data source are the same regardless of whet
link is configured for a lookup, an auto-incrementing cell, or for submitting a completed form.
details of the Define Connection dialog box as well as other relevant data source-specific inf
tion can be found in the on-line document “DGRPLG.PDF” (Windows) or “Informed Designer
Plug-ins” (Mac OS). This document is automatically installed when you install Informed Desi
and can be viewed using Acrobat Reader (also included with Informed Designer).

If additional configuration information is needed (which is the case for most data sources), o
you’ve defined the connection, the Configure Submit dialog box will change to show the cont
and settings for either of the Easy or Custom configuration methods. If both the Easy and Cu

Note Before you can configure form submission with an external data destination, the data dest
tion (a dBase file, for example) must already exist. Informed Designer will not create the da
destination for you.

Adding Intelligence To Your Forms 1-81

 .
 .

 .

nfigura-

on-
Easy

 Con-
 con-

y the

s that
R-

s

stores
ay

unts.

, cus-

data
an
ce
ce
r more
.

configuration methods are supported by the selected connection type, you’ll see the Easy co
tion screen with a button near the bottom-left of the dialog box titled ‘Custom.’

Clicking the ‘Custom’ button switches the Configure Submit dialog box to show the Custom c
figuration screen. The button title changes to ‘Easy.’ Clicking ‘Easy’ switches you back to the
configuration screen.

Easy Configuration
If a plug-in supports the Easy configuration method, after you’ve defined the connection, the
figure Submit dialog box will change to show additional buttons and two scrolling lists. These
trols make it very easy to configure form submission. Once you’ve specified the necessary
parameters and links, Informed Designer automatically generates the instructions required b
data source to perform the lookup.

Depending on which connection type you’ve selected, the titles of buttons and the dialog boxe
appear when you click them might vary. These details are found in the on-line document “DG
PLG.PDF” (Windows) or “Informed Designer Plug-ins” (Mac OS). The examples shown in thi
section correspond to the Sybase connection type.

For many types of databases and data sources, information is stored in “tables.” Each table
information about a particular type of object or entity. For example, an accounting database m
have separate tables for customers, vendors, inventory items, invoices, and the chart of acco
Each table contains columns of information. Each column stores one value of information. An
invoice header table, for example, might have separate columns for the invoice number, date
tomer number, and shipping address.

When a form is submitted, the information in cells is transferred into different columns in the
source. These columns do not all have to be from the same table. For example, the cells on
invoice form might be submitted into two tables, an invoice header table (containing the invoi
number, customer number, date, and terms), and an invoice detail table (containing the invoi
number, part number, quantity, and price for each item invoiced). Many databases offer one o

1-82 Adding Intelligence To Your Forms

 .
 .

 .
 the

 data-
respond-

lue
SQL
ked
 filled
the
 value

’ list

the
 select
the
me.

ation
 and
.
tables into which form data can be submitted. You select which table—or tables— by clicking
‘Choose Tables’ button.

For Sybase, multiple dialog boxes will appear when you click ‘Choose Tables,’ one to select a
base and one to select one or more tables. Once you’ve selected one or more tables, the cor
ing columns will be listed in the ‘Links to remote data’ scrolling list. Each column name will be
prefixed with the name of the table to which it belongs.

Informed Designer automatically knows how to submit forms containing both fields (single va
field cells) and tables (multi-value column cells). For many data destinations, including most
databases, Informed Filler will insert multiple rows into tables containing columns that are lin
to column cells on the form. The number of rows inserted corresponds to the number of rows
out in the table on the form being submitted. If both column cells and field cells are linked to
same table (which is common when submitting forms to relational databases), then the single
of a linked field cell is repeated for each row that is inserted.

The scrolling lists titled ‘Cells on form’ and ‘Links to remote data’ are used together to specify
which cells on the form are entered into which columns in the data source. The ‘Cells on form
contains all cells on the form template. The ‘Links to remote data’ list contains the names of
columns in the data source. To specify that a cell value is to be entered into a column, simply
the cell in the left list and the column in the right list, then click the Link button. The name of
cell will appear in the ‘Links to remote data’ list with an arrow pointing towards the column na

Note In order to choose a table, it is necessary that Informed Designer connect to the data destin
to obtain the list of available tables. Be sure that the connection has been properly defined
that the database or data destination is available before you click ‘Choose Tables.’

Adding Intelligence To Your Forms 1-83

 .
 .

 .

ration
 of the
gura-
r the
ed,
e
-Gen-

tion to
n that
QL

ou’ll
ybase
.

To unlink one cell, select the cell then click ‘Unlink.’ To unlink all cells, click ‘Unlink All.’

Custom Configuration
Some data destinations support only the Custom configuration method. The Custom configu
method is much more flexible compared to the Easy method, but it requires more knowledge
database or data destination. For data destinations that support both Easy and Custom confi
tion, you switch between the two methods by clicking the ‘Custom’ / ‘Easy’ button located nea
bottom-left of the Configure Submit dialog box. With the Custom configuration method select
the Configure Submit dialog box changes to contain a large text box (in addition to the ‘Defin
Connection’ button). For many types of data destinations, you’ll also see a button titled ‘Auto
erate.’

The Custom configuration method requires that you enter text that instructs the data destina
perform the form submission. The text that you enter is specific to the type of data destinatio
you are connecting to. For example, if you’re connecting to a Sybase database, you’ll enter S
statements that conform to Sybase’s syntax, whereas if you’re connecting to a web server, y
enter an HTTP Post request. The following example submits an invoice into two tables of a S
database.

1-84 Adding Intelligence To Your Forms

 .
 .

 .

s that
s value
than
s
-

.
 that

ed
 cells

ws

erate’
e
seful
.
begin transaction
use accounting
go
insert into InvoiceHdr (inv_no, cust_no, inv_date, terms, ship_meth)
 values (convert(varchar, '<<Invoice Number>>'), convert(varchar, '<<Customer
Number>>'),
 convert(datetime, '<<Date>>'), convert(char, '<<Terms>>'),
 convert(varchar, '<<Ship Method>>'))
<<#LOOP>>
insert into InvoiceDtl (inv_no, part_no, quantity, price)
 values (convert(varchar, '<<Invoice Number>>'), convert(varchar,
'<<PartNumber>>'),
 convert(int, '<<Quantity>>'), convert(money, '<<Price>>'))
<<#ENDLOOP>>
commit transaction

Regardless of the type of data destination you’re connecting to, the statements or instruction
you enter should instruct the data destination to accept one or more values. To include a cell’
in the instructions, simply enclose the cell name within double-less than and double-greater
characters. In the example shown above, the insert statements include the values of the cell
“Invoice Number,” “Customer Number,” “Date,” “Terms,” “Ship Method,” “Part Number,” “Quan
tity,” and “Price.”

In order to insert the multiple values of a column cell, Informed provides a looping mechanism
Without this mechanism, the reference to a column cell will correspond to only the first row of
cell. For example, the example SQL statement below will insert one row into the table named
“InvoiceDtl.” The first value of the column cells “PartNumber,” “Quantity,” and “Price” would be
inserted.

insert into InvoiceDtl (inv_no, part_no, quantity, price)
 values (convert(varchar, '<<Invoice Number>>'), convert(varchar,
'<<PartNumber>>'), convert(int, '<<Quantity>>'), convert(money, '<<Price>>'))

If you surround statements with the keywords “<<#LOOP>>” and “<<#ENDLOOP>>,” Inform
Filler will automatically repeat those statements once for each non-empty row of any column
referenced.

<<#LOOP>>
insert into InvoiceDtl (inv_no, part_no, quantity, price)
 values (convert(varchar, '<<Invoice Number>>'), convert(varchar,
'<<PartNumber>>'), convert(int, '<<Quantity>>'), convert(money, '<<Price>>'))
<<#ENDLOOP>>

If the table containing the column cells “PartNumber,” “Quantity,” and “Price” contained four ro
of information, the insert statement would be repeated four times.

Data destinations that support both Easy and Custom configuration will contain an ‘Auto-Gen
button on the Configure Submit dialog box. Clicking this button will automatically generate th
appropriate instructions according to the current Easy configuration settings. This feature is u
if you want to change—or customize—the effect of the Easy configuration in a small way.

Adding Intelligence To Your Forms 1-85

 .
 .

 .

m’
ut-
nding

m
ti-

tton.
ils can
”

 both
ource
orm
atabase
sing

t be dif-

 ‘All

the
 and
 link-

 only

m sub-
nfigu-

.

After completing the Easy configuration, switch to the Custom method by clicking the ‘Custo
button at the bottom-left of the Configure Submit dialog box. Then click the ‘Auto-Generate’ b
ton. Informed Designer will examine the current Easy configuration and generate the correspo
instructions. These instructions will appear in the large text box as though you had typed the
yourself. If the text box already contains instructions, they will be replaced with those automa
cally generated.

Data sources that do not support Easy configuration can also include the ‘Auto-Generate’ bu
The action taken depends on the particular connection type that you’ve selected. These deta
be found in the on-line document “DGRPLG.PDF” (Windows) or “Informed Designer Plug-ins
(Mac OS).

Configuring for Multiple Platforms

Many of the databases and data destinations that Informed can link with are accessible from
the Windows and Mac OS platforms. However, the details of accessing a database or data s
from each of the platforms might be different. For example, suppose that you’re configuring f
submission to an Oracle database. For Mac OS users, you might be accessing the Oracle d
using the Macintosh Oracle client software (SQL*NET), whereas on Windows you might be u
ODBC instead. The specific parameters needed to connect to the database, therefore, migh
ferent depending on which platform the Informed Filler user is using.

The Configure Submit dialog box contains a drop-down list with the items ‘This platform’ and
platforms.’

For each different connection type, Informed Designer knows if the configuration details are
same or different for the two platforms. If the connection type is supported on both platforms
the configuration details are the same on both, the ‘All platforms’ option will be available. The
ing you configure on one platform will function on both.

If the configuration details are different for each platform, or if the connection type is available
on the platform you’re using, ‘This platform’ will be the only choice available in the drop-down
list. For accessing these types of databases and data destinations, you have to configure for
mission on one platform, then move the form template to the other platform and repeat the co
ration. Informed Designer stores the configuration for both platforms. Informed Filler uses the
configuration that corresponds to the user’s platform.

1-86 Adding Intelligence To Your Forms

 .
 .

 .
e
n of
es

 Cell

plays
the cell.

e”

he

s sec-
alled
r’s cell
.
Although it may be necessary to configure form submission twice, once on each platform, th
resulting form template document is still a platform neutral document. That is, a single versio
the template will work with Informed Filler on both platforms. Informed Filler automatically us
the configuration information that is appropriate for the user’s platform.

Using the Cell Palette
The Cell palette is a convenient feature that provides quick access to cell settings. Using the
palette, you can quickly and easily perform the following tasks:

■ change the name and title of a cell

■ easily find a cell by name in the Cell List

■ configure a selected set of attributes for a cell by clicking buttons on the palette

■ access Informed Designer’s cell settings commands with the click of a button

You can show the Cell palette by choosing Cell Palette from the Show submenu under Layout. To
hide the Cell palette, click its close box or choose Cell Palette again. The following figure shows
the parts of the Cell palette.

The top section of the Cell palette is called the Cell Name section. The Cell Name section dis
the name of the currently selected cell, and can be used to change both the name and title of
With no cells selected, the Cell Name section displays as a gray bar with the words “No cells
selected.” If a single cell is selected, the Cell Name section changes to display the word “Nam
followed by a text box containing the name of the selected cell. With multiple cells selected, t
Cell Name section shows as a gray bar with the words “Multiple cells selected.”

Below the Cell Name section are two rows of buttons. The top row is called the Cell Attribute
tion. These buttons allow you to set specific attributes for selected cells. The bottom row is c
the Cell Commands section. These buttons provide shortcuts to choosing Informed Designe

Using the Cell Palette

Cell Name section

Show/Hide Cell List control

Cell Attribute section

Cell Commands section

Cell List section (scrolling list can be shown or hidden)

Resize box

Adding Intelligence To Your Forms 1-87

 .
 .

 .

 in

g this
ll pal-

ttons
 in the

S), or
cells.

 the

ext
ssing
he cell
nd

press-
-

 if you

title.
itle
.

settings commands. The Cell Attributes and Cell Commands sections are described in detail
“Cell Attributes” and “Cell Commands” later in this chapter.

The Cell palette also contains a control near the right edge of the Cell Name section. Clickin
control shows and hides the Cell List section, a scrolling list appended to the bottom of the Ce
ette. See “Using the Cell List.”

Activating the Cell Palette

Until you draw a new cell or select an existing cell, the Cell palette is inactive. That is, the bu
are unavailable, the Cell Name section doesn’t display a cell name, and no cells are selected
Cell List section.

To make the buttons available, simply draw a new cell or select an existing cell on the form.

To activate the Cell Name section, you can:

■ select a cell on the form and press F2 (Windows) or Command-Tab (Mac OS)

■ select the ‘Name’ text box

■ click a cell in the Cell List section and press Tab

To move off of the Cell palette and back to the form, press Enter (Windows) or Return (Mac O
simply click on an empty part of the drawing area, or on an object that does not contain any

Changing Cell Names

You can use the Cell palette to quickly change the name of any cell on your form. To do this,
Cell Name section on the Cell palette must be active.

To rename a single cell, select it, then press F2 (Windows) or Command-Tab (Mac OS). The
‘Name’ text box is highlighted. You can also activate the Cell Name section by selecting the t
box. Type the new name in the text box and press Enter (Windows) or Return (Mac OS). Pre
Enter/Return leaves the Cell palette and returns to the form. The new cell name appears in t
on the form and, if the Cell List section is visible, you’ll also see the new cell name updated a
selected in the scrolling list.

You can move through the tab order of your form and rename several cells in succession by
ing F2 (Windows) or Command-Tab (Mac OS) after typing a new cell name. Pressing F2/Com
mand-Tab selects the next cell in the tab order without leaving the Cell palette. For example,

Note If you haven’t already specified the title of a cell, changing the cell name also changes the
However, once you manually change the title of a cell, changing the cell name leaves the t
untouched.

1-88 Adding Intelligence To Your Forms

 .
 .

 .
b

e in
 Dou-
rrow
lick-

use,
me.
voke

d text
ist

llow
g

riate
ns do

k the
ple, if

tings

ll’s
 its
.
select the cell with tab position 2 and change its name to ‘Sold To,’ pressing F2/Command-Ta
updates the cell name and then automatically selects the cell with tab position 3.

Using the Cell List

The Cell List section lists all cells on the form template, sorted by name. Clicking a cell’s nam
the list selects the cell (in the Cell List only), and deselects any selected objects on the form.
ble-clicking a cell name in the list also selects the cell on the form and briefly displays a red a
to indicate the cell’s position. When visible, the Cell List section can be resized vertically by c
ing and dragging the resize box at the bottom-right corner.

When the Cell List section is visible, you can select a cell in the scrolling list by using the mo
by pressing the Up and Down Arrow keys, or by typing the first few characters of the cell’s na
After selecting a cell, you can click any of the buttons on the Cell palette to set attributes or in
commands.

You can use the Tab key to toggle between the Cell Name and Cell List sections. A highlighte
box indicates that the Cell Name section is active. A highlighted border around the scrolling l
shows that the Cell List is the active section.

Cell Attributes

The top row of buttons on the Cell palette is called the Cell Attribute section. These buttons a
you to set specific attributes for selected cells on your form without using commands or dialo
boxes. These attributes include certain cell types, the checkbox style, and various data entry
options.

To use the Cell Attribute buttons, select one or more cells on your form, then click the approp
button. The chosen attribute will be applied to all of the selected cells. The Cell Attribute butto
not toggle on and off when you click them. To change an attribute that was set with the Cell
attribute buttons, you must choose the appropriate command from the Settings menu (or clic
corresponding Cell Commands button) and change the attribute using a dialog box. For exam
you click the ‘Entry is Required’ button to set a cell’s data entry status, you must choose Cell...
from the Settings menu (or click the Cell button) and change the entry status on the Cell Set
dialog box.

The following sections describe each button and its function.

Cell Type Attributes
The Text Cell, Number Cell, and Date Cell buttons are used to set a cell’s type attribute. A ce
type should match the information that it holds. For example, if a cell holds date information,
type should be date.

Adding Intelligence To Your Forms 1-89

 .
 .

 .

at is,
h as a

.”

/DD/

s. See
ng

heck-

s for
e
lly
.

Clicking the Text Cell button sets the selected cell’s type to Text with no special formatting (th
no Case or Entry options). You can use this attribute for cells that hold textual information suc
comment or a memo.

Use the Number Cell button to set a cell’s type to number with the following format: “#,##0.00
With this format, the number 1500 is displayed as 1,500.00.

Clicking the Date Cell button makes the selected cell a date cell with the following format: “M
YY.” Using this format, the date 07/26/96 is formatted as 7/26/96.

The Text, Number, and Date types are only three of the nine cell types that Informed support
“Cell Types” earlier in this chapter for detailed information about other cell types and formatti
options.

Checkbox Style Attribute
Use the Checkbox button to display a field or column cell as a checkbox with the simple ‘X’ c
box style. For more information on checkboxes, see “Checkboxes” in Chapter 7 of your Informed
Designer Design and Graphics manual.

Data Entry Attributes
The Display Only, Quick-Tab, and Entry is Required buttons are used to set data entry option
selected cells. Data entry options allow you to determine how information is entered when th
Informed Filler users fills out a form. By selecting a cell and clicking a button, you automatica
set the corresponding data entry attribute for that cell.

The following figure shows the attribute associated with each button.

For a detailed description of the Display Only and Entry is Required attributes, see “Entry
Options.” For information about Quick-Tabs, see “Quick-Tabs.”

Text Cell

Number Cell

Date Cell

Display Only

Quick-Tab

Entry is Required

1-90 Adding Intelligence To Your Forms

 .
 .

 .

gs
 the
ple, if
ialog

ion on

late,
s, dis-

 form
 The
 cus-
plays
.
Cell Commands

The bottom row of buttons on the Cell palette are shortcuts to Informed Designer’s cell settin
commands. When you select a cell and click one of the buttons, Informed Designer displays
corresponding dialog box, allowing you to change the settings for the selected cell. For exam
you select a cell and then click the Cell button, Informed Designer displays the Cell Settings d
box.

The following figure shows the cell settings command associated with each button.

Informed Designer’s cell settings commands can be found under the Settings menu. Informat
all these commands is available in earlier sections of this chapter.

Cell Report
Previous sections in this chapter explain how forms can be configured to automatically calcu
check, and look up information. Commands exist that allow you to specify cell help message
play formats, and choice lists.

For large forms, the configuration of cells can be complex. Making even simple changes to a
can require first understanding how the different cells are related and depend on each other.
Cell Report command allows you to print a list of cells and their attributes. The report can be
tomized for your specific needs. Choosing the Cell Report command from the Form menu dis
the Cell Report dialog box.

Cell Report

Cell

Format

Value

Check

Conditional Tabbing

Lookup

Help Message

Adding Intelligence To Your Forms 1-91

 .
 .

 .

hat
rrent
 You
’

on
dd.’

ort,

. The
hange

og
d

t-

esired
mand
 last

ds.

med

n
 cell
.

You customize the cell report by selecting which cell attributes to include as well as options t
determine which cells to print and their order. You can print all cells, only those cells on the cu
page, or only the currently selected cells. Choose your setting from the ‘Print’ drop-down list.
can sort the report by either cell name or tab position by selecting an option from the ‘Sort by
drop-down list.

The scrolling list labeled ‘Cell Attributes’ contains the different cell attributes that can appear
the cell report. To include an attribute in the report, select its name in the left list, then click ‘A
The attribute name will appear in the ‘Attributes in report’ list. The attributes will be printed in
columnar format in the order that they appear in this list. To remove an attribute from the rep
select its name in the right list, then click ‘Remove.’

You set the page setup of the cell report by clicking ‘Page Setup’ on the Cell Report dialog box
standard Page Setup dialog box for the currently chosen printer will appear allowing you to c
the page size and orientation, or select any printer specific options.

To print the cell report, click ‘Print’ on the Cell Report dialog box. The standard Print Job dial
box for the currently chosen printer will appear, allowing you to specify the number copies an
other printing options.

Clicking ‘Print’ or ‘OK’ on the Print Job dialog box will begin printing the report. To cancel prin
ing, click ‘Cancel’ instead.

To avoid having to re-configure the cell report each time you want to print a report, Informed
Designer lets you save the settings on the Cell Report dialog box. Once you’ve selected the d
report options, click the ‘Save Settings’ button. The next time you choose the Cell Report com
for the current document, Informed Designer will automatically restore the settings that were
saved.

When you’ve finished printing or configuring the cell report, click ‘Done’ to dismiss the Cell
Report dialog box.

Testing Your Form Template
The previous sections in this chapter describe Informed Designer’s data intelligence comman
These commands are used to add intelligent features to your form templates.

Although you require Informed Filler to store, retrieve, and manipulate completed forms, Infor
Designer allows you to test the intelligent features of your form during the design process.
Informed Designer’s Test mode simulates filling out a single form with Informed Filler. You ca
test calculations, formatting options, and other intelligent features of your form. You can fill in
values to see the effect of different font and type style settings.

Note Changing the page setup for the cell report does not affect the page setup for the form.

Testing Your Form Template

1-92 Adding Intelligence To Your Forms

 .
 .

 .
er’s
r for

 any
e the

s are

e.

 to
ss
he
 or
any

ered
alse
check
.
This section describes the commands available to you while testing a form. Informed Design
data intelligence commands are not explained here. See the previous sections in this chapte
information about these commands and other data-related features.

To test your form, choose the Test command from the Form menu. Informed Designer hides
palettes, and disables any design related commands. To switch back to design mode, choos
Test command again.

Entering Information

Switching to Test mode is like requesting a new record with Informed Filler. Default cell value
filled in for you and the cell with tab position ‘1’ is selected.

If you’ve previously tested your form, information that you entered in cells will still be availabl
You can clear this information by choosing Clear Record from the Form menu.

You fill out a form by typing or pasting information into each cell. You can move from one cell
the next by pressing the Tab key or by clicking a different cell with the pointer. When you pre
Tab, Informed Designer will move you to the next cell in tab position order. If you hold down t
Shift key while pressing Tab, the previous cell is selected instead. If you press F2 (Windows)
Command-Tab (Mac OS), you’ll move directly to the next Quick-Tab cell. If you’ve configured
conditional tabs, you’ll see their effect while testing your form.

When you move from one cell to another, Informed Designer checks the information you ent
by evaluating the cell’s check formula (if it contains one). If the check formula fails (returns a F
result), Informed Designer will sound a beep and select the incorrect value. If the cell has no
formula, any entry is accepted.

Adding Intelligence To Your Forms 1-93

 .
 .

 .

m-
 cell.
ay

ert
, the
e

hange
e cell

to-

ver

ell’s
 cell,
d

 back
es in
e the

alette
en
d
.

Inserting Files
While testing a form template, another way to fill in parts of a form is to use the Insert File co
mand. This command allows you to import a text file into a text cell, or a picture into a picture
For the command to be available, the current cell must be a text or picture cell, and its ‘Displ
only’ option must be turned off.

To insert a file, select the cell, then choose Insert File... from the Form menu. For picture cells
only, pressing the Enter (Windows) or Return (Mac OS) key is a shortcut for selecting the Ins
File command. The standard Open dialog appears, allowing you to select a file. For text cells
selected text file will be inserted into the cell at the current insertion point. For picture cells, th
selected picture replaces the current picture in the cell.

Entering Checkboxes
When you move to a checkbox cell, the frame flashes, indicating that the cell is selected. To c
the value of a checkbox (from checked to unchecked, or vice versa), press any key or click th
with the pointer.

If you check a checkbox that’s clustered with other checkbox cells, Informed Designer will au
matically turn off all other checkboxes that are part of the same cluster.

Calculated Cells

Informed automatically fills in calculated cells. A cell’s calculation formula is evaluated whene
the value of any cell that participates in the formula changes.

If a cell’s display only option is turned on, Informed Designer won’t allow you to change the c
calculated value. The cell will be excluded from the tab order and when you try to type in the
you’ll hear a beep. If the display only option is turned off, you can change the cell’s calculate
value by selecting the cell and typing a different value.

Once you’ve typed to override the value of a calculated cell, you can easily change the value
to the cell’s calculated value. Simply type a different value into one of the cells that participat
the calculation formula of the calculated cell—this triggers the calculation again—then re-typ
appropriate value into that cell.

Choices

For cells that have choices, you can enter information by selecting an entry from a choices p
or a drop-down list. For more information, see “Choices” earlier in this chapter. If you’ve chos
the ‘Floating palette’ and ‘Auto display’ options for a cell, Informed will automatically show an
hide the Choices palette when you move to and from the cell.

1-94 Adding Intelligence To Your Forms

 .
 .

 .

ose the

-
d

ile in
“Test-

 can

tomat-
nting
.

You can also show the Choices palette by choosing Show Choices from the Form menu. When the
Choices palette is displayed, a checkmark appears next to the Show Choices command. Cho
command again to hide the Choices palette.

Lookups

In design mode, you can link your form with other information systems using the Lookup com
mand. For example, you could have Informed Filler automatically ‘look up’ the description an
price of a part in an inventory database when you type a part number on your invoice.

Only certain types of lookups function while you test a form. For a detailed explanation of
Informed’s lookup capabilities, see “Lookups” earlier in this chapter.

Signing Forms

You cannot test signing forms and verifying signatures with Informed Designer. However, wh
Test mode you can see what a signed signature cell will look like. For more information, see
ing Signature Cells” in Chapter 2.

Buttons

Although you can click buttons while testing a form, doing so will not test their action. Buttons
only be tested using Informed Filler.

Auto-incrementing Cells

When you choose the Test command to switch to Test mode, Informed Designer does not au
ically enter the next available values for any auto-incrementing cells. To test an auto-increme
cell while in Test mode, select the cell, then choose Assign Next Value from the Form menu.

Adding Intelligence To Your Forms 1-95

 .
 .

 .

%,
nlarg-

down
.

Changing the View Scale

When you fill out a form with Informed Filler, you can choose a view scale between 50%, 100
and 200%. Reducing the view scale allows you to see more of the form in the form window. E
ing the view scale can improve the readability of small type. While you test your form with
Informed Designer, you can change the view scale by selecting a scale from the ‘View’ drop-
list at the bottom-left corner of the window.

1-96 Adding Intelligence To Your Forms

 .
 .

 .

.

2

Using Digital Signatures

In this chapter:

■ How Signatures Work 2-2

■ Signing Plug-ins 2-3

■ Signing With Informed Filler 2-3

■ Signature Cells 2-4

■ Important Precautions 2-7

2-2 Using Digital Signatures

.
.

.
.

n
ctron-
me

g
rm.

rms

ith
adds
ity

 form

igner
 elec-

ning
es in
t

2Using Digital Signatures
Approval is often a necessary step in the processing of a form. Traditionally, forms have bee
approved on paper by signing them with a pen. Today, technology allows us to sign forms ele
ically with digital signatures. Signing electronically reduces the need to print forms and, in so
ways, offers more security than paper signatures.

You configure a template for signing by drawing one or more signature cells on the form usin
Informed Designer. Each signature cell can sign the entire form or only certain parts of the fo
With a properly configured form template, Informed Filler users can easily sign completed fo
and check the validity of signatures.

Informed supports the use of digital signature technology both for signing completed forms w
Informed Filler, and for authorizing templates with Informed Designer. Authorizing a template
an additional level of security to forms that are filled out and signed electronically. This secur
feature is described in detail in Chapter 7, “Authorizing Form Templates.”

In this chapter, you’ll learn how digital signatures work and the steps necessary to configure a
template for electronic signing.

How Signatures Work
Digital signature technology employs sophisticated encryption algorithms to provide reliable s
identification and fail safe tamper detection. This means that once someone has signed data
tronically, the resulting digital signature can be used to:

■ verify the identity of the person who signed the data

■ detect whether or not the data has changed since it was signed

A digital signature is like a special number that’s derived from information about the person sig
and the data being signed. This number can reliably identify the signer and detect any chang
the signed data. While the digital signature is stored with the signed data, the data itself is no
altered in any way.

How Signatures Work

Using Digital Signatures 2-3

 .
 .

 .

ts with
 itself

act as
 by

er-
 ser-

med

can
plug-
er.

dless
e

 form
ature

.

Once a digital signature is created, you can easily verify its validity. The verification process
involves re-creating parts of the digital signature using current data, then comparing the resul
the original signature. If they are not equal, then either the signed data or the digital signature
has been changed or tampered with.

Before users can sign electronically, it is usually necessary that they obtain special files that
their “electronic identity” for signing purposes. These files are often controlled and distributed
an organization’s security or administrative manager.

Signing Plug-ins
Rather than having a single, built-in signing service, Informed relies on the digital signature s
vices available on your computer. Nortel’s Entrust and Apple’s DigiSign are examples of such
vices.

Informed Designer and Informed Filler gain access to digital signature services through Infor
signing plug-ins. A signing plug-in interacts directly with the available digital signature services
and insulates Informed from the complexities of different signing technologies. That way we
introduce support for new or different signing technologies by simply developing new signing
ins. Like any Informed plug-in, signing plug-ins must be placed in your Informed plug-ins fold

Signing With Informed Filler
Most signing services provide ways of signing files. Signing this way signs an entire file, regar
of its content. Signing forms with Informed Filler offers significant advantages over signing th
entire file. Informed Filler users can sign parts of forms or entire forms, and the way they sign
forms is more similar to the way paper forms are signed.

When a form is signed with Informed Filler, the user is actually signing a single record. Each
filled out with Informed Filler is stored as a single record in a data document. Each digital sign

Signing Plug-ins

Signing With Informed Filler

Digital signature
930@7#89!&

Attached to form

2-4 Using Digital Signatures

 .
 .

 .

tiple
 other
event
tents

They

r 4,

a sig-
y
e on
 of

ign dif-
o dif-
ective
r two

.
applies to some or all of the data for a single record, even if the data document contains mul
records. This means that the Informed Filler user can sign one form (or record), then change
records in the data document without affecting the digital signature on the signed form. To pr
the user from unintentionally changing signed data, Informed Filler locks cells once their con
have been signed.

Informed Filler provides other features that make using digital signatures easy and efficient.
include the ability to:

■ see exactly which cells a particular signature cell signs

■ sign multiple records at the same time

■ verify multiple digital signatures at the same time

■ automatically verify digital signatures so that you don’t have to.

For a complete explanation of Informed Filler’s digital signature features, please see Chapte
“Using Digital Signatures” in your Informed Filler User’s Manual.

Signature Cells
A signature cell is a cell that can store a digital signature. With Informed Designer, you draw
nature cell the same way you draw any other field cell—using the Field tool. With the flexibilit
that the Field tool offers, you can make a signature cell look just like the space for a signatur
any paper form. For a complete explanation of Informed Designer’s Field tool, see Chapter 6
your Informed Designer Design and Graphics manual.

You can draw more than one signature cell on a single form. Each cell can be configured to s
ferent information. For example, a form that has two sections which are often filled out by tw
ferent people could have two signature cells. Each cell would sign only those cells in its resp
section. You could even have a third signature cell that signs the entire form including the othe
signatures.

Signature Cells

SignatureDate signed

Using Digital Signatures 2-5

 .
 .

 .

 With

ll

ist to
lick

mat
l, how-
uppose
nd

ted,
.

.

You use Informed Designer’s Format command to indicate which cells a signature cell signs.
a signature cell selected, choose Format... from the Settings menu to display the Format dialog
box.

The scrolling list contains all cells on the form template with the exception of the signature ce
itself. To indicate that a cell is to be signed, select its name in the list, then click ‘Sign.’ Click
‘Unsign’ to exclude a cell from being signed. As a shortcut, you can double-click a cell in the l
toggle its setting between signed and unsigned. To include or exclude all cells on the form, c
either ‘Sign All’ or ‘Unsign All.’

When configuring a signature cell, other signature cells appear in the scrolling list on the For
dialog box. A signature cell, therefore, can sign other signature cells. Signing a signature cel
ever, does not automatically sign the cells that the other signature cell signs. For example, s
that cell A signs five cells and cell B signs cell A. Signing the form in cell B signs cell A only, a
not the five cells that cell A signs.

Note You cannot configure multiple signature cells at the same time. With two or more cells selec
the ‘Signature’ choice in the ‘Type:’ drop-down list on the Format dialog box is not available

Form with
three signatures

1st signature cell
signs 1st section

2nd signature cell
signs 2nd section

3rd signature cell
signs all cells

2-6 Using Digital Signatures

 .
 .

 .

ns
igital

sig-
rmed
d to
 or

 click
k

 sig-
 icon in
igna-

If you
f the

 Type
e (and

s,

les to
request
ing,
.
The Signing Service

The ‘Signing service’ drop-down list contains the names of the signing plug-ins in your plug-i
folder. Normally you’ll see only one signing plug-in, such as Entrust, that corresponds to the d
signature technology used in your organization.

The ‘Signing service’ drop-down list also contains a ‘User’s choice’ item. When configuring a
nature cell, you can specify that a particular signing service be used or you can allow the Info
Filler user to choose the service. If you select the ‘User’s choice’ option, the user will be aske
select which signing service to use when signing forms. This will happen only if there are two
more signing plug-ins installed.

Once you’ve indicated which cells are to be signed, and selected the correct signing service,
‘OK’ on the Format dialog box to save the configuration. To cancel the Format command, clic
‘Cancel’ instead.

Display Options

With Informed Filler, the presence of a digital signature is indicated by a signature icon in the
nature cell. The name of the person who signed the form appears to the right of the signature
the cell’s font, font size, style, and alignment. When testing a template, you’ll see the word “s
ture” instead.

Informed Filler can also display the date on which a record was signed in the signature cell.
select the ‘Show date with signer’s name’ option, the date of signing will appear to the right o
signer’s name.

Like any cell, you can change the font, size, style, and alignment of a signature cell using the
command or the Style submenus. When selecting the cell’s type settings, be sure that the nam
date, if selected) will fit in the dimensions of the cell. For more information about type setting
please see Chapter 7 of your Informed Designer Design and Graphics manual.

Signing Attachments

Chapter 5, “Attachments,” in your Informed Filler User’s Manual explains how the Informed Filler
user can attach files to records. This feature is useful if the user wants to attach associated fi
completed forms. For example, an engineering organization may use an engineering change
form to authorize design changes. If the design documents were also stored electronically us

Using Digital Signatures 2-7

 .
 .

 .

ing
rd’s

an pro-
 a
box.

 for-

 or by
all
 a

nd
erwise

previ-
te to
o tem-
orms,
aves
ny

tion

.

say, a CAD program, the user could attach the relevant design documents to the correspond
engineering change request form. Informed Filler stores the attached file along with the reco
cell data in a data document.

Like cell data, attached files can also be signed by a signature cell. By doing so, a signature c
tect the integrity of attached files in addition to the information on the form itself. To configure
signature cell to sign attachments, select the ‘Sign attachments’ option on the Format dialog

Testing Signature Cells

Informed Designer’s Test mode allows you to fill out a single record to test your calculations,
matting, and other intelligent features.

When testing a form, you can select a signature cell like any other cell: by tabbing to the cell,
clicking the cell with the mouse. When selected, a bold outline frames the cell’s interior, and
cells that are signed by that cell are framed with a red box. You cannot, however, test signing
record or verifying a signature using Informed Designer’s Test mode.

Important Precautions
Care must be taken when planning the use of digital signatures. Once users have filled out a
signed forms, changes to the template that might affect the signed data must be avoided. Oth
you risk unintentionally invalidating existing digital signatures.

Changes that can invalidate existing digital signatures include:

■ changing the cell type of a cell that contains signed data

■ deleting a cell that contains signed data

■ changing the configuration of a signature cell (changing which cells it signs).

If you need to change a form template (in the ways described above) that is associated with
ously filled out and signed records, you should make the change in a new copy of the templa
avoid affecting the existing data and digital signatures. This means that users would have tw
plates, one containing the unchanged design for use with previously completed and signed f
and the other containing the revised design with which new records could be entered. This le
the data of the previously completed forms unchanged, therefore preserving the integrity of a
existing digital signatures.

For more information about revising form templates, see Chapter 8, “Form Template Distribu
and Revision.”

Important Precautions

2-8 Using Digital Signatures

 .
 .

 .

.

3

Customizing Menus

In this chapter:

■ The Menu Bar 3-2

■ Configuring a Menu 3-3

■ Menu Item Types 3-4

■ Help Menus 3-11

■ Printing the Menu Configuration 3-12

3-2 Customizing Menus

.
.

.
.

 both
rticular
ormed

ser.

the
and

ft to
tem-
n.

s

3Customizing Menus
The flexible nature of Informed’s features makes it suitable for designing forms that automate
general as well as very specific processes. To help make a form more “custom suited” to a pa
purpose, Informed Designer allows you to customize the menus that are presented to the Inf
Filler user. By customizing menus you can:

■ remove menus and commands that are not important or relevant to your form template

■ use terminology that is specific to the process for which a template is designed

■ add commands that perform custom tasks

Customizing menus can provide a simpler and more familiar environment for the form filling u
This can result in higher productivity and fewer errors. In this chapter you’ll learn how to use
Informed Designer’s Menus command to configure the menu bar, the individual menus, and
items that are contained in each menu. You’ll also learn about the different menu item types
their uses.

The Menu Bar
The menu bar consists of one or more—usually several—menus aligned horizontally from le
right. Each menu contains one or more menu items, usually grouped by function. Each new
plate created with Informed Designer is automatically assigned a standard menu configuratio

To customize the menu bar, choose Menus... from the Configure submenu under Form. The Menu
dialog box appears.

The Menu Bar

Customizing Menus 3-3

 .
 .

 .

e posi-

 name

ected
en

y

t each

items
the list

m in
dded
cted.

.

Initially, the scrolling list shows the menus in the menu bar. The top-to-bottom ordering of the
menus represents the left-to-right positioning of each one in the menu bar. You can change th
tion of a menu by selecting it in the list and dragging it up or down. You can change a menu’s
by selecting it in the list and typing its new name in the ‘Menu name’ text box.

To add a new menu, click ‘Add.’ The new menu is added immediately below the currently sel
menu, or at the top of the list if no menu is selected. To remove a menu, select it in the list, th
click ‘Remove.’

At any time while configuring menus, you can revert to the standard Informed Filler menus b
clicking the ‘Restore Standard Menus’ button.

Configuring a Menu
Configuring a menu involves adding and removing menu items and specifying the action tha
item performs. To configure a menu, first select it in the scrolling list, then click ‘Configure,’ or
simply double-click the menu name in the list. The scrolling list changes to display the menu
for the selected menu, and the drop-down list above shows the title of that menu. To change
back to the menu bar, select ‘Menu bar’ from the drop-down list.

Like menus in the menu bar, you can change the position of a menu item by selecting the ite
the list and dragging it up or down. To add a new menu item, click ‘Add.’ A new menu item is a
immediately below the currently selected item, or at the top of the list if no menu item is sele
To remove a menu item, select it in the list, and click ‘Remove.’

Configuring a Menu

Note A menu with no menu items will not appear to the Informed Filler user.

3-4 Customizing Menus

 .
 .

 .

m the
n be

mply
ned

sing
letter
ti-
hich

e “D”

.

Menu Item Types
Each menu item is of a particular type. Menu item types include:

■ Built-in command

■ Script

■ Plug-in command

■ Submenu

■ Document names

■ Script names

■ Record tags

■ Record list formats

■ Plug-in command names

■ Font

■ Size

■ Type style

■ Separator line

To configure a menu item’s type, select the menu item in the scrolling list and select a type fro
‘Type’ drop-down list. Menu items that are built-in commands, scripts, or plug-in commands ca
renamed by typing a new name in the ‘Item title’ text box.

You can also assign key equivalents to any built-in command, script, or plug-in command. Si
type the key in the ‘Key equivalent’ text box. A key equivalent is invoked by pressing the assig
key while holding down the Ctrl key (Windows) or the Command key (Mac OS).

In addition to an assigned key equivalent, the Informed Filler user can choose a menu item u
the standard Windows keyboard interface. This involves pressing the Alt key, then typing the
that appears underlined in the menu or menu item’s title. Although Informed Filler will automa
cally decide which letters are underlined in the menu and menu item titles, you can specify w
letter yourself by preceding it with the ampersand character (&). For example, to underline th
in “New Document...,” type the title as “New &Document...”

Menu Item Types

Note The letters “x,” “U,” “t,” “C,” and “P” are reserved for standard Windows commands (Exit,
Undo, Cut, Copy, and Paste).

Customizing Menus 3-5

 .
 .

 .

er.
d

ents,
nges
, the

n
ands
ill

ns. A
r on

ipt is
.

Built-in Commands

Built-in commands correspond to the commands and settings that are built into Informed Fill
They include the commands and settings that are associated with the menu items of Informe
Filler’s standard menu configuration. All available built-in commands are listed in the ‘Built-in
Commands:’ scrolling list. To select a built-in command, simply click its name in the list.

Certain built-in commands can not have custom menu item titles. They include: Show Attachm
Show Record List, and Show Signed Cells. This is because Informed Filler automatically cha
the command name depending on context. For example, if the Attachments window is active
Show Attachments command changes to Hide Attachments.

Both Windows and Mac OS have standard conventions for naming the command that quits a
application. On Windows the command is Exit. On Mac OS the command is Quit. Like comm
such as Show Attachments, you cannot change the name of this command. Informed Filler w
automatically use the correct command name according to the platform used.

The Mac OS command “Show Clipboard” is not a standard command for Windows applicatio
menu item that is configured to invoke this built-in command will not appear in Informed Fille
Windows.

For a brief description of the built-in commands, see Appendix B.

Scripts

A Script menu item is an item that invokes an attached AppleScript script. An AppleScript scr
attached to a template using the Scripts command in the Configure submenu of Informed
Designer’s Form menu. For more information, see Chapter 12, “Using AppleScript.”

3-6 Customizing Menus

 .
 .

 .

uters
e con-

mand

you
y,
at

 tem-
-

.

Since AppleScript is a Mac OS scripting system, AppleScript scripts do not function on comp
running Windows. For Windows users, Informed Filler does not show any menu items that ar
figured to invoke AppleScript scripts.

If AppleScript is not active, Informed Filler will show the menu item, but it will be unavailable.

Plug-in Commands

Some of Informed Filler’s features are made available by installing Informed plug-ins. Certain
plug-ins have commands associated with them. For example, the Receive From Newton com
will be displayed if the Newton Filler plug-in is installed. In order to configure a menu item to
invoke a plug-in command, you must have the plug-in installed in your plug-ins folder. When
select the Plug-in Command menu item type, the scrolling list below lists all commands, if an
associated with the plug-ins currently installed in your plug-ins folder. Select the command th
you want to invoke by clicking it in the list.

Note You can also configure a menu to include a menu item for each script that is attached to the
plate without having to configuring each individual item. See “Script Names” for more infor
mation.

Customizing Menus 3-7

 .
 .

 .

led,

e Font,

 text

e,’ or
ms,

and
.

If the Informed Filler user does not have the plug-in to which a menu item corresponds instal
the menu item will still appear; however, it will be unavailable.

Submenus

Submenus (also called hierarchical menus or cascading menus) are menus that are accessed
through a single menu item of a parent menu. Submenus are most often used for settings lik
Type Style, and Size.

You name a submenu by selecting it in the scrolling list and typing its name in the highlighted
box.

To configure the menu items of a submenu, select the submenu in the list and click ‘Configur
simply double-click the submenu in list. The left list changes to show the submenu’s menu ite
and the submenu’s title appears above the list.

Note You can also configure a menu to automatically include a menu item for each plug-in comm
so that you do not have to configure each command individually. See “Plug-in Command
Names” for more information.

3-8 Customizing Menus

 .
 .

 .

config-
se the

y rep-
 the
ferent
nu

ple
epara-
.

By using the various controls on the Menus dialog box, the menu items in a submenu can be
ured just like those in a regular menu. To reveal the items for a different menu or submenu, u
drop-down list to display the desired menu in the scrolling list, then double-click it.

Font, Size, and Type Style

The Font, Size, and Type Style menu item types allow you to include the menu items that the
resent in your menu configuration. Rather than configuring individual menu items for each of
different fonts, sizes, and type styles (especially since each Informed Filler user can have dif
fonts in their system), these menu items act as placeholders for the respective groups of me
items.

Although these menu item types appear as single menu items on the Menus dialog box, the
Informed Filler user will see the individual menu items that they represent. Below is an exam
configuration that places the Type Style and Font menu items in a menu titled “Font” with a s
tor line between them.

Font Size Type Style

Customizing Menus 3-9

 .
 .

 .

g them
ents,

enu

tes
 how

your
ard

.”

.

Document Names

Most applications allow you to open more than one document at once and select from amon
by choosing their names from a menu, often titled “Windows.” As you open and close docum
the Windows menu changes to reflect those that are currently open. The Document Names m
item type represents the names of documents currently open in Informed Filler.

Script Names

As explained in Chapter 12, “Using AppleScript,” you can attach AppleScript scripts to templa
so that they’re accessible to the Informed Filler user. “Scripts,” earlier in this chapter, explains
you can configure a menu item to invoke a particular script.

The Script Names menu item type allows you to include the names of all attached scripts in
menu configuration without having to configure each script individually. Informed Filler’s stand
menu configuration includes the script names as the only items under the menu title “Scripts

Note This placeholder will only show scripts not specifically configured elsewhere.

3-10 Customizing Menus

 .
 .

 .

ag is

 Filler
ecords
rmed

u.

ed
e dif-
for-

at the
 this
.
Record Tags

Chapter 8 of your Informed Filler User’s Manual explains how the Informed Filler user can tag a
collection of records so that the records can be easily retrieved at a later time. Each record t
named by the Informed Filler user.

The Record Tags menu item type represents the names of the record tags that the Informed
user has defined for the active document. The Informed Filler user restores the collection of r
to a set of tagged records by choosing the named record tag from a menu. The standard Info
Filler menus include a menu item of this type in the Tags submenu under the Database men

Record List Formats

Chapter 8 of your Informed Filler User’s Manual describes the Record List and how it can be us
to display multiple records in a list. The Informed Filler user can customize and name multipl
ferent formats for the Record List. For example, one record list format might show detailed in
mation whereas another might show only summary information.

The Record List Formats menu item type represents the names of the Record List formats th
Informed Filler user has defined. The standard Informed Filler menus include a menu item of
type in the Formats submenu under the List menu.

Customizing Menus 3-11

 .
 .

 .

plug-
enu
n the
m of

ot have

h
g-ins

ler
 type.

es the

ands
ura-

sh,

.

Plug-in Command Names

As explained earlier in “Plug-in Commands,” a command that’s associated with an Informed
in can be included in the menu configuration of a template. The Plug-in Command Names m
item type represents the names of all plug-in commands for the Informed plug-ins installed o
Informed Filler user’s computer. The standard Informed Filler menus include a single menu ite
this type in the Other menu.

The advantage of using the Plug-in Command Names menu item type is that templates do n
to be configured specifically for each different plug-in command. If you expect that different
Informed Filler users will have different plug-ins installed, then using the Plug-in Command
Names menu item type means that you could still have only one version of the template. Eac
Informed Filler user would see only those plug-in commands that are associated with the plu
installed on his or her computer.

If you would rather position different plug-in commands at different places in the Informed Fil
menu bar, then configure each command individually using the Plug-in Commands menu item

 Separator Line

Most menus include separator lines to group commands by type. Grouping commands improv
readability of a menu; use the Separator Line menu item type for this purpose.

Help Menus
Informed Filler provides on-line help for both the Windows and Mac OS platforms. The comm
associated with on-line help, however, are not configured as part of a template’s menu config
tion.

On Windows, Informed Filler will automatically append a menu titled “Help” to the end of the
menu bar. This menu contains the commands for displaying the on-line help. On the Macinto

Note This placeholder will only show plug-in commands not specifically configured elsewhere.

Help Menus

3-12 Customizing Menus

 .
 .

 .

of the

o

, and

.
these commands are available in the standard Guide menu that appears near the right side
menu bar. For detailed information about Informed Filler’s on-line help features, see your Informed
Filler Getting Started Guide.

Printing the Menu Configuration
At any time during the menu customization process, you can print your menu configuration. T
print your menu configuration, choose Menus... to display the Menus dialog box, then click ‘Print
Configuration....’ The page setup used to print the menu configuration (page size, orientation
so on) is the same as that of the template itself.

Printing the Menu Configuration

4

Using Buttons

In this chapter:

■ Drawing Buttons 4-2

■ Configuring a Button’s Action 4-3

4-2 Using Buttons

.
.

.
.

nges.
izing
se of
w and
 mak-

 that
em-
e, and

 of
r top of

inter
corner

6,

t, pen,
ee

 and
tton.

4Using Buttons
As we transition away from paper and towards electronic forms, the appearance of forms cha
Forms become more like applications that have a “custom” look-and-feel. Chapter 3, “Custom
Menus,” explains how Informed Filler’s menu commands can be customized for the specific u
a form. This chapter describes Informed Designer’s Button tool and how it can be used to dra
configure buttons to perform specific actions. Buttons can help make a form easier to use by
ing important or common commands and options visible on the form itself.

Buttons can be configured to invoke commands that are built into Informed Filler, commands
are available through Informed plug-ins, or AppleScript scripts that are attached to the form t
plate (Mac OS only). In this chapter you’ll learn how to draw buttons, change their appearanc
configure them to perform particular actions.

Drawing Buttons
Informed Designer’s tool palette contains the Button tool. With this tool you can draw buttons
any size. Buttons can have a normal appearance, or they can be transparent and placed ove
other objects such as pictures or icons.

You draw a button much like you do a rectangle. With the Button tool selected, position the po
where you want a corner of the button to start, then click and drag the pointer to the opposite
and release the mouse button.

When you draw a new button, its label is initially “Button.” You change a button’s label using
Informed Designer’s Text tool. For a detailed explanation of text editing, please see Chapter
“Drawing Tools,” in your Informed Designer Design and Graphics manual.

You can customize the appearance of a button by changing its font, size, type style, alignmen
fill, line width, and roundness of corners. For information on setting these attributes, please s
Chapter 7, “Changing an Object’s Appearance,” in your Informed Designer Design and Graphics
manual.

In addition to the attributes listed above, you can also choose among two button styles: plain
shadowed. A shadowed button is drawn with a small shadow below and to the right of the bu

Drawing Buttons

Using Buttons 4-3

 .
 .

 .

-
 list.

d
lating

three

t using

.

To set the style of a button, select it, then choose Button... from the Settings menu. When the But
ton Settings dialog box appears, select either ‘Plain’ or ‘Shadowed’ from the ‘Style’ drop-down

Like any type of object, buttons can be repositioned, resized, and manipulated using Informe
Designer’s Pointer tool and various commands. For more information see Chapter 8, “Manipu
Objects,” in your Informed Designer Design and Graphics manual.

Configuring a Button’s Action
A button is configured to perform an action when the Informed Filler user clicks it. There are
types of actions that a button can perform:

■ a command that’s built into Informed Filler

■ a command that’s associated with an Informed plug-in

■ an AppleScript script.

In addition to its action, a button also has a name. Both the name and action of a button are se
Informed Designer’s Button command. Select a button, then choose Buttons... from the Settings
menu.

Configuring a Button’s Action

Choose a button style from
this drop-down list.

4-4 Using Buttons

 .
 .

 .

tton, it
ame

then

er.
d
e

ing
.
You can give the button a meaningful name regardless of its label. When you draw a new bu
is initially named “Button1,” “Button2,” and so on. To change the button’s name, type a new n
in the ‘Name’ text box. Button names must be unique.

To configure a button’s action, first specify the action type by using the ‘Type’ drop-down list,
select the action from those in the scrolling list.

Built-in Commands

Built-in commands correspond to the commands and settings that are built into Informed Fill
They include the commands and settings that are associated with the menu items of Informe
Filler’s standard menu configuration. To select a built-in command, simply click its name in th
‘Built-in commands:’ list.

For a description of the built-in commands, see Appendix B.

Scripts

A button can be configured to invoke an attached AppleScript script. An AppleScript script is
attached to a template using the Scripts command in the Configure submenu of Informed
Designer’s Form menu. For more information, see Chapter 12, “Using AppleScript.”

Note You cannot test a button in Informed Designer’s Test mode. A button can be clicked, but do
so will not perform its configured action.

Using Buttons 4-5

 .
 .

 .

uters

sed

ut-

g-in
ug-in
s cur-

does
.

Since AppleScript is a Mac OS scripting system, AppleScript scripts do not function on comp
running Windows. For Windows users, Informed Filler will show a button that is configured to
invoke an AppleScript script, but clicking it will display the message “That button cannot be u
because it relies on AppleScript, a Mac OS scripting system.”

On Mac OS compatible computers, if AppleScript is not active, Informed Filler will show the b
ton, but it will be unavailable.

Plug-in Commands

Some of Informed Filler’s features are made available by installing Informed plug-ins. Certain
plug-ins have commands associated with them. In order to configure a button to invoke a plu
command, you must have the plug-in installed in your plug-ins folder. When you select the Pl
Command type, the scrolling list below lists all commands, if any, associated with the plug-in
rently installed in your plug-ins folder.

If you configure a button to invoke a particular plug-in command and the Informed Filler user
not have the plug-in installed, the button will be visible, but it will be unavailable.

4-6 Using Buttons

 .
 .

 .

.

5

Routing

In this chapter:

■ Suggested Routes 5-3

■ Suggested Routes for Multiple Platforms 5-3

■ Adding, Changing, and Removing Suggested Routes 5-4

■ Controlling the Data Format 5-8

■ Using Mail Cells 5-9

5-2 Routing

.
.

.
.

 con-

es. For
ent to
niza-
te.

 you
 use
istake.

ug-
 option

t.

d
med
d in

ded
5Routing
Chapter 12 of your Informed Designer Design and Graphics manual explains how you can use
electronic mail to mail a form template to another person. This chapter explains how you can
figure a template to aid the Informed Filler user in addressing and mailing completed forms.

Many types of forms must be sent from person to person for approval and processing purpos
example, it’s very common for a purchase requisition form to be filled out by the requestor, s
a supervisor for approval, and then forwarded onto the purchasing department. In large orga
tions, a single form might go through several levels of approval before the process is comple

To aid the Informed Filler user in selecting the appropriate person or place to send a form to,
can add one or more suggested routes to a template. You can also specify the data format to
when sending forms so that the Informed Filler user doesn’t choose an incorrect format by m

When sending a completed form, the Informed Filler user can simply select the appropriate s
gested route according to his or her role in the processing of the form. The user also has the
to re-route the form to a different person or place.

Without a list of suggested routes, the user is expected to know where the form must be sen

Like mailing templates, mailing completed forms with Informed Filler relies on Informed mail
plug-ins and the associated e-mail software being installed. If you intend to specify suggeste
routes, complete with e-mail addresses for recipients, you need to have the appropriate Infor
mail plug-in and the e-mail software installed on your computer. Mail plug-ins must be installe
your plug-ins folder.

For details regarding the e-mail systems supported by Informed, see the on-line document
“DGRPLG.PDF” (Windows) or “Informed Designer Plug-ins” (Mac OS). This document is
installed when you install Informed Designer and is viewed using Acrobat Reader (also inclu
with Informed Designer).

Routing 5-3

 .
 .

 .

ne can
the
it. If
can

o, so
not
le. For
l out
end to
. For
 the
r the

 spe-
ed
ested
tform

 Win-
outing
 the
 then
) and

ormed
w to
is chap-

late,
m are

.

Suggested Routes
A suggested route consists of a route name and one or more recipients. The route name alo
provide helpful information to the Informed Filler user if it describes the step. For example, if
user has never filled out a particular type of form before, they might not know where to send
you give the suggested route an obvious name such as “Send to Payroll Services,” the user
quickly see where the form should be sent after it’s filled out.

If the recipient of a suggested route is the same for all users, you can specify the recipient to
the Informed Filler user doesn’t have to. However, it’s common that you, as the designer, can
specify the recipient for a suggested route because the recipient is different for different peop
example, suppose five users who work in different departments of an organization have to fil
time cards for each week. Even though the suggested route for the form might be named “S
Approving Manager,” the users would send their completed time cards to different managers
these routes, you would leave the recipient unspecified. The Informed Filler user can specify
recipient for the suggested route the first time and, if requested, Informed Filler will remembe
recipient’s name for subsequent sends.

Suggested Routes for Multiple Platforms
Adding a suggested route to a form template that will be used on multiple platforms requires
cial consideration. With Informed Designer’s Routing command, you can only define suggest
routes for the e-mail systems and mail plug-ins installed on your computer. Likewise, a sugg
route is available to the Informed Filler user only if he or she uses the e-mail system and pla
for which the recipients of the route have been specified.

If you want to define a suggested route and make it available to Informed Filler users on both
dows and Mac OS computers, you must add the route two times using Informed Designer’s R
command, once on a Windows computer, and once on a Mac OS computer. To do this, open
template on the platform of your choice (Windows or Mac OS), add the suggested route, and
save the template. Next, open the same template on the other platform (Mac OS or Windows
add the route again. Adding a suggested route multiple times is also necessary if different Inf
Filler users of the same platform use different e-mail systems. For detailed instructions on ho
add a suggested route, see “Adding, Changing, and Removing Suggested Routes” later in th
ter.

Informed Designer’s Suggested Routes dialog box displays all suggested routes for the temp
regardless of platform and e-mail system used for addressing. The platform and e-mail syste
indicated under the “Platform/Using” column.

Suggested Routes

Suggested Routes for Multiple Platforms

5-4 Routing

 .
 .

 .

s and

e,
ome
Filler
ssible,
 com-

.

Informed Filler shows only the suggested routes that are addressed using the e-mail system
mail plug-ins available on the user’s platform.

Adding, Changing, and Removing Suggested Routes
When you set up a suggested route for a form, you can specify details such as the route nam
which e-mail system to use, who the recipient is, and which format the form will be sent in. S
of these details, such as the recipient and the data format, can be specified by the Informed
user when the form is mailed. By specifying these details in the suggested route whenever po
you eliminate that task for the Informed Filler user, making it easier for the person to mail the
pleted form.

Adding, Changing, and Removing Suggested Routes

Routing 5-5

 .
 .

 .

cription

 on

d a
ly

g

 to

ld
h
ho
at

he
ge,
le

ller
.

The following table shows the various parts that make up a suggested route and gives a des
of each one.

Details of a Suggested Route

You use Informed Designer’s Routing command to add, change, or remove suggested routes
your form template.

Choose Routing... from the Configure submenu under Form. The Suggested Route dialog box
appears.

The Suggested Routes dialog box contains various controls for editing suggested routes, an
scrolling list showing all suggested routes configured for the template. If you haven’t previous
configured any suggested routes, the scrolling list will be blank.

Detail Description

route name

e-mail system

recipient(s)

data format

subject

The name that you give to a particular step in the routing process. By makin
the route name descriptive of the step, you make it easy for the user to see
where the form should be sent.

The e-mail system used to route the form. The options available correspond
the Informed mail plug-ins that you have installed in your plug-ins folder.

If appropriate, you can specify the address of the individual(s) the form shou
be sent to. This detail is optional since you might not know the name of eac
person in the routing process, and the recipients may differ depending on w
is sending the form. You can only edit the recipients for suggested routes th
use the e-mail systems and mail plug-ins installed on your computer.

As an option, you can specify the data format that the form will be sent in. T
formats available are: Informed data, Informed package, Informed Interchan
Comma delimited text, and Tab delimited text. Other formats may be availab
through Informed plug-ins.

You can also specify the subject of the mail message so that the Informed Fi
user doesn’t have to.

5-6 Routing

 .
 .

 .

, it is
ocess.

ction

ded

ne or

hen

ted
ail
der.
l sys-
.
When you click ‘Add,’ the Suggested Route Details dialog box appears.

Type the name of the suggested route in the ‘Route name’ text box. As mentioned previously
helpful to the Informed Filler user if the route name describes the actual step in the routing pr

Specify the mail system to use by clicking the ‘Mail system’ drop-down list and making a sele
from the available choices. The choices in the ‘Mail system’ drop-down list correspond to the
Informed mail plug-ins you have installed in your plug-ins folder.

For details regarding the e-mail systems supported by Informed, see the on-line document
“DGRPLG.PDF” (Windows) or “Informed Designer Plug-ins” (Mac OS). This document is
installed when you install Informed Designer and is viewed using Acrobat Reader (also inclu
with Informed Designer).

To specify a recipient, click the ‘Address...’ button. If you have the appropriate e-mail software
installed, Informed Designer displays the addressing dialog box for that mail system. Select o
more recipients by using the controls on this dialog box. Below is the dialog box you’ll see w
addressing a suggested route for Microsoft Exchange on Windows.

Note You don’t have to be using a particular e-mail system to specify that system for the sugges
route. For example, if you are using Microsoft Mail, you can still specify cc:Mail as the e-m
system for a suggested route, as long as the cc:Mail plug-in is installed in your plug-ins fol
However, in order to specify the recipients for a suggested route, you must have the e-mai
tem installed on your computer.

Routing 5-7

 .
 .

 .

 can

log
 you
at’s
nge

fer-
. For
.

While the addressing dialog box is displayed, you can specify a subject for the form, and you
also select the data format that the form will be sent in.

To edit an existing suggested route, select it in the scrolling list on the Suggested Routes dia
box, then click the ‘Modify’ button. The Suggested Route Detail dialog box appears, allowing
to change the specific details for the selected route. If you try to modify a suggested route th
been configured for a platform other than the one you’re working on, you are not able to cha
mail systems or address the route.

Note If you’ve already selected a data format for mailing using the ‘Always mail data as’ mail pre
ence, that data format will take precedence over the one you specify for a suggested route
more information, see “Controlling the Data Format” later in this chapter.

5-8 Routing

 .
 .

 .

ging it

n
ta and
plate,
t on
forms

at

s.

.
To remove a suggested route, select it in the scrolling list, then click ‘Remove.’

You can change the order of suggested routes in the scrolling list by clicking a route and drag
either up or down with the mouse.

Controlling the Data Format
When an Informed Filler user mails a completed form, it’s important that the form be sent in a
appropriate data format. For example, the Informed package format contains both the form da
the form template. If a user sends a form in this format to someone who already has the tem
the user is sending unnecessary information. Depending on the architecture and environmen
which your Informed solution is based, it might be necessary that Informed Filler users send
using a particular data format, Informed data, for example.

Informed Designer’s ‘Always mail data as’ mail preference allows you to control the data form
used when a completed form is mailed by the Informed Filler user.

To specify this format, choose Preferences... from the Edit menu and click the Mail icon in the
scrolling list. The dialog box changes to show the Mail Preferences panel.

Click the ‘Always mail data as’ drop-down list and make a selection from the available choice

Controlling the Data Format

Routing 5-9

 .
 .

 .

he
ested

e

e
oks
e
uted

the

 and
s to be
nt of
alcula-

essed
son.

r
.

The format you select using the ‘Always mail data as’ preference overrides any formats that t
Informed Filler user selects when mailing, as well as any formats that you specify for a sugg
route.

Selecting the ‘User’s choice’ option allows Informed Filler users to mail completed forms in th
format of their choice.

Using Mail Cells
A mail cell is a cell on the form template whose value is used to specify a parameter when th
Informed Filler user mails a form. For example, when the user mails a form, Informed Filler lo
for a cell named ‘Mail Send To.’ If such a cell exists, the form is automatically addressed to th
recipient named in that cell. By using mail cells on your template, forms can be dynamically ro
to different users based on different conditions.

The following table shows the four mail cells that can be used to set send parameters when
Informed Filler user mails a form.

Mail Cells

By calculating a mail cell, you can have a formula automatically check for different conditions
automatically set certain parameters accordingly. For example, if a purchase order form need
sent to a supervisor for approval, you could calculate the ‘Mail Send To’ cell so that the recipie
the form is based on the value of the purchase order. The formula below demonstrates this c
tion.

If POTotal > 500 Then
Return "Lauren Quinn"

Else
Return "Bob Johnson"

End

Based on this calculation, any purchase orders over 500 dollars would automatically be addr
to Lauren Quinn. All purchase orders less than or equal to 500 dollars would go to Bob John

Using Mail Cells

Mail Cell Description

Mail Send To

Mail Subject
Mail Comment
Mail Enclosure

The name of the recipient. The value in this cell must identify a valid user fo
the e-mail system used by the Informed Filler user.
The subject of the mail message.
The body of the mail message.
The filename of the enclosure that is attached to the mail message.

5-10 Routing

 .
 .

 .

.

6

Form Tracking

In this chapter:

■ How it Works 6-2

■ Configuring Tracking 6-6

■ Using the Informed Tracker Server 6-11

6-2 Form Tracking

.
.

.
.

plains
r user
king

asily
xt
travelled,
si-

 and
 sent to
 form
sary,

d in a
m can

 Filler
 that

ser

ox.

6Form Tracking
Many forms are routed from person to person for approval purposes. Chapter 5, “Routing,” ex
how you can add one or more suggested routes to a form template so that the Informed Fille
can better choose where to send a form. This chapter describes Informed’s built-in form trac
features.

The purpose of form tracking is to provide the Informed Filler user with a way to quickly and e
find out where a form is in the routing process. After filling out a form and sending it to the ne
step, the user can choose a single command to see any subsequent steps that the form has
and on whose desk the form currently sits. Form tracking provides a quick alternative to “phy
cally” tracing the path of a form to find its current location.

How it Works
When an Informed Filler user sends a form to another person, the form data is stored in a file
attached to an electronic mail message. The message, along with the attached form data, is
the recipient using one of the supported e-mail systems. The recipient receives the “original”
whereas the sender retains a “copy.” The recipient performs the required task, then, if neces
sends the form to the next step in the routing process.

In order to track a form, the information detailing each step that the form travels must be store
central database that is accessible by all Informed Filler users. That way, any sender of a for
retrieve the details regarding the other people to whom the form has been sent.

As a form is sent from person to person, the tracking status for the form is updated. Informed
does this by storing information, including the sender and recipient names, the date and time
the form was sent, and attributes that identify the form, in the tracking database. When the u
requests the tracking status of a form, Informed Filler connects to the tracking database and
retrieves the tracking details pertaining to the particular form and displays them on a dialog b

How it Works

Form Tracking 6-3

 .
 .

 .

ing
tion

s plug-
g-ins
.

Form tracking requires configuration using Informed Designer. To do so, you select the track
database, specify which cell is to be used to uniquely identify forms, and link tracking informa
to the tracking database.

Informed Filler can track forms using any database that is accessible via Informed data acces
ins. These include Oracle, Sybase, and others using ODBC and DAL. Other data access plu
that support form tracking might be available after this documentation is published.

6-4 Form Tracking

 .
 .

 .

sing
ations,
abase

th
ac OS.
,
d.

red in

rm.
e card

 2,

mber
rm
m, the
ent
a-

ese
 the

so
s sent.

e, it is
tracking
.
By allowing you to use a wide range of databases for form tracking, you have the option of u
the database services that might already be available in your organization. For large organiz
this is particularly beneficial because you don’t have to install and administer yet another dat
solely for form tracking purposes.

If you don’t already have a database suitable for form tracking, Informed Designer comes wi
Informed Tracker Server, a DAL (Data Access Language) database server that runs on the M
Informed Tracker Server can support anywhere from 20 to 250 Mac OS Informed Filler users
depending on the number of forms being tracked and the frequency at which forms are route

Each time the Informed Filler user sends a form, a minimum set of information should be sto
the tracking database. This information includes:

■ the template ID

■ the form number

■ the sender’s name

■ the recipient’s name

■ the date and time that the form was sent

The template ID is a number or value that identifies the form template—that is, the type of fo
Each different template (a purchase order template, a travel expense form template, or a tim
template, for example) should have a unique template ID. You specify the template ID using
Informed Designer’s Template Information command. See “Template Information” in Chapter
“Manipulating Documents,” of your Informed Designer Design and Graphics manual for more
information.

The form number is a number or value that uniquely identifies a completed form. The form nu
(a purchase order number or invoice number, for example) is stored in a cell on the form. Fo
numbers are often generated using Informed’s auto-increment feature. In order to track a for
form template must contain a form number cell. For information about Informed’s auto-increm
feature, see “Auto-incrementing Numbers” in Chapter 1, “Adding Intelligence,” for more inform
tion.

Together, the template ID and form number uniquely identify a particular completed form. Th
values must be included with the tracking information so that Informed Filler can later retrieve
information that pertains to a particular record when the user requests the tracking status. Al
included are the sender’s name, the recipient’s name, and the date and time that the form wa

If you intend to use a database other than Informed Tracker Server as your tracking databas
necessary that you create a table in your database with the appropriate columns to store the
information. This function is normally performed by the database administrator.

Form Tracking 6-5

 .
 .

 .

 ID,
that the
ing
col-
ing is

that in

r is
o or

for-
tem-
cking

 pro-
akes a
iment
ency.

e min-
bove
t and

rma-
rav-

uld
ight,

 You
ata-

.

The table that you create for form tracking purposes should contain columns for the template
form number, sender’s name, recipient’s name, the date that the form was sent, and the time
form was sent. All column types can be text. However, if you intend to later analyze the track
information, you might want to store the date sent and time sent values using date and time
umns, respectively. The tracking database you use might impose limitations here. The follow
an example specification for a tracking table.

Tracking Table Specifications

Be sure that the length of any text column is long enough to store the longest values. Notice
the example above, the length of the “recipient_name” column is longer than that of the
“sender_name.” This is because a form can be sent to multiple recipients whereas the sende
always only one individual. The column length for “recipient_name” is longer so that at least tw
three recipient names can be stored.

In addition to the minimum set of tracking information, you can also include other “custom” in
mation if you like. When configuring tracking for a form template, you can link any cell on the
plate to a column in the tracking table. This feature is useful if you plan to later analyze the tra
information to learn about the routing or approval process.

Analysis of the tracking information can reveal useful insights into the efficiency of the routing
cess. You could, for example, determine the minimum, maximum, and average times that it t
form to travel through the entire routing process, or from one step to the next. You could exper
by changing the process, then repeat the analysis to see if the change brings improved effici

Depending on the type of analysis that you intend to do, you might need to track more than th
imum set of tracking information. For example, if you want to analyze cycle times as in the a
example, you will need to identify the particular step of the routing process when a form is sen
include this with the other tracking information. That way, when you analyze the tracking info
tion, you can determine the dates and times of the different steps that a particular form has t
elled.

To identify and include the routing step along with the other form tracking information, you co
draw a special cell on the template and calculate its value according to different criteria. You m
for example, check if a signature cell contains a signature and, in turn, infer the routing step.
would include this cell along with the other tracking information that is stored in the tracking d
base.

Column name Column type Length

template_ID
form_number
sender_name
recipient_name
send_date
send_time

char
char
varchar
varchar
date
time

20
20
...255
...1024

6-6 Form Tracking

 .
 .

 .

 set up
o create
data-

e
ack-
d in
talled

ccess
ess
ions

cell.
tifica-

mber
te ID
.

.

Configuring Tracking
Before you can configure form tracking, the tracking database that you intend to use must be
and running. If access to the database is controlled on a user by user basis, you also need t
an appropriate identity (or identities) for tracking purposes. This, like configuring the tracking
base itself, is normally performed by the database administrator.

You must have the data access plug-in for the type of tracking database that you intend to us
installed in your plug-ins folder. For example, if you’re configuring form tracking to store the tr
ing information in an Oracle database, you must have the Oracle data access plug-in installe
your plug-ins folder. You must also have the Tracking plug-in installed. These plug-ins are ins
automatically when you install Informed Designer.

To configure tracking, choose Tracking... from the Configure submenu in Informed Designer’s
Form menu. The Tracking dialog box for the active template appears.

To turn tracking on, select the ‘Track this form’ checkbox. Make your choice of database or a
method from the ‘Track using’ drop-down list. The items in this list correspond to the data acc
plug-ins found in your plug-ins folder. Only those that support form tracking will appear as opt
in the ‘Track using’ drop-down list.

As explained earlier, in order to track a form, the form template must contain a form number
This cell is like any other cell, except its purpose is to store a unique number or value for iden
tion purposes. Its value is often obtained from a database or an application like Informed Nu
Server using Informed’s auto-increment value feature. The form number along with the templa
of the form template are used to uniquely identify each completed form for tracking purposes

Configuring Tracking

Form Tracking 6-7

 .
 .

 .

is

ll’

xt to
ific

Define

 data-
identi-
ing.
.

In the context of form tracking, the form number cell is called the “tracking cell.” You select th
cell by clicking ‘Tracking Cell’ on the Tracking dialog box. A list of the cells on the template,
excluding any column cells, appears.

Select the tracking cell, then click ‘OK.’ The name of the cell appears next to the ‘Tracking Ce
button.

To continue, click the ‘Configure’ button to display the Configure Tracking dialog box.

The database or access method that you’ve selected appears at the top of the dialog box ne
‘Connection type.’ Below the connection type is a single button. The title of this button is spec
to the type of database or access method you’ve chosen. For many types, the button title is ‘
Connection.’

With most databases, it is necessary to provide connection information in order to access the
base. Connection parameters usually consist of a user ID, a password, and information that
fies the data source or server. This information is specific to the database to which you’re link
The Define Connection dialog box for Sybase is shown below.

6-8 Form Tracking

 .
 .

 .

tional.
 are
rmed
of a

less of
mis-
evant
ws)
ed

nal

se
a
.

Depending on the database you’re linking to, some of the connection parameters might be op
For example, the ‘User ID’ and ‘Password’ parameters on the Sybase Connection dialog box
optional. If you leave either of these parameters blank when you configure form tracking, Info
Filler users will be asked to enter them when they mail a form or request the tracking status
form.

The details of connecting to a particular type of database or data source are the same regard
whether the connection is configured for a lookup, for an auto-incrementing cell, for form sub
sion, or for form tracking. The details of the Define Connection dialog box as well as other rel
database-specific information, can be found in the on-line document “DGRPLG.PDF” (Windo
or “Informed Designer Plug-ins” (Mac OS). This document is installed when you install Inform
Designer and can be viewed using Acrobat Reader (also included with Informed Designer).

If additional configuration information is needed (which is the case for most databases), once
you’ve defined the connection, the Configure Tracking dialog box will change to show additio
buttons and two scrolling lists.

Note Before you can configure form tracking with an external data soure, the data source (a dBa
file, for example) must already exist. Informed Designer will not create the database or dat
source for you

Form Tracking 6-9

 .
 .

 .

ton titles
ybase.

rma-

e,’
onding

e-

 on
rm

he list
 data-
tion
.

Depending on the type of database or access method you’ve selected, the appearance of but
and dialog boxes may vary. The examples shown in this section correspond to tracking with S

After defining the connection, you then specify the database table in which form tracking info
tion will be stored. You select which table by clicking the ‘Choose Table’ button.

When configuring for Sybase, multiple dialog boxes will appear when you click ‘Choose Tabl
one to select a database and one to select a table. Once you’ve selected a table, the corresp
columns will be listed in the ‘Links to remote data’ scrolling list. Each column name will be pr
fixed with the name of the table to which it belongs.

The scrolling lists titled ‘Cells on form’ and ‘Links to remote data’ are used together to specify
which tracking information is entered into which columns in the tracking database. The ‘Cells
form’ list contains all cells on the form template as well as special items that are specific to fo
tracking. The items “Template ID,” “Template Name,” “Date Sent,” “Time Sent,” “Sender,” and

Note In order to choose a table, Informed Designer needs to connect to the database to obtain t
of available tables and columns. Be sure the connection has been properly defined and the
base or data source is available before you click ‘Choose Table.’ If you have left any connec
parameters blank, you might be asked to enter them when you click ‘Choose Table.’

6-10 Form Tracking

 .
 .

 .

ble. To
em in
ill

k

t
ck the
 the

er col-
k in

n the

h the
e from
rack-
e using

t be dif-
.
“Recipients” are not cells. They correspond to the tracking information that is available when
Informed Filler sends a form (see “How it Works” earlier in this chapter for more information).

The ‘Links to remote data’ list contains the names of the columns in the selected database ta
specify that a value is to be entered into a column, simply select the cell or tracking-specific it
the left list and the column in the right list, then click the ‘Link’ button. The name of the item w
appear in the ‘Links to remote data’ list with an arrow pointing towards the column name.

To unlink one column, select the column then click ‘Unlink.’ To unlink all columns, click ‘Unlin
All.’

In order for form tracking to work, you must link at least the Template ID item and the cell tha
you’ve selected as the tracking cell. Furthermore, since the purpose of form tracking is to tra
date and time that a form is sent, as well as the sender and recipient(s), you should also link
Date Sent, Time Sent, Sender, and Recipients items.

Depending on how the tracking database is configured, linking might also be required for oth
umns in the database table. If linking is required for a particular column, you’ll see checkmar
the ‘Req.’ column of the ‘Links to remote data’ scrolling list.

Once you’ve defined the connection and performed the necessary configuration, click ‘OK’ o
Configure Tracking and Tracking dialog boxes.

Configuring for Multiple Platforms

Many of the databases and data sources that Informed can link with are accessible from bot
Windows and Mac OS platforms. However, the details of accessing a database or data sourc
each of the platforms might be different. For example, suppose that you’re configuring form t
ing with an Oracle database. For Mac OS users, you might be accessing the Oracle databas
the Macintosh Oracle client software (SQL*NET), whereas on Windows you might be using
ODBC instead. The specific parameters needed to connect to the database, therefore, migh
ferent depending on which platform the Informed Filler user is using.

Form Tracking 6-11

 .
 .

 .

d

the
 and
 this

 only

g on one
rmed
at

ulting
em-
on-

ompat-
med
cked
om 20

ion
d to the
sers’
r, or on
ation

ich
c OS

.

The Configure Tracking dialog box contains a drop-down list with the items ‘This platform’ an
‘All platforms.’

For each different connection type, Informed Designer knows if the configuration details are
same or different for the two platforms. If the connection type is supported on both platforms
the configuration details are the same on both, the ‘All platforms’ option will be available. With
option selected, the linking you configure on one platform will function on both.

If the configuration details are different for each platform, or if the connection type is available
on the platform you’re using, ‘This platform’ will be the only choice available in the drop-down
list. For accessing these types of databases and data sources, you have to configure trackin
platform, then move the form template to the other platform and repeat the configuration. Info
Designer stores the configuration for both platforms. Informed Filler uses the configuration th
corresponds to the user’s platform.

Although it may be necessary to configure form tracking twice, once on each platform, the res
form template document is still a platform neutral document. That is, a single version of the t
plate will work with Informed Filler on both platforms. Informed Filler automatically uses the c
figuration information that is appropriate for the user’s platform.

Using the Informed Tracker Server
Informed Tracker Server is a DAL (Data Access Language) database that runs on Mac OS c
ible computers. For Informed Filler users who also use Mac OS compatible computers, Infor
Tracker Server can act as your tracking server. Depending on the number of forms being tra
and the frequency at which forms are routed, Informed Tracker Server can serve anywhere fr
to 250 users.

Installation of Informed Tracker Server requires that you install client, server, and administrat
components. Be sure to install the server component on a Mac OS computer that is connecte
same network as the Informed Filler users. Install the client component on all Informed Filler u
computers. You can install the administration component on the same computer as the serve
a different computer from which you will administer the tracking database. For detailed install
instructions, see your Informed Designer Getting Started Guide.

Informed Filler communicates with Informed Tracker Server using the IAC (Inter-Application
Communications) capabilities of the Mac OS. Informed Filler users and the computers on wh
you run and administer the Informed Tracker Server must have version 7.0 or later of the Ma

Using the Informed Tracker Server

6-12 Form Tracking

 .
 .

 .

cess

uest.
config-
ch time
other-
m link-

ng
g

older

l see

ld not
port
ose

hich
r Con-
s
ver.

r on

.

.
installed. These computers must also have program linking turned on with the appropriate ac
privileges set.

Each Informed Filler user can access Informed Tracker Server as a specific person or as a g
You configure access using the Users & Groups control panel on the server computer. If you
ure access for individual users, each user will have to enter his or her name and password ea
a form is mailed and when a form’s tracking status is requested. Since this can prove to be b
some, you might consider using guest access instead. For detailed information about progra
ing and administering access privileges, please see your Macintosh Owner’s Guide.

Informed Tracker Server Files

Installation of the Informed Tracker Server installs the server application as well as the tracki
database and related files. The server application is installed at the location you specify durin
installation. The tracking database and related items are placed in a folder named “Informed
Tracker Preferences.” This folder is installed in the Preferences folder found in the System F
on the computer’s startup volume.

Starting Informed Tracker Server

To start Informed Tracker Server, double-click the application’s icon. After a few seconds you’l
the application’s welcome screen and then its main windows.

Various commands are available under the File, Edit, Options, and Windows menus but shou
be used. These commands should only be used under the direction of Shana’s technical sup
staff. The only command you should use is the Quit command located in the File menu. Cho
Quit when you want to quit the Informed Tracker Server application.

Configuring the Tracker Connection File

In order to access Informed Tracker Server, the Informed Filler user’s computer must know w
computer the server is running on. The location of the server is stored in a file named “Tracke
nection.” You create the Tracker Connection file using the Connection Maker application. Thi
application is installed when you install the administrator component of Informed Tracker Ser

After creating the Tracker Connection file, you must install it in the system Preferences folde
all Informed Filler users’ computers.

Note The Informed Tracker Server must be running when you create the Tracker Connection file

Form Tracking 6-13

 .
 .

 .

ction
dow

r’ but-

oose
the
n

d
.

Connection Maker requires that you have AppleScript installed in order to run. To run Conne
Maker, simply double-click its icon. You’ll see the welcome screen briefly, then an untitled win
will appear.

To choose the server where the Informed Tracker Server is running, click the ‘Choose Serve
ton. The Program Linking dialog box appears.

You use this dialog box to locate and select the Informed Tracker Server application. First ch
the AppleTalk Zone, then select the Mac OS computer on which the server is running. From
Programs scrolling list, select Informed Tracker Server and click ‘OK.’ The Tracker Connectio
dialog displays the location of the server.

Once you’ve selected the server application, save the Tracker Connection file.

Note You must name the connection file “Tracker Connection.” If you use another name, Informe
Filler will not be able to find the server.

6-14 Form Tracking

 .
 .

 .

rs.

e file.
re

on the

 is
h the
 new

omati-

tion

Server
 and
.
To save the Tracker Connection file, choose Save from the File menu. The Save dialog box appea

Use the buttons on this dialog box to select the location to save the file. Click ‘Save’ to save th
If you specify a different filename here, be sure to change it back to Tracker Connection befo
placing the file in the Preferences folder of each Informed Filler user’s computer.

After creating the Tracker Connection file, you must install it in the Preferences folder on all
Informed Filler users’ computers. The Preferences folder is located inside the System Folder
computer’s startup volume.

Changing the Server Location

Occasionally you may have to change the location of the Informed Tracker Server. When the
Informed Tracker Server is moved (or if the name of the server computer or its network zone
changed), the information in the Tracker Connection file will no longer be valid. To reestablis
connection, you can either create a new connection file or update the current file. To create a
file, follow the instructions earlier in this chapter.

To update the current file, run Connection Maker (close the untitled window that appears aut
cally) and choose Open from the File menu. Locate the file, open it, and update the server loca
by clicking the ‘Choose Server’ button (see earlier). Once you’ve specified the new location,
choose Close from the File menu to save and close the file. Be sure to distribute the updated
Tracker Connection file to all Informed Filler users, replacing their existing copy.

As explain earlier in “Informed Tracker Server Files,” installation of the server installs both the
server application and the tracking database and related files. If you move Informed Tracker
from one computer to another, be sure to move both the Informed Tracker Server application
the Informed Tracker Preferences folder.

Form Tracking 6-15

 .
 .

 .

d
r

This
ers’
he

tion
.

Preparing a Template for Tracking

“Configuring Tracking,” earlier in this chapter, explains how you configure a template for form
tracking. This section provides the details specific to configuring tracking for use with Informe
Tracker Server. Before continuing, be sure to install the client component of Informed Tracke
Server on your computer.

Access to Informed Tracker Server is provided through Informed’s DAL data access plug-in.
plug-in must be installed in the plug-ins folder on your computer and on all Informed Filler us
computers. When configuring tracking, select ‘DAL’ from the ‘Track using’ drop-down list on t
Tracking dialog box.

When you define the connection to the tracking database, you’ll see the Define DAL Connec
dialog box.

6-16 Form Tracking

 .
 .

 .

ou

an-
 in the
n’ but-

ter

ion as
le name

he
 can
d.

d differ-
ny of
ver a

.
In order to access a DAL database server, you must specify a DAL extension to use. When y
install the client and administration components of Informed Tracker Server, a DAL extension
named “Informed Tracker” is installed in your system’s Extensions folder. To select this DAL
extension, click the ‘DAL Extension’ button on the Define DAL Connection dialog box. The st
dard Open dialog box appears allowing you to select an extension. Select “Informed Tracker”
Preferences folder then click ‘Open.’ The extension name appears next to the ‘DAL Extensio
ton.

The ‘Host Name,’ ‘User ID,’ and ‘Password’ connection parameters are required. You must en
the following parameter values:

Parameter Values

The Informed Tracker Server database accommodates the minimum set of tracking informat
well as one user definable column. The database name is “Tracker_db” and the database tab
is “Tracker.” The columns included in this table are listed below.

“Template_ID,” “Form_number,” “Sender,” “Recipients,” “Send_date,” and “Send_time” form t
minimum set of tracking information. The “Comment” column has no pre-defined purpose. You
use this column for anything you like. Customization of the tracking database is not supporte

Parameter Value

Host Name
User ID
Password

Informed Tracker Host
Tracker User
Tracker Password

Note Passwords are case sensitive. This means that upper and lower case letters are considere
ent. Be sure that your Caps Lock key is not on when you enter the password. If you leave a
the above parameters blank, the Informed Filler user will be prompted to enter them whene
connection the tracking database is needed.

Column name Column type Length

Template_ID
Form_number
Sender
Recipients
Send_date
Send_time
Comment

Char
Char
VarChar
VarChar
Date
Time
VarChar

20
20
...255
...1024
4
4
...1024

Form Tracking 6-17

 .
 .

 .

ing
xport,
n is

ord

n-
 on

ect

pli-
s
in
.

Administering the Tracking Database

As Informed Filler users fill out and send forms, tracking information accumulates in the track
database. If you’re using Informed Tracker Server as your tracking database, you can view, e
and delete tracking information using the Informed Tracker Admin application. This applicatio
installed when you install the administrator component of Informed Tracker Server. Informed
Tracker Admin requires that you have AppleScript installed on your computer.

To start the Admin application, simply double-click its icon.

The Admin application is password protected to prevent unauthorized users from viewing or
manipulating the form tracking information. When you start the Admin application, the passw
dialog box appears requesting that you enter a password:

Initially the password is blank. If the password is not blank, enter it before you click ‘OK’ to co
tinue. We suggest that you add a password to secure the tracking database. For information
changing the password, see “Changing the Password” later in this chapter.

After you click ‘OK’ on the password dialog box, the Admin application will automatically conn
to the tracking database and display its main window.

Note Informed Tracker Server must be running when you launch the Informed Tracker Admin ap
cation. You must also have the correct Tracker Connection file installed in your Preference
folder. For more information, please see “Configuring the Tracker Connection File” earlier
this chapter.

6-18 Form Tracking

 .
 .

 .

 can

ss-

nfor-
for-
 first

s the
ation

lick
.

Closing the window automatically disconnects the Admin application from the database. You
also disconnect by choosing Disconnect from the File menu. To reconnect, choose Connect from
the File menu. As when you run the Admin application, you’ll be asked to enter the Admin pa
word.

The Admin window contains all of the controls you need to view, export, and delete tracking i
mation. The scrolling list initially contains zero rows. Each row corresponds to the tracking in
mation for one routing step. Before you can remove or export tracking information, you must
display it in the scrolling list.

Displaying Tracking Information
The ‘Number of rows in database’ indicator, located at the top-left of the Admin window, show
total number of rows in the database (2216 in the example above). You display tracking inform
by using the search controls and the ‘Refresh’ button.

To display all of the tracking information in the database, click the ‘Show all’ checkbox, then c
‘Refresh.’ The full contents of the database are displayed in the scrolling list.

Form Tracking 6-19

 .
 .

 .

he list.

box
 and
le
e
.

The more entries that are in the database, the longer it will take to refresh and scroll through t
That’s why it’s better to refine your search before clicking ‘Refresh.’

To display the tracking information for a specific form, click the ‘Show only template ID’ check
and type the template ID into the text box. Next, click the ‘Show only form number’ checkbox
type the form number into its adjacent text box. Then click the ‘Refresh’ button. In the examp
below, the tracking information for a form with the template ID ‘Purchase Requisition,’ and th
form number ‘PR-01274’ is displayed.

6-20 Form Tracking

 .
 .

 .

how

 only
 track-
A
ed in

text
nalysis.

 in
ge

u’ll
.
If you want to refine your search even further, you can enter a date in either or both of the ‘S
only on or after’ or ‘Show only on or before’ text boxes.

Removing Tracking Information
You can permanently remove the tracking information for all the forms in the database, or for
specific forms. To remove tracking information, first perform a search and display the desired
ing information in the list (see “Displaying Tracking Information” above), then click ‘Remove.’
dialog box appears asking you to confirm the operation. After confirmation, every row display
the list is permanently removed from the tracking database.

Exporting Tracking Information
You can export the tracking information displayed in the list into a tab delimited text file. The
file can then be opened by a word processor, or imported into a database or spreadsheet for a
The text file can also be used for archival purposes.

To export the tracking information, first perform a search and display the tracking information
the list (see “Displaying Tracking Information” above), then click ‘Export.’ The following messa
appears, asking you to confirm the export operation.

To cancel the operation, click ‘Cancel.’ To proceed with the export operation, click ‘Export.’ Yo
be asked to name the file and choose the disk or volume to store it on.

Form Tracking 6-21

 .
 .

 .

k

ter the
ose

Oth-
 then

dicat-
ou’ve
re that

onsid-
.

Specify the location to store the text file, then click ‘Save.’ To cancel the export operation, clic
‘Cancel’ instead.

Changing the Admin Password
When you run the Admin application and connect to the tracking database, you’re asked to en
Admin password. The Admin password is initially blank. To change the Admin password, cho
Admin Password from the File menu. The following dialog box appears:

If the current Admin password is blank, do not enter anything in the ‘Old password’ text box.
erwise, enter the current password. Enter the new password in the ‘New password’ text box,
click ‘OK.’

If the old password that you enter is not the current Admin password, you’ll see a message in
ing so. You cannot change the Admin password if you do not know the current password. If y
entered the correct old password, you’ll then be asked to reenter the new password to be su
you’ve entered it correctly.

Note The Admin password is case sensitive. This means that upper and lower case letters are c
ered different. Be sure that your Caps Lock key is not on when entering a password.

6-22 Form Tracking

 .
 .

 .

tered
es-
.
Type your new password again, then click ‘OK.’ If the new password matches the one you en
on the previous dialog box, your new password will then take effect. Otherwise, you’ll see a m
sage asking you to reenter the new password again.

7

Authorizing Form Templates

In this chapter:

■ How it Works 7-2

■ Verification with Informed Filler 7-5

■ Authorizing and Verifying Templates 7-6

7-2 Authorizing Form Templates

.
.

.
.

sign
rther
tion.
em-
m-

open
plate

n be
ox on
k

e bank
 do so,
ox
 man-
n on

7Authorizing Form Templates
Chapter 2 explains how you can use signature cells to allow Informed Filler users to digitally
completed forms, much like you sign a paper form. In this chapter, you’ll learn how you can fu
protect the integrity of your electronic forms by authorizing templates for use in your organiza
Authorizing templates provides the same authentication and tamper detection for your form t
plates as signing completed forms with Informed Filler does for form data. With authorized te
plates, Informed Filler users can verify the authenticity of a template at any time.

How it Works
Signing a completed form with Informed Filler signs only the form data, leaving the template
to tampering. Without changing the data on a form, a malicious user could alter the form tem
and, in doing so, change the meaning or context of the data.

For example, suppose a loan application must go through two levels of screening before it ca
approved. A loans officer interviews the client and then selects a ‘Not recommended’ checkb
the application form and signs it with a digital signature. The application then goes to the ban
manager who has the final authority to approve or reject the loan application.

If a person wanted a loan to be approved, he could secretly alter the form template used by th
manager so that the application appears to have been recommended by the loans officer. To
he would simply use Informed Designer to change the title of the ‘Not recommended’ checkb
field to ‘Recommended,’ and the ‘Recommended’ title to ‘Not recommended.’ When the bank
ager views the data with the altered template, it might look like the one shown in the illustratio
the following page.

How it Works

Authorizing Form Templates 7-3

 .
 .

 .

red
 on the
be

l

tem-
tion is

es

ug-ins

late,
s, this
rived
rized.
te.

er the

.

Verifying the loans officer’s signature would show that the data on the form has not been alte
because the values of the checkboxes have not changed. However, by switching the cell titles
form template, the meaning or context of those values is different. The bank manager would
misled to believe that approval of the loan application was recommended.

In the example above, the tampering is fairly obvious and is used to illustrate the point. In rea
world situations, tampering could be much more subtle while still causing serious security
breaches.

Informed Designer’s Authorize command provides a method for securely authorizing a form
plate. Doing so allows the Informed Filler user to check the template to ensure its representa
authentic (see “Verifying with Informed Filler” later in this chapter).

Like signing completed forms with Informed Filler, Informed Designer relies on signing servic
such as Nortel’s Entrust or Apple’s DigiSign for authorization purposes. Informed Designer
accesses signing services through the Informed signing plug-ins you have installed in your pl
folder.

When you authorize a template, Informed Designer examines the characteristics of the temp
including all objects, their size, position, and attributes. The signing service signs, or processe
information to create a digital signature. A digital signature is like a special number that is de
from information about the person signing and the characteristics of the template being autho
This number can reliably identify the signer and detect any changes in the authorized templa
While the digital signature is stored with the template, the authorization process does not alt
template itself.

7-4 Authorizing Form Templates

 .
 .

 .

y. The
te,

utho-

 spac-
d
se,

tem-
senta-

ropriate
plate

odate
ect the
isting

o sepa-
gning
ot be

ew
ed

on.”
.

Once a template has been authorized, you or the Informed Filler user can verify its authenticit
verification process involves re-creating parts of the digital signature using the current templa
then comparing the results with the original signature. If they are not equal, then either the a
rized template or the digital signature itself has been changed or tampered with.

Accommodating Revisions

Over time, templates usually need to be revised. A revision can be as simple as adjusting the
ing or size of a cell, or as significant as adding or removing cells, or changing calculations an
check formulas to account for changes in the underlying workflow process. In a technical sen
even the simple conversion of a template to a newer format when the Informed software is
upgraded to a new version can constitute a “new” version of the template. (Even though the
plate’s visual appearance and functionality do not change, the internal—byte for byte—repre
tion of the template might.)

When changes to a template are needed, the form designer decides whether or not it is app
to revise the existing version of the template, or to create and introduce a completely new tem
without affecting the previous version. For example, revising an existing template to accomm
a cosmetic change (such as a new company logo, or changing the size of a cell) might not aff
meaning of the data on previously filled out forms, whereas adding or removing cells on an ex
template might.

It is because of the need to revise templates, particularly in minor ways, that it is necessary t
rate the authorizing of templates from the actual signing of the data on completed forms. If si
a completed form involved signing both the form data and the template together, you would n

Note Care must be taken when revising and replacing an existing version of a template with a n
version. Be sure to do so only if the new version provides an appropriate context for Inform
Filler users to “see” the data for forms they’ve already filled out. For information about form
revision and related issues, please see Chapter 8, “Form Template Distribution and Revisi

Attached to template

Digital signature
930@7#89!&

Authorizing Form Templates 7-5

 .
 .

 .

n the
re of
parison

ssing
an
tures
. If the

 per-
en

 from
rther-
an also
person

 4 of

.

able to later replace the template with a new revision, even if doing so were appropriate, give
nature of the template revision changes. Replacing the template would invalidate the signatu
the previously completed and signed form because the template would have changed in com
with the one that was used when the completed form was signed.

Verification with Informed Filler
Authorizing a template provides information that can be useful to many users during the proce
of the form. For example, if John is going to fill out an expense form with Informed Filler, he c
first verify the template he is using by choosing the Verify Template command from the Signa
submenu. The template is verified and the details of the person who authorized it are revealed
template has been altered or tampered with, the verification process will reveal this.

When John fills out and signs his form, information about the version of his template and the
son who authorized it is included with his digital signature. This information is useful later wh
John’s signature is verified. The form is then sent to Donna, John’s manager, for approval.

Like John, Donna can verify that the template she is using (which could be a different version
the one John used to complete his form) is valid before she approves or rejects the form. Fu
more, when she verifies John’s signature to ensure that his data has not been altered, she c
view the Template ID and Revision Number of the template that John used. The name of the
who authorized John’s template is also revealed.

For more information on verifying signatures and templates with Informed Filler, see Chapter
your Informed Filler User’s Manual.

Verification with Informed Filler

7-6 Authorizing Form Templates

 .
 .

 .

 a
hrough
pro-
n was
er-

oose

k

er-
plate.

.

Authorizing and Verifying Templates:
Like signing and verifying completed forms with Informed Filler, you can authorize and verify
template using any available signing service. Informed Designer accesses a signing service t
the use of Informed signing plug-ins. The use of signing plug-ins makes it easy for Shana to
vide support for new signing services as they become available. At the time this documentatio
prepared, Informed Designer included two signing plug-ins, one for Nortel’s Entrust signing s
vice, and one for Apple’s DigiSign.

To authorize a template, choose Authorize... from the Authorization submenu under the Form
menu. If you have more than one signing plug-in in your plug-ins folder, you’ll be asked to ch
which service to use.

Select the signing service that you want to use from the ‘Sign using’ drop-down list, then clic
‘OK.’ To cancel the Authorize command, click ‘Cancel’ instead.

After you click ‘OK,’ you’ll see the authentication dialog box that corresponds to the signing s
vice you are using. Follow the signing procedure for your chosen service to authorize the tem
Below is the authentication dialog box for Entrust.

Authorizing and Verifying Templates

Authorizing Form Templates 7-7

 .
 .

 .

it.

d
er
use
ing

 com-
rized
ve
.

To verify a template, choose Verify... from the Authorization submenu under Form. Informed
Designer verifies the template and, if valid, displays the name of the person who authorized

If verification fails, you’ll see a dialog message indicating so.

Some signing services allow you to remain authenticated after you’ve done so once. Informe
Designer will automatically log off when you quit the application. You should be careful to nev
leave your computer unattended while you’re authenticated. Otherwise someone else might
your signing identity to authorize templates or sign forms. You can explicitly log off from a sign
service by choosing Log Off Service from the Authorization submenu.

An authorized form template can be “de-authorized” by choosing the De-Authorize Template
mand from the Authorization submenu under Form. If you intend to revise a previously autho
template, you may choose to de-authorize it first, then authorize it again once all revisions ha
been made.

7-8 Authorizing Form Templates

 .
 .

 .

.

8

Form Template Distribution and Revision

In this chapter:

■ Background 8-2

■ Overview 8-2

■ How it Works 8-4

■ Maintaining Distribution Center Profiles 8-8

■ Revision Information 8-12

■ Maintaining Distributed Templates 8-13

8-2 Form Template Distribution and Revision

.
.

.
.

plate
r pro-
ribed

om-
 tem-

t
r the

f

ce

te is
the
xisting
hat
.

nd
ine” to
ns are

to
low is

 form

8Form Template Distribution and Revision
Once a form template is designed, it must be distributed to Informed Filler users. When a tem
is revised, the new revision must also be made available to Informed Filler users. This chapte
vides guidelines for distributing new form templates and new revisions of templates. Also desc
are Informed’s built-in template distribution features.

Background
Informed allows form templates to be accessed either locally on each Informed Filler user’s c
puter, or via a central file server. Both methods have advantages and disadvantages. Storing
plates locally means that the Informed Filler user can use the templates any time, even while
disconnected from the network. Storing templates locally, however, means that users may no
always have the current versions of the templates, and introduces additional network costs fo
distribution of templates to all Informed Filler users. As explained in Chapter 1, “Overview,” o
your Informed Designer Design and Graphics manual, each Informed Filler user sets a preferen
to specify where templates are stored.

Accessing form templates from a central file server simplifies distribution. Once a new templa
designed, making it available to Informed Filler users is as simple as placing the template in
appropriate directory or folder on the designated file server. When a template is revised, the e
template on the file server is replaced with the new one. Central storage, however, requires t
Informed Filler users be connected to the server at all times in order to access the templates

Informed’s form distribution features give Informed Filler users all the benefits of both local a
network based template storage. Templates can be stored locally without the need to be “on-l
use them, and Informed’s distribution feature automatically notifies the user when new versio
made available.

Overview
After a form template is designed and distributed for use, it is normal to expect the template
change from time to time. There are many different reasons why a template might change. Be
a list of some example reasons.

■ a typing mistake is found

■ the size of a cell must be adjusted to allow for more information

■ a newer color version of the company logo is available and should be incorporated on all
templates

■ the company has relocated and the address on all form templates must be changed

■ an error was identified in the check formula for a cell

Background

Overview

Form Template Distribution and Revision 8-3

 .
 .

 .

rsion
 on the

late is
s
n the
plate.

n ask
e to
nt to

at
ith

sing
 the

r year.
 well as
l car
at was
ger

plate
d
 for
 form

 the
new
 Tem-
s “1”).
.

■ a new cell is needed to store additional information on the form

■ a tax form is being revised for a new year; some tax calculations are being changed

When you change a template, it is important that you decide carefully to introduce the new ve
either as a replacement for the previous version, or as a new template. This decision is based
nature of the changes being made.

Consider the example of a travel expense form. At the beginning, version 1 of this form temp
created and distributed for use by Informed Filler users. These users begin filling out forms a
required. Suppose that you later realize that there’s a typing mistake in one of the cell titles o
template. You proceed to fix the mistake and, in doing so, create the second version of the tem
In this situation, the new version of the template should replace the previous version. You ca
yourself the question “Would it have been appropriate for the previous version of the templat
include the changes made in the new version?” If your answer is “yes”, then you probably wa
replace the previous version with the new version.

When you replace a template with a newer version, it is important to realize that any forms th
Informed Filler users have previously filled out will now be “seen” through the new template. W
the example of the typing mistake, this means that a travel expense form that was filled out u
the template that had the mistake will now be viewed and manipulated using a template with
correction.

In contrast, consider the example where the travel expense form is revised for a new calenda
Suppose that the revision includes changes both to the visual appearance of the template as
the calculations and check formulas that affect the mileage rate that is permitted for persona
usage. For the new year, employees are paid 20 cents per mile rather than 15. Also, a cell th
used to store the employee’s date of birth has been removed because it is information no lon
needed on the travel expense form.

In this case it’s important that the new version of the form template be introduced as a new tem
rather than replace the previous version. If you were to replace the previous version, Informe
Filler users would see the forms that they filled out for the previous year through the template
the new year. The employee’s birth date would be missing, and if the user happened to edit a
that was completed in the previous year, the mileage amount would recalculate according to
new year’s calculations. To avoid this from happening, it would be important to introduce the
year’s version as a new form template. To do so you would assign the new template a unique
plate ID and use a revision number appropriate for the first version of a new template (perhap

8-4 Form Template Distribution and Revision

 .
 .

 .

intro-

 you

ing a
hat
igital

mplate.
cide
even
d.

lt-in

r more
he
plate

ed

f that

par-

 dis-
na can

rofile.
nter
stribu-
ary to

.
When deciding whether to replace the previous version of a template with a new revision, or
duce the new revision as a new template, you should keep the following points in mind.

■ If the changes made in the new revision change the meaning or context of the data, then
probably want to introduce a new template rather than replace the previous version.

■ Be cautious of templates with signature cells. If forms have been filled out and signed us
signature cell on the template, be sure to never replace the template with a new version t
affects the signed data or the signature cell itself. Doing so could invalidate the existing d
signatures.

For example, suppose that a signature cell on a template signs seven other cells on the te
With this version of the template, Informed Filler users fill out and sign forms. You later de
to delete a cell that is signed by the signature cell. Since the signature originally signed s
cells and now the form contains data for only six, the signed data has essentially change

How it Works
If you choose to distribute form templates to Informed Filler user’s computers, Informed’s bui
forms distribution capabilities can help you automate the process.

Distribution of a template is a two step process. First, the template is made available at one o
distribution centers. Second, Informed Filler users connect to a distribution center and copy t
template to their local templates folder. Informed Filler makes it easy to select and copy a tem
from a distribution center. Furthermore, depending on the revision options you select, Inform
Filler will also notify the user when a new revision of a template is made available.

The posting of a template to a distribution center using Informed Designer, and the copying o
template to the Informed Filler user’s templates folder are accomplished through the use of
Informed distribution service plug-ins. A distribution service plug-in enables distribution via a
ticular type of distribution service. At the time this documentation was prepared, Informed
Designer included distribution service plug-ins for the following types of distribution centers:

■ file server

■ FTP server

With these distribution service plug-ins, you can use Informed’s built-in distribution features to
tribute templates via file servers and FTP servers. By using distribution service plug-ins, Sha
easily support new methods of distribution by simply developing new plug-ins.

Before you can post a new form template or revision to a distribution center, and before the
Informed Filler user can access the distribution center, you must create a distribution center p
A distribution center profile is a file that contains information that identifies the distribution ce
along with the connection information necessary to connect to the service. For example, a di
tion center profile might specify an FTP server IP address, the user ID and password necess
connect to the server, and the path at which distributed templates are stored.

How it Works

Form Template Distribution and Revision 8-5

 .
 .

 .

s
e—

he
rofile

).

iller
nter

file in

e that
you
eate

d the
y must
ion

ilable
d
iller,
through
.

You create and edit distribution center profiles using Informed Designer’s Distribution Center
command. To do so, the distribution center—that is, the file server or FTP server, for exampl
must be available and accessible.

Before you can add or update a form template at a particular distribution center, and before t
Informed Filler user can access the distribution center, the corresponding distribution center p
must be placed in a folder named “DISTCTRS” (Windows) or “Distribution Centers” (Mac OS
This folder is found in the “PREFS” (Windows) or “Preferences” (Mac OS) folder which, by
default, is located in the Informed folder.

The distribution center profile must be installed on both your computer, and on all Informed F
user’s computers needing access to the distribution center. When you create a distribution ce
profile using the Distribution Centers command, Informed Designer automatically places the
your distribution centers folder.

When you add a template to a distribution center, you first select the distribution center profil
identifies the distribution center. You then specify where in the distribution center’s hierarchy
would like to place the distributed template. Most types of distribution centers allow you to cr
folders so that you can organize your distributed templates by type or category.

After adding a template to a distribution center, Informed Filler users can then navigate to fin
template and copy it to the place where they store all of their templates. In order to do so the
also have the distribution center profile installed in their “DISTCTRS” (Windows) or “Distribut
Centers” (Mac OS) folder.

For Informed Filler users, access to distribution centers and the templates they contain is ava
from the New Data Document dialog box. This dialog box appears when you choose Informe
Filler’s New Document command. When creating a new form data document with Informed F
the user is asked to select which form template to use. It is here where the user can navigate
the available distribution centers to find a template that they have not yet filled out.

8-6 Form Template Distribution and Revision

 .
 .

 .

lder.
o the
s”
he cen-

l tem-

ta doc-
 Doc-
and

rs in
ribu-
 often

us mes-

tored
buted

.

The New Data Document dialog initially shows a list of all templates in the user’s templates fo
Selecting ‘Services’ from the drop-down list reveals the distribution centers that correspond t
distribution center profiles found in the user’s “DISTCTRS” (Windows) or “Distribution Center
(Mac OS) folder. To display the templates available at a distribution center, the user selects t
ter in this list and clicks ‘Open.’ Informed Filler connects to the distribution center and lists the
templates available. The user selects a template and clicks ‘New’ to copy it to his or her loca
plates folder. The template is then available for use with Informed Filler.

Access to distribution centers is also available when the Informed Filler user opens a form da
ument for which the required template cannot be found. A dialog box similar to the New Data
ument dialog box appears providing the same method for connecting to a distribution center
selecting a template.

A distributed template contains distribution information which describes the distribution cente
which the template is available. Informed Filler uses this information to periodically check dist
tion centers for new revisions. You can choose various settings that determine when and how
Informed Filler checks the distribution centers. You can even specify a status and enter a stat
sage for the template.

When a revision check occurs, Informed Filler compares the revision number of the locally s
template with that of the distributed template. If they are different, it is assumed that the distri
template is a newer version and Informed Filler proceeds to notify the user and, at the user’s
request, copy the new version to his templates folder.

Form Template Distribution and Revision 8-7

 .
 .

 .

ion

nd

 the
ce the

 com-

rib-

. You
 tem-

ble, it
at
nd so

ibu-
distri-
rimary
.

To summarize, the steps necessary to distribute a template using Informed’s built-in distribut
features are:

■ create the new form template

■ establish a distribution center (a file server or FTP server, for example)

■ create a distribution center profile using Informed Designer’s Distribution Centers comma

■ add the template to the distribution center

■ distribute the distribution center profile to all Informed Filler users

■ each Informed Filler user selects the template from the distribution center

As explained earlier, when a form template is revised, you need to decide whether to replace
earlier version with the new version, or introduce the new version as a different form. To repla
earlier version:

■ make the necessary changes to the current version of the template

■ change the template’s revision number (be sure to leave the Template ID unchanged)

■ update the distributed template in the distribution centers where it is available

To introduce a new version as a different form:

■ save a copy of the current version of the form template (use Informed Designer’s Save As
mand)

Then, using the new copy of the template:

■ remove any distribution centers from the template’s distribution list (do not delete the dist
uted templates)

■ assign a new unique Template ID and an appropriate revision number to the template

■ make the necessary changes to the template

■ add the new template to the distribution center or centers

Using Multiple Distribution Centers

You use Informed Designer’s Distribution command to add a template to a distribution center
can add a template to more than one distribution center. You might do this in order to make a
plate available at primary and backup distribution centers.

When Informed Filler performs a revision check to see if a new version of a template is availa
does so by checking at the first distribution center on the distribution list for the template. If th
distribution center is inaccessible for any reason, the second distribution center is checked, a
on, until the revision check is successful. This behavior allows you to configure multiple distr
tion centers for redundancy purposes. A particular distribution center can act as the primary
bution center, whereas a second center can act as a backup in the case that access to the p
distribution center is interrupted.

8-8 Form Template Distribution and Revision

 .
 .

 .

n
igner’s

cial
r

 dis-
ut-

 the
ter

.

Maintaining Distribution Center Profiles
You create, edit, and remove distribution center profiles using Informed Designer’s Distributio
Centers command. Choose this command from the Configure submenu under Informed Des
Form menu to display the Distribution Centers dialog box.

The scrolling list on this dialog box shows all distribution center profiles in your “DISTCTRS”
(Windows) or “Distribution Centers” (Mac OS) folder. This folder is located in Informed’s
“PREFS” (Windows) or “Preferences” (Mac OS) folder. (For information about Informed’s spe
folders and where they are located, please see “Where Everything Goes” in Chapter 1 of you
Informed Designer Design and Graphics manual.)

You click the different buttons on the Distribution Centers dialog box to add, edit, and remove
tribution center profiles. When you’ve finished working with this dialog box, click the ‘Done’ b
ton.

Adding or Editing Distribution Center Profiles

To create a new distribution center profile, click ‘Add.’ To change an existing profile, select it in
list, then click ‘Edit.’ The Distribution Center dialog box for the new or existing distribution cen
profile appears.

Maintaining Distribution Center Profiles

Form Template Distribution and Revision 8-9

 .
 .

 .

 the

 this
 the

ars

an be
ac
bat
.

Enter the name of the distribution center and the filename for the distribution center profile in
text boxes provided.

Select the type of distribution service from the ‘Access method’ drop-down list. The options in
list correspond to the distribution center plug-ins available in your plug-ins folder. To configure
distribution center profile, click the ‘Configure’ button. The configuration dialog box that appe
depends on the access method you’ve selected.

The details specific to the different access methods are not provided here. This information c
found in the on-line document “DGRPLG.PDF” (Windows) or “Informed Designer Plug-ins” (M
OS). This document is installed when you install Informed Designer and is viewed using Acro
Reader (also included with Informed Designer).

The configuration dialog box for configuring a file server distribution center profile for the
Windows platform is shown on the following page.

8-10 Form Template Distribution and Revision

 .
 .

 .

n
 your

ight
s at

 Win-
ot have

details
ss

 the
.

After you’ve named and configured the distribution center profile, click ‘OK’ on the Distributio
Center dialog box. Informed Designer creates the distribution center profile file and stores it in
“DISTCTRS” (Windows) or “Distribution Centers” (Mac OS) folder.

Distribution Center Profiles for Multiple Platforms

If you use both Windows and Mac OS compatible computers in your organization, then you m
want to allow both Windows and Mac OS Informed Filler users to access distributed template
the same distribution center(s).

Informed Designer allows you to create a single distribution center profile that works for both
dows and Mac OS users. Depending on the access method that you select, you may or may n
to configure the distribution center profile twice. For some access methods, the configuration
that you specify on one platform are valid, without change, for the other platform. Other acce
methods require that the configuration be specified once on each platform.

The Distribution Center dialog contains a scrolling list labeled “Configuration.” This list shows
details of the configuration.

Form Template Distribution and Revision 8-11

 .
 .

 .

ura-
e

ot
fier.

 each
istri-

t is

sked
.

If a distribution center profile for the selected access method requires platform specific config
tion, you’ll see separate configuration details for each platform. On the above dialog, the “Fil
Server” access method is selected and the location of the distribution center is specified as
“c:\frmsvr” for Windows users and “Drive C:FRMSVR:” for Mac OS users. If configuration is n
available for one platform or the other, you’ll see “(not configured)” next to the platform identi

Although it may be necessary to configure a distribution center profile multiple times, once on
platform, the resulting profile document is still a platform neutral document. That is, a single d
bution center profile will work with Informed Designer and Informed Filler on all platforms.
Informed Designer and Informed Filler will automatically use the configuration information tha
appropriate for the current platform.

Removing Distribution Center Profiles

To remove a distribution center profile, select its name in the list and click ‘Remove.’ You are a
to confirm the operation before the profile is removed. Removing a distribution center profile
deletes the profile file from the “DISTCTRS” (Windows) or “Distribution Centers” (Mac OS)
folder.

8-12 Form Template Distribution and Revision

 .
 .

 .

em-

iller
ncy
 the

r an
y the
age

ser the
inued.
 in the
user
mmand

.

Revision Information
Each form template has associated revision options. These options are most applicable for t
plates that are distributed via Informed’s built-in distribution features. Choose Revision Options...
from the Form menu to display the Revision Options dialog box.

The setting of the ‘Check for a new revision’ drop-down list determines how often Informed F
will perform a revision check. If revision control is important, you might want to set the freque
to ‘Each time the template is opened.’ That way, a revision check will occur each time before
template is used. Other settings check only periodically.

If a revision check occurs, but Informed Filler is unable to connect to the distribution center, o
error of some type occurs while accessing the distributed template, Informed Filler will displa
custom message that you specify on the Revision Options dialog box. If you leave this mess
blank, Informed Filler will substitute a standard message.

The status and status message of a template are intended to indicate to the Informed Filler u
current status of the template. The three statuses include: Current, Non-current, and Discont
Choose the status that is most appropriate for the template. You can enter a status message
text box to provide a more descriptive indication of the template’s status. The Informed Filler
can display the status and status message of a template by choosing the Revision Status co
from the View menu.

Revision Information

Form Template Distribution and Revision 8-13

 .
 .

 .

 the
ly use-
user of
rds,

 form
st.
tribu-

 Also
ion num-

bution
ying
ss-
essi-

cessed

u-

ins

.

The ‘Display status message when the user adds a new record’ checkbox allows you to warn
Informed Filler user of the status of a template when new record is created. This is particular
ful if a template is used only under certain conditions. The status message could remind the
the intended uses of the template. To prevent the Informed Filler user from creating new reco
select the ‘Prevent users from adding new records’ option.

Maintaining Distributed Templates
You use Informed Designer’s Distribution command to create, update, and delete distributed
templates, and to add and remove distribution centers to and from a template’s distribution li
Choosing this command from the Configure submenu under the Form menu displays the Dis
tion dialog box.

The scrolling list shows all distribution centers that are on the distribution list for the template.
listed are the access methods used to access each distributed template and the current revis
ber. When you choose the Distribution command, Informed Designer connects to each distri
center in the list to verify the current revision number of the distributed template before displa
the Distribution dialog. The revision number is shown only if the distributed template is succe
fully accessed. Otherwise you’ll see the word “inaccessible.” If a distributed template is inacc
ble, it could be because of various reasons, including those listed below.

■ the distribution center is unavailable

■ the distribution center is available, but the distributed template is missing or cannot be ac

■ the required distribution center profile is not found in the DISTCTRS (Windows) or Distrib
tion Centers (Mac OS) folder

■ the Informed distribution plug-in for the access method used is not installed in your plug-
folder

Maintaining Distributed Templates

8-14 Form Template Distribution and Revision

 .
 .

 .

ribu-
 Dis-

ribu-

 dis-
)
 OS
enter.
.
You add, remove, and update distribution centers by clicking the different buttons on the Dist
tion dialog box. When you’ve finished using these features, click the ‘Done’ button to close the
tribution dialog box.

Creating a Distributed Template

To create a new distributed template at a distribution center, click the ‘Add’ button on the Dist
tion dialog box. The Add To Center dialog box appears.

The scrolling list on this dialog box initially lists the distribution centers that correspond to the
tribution center profiles found in your DISTCTRS (Windows) or Distribution Centers (Mac OS
folder. To select a distribution center, click its name in the list then click the ‘Open’ button (Mac
only), or simply double-click its name. The list changes to show the items at that distribution c

Form Template Distribution and Revision 8-15

 .
 .

 .

 like
 see a
 this

rrent
t and
sing

name

dd’
 so

te’s

ter in
.

Many types of distribution centers allow you to organize distributed templates in folders much
you can organize files on a hard disk. If the selected distribution center permits folders, you’ll
‘New Folder’ button on the Add To Center dialog box. You can create a new folder by clicking
button and entering a folder name. You can create a folder inside another folder.

When the scrolling list shows the contents of a folder, the folder’s name will appear as the cu
item in the drop-down list above. You reveal a folder’s contents by selecting its name in the lis
clicking ‘Open’ (Mac OS only), or by simply double-clicking its name. You can select an enclo
folder from the drop-down list to navigate out of folders.

The default name of the distributed template is the template’s filename. You can change this
by typing a different name in the ‘Add distributed template as’ text box.

Once you’ve named the distributed template and selected the folder to store it in, click the ‘A
button. (If the button label is ‘Open’, press Tab to select the distributed template name. Doing
will change the button label to ‘Add.’) Clicking ‘Add’ adds the distribution center to the templa
distribution list and creates the distributed template at the specified location.

Removing a Distribution Center

To remove a distribution center from the template’s distribution list, select the distribution cen
the list and click ‘Remove.’ You are asked to confirm that you would like to proceed.

8-16 Form Template Distribution and Revision

 .
 .

 .

the

 dis-
e

d tem-

 with
intro-
se cau-
ight

ore

istrib-
 be

plate.
rma-
.

Click ‘OK’ to continue or ‘Cancel’ to cancel the remove operation. If you choose to continue,
distribution center is removed from the distribution list. You are then asked if you’d like to also
delete the distributed template from the distribution center.

To permanently delete the distributed template, click ‘Delete.’ Click ‘Don’t Delete’ to leave the
tributed template untouched. Be careful when deleting a distributed template. Do so only onc
Informed Filler users have discontinued use of any templates that are linked to the distribute
plate.

Updating Distributed Templates

When you revise a form template, you have the option to either replace the previous version
the new version (the revision number is changed but the Template ID remains the same), or
duce the new version as a new template (a new unique Template ID is assigned). You must u
tion when replacing a template with a new version because of the potential effects doing so m
have on the data for any existing forms that were filled out using the previous version. For m
information, please see “Overview” earlier in this chapter.

When you replace an existing form template with a new version, you do so by updating the d
uted template at the appropriate distribution centers. That way, each Informed Filler user will
automatically notified of the new version the next time a revision check occurs. In order for
Informed Filler to recognize the new version, you must change the revision number of the tem
You can do this on the Distribution dialog itself or by using Informed Designer’s Template Info
tion command.

Form Template Distribution and Revision 8-17

 .
 .

 .

ate
ick

e dis-

ox,

 tem-
the
se of

cessed

u-

ins

essi-

tem-
se
u do
dat-
y
.

The Distribution dialog lists the distribution centers at which the template is available. To upd
the distributed template at a distribution center, select the distribution center in the list and cl
‘Update.’ You are asked to confirm the operation.

Click ‘OK’ to proceed or ‘Cancel’ to cancel the update operation. If you choose to proceed, th
tributed template is replaced with the new version.

If you want to update the template at all distribution centers listed on the Distribution dialog b
click the ‘Update All’ button.

In order to update a distributed template, access to the distribution center and the distributed
plate itself must be available. If access is available, you’ll see the current revision number of
distributed template on the Distribution dialog box. If access is unavailable, it might be becau
one of the reasons listed below.

■ the distribution center is unavailable

■ the distribution center is available, but the distributed template is missing or cannot be ac

■ the required distribution center profile is not found in the DISTCTRS (Windows) or Distrib
tion Centers (Mac OS) folder

■ the Informed distribution plug-in for the access method used is not installed in your plug-
folder

If the distributed template is inaccessible for any of these reasons, you’ll see the word “inacc
ble” in place of the current revision number on the Distribution dialog box.

Note You can update a distributed template without changing its revision number. However,
Informed Filler will not recognize the updated distributed template as a new version of the
plate and, therefore, will not automatically notify the user of the new version. You may choo
to do this in cases where the changes made in the new revision are minor in nature and yo
not want to incur the networking costs of updating each Informed Filler user’s template. Up
ing the distributed template in this manner, however, has the advantage of ensuring that an
users who obtain the template for the first time with receive the most current version.

8-18 Form Template Distribution and Revision

 .
 .

 .

.

9

Using Formulas

In this chapter:

■ Overview 9-2

■ Operands 9-3

■ Operators 9-7

■ The ‘If’ Statement 9-14

■ Precedence 9-15

■ Formula Result 9-18

■ Type Conversion 9-19

9-2 Using Formulas

.
.

.
.

 can
iller.
r

nal

ells on

se a

ror or
nt rate
 boxes

rmula
ally

owing

9Using Formulas
Formulas are an important part of Informed’s data intelligence capabilities. With formulas, you
create cells whose values are calculated or checked when you fill out a form with Informed F
You can also use formulas to configure a dynamic tab order for cells on a form. In this chapte
you’ll learn about the following topics:

■ the uses of formulas

■ operands and operators

■ constants and functions

■ conditional formulas and the IF statement

■ formula results

■ precedence rules

■ automatic type conversion

For information about entering formulas, see “Calculations,” “Data Verification,” and “Conditio
Tabbing” in Chapter 1. Functions are explained in detail in Chapter 10.

Overview
The most common use of formulas is to calculate a cell’s value based on the values of other c
your form. Calculated cells are automatically entered for you when you fill out a form with
Informed Filler or when you test your form with Informed Designer. For example, a cell can u
formula to calculate an extended price based on a quantity and a unit price.

You can use formulas to check for data entry errors. A check formula can test for different er
warning conditions. For example, you could use a check formula to make sure that the discou
on a sales slip doesn’t exceed twenty percent of the total sale. You can even use alert dialog
and help messages to describe error or warning conditions to the person filling out the form.

You can also use formulas to calculate the next tab position for any cell. The result of a tab fo
is the name or tab position of the next cell to tab to. By using tab formulas, you can dynamic
change the tab order of a form according to different conditions.

Formulas combine values, called operands, with special symbols, called operators, to derive a par-
ticular result. Each operator applies a particular action on its operands. For example, the foll
formula uses the addition operator (+) to add 2 to the value contained in ‘Cell1.’

Cell1 + 2

Overview

Using Formulas 9-3

 .
 .

 .

ted
larger

value

d by the

’t
se the
alue
ype

 For
 -1.

 same

 time,

.

The result of a formula is used according to where the formula appears. It can be the calcula
value of a cell, a function parameter, a check condition, a tab condition, or it can be part of a
formula.

Operands
The values from which a formula derives its result are called operands. You combine operands with
operators to create a formula that produces the defined result. An operand can be:

■ a value that you enter directly into a formula

■ the value of a cell

■ the result of a function

■ the result of another formula

The following example shows a formula that uses all four kinds of operands. It adds 2 to the
in ‘Cell1’ and then multiplies that result by the sum of 2, 4, and 8.

(2 + Cell1) * Sum (2, 4, 8)

When you use an operand with an operator, the operand’s type must match the type expecte
operator. For example, the multiplication operator (*) expects number operands. If the types don
match, Informed will try to convert the operand’s value to the appropriate type. You can also u
type conversion functions (ToNumber, ToText, and so on) to explicitly convert an operand’s v
to a different type. For more information about type conversion and type compatibility, see “T
Conversion” later in this chapter.

Constants

Constants, sometimes called literals, are values that you enter directly into a formula. The term
constant is used to describe these values because they don’t change; they remain constant.
example, the second operand in the following formula always evaluates to the numeric value
The result of the formula is always -1 plus the value in the cell called ‘Cell1.’

Cell1 + -1

If you use a formula where all the operands are constants, the formula will always return the
result. For example, the following formula always returns the date August 23, 1996.

ToDate ("August 3, 1996") + 20

Three kinds of constants are used in the above example: a number constant, a text constant
("August 3, 1993"), and a date constant (the result of the ToDate function). You can also use
name, and boolean constants as operands in formulas.

Operands

9-4 Using Formulas

 .
 .

 .

r can
s as

t the
 that
e
\013.”

 repre-

.
Number Constants
A number constant consists of an optional sign indicator (+ or -) followed by one or more digits. A
decimal point can appear anywhere in the digits. Some example number constants are:

45
+3.33
-.05
89.99
-545.63
-5.

Informed provides two predefined number constants. The values of pi (3.141592654...) and e
(2.718281828...) are represented by the constants shown below.

Predefined Number Constants

Text Constants
Text constants must be enclosed in single or double quotation marks. Any typeable characte
appear in a text constant. If the text constant itself contains the same type of quotation mark
those enclosing it, you must precede the quotation mark with the backslash character (\). To enter
the backslash character, type the Backslash key. The backslash character tells Informed tha
next character is part of the text constant. The following table lists some text constants. Note
the constant “\t” adds a tab, and constant “\n” adds a carriage return. ASCII codes can also b
entered as text constants. For example, to enter a carriage return into a text string you type “
The carriage return is inserted when the formula is evaluated.

Text Constants

Boolean Constants
You can use two predefined boolean constants. The boolean values of “True” and “False” are
sented by the same words typed without the enclosing quotation marks.

Constant Value

Pi or π or ∏
e

3.141592654
2.718281828

Text Constant Text Value

"Received - code #546"
"Received - code \t#546"
"Received - code \n#546"

'For this office\'s use only.'
"Don't remove this label!"
"Welcome to \"Herb's Diner\""
'A.'

Received - code #546
Received - code #546
Received - code
#546
For this office's use only.
Don't remove this label!
Welcome to "Herb's Diner"
A.

Using Formulas 9-5

 .
 .

 .

tions.
 enter a
double
For

e value
uiva-

s how
-

 the
 with

ber
 fol-

lumn.
r to
ows.
.

ks
.

Name, Date, and Time Constants
To enter name, date, or time constants, you must use the ToName,ToDate, and ToTime func
These functions convert values from other types to the name, date, and time data types. You
name, date, or time constant by enclosing the textual representation of the value in single or
quotation marks and entering that value as the single parameter to the appropriate function.
example, you’d enter the time constant 12:51 PM by typing ToTime ("12:51 PM").

When you enter the textual representation of a name, date, or time constant, you can enter th
in any format that Informed will recognize. For example, the two date constants below are eq
lent.

ToDate ("January 1, 1996")
ToDate ("1/1/96")

If the result of the function is used as a cell’s calculated value, the format of the cell determine
the value is displayed on your form. See the “Cell Types” section in Chapter 1, “Adding Intelli
gence to Your Forms.” for more information.

Cell References

Formulas can reference information in other cells on your form. To reference a cell, you type
cell’s name in the formula. When Informed evaluates the formula, the cell’s name is replaced
the current value of the cell.

For example, suppose that your form contains a cell called ‘Quantity,’ which contains the num
of items, and a cell called ‘Price,’ which contains the price of a single item. You could use the
lowing formula to calculate the extended price.

Quantity * Price

Column Cells
When you use a column cell as an operand in a formula, the formula’s result will also be a co
That is, the result will consist of multiple values. For example, if you use the addition operato
add two column cells, each containing five rows, the formula’s result will also consist of five r
Each row in the result will contain the sum of the corresponding rows in the two column cells

Note Never enclose the name of a cell within quotation marks. A cell name within quotation mar
would be interpreted as a text constant and not as a cell value.

9-6 Using Formulas

 .
 .

 .

con-
g rows

stant
t adds

 be a
 cell

he
e

the
a
.

If the column cells in the above example were of different heights, the formula’s result would
tain as many values as the longest column. Informed would insert empty values in the missin
of the shorter column cell.

If you use column cells with field cells or constants in the same formula, the field cell and con
values are applied to each row of the column cells. The figure below illustrates a formula tha
a field cell, a number constant, and two column cells.

You can use column cells in a formula only when the result of the formula is also expected to
column. If a single value result is required, Informed Designer won’t allow you to use a column
in the formula. For example, suppose that your form contains the field cell called ‘Total’ and t
column cells called ‘Quantity’ and ‘Price.’ Informed Designer would not allow you calculate th
‘Total’ cell as ‘Quantity * Price.’

You can reference a specific row of a column cell in your formula. For example, to reference
third row of the column cell ‘Quantity’ you would enter ‘Quantity[3].’ The row identifier can be
numeric constant, or a formula that returns a number.

Column cells Formula result

Empty values
Result values
Replicated constant value
Replicated field cell value

Using Formulas 9-7

 .
 .

 .

ppear
, the
ion is

n used
 the

ing

formu-
sed as

d as

dence
For a

forms a
 and on

oper-
hereas

.

Functions

A function performs a predefined calculation using a set of input values, called parameters. For
example, the following function calculates the mean of the numbers 1, 8, and 12.

Mean (1, 8, 12)

You can use the result of a function’s calculation as an operand in a formula. A function can a
in a formula anywhere a cell reference or a constant can appear. As with constants and cells
result type of a function should match the type expected by the operator with which the funct
used. See “Type Conversion” for more information.

When you use a function as an operand, the function is evaluated first. Its result value is the
to evaluate the formula. For example, the following formula calculates the sum of 7—which is
result of the ‘Mean’ function—and 10 to give a result of 17.

10 + Mean (1, 8, 12)

For more information about functions, parameters, and function results, see Chapter 10, “Us
Functions.”

Formulas as Operands

You can use a formula as an operand to another formula. This allows you to create complex
las that consist of many operators and operands. For example, the formula ‘Cell1 * Cell2’ is u
the first operand to the addition operator (+) in the formula below.

Cell1 * Cell2 + Cell3

In the above example, the formula ‘Cell1 * Cell2’ is evaluated first. Its result value is then use
the first operand to the addition operator.

You can combine any number of operands and operators. There are rules, called precedence rules,
that determine which formulas are evaluated before others. In the above example, the prece
rules dictate that the multiplication operator (*) is evaluated before the addition operator (+).
complete description of the precedence rules, see “Precedence” later in this chapter.

Operators
Operators combine operands to create new values. To create a new value, each operator per
particular action on its operands. The type of the new value depends on the operator’s action
the types of operands used. Example actions are summation, comparison, and negation.

Most operators combine two operands to produce a new result. Others manipulate only one
and, or any number of operands. For example, the addition operator (+) adds two operands, w
the boolean negation operator (Not) negates a single operand.

Operators

9-8 Using Formulas

 .
 .

 .

tion
doesn’t
o the

xt
 values
uce

onen-
vision,

era-
esult of

.

Each operator requires that its operands be a certain type. For example, since the multiplica
operator multiplies numbers, its operands must be number values. When an operand’s type
match the type required by the operator, Informed will try to automatically convert the value t
correct type. See “Type Conversion” for more information.

Informed provides five kinds of operators:

■ arithmetic

■ text

■ comparison

■ boolean

■ column

Arithmetic operators perform mathematical operations such as addition and multiplication. Te
operators manipulate text values to produce new text values. Comparison operators compare
to check for conditions or make choices. Boolean operators combine boolean values to prod
new boolean values. The list operator ({}) produces a list of any number of values.

Arithmetic Operators

Arithmetic operators allow you to create formulas that add, subtract, multiply, divide, and exp
tiate numbers. You can also use arithmetic operators to find the quotient and modulus of a di
negate a number, and convert a number to a percentage value.

The symbols for the arithmetic operators are shown in the following table. Along with each op
tor, the table lists the number of operands the operator requires and a simple example. The r
each example follows the arrow symbol (→).

Two operands

One operator

One operand

Cell1 + Cell2

Not Cell3

Using Formulas 9-9

 .
 .

 .

le, the
 the

alues.
m
ples.
 time

tween
rand is
ur

.

Arithmetic Operators

As shown above, you use arithmetic operators to create mathematical equations. For examp
following formula uses the multiplication and percentage operators to calculate 25 percent of
value in ‘Price.’

Price * 25%

You can also use the addition and subtraction operators to add and subtract date and time v
You can add days to a date and seconds to a time. You can also subtract one date or time fro
another. The following table illustrates addition and subtraction of dates and times with exam
To avoid repetition, the ToDate and ToTime functions are not used to create proper date and
constants.

Addition and Subtraction of Dates and Times

Subtracting a date from another date or a time from another time yields the number of days be
the two dates or seconds between the two times. A negative result indicates that the first ope
an earlier date or time that the second. For example, if ‘Birth date’ is a date cell containing yo
date of birth, the formula ‘Today - Birth date’ calculates your age in days (the Today function
returns the current date).

Operator # of Operands Description Example

+

-

*

/

Div

Mod

^

%

-

2
2
2
2
2
2
2
1
1

addition
subtraction
multiplication
division
quotient
modulus
exponentiation
percentage
negation

2 + 3 → 5

2 - 3 → -1

4 * 5 → 20

18 / 4 → 4.5

18 Div 4 → 4

18 Mod 4 → 2

4 ^ 3 → 64

1.5% → 0.015

-(2 + 3) → -5

Operator Operand Types Example

+

-

date + number
time + number
date - number
time - number
date - date
time - time

May 12 + 2 → May 14

5:45:30 + 14 → 5:45:44

Dec 22 - 2 → Dec 20

12:30:15 - 14 → 12:30:01

10/24/96 - 10/14/96 → 10

14:20:10 - 14:10:00 → 610

9-10 Using Formulas

 .
 .

 .

 to

 text
 airline

perand

n

deter-
tor is
lowing
stant
r date,

m-
.
Text Operators

Informed provides you with one text operator. This operator allows you to join two text values
create a new larger text value. The operator is called the concatenation operator. It appears in the
following table along with an example.

Text Operator With Example

You use the concatenation operator to construct new text values. For example, if ‘Airline’ is a
cell containing the name of an airline, the formula below creates a message that indicates the
on which a flight has been booked.

"Your flight is booked on " & Airline

You can build complex messages by using the result of one concatenation operator as the o
to another.

"Your flight is booked on " & Airline & ". Have fun!"

If the value of ‘Airline’ is “Sunny Airlines,” the formula returns the result “Your flight is booked o
Sunny Airlines. Have fun!.”

Comparison Operators

Comparison operators compare two values. For example, you can compare two numbers to
mine if one is greater than, equal to, or less than the other. The result of a comparison opera
always a boolean value; either True or False. The comparison operators are shown in the fol
table. Each operator is shown with the types of operands allowed and an example using con
values. Again, to avoid repetition, the type conversion functions are not used to create prope
time, and name constants.

Comparison Operators With Examples

Operator Operand Types Description Example

& text & text concatenation "In" & "formed" → "Informed"

Note You can also use the ‘Concat’ function to concatenate text values. See Chapter 10 for a co
plete description of this function.

Operator Operand Types Description Example

= number = number
date = date
time = time
text = text
name = name
boolean = boolean

equals 4 = 5 → False

May 5 1996 = 05/05/96 → True

12:30:00 = 12:30:01 → False

"aaaaA" = "aaaa" → False

A. New = Al New → False

True = True → True

Using Formulas 9-11

 .
 .

 .
rmed

rs to
son
xam-
in

.

Comparison Operators With Examples (continued)

The comparison operators compare values of the same type. If the operand types differ, Info
will convert both values to text and compare the two text values.

The comparison operators return boolean results True or False. You use comparison operato
create check formulas or formulas that set the values of boolean cells. You also use compari
operators with the IF statement to make decisions or select different actions. The following e
ple checks if the value of ‘Quantity’ is greater than 5. If ‘Quantity’ is greater than 5, the value
‘Price’ is discounted by 5 percent. If ‘Quantity’ is less than or equal to 5, the value in ‘Price’ is
returned unadjusted.

Operator Operand Types Description Example

<>

<

>

<=

>=

number <> number
date <> date
time <> time
text <> text
name <> name
boolean <> boolean
number < number
date < date
time < time
text < text
name < name
boolean < boolean
number > number
date > date
time> time
text > text
name > name
boolean > boolean
number <= number
date <= date
time <= time
text <= text
name <= name
boolean <= boolean
number >= number
date >= date
time >= time
text >= text
name >= name
boolean >= boolean

not equals

less than

greater than

less than or
equal to

greater than
or equal to

4 <> 5 → True

May 5 96 <> 05/05/96 → False

12:30:00 <> 12:30:01 → True

"After" <> "Before" → True

A. New <> Al New → True

False <> False → False

5 < 6.5 → True

01/01/92 < 05/05/93 → True

12:30 PM < 12:30:01 → False

"ABC" < "abc" → True

J Smith < A Smith → False

True < False → False

8.9 > 9 → False

10/05/93 > 05/05/93 → True

12:30:00 > 12:30:01 → False

"123" > "abc" → False

J Smith > A Smith → True

True > False → True

1 <= 0 → False

Jan 1 <= May 5 → True

15:00:00 <= 15:00:00 → True

"Dog" <= "cat" → True

J Smith <= J Jones → False

False <= True → True

5.5 >= 5.5 → True

10/05/95 >= 10/05/93 → True

12:30:00 >= 12:30:01 → False

"say 123" >= "say 456" → False

J Smith >= J Jones → True

True >= False → True

9-12 Using Formulas

 .
 .

 .

and

” date

e
t val-
der-
ach

 order:
in a
uming

if they

tors
mma-
.
If (Quantity > 5) Then
 Return Price * 95%
Else
 Return Price
End

When you compare two values, Informed follows the comparison rules outlined below.

■ Numbers are compared numerically. Larger numbers are greater than smaller numbers,
negative numbers are less than positive numbers.

■ Dates and times are compared temporally. A “later” date or time is greater than an “earlier
or time.

■ Text values are compared using the character ordering called ASCII. In general, digits ar
ordered before capital letters, and capital letters are ordered before small letters. Two tex
ues are compared character by character from left to right until they differ. The relative or
ing of the differing characters determines which is the “greater” text value. The result of e
of the following comparisons is True.

"Hello" = "Hello"

"123 Street" < "Whyte Avenue"
"Informed" > "Inform"
"begin" < "end"
"Design West" < "design West"

■ Names are compared part by part. The parts of two names are compared in the following
surname, first name, middle names, prefix, then suffix. If one of the names doesn’t conta
part and the other name does, the name that’s missing the part is the “lesser” name (ass
the names are equal up to that part).

■ The boolean value True is greater than False.

■ Pictures and Signatures. You can compare two picture values or signature values to see
are equal.

Boolean operators

Boolean operators perform the logical operations of “and,” “or,” and “not.” Use boolean opera
to check if different boolean values or comparisons are True or False. The following table su
rizes the boolean operators.

Boolean Operators With Examples
Operator Description Example

And logical “and” True And True → True

True And False → False

False And True → False

False And False → False

Using Formulas 9-13

 .
 .

 .

uld be
o val-
imulta-
qual

llow-

differ-
. If
ter

create
as,
e
 fol-

is and
.

Boolean Operators With Examples (continued)

You can use boolean operators to decide if one or more conditions are True. The condition co
the value of a boolean cell on your form or it could be the result of a formula that compares tw
ues using a comparison operator. Use the And operator to check if two conditions are True s
neously. For example, the formula below checks if the value in ‘Discount’ is greater than or e
to zero and less than 15.

Discount >= 0 AND Discount < 15

Similarly, you can use the Or operator to check if at least one of two conditions is True. The fo
ing formula checks if the value in ‘Discount’ is less than zero or greater than 15.

Discount < 0 OR Discount > 15

Boolean operators are often used with comparison operators and the ‘If’ statement to select
ent actions. The following example checks if ‘Override’ is not True and if ‘Size’ is less than 25
both conditions are True, the text value “OK” is returned. If ‘Override’ is True or if ‘Size’ is grea
than or equal to 25, the text value “Not OK” is returned instead.

If Not Override AND Size < 25 Then
 Return "OK"
Else
 Return "Not OK"
End

The Column Operator

The column operator consists of the two brace characters “{” and “}.” Use these characters to
a column consisting of multiple values. Simply enclose multiple valuse, separated with comm
within the brace characters. A column result can be used to set the value of a column cell. Th
example below uses the column operator to create a column containing the rows of Column1
lowed by the rows of Column2.

{Column1, Column2}

The MakeColumn function can be used in place of the column operator. For information on th
other functions, see Chapter 10, “Using Functions.”

Operator Description Example

Or

Not

logical “or”

logical negation

True Or True → True

True Or False → True

False Or True → True

False Or False → False

Not True → False

Not False → True

9-14 Using Formulas

 .
 .

 .

can

t. For

ula

f the
. For

ula

hat
f the
is at

,
.

The ‘If’ Statement
The ‘If’ statement provides you with a decision making capability for your formulas. A formula
return different results based on different conditions.

 The condition of an ‘If’ statement can be any formula or function that returns a boolean resul
example, the formula below returns the value of ‘Cell3’ multiplied by 100 only if the value of
‘Cell2’ is not equal to zero.

If Cell2 <> 0 Then
 Return Cell3 * 100
End

The condition for the above ‘If’ statement is ‘Cell2 <> 0.’ If the value of ‘Cell2’ is zero, the form
returns the empty value.

You can select between two different actions by using the word ‘Else’ with the ‘If’ statement. I
condition being checked by the ‘If’ statement is False, the formula after the ‘Else’ is evaluated
example, the formula below returns the value “Senior” if ‘Age’ is greater than 65.

If Age > 65 Then
 Return "Senior"
Else
 Return "Junior"
End

If the value of ‘Age’ is not greater than 65 (that is, if ‘Age’ is less than or equal to 65), the form
returns “Junior” instead.

The ‘If’ statement is commonly used to create check formulas. A check formula is a formula t
checks for different error or warning conditions. The result of a check formula tells Informed i
entry in a cell is valid or not. For example, the formula below checks if the value in ‘Shipping’
least 5 and less than 20.

If (Shipping >= 5) AND (Shipping < 20) Then
 Return True
Else
 Return False with Alert 'Discount out of range.'
End

The ‘If’ Statement

Note You can also use the IFT and IFTE functions in place of the ‘If’ statement. See Chapter 10
“Using Functions” for more information.

Using Formulas 9-15

 .
 .

 .

he
reating

ose
 and
ent
e value

 to as

tal
or a

 eval-
 which
the
evalu-
.

If the ‘If’ condition evaluates to False—which means the value in ‘Shipping’ is out of range—t
formula returns the value False and displays an alert message. For more information about c
check formulas, see “Data Verification” in Chapter 1, “Adding Intelligence to Your Forms.”

You can extend the ‘If’ statement further by using the word ‘ElseIf.’ With this word you can cho
between several alternative actions. An ‘If’ statement can contain zero or more ‘ElseIf’ terms
zero or one ‘Else’ term. If you use an ‘Else’ term, it must appear last. The following ‘If’ statem
uses several ElseIf terms and an ‘Else’ term to choose between several actions. It returns th
in ‘Price’ scaled by a factor that is determined by the value in ‘Age.’

If Age < 18 Then
 Return Price * 50%
ElseIf (Age >= 18) AND (Age < 45) Then
 Return Price
ElseIf (Age >= 45) AND (Age < 65) Then
 Return Price * 150%
Else
 Return Price * 175%
End

You can use an ‘If’ statement as an action of another ‘If’ statement. This is commonly referred
nesting (one ‘If’ statement is nested inside another). Consider the formula below.

If TotalSale < 5000 Then
 If Discount Rate > 0.15 Then
 Return False with Alert 'The discount rate
 cannot exceed 15%.'
 End
Else
 If Discount Rate > 0.20 Then
 Return False with Alert 'The discount rate
 cannot exceed 20%.'
 End
End

This formula checks for an invalid discount rate. The outermost ‘If’ statement checks if the to
sale is less than $5,000. Depending on the result of that condition, the formula then checks f
discount rate that’s either greater than 15 percent or greater than 20 percent.

Precedence
Precedence rules are the rules that determine the order in which parts of complex formulas are
uated. When you create a formula with more than one operator, the precedence rules dictate
operator is evaluated first, which is evaluated second, and so on. Without precedence rules,
same formula could yield different results, depending on the order in which its operators are
ated. For example, the formula below could be evaluated two different ways.

2 * 4 + 3

Precedence

9-16 Using Formulas

 .
 .

 .
 to the

sult

ded to

sed on:

he

ated
e
aren-

der in
 which
 evalu-
e
.
The multiplication operator (*) could be evaluated first and its result used as the first operand
addition (+) operator:

8 + 3

The result would be 11. Alternatively, the addition operator could be evaluated first and its re
used as the second operand to the multiplication operator:

2 * 7

The result would be 14 instead. Clearly, rules that dictate how formulas are evaluated are nee
avoid confusion.

Informed uses three rules when it evaluates a complex formula. The precedence rules are ba

■ parentheses

■ operator precedence

■ left-to-right precedence

Before any operators are evaluated, Informed calculates all functions in a formula and uses t
function result values as operands.

When you enclose part of a complex formula in parentheses, that part of the formula is evalu
first. If you nest parentheses by enclosing one set within another, the part of the formula in th
“innermost” set of parentheses is evaluated first. The following example demonstrates how p
theses affect precedence.

((3 + 5) * (6 - 3)) * 2 innermost parentheses first
(8 * 3) * 2 outermost parentheses next
24 * 2 evaluate last operator
48 final result

Operator precedence is used when you don’t include parentheses to explicitly indicate the or
which a formula’s operators should be evaluated. Operator precedence specifies the order in
different operators in the same formula are evaluated. Operators with higher precedence are
ated first. The following table shows Informed’s operators grouped into precedence levels. Th
highest precedence operators come first.

Informed Operator Precedence Levels
Operators Precedence

% Not - (negation)

^

* / Div Mod

+ - &

= ≠ <> < ≤ ≤= > ≥ >=

And

Or

highest

lowest

Using Formulas 9-17

 .
 .

 .

 opera-

s to
 left to

for-

 of
 eval-

ou
elow is

rst
itch-

alue 50.
.

The following example shows how operator precedence affects the order of evaluation of the
tors in a formula.

4 * 5 + 3 < 4 - 6 / 3 evaluate multiplication and division first
20 + 3 < 4 - 2 evaluate addition and subtraction next
23 < 2 evaluate comparison operator last
False final result

If you create a formula that uses operators of the same precedence level and no parenthese
explicitly alter the order of evaluation, the operators with the same precedence are evaluated
right. The following examples shows how left-to-right precedence affects the evaluation of a
mula.

5 * 2 Div 3 / 1.5 evaluate each operator from left to right
10 Div 3 / 1.5
3 / 1.5
2

When you enter a complex formula, you can include parentheses and any valid combination
operators and operands. The following example shows a complex formula and how Informed
uates it using all precedence rules.

10 + 2 * ((5 + -2) / 3) - 5 = 8 unary negation first
10 + 2 * ((5 - 2) / 3) - 5 = 8 innermost parentheses
10 + 2 * (3 / 3) - 5 = 8 outermost parentheses
10 + 2 * 1 - 5 = 8 multiplication
10 + 2 - 5 = 8 addition and subtraction
7 = 8 comparison last
False final result

When operator or left-to-right precedence causes your formula to be evaluated incorrectly, y
have to use parentheses to override the other precedence rules. For example, the formula b
intended to subtract from 50, the number of days between May 1, 1996 and April 25, 1996.

50 - ToDate ("May 1, 1996") - ToDate ("Apr 25, 1996")

However, left-to-right precedence causes the leftmost subtraction operator to be evaluated fi
(which attempts to subtract a date from a number). You could correct the formula either by sw
ing the order of operands, or by using parentheses.

ToDate ("Apr 25, 1996") - ToDate ("May 1, 1996") + 50
50 - (ToDate ("May 1, 1996") - ToDate ("Apr 25, 1996"))

In either case, the subtraction operator subtracts one date from the other before adding the v
The correct result is returned.

9-18 Using Formulas

 .
 .

 .

ators,

 is
h the

mati-
 text
al

 of a
 so

explic-
ate

ar
sev-

.

Formula Result
Every formula returns a result of a particular type. A formula’s result type depends on the oper
operands, and functions used in the formula.

The result type of a formula should match the type expected according to where the formula
used. For example, if a formula sets the value of a cell, the formula’s result type should matc
type of the cell, whereas a check formula should always return a boolean result.

If the result type of a formula is different than the type required, Informed will attempt to auto
cally convert the result value to the correct type. For example, if the calculation formula for a
cell returns a numeric value, Informed will automatically convert the number result to its textu
representation when the formula is evaluated. If you want to explicitly change the result type
formula from one type to another, use the type conversion functions (ToText, ToNumber, and
on). See “Type Conversion” for more information.

When you create a calculation, check, or tab formula, you can use the ‘Return’ statement to
itly indicate the formula’s return value. The ‘Return’ statement is optional; it allows you to cre
more readable formulas. For example, the two calculation formulas below are equivalent.

3 * Mean (Cell1, Cell2)
Return 3 * Mean (Cell1, Cell2)

The ‘Return’ statement is particularly useful with the ‘If’ statement. Using ‘Return’ makes it cle
which parts of the ‘If’ statement are potential return values. The following ‘If’ statement uses
eral ‘Return’ statements.

If Age < 18 Then
 Return Price * 0.5
ElseIf (Age >= 18) AND (Age < 45) Then
 Return Price
ElseIf (Age >= 45) AND (Age < 65) Then
 Return Price * 1.5
Else
 Return Price * 1.75
End

The ‘Return’ statements make it clear that the above formula can return one of four different
results. Since the ‘Return’ statement is optional, the following formula is equivalent to the one
above.

Formula Result

Using Formulas 9-19

 .
 .

 .

ture,
esent.
te expla-
rms.”

rsion
ert a
ctions.

om-
ines
ame
t mes-

s.

 it’s

 Text
.

If Age < 18 Then
 Price * 0.5
ElseIf (Age >= 18) AND (Age < 45) Then
 Price
ElseIf (Age >= 45) AND (Age < 65) Then
 Price * 1.5
Else
 Price * 1.75
End

Type Conversion
A value can be one of the following eight types: text, number, date, time, name, boolean, pic
and signature. The type of a value determines the type of information that the value can repr
For example, number values store numbers, whereas date values store dates. For a comple
nation of each type, see the “Cell Types” section in Chapter 1, “Adding Intelligence to Your Fo

Type conversion refers to the process of changing a value from one type to another. Type conve
allows you to represent the same information in different forms. For example, you could conv
number value to a text value so that you could manipulate the value using Informed’s text fun

Suppose that your form contains a name cell called ‘Customer Name’ and a text cell called ‘C
ment.’ Let’s say that you want to create a calculation formula for the ‘Comment’ cell that comb
the text message “Have a nice day” with the customer’s name. Since ‘Customer Name’ is a n
cell, the cell’s value has to be converted to a text value before you can combine it with the tex
sage.

Type conversion is required in the following situations:

■ When the result type of a calculation formula doesn’t match the type of the cell that it set

■ When the result type of a check formula is not boolean.

■ When the result type of a tab formula is not text or number.

■ When the type of an operand doesn’t match the type required by the operator with which
used.

■ When the type of a function parameter doesn’t match the type expected by the function.

■ When the result type of an ‘If’ or ‘ElseIf’ statement’s condition is not boolean.

■ When you change the type of a cell on a form and use it to view old data.

Type Conversion

Note When you use the Format command to select a cell’s type, you choose from nine different
types. The discussion about type conversion involves only eight types. This is because the
and Character cells both use the text type.

9-20 Using Formulas

 .
 .

 .
 con-
her in

verted
d to

re

 one
not all
 will
esent

e bool-
table
.
You can explicitly change the type of a value using Informed’s type conversion functions. For
venience reasons, however, Informed will automatically convert a value from one type to anot
certain situations. The following section explains how Informed converts values.

Type compatibility

Informed can convert values only between certain types. For example, a number can be con
to a text value, but a date can’t be converted to a number. If a particular type can be converte
another type, the two types are said to be compatible. The following table shows which types are
compatible. The types labelled on those rows and columns that intersect with a check mark a
compatible.

Compatible Types

All types are compatible with themselves and all types are compatible with the text type.

The fact that two types are compatible doesn’t mean that all possible values will convert from
type to the other. For example, even though the text and number data types are compatible,
text values will convert to numbers. Although text values such as ‘123,’ ‘34.9328,’ and ‘-15.50’
convert to their numeric equivalents, the values ‘abc’ and ‘123z’ won’t because they don’t repr
valid numbers.

Informed uses special rules when it converts values between the text and boolean types. Th
ean values True and False are converted to the text values “True” and “False.” The following
lists the text values that will convert to boolean values.

Converting Text Values to Boolean Values

Cell Type text number name date time boolean picture signature

from text to
from number to
from name to
from date to
from time to
from boolean to
from picture to
from signature to

√
√
√
√
√
√
√
√

√
√

√

√

√

√
√

√

√
√

√

√
√

√

√

√

√

√

Text Value Converts To

“True”
“T”
“False”
“F”
“Yes”
“Y”

True
True
False
False
True
True

Using Formulas 9-21

 .
 .

 .

 is
nt to

l be
lse con-

at in a
t
l

isplay
 appro-
 the
t, it
ures
rough

lue
xam-
low

ber.

er
tion
alue
ected.
.

Converting Text Values to Boolean Values (continued)

When a text value is compared with those values in the previous table, upper and lower case
ignored. This means, for example, that the text values “true” and “TRUE” will also be equivale
the boolean value True.

When Informed converts a numeric value to a boolean value, the resulting boolean value wil
True if the numeric value is non-zero, and False otherwise. The boolean values True and Fa
vert respectively to the text values “True” and “False,” and to the numeric values 1 and 0.

When a date or time value is converted to a text value, the textual date or time value will form
default manner. Date values will assume the format ‘M/D/YY,’ whereas time values will forma
according to ‘H:MM:SS AM.’ For more information about date and time formats, see the “Cel
Types” section in Chapter 1, “Adding Intelligence to Your Forms.”

Both pictures and signatures are binary values. Binary values are values that don’t normally d
as a series of characters. Informed understands how to display pictures and signatures in an
priate representation (that is, a picture appears as a picture, whereas a signature displays as
signer’s name next to a signature icon). When Informed converts a picture or signature to tex
converts the binary information to a series of characters. It is useful to be able to convert pict
and signatures to text (and back) if you want to export or submit form data to a database, or th
a medium that does not support binary information.

If you attempt to convert a value between two incompatible types, or if the conversion of a va
between two compatible types fails, Informed will change the value to the empty value. For e
ple, suppose that the cell called ‘Purchase Date’ is a date cell. The result of each formula be
would be the empty value.

5 * Purchase Date
15 / ‘ABCDEFG’

In the first formula, the type of the cell ‘Purchase Date’ is incompatible with the multiplication
operator. In the second formula, the text value “ABCDEFG” can’t be converted to a valid num

Automatic Type Conversion

For convenience reasons, Informed will automatically convert a value from one type to anoth
when it’s clear that the value must be a particular type. For example, if the result of a calcula
formula doesn’t match the type of the cell that it sets, Informed will automatically convert the v
to the correct type. The type conversion rules explained in the previous section apply as exp

Text Value Converts To

“No”
“N”
“On”
“Off”

False
False
True
False

9-22 Using Formulas

 .
 .

 .
to
ulas

ula

te-

btrac-
alue of
allows
sec-

med
e fol-

estina-
6.
.
Automatic type conversion allows you to create formulas with more freedom. You don’t have
tediously convert values from type to type in most common situations. For example, both form
below return the numeric result 150.

3 * ToNumber ("50")
3 * "50"

Since the multiplication operator multiplies numbers only, Informed will automatically convert
both operand values—if necessary—to numbers.

Suppose that a date cell called ‘Ship Date’ contains the value September 12, 1996. The form
below uses the concatenation operator to combine the value of this cell with a text message.

"Your order will ship on " & Ship Date & "."

The value of ‘Ship Date’ is automatically converted to the text value “9/12/96” and then conca
nated to produce the result “Your order will ship on 9/12/96.”

Some operators and function parameters allow values of different types. For example, the su
tion operator can subtract numbers, dates, or times, and the ‘Choose’ function can select a v
any type. To ensure that your formulas calculate correct results in these situations, Informed
you to use special type conversion functions. These functions are explained in the following
tion.

Type Conversion Functions

When you create a formula, you can explicitly convert a value from one type to another. Infor
provides eight type conversion functions for converting values between compatible types. Th
lowing table lists these functions.

Type Conversion Functions

The single parameter to any of these functions can be any value that’s compatible with the d
tion type. For example, the formula below converts a text value to the date value April 5, 199

ToDate ("April 5, 1996")

Function Description

ToText
ToNumber
ToName
ToDate
ToTime
ToBoolean
ToPicture
ToSignature

Converts any text-compatible value to text
Converts any number-compatible value to a number
Converts any name-compatible value to a name
Converts any date-compatible value to a date
Converts any time-compatible value to a time value
Converts any boolean-compatible value to a boolean value
Converts any ASCII represented picture to a picture value
Converts any ASCII represented signature to a signature value

Using Formulas 9-23

 .
 .

 .

fer-
the
e same.
rticu-

ry—to
e

ed
Time
 com-
.

You should use the type conversion functions when the type of a value can be interpreted dif
ently. Some operators and function parameters allow values of different types. For example,
comparison operators compare values of any type, as long as the type of each operand is th
If you want to compare two differently typed values according to the comparison rules of a pa
lar type, you should use the type conversion functions to convert both operands—if necessa
the correct type. The formula below compares the value of the time cell ‘Time In’ with the tim
constant 8:00 AM.

If Time In <= ToTime ("8:00 AM") Then
 Return True
Else
 Return False
End

If you were to compare the value in ‘Time In’ with the text constant “8:00 AM” instead, Inform
would convert the value in ‘Time In’ to text and then compare two text values. By using the To
function, both operands are interpreted as time values. Informed therefore uses the rules for
paring time values to compare the two operands.

9-24 Using Formulas

 .
 .

 .

.

11

Using Informed Number Server

In this chapter:

■ Overview 11-2

■ Configuring Informed Number Server 11-3

11-2 Using Informed Number Server

.
.

.
.

ways
mbers,
ilable
or
s.

s-
r

appli-

rms

because

 multi-
ed

.

11Using Informed Number Server
As discussed in “Auto-incrementing Numbers” in Chapter 1 of this manual, there are several
that you can generate unique identification numbers such as invoice numbers, time sheet nu
and purchase order numbers. You can configure an auto-incrementing cell to get its next ava
number from the form template itself, from an Apple event aware application (Mac OS only),
from an external database or data source accessible through Informed’s data access plug-in

One of the Apple event aware applications that you can link an auto-incrementing cell to is
Informed Number Server. An Apple event aware application is one that can send and receive me
sages using the Apple event capability of the Mac OS. Furthermore, Informed Number Serve
understands the specific Apple events that Informed Filler uses to communicate.

Informed Number Server is included with Informed Designer, but it is a completely separate
cation, and as such, it must be installed and configured separately.

This chapter deals specifically with how to configure Informed Number Server for use with fo
filled out with Informed Filler. For information on installing Informed Number Server, see your
Informed Designer Getting Started Guide. For information on how to link forms to Informed
Number Server, see “Auto-incrementing Numbers” in Chapter 1 of this manual.

Overview
Form numbers, such as invoice numbers and expense authorization numbers, are important
they ensure that all forms are uniquely identified. This is helpful for auditing purposes.

Informed Number Server has been designed to automate the assignment of form numbers to
ple users. Since all forms of a particular type obtain new form numbers from the same Inform
Number Server application, numbers are assigned consecutively and duplicates are avoided

Overview

John’s computer Karen’s computer Bob’s computer

No. 104

No. 100 No. 102 No. 101
No. 103

Using Informed Number Server 11-3

 .
 .

 .

r com-

iffer-
ssages
Apple

y com-
 as a
ser’s

lica-
le, if
e of

igner.

figure
m

hould
and
as the

appli-

and

.

In order to use Informed Number Server, all users must be running System 7 or later on thei
puters. System 7 brings IAC (Inter-Application Communications) capabilities to the Mac OS.
These capabilities allow two different applications—either on the same computer, or on two d
ent computers connected to the same network—to communicate directly with each other. Me
and information can be sent from one application to another. Informed Number Server uses
events to send new form numbers to the users filling out forms with Informed Filler.

Informed Number Server requires that one Mac OS computer act as a server. This can be an
puter that’s connected to the network of users filling out forms. It can be a computer that acts
dedicated server for other applications such as electronic mail or file sharing, or it can be a u
computer. The Mac OS computer acting as a server must have program linking turned on.

Once you’ve installed Informed Number Server, as the administrator you’ll configure the app
tion for each of the form templates that you intend to administer form numbers to. For examp
people fill out invoices and purchase orders, you’ll create two form numbers, one for each typ
form. The form number cells are then linked to Informed Number Server using Informed Des

Configuring Informed Number Server
Like most server type applications, Informed Number Server requires an administrator to con
the server for use on the network. This is a simple process that involves specifying which for
numbers Informed Number Server will assign and their starting values.

Like networks and file servers, configuration and maintenance of Informed Number Server s
be the responsibility of an administrator. This person will configure Informed Number Server
ensure its correct operation. An administration password ensures that only the administrator h
ability to change the configuration. Once Informed Number Server has been configured, the
cation will run virtually maintenance-free. You may, however, want to change its configuration
from time to time.

Registering Informed Number Server

When you run Informed Number Server for the first time, you’ll be asked to enter your name
the name of your organization (if applicable).

Configuring Informed Number Server

11-4 Using Informed Number Server

 .
 .

 .

creen

.
 form

 most
 size
.

Once you’ve registered Informed Number Server, you’ll see the two names on the welcome s
and the About dialog box.

The Informed Number Server Window

When you run Informed Number Server, a window appears showing the current configuration
Each entry in the list corresponds to a form number. The name of the form, the next available
number value, and the increment value are shown.

As you add, change, and remove form numbers, the information in this window changes. Like
Mac OS windows, you can move or resize the window by clicking and dragging its title bar or
box, respectively.

Using Informed Number Server 11-5

 .
 .

 .

e

apabil-
rd. If
apa-

t

er

e

r
he
.

Number Server Data

When you run Informed Number Server for the first time, it automatically creates a file called
‘Number Server Data’ and stores it in the ‘Preferences’ folder inside the ‘System Folder’ on th
computer’s hard disk. This file contains Informed Number Server’s configuration information.

Administration Capabilities

Before you can add, change, or remove form numbers, you must enable the administration c
ities of Informed Number Server. In order to do so you must know the administration passwo
the password is blank, Informed Number Server will automatically invoke the administration c
bilities when you start the application.

To enable or disable the administration capabilities, choose either Enable Administration or
Disable Administration, respectively, from the File menu. If the administration password is no
blank, you’ll be asked to enter it when you choose the Enable Administration command.

With the administration capabilities enabled, commands are available to quit Informed Numb
Server, change the administration password, and add, change, and remove form numbers.

Changing the Administration Password

When you start Informed Number Server for the first time, the administration password will b
blank. With administration capabilities enabled, you can change the password by choosing Change
Password... from the File menu. If the current administration password is not blank, you’ll be
asked to enter it first.

Note If you move Informed Number Server to a different computer, be sure to move the ‘Numbe
Server Data’ file as well, and place it in the Preferences folder inside the System folder of t
new Mac OS computer.

11-6 Using Informed Number Server

 .
 .

 .

e. If

ng,

 the
d by

o so,

 incre-

e the
um-

e
r
.
You are then asked to enter the new password in a dialog box similar to the one shown abov
you’d like to clear the password, simply leave it blank.

Once you’ve successfully changed the password, a message will appear for confirmation.

Adding, Changing, and Removing Form Numbers

With administration capabilities enabled, commands in the Entry menu are available for addi
changing, and removing form numbers.

To add a new form number to the configuration, choose New... from the Entry menu. A dialog box
appears requesting that you enter the form name, the next available form number value, and
increment value. The increment value determines the value that the form number is advance
each time a number is assigned. A value of 1 is most common.

From time to time you may want to change the configuration of an existing form number. To d
click the form number in the list on the Number Server window, then choose Change... from the
Entry menu. A dialog box appears allowing you to change the next available number and the
ment value.

To remove a form number, select it in the list on Informed Number Server window, then choos
Remove command from the Entry menu. You will be asked for confirmation before the form n
ber is permanently removed.

Important Precautions

Once you’ve configured Informed Number Server, cells on form templates can be linked to th
application using Informed Designer. For information on how to link cells to Informed Numbe
Server, see “Auto-incrementing Numbers” in Chapter 1, “Adding Intelligence to Your Forms.”

Using Informed Number Server 11-7

 .
 .

 .

t

n

t form
r). If
 num-

on
.

After you link a form and distribute it for use with Informed Filler, it’s important that you do no
change:

■ the name of the Informed Number Server application

■ the name of the Mac OS computer that’s running the Informed Number Server applicatio

■ the form numbers as specified in Informed Number Server’s configuration

Informed Filler uses these names to find the Number Server application and obtain the correc
number each time a new form is filled out (or when the user explicitly requests a new numbe
you change any of the above names, an error will occur when Informed Filler requests a new
ber. Information about possible errors and how to recover from them can be found in your Informed
Filler User’s Manual.

Quitting the Number Server Application

Like most applications, you quit Informed Number Server by choosing Quit from the File menu.
However, before you can quit, you must enable administration capabilities. See “Administrati
Capabilities” earlier in this chapter for more information.

11-8 Using Informed Number Server

 .
 .

 .

.

12

Using AppleScript

In this chapter:

■ Overview 12-2

■ Entering and Editing Scripts 12-3

■ Writing Scripts 12-5

12-2 Using AppleScript

.
.

.
.

-
m
ophis-

 how

run

r in
d

veral
ia

r form
sks

ons.
rom
hich
g a

editor
nt can

12Using AppleScript
AppleScript is a scripting language that allows you to control Macintosh applications with pro
gram-like scripts. Rather than using the keyboard and mouse, you can write scripts to perfor
tasks. A task can be as simple as opening and printing a form, or as complex as controlling s
ticated workflow processes.

With Informed and AppleScript you can:

■ automate tasks

■ customize forms

■ integrate Informed Filler with other applications.

This chapter provides an overview of Informed’s scripting capabilities and describes in detail
you can customize forms using AppleScript. You’ll learn specifically how to use Informed
Designer’s Scripts command to attach scripts to templates so that they can be configured to
when the Informed Filler user invokes certain actions.

To learn how to write scripts, you should first read the AppleScript Language Guide (included with
the AppleScript Software Development Toolkit). You should then refer to “Writing Scripts” late
this chapter, for a description of the terminology that you use when writing scripts for Informe
Filler.

Overview
With Informed and AppleScript, a single script can automate a task that normally requires se
manual steps. For example, you could write a script which searches for and prints all Californ
invoices that exceed five hundred dollars. A different script could create a new purchase orde
and fill it in with information from one or more purchase requisition forms. Performing such ta
becomes as simple as selecting a script

An important feature of AppleScript is its ability to integrate many different scriptable applicati
By controlling different applications, a single script can effectively combine different features f
different products to provide more powerful solutions. You could, for example, write a script w
instructs Informed Filler to collect information from different forms, chart the information usin
spreadsheet application, then insert the results into a letter using a word processor.

You write scripts using a script editor or an application such as Informed Designer. The script
that comes with AppleScript stores scripts in script documents. The script in a script docume
be played by double-clicking the document’s icon.

Note Informed’s AppleScript features are available only on Mac OS compatible computers.

Overview

Using AppleScript 12-3

 .
 .

 .

 doc-
 Appli-
d

user

ual.
r’s

u can

this
ripts

is

t they

.

Informed Designer can store scripts in form documents. That way, whenever you copy a form
ument to another place, or mail a form to another person, the scripts remain part of the form.
cations that can store scripts, such as Informed Designer and Informed Filler, are often calle
attachable applications. This is because scripts can be attached to particular actions in the applica-
tion. When the user performs an action, the application triggers a script.

You configure forms with Informed Designer so that Informed Filler invokes scripts when the
performs certain actions. You can attach scripts to the following actions:

■ selecting a menu item

■ clicking a button

■ typing a value in a lookup cell

■ submitting a form

The details of configuring the actions listed above can be found in other sections of this man
Before configuring an action, however, you must first enter the script using Informed Designe
Scripts command.

Chapter 1, “Adding Intelligence to Your Forms”, describes Informed’s data access features. Yo
configure forms to lookup and store information in other applications. For information about
AppleScript lookups and form submission, please see Chapter 1. The remaining sections of
chapter explain how you can enter and edit scripts so that they appear in Informed Filler’s Sc
menu.

Entering and Editing Scripts
You use Informed Designer’s Scripts command to add, remove, and edit scripts. Choosing th
command displays the Scripts dialog box.

The scrolling list shows the names of the scripts currently attached to the form in the order tha
were created. To add a new script, click ‘New.’ The Edit Script dialog box appears.

Entering and Editing Scripts

12-4 Using AppleScript

 .
 .

 .

en

port
ing a

 can
dit

mis-

able
.

Enter the name of the script in the ‘Script Name’ text box. This is the name that you’ll see wh
you configure an action to invoke a script.

You can enter a script by typing in the text box, or by importing a script from another file. To im
a script, click ‘Import.’ The standard Open dialog appears allowing you to select a file contain
script.

Find and select the file that contains the script that you want to import then click ‘Import.’ You
import a text or compiled script. The script in the selected file is read and displayed on the E
Script dialog box.

After entering a script, you can check for errors by clicking the check mark button (√). If an error is
detected, you’ll see a message describing the error and Informed Designer will highlight the
take in the script. If there are no errors, the script will re-display properly formatted.

When you click the check button, Informed Designer tells your computer to compile the script.
Compiling is the process of converting the english-like commands into instructions that script
applications can understand. Scripting errors are detected during this process.

Using AppleScript 12-5

 .
 .

 .

the
ute
nd

ether

ting
 then

ples
basics

s a
me or
tion
 the

s col-
from
ierar-

.

After entering the script, click ‘OK’ on the Edit Script dialog box. Informed Designer will store
compiled script with the form. Storing the script compiled means that Informed Filler will exec
the script much faster. If the script contains any errors, you’ll see a dialog box indicating so, a
Informed Designer will store the script in its text version. The Scripts dialog box indicates wh
the script is stored in its compiled or text version.

To edit an existing script, select its name in the scrolling list, then click ‘Edit.’ You edit an exis
script the same way you enter a new script (see above). To remove a script, select its name,
click ‘Remove.’

Writing Scripts
This section explains how to use AppleScript to manipulate Informed Filler, and provides exam
of the most common commands you will use. It is assumed that you already understand the
of AppleScript and are familiar with Informed Designer and Informed Filler.

Objects, Properties, and Containment

An object is a representation of some thing that you can manipulate in an application, such a
window or a collection of records. Properties are attributes of objects, such as a window’s na
size. Using AppleScript to communicate with an application can be thought of as a conversa
with various objects in that application. For example, to get the value of a cell, you would ask
cell to respond with its “value” property.

Objects can contain other objects. For example, a “window” object can contain things such a
lections of records, individual records, or cells. Object containment follows a strict hierarchy,
the most general object type (the application) to the most specific. The object containment h
chy in Informed is as follows:

Writing Scripts

12-6 Using AppleScript

 .
 .

 .

e con-
e con-

ent
appli-
some.
.
faults
.

To refer to a specific object, such as the cell named “Company,” you specify each object in th
tainment hierarchy. Here are some examples of how to specify objects at different levels of th
tainment hierarchy.

tell application "Informed Filler™"
index of window "Sample Form"

end tell
result: 1

tell application "Informed Filler™"
every cell of first record of current collection of window "Sample Form"

end tell
result: {"John Smith", "World Corporation", "ext. 4-5678"}

tell application "Informed Filler™"
cell "Company" of current record of window "Sample Form"

end tell
result: "World Corporation"

To refer to a specific object, you would normally be required to specify the complete containm
hierarchy. That is, to specify a cell, you also must specify the record, collection, window, and
cation. Complete specifications can be quite long, and typing them would quickly become tire
Fortunately, Informed Filler provides a “default containment” that will help shorten your typing
Most of the outer objects in a complete object specification can be left out, and appropriate de
will be provided.

Application

Window

Collection

Record

Cell

Element

Menu

Menu Item

Using AppleScript 12-7

 .
 .

 .

an
r
enu

alue
ecord
ones

ecify
d an
ct

.

The following table lists the default objects that Informed uses.

Default Containment

Notice that cell, element, menu, and menu item have no default objects. In any reference to
object or property that includes one of these classes, you must explicitly state which object o
objects of each of these classes you are referring to. For example, to refer to the name of a m
item, you must provide the menu item object and its containing menu object. To refer to the v
of an element, you must provide the element and its containing cell. Window, collection, and r
have defaults that will be supplied, although you can still specify those objects as well, if the
you want are different from the defaults.

Here are some examples of object references that use default containers.

tell application "Informed Filler™"
-- use default collection and window:
record 1

-- default collection and window
every record

-- default record, collection, and window
cell "Company"

-- default record, collection, and window
current element of cell "Company"

-- default collection and window
current cell of record 1

end tell

Note that “current element” and “current cell” are properties of an object, and so you must sp
the object to which they belong. Properties have no default container. Once you have provide
object at the cell level or higher, you can rely on the default containment to complete the obje
specification.

Class Default Object

window
collection
record
cell
element
menu
menu item

window 1, or the frontmost window
the current collection
the current record
none
none
none
none

12-8 Using AppleScript

 .
 .

 .

he

appli-

plays

r.
k a win-
 it is

.
The following sections introduce each kind of object in Informed Filler, and briefly describes t
scope of each.

Application
The application object represents the Informed Filler application. By talking to the application
object, you can get information like its name, whether it is the frontmost application, who the
cation is registered to, and so on.

The following example script tells the Informed Filler application to make itself the front-most
application.

set frontmost of application "Informed Filler™" to true

This next script asks Informed Filler who the registered user of the application is, and then dis
a dialog with the user’s name and company name.

tell application "Informed Filler™"
set theName to registered name
set theComp to registered company

end tell
display dialog "Informed Filler™ is registered to " & theName & ", of " & ¬

theComp & "."

The properties of the Informed Filler application are listed in the table on the following page.

Application Properties

Window
The window object represents each document window that is currently open in Informed Fille
Record lists, the choices palette, and other secondary windows are not included. You can as
dow for information about the document it is displaying, such as its name, where on the disk
stored, who the author of that document is, and what data it contains.

Property Writeable? Description

frontmost
name
registered company

registered name

serial number
version
properties

yes
no
no

no

no
no
no

Is this the frontmost application?
The name of the application.
The company name that this copy of Informed Filler is
registered to.
The user name that this copy of Informed Filler is regis-
tered to.
The serial number of this copy of Informed Filler.
The version number of Informed Filler.
All of the properties of the application, returned as an
AppleScript record.

Using AppleScript 12-9

 .
 .

 .

ow to

a bunch

 in

to

e

e
.

The following sample script gets the name of every window, and then moves the second wind
the front.

tell application "Informed Filler™"
set theNames to name of every window
set index of window 2 to 1
theNames

end tell
result: {"Expense Report", "Price List", "Holiday Request"}

Here is a more complicated example. This script gets the employee name and address from
of address change forms, and updates the address in an employee database.

tell application "Informed Filler™"
set changeCount to number of records in window "Change Form"
repeat with n from 1 to changeCount

set empName to cell "Name" of record n of window "Change Form"
set empAddr to cell "Address" of record n of window "Change Form"
set (cell "Address" of (first record whose cell "Name" = empName) of ¬

window "Employee DB") to empAddr
end repeat

end tell

The following table lists the properties of windows:

Window Properties
Property Writeable? Description

author name

author organiza-
tion

bounds

closeable

current cell

current collection

current record

description

disk file

TemplateID

no

no

no

no

yes

yes

yes

no

no

no

The name of the author of this template, as entered in the
Template Information dialog box.
The name of the template author’s organization, as entered
the Template Information dialog box.

The bounds of the window, as a list of integers. The values
returned are {left, top, right, bottom}.
Is the window closeable? (always returns true)

The current cell of the form. If there is no current cell, the
result will be empty. The default behavior is to return the
value of the current cell. You may also request a reference
the current cell.

The current collection of records.

The current record.

The description of the template and its use, as entered in th
Template Information dialog box.

The disk file that contains the window’s document.

The TemplateID of this template, as entered in the Templat
Information dialog box.

12-10 Using AppleScript

 .
 .

 .

-

.
Window Properties (continued)

Windows may be accessed with the methods shown in the following table.

Accessing Windows

Property Writeable? Description

ID

index

floating

modal

name

resizable

revision

titled

visible

zoomable

zoomed

properties

no

yes

no

no

no

no

no

no

no

no

yes

no

The unique ID of the data document. Valid only until the data
document is closed.

The front-to-back index of the window, relative to the other
document windows.

Answers whether or not the window floats. Always returns
True.

Answers whether or not the window is modal. Always
returns False.

The name of the window.

Answers whether or not the window is resizable. Always
returns True.

The revision number of the template, as entered in the Tem
plate Information dialog box.

Answers whether or not the window has a title. Always
returns True.

Answers whether or not the window is visible. Always
returns True.

Answers whether or not the window is zoomable. Always
returns True.

Answers whether or not the window is zoomed.

All of the properties of the window, returned as an Apple-
Script record.

Access Method Example

by name
by index
by range
special
by tests

window "Expense Form"
window 1, every window, first window
windows 1 thru 2
front window
every window whose name contains "Expense"

Using AppleScript 12-11

 .
 .

 .

the
re cur-

to per-
ds in

o

t
.

Collection
The collection object represents a collection of records, usually the result of a find operation
user has performed. Each window has a current collection, which is the set of records that a
rently being displayed.

The current collection in a window may be set to a specific set of records. This is equivalent
forming a find operation. The following script sets the current collection to the first three recor
the document.

tell application "Informed Filler™"
set current collection of window 1 to record 1 thru 3 of window 1

end tell

You can also perform a find all operation by setting the current collection to every record.

tell application "Informed Filler™"
set current collection of window 1 to every record of window 1

end tell

Simple or complex find operations can be performed by using the “whose” form of referring t
records.

tell application "Informed Filler™"
-- find records matching one criterion
set current collection of window 1 to (every record whose cell ¬

"Employee" = "Fred") of window 1

-- find records matching 2 criteria
set current collection of window 1 to (every record whose cell ¬

"Salary" = "56000" and cell "Name" = "John Smith") of window 1
end tell

A collection has very little information in and of itself. The principle value of a collection is in
accessing the records that it contains.

The following table lists the properties of collections:

Collection Properties
Property Writeable? Description

container

ID

properties

no

no

no

A reference to the container of the collection (the collection’s
window).
The unique ID of the collection. Valid only until the data docu-
ment is closed.
All of the properties of the collection, returned as an AppleScrip
record.

12-12 Using AppleScript

 .
 .

 .

urrent

 record

.

.
Collections can be accessed with the methods shown in the following table.

Accessing Collections

Record
The record object represents a single record in a form data document. Each window has a c
record, which is the record currently being displayed to the user.

Records can created, duplicated, deleted, printed, and so on. This script shows examples of
manipulation:

tell application "Informed Filler™"
-- make a new record
Make new record at window 1

-- Set some cells in the record
set cell "Name" of current record of window 1 to "Fred"
set cell "Start Date" of current record of window 1 to "10/12/93"

-- Duplicate the current record
duplicate current record of window 1

-- Remove all the records in the collection
Delete every record of current collection of window 1

end tell

The following table lists the properties of a record.

Record Properties

Access Method Example

by index

current collection property

collection 1 of window 1
every collection of window 1
current collection of window 1

Property Writeable? Description

container
ID

selected
properties

no
no

yes
no

A reference to the container of the record (the record’s window)
The unique ID of the record. The ID property of a record is per-
sistent, and will always be valid until the record is deleted.
Returns whether or not a record is selected in the Record List.
All of the properties of the record, returned as an AppleScript
record.

Using AppleScript 12-13

 .
 .

 .

wn
in

ere is

es to a
 you

effi-

.

Forms may be accessed with the following methods:

Accessing Records

Cell
The cell object represents a single data item in a record. Cells include single value fields (dra
with the Field tool in Informed Designer), and multiple value fields (drawn with the Table tool
Informed Designer).

There is a current cell in each window, representing the cell that is currently being edited. If th
no currently edited data in the window, the current cell property will return an empty value.

The most important property of a cell is the value of the cell, or the data it contains. Referenc
cell will by default refer to the value property. That is, if you simply request the data for a cell,
are by default requesting the value property of that cell.

The following two scripts will therefore return the same information.

tell application "Informed Filler™"
value of cell "Name" of window 1

end tell
result: "Fred"

tell application "Informed Filler™"
cell "Name" of window 1

end tell
result: "Fred"

You can also request a cell as reference, which will return a reference to the cell in the most
cient form for that class.

tell application "Informed Filler™"
cell "Name" of window 1 as reference

end tell
result: cell id 106 of window id 1 of application "Informed Filler™"

Access Method Example

by index

relative to other records

by range
current record property
by tests

record 1 of window 1
last record of window 1
every record of window 1
record after record 1 of window 1
record before current record of window 1
records 1 thru 5 of window 1
current record of window 1
(every record whose cell "Name" = "Ed") of window 1
(every record whose cell "Salary" < 35000 and cell "Supervisor" =
"Ed") of window 1
(every record whose selected = True) of window 1

12-14 Using AppleScript

 .
 .

 .

l

-

by

.
Cells that have multiple values will return every value in the cell, in a list.

tell application "Informed Filler™"
cell "Qty" of window 1

end tell
result: {2, 5, 1, "", "", "", "", ""}

Every value is returned. Elements that are not filled in are returned as blank strings.

The following table lists the properties of a cell.

Cell Properties
Property Writeable? Description

main choices/
extra choices
container
current element

data type
display only

ID

index

name
signed

table ID

value
writeable

properties

no
yes
no
yes

no
no

no

no

no
no

no

yes
yes

no

The list of main/extra choices for the cell. These choices wil
appear in the choices palette when the cell is active.
A reference to the container of the cell (the cell’s window).
A reference to the current element of the cell. This property
is only valid when the cell is active.
The default data type for data entered in the cell.
Returns whether or not the cell is display only, as set in the
Value dialog box.
The unique ID of the cell. The ID property of a cell is persis
tent, and will always be valid unless the cell is deleted.
The index of the cell. This is equivalent to the cell’s tab
order. Each column cell in a table has a sequential index.
The name of the cell.
Returns whether or not the data in the cell has been signed
a signature cell. This returns True only when there is an
actual signature.
The ID of the table that encloses this cell. This is valid only
for column cells. This may be used to identify which other
column cells are part of the same table.
The value of the cell.
This property is by default always set to True, but you may
set it to False to prevent the user from entering data in the
cell. This property is initialized to True for all cells each time
a form is opened.
All of the properties of the cell, returned as an AppleScript
record.

Using AppleScript 12-15

 .
 .

 .

n with
d

t. Use

ng
the

ment.

.

Cells may be accessed with the methods shown in the following table.

Accessing Cells

Element
The element object represents a single piece of information in a cell. Single value cells, draw
Informed Designer’s Field tool, will have only one element. Column cells, drawn with Informe
Designer’s Table tool, will have one element for each row in the table.

References to the value of a column cell return the values for every element of the cell, in a lis
the element class to refer to a single row of the column.

tell application "Informed Filler™"
cell "Qty" of window 1

end tell
result: {2, 5, 1, “”, “”, “”, “”, “”}

tell application "Informed Filler™"
element 2 of cell "Qty" of window 1

end tell
result: 5

A cell has a “current element” property that can be used to identify which row is currently bei
edited. In the following example, assume that the user is currently editing the second row of
"Qty" cell.

tell application "Informed Filler™"
current element of current cell of window 1 as reference

end tell
result: element 2 of cell id 131 of window id 6 of application "Informed Filler™"

You can find out which row is being edited by requesting the index property of the current ele

tell application "Informed Filler™"
index of current element of current cell of window 1

end tell
result: 2

This might be used to perform some operation on the same row of the other cells in a table.

Access Method Example

by name
by index

relative to other cells

by range
current cell property

cell "Name" of window 1
cell 1
first cell
every cell
cell after cell 1
cell before current cell of window 1
cells 1 thru 5
current cell of window 1

12-16 Using AppleScript

 .
 .

 .

appear
tained

t
.
The following table lists the properties of an element.

Element Properties

Elements may be accessed with the methods shown in the following table.

Accessing Elements

Menu
The menu class represents all of the menus of the application. This includes the menus that
in the menu bar, and all sub menus. Menus are primarily used to access the menu items con
therein.

The following table lists the properties of a menu:

Menu Properties

Property Writeable? Description

container
data type
index

value
properties

no
no
no

yes
no

A reference to the container of the element (the element’s cell).
The default data type for data entered in the element.
The index of the element. This is the row position of the elemen
within its enclosing cell.
The value of the element.
All of the properties of the element, returned as an AppleScript
record.

Access Method Example

by index

by range
current element property

element 1 of cell 1
first element of cell 1
every element of cell 1
elements 1 thru 5 of current cell of window 1
current element of cell 1
current element of current cell of window 1

Property Writeable? Description

enabled
index
name
properties

no
no
no
no

Returns whether or not the menu is enabled.
Returns the index of the menu.
Returns the name of the menu.
All of the properties of the menu, returned as an AppleScript
record.

Using AppleScript 12-17

 .
 .

 .

e “exe-

xecute

t
.

Menus may be accessed with the methods shown in the following table.

Accessing Menus

Menu Item
The menu item class represents a single item in a menu. Menu items can be executed with th
cute” event, which performs the same action as if the user had selected that menu item.

Menu items may be used to script a task that is not easily scripted with the other objects. To e
a command from a menu, use the “execute” event.

tell application “Informed Filler™”
execute menu item “Submit” of menu “File”

end tell

You can also test if a menu item is enabled before executing it:

tell application "Informed Filler™"
if menu item "Submit" of menu "File" is enabled
then

execute menu item "Submit" of menu "File"
else

display dialog "The Submit menu was not enabled."
end if

end tell

The following table lists the properties of a menu item.

Menu Item Properties

Access Method Example

by name
by index

by range

menu "File"
menu 1
first menu
every menu
menus 1 thru 5

Property Writeable? Description

enabled
index

name
properties

no
no

no
no

Returns whether or not the menu item is enabled.
Returns the index of the menu item within its containing menu.
Some menu items may change their index depending on what
plug-ins are installed.
Returns the name of the menu item.
All of the properties of the menu item, returned as an AppleScrip
record.

12-18 Using AppleScript

 .
 .

 .

operty.
perty

iable

ata is

 com-
ck.

d
.
Menu items may be accessed with the methods shown in the following table.

Accessing Menu Items

Getting and Setting Data
The contents or value of any property or object can be accessed by simply referring to that pr
AppleScript will send a Get Data command to Informed Filler to request the data for that pro
or object. The value will be returned as the default type for that property or object.

For example, to get the value of the cell named “Employee” and store it in an AppleScript var
“emp,” you would write the following:

tell application "Informed Filler™"
set emp to cell "Employee"

end tell

Note that this very short script implies, through the default containment, that the requested d
the value property of the cell named “Employee” of the current record of the front window.

The contents of any writeable property or object can be set by using either the “set” or “copy”
mands. The following script gets the value of the cell "Counter," adds one, and then sets it ba

tell application "Informed Filler™"
set theCount to cell "Counter"
set theCount to theCount + 1
set cell "Counter" to theCount

end tell

Documents
This section shows how you can use AppleScript to open and close a document, quit Informe
Filler, and test if an object exists.

Opening a Document

To open a document, you use the “open” command with the file to open.

tell application "Informed Filler™"
open file "HD:Test Form"

end tell

Access Method Example

by name
by index

by range

menu item "Close" of menu "File"
menu item 1 of menu "Size"
first menu item of menu "Size"
every menu item of menu "Size"
menu items 1 thru 5 of menu "Size"

Using AppleScript 12-19

 .
 .

 .

if a
, use

you

 the
n
.

You can also use an alias to specify the file to open.

tell application "Informed Filler™"
open alias "HD:Test Form"

end tell

Closing a Document

To close a document, use the “close” command with the window to close.

tell application "Informed Filler™"
-- close the front window:
close window 1

-- close a specific document:
close window “Test Form”

-- close every document:
close every window

end tell

Quitting Informed Filler

To quit the application, you simply tell Informed Filler to quit.

tell application "Informed Filler™"
quit

end tell

Checking the Existence of an Object

Sometimes, you may need to test if some object exists. For example, you might want to test
window is already opened before you tell Informed Filler to open it. To test if an object exists
the “exists” command with a specifier for the object you want to test.

tell application "Informed Filler™"
if not (exists window "Test Form") then

Open file "HD:Test Form"
end if

end tell

Note Referring to a file as “alias "filename"” saves an alias to the file in the compiled script, as if
made an alias in the Finder. Referring to a file as “file "filename"” just saves the "filename"
string. Using an alias will successfully locate the file in many more situations, such as when
file name changes, or it is moved to another folder. There are still many situations where a
alias will not resolve, so you should be prepared to handle errors.

12-20 Using AppleScript

 .
 .

 .
ror in a

rds in

 cur-
urrent
layed
 find

ruc-
.
You can also test for an object’s existence by trying to access the object, and catching any er
try statement.

tell application "Informed Filler™"
try

name of window "Test Form"
on error

open file "HD:Test Form"
end try

end tell

Working With Records
This section describes how you can use AppleScript to work with individual records, and reco
a collection.

Setting the Current Collection

The current collection property of a window can be set to any record or group of records. The
rent collection can be thought of as a list of references to record objects. When you set the c
collection to a different list of record references, you are affecting the records that will be disp
to the user. Setting the current collection to one or more records is equivalent to performing a
operation in Informed Filler that matches that set of records.

tell application "Informed Filler™"
-- find a single record
set current collection of window 1 to record 1

-- display all records:
set current collection of window 1 to every record

-- find some specific records
set current collection of window 1 to (every record whose cell “Salary” ¬

> 35000) of window 1

-- narrow an existing search:
set current collection of window 1 to (every record whose cell "Supervisor" ¬

= "Fred") of current collection of window 1
end tell

Note The “try” statement asks AppleScript to try to perform the following commands. If an error
occurs, AppleScript will resume execution of the script in the “on error” statements. This st
ture allows you to trap errors and perform intelligent error recovery

Using AppleScript 12-21

 .
 .

 .

rrent

tion.

h

 the

.

Omitting a Record from the Collection

Records can be omitted from the current collection with the “omit” command.

tell application "Informed Filler™"
-- omit one record:
omit record 1

-- omit the current record:
omit current record of window 1

-- omit some specific records:
omit (every record whose cell "City" = "Calgary") of current collection ¬

of window 1
end tell

Note that when omitting records, you should only try to omit records that are already in the cu
collection. If you try to omit a record that is not in the current collection, an error will result.

Looping Through Each Record

Many tasks will require you to perform the same function on every record in the current collec
There are several approaches to doing this.

One approach is to count the number of records in the collection, and then loop through eac
record. Here is a sample script that totals up a bunch of invoice records.

tell application "Informed Filler™"
set n to number of records in current collection of window 1
set theTotal to 0
repeat with i from 1 to n

set thisValue to cell "Total" of record i of current collection of window 1
set theTotal to theTotal + thisValue

end repeat
end tell

Another approach is to request all of the data at once, and then loop through the results.

tell application "Informed Filler™"
set theValues to cell "Total" of every record of current collection of window 1
set theTotal to 0
repeat with i in theValues

set theTotal to theTotal + i
end repeat

end tell

There is a certain amount of overhead involved in communicating with any application. Since
second approach only communicates with Informed Filler once, it will generally be the faster
method.

12-22 Using AppleScript

 .
 .

 .

You

can be
ells in

f
.
Making a New Record

The “make” command instructs the target application to make a new object of a given class.
can create a new “record” object in an existing window with the following script.

tell application "Informed Filler™"
-- make a new record in the front window:
make new record in window 1

end tell
result: record id 4836 of window id 24 of application "Informed Filler™"

The result of the “make” command is a reference to the newly created object. This reference
used to access the new object. The following script makes a new record, then sets several c
the new record.

tell application "Informed Filler™"
set theRecord to (make new record in window 1)
set cell "Name" of theRecord to "Fred"
set cell "Era" of theRecord to "Jurassic"

end tell

Deleting Records

The “delete” command is used to delete objects in the target application. Any record or set o
records may be deleted.

tell application "Informed Filler™"
-- delete the current record
delete current record of window 1

-- delete the first three records:
delete records 1 thru 3 of current collection of window 1

-- delete every record
delete every record of window 1

end tell

The following script appears to loop through each record, deleting those that match a test.

tell application "Informed Filler™"
set theCount to number of records in window 1
repeat with i from 1 to theCount

if cell "Supervisor" of record i of window 1 = "Fred" then
delete record i of window 1

end if
end repeat

end tell

Using AppleScript 12-23

 .
 .

 .

ex of
comes
.

ill be

 sets
 will be
e

rre-
.

Unfortunately, there is a critical bug in this script. As each matching record is deleted, the ind
all subsequent records is reduced by 1. Thus, as the script completes, the loop variable “i” be
more and more inaccurate. The following script shows a better way to perform this operation

tell application "Informed Filler™"
set theIDs to ID of every record of window 1
repeat with i in theIDs

if cell "Supervisor" of record id i of window 1 = "Fred"
delete record id i of window 1

end if
end repeat

end tell

Finally, this particular script can actually be simplified to the following single statement.

tell application "Informed Filler™"
delete (every record whose cell "Supervisor" = "Fred") of window 1

end tell

Duplicating Records

To duplicate a record, you can use the “duplicate” command.

tell application "Informed Filler™"
duplicate current record of window 1

end tell

You can also duplicate a set of records. At the end of such an operation, the current record w
the duplicate of the last record specified.

tell application "Informed Filler™"
duplicate (every record whose cell "Supervisor" = "Fred") of window 1

end tell

Saving the Current Record

The current record is normally saved whenever the user presses the Enter key. If your script
some cell values, when the script finishes, the last cell that was changed will be selected and
the current cell. If you wish to save the record, and deactivate the current cell, you can use th
“save” command.

tell application "Informed Filler™"
save current record of window 1

end tell

The “save” command can only be applied to the current record.

Note In this context, “save” does not apply to the active window or data document. Instead, it co
sponds to accepting the current record.

12-24 Using AppleScript

 .
 .

 .

be

If you
t.

 the
are in

 the
e

ct
.

Reverting the Current Record

The “revert” command will revert a record to its last accepted state. This command can only
applied to the current record of a window.

tell application "Informed Filler™"
revert current record of window 1

end tell

Counting the Collection of Records

Many of the examples given so far apply some task to every record in the current collection.
need to know how many records are in the current collection, you can use the following scrip

tell application "Informed Filler™"
number of records in current collection of window 1

end tell
result: 6

This script counts the records in the current collection only. This number will be the same as
one displayed at the bottom left of the form window. You can also find out how many records
the document, including the ones that are not displayed:

tell application "Informed Filler™"
number of records in window 1

end tell
result: 14

The second script includes the 6 records in the current collection, plus 8 more that are not in
collection. If you then did a “Find All”, the number of records in the collection would be 14, th
same as the number in the document:

tell application "Informed Filler™"
set current collection of window 1 to every record
number of record in current collection of window 1

end tell
result: 14

Note If your record contains check calculations, these may fail, preventing you from saving the
record, or even changing the current cell. If checks fail, Informed Filler will beep and resele
the offending value, just as if the user had pressed “Enter” or “tab”.

Using AppleScript 12-25

 .
 .

 .

u can
st.

tool,

h row

nd set
date,

on in
 by
.

Testing for a Record’s Existence

In “Checking the Existence of an Object,” testing for existence of a window was described. Yo
also test for the existence of a given record, perhaps a record that matches some specific te

tell application "Informed Filler™"
-- Find Fred and set his salary to 35000
set empName to "Fred"
set newSalary to 35000

-- Check to see if Fred already has a record
if exists (first record whose cell "Employee" = empName) of window 1 then

set current record of window 1 to (first record whose cell "Employee" = ¬
empName) of window 1

else
-- Fred doesn't have a record yet, so make him one
make new record in window 1
set cell "Employee" of current record of window 1 to empName

end if

-- Set the salary
set cell "Salary" of current record of window 1 to newSalary

end tell

Cells and Elements
This section discusses cells, elements of cells, and cell values.

Cell Values

Each element of a cell has a value. Single value cells, drawn with Informed Designer’s Field
have a single element, and thus a single value. Multiple value cells, drawn with Informed
Designer’s Table tool, have one element for each row in the table, and thus one value for eac
in the table.

References to a cell will, by default, refer to the value of the cell. This makes it easier to get a
the value of a cell. Each cell has a default data type, which is one of: text, number, boolean,
picture, and signature.

Picture values represent a PICT image, and can only be copied to and from a picture cell.

The value of a signature cell is an AppleScript record containing all of the pieces of informati
the digital signature. Here is an example of a digital signature from PowerTalk™, as returned
Informed Filler:

tell application "Informed Filler™"
value of cell "Sig Cell"

end tell
result: {class:signature, valid:true, common name:"Wayne Peroit, organization:"",
serial number:"8673820673", certificate valid dates:{date "Friday, April 30, 1996
11:00:00 PM", date "Thursday, April 30, 1999 10:59:59 PM"}, signing time:date "Mon-
day, March 6, 1996 10:27:11 AM", distinguished name:{{attribute label:"country

12-26 Using AppleScript

 .
 .

 .

ing

ure.
l

y
.
code", attribute ID:0, writing code:0, attribute value:"US"}, {attribute
label:"postal code", attribute ID:8, writing code:0, attribute value:"00000"},
{attribute label:"common name", attribute ID:5, writing code:0, attribute
value:"Wayne Peroit}}, issuer:{{attribute label:"country code", attribute ID:0,
writing code:0, attribute value:"US"}, {attribute label:"organization", attribute
ID:1, writing code:0, attribute value:"RSA Data Security, Inc."}, {attribute
label:"organization unit", attribute ID:7, writing code:0, attribute value:"Unaf-
filiated User Certification Authority”}}}

The information available when you verify a digital signature varies depending on which sign
service you’re using. The following table lists the parts of a PowerTalk digital signature:

Digital Signature Parts
Label Description

class
valid

common name
organization

serial number

certificate valid
dates
signing time
distinguished name

issuer

attribute label
attribute ID
writing code

attribute value

The data type (always signature).
Tells whether the signature is valid, that is, whether or not the signature
was successfully verified.
The common name, or everyday name of the user who owns the signat
The name of the organization that the user works for. Unaffiliated digita
signatures have a blank organization.
The unique serial number for the digital signature. This serial number is
associated with the certificate for that signature, not with the particular
signing instance.
A list containing the start date and end date for the period during which
this signature is valid.
The data and time that this digital signature instance was created.
A list of attributes that, together, uniquely distinguish the owner of this
signature from all other individuals. Each attribute is a record with four
parts: attribute label, attribute ID, writing code, and attribute value.
A list of attributes that, together, uniquely distinguish the issuing authorit
of this signature.
A string label for one attribute of the distinguished name or issuer.
A numeric label for one attribute of the distinguished name or issuer.
A code representing the language system for one attribute of the distin-
guished name or issuer.
The value of one attribute of a distinguished name or issuer.

Using AppleScript 12-27

 .
 .

 .

sented
ll in
fore,
end

u
or

e list
alue

ollow-

.

The following table lists the possible attributes of the distinguished name and the issuer.

Distinguished Name/Issuer Attributes

Pictures and Signatures

Picture and signature values are binary values. That is, unlike text values, they are not repre
as ASCII characters. Informed Filler allows you to read the value of a picture or signature ce
both binary and ASCII forms. The ASCII forms, however, are Informed-specific and are, there
unreadable by other applications. To obtain the ASCII form of a picture or signature cell, app
the words “as text” to the cell identifier.

Lists and Column Cells

When you access a column cell, you are by default accessing every element of that cell. If yo
request the value of a column cell, you will get back a list of values, with one item in the list f
each row in the column cell.

You can also set the value of a column cell to a list of values. This will place one item from th
in each row of the column, starting at the top. If you set a column cell to a single value, that v
will be placed into each row of the column.

Working with Many Cells at the Same Time

Generally, to access several cell values, you must refer to each of the cells individually. The f
ing script copies the value of four cells from one form to another.

Attribute Label ID

"country code"
"organization"
"street address"
"state"
"Locality"
"common name"
"title"
"organization unit"
"postal code"

0
1
2
3
4
5
6
7
8

12-28 Using AppleScript

 .
 .

 .

rmed

this
that is
ided,

he
t.
 Filler
d is

m-

 the
ata
 sure

he only
e
.
tell application "Informed Filler™"

set theName to cell "Name" of window "Employees"
set theAddress to cell "Address" of window "Employees"
set theCity to cell "City" of window "Employees"
set theZip to cell "Zip" of window "Employees"

set cell "Name" of window "Holidays" to theName
set cell "Address" of window "Holidays" to theAddress
set cell "City" of window "Holidays" to theCity
set cell "Zip" of window "Holidays" to theZip

end tell

This script will take some time to execute, because it sends eight separate commands to Info
Filler.

Informed Filler supports a special method of referring to more than one cell at a time. Using
method, you give a list of cell names where you would normally put one cell name. The data
returned from Informed Filler will be a list with the same number of items as names you prov
and each item will match the corresponding name.

The following script is a two line version of the above script, using lists of names.

tell application "Informed Filler™"
set theData to cell {"Name", "Address", "City", "Zip"} of window "Employees"
set cell {"Name", "Address", "City", "Zip"} of window "Holidays" to theData

end tell

The first line requests four cell values, and puts the resulting list into the variable “theData." T
second line in the script instructs Informed Filler to set the values of each of four cells to a lis
Since the number of items in the list matches exactly the number of cells specified, Informed
will take the list apart and match each item in the list with the corresponding cell. This metho
much faster, as it only sends two commands to Informed Filler.
The following script is even faster, since it combines both of those commands into a single co
mand.

tell application "Informed Filler™"
set cell {"Name", "Address", "City", "Zip"} of window "Holidays" to cell ¬

{"Name", "Address", "City", "Zip"} of window "Employees"
end tell

Menus
Menus and menu items are provided as scriptable objects in Informed Filler for cases where
other scriptable objects will not suffice. For example, if you created a script that read some d
from another database and displayed that in the choice list for a cell, you might want to make
the choice list was displayed at the end. Since the choices palette is not a scriptable object, t
way to display it is to test the menu item title and, if it is Show Choices, execute it to show th
choices palette.

Using AppleScript 12-29

 .
 .

 .

se, sets

u
ation

d looks
sting
es

num-
played
.

Here is a complete script that does a simple lookup using FileMaker Pro as a central databa
the extra choices for the next cell, and displays the choices palette.

-- First, get the parts category value:
tell application "Informed Filler™"

set partCat to cell "PartCategory"
end tell

-- Look up the list of part numbers from FileMaker Pro
tell application "FileMaker Pro"

try
Show (every record whose Cell "Category" = partCat) of Window "Parts DB"
-- got at least one record...
set partsList to Cell "PartNumber" of every record of Window "Parts DB"

on error
-- got an error, so no matches on the category
set partsList to {}

end try
end tell

-- Put the matching part numbers back into Informed:
tell application "Informed Filler™"

set extra choices of cell "PartNum" to partsList

-- Make sure the choices list is displayed:
if name of menu item 1 of menu "View" = "Show Choices" then execute menu item ¬

1 of menu "View"
end if

end tell

You can also use the “enabled” status of menus to get some information about the status of
Informed Filler. For example, if the “Sign” menu item of the “Signatures” menu is enabled, yo
know that the record is active and the current cell is a signature cell. You could use this inform
to write a general purpose script that gets the serial number of the current cell’s signature, an
up some information from a central user database, such as the user’s signing authority. By te
the “Sign” menu item’s “enabled” property, you don’t have to build information about cell nam
into the script.

The following script checks if the current cell is a signature cell and, if so, looks up the serial
ber of the signature in a FileMaker Pro database. The signing authority of that user is then dis
in a dialog.

12-30 Using AppleScript

 .
 .

 .

al

e

ta.
.
tell application "Informed Filler™"

set serialNum to ""
if menu item "Sign" of menu "Signatures" is enabled then

set theSig to current cell of window 1
if valid of theSig then

set serialNum to serial number of theSig
end if

end if
end tell

tell application "FileMaker Pro"
if serialNum <> “”

try
Show (every record whose Cell "SerNum" = serialNum) of Window ¬

"Sig DB"
-- got at least one record...

set auth to Cell "Authority" of first Record of Window "Sig DB"
display dialog "The user’s signing authority is " & auth & "."

on error
-- got an error, so no matches on the category
display dialog "Couldn’t find that serial number."

end try
end if

end tell

Printing
Printing of records and record lists can be scripted with the “Print” command. This command
allows for several options, which are listed in the following table.

Optional Parameters for Print
Parameter Description

from page «integer»
to page «integer»
from part «integer»
to part «integer»
as record list

print template «yes/
no»
print data «yes/no»

First page to print. The default is to print all pages.
Last page to print. The default is to print all pages.
First part to print. The default is to print all parts.
Last part to print. The default is to print all parts.
Print the data as a record list. The default is to print the data as individu
records.
Control whether the template should be printed. The default is to print th
template.
Control whether the data should be printed. The default is to print the da

Using AppleScript 12-31

 .
 .

 .

in the

d data

his
ormat.
.

The other option you have in printing is what selection of data to print. The options are listed
following table.

Optional Parameters for Printing Data

Here are a few examples:

tell application "Informed Filler™"
-- print everything
Print window 1

-- print just the current record
Print current record of window 1

-- print the current collection as a list
Print current collection of window 1 as record list

-- print some specific records
Print (every record whose cell "Overdue Amt" > 0) of window 1

-- print the current collection onto pre-printed forms
-- (that is, print just the data)
Print current collection of window 1 print template no

end tell

Importing and Exporting
Data can be imported and exported between Informed Filler documents and various standar
formats. These capabilities are also scriptable using the “import” and “export” commands.

To export data from an Informed document, you use the “export” command in AppleScript. T
command allows you to specify a set of records to export, the file to export to, and the data f
The specified data is exported to a new file with the name you have chosen.

Print What? What gets Printed...

window
collection
record

All records in the window.
All records in the collection.
All of the records described by the record specifier.

12-32 Using AppleScript

 .
 .

 .

 form,
 you

to one

at is

or

e

e
.
The following table lists the data formats you can export to.

Export Formats

You can also choose what data to export. The export command always exports all cells in the
and it replaces the target file, if such a file already exists. The following table lists the options
have, and the resulting selections of data.

Export Selections

Here are a few example AppleScript fragments that export data from an Informed document
of the standard data formats.

tell application "Informed Filler™"
-- export everything to tab delimited text
export window 1 to file "HD:Data File" as tab delimited text

-- export the collection as Informed interchange
export current collection of window 1 to file "HD:Data File" as Informed ¬

interchange

-- export the current record
export current record of window 1 to file "HD:Data File" as tab delimited text

-- export some specific records
export (every record whose cell "Overdue Amt" > 0) of window 1 to file ¬

"HD:Deadbeats" as Informed interchange
end tell

You can also import data from a file to an Informed document. The file must be in a format th
understood by Informed Filler.

To import a file, you simply specify the file to import and which window the data should be
imported into.

Format Description

Informed Interchange

tab delimited text

comma delimited text

The standard Informed interchange format, which includes non-text
data such as pictures and digital signatures, and style information f
text data.
The standard text only data format, with field values delimited by th
tab character.
The standard text only data format, with field values delimited by th
comma character.

Export What?

window
collection
record

All records in the window.
All records in the collection.
All of the records described by the record specifier.

Using AppleScript 12-33

 .
 .

 .

l sys-
ty of

. You
tion of

le.
.

tell application "Informed Filler™"
-- Simple import of existing data file
import file "HD:Data File" into window 1

-- Move data to another window using import and export
set current collection of window 1 to every record of window 1
set current collection of window 1 to (every record whose cell "Overdue ¬

Amt" >0) of window 1
export current collection of window 1 to file "HD:Data File:Deadbeats" ¬

as Informed Interchange
import file "HD:Data File:Deadbeats" into window "Deadbeats File"

end tell

Mail
Mail is an important aspect of electronic forms. Informed Filler supports many electronic mai
tems. Using your mail system, you have the capability to send forms to other users in a varie
formats.

Sending a form to another user is scriptable in Informed Filler by using the “send” command
can send an entire document, the current collection of records, the current record, or a selec
records. The following table lists the objects you can send, and what data will be included.

Send Selections

The “send” command also has many optional parameters, which are listed below.

Send Command Parameters

Send What? What gets Sent...

window
collection
record

All records in the window.
All records in the collection.
All of the records described by the record specifier.

Parameter Description

using
recipients
cc recipients
bcc recipients
reply recipients
sender

confirm

format
subject
priority

Which mail system to use. The options are listed in a subsequent table.
One or more principal recipients.
One or more recipients to receive a copy.
One or more recipients to receive a blind copy.
One or more recipients to be replied to.
An alternative identity for the sender (may require authentication of your
identity).
yes - confirm the setting with the user before sending.
no - send immediately without a confirmation dialog.
The format to send the data in. The options are listed in a subsequent tab
The subject for the mail message.
The priority to send the message at.

12-34 Using AppleScript

 .
 .

 .

g, the
e
 error

for all
ject,
m cho-

.

.
The following table lists the mail system options available for the “using” parameter.

Mail System Selectors

The following table lists the data formats available for use with the “format” parameter.

Send Format Selectors

Each of the parameters described above is optional. In general, if some information is missin
user will be prompted to complete the mail specification. If you specify “confirm no”, and som
critical information is missing (such as who the recipients are), the command may result in an
being reported to AppleScript.

When the command completes, the result will be an AppleScript record that contains values
of the known information. This may include the list of recipients, the data format, priority, sub
and so on. What information is returned, and its exact format, is dependent on the mail syste
sen, and on the version of the mail plug-in in use.

Mail System Description

PowerTalk
QuickMail
Microsoft Mail
cc:Mail
mail system name

PowerTalk
QuickMail
Microsoft Mail
cc:Mail
Search for the mail plug-in with the given name, and use that mail system

Format Description

Informed data
Informed package
Informed Interchange
letter
Tab delimited text
Comma delimited text
format name

Send the data alone in Informed data format
Send the data with the template in a single integrated package.
Send the data alone in Informed Interchange format.
Send the document in AppleLetter format (PowerTalk only).
Send the data alone in tab delimited text format.
Send the data alone in comma delimited text format.
Search for a plug-in with the given name, and send the document in
that format.

13

Informed 4D Externals

In this chapter:

■ Overview 13-2

■ Using the INF_FILL External 13-7

■ Using the INF_NS_Client External 13-27

13-2 Informed 4D Externals

.
.

.
.

r.
ful if

less
ased

ith

 sub-
lly

 4th
hat

on

-
 fill-
ance
runt-

 easily
ith-

can
 to

s can

13Informed 4D Externals
Informed 4D Externals for 4th DIMENSION is a highly technical product designed for use by
trained 4th DIMENSION programmers. This chapter assumes that you’re an experienced 4th
DIMENSION programmer and that you’re familiar with Informed Designer and Informed Fille
Experience with Informed Number Server (now included with Informed Designer) is also help
you intend to use this product with your 4th DIMENSION application.

Overview
Informed 4D Externals contains a set of powerful 4th DIMENSION externals that provide seam
integration of Informed’s forms processing capabilities with any 4th DIMENSION database. B
on the IAC (inter-applications communications) of the Mac OS, one of the included externals
makes it easy to look up information from a 4th DIMENSION database while filling out forms w
Informed Filler. Once a form has been completed, the information can be easily inserted—or
mitted—directly into the 4th DIMENSION database, therefore eliminating the need to manua
export and import data.

Also included is support for Informed Number Server. By making simple modifications to your
DIMENSION application, it too can obtain new form numbers from Informed Number Server. T
way, users can fill out forms using either your 4th DIMENSION application or Informed Filler
the Mac OS and still maintain unique form numbering among all users.

With Informed Filler acting as the tool for filling out forms, users can avoid running 4th DIMEN
SION to do their work. For users that currently use your 4th DIMENSION application only for
ing out forms, Informed Filler can be used in its place. Users benefit from the higher perform
and reduced memory requirements of Informed Filler when compared to a 4th DIMENSION
ime.

Since Informed forms remain separate documents, changes to a form’s design can be made
without affecting your 4th DIMENSION application. Even major form revisions can be made w
out the need to recompile your application.

If your 4th DIMENSION application is currently used in a single-user environment, Informed
offer a practical way to expand your system to support multi-user data entry without the need
install additional 4th DIMENSION runtime applications. With one single-user 4th DIMENSION
runtime available on a networked Mac OS compatible computer, multiple Informed Filler user
fill out and submit forms.

Overview

Informed 4D Externals 13-3

 .
 .

 .

o-
t meth-
ommu-

in infor-
 Filler

infor-
e sent

mation

e
-
N-
rpret
he

 con-
 often
 an

N
ed

menu
.

How it Works

Chapter 1, “Adding Intelligence to Your Forms”, explains how you can configure lookups, aut
incrementing cells, and form submission. Each of these features allows you to select differen
ods of accessing data sources. One such method is Apple events, an IAC (inter-application c
nications) capability available on any computer running version 7 or later of the Mac OS. The
Informed 4D Externals rely on this method of communication.

An Apple event is a message that one application sends to another. The message can conta
mation, or it can request that a certain command be performed. For example, when Informed
sends a completed form to a different application, it can send an Apple event containing the
mation on the form. To perform a lookup, an Apple event that requests a particular value can b
instead. The other application performs a search and sends back a reply containing the infor
found.

Informed Designer, Informed Filler, and Informed Number Server use a particular set of Appl
events to interact with other applications. Without the Informed 4D Externals, your 4th DIMEN
SION application cannot understand these Apple events. This product includes two 4th DIME
SION externals. The external named “INF_FILL” acts as an Apple event handler that can inte
and process any Apple events that are received from Informed Designer or Informed Filler. T
external named “INF_NS_CLIENT” allows your 4th DIMENSION application to send Apple
events to Informed Number Server.

Form Submission
Form submission normally marks the end of the forms process. Once a form is complete, its
tents are accepted by an information system for further processing. The submission of a form
triggers other business procedures that process the information. For example, submission of
approved expense form may trigger the accounting procedure that issues a payment.

The INF_FILL external enables form submission into any 4th DIMENSION database. Custom
form templates are designed with Informed Designer and linked to a file in the 4th DIMENSIO
database using Informed Designer’s Configure Submit command. Forms filled out with Inform
Filler can then be submitted directly into the 4th DIMENSION database by choosing a single
command. The following figure illustrates this process.

13-4 Informed 4D Externals

 .
 .

 .

in a
iller,

correct
 files.
 each

ion
e
if errors
 often

1,

for-

e.
le of
 cell,
nd
m.
.

Linking a form template involves mapping each cell on the template to a corresponding field
table of the 4th DIMENSION database. When a completed form is submitted using Informed F
the linking information ensures that each of the cell values on the template are entered in the
fields in the 4th DIMENSION database file. Templates can be linked to both flat and relational
For relational files, the external will automatically create the appropriate number of records in
of the related files.

Since the link between Informed Filler and the INF_FILL external is real time, forms submiss
occurs interactively. When a form is submitted, your 4th DIMENSION application can examin
and validate the data before it’s accepted, and messages can be sent back to Informed Filler
are detected. That way, users are notified of mistakes immediately rather than later when it is
inconvenient and more costly to correct them.

For detailed information on configuring form submission, see “Form Submission” in Chapter
“Adding Intelligence to Your Forms.”

Lookups
Forms often contain information that already exists electronically. Rather than retyping this in
mation to fill out a form, Informed allows you to configure cells to lookup information in other
forms or databases.

With the INF_FILL external, lookups can extract information from a 4th DIMENSION databas
Using Informed Designer, you link the cells on a form that are to be looked up with fields in a fi
your 4th DIMENSION database. When the user filling out a form enters a value in a particular
a lookup request is sent to the 4th DIMENSION application. Your application can search for a
return the requested information to Informed Filler where it’s automatically entered on the for

Your application controls
interaction.
Informed Filler sends
form data.
INF_FILL external returns
result code.

User fills out custom
designed Informed form.

Record is inserted in a
database file.

1.

2.

3.

4.

5.

Informed 4D Externals 13-5

 .
 .

 .

dd-

o
rm

to a
unica-

rent
le

out.

ingle
t if

rm
ION

p

 and

ly
.

For detailed information on configuring lookups, please see “Using Lookups” in Chapter 1, “A
ing Intelligence to Your Forms.”

Supporting Informed Number Server
Unique form numbering is important for many types of forms. Form numbers provide a way t
uniquely identify any form. Invoice numbers and purchase order numbers are examples of fo
numbers.

“Auto-incrementing Cells” in Chapter 1, explains how you can link an auto-incrementing cell
variety of data sources. One such method of linking uses Apple events as a means of comm
tion. This is the method used to link with Informed Number.

Informed Number Server was designed to automate the assignment of form numbers as diffe
people fill out different forms. Each time a new form is filled out, Informed Filler sends an App
event to Informed Number Server requesting a form number for the type of form being filled
Informed Number Server replies with the next available form number.

In order to maintain unique consecutive numbering, form numbers must be obtained from a s
source. Support for Informed Number Server in your 4th DIMENSION application is importan
users are to fill out forms using both 4th DIMENSION and Informed Filler. Although Informed
Filler may be your users’ primary tool for filling out forms, you may have duplicated certain fo
designs in your 4th DIMENSION application as a convenience for those who use 4th DIMENS

Note The INF_FILL external is capable of returning multiple records to Informed Filler. If a looku
is performed and multiple matching records are found, Informed Filler will prompt the user
with a scrolling list displaying all matches. A single record can then be selected by the user
entered on the form. This feature is helpful in situations where the user doesn’t know in
advance exactly which information is being looked up. The user may, for example, enter on
the first few letters of a name to lookup a customer record.

Your application searches
for the requested data.
Informed Filler sends
a lookup request.
INF_FILL external returns
the data.

User enters a value to
look up. Data is retrieved from

the database file.

1.

2.

3.

4.

5.

Data returned from
INF_FILL external is
entered on form.

6.

13-6 Informed 4D Externals

 .
 .

 .

th

w
imple

ll
s is
er

are

e
, sim-
l.
.
more often. The following figure illustrates how your 4th DIMENSION application interacts wi
Informed Number Server.

If your 4th DIMENSION application is already designed to assign unique form numbers to ne
forms, making the necessary modifications to take advantage of Informed Number Server is s
and straightforward. Rather than obtaining new form numbers the way you normally do, you’
change your application to request new numbers from Informed Number Server instead. Thi
done by making calls to the Informed NS Client external to specify where the Informed Numb
Server is running and the type of form for which numbers are requested.

System Requirements

The Informed 4D Externals for 4th DIMENSION depend on specific versions of system softw
and applications. They are:

■ System software version 7.0 or greater

■ Informed Designer version 1.3 or greater

■ Informed Filler version 2.0 or greater (or Informed Manager version 1.3 or greater)

■ 4th DIMENSION version 2.2.1 or greater

■ CallProcs.Ext external (required for use with 4th DIMENSION 2.2)

The externals work with both versions 2.2 and 3.x of 4th DIMENSION. They also work with th
4D SERVER. Due to certain changes and enhancements in version 3.x and the 4D SERVER
ple changes must be made to your application and how it interacts with the INF_FILL externa
These changes are explained in the following section, “Using the INF_FILL external.”

Your application requests
a new purchase order
number.

INF_NS_CLIENT external
returns the new purchase
order number to your
application.

INF_NS_CLIENT external sends
request to Informed Number Server.

Informed Number Server returns the
next available form number.

3.

2.
1.

4.

Informed 4D Externals 13-7

 .
 .

 .

ives
a-
vent in
nsure

 with

a 4th
r

okups

he
t
rdless

ents

N ver-

h

y in its
its own

nd

.

Using the INF_FILL External
In order to protect data integrity, the INF_FILL external is built on an open architecture that g
you, the 4th DIMENSION developer, full control over how Informed interacts with your applic
tion. Once an Apple event has been received, you make calls to the external to process the e
a controlled manner. That way, you can reject invalid data, deny access to certain files, and e
that the integrity of your 4th DIMENSION application and database is protected.

Certain minimal changes must be made to your 4th DIMENSION application in order to use it
Informed. This requirement is imposed intentionally to prevent unauthorized access to a 4th
DIMENSION application and database. It prevents Informed users from obtaining access to
DIMENSION database without the application developer enabling this capability. This chapte
describes how you can modify your application to take advantage of form submission and lo
using Informed. An explanation of the INF_NS_CLIENT external can be found later in this
chapter.

Using 4th DIMENSION Version 3.x and the 4D SERVER

The INF_FILL external works with both versions 2.2 and 3.x of 4th DIMENSION, as well as t
4D SERVER. With the exception of the mechanism used to poll the INF_FILL external’s even
queue, a 4th DIMENSION application interacts with the external in much the same way, rega
of which version of 4th DIMENSION you’re using.

As explained in “Accepting Apple Events” later in this chapter, Informed Filler sends Apple ev
to your application whenever the user submits a form or triggers a lookup. Your application is
expected to poll a queue and process any Apple events that are received. For 4th DIMENSIO
sion 2.2, ACIUS’s CallProcs.Ext external is required. This external allows you to configure 4t
DIMENSION to repeatedly call a specified polling procedure during idle time.

With 4th DIMENSION version 3.x and the 4D SERVER, the new processes capability offers a
more appropriate polling mechanism. A process is like a procedure that executes concurrentl
own 4th DIMENSION environment independent of other processes. Since each process has
current selection and current record information, its operation doesn’t interfere with the 4th
DIMENSION application or any other processes that might be running.

For more information about processing Apple events, please see “Accepting Apple Events” a
“Processing Apple Events” later in this chapter.

Using the INF_FILL External

13-8 Informed 4D Externals

 .
 .

 .

4th

appli-

ough
ust
time
ed

ica-
 and
 these

ent to
ere it

r
eger

 event.

ed by
nts that

propri-

to the
r 4th
oten-
.
Installing the External

You install 4th DIMENSION externals using the 4D External Mover application provided with
DIMENSION. The INF_FILL external can be found in the file ‘Informed Fill.’

The INF_FILL external can be installed in any copy of your interpreted or compiled database
cation, or in your CallProc.Ext file.

Since the interaction between Informed Filler and your 4th DIMENSION database occurs thr
a preselected 4th DIMENSION development or runtime application, the INF_FILL external m
be available to that application. When you select which 4th DIMENSION development or run
application to link forms to, you should choose the one that can be running whenever Inform
Filler users may be filling out forms.

Informed 4D Externals comes with two versions of a sample 4th DIMENSION database appl
tion (one for 4th DIMENSION version 2.2 and the other for version 3.x and the 4D SERVER),
an Informed template that’s already configured for lookups and form submission. You can use
items to experiment with the capabilities of the INF_FILL external.

Accepting Apple Events

When an Informed Filler user triggers a lookup or sends a completed form, an Apple event is s
your 4th DIMENSION application. The external accepts the event and places it in a queue wh
waits to be processed. Your 4th DIMENSION application is expected to periodically check fo
events in the queue by calling the procedure InfAECount. This procedure returns a single int
parameter indicating the number of events in the queue. Its declaration is shown below.

InfAECount ($theCount)

If an event is found in the queue, you then call the external procedure InfAERead to read the
This procedure returns a parameter indicating the type of the event.

InfAERead ($theType)

For insert or submit events, the value of $theType will be 1 whereas lookup events are identifi
the value 2. Other event types are processed internally and should be ignored. These are eve
Informed Designer generates while you link a form or configure a lookup.

Once you’ve read an event and you know its type, you should then process the event in an ap
ate manner. Event processing is explained in the section “Processing Apple Events” later in this
chapter.

Apple events can be sent to your 4th DIMENSION application from multiple users connected
same network. Each Apple event, however, is read and queued sequentially. As a result, you
DIMENSION application processes incoming Apple events one at a time, thereby avoiding p
tial problems caused by concurrent access by multiple users.

Informed 4D Externals 13-9

 .
 .

 .

e. If
xt
l one
N to
nd).

es inde-

s named

nts in
s exter-
edure
rocess’
 ade-

nt
 the
lica-

.

Polling the Apple Event Queue
In order to process Apple events, your application must continually poll the Apple event queu
you’re using 4th DIMENSION version 2.2, we recommend that you use ACIUS’s CallProcs.E
external. With the CallProcs.Ext external installed, 4th DIMENSION can be configured to cal
or more global procedures during idle time. The call shown below configures 4th DIMENSIO
automatically call the global procedure ProcessAllAEs once every 60 ticks (60 ticks = 1 seco

AddProc ("ProcessAllAEs"; 60)

If you’re using version 3.x of 4th DIMENSION or the 4D SERVER, polling is accomplished by
invoking a new process rather than using the CallProcs.Ext external. Since a process execut
pendently, processing Apple events using this mechanism ensures that your 4th DIMENSION
application and other processes are not affected. The call shown below creates a new proces
AEPollProcess. The value of 96000 should be adequate for most applications.

pid := New Process ("AEPollProcess";96000;"CallProAllAEs")

The process’ procedure should be written to repeatedly check for and process any Apple eve
the event queue, or call another procedure that does so. This is essentially what the CallProc
nal accomplishes for applications based on version 2.2 of 4th DIMENSION. The process proc
shown below uses an endless repeat loop to call the ProcessAllAEs procedure. The ‘Delay P
call is necessary so that 4th DIMENSION allows other processes time to execute. 60 Ticks is
quate for most applications.

PROCEDURE AEPollProcess

While (True)
ProcessAllAEs
Delay Process (current process;60)

End while

The ProcessAllAEs procedure should be written to check for Apple events waiting in the eve
queue and process those that are found. Below is an example procedure that’s provided with
Informed 4D Externals. This procedure can be used unmodified in your 4th DIMENSION app
tion.

PROCEDURE ProcessAllAEs

C_INTEGER ($theCount)
C_INTEGER ($theType)

InfAECount ($theCount)
While (Not ($theCount = 0))

InfAERead ($theType)
Case of
 :($theType = 1)
 ProcessInsert

 :($theType = 2)
 ProcessLookup
End case
InfAECount ($theCount)

End while

13-10 Informed 4D Externals

 .
 .

 .

ocess-
that’s
er in

EN-
mit
lly to

 box

e val-
uired

ntry
u
infor-
.
In addition to the above procedure, you must also write the procedures ProcessInsert and Pr
Lookup. These procedures should be written to process incoming Apple events in a manner
appropriate for your application. Information about processing Apple events can be found lat
this chapter.

Linking Forms

Forms are linked to your 4th DIMENSION application using Informed Designer. Linking is
required both to configure lookups and to link forms for form submission.

The linking process involves mapping cells on the Informed form to fields in a file of a 4th DIM
SION database. For detailed information on Informed Designer’s Lookup and Configure Sub
commands, see Chapter 1, “Adding Intelligence to Your Forms.” The issues related specifica
Informed and 4th DIMENSION are discussed here.

Required and Unique Fields
When you link a form to a file in your 4th DIMENSION database, the Configure Submit dialog
displays a list of cells on the form and a list of the fields in the database file.

The ‘Req.’ column next to the list of database fields is intended to indicate which fields requir
ues when a completed form is submitted. This column does not reflect 4th DIMENSION’s req
field attribute of each field.

You should not rely on 4th DIMENSION’s required and unique field attributes to prevent the e
of blank or duplicate values. Instead, you should check for blank or duplicate values when yo
examine the contents of a form for errors. See “Validating Data” later in this chapter for more
mation.

Informed 4D Externals 13-11

 .
 .

 .

,
le

or exam-
other
d mul-
s, the
 once

tions
e
or

xam-
ld in

ple, the
 file
s.

sin-
.

Relational Files
Lookups can retrieve information from a single file in your 4th DIMENSION database. A form
however, can be configured for submission to multiple related files. The submission of a sing
form can result in the creation of records in each of the files.

Related files are often used to reduce the amount of redundant data stored in a database. F
ple, a purchase order may be stored in two files, one containing header information and the
containing line item information. Each purchase order would consist of one header record an
tiple line item records, one for each item ordered. By dividing the purchase order into two file
header information (that is, the purchase order number, date, terms, an so on) is stored only
rather than redundantly with each line item record. Using 4th DIMENSION terminology, the
header file is called the ‘one file.’ The line item file is called the ‘many file.’

The 4th DIMENSION programming interface does not allow an external to determine the rela
that exist in the structure of your application. In order to make this information available to th
INF_FILL external, your application should call the external procedure InfAddRelation once f
each pair of related files on startup.

InfAddRelation ($oneFile; $relatedField; $manyFile)

$oneFile is the file number that identifies the one file (the header file in the purchase order e
ple). $manyFile is the file number of the related file. $relatedField is the field number of the fie
the one file that binds the related records in the two related files. In the purchase order exam
related field would be the purchase order number field. This field is stored in both the header
and with each line item record. The call shown below would correctly describe the related file

InfAddRelation (File (»[PO Header]); Field (»[PO Header]PO Number); File (»[Line
Items]))

By calling InfAddRelation to describe related files, Informed Designer will allow you to link a
gle form to multiple related files.

Purchase Order Header File

PO Number Vendor Number Date Terms

1009 V9061 Jan 17/92 Net 30

.
.
. Line Items File

PO Number Item Number Quantity Price

1009 I5112 25 150.00

1009 I3207 150 35.50

1009 I3382 10 49.00

1009 I8711 34 275.00

.
.
.

13-12 Informed 4D Externals

 .
 .

 .

ner
ialog
e of

elds
 be
iller
t one
ld in

 data

le
r

l-

t,
.

When you select a file in your 4th DIMENSION database to submit a form to, Informed Desig
will list all fields of both the selected file as well as any related files on the Configure Submit d
box. The field names of the fields contained in a related many file will be prefixed by the nam
the related field.

Fields in a many file should be linked to multi-value column cells on your form. For example, fi
such as the item number, quantity, and price in the line items file of a purchase order should
linked to the corresponding column cells on your purchase order form. When the Informed F
user submits a completed purchase order form, the INF_FILL external will automatically inser
line item record for each value in the linked column cells. If you link a single-value cell to a fie
a many file, the cell’s value will be stored in each of the multiple records created.

Subfields
4th DIMENSION offers an alternate method for storing relational data. In addition to standard
types such as text, integer, and date, a single field can store multiple subfile records. Each subfile
contains one or more fields called subfields. With subfiles, relational data can be stored in a sing
file. A purchase order, for example, could be stored in a single file containing fields for heade
information and a subfile for the line items.

Note Your application must call InfAddRelation before any Apple events are accepted. This initia
ization should occur in your application’s STARTUP procedure. After your application pro-
cesses the first Apple event, calls to InfAddRelation will be ignored.

Note The INF_FILL external allows you to insert records into files containing subfiles. You canno
however, lookup information that’s stored in subfiles.

Informed 4D Externals 13-13

 .
 .

 .

e
ner

ds a

d to
 of

t, char-
sup-

to the
the
.

When you configure submission to a file containing one or more subfiles, each subfield can b
linked to an individual cell on your form. On the Configure Submit dialog box, Informed Desig
will prefix each subfield with the name of its containing subfile.

Subfields should be linked to multi-value column cells on your form. When Informed Filler sen
completed form to your 4th DIMENSION application, the INF_FILL external will automatically
create a new subfile record for each set—or row—of values in the column cells that are linke
the subfields. If you link a single-value cell to a subfield, the cell’s value will be stored in each
the multiple subfile records created.

Data Types
Informed supports a rich set of data types and formatting options. The data types include tex
acter, number, name, date, time, boolean, picture, and signature. Although 4th DIMENSION
ports most of these data types, its formatting capabilities are not as robust. For example, 4th
DIMENSION does not allow you to enter a date such as ‘Monday, June 24, 1996,’ whereas
Informed will accept this format.

Cells that are linked to fields in your 4th DIMENSION database must be formatted according
constraints of 4th DIMENSION. The following table lists each Informed data type along with
compatible 4th DIMENSION data type and any formatting constraints.

13-14 Informed 4D Externals

 .
 .

 .

 this
e

You

her
 entered
hen
fore,
ION

bove,
e as

ocess
 search-
ecords
 was

form
 of
send a

epting
e that
r 4th

.
Informed and 4th DIMENSION data types

If you want to use a cell format that’s not supported by 4th DIMENSION, you can work around
limitation by creating an additional cell with an acceptable format. This additional cell would b
calculated to be equal to the original cell and linked to the 4th DIMENSION field in its place.
might place this cell on the work page.

Like Informed, 4th DIMENSION supports character formatting for telephone numbers and ot
fixed format text values. Format characters such as dashes or parentheses are automatically
for you. With 4th DIMENSION, format characters must be omitted when you enter a value. W
Informed Filler sends a value to the INF_FILL external, format characters are included. There
a telephone number such as ‘(403) 463-3330’ might be interpreted incorrectly by 4th DIMENS
as ‘((40) 3) -463-’ if the value is displayed using a telephone output formatter. As explained a
you can work around this incompatibility by creating an additional cell and calculating its valu
the formatted value with the format characters removed.

Processing Apple Events

Once an Apple event has been accepted, your application should then call a procedure to pr
the event. Processing an event involves either inserting data in the case of an insert event, or
ing for data in the case of a lookup event. Processing is completed by unloading the current r
of all affected files and sending a reply back to Informed Filler indicating either that the event
processed successfully, or that an error occurred.

Processing Insert Events
When the Informed Filler user completes and submits a form, an Apple event containing the
information is sent to your 4th DIMENSION application according to the linking configuration
the form. Your application is expected to read the Apple event, insert or reject the data, then
reply back to Informed Filler.

Depending on the nature of the form, you may or may not want to validate the data before acc
it. For example, you may want to check sensitive accounting data on financial forms to ensur
accounting errors are not made. You may also want to control more tightly the integrity of you

Informed Data Type 4th DIMENSION Data Type Required Format

Text
Character
Name
Number
Date
Time
Boolean
Picture
Signature

Text
Alpha
Text
Number
Date
Time
Boolean
Picture
Picture

No formatting constraints
Format characters must be stripped
No formatting constraints
No formatting constraints
MM/DD/YY
HH:MM:SS
No formatting constraints
No formatting constraints
No formatting constraints

Informed 4D Externals 13-15

 .
 .

 .

r by
 an

nter-
ted

 that
unt

n for

ce
r each
ould

inking

fNe-
ted. In

o-
up-

on
ro-

forms

.

DIMENSION application by saving and restoring the current selection of any affected files, o
completing a transaction through additional entries in the database. For example, processing
invoice form may involve adjusting the customer’s balance and the inventory quantities.

Determining the Form Type

Once your application has read an insert event by calling InfAERead (see “Accepting Apple
Events” earlier in this chapter), the data to be inserted is held in a special buffer maintained i
nally by the external. At this point you can determine which file or files the data is being inser
into by calling the two external procedures shown below.

InfNewRecCount ($theCount)
InfNewRecInfo ($theIndex; $theFileNum; $theRecNum)

InfNewRecCount returns an integer value in $theCount indicating the number of new records
will be created. For forms that map to a single file in your 4th DIMENSION database, $theCo
will return the value 1. For forms that are linked to related files, $theCount may return a value
greater than 1. For example, suppose that your 4th DIMENSION application stores informatio
a single invoice in two related files, one containing the invoice header fields (that is, the invoi
number, date, terms, and so on), and the other containing line item information, one record fo
item. If an invoice with three line items were sent to your application, the value of $theCount w
be 4, indicating one header record and three line item records. (For more information about l
forms to related files, see “Relational Files” earlier in this chapter.)

To find out the file or files in which new records will be created, call the external procedure In
wRecInfo. The value of $theIndex should be between 1 and the number of records to be crea
$theFileNum, InfNewRecInfo will return the file number of the file in which the record will be
inserted. The value of $theRecNum will be -1 and should be ignored at this point.

Controlling Access to Files

By knowing which file a record is being inserted into before the record is inserted, you can pr
grammatically prevent the creation of data in particular files of your database. For example, s
pose that of the ten files in your 4th DIMENSION database, you’re allowing remote submissi
into only two files. After determining which file or files records will be inserted into, you can p
ceed with processing the event only if insertion into that file is allowed.

Below is an example procedure that processes insert Apple events. In this example, remote
submission is allowed only for the files identified by file numbers 4 and 5.

PROCEDURE ProcessInsert

C_BOOLEAN ($allowInsert)
C_INTEGER ($theCount)
C_INTEGER ($theFileNum)
C_LONGINT ($theRecNum)

InfNewRecCount ($theCount)
$allowInsert := True
While ($theCount # 0)

13-16 Informed 4D Externals

 .
 .

 .

 files
rds,

ious
 follow-

k to
it

r

 the
e data-
tes
.
InfNewRecInfo ($theCount, $theFileNum, $theRecNum)
If (Not (($theFileNum = 4) | ($theFileNum = 5)))

$allowInsert := False
InfErrorMsg ("You cannot submit that type of form.")
$theCount := 1

End if
$theCount := $theCount - 1

End while

If $allowInsert
InfDoInsert
UnloadRecords

End if
InfSendReply

This procedure calls InfNewRecInfo for each record about to be inserted to determine which
will be affected. If the file number is determined to be either 4 or 5 for at least one of the reco
the insert event is not processed.

If you’re not concerned about preventing access to certain files, much of the code in the prev
example is unnecessary. Your ProcessInsert procedure could, therefore, be as simple as the
ing procedure.

PROCEDURE ProcessInsert

InfDoInsert
UnloadRecords
InfSendReply

The above procedure inserts the data from the sent form and sends a confirmation reply bac
Informed Filler. The procedure doesn’t check which file data is being inserted into, nor does
check the inserted data for errors.

After calling InfDoInsert (see “Inserting the Data”), the procedure UnloadRecords is called to
unload the current records of any affected files. Unloading records is the responsibility of you
application. See “Unloading Current Records” later in this section for more information.

Inserting the Data

The information from the submitted form remains in a special buffer until your application calls
external procedure InfDoInsert. This procedure creates the necessary record or records in th
base files and fills their contents with the form information. The following example demonstra
the use of the InfDoInsert external procedure.

Informed 4D Externals 13-17

 .
 .

 .

ers
der to

ert,
ternal
w
g 4th
then
s a

.

PROCEDURE ProcessInsert

If (FileAllowed)
InfDoInsert
ValidateData
UnloadRecords

Else
InfErrorMsg ("You cannot submit that type of form.")

End if
InfSendReply

The function FileAllowed is assumed to return false if insertion into the requested file is not
allowed. After calling InfDoInsert, you can then call InfNewRecInfo to obtain the record numb
of the records inserted. This allows you to examine the contents of the inserted records in or
check for errors (see “Validating Data” for more information).

Validating Data

Data validation is often critical in preventing errors from being accepted. After calling InfDoIns
your application can examine the contents of the new record (or records) by first calling the ex
procedures InfNewRecCount and InfNewRecInfo. InfNewRecCount returns the number of ne
records created and InfNewRecInfo returns the record numbers of the new records. By callin
DIMENSION’s GOTO RECORD procedure, you can examine the data for each new record,
either proceed normally or return an appropriate error message. The following example show
function that checks new purchase orders for blank or duplicate purchase order numbers.

FUNCTION Validate_PO

C_BOOLEAN ($theResult)
C_STRING (20;$thePONum)
C_INTEGER ($theFileNum)
C_LONGINT ($theRecNum)
C_INTEGER ($theCount)

$theResult := True
InfNewRecInfo (1; $theFileNum; $theRecNum)

GOTO RECORD ([PO Header]; $theRecNum)
$thePONum := [PO Header]PO No

` Check for blank purchase order number
If ($thePONum = "")

$theResult := False
InfErrorMsg ("You must enter the purchase order number.")

Else
` Check for duplicate purchase order number
ALL RECORDS ([PO Header])
SEARCH ([PO Header];[PO Header]PO No; =;$thePONum)
If (Records in selection ([PO Header]) > 1)

$theResult := False
InfErrorMsg ("A purchase order with that number already exists")

End if
End if

13-18 Informed 4D Externals

 .
 .

 .

er infor-
e order
med

fo
erted
e the
ber

orms

es
se in
r appli-

Ne-
.
` If an error was detected, delete the inserted records
If (Not ($theResult))

InfNewRecCount ($theCount)
While (Not ($theCount = 0))

InfNewRecInfo ($theCount, $theFileNum, $theRecNum)
GOTO RECORD (File ($theFileNum)»; $theRecNum)
DELETE RECORD (File ($theFileNum)»)
$theCount := $theCount - 1

End while
End if

$0 := $theResult

This example assumes that purchase orders are stored in two files, one containing the head
mation, and the other containing one record for each item ordered. The name of the purchas
header file is ‘PO Header’ and the field in this file containing the purchase order number is na
‘PO No.’ For information about error reporting, please see “Sending Errors Back to Informed
Filler” later in this chapter.

For forms that are mapped to multiple related files, you can assume that calling InfNewRecIn
with a value of 1 for $theIndex will return the file and record numbers of the single record ins
into the ‘one file.’ In the example shown above, there’s no need to call InfNewRecCount befor
first call to InfNewRecInfo since we know that passing 1 in $theIndex will return the record num
for the record inserted into the purchase order header file. For more information about how f
are mapped to related files, see “Relational Files” earlier in this chapter.

Unloading Current Records

After calling InfDoInsert, your application is expected to unload the current records for any fil
that were affected by the insert. Unloading these records ensures that they’re unlocked for u
other transactions. The procedure shown below is written generically and can be used in you
cation without modification.

PROCEDURE UnloadRecords

C_INTEGER ($theCount;$theFileNum;$theRecNum)

InfNewRecCount ($theCount)
While ($theCount # 0)

InfNewRecInfo ($theCount, $theFileNum, $theRecNum)
UNLOAD RECORD (File ($theFileNum)»)
$theCount := $theCount - 1

End while

If your application is aware of which files records were inserted into, you can avoid calling Inf
wRecCount and InfNewRecInfo and simply call UNLOAD RECORD with the appropriate file
number.

Informed 4D Externals 13-19

 .
 .

 .

u may
on,

ances
ds,
mer
atabase
ancel-
.

N
es

users
ing

vents
more

yped

arlier
he cur-
.

Using Transactions

If processing the insertion of a single form involves making several entries in the database, yo
want to start a 4th DIMENSION transaction before calling InfDoInsert. By starting a transacti
you can more easily roll back submission of the form if an error is detected.

Suppose that processing an invoice involves adjusting inventory quantities and customer bal
in addition to inserting the invoice header and line item records. After inserting the new recor
your application may check for errors such as a duplicate invoice number or insufficient custo
credit. If an error is detected, the new records must be deleted and any other changes to the d
reverted. If your application starts a transaction before processing the event, rolling back or c
ling can be done simply by calling the 4th DIMENSION procedure CANCEL TRANSACTION
Below is an example.

PROCEDURE ProcessInsert

C_BOOLEAN ($dataOK)

If (FileAllowed)
START TRANSACTION (*)
InfDoInsert
ValidateData ($dataOK)
If $dataOK = True

VALIDATE TRANSACTION
Else

CANCEL TRANSACTION
End if

Else
InfErrorMsg ("You cannot submit that type of form.")

End if
UnloadRecords
InfSendReply

Even for simple forms, the use of transactions is highly recommended if your 4th DIMENSIO
application is used in a multi-user environment. Using transactions will ensure that the chang
made to a database as a result of processing a submitted form will not be available to other
until processing has completed and the transaction has been validated. However, if you’re us
version 2.2 of 4th DIMENSION, care must be taken to ensure that the processing of Apple e
doesn’t interfere with other transactions that may be invoked directly by your application. For
information, see “Coordinating Interaction” later in this chapter.

Processing Lookup Events
A lookup is triggered when the Informed Filler user types a value in a lookup cell. The value t
is looked up either in another form or by another application, and the information retrieved is
entered on the form.

If a lookup is linked to your 4th DIMENSION application, Informed Filler will send it an Apple
event when the lookup is triggered. After accepting the event (see “Accepting Apple Events” e
in this chapter), your application is expected to search for the requested record and make it t

13-20 Informed 4D Externals

 .
 .

 .

 exter-
lues

ur
dure

tion
te file.

rice of
our
escrip-
y the
’ as

 current
 the
e
.
rent selection of the appropriate file. Later when you send a reply back to Informed Filler, the
nal will transfer the contents of the current selection. Informed Filler will then enter the field va
from your 4th DIMENSION database in the appropriate cells on the form.

Performing the Lookup

Once you’ve read an Apple event (via InfAERead) and determined it to be a lookup event, yo
application should call the external procedure InfDoLookup to perform the lookup. This proce
takes a single string parameter.

InfDoLookup ($theSearchProcedure)

The value of $theSearchProcedure should be the name of a global procedure in your applica
which performs the search and leaves the data found in the current selection of the appropria
InfDoLookup passes four parameters to the search procedure. They are:

$1: the file number of the file for which the lookup has been requested
$2: the field number of the field on which the lookup is based
$3: the match option of the lookup as configured by the form designer

1 = do not lookup; 2 = use next value
$4: the value to be searched for as entered by the Informed Filler user

Suppose, for example, that an invoice form were configured to look up the part number and p
an item when the Informed Filler user enters the item’s description. InfDoLookup would call y
search procedure passing the file number of the inventory file in $1, the field number of the d
tion field in $2, the lookup match option in $3, and in $4, the value of the description entered b
Informed Filler user. The following figure shows a simple search procedure called ‘MySearch
well as a procedure which your application might call to process lookup events
.
PROCEDURE MySearch

C_INTEGER ($1;$2;$3)
C_STRING (80;$4)

ALL RECORDS (File ($1)»)
SEARCH (File ($1)»; Field ($1; $2)» = $4)

PROCEDURE ProcessLookup

InfDoLookup ("MySearch")
InfSendReply

The search procedure searches for an exact match of the search value. If the search fails, the
selection of the file will be left empty. If one or more records are found, they will be available in
file’s current selection following the call to SEARCH. Their field values will be included with th
reply that’s sent back to Informed Filler when your application calls InfSendReply.

Informed 4D Externals 13-21

 .
 .

 .

alues
ord, a
nd

value.
n the
e sur-
r can
e

um
r limit
re Inf-

 longer

ber of

.

If your search procedure returns a single record selection, Informed Filler will enter the field v
of that record in the appropriate cells on the form. If the selection contains more than one rec
dialog box will display allowing the Informed Filler user to browse through the list of records a
select the correct one. The browsing dialog box is shown below.

Lookup browsing is useful when there are multiple records containing the requested search
For example, suppose that an invoice form is configured to lookup customer information whe
customer’s surname is entered on the form. If there are two or more customers with the sam
name, Informed Filler will display those customers in the lookup browsing dialog box. The use
select the correct customer based on related customer information then click ‘OK’ to enter th
information on the form.

The number of records that the external can return to Informed Filler is limited by the maxim
size of an Apple event. The size of the combined records cannot exceed 20K. You can furthe
the number of records that can be returned to Informed Filler by calling the external procedu
MaxRecords. By default, the limit is set to 50 records.

InfMaxRecords ($numRecords)

This setting should be based on network performance and cost. The slower the network, the
it takes to transfer the data from your 4th DIMENSION application to Informed Filler. Users
should be encouraged to enter complete values before triggering lookups. That way, the num
matching records is kept to a minimum.

13-22 Informed 4D Externals

 .
 .

 .

ch
d.

ch

re, or
arch
 is not

ser
 value
oked

o
by call-
rds
.
Match Options and Wildcards

When a lookup is configured, the form designer chooses one of two match options. The mat
option determines what happens if an exact match is not found when the lookup is performe

When InfDoLookup calls your 4th DIMENSION search procedure, it passes the lookup’s mat
option as the third parameter according to the values shown below.

1 = Do not lookup
2 = Use next value

You can control the interpretation of the match option by changing the lookup search procedu
you can ignore the match option entirely if it’s not relevant to your application. The sample se
procedure below returns the record containing the next higher search value if an exact match
found.

PROCEDURE MySearch

C_LONGINT ($recCount)
C_INTEGER ($1;$2;$3)
C_STRING (80;$4)

ALL RECORDS (File ($1)»)
SEARCH (File ($1)»; Field ($1; $2)»; "="; $4)
SORT SELECTION (File ($1)»; Field ($1; $2)»; ">")
$recCount := Records in selection (File ($1)»)
If ($recCount = 0) And ($3 = 2))

ALL RECORDS (File ($1)»)
SEARCH (File ($1)»; Field ($1; $2)» >= $3)
$recCount := Records in selection (File ($1)»)
If ($recCount > 0)

SORT SELECTION (File ($1)»; Field ($1; $2)»; ">")
` Make the first record the current record.
FIRST RECORD (File ($1)»)
` Remove other records from the current selection.
ONE RECORD SELECT (File ($1))

End if
End if

4th DIMENSION allows you to use wildcard symbols for partial matches. The Informed Filler u
could, for example, find all customers whose surname starts with ‘Smi’ by entering the search
‘Smi@.’ This feature is useful if the user doesn’t know the exact spelling of the value being lo
up.

Unloading Current Records

If your 4th DIMENSION application is used in a multi-user environment, you should be sure t
unload the current records of any files that were affected by a lookup. Records are unloaded
ing the 4th DIMENSION procedure UNLOAD RECORD. If you do not unload the current reco
after performing a lookup, users of your application may encounter ‘File in use’ errors.

Informed 4D Externals 13-23

 .
 .

 .

 to
t pro-

 Filler
rror

sage is

ode
d call

.

user

EN-
o pre-

 appli-

he
y of
l 4th
.

Sending Errors Back to Informed Filler

Once an Apple event has been processed, your application is expected to send a reply back
Informed Filler by calling the external procedure InfSendReply. Sending a reply confirms tha
cessing has completed.

Your application can call one of two external procedures to report errors back to the Informed
user. Before calling InfSendReply, simply call either InfErrorCode or InfErrorMsg to set the e
code or message, respectively.

InfErrorCode ($theCode)
InfErrorMsg ($theMessage)

The value of $theCode is an integer and is defined by your application. The value of $theMes
a string that allows for a maximum length of 255 characters.

Each time an Apple event is accepted, the INF_FILL external automatically clears the error c
and message. If an error is detected while processing an insert event, your application shoul
either InfErrorCode or InfErrorMsg before calling InfSendReply. The dialog box that Informed
Filler displays when your application calls InfSendReply will show the error code or message

In practice, error codes generally do not provide sufficient information for the Informed Filler
to understand a problem and, therefore, are best suited for debugging purposes.

Coordinating Interaction

With version 2.2 of 4th DIMENSION, the interaction between Informed Filler and the 4th DIM
SION database occurs through your 4th DIMENSION client application. Care must be taken t
vent the processing of Apple events from interfering with the application’s normal use. With
version 3.x of 4th DIMENSION and the 4D SERVER, the INF_FILL external interacts directly
with an independent process, therefore eliminating any possible interference with your client
cation.

If your v2.2 4th DIMENSION application is used in a multi-user environment, you can avoid t
concern of coordinating Apple event processing altogether. Instead of relying on a user’s cop
4th DIMENSION for processing insert and lookup events, you could link forms to an additiona
DIMENSION runtime that’s dedicated for this purpose.

13-24 Informed 4D Externals

 .
 .

 .
th
nt-

 may
n

e to

tent
enerate
terfere

ss
ts. By
tion,
ction is
the
e use

e lost if

ta,
s when
r appli-

ted
.
The precautions described in the following sections apply only if you’re using version 2.2 of 4
DIMENSION and only if forms are linked to a 4th DIMENSION development application or ru
ime which is also being shared with user.

Current Selection and Current Record
Since processing a lookup event changes the file’s current record and current selection, you
want to save these attributes before searching and restore them afterwards. If your applicatio
maintains global variables for attributes such as the number of records in a file, you may hav
update these variables as well.
Certain 4th DIMENSION actions such as printing a report or editing a layout rely on a consis
selection. Calling commands that change the current selection during these operations can g
errors. Your application, therefore, must ensure that the processing of Apple events doesn’t in
with commands that may be invoked due to user actions.

Transactions
If you’re using 4th DIMENSION version 2.2.x, and the procedures that you’ve written to proce
Apple events use transactions, additional precautions must be taken to avoid potential conflic
definition, 4th DIMENSION allows no more than one active transaction per user. Your applica
therefore, must delay the processing of an Apple event that modifies the database if a transa
already active. If processing the Apple event relies on transactions, an error will occur when
transaction is initiated if a another transaction is already active. If processing occurs without th
of transactions, the database entries made as a result of processing the Apple event could b
an active transaction is later cancelled.

Quick Start

The open architecture of the INF_FILL external provides control and flexibility to your 4th
DIMENSION application. As explained earlier, you can write global procedures to validate da
control access to the different files in your database, and customize the processing that occur
completed forms are submitted or lookups requested. If these issues are not important to you
cation, the modifications necessary to enable forms submission and lookups are simple and
straightforward.

To enable forms submission and lookups with Informed, simply add the global procedures lis
below to your application. These procedures can be found in the text file named “Fill Ext.
Procs.TEXT”.

Informed 4D Externals 13-25

 .
 .

 .

2.2,
cks
pro-
 to

r

 start a
llowed.
.

Procedure: STARTUP

This code should be added to your application’s STARTUP procedure. For 4th DIMENSION v
it calls AddProc to ensure that the global procedure ProcessAllAEs is called once every 60 ti
during idle time. For 4th DIMENSION v3.x or the 4D SERVER, the procedure invokes a new
cess which continually calls ProcessAllAEs. The global variable ErrorFound is also initialized
False.

For 4th DIMENSION version 2.2:

AddProc ("ProcessAllAEs";60)

For 4th DIMENSION version 3.x or the 4D SERVER:

C_LONGINT (pid)
pid := New Process ("AEPollProcess";96000;"CallProAllAEs")

Procedure: AEPollProcess

This procedure is required only if you’re using version 3.x of 4th DIMENSION or the 4D
SERVER.

While (True)
ProcessAllAEs
Delay Process (current process;60)

End while

Procedure: ProcessAllAEs

This procedure is called continually to process any Apple events in the queue by calling eithe
ProcessInsert or ProcessLookup repeatedly until the queue is empty.

C_INTEGER ($I;$theType)
InfAECount ($I)
While (Not($I=0))

InfAERead ($theType)
Case of
: ($theType=1)

ProcessInsert
: ($theType=2)

ProcessLookup
End case
InfAECount ($I)

End while

Procedure: ProcessInsert

This procedure is called to process an insert Apple event. The call to PreInsert is intended to
transaction and ensure that access to the file or files in which records are being inserted is a

13-26 Informed 4D Externals

 .
 .

 .
e

ed and
ere

 cre-

r is

t was
.
The call to ValidateIns is intended to examine that inserted data for any errors. If no errors ar
detected, ErrorFound is cleared to False.

C_BOOLEAN (ErrorFound)
ErrorFound:=True
If (PreInsert)

InfDoInsert
If (ValidateIns)

ErrorFound:=False
End if

End if
PostInsert
UnloadRecords
InfSendReply

Function: PreInsert

This function is called by ProcessInsert before any records are created. A transaction is initiat
the function returns True. If you want to deny access to certain files, you should insert code h
that calls InfNewRecCount and InfNewRecInfo to determine which file or files records will be
ated in. To prevent the insert from occurring, return False instead of True.

START TRANSACTION (*)
$0:=True

Function: ValidateIns

This function is called by ProcessInsert. It is intended to validate the inserted data. If an erro
detected, you should return a False result.

$0:=True

Procedure: PostInsert

This procedure is called by ProcessInsert after the data has been inserted. If the insert even
processed successfully, the transaction is validated. Otherwise, the transaction is cancelled.

If (ErrorFound)
CANCEL TRANSACTION

Else
VALIDATE TRANSACTION

End if

Procedure: ProcessLookup

This procedure is called by ProcessAllAEs to process a lookup event.

InfDoLookup ("DoSearch");
InfSendReply

Informed 4D Externals 13-27

 .
 .

 .

 has
he
. If you
) and

t of
te

ppli-

ble

rver
tion
, and
.

Procedure: DoSearch

This procedure is called by InfDoLookup. Its parameters specify the file for which the lookup
been requested ($1), the field in this file to search ($2), the lookup’s match option ($3), and t
search value ($4). It performs the search and leaves the results in the file’s current selection
want to deny access to certain files, insert code that examines the file number parameter ($1
calls InfErrorMsg or InfErrorCode accordingly.

C_INTEGER ($1;$2;$3)
C_STRING (80;$4)

ALL RECORDS(File($1)»)
SEARCH(File($1)»;Field($1;$2)»=$4)

Procedure: UnloadRecords
C_INTEGER ($theCount;$theFileNum;$theRecNum)

InfNewRecCount ($theCount)
While ($theCount # 0)

InfNewRecInfo ($theCount, $theFileNum, $theRecNum)
UNLOAD RECORD (File ($theFileNum)»)
$theCount := $theCount - 1

End while

Using the INF_NS_Client External
Informed Number Server is an application that generates unique form numbers at the reques
other applications. A single Informed Number Server application can be configured to genera
form numbers for several different types of forms.

Using Informed Designer, you can link a ‘form number’ cell on a form to the Number Server a
cation. When the Informed Filler user adds a new form or manually requests a new number,
Informed Filler sends a message to the Number Server application requesting the next availa
form number. The Number Server application replies with the next available number.

If users fill out forms using both Informed Filler and your 4th DIMENSION application, you’ll
need to modify your application so that it too obtains new form numbers from the Number Se
application. The INF_NS_CLIENT external contains four external functions that your applica
can call to select a Number Server application, determine which form numbers are available
request a new form number.

Using the INF_NS_Client External

13-28 Informed 4D Externals

 .
 .

 .

ter-

th
on,

bility
om-

ion, a
ends
rver

ppli-
e.

 on
the
 the

 by

 lists
on.

g
ed to the
m
ill
risk
.
Installing the External

Like any 4th DIMENSION external, you install the INF_NS_CLIENT external using the 4D Ex
nal Mover application provided with 4th DIMENSION. The INF_NS_CLIENT external can be
found in the file ‘Informed NS Client.’

The INF_NS_CLIENT external can be installed in any copy of your interpreted or compiled 4
DIMENSION application, in any copy of a 4th DIMENSION development or runtime applicati
or in your Proc.Ext file.

Modifying Your 4th DIMENSION Application

Informed Number Server uses Apple events, an IAC (inter-application communications) capa
of the Mac OS (version 7 or later) to communicate with other applications. In addition to the c
puter on which the Number Server application is running, each computer running your 4th
DIMENSION application must also be using system software version 7.0 or later.
Integrating your 4th DIMENSION application with Informed Number Server is a simple and
straightforward exercise. Rather than generating new form numbers from within your applicat
new number is obtained by calling a function in the INF_NS_CLIENT external. The external s
an Apple event message over the network to the Number Server application. The Number Se
application replies with the next available form number. Other external functions allow your a
cation to select the Number Server application and find out which form numbers are availabl

Identifying the Number Server Application
When your application requests a new form number, information that identifies the computer
which the Number Server application is running must be provided. This information includes
name of the Number Server application, the name of the computer on which it’s running, and
name of the network zone to which the computer is connected.

Although you may already know the names of these items, your application can obtain them
calling the external function ChooseNS.

ChooseNS ($theAppName, $theMacName, $theZoneName)

ChooseNS displays the Program Linking dialog box. This dialog box contains three scrolling
from which you can select the correct network zone, computer, and Number Server applicati

When you click ‘OK,’ ChooseNS will return the names of the selected items in the three strin
parameters $theAppName, $theMacName, and $theZoneName. These names are then pass
external function GetNSNextValue to obtain a new form number (see “Requesting a New For
Number” later). If your network contains only a single zone, the Program Linking dialog box w
contain two lists instead of three. The zone name of a single-zone network is always the aste
character (‘*’).

Informed 4D Externals 13-29

 .
 .

 .

 that a
rious
 this

r has a
uests

ion,

rs
 form

names

ON
 con-
.

ChooseNS is an external function that returns a long integer result. A result of zero indicates
Number Server application was successfully selected. Non-zero results correspond to the va
errors that can occur. For information about error handling, please see “Error Codes” later in
chapter.

Determining the Available Form Numbers
A single Number Server application can generate form numbers for several different types of
forms. Form numbers are configured using the Number Server application. Each form numbe
name (‘invoice number,’ or ‘purchase order number,’ for example). When your application req
a new form number, the name of the form number must be provided.

To obtain the names of the form numbers available from a particular Number Server applicat
your 4th DIMENSION application can call the external functions GetNSNameList and
GetNSName.

GetNSNameList ($theAppName, $theMacName, $theZoneName, $theCount)

GetNSName ($theIndex, $theName)

GetNSNameList connects to the Number Server application identified by the string paramete
$theAppName, $theMacName, and $theZoneName, then requests the names of all available
numbers. If your network consists of a single zone only, pass the asterisk character (‘*’) in
$theZoneName. Otherwise, pass the zone name. GetNSNameList will return the number of
in the list in the integer parameter $theCount. The list of names itself is held in the external’s
memory area.

If the Number Server application is not running on the same computer as your 4th DIMENSI
application (which is commonly the case), the user of your application might be requested to
nect to the Number Server application.

13-30 Informed 4D Externals

 .
 .

 .
o
user is
stered

 form
ber
tring

sult of
arious
 this

nd the
isk

xt
nly if
nding
g it.
ter

con-
re

icates
at can
.
As part of the Informed Number Server installation process, the administrator must be sure t
enable program linking privileges for the appropriate users. These settings determine if each
required to connect as a registered user or if guest access is permitted. To connect as a regi
user, entry of a name and password is required.

After calling GetNSNameList, you can then call GetNSName to obtain the name of a specific
number. $theIndex specifies which form number; its value should be between 1 and the num
returned by GetNSNameList in $theCount. The name of the form number is returned in the s
parameter $theName.

GetNSNameList and GetNSName are external functions that return long integer results. A re
zero indicates that the function completed successfully. Non-zero results correspond to the v
errors that can occur. For information about error handling, please see “Error Codes” later in
chapter.

Requesting a New Form Number
Whenever a new form number is needed, your 4th DIMENSION application should call the
external function GetNSNextValue.

GetNSNextValue ($theAppName, $theMacName, $theZoneName,
$theNumberName, $increment, $theValue)

$theAppName, $theMacName, and $theZoneName identify the Number Server application a
computer on which it’s running. If your network consists of a single zone only, pass the aster
character (‘*’) in $theZoneName. Otherwise, pass the zone name.

GetNSNextValue will connect to the specified Number Server application and request the ne
available number for the form number identified by the string parameter $theNumberName. O
you pass 1 in $increment, the Number Server application will actually increment the correspo
form number. By passing 0, you can obtain the next available form number without advancin
This feature is useful for testing purposes. The form number is returned in the string parame
$theValue.

Like GetNSNameList, calling GetNSNextValue may require that the user of your application
nect to the Number Server application. Please see the explanation of GetNSNameList for mo
information.

GetNSNextValue is an external function that returns a long integer result. A result of zero ind
that the function completed successfully. Non-zero results correspond to the various errors th
occur. For information about error handling, please see “Error Codes” later in this chapter.

Informed 4D Externals 13-31

 .
 .

 .

. A
ting

e of

.

y
e

e

is
.

Error Codes
Each of the four Informed Number Server external functions return a long integer result code
non-zero result can occur due to invalid input parameters or problems with network or opera
system components or with the Number Server application itself. The following table lists som
the more common errors, each with a brief explanation.

Common Error Codes
Error Code Description

0 No error

-128 userCanceledErr

-1708 errAEEventNotHandled

-1712 errAETimeout

-906 destPortErr
-908 noSessionErr
-915 noResponseErr

-1

-1000 kIndexRangeErr

The function or procedure completed successfully

The user clicked Cancel on the Program Linking dialog box

An Apple event was not handled by the target application.
This error normally indicates that the application specified b
the parameters to either GetNSNameList or GetNSNextValu
is not a Number Server application.

The Number Server application is not responding and a tim
out occurred

The errors -906, -908, and -915 will occur if the Number
Server application is not running on the computer specified
by the parameters $theAppName, $theMacName, and
$theZoneName.

The form number specified in $theNumberName when
calling GetNSNextValue does not exist.

The value of $theIndex passed to the GetNSName function
out of range.

13-32 Informed 4D Externals

 .
 .

 .

.

A

Appendix A

Name Prefixes and Suffixes

A-2 Appendix A - Name Prefixes and Suffixes

.
.

.
.

accord-
ore

s

AAppendix A - Name Prefixes and Suffixes
As described in Chapter 1, “Adding Intelligence to Your Forms,” Informed allows you to store
names using the name cell type. With the name cell type, Informed always displays a name
ing to the cell’s format, even if the person filling out the form enters a name differently. For m
information, see “Name” in Chapter 1.

In order to identify the different parts of a name, Informed uses the list of prefixes and suffixe
shown in the following tables.

Prefixes
Full Prefix Abbreviation Full Prefix Abbreviation

Abbot
Admiral
Airman
Ambassador
Archbishop
Archdeacon
Army
Assemblyman
Assembywoman
Assistant
Associate
Attorney
Baron
Baroness
Baronet
Bishop
Brigadier
Cadet
Canon
Cantor
Captain
Cardinal
Chairman
Chairperson
Cancellor
Chaplain
Chief
Colonel
Commander
Commodore
Congressman

Adm.
Amn.

Brig.
Cdt.

Capt.

Col.
Comm.

Cong.

Congresswoman
Corporal
Count
Countess
Dame
Doctor
Duke
Duchess
Excellency
Ensign
Father
First
Fleet
General
Governor
Grade
Her
Highness
His
Holiness
Honorable
Judge
Justice
King
Knight
Lady
Lieutenant
Lord
M.
Madame
Majesty

Cong.
Cpl.

Dr.

Gen.
Gov.

Hon.

Lt.

Appendix A - Name Prefixes and Suffixes A-3

 .
 .

 .

.

Prefixes (continued)

Suffixes

Full Prefix Abbreviation Full Prefix Abbreviation

Major
Marchioness
Marquess
Mayor
Midshipman
Minister
Miss
Mister
Most
Mother
Mrs.
Ms.
Navy
Of
Officer
Patriarch
Pope
President
Prime
Prince
Princess
Private
Professor
Queen

Maj.

Mr.

Pres.

Pvt.
Prof.

Rabbi
Rear
Representative
Reverend
Right
Royal
Seaman
Second
Secretary
Senator
Sergeant
Sir
Sister
Specialist
The
Third
Under
Very
Vice
Viscount
Viscountess
Warrant
Yeoman

Rep.
Rev.
Rt.

Sec.
Sen.
Sgt.

Spec.

V.

Full Suffix Abbreviation Full Suffix Abbreviation

Junior
Senior
Esquire
First
Second
Third
Fourth
Fifth
B.A.
B.Comm.
B.Ed.
B.Sc.
C.A.
C.P.A.

Jr.
Sr.
Esq.
I
II
III
IV
V

D.D.S.
D.V.M.
J.M.
LL.B.
M.A.
M.B.A.
M.D.
M.Ed.
M.S.
P.Eng.
Pharm.
Ph.D.
R.E.T.
R.N.

A-4 Appendix A - Name Prefixes and Suffixes

 .
 .

 .

.

B

Appendix B

Built-in Commands

B-2 Appendix B - Built-in Commands

.
.

.
.

r. As
e
iller
tons”

s or

u

BAppendix B - Built-in Commands
Built-in commands correspond to the commands and settings that are built into Informed Fille
described in Chapter 3, “Customizing Menus,” you can add or remove menu items that invok
built-in commands to help create a simpler and more familiar environment for the Informed F
user. You can also configure buttons to trigger built-in commands. See Chapter 4, “Using But
for more information.

The following table lists each of Informed’s built-in commands and explains which menu item
actions that they correspond to.

Built-in Commands
Built-in Command Corresponding Menu Item or Action

About Informed Filler
Actual Size
Add Columns
Add Record
Add To Record List
Align Column Center
Align Column Left
Align Column Right
Assign Next Value
Attach File
Cascade Windows
Check Current Record
Check Collected
Records
Check Selection
Clear
Clear Record
Close
Column Title
Copy
Cut
Duplicate Record
Enlarged Size
Export
Extra Choices
Extract Attachment
Find
Find Again
Find All
First Record

About command under the Help (Windows) or Apple (Mac OS) men
Actual Size command under the View menu
Add Columns command under the List menu
Add Record command under the Database menu
Add To Record List command under the Cell menu
Center menu item in Alignment submenu under List
Left menu item in Alignment submenu under List
Right menu item in Alignment submenu under List
Assign Next Value command under the Cell menu
Attach command under the File menu
Cascade command under the Window menu
Check Current Record item in Spelling submenu under Edit
Check Collected Records item in Spelling submenu under Edit

Check Selection item in Spelling submenu under Edit
Clear command under the Edit menu
Clear Record command under the Database menu
Close command under the File menu
Column Title command under the List menu
Copy command under the Edit menu
Cut command under the Edit menu
Duplicate command under the Database menu
Enlarged Size command under the View menu
Export command under the File menu
Extra Choices command under the Cell menu
Extract command under the File menu
Find command under the Database menu
Find Again command under the Database menu
Find All command under the Database menu
First item in the Go To submenu under Database

Appendix B - Built-in Commands B-3

 .
 .

 .

s

k-
.

Built-in Commands (continued)
Built-in Command Corresponding Menu Item or Action

Go To Record

Help
Import
Insert Date
Insert File
Insert Row
Last Record
Log Off Service
Memorize
New Document
Next Record

Omit
Omit Others
Open
Open Mail

Page Setup
Paste
Place Note
Preferences
Previous Record

Print
Quit
Record Information
Reduced Size
Register

Remove Record
Remove Column
Remove Format
Remove Row
Remove Tag
Revert
Revision Status
Save
Save As
Save Format

Record command in the Go To submenu under Database - same a
double-clicking the record information box to display the Change
Record dialog box
Help command under the Cell menu
Import command under the File menu
Insert Date command under the Edit menu
Insert File command under the Cell menu
Insert Row command under the Edit menu
Last item in the Go To submenu under Database
Log Off Service command in the Signatures submenu under Edit
Memorize command under the Cell menu
New Document command under the File menu
Next item in the Go To submenu under Database - same as clicking
the right arrow in the record information box
Omit command under the Database menu
Omit Others command under the Database menu
Open command under the File menu
Open Mail command under the File menu - available only for
Informed mail plug-ins that allow opening mail from within Informed
Filler
Page Setup command under the File menu
Paste command under the Edit menu
Place Note command under the Edit menu
Preferences command under the Edit menu
Previous item in the Go To submenu under Database - same as clic
ing the left arrow in the record information box
Print command under the File menu
Exit (Windows) or Quit (Mac OS) command under the File menu
Record Information command under the View menu
Reduced Size command under the View menu
Register command under the Help (Windows) or Apple (Mac OS)
menu
Remove command under the Database menu
Remove Column command under the List menu
Remove Format command in the Formats submenu under List
Remove Row command under the Edit menu
Remove Tag command in the Tags submenu under Database
Revert command under the Database menu
Revision Status command under the View menu
Save command under the File menu
Save As command under the File menu
Save Format command in the Formats submenu under List

B-4 Appendix B - Built-in Commands

 .
 .

 .

)

er
.
Built-in Commands (continued)
Built-in Command Corresponding Menu Item or Action

Select All
Send
Set Value
Show Attachments
Show Choices
Show Clipboard
Show Record List
Show Signed Cells

Show Totals
Sign
Sort
Submit
Tag Records
Template Information
Tile Windows
Totals
Tracking Status
Undo
Verify Signature
Verify Template

Select All command under the Edit menu
Send command under the File menu
Set Value command under the Cell menu
Show/Hide Attachments command under the Window menu
Show/Hide Choices command under the View menu
Show/Hide Clipboard command under the Edit menu (Mac OS only
Show/Hide Record List command under the Window menu
Show/Hide Signed Cells command in the Signatures submenu und
Edit
Show/Hide Totals command under the List menu
Sign command in the Signatures submenu under Edit
Sort command under the Database menu
Submit command under the File menu
Tag Records command in the Tags submenu under Database
Template Information command under the View menu
Tile command under the Window menu
Totals command under the List menu
Tracking Status command under the View menu
Undo command under the Edit menu
Verify command in the Signatures submenu under Edit
Verify Template command in the Signatures submenu under Edit

10

Using Functions

In this chapter:

■ Overview 10-2

■ Function Parameters 10-3

■ Function Results 10-6

■ Function References 10-7

10-2 Using Functions

.
.

.
.

ated

s as
ddi-
ed on

ulas
s a
 values
 func-

l1,
u

ary
 of

ck

10Using Functions
One way Informed helps you design intelligent forms is by letting you create cells with calcul
values. Cells with calculated values are filled in automatically when you fill out a form with
Informed Filler or the test mode of Informed Designer (we’ll refer to these common capabilitie
features of Informed). A cell’s value can be calculated based on the values of other cells. In a
tion, the cells you fill in can be checked for errors, and the tabbing order of a form can be bas
conditions.

Overview
You calculate or check a cell’s value, or specify a cell’s next tab position with a formula. Form
use operators to combine constant values, cell values, and functions to give a single value a
result. Operators are special symbols that produce a new value from other values. The other
(called operands) can be constant values that you enter directly, cell values, or the result of a
tion. For a complete discussion of formulas and how they work, see Chapter 9.

A function performs a predefined calculation using a given set of values, called parameters. Func-
tions return a single value called a result. For example, you can use the ‘Max’ function to find the
maximum number in a group of numbers.

Max (Cell1, Cell2, Cell3)

Without the ‘Max’ function, you’d have to create a formula that compares the numbers in Cel
Cell2, and Cell3 individually. You can use a function, such as ‘Max,’ in a formula anywhere yo
can use a constant or a cell value, provided the type of the function’s result is appropriate.

In this chapter you’ll learn about functions, function parameters, and function results. A summ
of Informed’s functions, grouped into general categories, is followed by a detailed description
each function. For information about entering functions in formulas, see “Calculations,” “Che
Formulas,” and “Conditional Tabbing” in Chapter 1.

Overview

Choose (Cell1, "hello", 99)

Function name
Parameters

Parentheses
Commas

Using Functions 10-3

 .
 .

 .

hese

-
xample,

ome
. For

he

 end of
ing a

alues.

ulas

alue

.

Function Parameters
When you use a function, you must supply it the values that it needs to calculate its result. T
values are called parameters. A function’s parameters always appear immediately after the func
tion’s name. You enclose parameters in parentheses and separate them with commas. For e
the following function calculates the sum of three parameters: 2, 4, and 8.

Sum (2, 4, 8)

The number of parameters that you supply to a function depends on the particular function. S
functions don’t require any parameters. Other functions use a specific number of parameters
example, the ‘Today’ function, which returns the current date, doesn’t have any parameters,
whereas the ‘AddDays’ function requires two parameters.

Today
AddDays (PurchaseDate, 7)

If you use a function that doesn’t have any parameters, you enter only the function’s name. T
parentheses are not required.

Some functions allow optional parameters. For example, the ‘PMT’ function uses an optional
parameter to indicate when payments are made on an investment (either at the beginning or
each period). If you don’t supply an optional parameter, the function will calculate its result us
default parameter value.

In the formula below, the parameters to the ‘Sum” function are all constant, or unchanging, v

Sum (2, 4, 8)

You can use other kinds of parameters, such as cell names, other functions, or complete form
with operators and operands. Consider the function shown below.

Sum (Cell1, 99 + Cell2, MakeList(Cell3), Sqrt(Cell4))

This function adds the following parameters:

■ the value in ‘Cell1’

■ a formula that adds 99 to the value in ‘Cell2’

■ the values in the column cell, ‘Cell3’

■ the result of the ‘SQRT’ function.

When you use a cell, formula, or function as a parameter, Informed Filler first calculates its v
and then uses that result as the parameter value.

Function Parameters

10-4 Using Functions

 .
 .

 .

, all
appro-
-
Type

n.
 to
 con-

 col-

 con-
g rows

nstant
um’
.
The type of a parameter value should match the type expected by the function. For example
parameters to the ‘Sum’ function should be numbers. If the type of a parameter’s value is not
priate, Informed Filler will try to convert the value to the correct type. If the value can’t be con
verted, the empty value is used instead. For more information about type compatibility, see “
Conversion” in Chapter 9.

Column cell parameters

When you use a column cell as a function parameter, the function’s result will also be a colum
That is, the result will consist of multiple values. For example, if the SUM function were used
add four column cells, each containing five rows, the function’s result would also be a column
sisting of seven rows. Each row would contain the sum of the corresponding rows in the four
umn cells.

If the column cells in the above example were of different heights, the function’s result would
tain as many values as the longest column. Informed would insert empty values in the missin
of the shorter column cells.

If you use column cells along with field cells or constants as parameters, the field cell and co
values are applied to each row of the column cells. The following figure illustrates how the ‘S
function would add two column cells with a field cell and a constant.

3

4

8

-1

5

6

9

-2

4

1

5

7

5

3

2

14

20

11

6

8

Sum (Cell1, Cell2, Cell3)

Column cells Function result

Using Functions 10-5

 .
 .

 .

d as
 row

hat
cell

on-

ith
Ship-
his

di-
 col-

.

If you want the values in the rows of a column cell to be treated as though they were supplie
individual parameters, use the ‘MakeList’ function. This function separates the values in each
of a column cell into separate parameter values. You can use ‘MakeList’ only with functions t
allow any number of parameters. For example, to calculate the sum of the rows in a column
called ‘Extension’ plus the shipping charge in ‘Shipping,’ you could use the following formula.

Sum (MakeList (Extension), Shipping)

If ‘Extension’ contains four rows with the values 4.99, 5.95, 2.99, and 10.00, and ‘Shipping’ c
tains the value 5.00, the above formula is equivalent to:

Sum (4.99, 5.95, 2.99, 10.00, 5.00)

If you didn’t use the ‘MakeList’ function, the result of the ‘Sum’ function would be a column w
four rows, each containing the sum of the corresponding row in ‘Extension’ plus the value of ‘
ping.’ For more information about the ‘MakeList’ function, see the function reference later in t
chapter.

If in a place where a list of values is normally expected, a single column cell is given instead,
Informed will automatically apply the ‘MakeList’ function to turn the column cell into a list of in
vidual values. The functions below each accept a list of values. In both cases, ‘Column1’ is a
umn cell.

Sum (Column1)
Choose (Cell1, Column1)

3

4

8

-1

5

-3

10

7

6

6

9

-2

4

1

5

5

5

5

5

5

5

5

5

5

10

10

10

10

10

10

10

10

10

10

24

28

13

27

15

20

12

25

22

21

Sum (Column1, Column2, Field1, 10)

Empty values

Replicated field value Replicated constant value

Result values

10-6 Using Functions

 .
 .

 .

rame-
mn
 these

la
in a for-
aluated.

f the

ther
per-

rs to

unc-
mple,
s. If
ect
ill
ing

.
The Choose function accepts two or more parameters. The first is a single value cell. This pa
ter is followed by one or more parameters forming a variable length list. If you include a colu
cell as one of these parameters, Informed applies the ‘MakeList’ function. Informed interprets
functions as though you had typed:

Sum (MakeList (Column1))
Choose (Cell1, MakeList (Column1))

Function Results
Each Informed function returns a result of a particular type. You can use a function in a formu
anywhere you can use a constant or cell value with the same type. When you use a function
mula, the function’s result is calculated and then used as an operand when the formula is ev

You can use a function as the single operand in a formula. The function’s result is the result o
formula. For example, the formula below extracts the year from a date.

YearOf (ToDate ("March 3, 1991"))

You can also use a function as one of many operands in a formula, or as a parameter to ano
function. The formula below uses the ‘SQRT’ function as an operand to the multiplication (*) o
ator.

(5 * Sqrt (Cell1))/100

The ‘SQRT’ function is evaluated and its result is then multiplied by 5.

In the following example, the ‘SQRT’ function is used to calculate the values of both paramete
the ‘Sum’ function.

Sum (Sqrt (Cell1), Sqrt (Cell2))

When you use a function in a formula or as a parameter to another function, the type of the f
tion’s result value must match the type expected by the formula or function parameter. For exa
since the multiplication operator multiplies numbers, it expects number values as its operand
the types don’t match, Informed will try to convert the parameter or operand value to the corr
type. For example, if you use the text constant ‘5’ with the multiplication operator, Informed w
convert the text value to the numeric value 5 before multiplying. For more information regard
type compatibility, see “Type conversion” in Chapter 9.

Function Results

Using Functions 10-7

 .
 .

 .

ction.

square

ram-
.

fferent
s.
ll. The

-

.

Function Reference
This section summarizes the Informed functions and gives a detailed description of each fun
Each function reference includes:

■ the name of the function

■ the function’s parameters

■ a description of the function’s parameters and the calculation that the function performs

■ example uses of the function

■ any related functions.

In the function parameter list, optional parameters are enclosed in square brackets ([]). The
brackets are there only to tell you that the parameter is optional; don’t type them. If a function
allows any number of parameters, the parameter list will end with an ellipsis (…). All of the pa
eters that you supply must be separated with commas and they must be the appropriate type

Each function description gives several examples of the function’s use. The examples use di
kinds of parameters: constant values, cell references, other function references, and formula
When a cell reference is used in an example, the example gives the assumed value of the ce
result of each example appears to the right of an arrow (→). Each result is shown in a common for
mat that’s appropriate for the function’s result type.

The following lists show a summary of Informed’s functions grouped by category. A detailed
description of each function follows.

Mathematical Functions

Fact (number)
Sign (number)
SQRT (number)
Inv (number)
Int (number)
Frac (number)
Round (number, decimals)
Ceiling (number)
Floor (number)
Abs (number)
Markup (cost, selling)
Margin (cost, selling)
Convert (number, fromUnit, toUnit)
ConvertTo (value, toUnit)
Trunc (number, decimals)
Sum (number1, number2, …)

Function Reference

10-8 Using Functions

 .
 .

 .

.
Mathematical Functions (continued)

Min (number1, number2, …)
Max (number1, number2, …)
RunningTotal (startValue, columnCell)
Random (min, max)
NumForm (number, format, currency)

Statistical Functions

Count (value1, value2, …)
Mean (number1, number2, …)
Median (number1, number2, …)
GMean (number1, number2, …)
HMean (number1, number2, …)
Range (number1, number2, …)
Var (number1, number2, …)
PVar (number1, number2, …)
StDev (number1, number2, …)
PStDev (number1, number2, …)
SumSq (number1, number2, …)

Trigonometry Functions

Sin (number)
Cos (number)
Tan (number)
ASin (number)
ACos (number)
ATan (number)

Logarithm Functions

Log (number)
ALog (number)
LogN (number, base)
ALogN (number, base)
Ln (number)
Ln1 (number)
Exp (number)
Exp1 (number)

Boolean Functions

AnyOf (boolean1, boolean2, …)
AllOf (boolean1, boolean2, …)
OneOf (boolean1, boolean2, …)

Using Functions 10-9

 .
 .

 .

.

Boolean Functions (continued)

Choose (index, value1, value2, …)
Member (target, value1, value2, …)
WhichMember (target, value1, value2, ...)
IsEmpty (cell)
Between (value, startValue, endValue)
Within (value, startValue, endValue)
IFT (boolean, trueValue)
IFTE (boolean, trueValue, falseValue)

Text Functions

Length (text)
Concat (text1, text2, ...)
Mid (text, start, length)
Left (text, length)
Right (text, length)
Insert (text, start, subText)
Delete (text, start, count)
Replace (text, start, count, subText)
Pos (subText, text)
BeginsWith (text, subText)
EndsWith (text, subText)
Contains (text, subText)
Repeat (text, count)
Upper (text)
Lower (text)
Trim (text)
UpperFirst (text)
UpperWords (text)
Tokenize (text, delimiter)
TransLiterate (text, source, destination)
ASCIIChar (number)
ASCIICode (character)
CharForm (text, format, fromLeft, default)

Date Functions

Today
DayOf (date)
MonthOf (date)
YearOf (date)
MonthName (monthNumber)
MonthAbbrev (monthNumber)
DayOfWeek (date)
DayOfYear (date)

10-10 Using Functions

 .
 .

 .

.
Date Functions (continued)

WeekOfYear (date)
DayName (dayNumber)
DayAbbrev (dayNumber)
AddDays (date, number)
AddMonths (date, number)
AddYears (date, number)
MakeDate (day, month, year)
LastDayOfMonth (date)
WorkDays (date1, date2, mask)
DateForm (date, format)

Time Functions

Now
HourOf (time)
MinuteOf (time)
SecondOf (time)
AddSeconds (time, number)
AddMinutes (time, number)
AddHours (time, number)
MakeTime (hour, minute, second)
TimeSpan (date, time)
TimeForm (time, format)

Name Functions

PrefixCount (name)
MiddleCount (name)
MiddleInitialsOf (name)
SuffixCount (name)
PrefixOf (name, number)
FirstOf (name)
FirstInitialOf (name)
MiddleOf (name, number)
LastOf (name)
LastInitialOf (name)
SuffixOf (name, number)
NameForm (name, format)

Spell Functions

NumberTH (number)
SpellNumber (number)
SpellNumberTH (number)
SpellCurrency (number, decimals)

Using Functions 10-11

 .
 .

 .

.

Amortization Functions

PV (fv, pmt, rate, term[, BEGIN or END])
FV (pv, pmt, rate, term[, BEGIN or END])
PMT (pv, fv, rate, term[, BEGIN or END])
Rate (pv, fv, pmt, term[, BEGIN or END])
Term (pv, fv, pmt, rate[, BEGIN or END])
PPMT (pv, pmt, rate, term, per[, BEGIN or END])
IPMT (pv, pmt, rate, term, per[, BEGIN or END])
Principal (pv, pmt, rate, term, per[, BEGIN or END])

Bond Functions

BondPrice (face, rate, ytm, pmts, yield)
BondYield (price, face, rate, ytm, pmts)
PBondPrice (face, rate, yield)
PBondYield (price, face, rate)

Depreciation Functions

SLD (cost, salvage, life)
SLDValue (cost, salvage, life, term)
SOYD (cost, salvage, life, term)
SOYDValue (cost, salvage, life, term)
DBal (cost, salvage, life, term[, factor])
DBalValue (cost, salvage, life, term[, factor])
MDBal (cost, salvage, life, term[, factor])
MDBalValue (cost, salvage, life, term[, factor])

Cash Flow Functions

NPV (rate, columnCell[, BEGIN or END])

Choice Functions

Choices (cell)
ValidChoice (value, cell)

Page Functions

Page
PageCount
Part
PartLabel (label1, label2, label3, ...)
PartCount

10-12 Using Functions

 .
 .

 .

.
Table Functions

Row
RowCount (columnCell)
MakeList (value1, value2, ...)
CollapseList (value1, value2, ...)
MakeColumn (value1, value2, ...)
CollapseColumn (value1, value2, ...)
Column

Type Conversion Functions

ToDate (value)
ToBoolean (value)
ToPicture (value)
ToSignature (value)
ToTime (value)
ToName (value)
ToNumber (value)
ToText (value)

Record Functions

Attachments
CreationTime
CreationDate
ModifyTime
ModifyDate
SendTime
SendDate
PrintTime
PrintDate

Template Functions

TemplateName
TemplateStatus
TemplateID
TemplateRevision
AuthorName
AuthorOrg

General Functions

RegisteredCompany
RegisteredName
UserName

Using Functions 10-13

 .
 .

 .

en 0

.

General Functions (continued)

Application
External (externalName, value1, value2, ...)
Platform

ABS (number)

The ‘Abs’ function returns the absolute value of number.

Examples

Abs (-4) → 4
Abs (0) → 0
Abs (101) → 101

Related Functions

None.

ACOS (number)

The ‘Acos’ function returns the arccosine of number. The arccosine is the angle whose cosine is
equal to number. Number must be in the range -1 to 1. ACOS returns the angle in radians betwe
and π.

Examples

Acos (-0.75) → -0.722734 radians
Acos (1) → 0 radians

Related Functions

‘Acos’ is the inverse of the ‘Cos’ function. ‘Asin’ and ‘Atan’ return the arcsine and arctangent,
respectively, of a number.

ADDDAYS (date, number)
ADDMONTHS (date, number)
ADDYEARS (date, number)

These functions calculate a new date based on an existing date and a desired increment or decre-
ment. The’AddDays’ function returns the date calculated by adding number days to date. The
‘AddMonths’ function returns the date calculated by adding number months to date. The
‘AddYears’ function returns the date calculated by adding number years to date. For an explanation
of dates and date constants, see Date and Name, date, and time constants.

10-14 Using Functions

 .
 .

 .

,

.
f

 one
a that
.
Examples

AddDays ("September 1, 1939", -10) → August 22, 1939
AddMonths ("07/23/55", 12) → 07/23/56
AddDays ("Dec 25, 1999", 7) → January 1, 2000
AddYears ("Thurs, May 30, 1991", -31) → Monday, May 30, 1960"

If the current date is September 2, 1989 and years, months, and days contain the values 25, 4, and 8
respectively, then

AddYears (AddMonths (AddDays (Today, -days), -months), -years) → Apr 25, 1964

Related Functions

‘DayOf,’ ‘MonthOf,’ and ‘YearOf’ return the numeric value for the day, month, or year of a date
‘DayOfWeek,’ ‘DayOfYear,’ and ‘WeekOfYear’ return the numeric value for the weekday, day o
year, and week of year of a date.

ADDHOURS (time, number)
ADDMINUTES (time, number)
ADDSECONDS (time, number)

These functions calculate a new time based on an existing time and a desired increment or decre-
ment. The ‘AddHours’ function returns the time calculated by adding number hours to time. The
‘AddMinutes’ function returns the time calculated by adding number minutes to time. The
‘AddSeconds’ function returns the time calculated by adding number seconds to time.

Examples

AddSeconds ("6:45:01 PM", 45) → 6:45:46 PM
AddMinutes ("11:30", -100) → 09:50
AddHours ("23:00:00", 50.5) → 1:30:00

If start contains the value 8:30 AM and hoursWorked contains the value 8.5, then

AddHours (start, hoursWorked) → 5:00 PM

Related Functions

‘HourOf,’ ‘MinuteOf,’ and ‘SecondOf’ return the hour, minute, or second of a time value.

ALLOF (boolean1, boolean2, ...)

The ‘AllOf’ function returns the boolean value True if all of its boolean parameters are True. If
or more of its parameters are False, ‘AllOf’ returns False. The parameters can be any formul
returns a boolean value.

Using Functions 10-15

 .
 .

 .

s

-

.

Examples

AllOf (True) → True
AllOf (1 + 2 = 3, True, 3 > 2) → True
AllOf (True, 0 > 1) → False

If x contains the value 1 or if Cell1 is empty, then

AllOf (x ≠ 1, Not IsEmpty (Cell1)) → False

Related Functions

‘AnyOf’ returns True if any of its parameters are True. ‘OneOf’ returns True if exactly one of it
parameters is True.

ALOG (number)

The ‘ALog’ function returns the base 10 antilogarithm of number. The antilogarithm is the number
whose logarithm is number. A base 10 antilogarithm is equivalent to 10 raised to the power number.

Examples

Alog (2) → 100
Alog (0) → 1
Alog (-2) → 0.01
Alog (Log (5)) → 5

Related Functions

‘ALog’ is the inverse of the ‘Log’ function. AlogN’ returns a number’s antilogarithm for a given
base.

ALOGN (number, base)

The ‘ALogN’ function returns the antilogarithm of number using the positive base base. The anti-
logarithm is the number whose logarithm is number. A base base antilogarithm is equivalent to
base raised to the power number.

Examples

AlogN (2,10) → 100
AlogN (0,42) → 1
AlogN (-2,10) → 0.01

Related Functions

‘ALogN’ is the inverse of the ‘LogN’ function. ‘ALog’ returns the base 10 antilogarithm of a num
ber.

10-16 Using Functions

 .
 .

 .

 are
la that

 first
.
ANYOF (boolean1, boolean2, ...)

The ‘AnyOf’ function returns the boolean value True if one or more of its boolean parameters
True. If all its parameters are False, ‘AnyOf’ returns False. The parameters can be any formu
returns a boolean value.

Examples

AnyOf (False, False, False, True) → True
AnyOf (100 / 10 = 9, 4 * 2 = 7, 0 = 1) → False
AnyOf (1 = 1, False) → True

If x contains the value 1 or if Cell1 is empty, then

AnyOf (x = 0, AllOf (x = 1, False), IsEmpty (Cell1)) → True

Related Functions

‘AllOf’ returns True if all of its parameters are True. ‘OneOf’ returns True if exactly one of its
parameters is True.

APPLICATION

The ‘Application’ function returns either “Informed Designer” or “Informed Filler.”

ASCIICHAR (number)

The ‘ASCIIChar’ function returns the ASCII character represented by the value number. Number
must be numeric in the range 0 to 255.

Examples

ASCIICode (65) → "A"

Related Functions

‘ASCIICode’ returns the number corresponding to an ASCII character.

ASCIICODE (character)

The ‘ASCIICode’ function returns the number corresponding to the ASCII character given in char-
acter. If character evaluates to a text value with more than one character, ‘ASCIICode’ uses the
character.

Using Functions 10-17

 .
 .

 .

t,

 is

e cur-
.

Examples

ASCIICode ("A") → 65

Related Functions

‘ASCIIChar’ returns the ASCII character of a specified value.

ASIN (number)

The ‘ASin’ function returns the arcsine of number. The arcsine is the angle whose sine is equal to
number. Number must be in the range -1 to 1. ‘ASin’ returns the angle in radians between -π/2 and
π/2.

Examples

Asin (-0.25) → -0.2527
Asin (0.84147) → 1

Related Functions

‘ASin’ is the inverse of the ‘Sin’ function. ‘ACos’ and “ATan’ return the arccosine and arctangen
respectively, of a number.

ATAN (number)

The ‘ATan’ function returns the arctangent of number. The arctangent is the angle whose tangent
equal to number. ‘ATan’ returns the angle in radians between -π/2 and π/2.

Examples

Atan (-0.025) → -0.02499
Atan (100) → 1.5608
Atan (0) → 0

Related Functions

‘ATan’ is the inverse of the ‘Tan’ function. ‘ACos’ and ‘ASin’ return the arccosine and arcsine,
respectively, of a number.

ATTACHMENTS

The ‘Attachments’ function returns a column value with the names of every attachment for th
rent record.

10-18 Using Functions

 .
 .

 .

x for

g

 the
 con-

.

,
.
AUTHORNAME

The ‘AuthorName’ function returns the author name from the Template Information dialog bo
the curent template.

AUTHORORG

The ‘AuthorOrg’ function returns the author organization from the Template Information dialo
box for the current template.

BEGINSWITH (text, subText)

The ‘BeginsWith’ function is a boolean function. It returns the value True if text begins with the
group of characters in subText. The beginning characters of text must match the characters in sub-
Text exactly. If text does not begin with subText, ‘BeginsWith’ returns the value False. If subtext
contains more characters than text, ‘BeginsWith’ returns False.

Examples

BeginsWith ("AAA Pizza", "A") → True
BeginsWith ("XYZ Vacuums", "XYz") → False
BeginsWith ("tele", "television") → False
BeginsWith ("television", "tele") → True

If title contains the value "Dr." and name contains the value "Dr John Smith", then

BeginsWith (name, title) → False

Related Functions

‘EndsWith’ returns True if a text value ends with a specified group of characters. ‘Pos’ returns
starting position of a group of characters in a text value. ‘Contains’ returns True if a text value
tains a specified group of characters.

BETWEEN (value, startValue, endValue)

The ‘Between’ function is a boolean function. It returns the value True if value is between
startValue and endValue. All three parameters to the ‘Between’ function must be the same type
They can be numbers, dates, times, text, or boolean values. If value is less than or equal to
startValue, or if value is greater than or equal to endValue, then ‘Between’ returns False; otherwise
‘Between’ returns True.

Informed uses the standard comparison operators to compare value with startValue and endValue.
See Comparison operators for information about how each data type is compared.

Using Functions 10-19

 .
 .

 .

d

r year,
using

 using
.

Examples

Between (5, -1, 99) → True
Between (ToDate ("Oct. 3, 1989"), ToDate ("01/01/90"),
ToDate ("Jan. 1, 1990")) → False
Between (ToTime ("1:30 PM"), ToTime ("15:15:00"),
ToTime ("2:30 PM")) → False
Between ("actuary", "gymnast", "sensible") → False
Between ("actuary", "Gymnast", "sensible") → False

Related Functions

‘Within’ returns True if a value is between two other values, inclusive.

BONDPRICE (face, rate, ytm, pmts, yield)
BONDYIELD (price, face, rate, ytm, pmts)
PBONDPRICE (face, rate, yield)
PBONDYIELD (price, face, rate)
Bond prices (price) and yields to maturity (yield) can be equated using the face value of the bon
(face), the interest rate shown on the bond (rate), the number of years to maturity (ytm), and the
number of interest payments per year (pmts). The equation is as follows:

Given face, rate, ytm, pmts, and yield, the ‘BondPrice’ function returns the market price of a bond.
Given price, face, rate, ytm, and pmts, the ‘BondYield’ function returns the effective yield to matu-
rity of a bond.

The ‘PBondPrice’ and ‘PBondYield’ functions return the price and the yield, respectively, for per-
petual bonds. A perpetual bond has no maturity date; payments are made forever. The ytm factor in
the above equation is effectively infinite and the equation reduces to:

Examples

Suppose a 7% bond with a $1,000 face value, ten years to maturity, two interest payments pe
and a current market price of $1040 was sold. The 6.45% yield on the bond is calculated by
the ‘BondYield’ function as follows:

BondYield (1040.00, 1000.00, 0.07, 10, 2) → 0.0645

The selling price required to attain a desired yield of 8% for the same bond can be calculated
the ‘BondPrice’ function:

Price =

rate×face
pmts

1 +
yield
pmts




+

rate× face
pmts

1 +
yield
pmts







2
+ … +

rate ×face
pmts

1 +
yield
pmts







ytm×pmts +
face

1 +
yield
pmts







ytm×pmts

Price = rate × face
yield

10-20 Using Functions

 .
 .

 .

f 6.0%

xt
ings
rame-
.
BondPrice (1000.00, 0.07, 10, 2, 0.08) → 932.05

The market price for a 5.0% perpetual bond with a face value of $1,000 and a desired yield o
is:

PBondPrice (1000.00, 0.05, 0.06) → 833.33

If the same perpetual bond is offered at a price of $900.00, the effective yield is:

PBondYield (900.00, 1000.00, 0.05) → 0.0556

Related Functions

None.

CEILING (number)

The ‘Ceiling’ function returns the next integer greater than or equal to number.

Examples

Ceiling (0.0000001) → 1
Ceiling (14.4) → 15
Ceiling (-42.0001) → -42
Ceiling (87.000) → 87

Related Functions

‘Floor’ returns the next integer less than or equal to a number.

CHARFORM (text, format, fromLeft, default)

The ‘CharForm’ function formats the text value text using the character format specified in the te
parameter format. The parameters format, fromLeft, and default correspond directly to the sett
on the Cell dialog for character cells. For information about the meaning and use of these pa
ters, see Character.

Examples

CharForm ("1234567", "(###) ###-####", False, "(415)000-0000") → "(415) 123-4567"
CharForm ("1234567", "(###) ###-####", True, "(415)000-0000") → "(123) 456-7000"
CharForm ("k735", "AA###", False, "FN000") → "FK735"

Related Functions

‘NumForm’ formats a number, ‘DateForm’ formats a date, ‘NameForm’ formats a name, and
‘TimeForm’ formats a time value.

Using Functions 10-21

 .
 .

 .

ll
 com-

ed on

,

uts a
 the
y val-
.

CHOICES (cell)

The ‘Choices’ function returns a column value containing the values of the choices for the ce
called cell. Cell must be the name of a cell. You enter the choices for a cell using the Choices
mand. See “Choices” in Chapter 1 for more information.

Examples

If the cell called ‘Ship Method’ has the choices “Federal Express”, “UPS”, and “US Mail”

Choices (Ship Method) → "Federal Express", "UPS", "US Mail"
Member ("UPS", MakeList (Choices (Ship Method))) → True

Related Functions

‘ValidChoices’ returns True if a specified value is a valid choice.

CHOOSE (index, value1, value2, ...)

The ‘Choose’ function returns one of its parameters. The parameter returned is selected bas
the value of index. If index is 1, value1 is returned; if index is 2, value2 is returned, and so on. Any
number of values can follow index and the values can be of any type. For a value to be returned
index must be an integer between 1 and the number of values. If index is not between 1 and the
number of values, ‘Choose’ returns the empty value.

Examples

Choose (3, "one", "two", "three", "four") → "three"
Choose (4, "five", 5.0, 3+2, 15/3, "six - one") → 5
Choose (1, True, False, 1, 0, "on", "off") → True

Related Functions

‘Member’ returns True if a value is a member of a specified list of values.

COLLAPSECOLUMN (value1, value2,...)

This function accepts any number of input parameters (either field or column cells), and outp
column which includes all of the input values. Empty values are stripped from the output and
other values move up to fill empty rows. Blank text values are considered equivalent to empt
ues.

Examples

If the column cell ‘Prices’ has the values 10.00, 3.50, 11.25, an empty row, and 2.50

CollapseColumn (Prices) → a column with values 10.00, 3.50, 11.25, 2.50

10-22 Using Functions

 .
 .

 .

ts a
xt
 that

ll is

 this

eters
e
.
Related Functions

The ‘MakeColumn’ function.

COLLAPSELIST (value1, value2, ...)

This function accepts any number of input parameters(either field or column cells), and outpu
list which includes all of the input values. Empty values are stripped from the output. Blank te
values are considered equivalent to empty values. The output list is appropriate for functions
accept variable numbers of inputs, such as SUM or MEAN.

Examples

If the column cell ‘Prices’ has the values 10.00, 3.50, 11.25, an empty row, and 2.50

CollapseList (Prices) → a list with values 10.00, 3.50, 11.25, 2.50

Related Functions

The ‘MakeList’ function.

COLUMN

The ‘Column’ function returns the index of the current cell in its owning table. If the current ce
a field cell, ‘Column’ returns null.

Examples

If ‘Column’ is the calculation formula for the second column in a table

Column → 2

Related Functions

The ‘Row’ function returns the corresponding list of row numbers for the column cell that uses
function.

CONCAT (text1, text2, ...)

The ‘Concat’ function returns the concatenation of its parameters. Any number of text param
can be included. The return value is one text value created by joining the text values of all th
parameters.

Examples

Concat (3*5, " equals fifteen is ", 3*5 = 15) → "15 equals fifteen is True"
Concat ("'Mac' has ", Length ("Mac"), " chars.") → "'Mac' has 3 chars."
Concat ("(", True, " or ", False, ")") → "(True or False)"

Using Functions 10-23

 .
 .

 .

t’

’
e if a

sts

.

If firstName contains the value “Barbara”, initial contains the value “J”, lastName contains the
value “Pearce” and today’s date is May 1, 1991, then

Concat (firstName, " ", initial, " ", lastName) → "Barbara J Pearce"
Concat ("Today’s date: ", Today) → "Today’s date: 5/1/91"

Related Functions

The concatenation operator (&) concatenates its operands; "A" & "B" is equivalent to ‘Conca
("A", "B").

CONTAINS (text, subText)

The ‘Contains’ function is a boolean function. It returns the value True if text contains the group of
characters in subText. The subset of characters in text must match the characters in subText exactly.
If they do not, ‘Contains’ returns the value False. If subtext contains more characters than text,
‘Contains’ returns False.

Examples

Contains ("abcdefghijklmnopqrstuvwxyz", "M") → False
Contains ("one two three four", "four") → True
Contains ("one two three four", " four ") → False
Contains ("1 2 3 4", 2*2) → True

Related Functions

‘Pos’ returns the starting position of a specified group of characters in a text value. ‘EndsWith
returns True if a text value ends with a specified group of characters. ‘BeginsWith’ returns Tru
text value begins with a specified group of characters.

CONVERT (number, fromUnit, toUnit)

The ‘Convert’ function converts number from one unit of measure to another. Number is converted
from the unit described in the text value fromUnit to the unit described in the text value toUnit. Fro-
mUnit and toUnit must be similarly derived from compatible unit classes. The following table li
the units recognized by Informed.

Units of Measure
Unit Class Name Description

mass ct
g
grain
lb
lbt
oz

Carat
Gram
Grain
Avoirdupois pound
Troy pound
Ounce

10-24 Using Functions

 .
 .

 .

.

Units of Measure (continued)
Unit Class Name Description

mass

lenght

area (length*length)

volume (length*length*length)

pressure (mass/length*time*time)

ozt
slug
t
ton
tonUK
chain
fath
ft
ftUS
in
m
mi
mil
miUS
nmi
pt
rd
yd
µ

a
acre

bbl
bu
cu
fbm
gal
galC
galUK
l
ozFl
ozUK
pk
pnt
qt
tbsp
tsp

atm
bar
inHg
inH2O

Troy ounce
Slug
Metric ton
Short ton
Long ton
Chain
Fathom
International foot
Survey foot
Inch
Meter
International mile
Mil
US statute mile
Nautical mile
Point (1/72 in)
Rod
Yard
Micron

Are
Acre

Barrel
Bushel
US Cup
Board foot
US gallon
Canadian gallon
UK gallon
Liter
US fluid ounce
UK fluid ounce
Peck
Pint
Quart
Tablespoon
Teaspoon

Atmosphere
Bar
Inches of mercury
Inches of water

Using Functions 10-25

 .
 .

 .

, in
so con-
r exam-
cubic

ts

.

Units of Measure (continued)

You can convert a value of measure only between different units of the same class. However
addition to converting between the units of each class listed in the previous table, you can al
vert measurements between units that are derived by combining units from other classes. Fo
ple, not only can you convert a value from quarts to liters, you can also convert a value from
inches to cubic centimeters.

Convert (15, 'quart', 'liter')
Convert (15 'in * in * in', 'cm * cm * cm')

Since volume is a measurement of cubic length, you can convert any value between any uni
derived by multiplying three units of length.

Examples

Convert (-1, "ft/s", "in/s") → -12
Convert (5.5, "ft*ft*ft/s", "gal/min") → 2468.5714
Convert (2.3, "atm", "mmHg") → 1748

Related Functions

‘ConvertTo’ also converts a measurement value from one unit to another.

Unit Class Name Description

time

speed (length/time)

angle

temperature

mmHg
Pa
psi
torr
d
h
min
s
yr

knot
kph
mph

deg or °
rad or r
grad

°C
°F
°K
°R

Millimeters of mercury
Pascal
Pounds per square inch
Torr
Day
Hour
Minute
Second
Year

Knot
Kilometers per hour
Miles per hour

Degrees
Radians
Grades

Degree Celsius
Degree Fahrenheit
Degree Kelvin
Degree Rankine

10-26 Using Functions

 .
 .

 .

 in the

ely,

r of
.
CONVERTTO (value, toUnit)

The ‘ConvertTo’ function converts the number/unit pair value to another unit of measure. Value is a
text value that combines a number and its unit. The number is converted to the unit described
text value toUnit. The number’s original unit and toUnit must be similarly derived from compatible
base units. See ‘Convert’ for more information.

Examples

ConvertTo ("-1 ft/s", "in/s") → -12
ConvertTo ("100 knot", "mi/h") → 115.1
ConvertTo ("5 slug", "lb") → 160.87

Related Functions

‘Convert’ also converts a measurement value from one unit to another.

COS (number)

The ‘Cos’ function returns the cosine of number. Number must be an angle in radians. The return
value is in the range -1 to 1.

Examples

Cos (0) → 1
Cos (Pi) → -1
Cos (9* π/2) → 0

Related Functions

‘ACos’ is the inverse of the ‘Cos’ function. ‘Sin’ and ‘Tan’ return the sine and tangent, respectiv
of a number.

COUNT (value1, value2, ...)

The ‘Count’ function returns the number of non-empty values in its parameter list. Any numbe
values can appear in the parameter list.

Examples

If salary is empty and time contains the time value 8:50, then

Count ("", time) → 2
Count (True, 4*5, salary, time) → 3
Count (salary) → 0
Count (time) → 1

If attendees is a column cell with 10 rows, 7 of which have been calculated or filled in, then

Count (attendees) → 7

Using Functions 10-27

 .
 .

 .

apter

 and

e sec-
first
t

’ are
.

Related Functions

None.

CREATIONDATE

The ‘CreationDate’ function returns the creation date for the current record.

CREATIONTIME

The ‘CreationTime’ function returns the creation time for the current record.

DATEFORM (date, format)

The ‘DateForm’ function formats the date date using the format specified in the text parameter for-
mat. The resulting text value is returned. For an explanation of date formats, see “Date” in Ch
1.

Examples

DateForm ("01/01/89", "MONTH DD") → "JANUARY 01"
DateForm ("Thursday, November 2, 1989", "MM-DD-YY")
→ "11-02-89"
DateForm ("Feb 27, 1990", "Dy, Month D, YYYY")
→ "Tue, February 27, 1990"
DateForm ("01/08/89", "M/D/YYYY") → "1/8/1989"

Related Functions

‘CharForm’ formats a text value, ‘NameForm’ formats a name, ‘NumForm’ formats a number,
‘TimeForm’ formats a time value.

DAYABBREV (dayNumber)
DAYNAME (dayNumber)

The ‘DayAbbrev’ and ‘DayName’ functions return the name of the weekday identified by dayNum-
ber. DayNumber should be an integer between 1 and 7. The first day of the week is Sunday, th
ond is Monday, and so on. The ‘DayName’ function returns the full name of the day with the
letter capitalized. The ‘DayAbbrev’ function returns an abbreviated name consisting of the firs
three characters of the day name with the first letter capitalized. ‘DayName’ and ‘DayAbbrev
often used with the ‘DayOfWeek’ function to obtain the name of the day in a date.

Examples

DayName (1) → "Sunday"
DayAbbrev (1) → "Sun"
DayName (1+3) → "Wednesday"
DayAbbrev (5) → "Thu"

10-28 Using Functions

 .
 .

 .

er

 in a

ond,
late
.
If birthDate is a date containing the value May 30, 1960, then

DayName (DayOfWeek (birthDate)) → "Monday"

Related Functions

‘MonthAbbrev’ and ‘MonthName’ return the names of months. ‘DayOfWeek’ returns the numb
of the weekday in a date.

DAYOF (date)

The ‘DayOf’ function returns the number of the day represented in date. The number returned is an
integer in the range 1 to 31.

Examples

DayOf (ToDate ("Saturday, April 25, 1964")) → 25
DayOf (ToDate ("09/12/89")) → 12
DayOf (ToDate ("12/26/89")) → 26
DayOf (ToDate ("26/12/89")) → 26

If startDate contains the date value Aug 20, 1999 and duration contains the value 20, then

DayOf (AddDays (startDate, duration)) → 9

Related Functions

‘MonthOf’ returns the number of the month in a date. ‘YearOf’ returns the number of the year
date.

DAYOFWEEK (date)

The ‘DayOfWeek’ function returns an integer identifying the weekday represented in date. The
integer returned is in the range 1 to 7. Sunday is the first day of the week, Monday is the sec
and so on. ‘DayOfWeek’ is often used with the ‘DayName’ and ‘DayAbbrev’ functions to calcu
the name of the weekday in a date.

Examples

DayOfWeek (ToDate ("June 17, 1992")) → 4
DayOfWeek (ToDate ("Mon Apr 20, 1987")) → 2
DayOfWeek (MakeDate (5, 6, 1889)) → 4

If the current year is 1990, then

DayOfWeek ("Nov 10") → 7

Using Functions 10-29

 .
 .

 .

e of

lue’
d, the
 asset.
mounts
sset is

enti-
.

Related Functions

‘DayOfYear’ returns the day of the year in a date. ‘DayName’ and ‘DayAbbrev’ return the nam
a weekday.

DAYOFYEAR (date)

The ‘DayOfYear’ function returns an integer identifying the day of year represented in date. The
integer returned is in the range 1 to 366.

Examples

DayOfYear (ToDate ("01/01/90")) → 1
DayOfYear (ToDate ("Dec 31, 1984")) → 366
DayOfYear (ToDate ("Dec 31, 1985")) → 365
DayOfYear (MakeDate (8, 6, 1989)) → 159

If the current year is 1989, then

DayOfYear (ToDate ("Apr 25")) → 115

Related Functions

‘DayOfWeek’ returns the weekday in a date.

DBAL (cost, salvage, life, term[, factor])
DBALVALUE (cost, salvage, life, term[, factor])
MDBAL (cost, salvage, life, term[, factor])
MDBALVALUE (cost, salvage, life, term[, factor])

These functions calculate an asset’s depreciation amount and value. The ‘DBal’ and ‘DBalVa
functions use the declining balance depreciation method. Under the declining balance metho
depreciation amount for each period is a constant percentage of the depreciated value of the
Since the depreciated value of the asset declines over time, this creates larger depreciation a
during the early years of the useful life of the asset. The percentage used to depreciate the a
factor times the straight line depreciation rate. See SLD.

If factor is omitted, a value of 2.0 is used. Cost is the initial cost of the asset, salvage is the esti-
mated value of the asset at the end of its useful life, and life is the number of time periods in the
depreciation lifespan of the asset. Term identifies a particular depreciation period.

The ‘DBal’ function returns the depreciation amount for the period identified by term.

The ‘DBalValue’ function returns the depreciated value of the asset at the end of the period id
fied by term. Term should be between 0 and life. If term is equal to 0, ‘DBalValue’ returns cost. If
term is equal to life, ‘DBalValue’ returns a value greater than salvage.

10-30 Using Functions

 .
 .

 .
tion
 When
ning

 iden-

n the
nd 9

reci-

r-
.
The ‘MDBal’ and ‘MDBalValue’ functions use the modified declining balance depreciation
method. This method is a combination of the declining balance and the straight line deprecia
methods. See also SLD. Depreciation is first calculated using the declining balance method.
the straight line depreciation amount on the remaining depreciable cost is less than the decli
balance amount, a switch is made to the straight line depreciation method.

The ‘MDBal’ function returns the depreciation amount for the period identified by term.

The ‘MDBalValue’ function returns the depreciated value of the asset at the end of the period
tified by term. Term should be between 0 and life. If term is equal to 0, ‘MDBalValue’ returns cost.
If term is equal to life, ‘MDBalValue’ returns salvage.

Examples

If a machine costs $36,000 and is expected to last 12 years with a $1,500 salvage value, the
double rate (factor equal to 2) declining balance depreciation amounts and values for years 3 a
are:

DBal (36000, 1500, 12, 3) → 4166.66
DBal (36000, 1500, 12, 9, 2.0) → 1395.408
DBalValue (36000, 1500, 12, 3, 2.0) → 20833.33
DBalValue (36000, 1500, 12, 9) → 6977.04

and the corresponding modified declining balance depreciation amounts and values are:

MDBal (36000, 1500, 12, 3, 2.0) → 4167
MDBal (36000, 1500, 12, 9) → 1709
MDBalValue (36000, 1500, 12, 3, 2.0) → 20833
MDBalValue (36000, 1500, 12, 9) → 6629

Related Functions

‘SLD’ and ‘SLDValue’ return an asset’s depreciation amount and depreciated value using the
straight line method. ‘SOYD’ and ‘SOYDValue’ return an asset’s depreciation amount and dep
ated value using the sum-of-years method.

DELETE (text, start, count)

The ‘Delete’ function removes count characters from text and returns the resulting text value. Cha
acters are removed starting at start characters from the beginning of text. If count is greater than the
number of characters from start to the end of text, all characters from start onward are deleted.

Examples

Delete ("Hello there", 2, 5) → "Hthere"
Delete ("Goods and services", 6, 99) → "Goods"
Delete ("(413) 555-1234", 1, 6) → "555-1234"

Using Functions 10-31

 .
 .

 .

rs in a

rns
alue

en-

s the
.

Related Functions

‘Insert’ inserts a group of characters into a text value. ‘Replace’ replaces a group of characte
text value with another group of characters.

ENDSWITH (text, subText)

The ‘EndsWith’ function is a boolean function. It returns the value True if text ends with the group
of characters in subText. The ending characters of text must match the characters in subText exactly.
If text does not end with subText, ‘EndsWith’ returns the value False. If subtext contains more char-
acters than text, ‘EndsWith’ returns False.

Examples

EndsWith ("Have a nice day.", "day") → False
EndsWith ("tele", "television") → False
EndsWith ("television", "vision") → True
EndsWith ("Number of participants: 15", 3*5) → True

Related Functions

‘BeginsWith’ returns True if a text value begins with a specified group of characters. ‘Pos’ retu
the starting position of a group of characters in a text value. ‘Contains’ returns True if a text v
contains a specified group of characters.

EXP (number)
EXP1 (number)

The ‘Exp’ function returns the value of e raised to the power number. e is 2.7182818...; it is the base
of the natural logarithm. Like ‘Exp,’ the ‘Exp1’ function returns the exponential of number; but
‘Exp1’ returns a more accurate result when number is close to zero.

Examples

Exp (1) → 2.7182818
Exp (-9.87) → 0.0000517
Exp (Ln (12.34)) → 12.34
Exp1 (0.0245) → 0.024803
Exp1 (-0.1) → -0.95162582

Related Functions

‘Exp’ and ‘Exp1’ are the inverses of the natural logarithm functions, ‘Ln’ and ‘Ln1.’ The expon
tiation (^) operator raises an arbitrary number to a given power.

EXTERNAL (externalName, value1, value2, ...)

The ‘External’ function calls an external function. The name of the external function is given a
first parameter. The remaining parameters (any number) are passed to the external function.

10-32 Using Functions

 .
 .

 .

ction
umeric
.
Examples

The example below calls the external function named ‘MyFunction’ and passes the ‘Now’ fun
as the single parameter. The external function is evaluated and, in this example, returns the n
value 15093.

External ("MyFunction", Now) → 15093

Related Functions

None.

FACT (number)

The ‘Fact’ functions returns the factorial of number. Number must be an integer greater than or
equal to zero. The factorial of a number, n, is calculated as follows:

Fact (n) = n × (n-1) × (n-2) × ... × 1 and Fact (0) = 1

Examples

Fact (0) → 1
Fact (11) → 39916800
Fact (6) → 720

Related Functions

None.

FIRSTINITIALOF (name)

The ‘FirstInitialOf’ function returns a text value containing the initial from the first name in name.
If name contains a first name, the capitalized first letter of the first name is returned. If name does
not contain a first name, the empty value is returned.

Examples

FirstInitialOf (ToName ("Mr. Anthony Marner")) → "A."
FirstInitialOf (ToName ("John Jacob Joseph Jones")) → "J."
FirstInitialOf (ToName ("e e cummings")) → "E."

If theName contains the name value Dr. Anderson, MD, then

FirstInitialOf (theName)

returns the empty value.

Using Functions 10-33

 .
 .

 .

-
r

 ‘Pre-

.

Related Functions

‘LastInitialOf’ returns the last initial of a name. ‘MiddleInitialsOf’ returns all middle initials of a
name. ‘FirstOf’ and ‘LastOf’ return the first name and last name, respectively, of a name. ‘Mid
dleOf’ returns a given middle name of a name. ‘PrefixOf’ and ‘SuffixOf’ return a given prefix o
suffix of a name.

FIRSTOF (name)

The ‘FirstOf’ function returns a text value containing the first name from name. If name does not
contain a first name, ‘FirstOf’ returns the empty value.

Examples

FirstOf (ToName ("Dr. Susan Applehoff")) → "Susan"
FirstOf (ToName ("J S Bach")) → "J"

If herName contains the name value Ms. Pearce, then

FirstOf (herName)

returns the empty value.

Related Functions

‘LastOf’ returns the last name of a name. ‘MiddleOf’ returns a given middle name of a name.
fixOf’ and ‘SuffixOf’ return a given prefix or suffix of a name. ‘FirstInitialOf’ and ‘LastInitialOf’
return the initial of the first or last name, respectively, of a name. ‘MiddleInitialsOf’ returns the
middle initials of a name.

FLOOR (number)

The ‘Floor’ function returns the next integer less than or equal to number.

Examples

Floor (12.999999) → 12
Floor (-42.01) → -43
Floor (0.001) → 0
Floor (-2.00) → -2

Related Functions

‘Ceiling’ returns the next integer greater than or equal to a number.

FRAC (number)

The ‘Frac’ function returns the fractional part of number.

10-34 Using Functions

 .
 .

 .

t

o

ers.
.
Examples

Frac (-12.25) → -0.25
Frac (42) → 0
Frac (-0.0001) → -0.0001
Frac (3/4) → 0.75

Related Functions

‘Int’ returns the integer part of a number.

FV (pv, pmt, rate, term[, Begin or End])

The ‘FV’ function returns the future value of an investment for a given present value, paymen
amount, interest rate, and term. See ‘PV.’

GMEAN (number1, number2, ...)

The ‘GMean’ function returns the geometric mean of number1, number2, and so on. Any number
of parameters can be specified. The geometric mean of N numbers is the product of the numbers t
the 1/Nth power.

Numbers that contain the value 0 are ignored.

Examples

GMean (2) → 2
GMean (2, 4, 8) → 4
GMean (30, 33, 33.66, 41.74) → 34.34199

If entries is a column cell with three non-empty rows that contain the values 47.8, 0.0001, and
9998, then

GMean (entries) → 3.62894

Related Functions

‘Mean’ and ‘Median’ return the arithmetic mean and median, respectively, of a group of numb
‘HMean’ returns the harmonic mean of a group of numbers.

HMEAN (number1, number2, ...)

The ‘HMean’ function returns the harmonic mean of number1, number2, and so on. Any number of
parameters can be specified. The harmonic mean of N numbers is N divided by the sum of the recip-
rocals of the numbers.

HMean = N
1

number1
+ 1

number2
+ … + 1

numberN

Using Functions 10-35

 .
 .

 .

.5,

ers.

f the

n dif-

 ‘If’
.

Numbers that contain the value 0 are ignored.

Examples

HMean (2) → 2
HMean (30, 50) → 37.5
HMean (0.01, 100, 55.345) → 0.02999

If entries is a column cell with four non-empty rows that contain the values 2.0, 2.0, 3.0, and 0
then

HMean (entries) → 1.2

Related Functions

‘Mean’ and ‘Median’ return the arithmetic mean and median, respectively, of a group of numb
‘GMean’ returns the geometric mean of a group of numbers.

HOUROF (time)

The ‘HourOf’ function returns the number of the hour represented in time. The value returned by
‘HourOf’ is an integer between 0 and 23.

Examples

HourOf ("6:45:01 AM") → 6
HourOf ("23:00:01") → 23
HourOf ("00:59:59") → 0
HourOf ("1:00:00") → 1
HourOf ("10:34 PM") → 22

Related Functions

‘MinuteOf’ returns the number of the minute in a time value. ‘SecondOf’ returns the number o
second in a time value.

IFT (expr1, expr2)

The ‘IFT’ function is a shortcut to using the ‘If’ statement and returns different results based o
ferent conditions. If expr1 is True, then expr2 is returned, otherwise the empty value is returned.
The ‘IFT’ function can also be used as an operand in a formula. For more information on the
statement, see “The If Statement” in Chapter 9, “Using Formulas.”

Examples

IFT (12>10, "Hello There") → "Hello There"

10-36 Using Functions

 .
 .

 .

sults

hen-

ters in
.
Related Functions

The ‘IFTE’ function.

IFTE (expr1, expr2, expr3)

The ‘IFTE’ function is a shortcut to using the ‘If-Then-Else’ statement and returns different re
based on different conditions. If expr1 is True, expr2 is returned, otherwise expr3 is returned. The
‘IFTE’ function can also be used as an operand in a formula. For more information on the ‘If-T
Else’ statement, see “The If Statement” in Chapter 9, “Using Formulas.”

Examples

IFTE (12>10, "Hello There", "GoodBye") → "Hello There"

Related Functions

The ‘IFT’ function.

INSERT (text, start, subText)

The ‘Insert’ function inserts characters from subText into text and returns the resulting text value.
Characters are inserted immediately after the character that is start characters from the beginning of
text. If start is greater than the number of characters in text, ‘Insert’ appends subText to the end of
text and returns the resulting text value.

Examples

Insert ("Received:", 1, "Omitted:") → "ROmitted:eceived:"
Insert ("pencils", 7, " and pens") → "pencils and pens"
Insert ("555-6945", 0, "(413) ") → "(413) 555-6945"

If description contains the value “The car is ” and color contains the value “blue”, then

Insert (description, Length (description) + 1, color)
→ "The car is blue"

Related Functions

‘Delete’ deletes a group of characters from a text value. ‘Replace’ replaces a group of charac
a text value with another group of characters.

INT (number)

The ‘Int’ function returns the integer part of number. No rounding is done; number is truncated to
obtain its integer part.

Using Functions 10-37

 .
 .

 .

t

lcu-
.

Examples

Int (-12.75) → -12
Int (42) → 42
Int (-0.0001) → 0
Int (7/4) → 1

Related Functions

‘Frac’ returns the fractional part of a number.

INV (number)

The ‘Inv’ function returns the inverse of number. The inverse of a number, n, is 1/n. Number can be
any number except 0. If number is 0, the empty value is returned.

Examples

Inv (1.0) → 1.0
Inv (23) → 0.04348
Inv (-0.003) → -333.333
Inv (3/4) → 1.333

Related Functions

None.

IPMT (pv, pmt, rate, term, per[, Begin or End])

The ‘IPMT’ function returns the interest payment amount on an investment for a given presen
value, payment amount, interest rate, and term. See ‘PV.’

ISEMPTY (value)

The ‘IsEmpty’ function returns a boolean value. Value can be any cell or formula. If value is empty,
‘IsEmpty’ returns True. When you fill out a form, a cell is empty until its value is entered or ca
lated.

Examples

If the text cell destination is blank and hasn’t been filled in or calculated, then

IsEmpty (destination) → True

Related Functions

None.

10-38 Using Functions

 .
 .

 .

ented

-
r
.
LASTDAYOFMONTH (date1)

The ‘LastDayOfMonth’ function returns a date value which is the last day of the month repres
in the date value ‘date1.’

Examples

LastDayOfMonth (ToDate("Dec 7, 1996")) → December 31, 1996

LASTINITIALOF (name)

The ‘LastInitialOf’ function returns a text value containing the initial of the last name in name. If
name contains a last name, the capitalized first letter of the last name is returned. If name does not
contain a last name, the empty value is returned.

Examples

LastInitialOf (ToName ("Mr. Anthony Marner, MD")) → "M."
LastInitialOf (ToName ("John Jacob Joseph Jones")) → "J."
LastInitialOf (ToName ("e e cummings")) → "C."

If theName contains the name value Bill Smith, then

LastInitialOf (theName) → "S."

Related Functions

‘FirstInitialOf’ returns the first initial of a name. ‘MiddleInitialsOf’ returns all middle initials of a
name. ‘FirstOf’ and ‘LastOf’ return the first name and last name, respectively, of a name. ‘Mid
dleOf’ returns a given middle name of a name. ‘PrefixOf’ and ‘SuffixOf’ return a given prefix o
suffix of a name.

LASTOF (name)

The ‘LastOf’ function returns a text value containing the last name of name. If name doesn’t con-
tain a last name, ‘LastOf’ returns the empty value.

Examples

LastOf (ToName ("Dr. Susan Applehoff")) → "Applehoff"
LastOf (ToName ("J S Bach")) → "Bach

If hisName contains the name value Bill and herName contains the name value Brenda Wright,
R.N., then

LastOf (herName) → "Wright"
LastOf (hisName) → "Bill"

Using Functions 10-39

 .
 .

 .

 ‘Pre-

 mid-
.

Related Functions

‘FirstOf’ returns the first name of a name. ‘MiddleOf’ returns a given middle name of a name.
fixOf’ and ‘SuffixOf’ return a given prefix or suffix of a name.

LEFT (text, length)

The ‘Left’ function returns the first length characters in text. Length must be greater than or equal to
0. If length is greater than or equal to the number of characters in text, ‘Left’ returns text. If length
is zero, a text value with no characters (“”) is returned.

Examples

Left ("Macintosh", 3) → "Mac"
Left ("orange", 10) → "orange"
Left ("Forms Design, A Primer", 0) → ""
Left (2 = 2.0, 1) → "T"

If theName is a name value containing Cecil Featherstone-Haugh and maxLength contains the value
15, then

Left (LastOf (theName), maxLength) → "Featherstone-Ha"

Related Functions

‘Right’ returns the last characters in a text value. ‘Mid’ returns a group of characters from the
dle of a text value.

LENGTH (text)

The ‘Length’ function returns the number of characters in text.

Examples

Length ("John Q. Public") → 14
Length ("") → 0
Length (True) → 4
Length (3*4) → 2

If theName is a name value containing “Cecil Featherstone-Haugh” and maxLength contains the
value 15, then

Length (LastOf (theName)) <= maxLength → False

Related Functions

‘Trim’ removes extra spaces from the start and end of a text value.

10-40 Using Functions

 .
 .

 .

t

-

e.
.
LN (number)
LN1 (number)

The ‘Ln’ function returns the natural logarithm of number. The natural logarithm of a number is
the base e logarithm of the number (e is 2.7182818...). Number must be greater than 0. Like ‘Ln,’
the ‘Ln1’ function returns the natural logarithm of number; but ‘Ln1’ returns a more accurate resul
when number is close to zero.

Examples

Ln (e^2) → 2
Ln1 (0.034) → 0.033434776
Ln (8976.46) → 9.1024
Ln1 (0.6) → 0.470003629
Ln (Exp (-3.4)) → -3.4

Related Functions

‘Ln’ and ‘Ln1’ are the inverses of the ‘Exp’ and ‘Exp1’ functions. ‘Log’ returns the base 10 loga
rithm of a number. ‘LogN’ returns a number’s logarithm for a given base.

LOG (number)

The ‘Log’ function returns the base 10 logarithm of number. Number must be greater than 0. If
number is less than or equal to 0, the empty value is returned.

Examples

Log (1) → 0
Log (100) → 2
Log (0.0432) → -1.3645
Log (ALog (3.5)) → 3.5

Related Functions

‘Log’ is the inverse of the ‘ALog’ function. ‘LogN’ returns a number’s logarithm for a given bas
‘Ln’ and ‘Ln1’ return the natural logarithm of a number.

LOGN (number, base)

The ‘LogN’ function returns the base base logarithm of number. Both number and base must be
greater than 0. If number or base is less than or equal to 0, the empty value is returned.

Examples

LogN (1, 10) → 0
LogN (64, 4) → 3
LogN (0.0657, 6) → -1.51954
LogN (ALogN (3.5, 23.3), 23.3) → 3.5

Using Functions 10-41

 .
 .

 .

’

.

rd of
upper
.

Related Functions

‘Log’ is the inverse of the ‘ALog’ function. ‘Log’ returns the base 10 logarithm of a number. ‘Ln
and ‘Ln1’ return the natural logarithm of a number.

LOWER (text)

The ‘Lower’ function converts all letters in text to lower case. The resulting text value is returned

Examples

Lower ("Serial #: 146A889X") → "serial #: 146a889x"
Lower ("") → ""
Lower (True) → "true"
Lower ("tHiS iS hArD tO rEaD!!") → "this is hard to read!!"

Related Functions

‘Upper’ converts a text value to upper case. ‘UpperFirst’ converts the first letter of the first wo
a text value to upper case. ‘UpperWords’ converts the first letter of all words of a text value to
case.

MAKECOLUMN (value1, value2, ...)

The ‘MakeColumn’ function returns a column value that includes all inputs.

Examples

If ‘Names’ is a column cell with the values “Tom”, “Sally”, and “Glenn”

MakeColumn (Names, "Scott", "Joan") →
a column with the values "Tom", "Sally", "Glenn", "Scott", "Joan"

Related Functions

The ‘CollapseColumn’ function.

MAKEDATE (day, month, year)

The ‘MakeDate’ function returns the date represented by the integers day, month, and year.

Examples

MakeDate (1, 1, 1981) → January 1, 1981
MakeDate (2*5, 5, 1651) → May 10, 1651
MakeDate (29, 2, 1988) → February 29, 1988

10-42 Using Functions

 .
 .

 .

ays,

ts a
riate

 of

1, 1,
.
If startDay contains the value 3, startMonth contains the value 10, startYear contains the value
1980, and term contains the value 5, then

MakeDate (startDay, startMonth, startYear + term)
→ October 3, 1985

Related Functions

‘AddDays,’ ‘AddMonths,’ and ‘AddYears’ create a new date by adding a specified number of d
month, or years to a date. ‘ToDate’ converts a text value to a date.

MAKELIST (value1, value2, ...)

This function accepts any number of input parameters (either field or column cells) and outpu
list that includes all of the input values. Empty values are preserved. The output list is approp
for functions that accept a variable number of inputs, such as SUM or MEAN.

Examples

If ‘Names’ is a column cell with the values “Tom”, “Sally”, and “Glenn”

MakeList (Names, "Scott", "Joan") →
a list with the values "Tom", "Sally", "Glenn", "Scott", "Joan"

Related Functions

The ‘CollapseList’ function.

MAKETIME (hour, minute, second)

The ‘MakeTime’ function returns the time represented by the integers hour, minute, and second.

Examples

MakeTime (23, 59, 59) → 23:59:59
MakeTime (0, 0, 0) → 00:00:00
MakeTime (8, 34, 0) → 08:34:00
MakeTime (1, 1, 1) → 01:01:01

Related Functions

‘AddHours,’ ‘AddMinutes,’ and ‘AddSeconds’ create a new time by adding a specified number
hours, minutes, or seconds to a time.

Note When using the ‘MakeDate’ function be sure to add the complete year. For example, type
1993 not 1, 1, 93.

Using Functions 10-43

 .
 .

 .

.

.

MARGIN (cost, selling)

The ‘Margin’ function calculates the profit margin for an item. Cost is the original cost of the item
and selling is the final selling price of the item. The selling price must not be 0. If selling price is 0,
the empty value is returned. The profit margin for an item is calculated as follows:

Multiplying the return value of MARGIN by 100 gives the percentage profit margin for the item

Examples

Margin (80.00, 100.00) → 0.20
Margin (3.45, 3.00) → -0.15
Margin (0, 2*2.5) → 1
Margin (2345.45, 2345.45) → 0

If finalPrice contains the value 5.00 and cost contains the value 5.50, then

Margin (cost, finalPrice) < 0 → True

Related Functions

‘Markup’ returns the markup for an item, given its cost and selling price.

MARKUP (cost, selling)

The ‘Markup’ function calculates the markup for an item. Cost is the original cost of the item and
selling is the final selling price of the item. The cost must not be 0. If cost is 0, the empty value is
returned. The markup for an item is calculated as follows:

Multiplying the return value of ‘Markup’ by 100 gives the percentage markup for the item.

Examples

Markup (80.00, 100.00) → 0.25
Markup (3.45, 3.00) → -0.13
Markup (2*2.5, 0) → -1
Markup (2345.45, 2345.45) → 0

If finalPrice contains the value 5.00, cost contains the value 4.00, and minMarkup contains the
value 0.10, then

Markup (cost, finalPrice) > minMarkup → True

Related Functions

‘Margin’ returns the profit margin for an item, given its cost and selling price.

margin =
selling − cost

selling

10-44 Using Functions

 .
 .

 .

ters

r of a

recia-

bers.
.
MAX (number1, number2, ...)

The ‘Max’ function returns the largest number in its list of parameters. Any number of parame
can be specified.

Examples

Max (-12, 0, 34.5, -23.43, 99) → 99
Max (1, 1.0, 2/2, -5+6) → 1
Max (-100, -99.5) → -99.5

Related Functions

‘Min’ returns the smallest number in a group of numbers. ‘Median’ returns the median numbe
group of numbers.

MDBAL (cost, salvage, life, term[, factor])

The ‘MDBal’ function uses the modified declining balance method to calculate an asset’s dep
tion allowance for a particular period. See ‘DBal.’

MDBALVALUE (cost, salvage, life, term[, factor])

The ‘MDBalValue’ function uses the modified declining balance method to calculate the book
value of an asset after a specified number of depreciation periods. See ‘DBal.’

MEAN (number1, number2, ...)

The ‘Mean’ function returns the arithmetic mean of number1, number2, and so on. Any number of
parameters can be specified. The arithmetic mean of n numbers is the sum of the numbers divided
by n.

Examples

Mean (2) → 2
Mean (30, 50) → 40
Mean (0.01, 100, 55.345) → 51.785
Mean (2.0, -2.0, 0, -0.5) → -0.125

Related Functions

‘HMean’ and ‘Median’ return the harmonic mean and median, respectively, of a group of num
‘GMean’ returns the geometric mean of a group of numbers.

Using Functions 10-45

 .
 .

 .

ny num-
n, the

 of

th
.

MEDIAN (number1, number2, ...)

The ‘Median’ function returns the median from number1, number2, etc. Any number of parameters
can be specified. The median of a group of numbers is the value in the group that has as ma
bers less than it as it has numbers greater than it. If the number of values in the group is eve
median is the arithmetic mean of the two middle values.

Examples

Median (2, 3, -2) → 2
Median (3, -12, -1, -23, -87, 4, 5) → -1
Median (2, 18, 34, 20) → 19
Median (0, 10) → 5

Related Functions

‘HMean’ and ‘Mean’ return the harmonic mean and arithmetic mean, respectively, of a group
numbers. ‘GMean’ returns the geometric mean of a group of numbers.

MEMBER (target, value1, value2, ...)

The ‘Member’ function returns a boolean value. If target equals any of value1, value2, and so on,
‘Member’ returns True. Any number of values can be specified.

Examples

Member (True, 1=4, 5>8, 9<3) → False
Member ("5", 1*5, "6", "8") → True
Member (Pi, 3.1543, π, 4.3522, 3.1234) → True

If answer is 7, then

Member (answer, 1, 2, 3, 5, 7, 11, 13, 17) → True

Related Functions

‘Choose’ selects a value from a specified list of values.

MID (text, start, length)

The ‘Mid’ function returns a group of length characters from text starting at start characters from
the beginning of text. Length must be greater than or equal to 0. If length is greater than or equal to
the length of text minus start, ‘Mid’ returns all characters from start onward. If length is zero, a text
value with no characters ("") is returned. If start is less than or equal to 0, or greater than the leng
of text, the empty value is returned.

10-46 Using Functions

 .
 .

 .

ue.

uf-

es
rned
.
Examples

Mid ("Macintosh", 1, 3) → "Mac"
Mid ("orange", 2, 10) → "range"
Mid ("Forms Design, A Primer", 12, 0) → ""
Mid (2 = 2.1, 1, 4) → "False"

If phone contains the value “(408) 555-1616”, then

Mid (Phone, Length (Phone) - 7, 3) → "555"

Related Functions

‘Right’ returns the last characters in a text value. ‘Left’ returns the first characters in a text val

MIDDLECOUNT (name)

The ‘MiddleCount’ function returns the number of middle names in name. If name contains no
middle names, ‘MiddleCount’ returns 0.

Examples

MiddleCount (ToName ("Harry S Truman")) → 1
MiddleCount (ToName ("J. S. Bach")) → 1
MiddleCount (ToName ("Dr. Wendy George")) → 0
MiddleCount (ToName ("Philip Arthur Charles George Windsor,
B.A.")) → 3

Related Functions

‘PrefixCount’ returns the number of prefixes in a name. ‘SuffixCount’ returns the number of s
fixes in a name. ‘MiddleOf’ returns a given middle name of a name.

MIDDLEINITIALSOF (name)

The ‘MiddleInitialsOf’ function returns a text value containing the initials from the middle nam
in name. The value returned contains the capitalized first letters of all middle names. The retu
initials are separated by spaces. If name doesn’t contain any middle names, the empty value is
returned.

Examples

MiddleInitialsOf (ToName ("Mr. Anthony Frank Marner")) → "F."
MiddleInitialsOf (ToName ("John Jacob George Jones")) → "J. G. "
MiddleInitialsOf (ToName ("e e cummings")) → "E."

If theName contains the name value Dr. Roger Anderson, MD, then

MiddleInitialsOf (theName)

returns the empty value.

Using Functions 10-47

 .
 .

 .

 of

f

’ and

eters

 from
.

Related Functions

‘LastInitialOf’ returns the last initial of a name. ‘FirstInitialOf’ returns the first initial of a name.
‘FirstOf’ and ‘LastOf’ return the first name and last name, respectively, of a name. ‘MiddleOf’
returns a given middle name of a name. ‘PrefixOf’ and ‘SuffixOf’ return a given prefix or suffix
a name.

MIDDLEOF (name, number)

The ‘MiddleOf’ function returns a text value containing a middle name of name. The value of num-
ber determines which middle name is returned. If number is 1, the first middle name is returned; i
number is 2, the second middle name is returned, and so on. If number is 0, then all middle names,
separated by spaces, are returned. If name does not contain the middle name identified by number,
‘MiddleOf’ returns the empty value.

Examples

MiddleOf (ToName ("Ms. Susan Patricia Anderson"), 1) → "Patricia"
MiddleOf (ToName ("J S M Bach", 2) → "M"
MiddleOf (ToName ("Philip Arthur Charles George Windsor, B.Sc."), 3) → "George"
MiddleOf (ToName ("Philip Arthur Charles George Windsor"), 0)

→ "Arthur Charles George"

If herName contains the name value Sandra Susan Joan Wright, R.N., then

MiddleOf (herName, MiddleCount (herName)) → "Joan"

Related Functions

‘LastOf’ returns the last name of a name. ‘FirstOf’ returns the first name of a name. ‘PrefixOf
‘SuffixOf’ return a given prefix or suffix of a name.

MIN (number1, number2, ...)

The ‘Min’ function returns the smallest number in its list of parameters. Any number of param
can be specified.

Examples

Min (-12, 0, 34.5, -23.43, 99) → -23.43
Min (1, 1.0, 2/2, -5+6) → 1
Min (-100, -99.5) → -100

Related Functions

‘Max’ returns the largest number in a group of numbers. ‘Median’ returns the median number
a group of numbers.

10-48 Using Functions

 .
 .

 .

 sec-

ns
 an
er cap-

.
MINUTEOF (time)

The ‘MinuteOf’ function returns the number of the minute represented in time. The number
returned is an integer in the range 0 to 59.

Examples

MinuteOf ("6:45:01 AM") → 45
MinuteOf ("23:00:01") → 0
MinuteOf ("00:59:59") → 59
MinuteOf ("10:01 PM") → 1

Related Functions

‘HourOf’ returns the number of the hour in a time value. ‘SecondOf’ returns the number of the
ond in a time value.

MODIFYDATE

The ‘ModifyDate’ function returns the date the current record was last modified.

MODIFYTIME

The ‘ModifyTime’ function returns the time the current record was last modified.

MONTHABBREV (monthNumber)
MONTHNAME (monthNumber)

The ‘MonthAbbrev’ the ‘MonthName’ functions return the name of the month identified by month-
Number. MonthNumber must be an integer between 1 and 12. The ‘MonthName’ function retur
the full name of the month with the first letter capitalized. The ‘MonthAbbrev’ function returns
abbreviated name consisting of the first three characters of the month name with the first lett
italized. ‘MonthName’ and ‘MonthAbbrev’ are often used with the ‘MonthOf’ function to obtain
the name of the month in a date.

Examples

MonthName (1) → "January"
MonthAbbrev (1) → "Jan"
MonthName (1+3) → "April"
MonthAbbrev (5) → "May"

If birthDate is a date containing the value December 30, 1965, then

MonthAbbrev (MonthOf (birthDate)) → "Dec"

Using Functions 10-49

 .
 .

 .

date.

eir

s
r-

ime-
.

Related Functions

‘DayName’ and ‘DayAbbrev’ return the name of a day. ‘MonthOf’ returns the number of the
month in a date.

MONTHOF (date)

The ‘MonthOf’ function returns the number of the month represented in date. The number returned
is an integer in the range 1 to 12.

Examples

MonthOf (ToDate ("Saturday, April 25, 1964")) → 4
MonthOf (ToDate ("09/12/89")) → 9
MonthOf (ToDate ("12/26/89")) → 12
MonthOf (ToDate ("26/01/89")) → 1

If startDate contains the date value Aug 20, 1999, then

MonthOf (startDate) → 8

Related Functions

‘DayOf’ returns the number of the day in a date. ‘YearOf’ returns the number of the year in a

NAMEFORM (name, format)

The ‘NameForm’ function formats the name name using the format specified in the text value for-
mat. The resulting text value is returned. The value of format describes the format of the name
returned. The letters ‘P,’ ‘F,’ ‘M,’ ‘L’ and ‘S’ represent the name parts prefix, first, middle, last, and
suffix in uppercase form. The corresponding lowercase letters represent the same parts in th
abbreviated form. If format contains one of these letters, the corresponding name part will be
included in the function result. The position of ‘L’ or ‘l’ in format determines if the surname come
first or last. If this letter is the first character of format, the surname comes first, otherwise the su
name comes last. For an explanation of name formats, see Name.

Examples

NameForm ("Dr. Pat A. Smith", "PFL") → "Doctor Pat Smith"
NameForm ("Mr. William Jones, Esq.", "LpFMs") → "Jones, Mr. William, Esq."
NameForm ("Susan Anderson", "PfMLS") → "S. Anderson"
NameForm ("A. F. Houston", "FL") → "A. Houston"

Related Functions

‘CharForm’ formats a text value. ‘DateForm’ formats a date. ‘NumForm’ formats a number. ‘T
Form’ formats a time value.

10-50 Using Functions

 .
 .

 .

ula-

vest-
as
e sum

e rows
w

for the
ber in
umber

ntrib-

med to
nts are
e
.
NOW

The ‘Now’ function returns the current time. The current time is returned whenever a cell calc
tion, default formula, or check formula containing the ‘Now’ function is calculated.

Examples

If the current time is 1:45:01 PM, then

Now → 13:45:01
HourOf (Now) → 13
MinuteOf (Now) → 45

Related Functions

The ‘Today’ function returns the current date.

NPV (rate, columnCell[, BEGIN or END])

The ‘NPV’ function calculates the net present value of future cash flows generated from an in
ment project. The present value of cash to be received in the future is the amount that, if it w
invested today, would grow to equal the future sum at the future date. Net present value is th
of the present values of all cash flows generated (or expended) during a project.

Rate is the interest rate that’s used to calculate the present value of the future cash flows. Th
in the column cell called columnCell contain the projected cash flows for the project. The first ro
contains the initial cash flow (usually an expenditure), the second row contains the cash flow
first period, and so on. Net outflow of cash during a period is represented by a negative num
the corresponding row and net inflow is represented by a positive number. There can be any n
of rows in columnCell. Rows that contain empty values are not ignored; they’re assumed to co
ute no net cash flow for the corresponding period.

‘NPV’ calculates the net present value using the following formula, where N is the number of rows
in columnCell and each row represents the value contained in the corresponding row of column-
Cell:

If the word BEGIN (or begin) appears as the last parameter to a function, payments are assu
occur at the beginning of each period. If END (or end) appears as the last parameter, payme
assumed to occur at the end of each period. If neither BEGIN nor END appear, payments ar
assumed to occur at the end of each period.

NPV = row 1

1 + rate()
0

+ row 2

1 + rate()
1

+ … + row N

1 + rate()
N− 1

Using Functions 10-51

 .
 .

 .

r.

d

d

 is
he
.

Examples

If discountRate contains the value 0.10 (i.e. 10%) and cashFlows is a column cell with rows that
contain the values -10000, 4000, 5000, and 6000, then

NPV (discountRate, cashFlows) → 2069.53

NUMBERTH (number)

The ‘NumberTH’ function returns a text value that consists of number followed by the appropriate
ordinal suffix. Number should be an integer.

Examples

NumberTH (11) → "11th"
NumberTH (-32) → "-32nd"
NumberTH (21) → "21st"

Related Functions

‘SpellNumber’ spells out a number. ‘SpellNumberTH’ spells out the ordinal value of a numbe

NUMFORM (number, format, currency)

The ‘NumForm’ function formats the number number using the format specified in the text value
format. Currency is a boolean parameter. If it’s value is True, ‘NumForm’ includes the currency
symbol in the formatted number. The resulting text value is returned. The number is formatte
according to the formatting rules and options for the number type. For more information, see
“Number” in Chapter 1.

Examples

NumForm (128.89, "0", False) → "129"
NumForm (2754.7, "#,##0.00", False) → "2,754.70"
NumForm (2754.7, "#,##0.00", True) → "$2,754.70"
NumForm (-.56, "##,##0.00 Cr;##,##0.00 Dr", False) → "0.56 Dr"
NumForm (4381.99, "The price is #,##0.00", True) → "The price is $4,381.99"

Related Functions

‘CharForm’ formats a text value, ‘DateForm’ formats a date, ‘NameForm’ formats a name, an
‘TimeForm’ formats a time value.

ONEOF (boolean1, boolean2, ...)

The ‘OneOf’ function returns the boolean value True if exactly one of its boolean parameters
True. If no parameter is True or if more than one parameter is True, ‘OneOf’ returns False. T
parameters can be any formula that returns a boolean value.

10-52 Using Functions

 .
 .

 .

rs

e cell
bered

ct page

rinted
nt’

d is in
.
Examples

OneOf (True) → True
OneOf (1 + 2 = 3, False, 3 > 2) → False
OneOf (True, 0 > 1) → True
OneOf (5 < 3, 1 + 1 = 6, 8 - 3 = 4) → False

If x contains the value 1 and if Cell1 is empty, then

OneOf (x ≠ 1, IsEmpty (Cell1)) → True

Related Functions

‘AnyOf’ returns True if any of its parameters are True. ‘AllOf’ returns True if all of its paramete
are True.

PAGE

When used in a cell’s formula, the ‘Page’ function returns the number of the page on which th
appears. The number returned is in the range 1 to 99. Page numbering starts at the first num
page in a form. The work and master pages are not included. ‘Page’ always returns the corre
number, even when pages are added and removed.

Examples

If Cell5 appears on the third page of a form, and is calculated as

Concat ("Page ", Page)

then the value of Cell5 will be “Page 3”.

Related Functions

‘PageCount’ returns the total number of pages in a form. ‘Part’ returns the part number of a p
page. ‘PartLabel’ returns a text label according the part of a page currently printing. ‘PartCou
returns the total number of parts for a page on which a cell appears.

PAGECOUNT

The ‘PageCount’ function returns the total number of pages in the form. The number returne
the range 1 to 99. The work and master pages are not included in the count.

Examples

If a form contains 5 numbered pages, then for any cell on any page,

Concat ("Total pages: ", PageCount) → "Total pages: 5"

Using Functions 10-53

 .
 .

 .

e cell
rding
n

nt a
rt’ is
ge 1 to

y, you

rns
he
s the

e
e Mul-

 sec-

 part
mber
m.
.

Related Functions

When used in a cell’s formula, the ‘Page’ function returns the number of the page on which th
appears. ‘Part’ returns the part number of a printed page. ‘PartLabel’ returns a text label acco
the part of a page currently printing. ‘PartCount’ returns the total number of parts for a page o
which a cell appears.

PART

The ‘Part’ function returns the part number of the page currently being printed. When you pri
form, Informed changes the value of ‘Part’ each time a different part of a page is printed. ‘Pa
used to calculate a cell’s value based on the part of a page. The number returned is in the ran
99. For a description of the Multipart command and multipart pages, see Multipart pages.

Examples

If a page of a form contains three parts: the original, a customer copy, and an accounting cop
can calculate a cell using the ‘Part’ function as shown below.

Choose (Part, "Original", "Customer Copy", "Accounting Copy")

Related Functions

‘PartLabel’ returns a text label according the part of a page currently printing. ‘PartCount’ retu
the total number of parts for a page on which a cell appears. When used in a cell’s formula, t
‘Page’ function returns the number of the page on which the cell appears. ‘PageCount’ return
total number of pages in a form.

PARTCOUNT

When used in a cell’s formula, the ‘PartCount’ function returns the total number of parts for th
page containing the cell. The number returned is in the range 1 to 99. For a description of th
tipart command and multipart pages, see Multipart pages.

Examples

If the following formula is used to calculate a cell on a page that contains three parts, and the
ond part is currently printing, then

Concat ("Part ", Part, " of ", PartCount) → "Part 2 of 3"

Related Functions

‘Part’ returns the part number of a printed page. ‘PartLabel’ returns a text label according the
of a page currently printing. When used in a cell’s formula, the ‘Page’ function returns the nu
of the page on which the cell appears. ‘PageCount’ returns the total number of pages in a for

10-54 Using Functions

 .
 .

 .

ds to

. For a

y, you

 part
a cell
n

uture

.
PARTLABEL (label1, label2, label3, ...)

When used in a cell’s formula, the ‘PartLabel’ function returns the text value which correspon
the current part that’s printing. If part 1 is printing, label1 is returned; if part 2 is printing, label2 is
returned, and so on. ‘PartLabel’ is used to calculate a cell’s value based on the part of a page
description of the Multipart command and multipart pages, see Multipart pages.

Examples

If a page of a form contains three parts: the original, a customer copy, and an accounting cop
can calculate a cell using the ‘PartLabel’ function as shown below.

PartLabel ("Original", "Customer Copy", "Accounting Copy")

Related Functions

‘Part’ returns the part number of a printed page. ‘PartLabel’ returns a text label according the
of a page currently printing. ‘PartCount’ returns the total number of parts for a page on which
appears. When used in a cell’s formula, the ‘Page’ function returns the number of the page o
which the cell appears. ‘PageCount’ returns the total number of pages in a form.

PBONDPRICE (face, rate, yield)

The ‘PBondPrice’ function returns the price of a perpetual bond with face value face, interest rate
rate, and yield yield. See ‘BondPrice.’

PBONDYIELD (price, face, rate)

The ‘PBondYield’ function returns the yield from a perpetual bond with face value face, interest
rate rate, and price price. See ‘BondPrice.’

PLATFORM

The ‘Platform’ function returns either “Windows” or “Mac OS.”

PMT (pv, fv, rate, term[, BEGIN or END])

The ‘Pmt’ function returns the payment amount on an investment for a given present value, f
value, interest rate and term. See ‘PV.’

POS (subText, text)

The ‘Pos’ function returns the starting position of the first occurrence of subText in text. If no por-
tion of text exactly matches the group of characters in subText, ‘Pos’ returns 0. The first character in

Using Functions 10-55

 .
 .

 .

 a
e with

ent

er of
.

text numbered 1, the second is numbered 2, and so on. If subText contains no characters or if the
length of subText is greater than the length of text, ‘Pos’ returns 0.

Examples

Pos ("nice", "Have a nice day.") → 8
Pos (3*5, "Product Lifespan: 15 years") → 19
Pos ("for", "Informed for forms.") → 3
Pos ("television", "tele") → 0

If adj contains the value “Valued “ and salut contains the value “Dear Customer”, then

Insert (salut, Pos ("Customer", salut)-1, adj) → "Dear Valued Customer"

Related Functions

‘Contains’ returns True if a text value contains a specified group of characters. ‘Insert’ inserts
group of characters into a text value. ‘Replace’ replaces one group of characters in a text valu
another group of characters. ‘Delete’ deletes a group of characters from a text value.

PPMT (pv, pmt, rate, term, per[, BEGIN or END])

The ‘PPMT’ function returns the principal payment amount on an investment for a given pres
value, payment amount, interest rate, term and period. See ‘PV.’

PREFIXCOUNT (name)

The ‘PrefixCount’ function returns the number of prefixes in name. If name contains no prefixes,
‘PrefixCount’ returns 0.

Examples

PrefixCount (ToName ("Harry S Truman")) → 0
PrefixCount (ToName ("Hon. Mr. John S. Edgemont")) → 2
PrefixCount (ToName ("Dr. Wendy George")) → 1
PrefixCount (ToName ("Mr. Philip Arthur Charles George Windsor, B.Sc.")) → 1

Related Functions

‘MiddleCount’ returns the number of middle names in a name. ‘SuffixCount’ returns the numb
suffixes of a name.

PREFIXOF (name, number)

The ‘PrefixOf’ function returns a text value containing a prefix from name. The value of number
determines which prefix is returned. If number is 1, the first prefix is returned; if number is 2, the
second prefix is returned, and so on. If number is 0, then all prefixes, separated by spaces, are
returned. If name doesn’t contain the prefix identified by number, ‘PrefixOf’ returns the empty
value.

10-56 Using Functions

 .
 .

 .

f’

ns of
.
Examples

PrefixOf (ToName ("Ms. Susan Patricia Anderson"), 1) → "Ms."
PrefixOf (ToName ("Hon. Mr. John S. Edgemont"), 2) → "Mr."

If herName contains the name value Ms. Sandra Susan Joan Wright, R.N., then

PrefixOf (herName, PrefixCount (herName)) → "Ms."

Related Functions

‘LastOf’ returns the last name of a name. ‘FirstOf’ returns the first name of a name. ‘MiddleO
returns a given middle name of a name. ‘SuffixOf’ returns a given suffix of a name.

PRINCIPAL (pv, pmt, rate, term, per[, BEGIN or END])

The ‘Principal’ function returns the principal amount remaining on an investment for a given
present value, payment amount, rate, term, and period. See ‘PV.’

PRINTDATE

The ‘PrintDate’ function returns the date the current record was last printed.

PRINTTIME

The ‘PrintTime’ function returns the time the current record was last printed.

PSTDEV (number1, number2, ...)

The ‘PSTDev’ function returns the population standard deviation, σ, of number1, number2, and so
on. ‘PSTDev’ calculates the true standard deviation for data sets constituting entire populatio
interest. The value returned is calculated as follows:

It’s the positive square root of the population variance. See ‘PVar.’

Any number of parameters can be specified.

Examples

PStDev (3.74, 3.89, 4.00, 3.68, 3.69) → 0.125
PStDev (9.3455) → 0
PStDev (40, 30, 50, 15, 5) → 16.31

σ = σ 2

Using Functions 10-57

 .
 .

 .

he
’ calcu-

 analy-
terest
ay-

 period.
 each
riod.
d cash

nt
.

If ages is a column cell with rows that contain the values 28, 31, 27, 29, 45, and 24, then

PStDev (ages) → 6.749

Related Functions

‘PVar’ calculates the population variance of a group of numbers. ‘Var’ and ‘STDev’ calculate t
sample variance and sample standard deviation, respectively, of a group of numbers. ‘Range
lates the range of a group of numbers.

PV (fv, pmt, rate, term[, BEGIN or END])
FV (pv, pmt, rate, term[, BEGIN or END])
PMT (pv, fv, rate, term[, BEGIN or END])
RATE (pv, fv, pmt, term[, BEGIN or END])
TERM (pv, fv, pmt, rate[, BEGIN or END])
PPMT (pv, pmt, rate, term, per[, BEGIN or END])
IPMT (pv, pmt, rate, term, per[, BEGIN or END])
PRINCIPAL (pv, pmt, rate, term, per[, BEGIN or END])

These functions calculate common financial parameters used in constant payment cash flow
sis. They calculate present value (PV), future value (FV), periodic payment amount (Pmt), in
rate per period (Rate), investment term (Term), principal payment amount (PPMT), interest p
ment amount (IPmt), and the principal amount remaining on an investment (Principal).

The parameters pv, fv, pmt, rate, and term correspond to the functions with the same names. Per is a
number between 1 and term that specifies a particular period. If the word BEGIN (or begin) appears
as the last parameter to a function, payments are assumed to occur at the beginning of each
If END (or end) appears as the last parameter, payments are assumed to occur at the end of
period. If neither BEGIN nor END appear, payments are assumed to occur at the end of each pe
All of the above functions assume that cash received is represented by a positive number an
paid out is represented by a negative number.

The ‘PV,’ ‘FV,’ ‘Rate,’ ‘Pmt,’ and ‘Term’ functions use the following equations to calculate their
return values:

(if rate = 0)

(if rate <> 0)

The ‘Principal’ function calculates the principal amount remaining after per periods by finding the
future value of the investment after per periods. The IPMT function calculates the interest payme

pv = term × pmt + fv

pv = pmt
1− 1 +rate() −term

rate





 + fv 1 + rate[]

−term

10-58 Using Functions

 .
 .

 .
riod
eriod,

nd, at
 of

 and it
hly

00 in
 invest-

 term

ment,

lation
.
amount for period per by multiplying the interest rate per period rate by the principal amount
remaining at the previous period. The ‘PPmt’ function calculates the principal payment for pe
per by subtracting the interest payment for the period from the total payment amount for the p
pmt.

Examples

If a savings account contains $5,000 and earns 12% annual interest (1% monthly interest) a
the beginning of each month for the next 24 months, deposits of $200 are made, the amount
money in the account after 24 months is:

FV (-5000, -200, 0.01, 24, BEGIN) → 11797.31

If a loan of $60,000 is made at an annual interest rate of 18% (monthly interest rate of 1.5%),
must be paid off in 4 years with monthly payments made at the end of each month, the mont
payment amount is:

PMT (60000, 0, 0.015, 48, END) → -1762.5

and the interest payment amount and principal payment amount for the 5th period, and principal
amount remaining after the 5th period are:

IPMT (60000, -1762.5, 0.015, 48, 5, END) → -847.07
PPMT (60000, -1762.5, 0.015, 48, 5, END) → -915.43
Principal (60000, -1762.5, 0.015, 48, 5, END) → 55556.17

If an investor purchases a business for $500,000 with the expectation of selling it for $1,000,0
5 years, and the business makes a $100,000 profit annually, the annual rate of return on the
ment is:

Rate (-500000, 1000000, 100000, 5, END) → 0.3087

If the same investor wants a fixed annual return of 30% on the same investment, the required
(in years) before selling the business is:

Term (-500000, 1000000, 100000, 0.3) → 5.28

If the same investor wants a fixed annual return of 20% for a 5 year term on the same invest
the required purchase price is:

PV (1000000, 100000, 0.2, 5, END) → -700938.79

Related Functions

None.

PVAR (number1, number2, ...)

The ‘PVar’ function returns the population variance, σ2, of number1, number2, and so on. ‘PVar’
calculates the true variance for data sets constituting entire populations of interest. The popu
variance of N numbers is calculated as follows:

Using Functions 10-59

 .
 .

 .

ev’
bers.

dom
use
this
.

where µ is the arithmetic mean of the numbers:

Any number of parameters can be specified.

Examples

PVar (3.74, 3.89, 4.00, 3.68, 3.69) → 0.0156
PVar (9.3455) → 0
PVar (40, 30, 50, 15, 5) → 266.0

If ages is a column cell with rows that contain the values 28, 31, 27, 29, 45, and 24, then

PVar (ages) → 45.556

Related Functions

‘PSTDev’ calculates the population standard deviation of a group of numbers. ‘Var’ and ‘STD
calculate the sample variance and sample standard deviation, respectively, of a group of num
‘Range’ calculates the range of a group of numbers.

RANDOM (min, max)

The ‘Random’ function returns a random number between ‘min’ and ‘max.’ The result is a ran
floating point number that is greater than or equal to ‘min’ and less than ‘max.’ If you want to
the ‘Random’ function to generate a random integer within a range of values (inclusive), use
function:

Int (Random (min, max+1))

Examples

Random (1, 10) → 6.36652
Int (Random (1, 10)) → 9

Related Functions

None.

σ 2
=

number1 − µ()
2

+ number2 − µ()
2

+ … + number N − µ()
2

N

µ = number1 + number2 + …+ numberN
N

10-60 Using Functions

 .
 .

 .

ber in

p of
dard

nt

nd
tions
any

r
per-
e name

mes
pli-

im or
.
RANGE (number1, number2, ...)

The ‘Range’ function returns the difference between the highest number and the lowest num
number1, number2, and so on. Any number of parameters can be specified.

Examples

Range (-5, 0, 1) → 6
Range (65) → 0
Range (1.01, 0.98, 1.38, 1.24, 1.05, 0.96, 0.99) → 0.42

Related Functions

‘Var’ and ‘PVar’ calculate the sample variance and population variance, respectively, of a grou
numbers. ‘STDev’ and ‘PSTDev’ calculate the sample standard deviation and population stan
deviation, respectively, of a group of numbers.

RATE (pv, fv, pmt, term[, BEGIN or END])

The ‘Rate’ function calculates the interest rate per period on an investment for a given prese
value, future value, payment amount, and term. See ‘PV.’

REGISTEREDCOMPANY
REGISTEREDNAME

The ‘RegisteredName’ and ‘RegisteredCompany’ functions return the names of the person a
company, respectively, to which the application being used is registered. By using these func
in default formulas, you can have Informed Filler automatically fill in the user’s name or comp
name on the form.

Examples

Suppose that your form contains a cell called Initiator which is the name and company of the use
filling out the form. You might use the default formula shown below to automatically fill in the
son’s name and company. Assume that the software being used is registered to a person by th
of ‘John Smith’ of the company ‘ABC Company.’

Concat (RegisteredName, " of ", RegisteredCompany) → "John Smith of ABC Company"

By using the ‘RegisteredName’ and ‘RegisteredCompany’ functions (instead of typing the na
directly in the default formula), the form can be filled out by different people using different ap
cations provided that each person is using an application that was personally registered to h
her.

Using Functions 10-61

 .
 .

 .

c-

into a
.

REPEAT (text, count)

The ‘Repeat’ function returns a text value created by repeating text, count times. Count should be
greater than zero. If count is zero, ‘Repeat’ returns a text value with no characters (“”).

Examples

Repeat ("-- ", 10) → "-- -- -- -- -- -- -- -- -- -- "
Repeat ("", 23) → ""
Repeat ("x", 3) → "xxx"

REPLACE (text, start, count, subText)

The ‘Replace’ function replaces count characters from text with subText. Characters are replaced
starting at start characters from the beginning of text. If count is greater than the number of chara
ters from start to the end of text, all characters from start onward are replaced. If start is greater
than the number of characters in text, ‘Replace’ appends subText to text and returns the resulting
text value. If count is zero, text is returned.

Examples

Replace ("Intramural", 0, 2, "Ex") → "Extramural"
Replace ("January", 4, 3, "itor") → "Janitory"
Replace ("Hello", 0, 99, "Goodbye") → "Goodbye"

If firstName contains the value “Walter” and greeting contains the value “Hello name,” then

Replace (greeting, 7, 4, firstName) → "Hello Walter,"

Related Functions

‘Delete’ deletes a group of characters from a text value. ‘Insert’ inserts a group of characters
text value. ‘Pos’ returns the position of a specified group of character in a text value.

RIGHT (text, length)

The ‘Right’ function returns the last length characters from text. Length must be greater than or
equal to 0. If length is greater than or equal to the number of characters in text, ‘Right’ returns text.
If length is zero, a text value with no characters (“”) is returned.

Examples

Right ("Macintosh", 3) → "osh"
Right ("orange", 10) → "orange"
Right ("Forms Design, A Primer", 0) → ""
Right (2 = 2.0, 2) → "ue"

If phoneNumber contains the value "(413) 555-6732" and suffixLength contains the value 4, then

Right (phoneNumber, suffixLength) → "6732"

10-62 Using Functions

 .
 .

 .

iddle

teger

 this

 4,
.
Related Functions

‘Left’ returns the first characters in a text value. ‘Mid’ returns a group of characters from the m
of a text value.

ROUND (number, decimals)

The ‘Round’ function rounds number to decimals decimal places. Decimals should be greater than
or equal to zero. If Decimals is greater than the number of digits in the fractional part of number,
‘Round’ returns number.

Examples

Round (12.234, 0) → 12
Round (-12.235, 2) → -12.23
Round (-12.234, 2) → -12.23
Round (-4.1355, 3) → -4.135
Round (-8.8, 0) → -9
Round (4.1355, 5) → 4.1355

Related Functions

‘Ceiling’ returns the next integer greater than or equal to a number. ‘Floor’ returns the next in
less than or equal to a number.

ROW

The ‘Row’ function returns the corresponding list of row numbers for the column cell that uses
function (in its calculation, default, or check formula). Use the ‘Row’ function to fill in the row
numbers in a column cell.

Examples

If the column cell called Item contains 5 rows, the ‘Row’ function will return the numbers 1, 2, 3,
and 5 if it’s used in the calculation, default, or check formula of the cell.

Related Functions

‘RowCount’ returns the total number of rows in a column cell.

ROWCOUNT (columnCell)

The ‘RowCount’ function returns the total number of rows in the column cell called columnCell.
ColumnCell must the be name of a column cell.

Examples

If the column cell called Item contains 10 rows, then

Using Functions 10-63

 .
 .

 .

rm.

ds to

nce.

vious
n,

m are
d
.

RowCount (Item) → 10

Related Functions

‘Row’ returns the row numbers of a column cell.

RUNNINGTOTAL (startValue, columnCell)

The ‘RunningTotal’ function automatically calculates the running total of a column cell on a fo
The columnCell parameter must be a numeric column cell on your form. StartValue is the starting
value of the running total. The result of ‘RunningTotal’ is a column of values which correspon
the accumulative total of the column cell columnCell with an initial starting value of startValue.

Examples

Suppose that you’re creating a bank statement form to keep track of your bank account bala
This form might look like the one shown in the following illustration.

Each row in the balance column is calculated by subtracting the debits in the current and pre
rows of the debit column from the credits in the current and previous rows of the credit colum
then adding that result to the previous statement balance. Assuming that the cells on this for
named ‘Previous Balance,’ ‘Credits,’ and ‘Debits,’ respectively, the formula shown below woul
correctly calculate the balance column.

N
A
M
E

Date Description Debit Credit Balance

Account Details

Previous Balance

Statement Date

Account BalanceTotal Debits Total Credits

Statement of AccountWorld National Bank

1/10/90
1/24/90
1/28/90
2/7/90
2/15/90
2/28/90

Check #110
Check #110
Deposit
Check #112
Deposit
Deposit

219.90
1,990.00

400.00
1,570.15

1,030.54
1,570.15

24,771.80
22,781.80
24,351.95
23,951.95
24,982.49
26,552.64

24,991.70

2,609.90 26,552.64 4,170.84

3/2/90John Smith
12345 - 123 Street
Somewhere, Some Place
12345

10-64 Using Functions

 .
 .

 .

 in the
e

.
RunningTotal (Previous Balance, Credits-Debits)

The columnCell parameter (Credits-Debits) calculates the net change in balance for each row
table. The running total is calculated based on this columnar result plus the Previous Balanc
amount.

SECONDOF (time)

The ‘SecondOf’ function returns the number of the second represented in time. The number
returned is an integer in the range 0 to 59.

Examples

SecondOf (ToTime ("6:45:01 AM")) → 01
SecondOf (ToTime ("23:00:00")) → 0
SecondOf (ToTime ("00:59:59")) → 59
SecondOf (ToTime ("10:01 PM")) → 0

Related Functions

‘HourOf’ returns the number of the hour in a time value. ‘MinuteOf’ returns the number of the
minute in a time value.

SENDDATE

The ‘SendDate’ function returns the date the current record was last sent (mailed).

SENDTIME

The ‘SendTime’ function returns the time the current record was last sent (mailed).

SIGN (number)

The ‘Sign’ function returns 1 if number is positive, 0 if number is zero, or -1 if number is negative.

Examples

Sign (2+3) → 1
Sign (5-10) → -1
Sign (-3+3) → 0
Sign (-5^2) → 1

Related Functions

None.

Using Functions 10-65

 .
 .

 .

-

ne
t.

life,
recia-

wear-

enti-

 the
reci-
.

SIN (number)

The ‘Sin’ function returns the sine of number. Number must be an angle in radians. The return
value is in the range -1 to 1.

Examples

Sin (0) → 0
Sin (- π/2) → -1
Sin (Pi) → 0
Sin (9* π/2) → 1

Related Functions

‘ASin’ is the inverse of the ‘Sin’ function. ‘Cos’ and ‘Tan’ return the cosine and tangent, respec
tively, of a number.

SLD (cost, salvage, life)
SLDVALUE (cost, salvage, life, term)

These functions calculate an asset’s depreciation amount and value. They use the straight li
depreciation method. This method spreads depreciation evenly over the useful life of the asseCost
is the initial cost of the asset, salvage is the estimated value of the asset at the end of its useful
and life is the number of time periods in the depreciation lifespan of the asset. The rate of dep
tion is 1 over life.

The ‘SLD’ function returns the depreciation amount for a single period. It’s calculated as the
ing value of the asset (cost minus salvage) divided by the useful life of the asset (life).

The ‘SLDValue’ function returns the depreciated value of the asset at the end of the period id
fied by term. Term should be between 0 and life. If term is equal to 0, ‘SLDValue’ returns cost. If
term is equal to life, ‘SLDValue’ returns salvage.

Examples

If a machine costs $5,000 and has an estimated value of $500 at the end of 5 years, then

SLD (5000, 500, 5) → 900

and the depreciated value of the machine after 3 years is:

SLDValue (5000, 500, 5, 3) → 2300

Related Functions

‘SOYD’ and ‘SOYDValue’ return an asset’s depreciation amount and depreciated value using
sum-of-years method. ‘DBal’ and ‘DBalValue’ return an asset’s depreciation amount and dep
ated value using the declining balance method. ‘MDBal’ and ‘MDBalValue’ return an asset’s
depreciation amount and depreciated value using the modified declining balance method.

10-66 Using Functions

 .
 .

 .

ars
 of the
t
he

5,

identi-

wearing
e fol-
cond

ci-

ion is
.
SOYD (cost, salvage, life, term)
SOYDVALUE (cost, salvage, life, term)

These functions calculate an asset’s depreciation amount and value. They use the sum-of-ye
depreciation method. This method creates larger depreciation amounts during the early years
useful life of the asset. Cost is the initial cost of the asset, salvage is the estimated value of the asse
at the end of its useful life, and life is the number of time periods in the depreciation lifespan of t
asset. Term identifies a particular depreciation period.

The ‘SOYD’ function returns the depreciation amount for the period identified by term. It’s calcu-
lated as a fraction of the wearing value of the asset (cost minus salvage). The denominator of the
fraction is obtained by numbering the periods in life and adding. For example, if life is 5, the
denominator is 1 + 2 + 3 + 4 + 5 = 15. The numerator for the first period is life. For each subsequent
period the numerator is reduced by 1. If life is 5, the fractions for the 5 periods are: 5/15, 4/15, 3/1
2/15, and 1/15.

The ‘SOYDValue’ function returns the depreciated value of the asset at the end of the period
fied by term. Term should be between 0 and life. If term is equal to 0, ‘SOYDValue’ returns cost. If
term is equal to life, ‘SOYDValue’ returns salvage.

Examples

If a machine costs $5,000 and has an estimated value of $500 at the end of 5 years, then the
value of the machine is $4,500 and the sum-of-years fraction for the fourth period is 2/15. Th
lowing formulas calculate the depreciation amount and the depreciated value for the first, se
and fourth terms.

SOYD (5000, 500, 5, 1) → 1500
SOYD (5000, 500, 5, 2) → 1200
SOYD (5000, 500, 5, 4) → 600
SOYDValue (5000, 500, 5, 1) → 3500
SOYDValue (5000, 500, 5, 2) → 2300
SOYDValue (5000, 500, 5, 4) → 800

Related Functions

‘SLD’ and ‘SLDValue’ return an asset’s depreciation amount and depreciated value using the
straight line method. ‘DBal’ and ‘DBalValue’ return an asset’s depreciation amount and depre
ated value using the declining balance method. ‘MDBal’ and ‘MDBalValue’ return an asset’s
depreciation amount and depreciated value using the modified declining balance method.

SPELLCURRENCY (number, decimals)

The ‘SpellCurrency’ function returns a text value describing number. Number is described in mon-
etary terms, using “dollars” and “cents”. The number of decimal places to use in the descript
given in decimals.

Using Functions 10-67

 .
 .

 .

r.

he

m-
.

Examples

SpellCurrency (100, 2) → "One Hundred Dollars and 00 Cents"
SpellCurrency (45.99, 2) → "Forty Five Dollars and 99 Cents"
SpellCurrency (-10.01, 2) → "Ten Dollars and 01 Cents"
SpellCurrency (1000, 4) → "One Thousand Dollars and 00.00 Cents"
SpellCurrency (0, 2) → "No Dollars and 00 Cents"

Related Functions

‘SpellNumber’ spells out a number. ‘SpellNumberTH’ spells out the ordinal value of a numbe

SPELLNUMBER (number)

The ‘SpellNumber’ function returns a text value describing number.

Examples

SpellNumber (101) → "One Hundred One"
SpellNumber (-54) → "Fifty Four"
SpellNumber (34.987) → "Thirty Four"
SpellNumber (-4.00) → "Four"
SpellNumber (0) → "Zero"

Related Functions

‘SpellCurrency’ spells out a number using “dollars” and “cents”. ‘SpellNumberTH’ spells out t
ordinal value of a number.

SPELLNUMBERTH (number)

The ‘SpellNumberTH’ function returns a text value describing the ordinal value of number. Num-
ber should be an integer value. If number is not an integer, the fractional part is ignored.

Examples

SpellNumberTH (100) → "One Hundredth"
SpellNumberTH (1) → "First"
SpellNumberTH (-32.123) → "Thirty Second"
SpellNumberTH (0) → "Zeroth"
SpellNumberTH (1000000) → "One Millionth"

Related Functions

‘SpellCurrency’ spells out a number using “dollars” and “cents”. ‘SpellNumber’ spells out a nu
ber.

10-68 Using Functions

 .
 .

 .

lations

.
SQRT (number)

The ‘SQRT’ function returns the positive square root of number. Number must be greater than or
equal to zero.

Examples

Sqrt (16) → 4
Sqrt (0.1) → 0.316227766
Sqrt (2) → 1.414213562
Sqrt (0) → 0

Related Functions

The exponentiation operator (^) raises a number to a given exponent.

STDEV (number1, number2, ...)

The ‘STDev’ function returns the sample standard deviation, s, of number1, number2, and so on.
‘STDev’ calculates the standard deviation for data sets constituting samples taken from popu
of interest. The value returned is calculated as follows:

It’s the positive square root of the sample variance. See ‘Var.’

Any number of parameters can be specified.

Examples

StDev (3.74, 3.89, 4.00, 3.68, 3.69) → 0.1398
StDev (9.3455) → 0
StDev (40, 30, 50, 15, 5) → 18.235

If ages is a column cell with rows that contain the values 28, 31, 27, 29, 45, and 24, then

StDev (ages) → 7.393691004

Related Functions

‘Var’ calculates the sample variance of a group of numbers. ‘PVar’ and ‘PSTDev’ calculate the
population variance and population standard deviation, respectively, of a group of numbers.
‘Range’ calculates the range of a group of numbers.

SUFFIXCOUNT (name)

The ‘SuffixCount’ function returns the number of suffixes in name. If name contains no suffixes,
‘SuffixCount’ returns 0.

s = s 2

Using Functions 10-69

 .
 .

 .

er of

. If

f’

ram-

, and
.

Examples

SuffixCount (ToName ("Antonio Salieri, B.Mus.")) → 1
SuffixCount (ToName ("Marsha")) → 0
SuffixCount (ToName ("A. E. Forrester, O.C., Q.C, M.Ed., B.Ed."))
→ 4

Related Functions

‘MiddleCount’ returns the number of middle names in a name. ‘PrefixCount’ returns the numb
prefixes in a name. ‘SuffixOf’ returns a given suffix of a name.

SUFFIXOF (name, number)

The ‘SuffixOf’ function returns a text value containing a suffix of name. The value of number deter-
mines which suffix is returned. If number is 1, the first suffix is returned; if number is 2, the second
suffix is returned, and so on. If number is 0, then all suffixes, separated by spaces, are returned
name doesn’t contain the suffix identified by number, ‘SuffixOf’ returns the empty value.

Examples

SuffixOf (ToName ("Ms. Susan Patricia Anderson, O.C., Ph.D."), 1)
→ "O.C."
SuffixOf (ToName ("Hon. Mr. Justice S. Edge, L.L.B., B.Sc."), 2)
→ "B.Sc."

If herName contains the name value Ms. Sandra Susan Joan Wright, R.N., then

SuffixOf (herName, SuffixCount (herName)) → "R.N."

Related Functions

‘LastOf’ returns the last name of a name. ‘FirstOf’ returns the first name of a name. ‘MiddleO
returns a given middle name of a name. ‘PrefixOf’ returns a given prefix of a name.

SUM (number1, number2, ...)

The ‘Sum’ function returns the sum of the numbers in its list of parameters. Any number of pa
eters can be specified.

Examples

Sum (45) → 45
Sum (-3, 0, 4.5) → 1.5
Sum (-2, -5, -9) → -16

If receipts is a column cell with 5 rows that contain the values 998.00, 750.00, 515.50, 222.95
800.05, then

Sum (receipts) → 3286.50

10-70 Using Functions

 .
 .

 .

. Any

nd -

ly,

g

 box
.
Related Functions

‘SumSQ’ returns the sum of squares of a group of numbers.

SUMSQ (number1, number2, ...)

The ‘SumSQ’ function returns the sum of the squares of the numbers in its list of parameters
number of parameters can be specified.

Examples

SumSq (45) → 2025
SumSq (-3, 0, 4.5) → 29.25
SumSq (-2, -5, -9) → 110

If rangeData is a column cell with 5 rows containing the values 2.345, 1.239, 0.045, -1.852, a
0.099, then

SumSq (rangeData) → 10.4759

Related Functions

‘Sum’ returns the sum of a group of numbers.

TAN (number)

The ‘Tan’ function returns the tangent of number. Number must be an angle in radians.

Examples

Tan (0) → 0
Tan (Pi) → 0
Tan (3* π/4) → -1

Related Functions

‘ATan’ is the inverse of the ‘Tan’ function. ‘Sin’ and ‘Cos’ return the sine and cosine, respective
of a number.

TEMPLATEID

The ‘TemplateID’ function returns the unique template ID from the Template Information dialo
box for the current template.

TEMPLATENAME

The ‘TemplateName’ function returns the template name from the Template Information dialog
for the current template.

Using Functions 10-71

 .
 .

 .

ia-

 box
sion

ay-

d

xam-
one day
.

TEMPLATEREVISION

The ‘TemplateRevision’ function returns the revision number from the Template Information d
log box for the current template.

TEMPLATESTATUS

The ‘TemplateStatus’ function returns the current status from the the Revision Options dialog
for the current template. The Informed Filler user can view this information by using the Revi
Status command.

TERM (pv, fv, pmt, rate[, BEGIN or END])

The ‘Term’ function returns the term of an investment given the present value, future value, p
ment amount, and interest rate. See ‘PV.’

TIMEFORM (time, format)

The ‘TimeForm’ function formats the time value time using the format specified in the text value
format. The resulting text value is returned. For an explanation of time formats, see Time.

Examples

TimeForm (ToTime ("4:6:59"), "0H:0M:0S") → "04:06:59"
TimeForm (ToTime ("23:34:56"), "H:MM AM") → "11:34 PM"
TimeForm (ToTime ("2:07 PM"), "H24:MM") → "14:07"
TimeForm (ToTime ("5:06:09"), "H:M:S") → "5:6:9"

Related Functions

‘CharForm’ formats a text value, ‘DateForm’ formats a date, ‘NameForm’ formats a name, an
‘NumForm’ formats a number.

TIMESPAN (date1, time1, date2, time2)

The ‘TimeSpan’ function returns the number of seconds between two date/time values. The e
ple below shows the number of seconds between the current time today, and the same time
later.

Examples

TimeSpan (Today, Now, AddDays(Today, 1), Now) → 86400

10-72 Using Functions

 .
 .

 .

able
ored

 the

e if
 see

ively.

-
ma-
e
.
TOBOOLEAN (value)

The ‘ToBoolean’ function converts a text or numeric value to a boolean value. The following t
shows which text values are converted to which boolean values. Upper and lower case is ign
when a text value is compared with those in the table.

Converting Text Values to Boolean Values

When you try to convert a text value not listed above to a boolean value, Informed will return
empty value.

When you convert a numeric value to a boolean value, the resulting boolean value will be Tru
the numeric value is non-zero; False otherwise. For more information about type conversion,
Type conversion. For a description of the boolean cell type, see Boolean.

Examples

ToBoolean ("on") → True
ToBoolean (75.35) → True
ToBoolean ("F") → False
ToBoolean ("75.35") → Empty value

Related Functions

The ‘ToText,’ ‘ToNumber,’ ‘ToDate,’ ‘ToTime,’ ‘ToName,’ ‘ToPicture,’ and ‘ToSignature’ func-
tions convert values to text, number, date, time, name, picture, and signature values respect

TODATE (value)

The ‘ToDate’ function converts a text value to a date value. The value parameter can be any text
value that represents a valid date. The format of value can be any date format that Informed recog
nizes. If value doesn’t represent a valid date, ‘ToDate’ returns the empty value. For more infor
tion about type conversion, see “Type Conversion.” For a description of the date cell type, se
“Date.”

Text Value Converts To

“True”
“T”
“False”
“F”
“Yes”
“Y”
“No”
“N”
“On”
“Off”

True
True
False
False
True
True
False
False
True
False

Using Functions 10-73

 .
 .

 .

-
ec-

calcu-

s.
.

Examples

ToDate ("1/1/90") → January 1, 1990
DayOf (ToDate ("May 23 80")) → 23
ToDate ("abcdefg") → Empty value

If the current year is 1991, then

ToDate ("Oct 3") → October 3, 1991

Related Functions

The ‘ToText,’ ‘ToNumber,’ ‘ToBoolean,’ ‘ToTime,’ ‘ToName,’ ‘ToPicture,’ and ‘ToSignature’ func
tions convert values to text, number, boolean, time, name, picture, and signature values resp
tively.

TODAY

The ‘Today’ function returns the current date. The current date is returned whenever the cell
lation, default formula, or check formula containing the ‘Today’ function is calculated.

Examples

If the current date is September 15, 1991, then

Today → September 15, 1991
MonthOf (Today) → 9
DayOf (Today) → 15

Related Functions

The ‘Now’ function returns the current time.

TOKENIZE (text, delimiter)

This function searches for the delimiter in the text, and breaks the input up into individual phrase
The phrases are collected and returned as a column value.

Examples

Tokenize ("123-456-789", "-") → {"123", "456", "789"}
Tokenize ("These are words", " ") → {"These", "are", "words"}

Related Functions

None.

10-74 Using Functions

 .
 .

 .

-
he

name

ctively.

rts the

s-
-

ively.
.
TONAME (value)

The ‘ToName’ function converts a text value to a name value. The value parameter can be any text
value that represents a valid name. The format of value can be any name format that Informed rec
ognizes. If the ‘ToName’ function is used to calculate the value of a name cell, the format of t
displayed name depends on the format of the name cell. If value doesn’t represent a valid name,
‘ToName’ returns the empty value.

For more information about type conversion, see “Type Conversion.” For a description of the
cell type and name formatting options, see “Name.”

Examples

ToName ("Mr. John Harold Smith") → Mister John Harold Smith
ToName ("Smith, John Harold") → John Harold Smith
FirstOf (ToName ("Dr. Susan Applehoff")) → "Susan"

Related Functions

The ‘ToText,’ ‘ToNumber,’ ‘ToBoolean,’ ‘ToTime,’ ‘ToDate,’ ‘ToPicture,’ and ‘ToSignature’ func-
tions convert values to text, number, boolean, time, date, picture, and signature values respe

TONUMBER (value)

The ‘ToNumber’ function converts a text or boolean value to a numeric value. The value parameter
can be any text value that represents a valid number, or any boolean value. ‘ToNumber’ conve
boolean values True and False to the numeric values 1 and 0 respectively.

If the ‘ToNumber’ function is used to calculate the value of a number cell, the format of the di
played number depends on the format of the number cell. If value is a text value that doesn’t repre
sent a valid number, ‘ToNumber’ returns the empty value.

For more information about type conversion, see Type conversion. For a description of the number
cell type and number formatting options, see Number.

Examples

ToNumber ("514.234") → 514.234
SpellNumber (ToNumber ("101")) → "One Hundred One"

Related Functions

The ‘ToText,’ ‘ToDate,’ ‘ToBoolean,’ ‘ToTime,’ ‘ToName,’ ‘ToPicture,’ and ‘ToSignature’ func-
tions convert values to text, date, boolean, time, name, picture, and signature values respect

Using Functions 10-75

 .
 .

 .

e to a
how

 respec-
.

TOPICTURE (value)

The ‘ToPicture’ function converts the text in value to a picture value. The text value must be for-
matted according to Informed’s textual representation for pictures.

TOSIGNATURE (value)

The ‘ToSignature’ function converts the text in value to a digital signature value. The text value
must be formatted according to Informed’s textual representation for signatures.

TOTEXT (value)

The ‘ToText’ function converts a number, name, date, time, boolean, picture, or signature valu
text value. The value parameter can be any value of any type. The following table summarizes
‘ToText’ converts a value of each type to a text value.

Converting Values to Text

For information about each cell type and the available formatting options, see Cell types. For more
information about type conversion, see Type conversion.

Examples

ToText (ToDate ("December 18, 1990")) → "12/18/90"
ToText (ToName ("Smith, John Harold")) → "John Harold Smith"

If Insured is a boolean cell containing the value False, then

ToText (Insured) → "False"

Related Functions

The ‘ToDate,’ ‘ToNumber,’ ‘ToBoolean,’ ‘ToTime,’ ‘ToName,’ ‘ToPicture,’ and ‘ToSignature’
functions convert values to date, number, boolean, time, name, picture, and signature values
tively.

Original Type Convert to Text

number
name
date
time
boolean
picture
signature

using the General number format
using all name parts in full, in order with surname first
using the date format “M/D/YY”
using the time format “H:MM:SS AM”
using “True” for True and “False” for False
using an Informed-specific text format
using an Informed-specific text format

10-76 Using Functions

 .
 .

 .

-
ma-

ectively.

-
 the

.
TOTIME (value)

The ‘ToTime’ function converts a text value to a time value. The value parameter can be any text
value that represents a valid time. The format of value can be any time format that Informed recog
nizes. If value doesn’t represent a valid time, ‘ToTime’ returns the empty value. For more infor
tion about type conversion, see Type conversion. For a description of the time cell type, see Time.

Examples

ToTime ("7 15") → 7:15:00
ToTime ("2:55:12 PM") → 14:55:12
ToTime ("abcdefg") → Empty value

Related Functions

The ‘ToText,’ ‘ToNumber,’ ‘ToBoolean,’ ‘ToDate,’ ‘ToName,’ ‘ToPicture,’ and ‘ToSignature’ func-
tions convert values to text, number, boolean, date, name, picture, and signature values resp

TRANSLITERATE (text, source, destination)

The ‘TransLiterate’ function translates the input text in text on a character by character basis. Nor
mally the source and the destination will be of identical length, and will form a mapping from
input text. If a character in source exists in text, the character in text will be replaced with the char-
acter in destination at the same character position as the character in source. If the source is longer
than destination, then any extra characters in source are mapped to nothing (that is, if they exist in
text, they are deleted).

Examples

Transliterate ("encode me", "abcdefg", "ABCDEFG") → "EnCoDE mE"

Related Functions

The ‘Replace’ function.

TRIM (text)

The ‘Trim’ function removes all leading and trailing blanks from text and returns the resulting text
value. If all the characters in text are blanks, ‘Trim’ returns a text value with no characters (“”).

Examples

Trim (" Greetings from us. ") → "Greetings from us."
Trim (" Time:") → "Time:"
Trim ("Invoiced amount: ") → "Invoiced amount:"
Trim ("") → ""
Trim (" ") → ""

Using Functions 10-77

 .
 .

 .

ters in

mal

.

t
 text

.

.

Related Functions

‘Delete’ deletes a group of characters from a text value. ‘Replace’ replaces a group of charac
a text value with another group of characters.

TRUNC (number, decimals)

‘Trunc’ truncates a number by deleting any significant digits after a specified number of deci
places.

Examples

Trunc (Cell1,2) → 123.4567, 123.45

Related Functions

None.

UPPER (text)

The ‘Upper’ function converts all letters in text to upper case. The resulting text value is returned

Examples

Upper ("Serial #: 146a889x") → "SERIAL #: 146A889X"
Upper ("") → ""
Upper (True) → "TRUE"
Upper ("tHiS iS hArD tO rEaD!!") → "THIS IS HARD TO READ!!"

Related Functions

‘Lower’ converts a text value to lower case. ‘UpperFirst’ converts the first character of the firs
word of a text value to upper case. ‘UpperWords’ converts the first character of all words in a
value to upper case.

UPPERFIRST (text)

The ‘UpperFirst’ function converts the first character of each sentence in text to upper case, where a
sentence is a number of words terminated by a period (.). The resulting text value is returned

Examples

UpperFirst ("goods RECEIVED") → "Goods RECEIVED"
UpperFirst ("2. Inventory") → "2. Inventory"
UpperFirst ("x") → "X"

10-78 Using Functions

 .
 .

 .

er-

er-

r desk

s
r

plete
.
Related Functions

‘Upper’ converts a text value to upper case. ‘Lower’ converts a text value to lower case. ‘Upp
Words’ converts the first character of all words in a text value to upper case.

UPPERWORDS (text)

The ‘UpperWords’ function converts the first character of each word in text to upper case. A word is
any sequence of characters that starts text or that follows a space. The resulting text value is
returned.

Examples

UpperWords ("goods RECEIVED") → "Goods RECEIVED"
UpperWords ("2. inventory") → "2. Inventory"
UpperWords ("x") → "X"
UpperWords ("John’s car is a 240se") → "John’s Car Is A 240se"

Related Functions

‘Upper’ converts a text value to upper case. ‘Lower’ converts a text value to lower case. ‘Upp
First’ converts the first character in a text value to upper case.

USERNAME

The ‘UserName’ function returns a text value containing the user name as set by the Choose
accessory. For information about the Chooser desk accessory and its use, see your Macintosh
Owner’s Guide.

Examples

If the current name in the Chooser desk accessory is “John Smith”, then

UserName → "John Smith"

Related Functions

None.

VALIDCHOICE (value, cell)

The ‘ValidChoice’ function returns a boolean result. If value matches a choice in the list of choice
for the cell called cell, then ‘ValidChoice’ returns True; False otherwise. Informed ignores uppe
and lower case when it compares value with each choice in the choices list.

You enter a cell’s list of choices using the Choices command in the Settings menu. For a com
explanation of choices and the Choices command, see Choices.

Using Functions 10-79

 .
 .

 .

”,

s

-

h row.

riance
.

Examples

If Terms is a cell that has the choices, “Cash”, “On account”, “Net 30 days”, and “Net 60 days
then

ValidChoice ("cash", Terms) → True
ValidChoice ("free", Terms) → False

The most common use of ‘ValidChoice’ is to check if the value entered in a cell is in that cell’
choice list. To do this, pass the name of the cell in both value and cell.

ValidChoice (Terms, Terms)

The value in Terms is compared with the choices for the same cell. If a match is found, ‘Valid
Choice’ returns True; False otherwise.

Related Functions

‘Choices’ returns a columnar text value containing the choices for a particular cell, one in eac

VAR (number1, number2, ...)

The ‘Var’ function returns the sample variance, s2, of number1, number2, and so on. VAR calculates
the variance for data sets constituting samples from populations of interest. The population va
of N samples is calculated as follows:

where is the arithmetic mean of the numbers:

Any number of parameters can be specified.

Examples

Var (3.74, 3.89, 4.00, 3.68, 3.69) → 0.01955
Var (9.3455) → 0
Var (40, 30, 50, 15, 5) → 332.5

If ages is a column cell with rows that contain the values 28, 31, 27, 29, 45, and 24, then

Var (ages) → 54.666666667

s
2 =

number1 − X()
2

+ number2 − X()
2

+ … + numberN − X()
2

N − 1

X

X = number1 + number2 + … + numberN
N

10-80 Using Functions

 .
 .

 .

’ cal-
num-

ast-

 suc-
ch is

hey
.
Related Functions

‘STDev’ calculates the sample standard deviation of a group of numbers. ‘PVar’ and ‘PSTDev
culate the population variance and population standard deviation, respectively, of a group of
bers. ‘Range’ calculates the range of a group of numbers.

WEEKOFYEAR (date)

The ‘WeekOfYear’ function returns an integer describing the week of the year represented indate.
The integer returned is in the range 1 to 53.

Examples

WeekOfYear (ToDate ("01/01/90")) → 1
WeekOfYear (ToDate ("Dec 31, 1984")) → 53
WeekOfYear (ToDate ("Dec 31, 1985")) → 53
WeekOfYear (MakeDate (8, 6, 1989)) → 23

If the current year is 1989, then

WeekOfYear (ToDate ("Apr 25")) → 17

Related Functions

‘DayOfYear’ returns the day of year in a date. ‘DayOfWeek’ returns the weekday of a date. ‘L
DayofMonth’ returns a date value which is the last day of the month represented in a date.

WHICHMEMBER (target, value1, value2, ...)

The ‘WhichMember’ function tries to match “target” against each of the other parameters. If a
cessful match is found, ‘WhichMember’ returns the index of the first matched value. If no mat
found, ‘WhichMember’ returns null.

Examples

WhichMember (True, 1=4, 5>8, 9<3) → NULL
WhichMember ("5", 1*5, "6", "8") → 1
WhichMember (Pi, 3.1543, π, 4.3522, 3.1234) → 2

Related Functions

‘Member’ returns True if target equals any of value1, value2, and so on.

WITHIN (value, startValue, endValue)

The ‘Within’ function is a boolean function. It returns the value True if value is between startValue
and endValue, inclusive. All three parameters to the ‘Within’ function must be the same type. T
can be numbers, dates, times, text, or boolean values. If value is less than startValue, or if value is

Using Functions 10-81

 .
 .

 .

e

t Sun-
 a
s
.

greater than endValue, then ‘Within’ returns the value False; otherwise, ‘Within’ returns the valu
True.

Informed uses the standard comparison operators to compare value with startValue and endValue.
See Comparison operators for information about how each type of value is compared.

Examples

Within (-1, 99, 105) → False
Within (ToDate ("Oct. 3, 1989"), ToDate ("01/01/90"),
ToDate ("Oct. 5, 1990")) → False
Within (ToTime ("1:30 PM"), ToTime ("13:30:00"),
ToTime ("2:30 PM")) → True
Within ("actuary", "Sensible", "Tourist") → False
Within ("actuary", "actually", "sensible") → True

Related Functions

‘Between’ returns True if a value is between two other values, non-inclusive.

WORKDAYS (date1, date2, mask)

The ‘WorkDays’ function returns the number of working days between two dates date1 and date2.
Mask indicates which of the days of the week are working days, and which are days off. Mask must
consist of the characters “SMTWTFS”, in that order, in either upper or lower case. Starting a
day, and going through Saturday, each character in mask indicates a work day with upper case and
day off with lower case. Thus, a normal Monday through Friday work week would be given a
“sMTWTFs.”

Examples

WorkDays (ToDate("May 6, 1997"), ToDate("Jun 3, 1997"), "sMTWTFs") → 21

YEAROF (date)

The ‘YearOf’ function returns the year represented in date.

Examples

YearOf (ToDate ("Saturday, April 25, 1964")) → 1964
YearOf (ToDate ("09/12/89")) → 1989
YearOf (ToDate ("12/26/01")) → 1901
YearOf (ToDate ("26/01/1654")) → 1654

If startDate contains the date value Aug 20, 1999, then

YearOf (startDate) → 1999

10-82 Using Functions

 .
 .

 .

n a
turns
.
Related Functions

‘DayOf’ returns the number of the day in a date. ‘MonthOf’ returns the number of the month i
date. ‘WeekOfYear’ returns the number of the week of the year in a date. ‘LastDayofMonth’ re
a date value which is the last day of the month represented in a date.

	Informed Designer
	Introduction
	Introduction
	Informed Designer
	The Informed Designer Manual Set
	About This Manual
	Conventions Used in This Manual
	Finding Information
	Notes
	Commands and Control Names
	Cross-platform Issues

	Adding Intelligence
	Adding Intelligence To Your Forms
	Overview
	Cells
	Cell Names

	Type Options
	Font, Size, and Type Style
	Auto-Shrink
	Data Color

	Entry Options
	Entry Status
	Display Only
	Shared Memorization

	Tab Order
	Tabbing in Tables
	The Tab Tool
	The Change Tab Order Command
	Quick-Tabs
	Master Page Cells
	Conditional Tabbing

	Cell Types
	Text

	Case Options
	Entry Options
	Character

	Character Format
	Default Format
	Testing Your Character Format
	Number

	Number Format
	Currency
	Auto-decimal
	Decimal style
	Displaying Zero Values
	Testing Your Number Format
	Name
	Date

	Testing Your Date Format
	Time

	Testing Your Time Format
	Boolean
	Picture
	Signature

	Indexes
	Indexing a Cell

	Calculations
	Entering a Calculation Formula

	Default Values
	Auto-incrementing Numbers
	Storing the Number in the Form Template
	Linking to Apple Event Applications

	Errors While Testing or Filling Out Forms
	Linking to Other Data Sources
	Configuring for Multiple Platforms

	Using Lookups
	How it Works
	Data Document Lookups
	Apple Event Lookups
	AppleScript Lookups
	Linking Through Data Access Plug-Ins

	Easy Configuration
	Custom Configuration
	Configuring for Multiple Platforms
	Lookup Errors

	Data Verification
	Check Formulas
	Entering a Check Formula
	Alert Dialogs and Help Messages

	Alert Dialogs
	Help Messages
	Evaluating Check Formulas

	Choices
	Editing Choice Lists

	Editing Choices
	Choice Items
	Configuring Choices for a Cell

	Cell Help
	Check Formulas and the Help Dialog

	Form Submission
	How it Works
	Apple Event Submission
	AppleScript Submission
	Submission Through Data Access Plug-Ins

	Easy Configuration
	Custom Configuration
	Configuring for Multiple Platforms

	Using the Cell Palette
	Activating the Cell Palette
	Changing Cell Names
	Using the Cell List
	Cell Attributes

	Cell Type Attributes
	Checkbox Style Attribute
	Data Entry Attributes
	Cell Commands

	Cell Report
	Testing Your Form Template
	Entering Information

	Inserting Files
	Entering Checkboxes
	Calculated Cells
	Choices
	Lookups
	Signing Forms
	Buttons
	Auto-incrementing Cells
	Changing the View Scale

	Using Digital Signatures
	Using Digital Signatures
	How Signatures Work
	Signing Plug-ins
	Signing With Informed Filler
	Signature Cells
	The Signing Service
	Display Options
	Signing Attachments
	Testing Signature Cells

	Important Precautions

	Customizing Menus
	Customizing Menus
	The Menu Bar
	Configuring a Menu
	Menu Item Types
	Built-in Commands
	Scripts
	Plug-in Commands
	Submenus
	Font, Size, and Type Style
	Document Names
	Script Names
	Record Tags
	Record List Formats
	Plug-in Command Names
	Separator Line

	Help Menus
	Printing the Menu Configuration

	Using Buttons
	Using Buttons
	Drawing Buttons
	Configuring a Button’s Action
	Built-in Commands
	Scripts
	Plug-in Commands

	Routing
	Routing
	Suggested Routes
	Suggested Routes for Multiple Platforms
	Adding, Changing, and Removing Suggested Routes
	Controlling the Data Format
	Using Mail Cells

	Form Tracking
	Form Tracking
	How it Works
	Configuring Tracking
	Configuring for Multiple Platforms

	Using the Informed Tracker Server
	Informed Tracker Server Files
	Starting Informed Tracker Server
	Configuring the Tracker Connection File
	Changing the Server Location
	Preparing a Template for Tracking
	Administering the Tracking Database

	Displaying Tracking Information
	Removing Tracking Information
	Exporting Tracking Information
	Changing the Admin Password

	Authorizing Templates
	Authorizing Form Templates
	How it Works
	Accommodating Revisions

	Verification with Informed Filler
	Authorizing and Verifying Templates:

	Distribution & Revision
	Form Template Distribution and Revision
	Background
	Overview
	How it Works
	Using Multiple Distribution Centers

	Maintaining Distribution Center Profiles
	Adding or Editing Distribution Center Profiles
	Distribution Center Profiles for Multiple Platform...
	Removing Distribution Center Profiles

	Revision Information
	Maintaining Distributed Templates
	Creating a Distributed Template
	Removing a Distribution Center
	Updating Distributed Templates

	Using Formulas
	Using Formulas
	Overview
	Operands
	Constants

	Number Constants
	Text Constants
	Boolean Constants
	Name, Date, and Time Constants
	Cell References

	Column Cells
	Functions
	Formulas as Operands

	Operators
	Arithmetic Operators
	Text Operators
	Comparison Operators
	Boolean operators
	The Column Operator

	The ‘If’ Statement
	Precedence
	Formula Result
	Type Conversion
	Type compatibility
	Automatic Type Conversion
	Type Conversion Functions

	Using Functions
	Using Functions
	Overview
	Function Parameters
	Column cell parameters

	Function Results
	Function Reference
	ABS (number)
	ACOS (number)
	ALLOF (boolean1, boolean2, ...)
	ALOG (number)
	ALOGN (number, base)
	ANYOF (boolean1, boolean2, ...)
	APPLICATION
	ASCIICHAR (number)
	ASCIICODE (character)
	ASIN (number)
	ATAN (number)
	ATTACHMENTS
	AUTHORNAME
	AUTHORORG
	BEGINSWITH (text, subText)
	BETWEEN (value, startValue, endValue)
	CEILING (number)
	CHARFORM (text, format, fromLeft, default)
	CHOICES (cell)
	CHOOSE (index, value1, value2, ...)
	COLLAPSECOLUMN (value1, value2,...)
	COLLAPSELIST (value1, value2, ...)
	COLUMN
	CONCAT (text1, text2, ...)
	CONTAINS (text, subText)
	CONVERT (number, fromUnit, toUnit)
	CONVERTTO (value, toUnit)
	COS (number)
	COUNT (value1, value2, ...)
	CREATIONDATE
	CREATIONTIME
	DATEFORM (date, format)
	DAYOF (date)
	DAYOFWEEK (date)
	DAYOFYEAR (date)
	DELETE (text, start, count)
	ENDSWITH (text, subText)
	EXTERNAL (externalName, value1, value2, ...)
	FACT (number)
	FIRSTINITIALOF (name)
	FIRSTOF (name)
	FLOOR (number)
	FRAC (number)
	FV (pv, pmt, rate, term[, Begin or End])
	GMEAN (number1, number2, ...)
	HMEAN (number1, number2, ...)
	HOUROF (time)
	IFT (expr1, expr2)
	IFTE (expr1, expr2, expr3)
	INSERT (text, start, subText)
	INT (number)
	INV (number)
	IPMT (pv, pmt, rate, term, per[, Begin or End])
	ISEMPTY (value)
	LASTDAYOFMONTH (date1)
	LASTINITIALOF (name)
	LASTOF (name)
	LEFT (text, length)
	LENGTH (text)
	LOG (number)
	LOGN (number, base)
	LOWER (text)
	MAKECOLUMN (value1, value2, ...)
	MAKEDATE (day, month, year)
	MAKELIST (value1, value2, ...)
	MAKETIME (hour, minute, second)
	MARGIN (cost, selling)
	MARKUP (cost, selling)
	MAX (number1, number2, ...)
	MDBAL (cost, salvage, life, term[, factor])
	MDBALVALUE (cost, salvage, life, term[, factor])
	MEAN (number1, number2, ...)
	MEDIAN (number1, number2, ...)
	MEMBER (target, value1, value2, ...)
	MID (text, start, length)
	MIDDLECOUNT (name)
	MIDDLEINITIALSOF (name)
	MIDDLEOF (name, number)
	MIN (number1, number2, ...)
	MINUTEOF (time)
	MODIFYDATE
	MODIFYTIME
	MONTHOF (date)
	NAMEFORM (name, format)
	NOW
	NPV (rate, columnCell[, BEGIN or END])
	NUMBERTH (number)
	NUMFORM (number, format, currency)
	ONEOF (boolean1, boolean2, ...)
	PAGE
	PAGECOUNT
	PART
	PARTCOUNT
	PARTLABEL (label1, label2, label3, ...)
	PBONDPRICE (face, rate, yield)
	PBONDYIELD (price, face, rate)
	PLATFORM
	PMT (pv, fv, rate, term[, BEGIN or END])
	POS (subText, text)
	PPMT (pv, pmt, rate, term, per[, BEGIN or END])
	PREFIXCOUNT (name)
	PREFIXOF (name, number)
	PRINCIPAL (pv, pmt, rate, term, per[, BEGIN or END...
	PRINTDATE
	PRINTTIME
	PSTDEV (number1, number2, ...)
	PVAR (number1, number2, ...)
	RANDOM (min, max)
	RANGE (number1, number2, ...)
	RATE (pv, fv, pmt, term[, BEGIN or END])
	REPEAT (text, count)
	REPLACE (text, start, count, subText)
	RIGHT (text, length)
	ROUND (number, decimals)
	ROW
	ROWCOUNT (columnCell)
	RUNNINGTOTAL (startValue, columnCell)
	SECONDOF (time)
	SENDDATE
	SENDTIME
	SIGN (number)
	SIN (number)
	SPELLCURRENCY (number, decimals)
	SPELLNUMBER (number)
	SPELLNUMBERTH (number)
	SQRT (number)
	STDEV (number1, number2, ...)
	SUFFIXCOUNT (name)
	SUFFIXOF (name, number)
	SUM (number1, number2, ...)
	SUMSQ (number1, number2, ...)
	TAN (number)
	TEMPLATEID
	TEMPLATENAME
	TEMPLATEREVISION
	TEMPLATESTATUS
	TERM (pv, fv, pmt, rate[, BEGIN or END])
	TIMEFORM (time, format)
	TIMESPAN (date1, time1, date2, time2)
	TOBOOLEAN (value)
	TODATE (value)
	TODAY
	TOKENIZE (text, delimiter)
	TONAME (value)
	TONUMBER (value)
	TOPICTURE (value)
	TOSIGNATURE (value)
	TOTEXT (value)
	TOTIME (value)
	TRANSLITERATE (text, source, destination)
	TRIM (text)
	TRUNC (number, decimals)
	UPPER (text)
	UPPERFIRST (text)
	UPPERWORDS (text)
	USERNAME
	VALIDCHOICE (value, cell)
	VAR (number1, number2, ...)
	WEEKOFYEAR (date)
	WHICHMEMBER (target, value1, value2, ...)
	WITHIN (value, startValue, endValue)
	WORKDAYS (date1, date2, mask)
	YEAROF (date)

	Using Informed Number Server
	Using Informed Number Server
	Overview
	Configuring Informed Number Server
	Registering Informed Number Server
	The Informed Number Server Window
	Number Server Data
	Administration Capabilities
	Changing the Administration Password
	Adding, Changing, and Removing Form Numbers
	Important Precautions
	Quitting the Number Server Application

	Using AppleScript
	Using AppleScript
	Overview
	Entering and Editing Scripts
	Writing Scripts
	Objects, Properties, and Containment

	Application
	Window
	Collection
	Record
	Cell
	Element
	Menu
	Menu Item
	Getting and Setting Data
	Documents
	Working With Records
	Cells and Elements
	Menus
	Printing
	Importing and Exporting
	Mail

	Informed 4D Externals
	Informed 4D Externals
	Overview
	How it Works

	Form Submission
	Lookups
	Supporting Informed Number Server
	System Requirements

	Using the INF_FILL External
	Using 4th DIMENSION Version 3.x and the 4D SERVER
	Installing the External
	Accepting Apple Events

	Polling the Apple Event Queue
	Linking Forms

	Required and Unique Fields
	Relational Files
	Subfields
	Data Types
	Processing Apple Events

	Processing Insert Events
	Processing Lookup Events
	Sending Errors Back to Informed Filler
	Coordinating Interaction

	Current Selection and Current Record
	Transactions
	Quick Start

	Using the INF_NS_Client External
	Installing the External
	Modifying Your 4th DIMENSION Application

	Identifying the Number Server Application
	Determining the Available Form Numbers
	Requesting a New Form Number
	Error Codes

	Appendix A Names
	Appendix A - Name Prefixes and Suffixes

	Appendix B
	Appendix B - Built-in Commands

