
 

Adobe Developer Support

 

345 Park Avenue
San Jose, CA 95110-2704

408-536-9000
FaxYI: 206-628-5737

ada@adobe.com

 

http://partners.adobe.com

 

October 2003

 

bbc

 

Photoshop

 

®

 

 CS 
JavaScript 
Reference Guide



 

ii

 

Adobe® Photoshop® CS JavaScript Reference Guide

 

© Copyright 2000 – 2003 Adobe Systems Incorporated.
All Rights Reserved.

Adobe, ImageReady, Photoshop, Adobe Type Manager, ATM and PostScript are trademarks of Adobe Systems Incorporated 
that may be registered in certain jurisdictions. Microsoft, Visual Basic, Windows, Windows 95, Windows 98, and Windows 
NT are registered trademarks of Microsoft Corporation. All other products or name brands are trademarks of their respective 
holders.

The information in this document is furnished for informational use only, is subject to change without notice, and should not 
be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or 
liability for any errors or inaccuracies that may appear in this document. The software described in this document is furnished 
under license and may only be used or copied in accordance with the terms of such license.



 

Chapter 1: Introduction ................................................................................. 1

Chapter 2: Creating User Interface Elements ............................................ 9

 

Types of Interface Elements ........................................................ 9
JavaScript UI Interface ............................................................... 10
JavaScript UI Example ............................................................... 24
JavaScript UI Reference.............................................................. 30

 

Chapter 3: Platform Interface ..................................................................... 43

 

File and Folder Objects............................................................... 43
Scriptable properties and methods .......................................... 50
Error messages ............................................................................ 64
Supported encoding names....................................................... 65

 

Chapter 4: JavaScript Debugging .............................................................. 69

 

The Debugger Window.............................................................. 70
The Debugger Object ($) ............................................................ 77

 

Chapter 5: Utilities ........................................................................................ 81

Chapter 6: JavaScript Interface ................................................................... 87

 

ActionDescriptor......................................................................... 88
ActionList..................................................................................... 90
ActionReference .......................................................................... 92
Application .................................................................................. 94
ArtLayer ..................................................................................... 100
ArtLayers ................................................................................... 113
BitmapConversionOptions...................................................... 114
BMPSaveOptions ...................................................................... 115

 

Table of Contents



 

 JavaScript Reference Guideiv

 

Channel.......................................................................................116
Channels .....................................................................................117
CMYKColor ...............................................................................123
DCS1_SaveOptions ...................................................................124
DCS2_SaveOptions ...................................................................125
Document ...................................................................................126
DocumentInfo............................................................................134
Documents .................................................................................138
EPSOpenOptions.......................................................................139
EPSSaveOptions ........................................................................140
ExportOptionsIllustrator..........................................................141
GalleryBannerOptions..............................................................142
GalleryCustomColorOptions ..................................................143
GalleryImagesOptions..............................................................144
GalleryOptions ..........................................................................145
GallerySecurityOptions............................................................146
GalleryThumbnailOptions.......................................................147
GIFSaveOptions ........................................................................148
GrayColor...................................................................................149
HistoryState ...............................................................................150
HistoryStates..............................................................................151
HSBColor....................................................................................152
IndexedConversionOptions ....................................................153
JPEGSaveOptions......................................................................154
LabColor .....................................................................................155
LayerComp ................................................................................156
LayerComps...............................................................................157
Layers..........................................................................................158
LayerSet ......................................................................................159
LayerSets ....................................................................................162
PathItem .....................................................................................164
PathItems....................................................................................177
PathPoint ....................................................................................178
PathPointInfo .............................................................................179
PathPoints ..................................................................................180
PDFOpenOptions......................................................................181
PDFSaveOptions .......................................................................182
PhotoCDOpenOptions .............................................................183
PhotoshopSaveOptions ............................................................184



 

JavaScript Reference Guide v

 

PICTFileSaveOptions................................................................185
PICTResourceSaveOptions......................................................186
PixarSaveOptions......................................................................187
PNGSaveOptions ......................................................................188
Preferences .................................................................................189
PresentationOptions .................................................................193
RawFormatOpenOptions.........................................................194
RawSaveOptions .......................................................................195
RGBColor ...................................................................................196
Selection......................................................................................197
SGIRGBSaveOptions ................................................................205
SolidColor...................................................................................206
SubPathInfo................................................................................207
SubPathItem...............................................................................208
SubPathItems .............................................................................209
TargaSaveOptions.....................................................................210
TextFont......................................................................................211
TextFonts ....................................................................................212
TextItem......................................................................................213
TiffSaveOptions.........................................................................217
xmpMetadata.............................................................................218

 

Chapter 7: JavaScript Syntax .....................................................................219

 

Core JavaScript Language Features........................................220
Data Types .................................................................................222
Functions ....................................................................................232
Predefined variables and functions........................................234
Predefined Core Objects...........................................................235
Conditionals and Loops ...........................................................236
Making code readable: the 

 

with

 

 statement ............................241
Dealing With Exceptions..........................................................242
Coding conventions ..................................................................244

 

Index ..............................................................................................................245



 

 JavaScript Reference Guidevi



 

1

 

1

 

Introduction

 

This reference guide describes the objects and commands in the Adobe® Photoshop® CS 
JavaScript type library. In addition to this Introduction, it includes the following sections:

• Chapter 2 -- Describes how to create user interface elements using JavaScript
• Chapter 3 -- Describes how to use File and Folder objects to abstract platform interfaces
• Chapter 4 -- Describes Debugging tools and techniques
• Chapter 5 -- Describes how to use Action Manager within JavaScripts
• Chapter 6 -- Describes the classes, properties and methods of the JavaScript interface
• Chapter 7 -- Describes the fundamental syntax of JavaScript

 

JavaScript Sample Code

 

Whenever possible, JavaScript code samples are used to give real-world context to the topics 
under discussion. Many of these examples do not necessarily show the most efficient way to 
construct a JavaScript statement, but they are written to be easy to read and understand. Error 
checking code, for example, is brief in most of the examples—the point is to show you how to 
address and work with the Photoshop objects. Many of the examples may be combined to make 
scripts with greater functionality.

 

Photoshop’s object model

 

As an aid to understanding how many of the most important classes available in Photoshop relate 
to each other, a brief description of the Object Model is given. A good understanding of 
Photoshop’s object model will improve your scripting abilities. 

In the object model illustrated below, the Photoshop Application object sits at the top of the 
containment hierarchy. The Document object, directly below the Photoshop application, is the 
active object you are working with and the gateway to the main components of the Photoshop 
object model. 



 

 JavaScript Reference Guide2

 

The Document class is used to make modifications to the document image. By using the 

 

Document

 

 
object you can crop, rotate or flip the canvas, resize the image or canvas, and trim the image. You 
could also use the 

 

Document

 

 object to get the active layer, for example, save the current document, 
then copy and paste within the active document or between different documents. 

 

Selection Class

 

The Selection class is used to specify an area of pixels in the active document (or in a selected layer 
of the active document) that you want to work with.

 

Channel Class

 

The Channel class is used to store pixel information about an image’s color. Image color 
determines the number of channels available. An RGB image, for example, has four default 
channels: one for each primary color and one for editing the image. You could have the red 
channel active in order to manipulate just the red pixels in the image, or you could choose to 
manipulate all the channels at once. 

These kinds of channels are related to the document mode and are called “component channels. In 
addition to the component channels, Photoshop lets you to create additional channels. You can 
create a “spot color channel”, a “masked area channel” and a “selected area channel.”

Using the methods of a Channel object, you can create, delete and duplicate channels or retrieve a 
channel's histogram and change its kind or change the current channel selection. 

Application

Document

Art LayerChannel

Histogram

Selection History
State

Document
Info

Object Model Classes 

Array Text Item

Layer Set

Layer Set Art Layer 



 

JavaScript Reference Guide 3

 

Layer Classes

 

Photoshop has 2 types of layers: an 

 

art layer 

 

that can contain image contents and a 

 

layer set

 

 
that can contain zero or more art layers. 

An Art Layer is a layer class within a document that allows you to work on one element of an 
image without disturbing the others. Images are typically composed of multiple layers (see Layer 
Set, below). You can change the composition of an image by changing the order and attributes of 
the layers that comprise it. 

A Text Item is a particular type of art layer that allows you to add type to an image. In Photoshop, 
a 

 

text

 

 item is implemented as a property of the art layer. 

A Layer Set is a class that comprises multiple layers. Think of it as a folder on your desktop. Since 
folders can contain other folders, a layer set is recursive. That is, one layer set may call another 
layer set in the Object Model hierarchy.

 

History Class

 

The History class is a palette object that keeps track of changes made to a document. Each time 
you apply a change to an image, the new state of that image is added to the palette. These states 
are accessible from document object and can be used to reset the document to a previous state. A 
history state can also be used to fill a selection.

In AppleScript, if you create a document and then immediately try to get history state, Photoshop 
returns an error. You must first activate Photoshop -- make it the front-most application -- before 
you can access history states. 

 

Document Info Class

 

The Document Info class stores metadata about a document. Metadata is any data that helps to 
describe the content or characteristics of a file.

Not shown in the Object Model are collections. A collection is a convenient way of grouping 
classes. Not all classes are associated with a collection. 



 

 JavaScript Reference Guide4

 

Additional Containment Classes

 

In addition to the classes described in the Object Model, other classes allow you to open and save 
objects in various formats and to specify color options. 

 

Solid Color Classes

 

In Visual Basic and JavaScript, the 

 

SolidColor

 

 object handles all colors. The solid color classes 
available in Photoshop are illustrated below. 

Save Classes

Open Classes Open
Options

Generic
PDF

Generic
EPSRawPhoto CD

Save
Options

Photoshop BMP GIF EPS JPEG PDF Pict
File

Pict
Resource

Pixar PNG TIFF Raw DSC1 DSC2
SGI
RGB Targa

RGB
Color

CMYK
Color

Grey
Color

HSB
Color

Lab
Color

No
Color

Solid
Color

Color Classes



 

JavaScript Reference Guide 5

 

New in Photoshop CS

 

This section gives a brief overview of some important new JavaScript additions to the 
Photoshop application.

 

User Interface Elements

 

A JavaScript framework for creating User Interface (UI) elements is now included in 
Photoshop CS. 

This framework allows developers to use JavaScript to create UI components such as windows, 
panels, buttons, checkboxes and so on. The framework -- called the 

 

scripting user interface

 

 -- is 
built as an abstraction layer on top of the windowing framework provided by the host platform on 
which Photoshop CS is running. Both Windows and MAC OS X native windowing systems are 
supported.  For more information, see Chapter 2, Creating User Interface Elements.

 

File and Folder Methods

 

The following three new File and Folder methods allow users to interact with files using dialogs. 

 

selectDialog (prompt, preset);
openDialog (prompt, select);
saveDialog (prompt, select);

 

 For more information, see Chapter 3, Platform Interface.

 

User HOME directory (folder) shorthand character: “~” 

 

You can now reference a file in a script that is stored in your home directory folder regardless of 
which platform the script is running on. For example: 

 

var fileRef = new File("~/custdata.cfg"); 

 

Depending on the platform, 

 

fileRef’s 

 

system-local path (

 

.fsName

 

) would look something like: 

 

(Mac) "Mac OS 10.2:Users:

 

username

 

: custdata.cfg" 
(Win) "C:\Documents and Settings\

 

username

 

\custdata.cfg" 
(Unix) "/home/

 

username

 

/custdata.cfg" 

 

 For more information, see Chapter 3, Platform Interface.

 

New Preprocessing Statements

 

Several new commands have been added to the functionality available for JavaScript in a 
Photoshop context. These statements, specific to Adobe products, are not part of standard 



 

 JavaScript Reference Guide6

 

JavaScript but will enhance your ability to take advantage of Photoshop features. These directives 
are embedded in JavaScript comments and are as follows:

 

//@includepath <pathSpecification>

 

The path or paths which the JavaScript interpreter will “walk” looking for a script specified in a /
/@include statement. If using //@includepath, the name of the script provided in the //@include 
statement should either be the name only without path qualifier or with a relative path. Multiple 
paths can be provided, separated by semi-colons. Given this:

 

//@includepath "~;../../FolderTwoLevelsUp"
//@include "jsLibrary.js"
//@include "libraries/otherLibrary.js"

 

The interpreter will search for jsLibrary.js in:

• The current working directory;
• The user’s HOME directory ( ‘~’ );
• The directory/folder ‘FolderTwoLevelsUp’ two levels up from the current working 

directory;

‘otherLibrary.js’ will be searched for in the same way, except that the directory/folder ‘libraries’ 
must be found in one of the search locations. The first match encountered will be loaded, so care 
must be taken when specifying the search order to ensure that the intended version of the file is 
found first.

 

//@include fileSpecification

 

The relative or fully qualified path/scriptname to include. The script is included inline into the 
active script, so care must be taken to ensure that variable names and function definitions in the 
included script do not collide with the active script. Inclusion occurs before the active script is 
evaluated. Note that lines numbers displayed in the debugger relate to the entire composite script, 
not the original line numbers of the active and included script – again, because the included file is 
not treated as a separate module but is rather included directly inline.

 

//@show include

 

If a script has been included in the active script, its code is not shown by default in the debugger. 
This statement 



 

JavaScript Reference Guide 7

 

alert(), prompt(), confirm()

 

Although not strictly-speaking new, the following standard JavaScript built-in methods often slip 
by unnoticed by users. To compensate for this inadvertent oversight, they are presented here as a 
group. Please feel free to incorporate these methods into your scripts. 

 

// Display information in a dialog to the user
alert( "Show me the money." );

// Prompt the user for input, providing a default value.
// Returns a string, or null if cancelled
var answer = prompt( "Enter an amount:", 100 );

// Ask the user a true/false question.
// OK=true, Cancel=false
var yesOrNo = confirm( "Proceed?" );



 

 JavaScript Reference Guide8



 

9

 

2

 

Creating User Interface Elements

 

A JavaScript framework for creating User Interface (UI) elements is included in Photoshop CS. 

This framework allows developers to use JavaScript to create UI components such as windows, 
panels, buttons, checkboxes and so on. The framework -- called the 

 

scripting user interface

 

 -- is 
built as an abstraction layer on top of the windowing framework provided by the host platform on 
which Photoshop CS is running. Both Windows and MAC OS X native windowing systems are 
supported. 

The motivation behind the creation of this scripting user interface was twofold: 

• To enable JavaScripts to create dialogs and interact with controls. This satisfies a 
fundamental need on the part of developers to create parameterized scripts, whose actions 
can be controlled more directly by the end user.

• To extend the JavaScript environment to allow scripts to create UI elements dynamically. In 
this way, developers can create specialized interactive access to an application’s 
functionality. 

 

Types of Interface Elements

 

The following type of window is supported:

•

 

dialog

 

 -- a modal dialog box. Photoshop CS supports 

 

modal dialogs

 

 only. Modeless 
dialogs, such as palettes, are 

 

not

 

 supported. 

The following controls and UI elements are supported:

• Panels (frames) -- (classname 

 

Panel

 

) a container to group and organize other control types 
• Push buttons -- (classname 

 

Button

 

) a button containing a text string
• Radio buttons-- (classname 

 

RadioButton

 

) a dual-state control, usually grouped with other 
radio buttons, only one of which is set

• Checkbox buttons -- (classname 

 

Checkbox

 

) a dual-state control showing a checked box (if 
true) or an empty box (if false)



 

 JavaScript UI Interface Introduction10

 

• Edit text -- (classname 

 

EditText

 

) an text field that the user 

 

can

 

 change.
• Static text -- (classname 

 

StaticText

 

) a text field that the user 

 

cannot

 

 change
• Scrollbars -- (classname 

 

Scrollbar

 

) a standard scrollbar with a moveable element and 
stepper buttons to incrementally move the element.

• Sliders -- (classname 

 

Slider

 

) a standard slider with a moveable position indicator

In addition, the given classnames described above can used in window resource specifications to 
define controls within a window or panel. See “Creating a window using window resource 
specifications” on page 18 for more information. 

 

JavaScript UI Interface

 

This section provides a description of the scripting user interface programming model. 

 

UI Objects

 

The scripting user interface defines 

 

Window

 

 objects that wrap native windows and various control 
elements (Buttons, StaticText, etc.), which wrap simple native controls. These objects share 
common methods such as “query the element type”, “move the elements around”, and “set the 
title, caption or content”. For a complete list of properties and methods, see “JavaScript UI 
Reference” on page 30

 

Creating a window

 

To create a new window, use the 

 

Window

 

 constructor function. The constructor takes the desired 
type of the window (

 

dialog

 

) as a parameter. You can supply optional arguments to specify an 
initial window title and bounds. 

The code examples provided in the JavaScript Interface section consist of short segments from a 
complete script that is included later in this document. The examples presented build upon 
each other. 

The following example creates an empty dialog with the variable name 

 

dlg

 

. This dialog is carried 
though to subsequent examples:

 

// Create an empty dialog window near the upper left of the screen var
var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,245]);
dlg.show();



JavaScript Reference Guide  JavaScript UI Interface 11

Note: Newly created windows are initially invisible; the show() method makes them visible.

Roughly speaking, the numeric parameters to the constructor correspond to the top left and 
bottom right coordinates of the window. The bounds supplied when creating the dialog specify the 
requested size of the client area, which is the area of the dialog on which you can create controls. It 
does not include the title bar and borders around the client area. The size and position of the 
dialog as a whole are automatically adjusted to maintain the requested client area size.

For a more detailed description of window bounds, see “Element size and location” on page 11. 

Container elements

All windows are containers, which is to say they contain other elements such as panels, buttons 
and checkboxes within their boundaries. 

Within a window, you can create other types of container elements and add interface components 
to them, just like you add elements to a window (see “Adding elements” on page 12). Elements 
added to a container are considered children of that container and certain operations performed 
on a container element also apply to its children. For instance, calling the container’s hide() method 
makes the container invisible and makes all of its visible children invisible as well. 

Along the same lines, calling the container’s show() method makes the container visible as well as 
any child elements that were visible before the container was hidden. The following properties 
and methods of containers also apply to all children of that container: visible, enabled, hide(), show().

Element size and location

To set the size and location of windows and controls, use the bounds property. As is typical when 
working with window systems, the location of a window is defined as the point (pair of 
coordinates) where the top left corner of the window is specified in the screen coordinate system. 

The location of an element within a window or other container element is defined as the point 
where the top left corner of an element is specified in the window coordinate system, relative to 
the container the element lies within. Size is specified by width and height in pixels. A complete 
bounds specification therefore consists of 4 integer values which define the position of the upper 
left corner of the object and its dimensions.



 JavaScript UI Interface Introduction12

The value of the bounds property can take several forms: a string with special contents, an inline 
JavaScript “Bounds” object, or a four-element array. The following examples show equivalent 
ways of placing a 380 by 390 pixel window near the upper left corner of the screen:

var dlg = new Window(‘dialog’, ‘Alert Box Builder’, [100,100,480,490]);
dlg.bounds = [100,100,480,490];
dlg.bounds = {left:100, top:100, right:480, bottom:490};
dlg.bounds = “left:100, top:100, right:480, bottom:490”;

Note that the window dimensions define the size of the “client area” of the window, which is the 
portion of the window that an application can directly control. The actual window size will 
typically be larger, because the host platform’s window system can add title bars and borders to 
windows.

When read, the bounds property returns a Bounds object -- an array of four values representing the 
coordinates of the upper left and lower right corners of the element: [left, top, right, bottom].

Adding elements

To add elements to a window or other container, use the container’s add() method. This method 
accepts the type of the element to be created and some optional parameters, depending on the 
element type. The return value is the UI object created or null on errors. The value of the element’s 
visible property defaults to “true”. 

element is initially visible, but it will remain invisible as long as its parent object is invisible. 

A second (optional) parameter may be used to specify the initial bounds. The bounds is relative to 
the working area of its parent container. For elements which display text, the text may be specified 
as the third (optional) parameter -- other types of elements have different semantics for a third 
argument. 

For more information on the way in which each type of element interprets optional parameters, 
“JavaScript UI Reference” on page 30. These optional parameters are positional, meaning that if 
you want to specify some text for an element, but don’t care about its bounds, you must still 
provide an argument for the second parameter in order to supply a value for the third (text) 
parameter. You can ‘skip over’ a positional parameter by specifying the ‘undefined’ value as its 
argument value. In the example below, a Button element is created with an initial text value, but 
no bounds value.

dlg.btnPnl = dlg.add(‘panel’, [15,330,365,375], ‘Build it’);
dlg.btnPnl.testBtn = dlg.btnPnl.add(‘button’, undefined, ‘Test’);

Dynamically creating a property such as btnPnl to reference the control object returned by add() 
is not required, but can make it easier to later refer to the control. See “Accessing child elements” 
on page 13 for more information. 



JavaScript Reference Guide  JavaScript UI Interface 13

Creation properties

Some element types have attributes that may only -- in fact -- can only be specified when the 
element is created. These are not normal properties of the element, in that they cannot be changed 
during the element’s lifetime, and they are only needed once. For these element types, an optional 
creation properties argument may be supplied to the add() method -- this argument is an object with 
one or more properties that controls things like the element’s appearance, or special functions like 
‘read-only’ for an edit text element.

All UI elements have a creation property called name, which can be used to assign a name for 
identifying that element. In the following example, the new Button element is assigned the 
name ‘ok’:

dlg.btnPnl.buildBtn = dlg.btnPnl.add(‘button’, [125,15,225,35], ‘Build’,
{name:’ok’});

Accessing child elements

A reference to each element added to a window is appended to the window’s children property.

The children collection is an array containing every defined element, indexed from 0 to the 
number of elements minus 1. For controls or other elements that do not have children, the children 
collection is empty. 

The number of child elements in a window is equal to the value of the length property of the 
children collection. In the example below, since the ‘msgPnl’ panel was the first element created in 
dlg, the text for the panel’s title can be set as follows:

var dlg = new Window('dialog', 'Alert Box Builder',[100,100,480,245]);
dlg.msgPnl = dlg.add('panel', [25,15,355,130]);
dlg.children[0].text = 'Messages';
dlg.show();

Using creation properties, a name can be assigned to a newly created element. If this is done, a 
child can be referred to by its name. For instance, the Button in the example in the previous section 
was named ‘ok’, so the Button could now be referred to like this:

dlg.btnPnl.children[‘ok’].text = “Build”;



 JavaScript UI Interface Introduction14

An even simpler way to refer to a named child element is to use its name as a property of its parent 
element. We can also refer to the Button from the previous example like this:

dlg.btnPnl.ok.text = “Build”;

The value of an element’s internal name property is used by the scripting user interface when a 
script accesses a property of the element’s parent object that does not match any of the predefined 
properties. 

In this case, the framework searches the names of the parent element’s children to see if a match 
exists, and if so, returns a reference to the matching child object.

Types of UI Elements

This section introduces the types of user interface elements you can create within a Window or 
other type of container element.

The Panel element

The Panel element is the only type of non-window container that is currently defined. Panels are 
typically used to visually organize related controls. 

You can also use panels as separators: panels with width = 0 appear as vertical lines and panels 
with height = 0 appear as horizontal lines. When you create a Panel, you can specify an optional 
borderStyle property (used only at creation time) to control the appearance of the border drawn 
around the panel.

var dlg = new Window('dialog', 'Alert Box Builder',[100,100,480,245]);
dlg.msgPnl = dlg.add('panel', [25,15,355,130], 'Messages');
dlg.show();

The StaticText element

StaticText elements are typically used to display text strings that are not intended for direct 
manipulation by a user, like informative messages or identifying information for other elements. 
In the following example, a Panel is created, and several StaticText elements are added to it:

// sample code for section 2.6.2
var dlg = new Window('dialog', 'Alert Box Builder',[100,100,480,245]);
dlg.msgPnl = dlg.add('panel', [25,15,355,130], 'Messages');
dlg.msgPnl.titleSt = dlg.msgPnl.add('statictext', [15,15,105,35],

'Alert box title:');
dlg.msgPnl.msgSt = dlg.msgPnl.add('statictext', [15,65,105,85], 

'Alert message:');



JavaScript Reference Guide  JavaScript UI Interface 15

dlg.show();

The EditText element

EditText elements are typically used to provide a means for users to enter text to be supplied to the 
script when the dialog is dismissed. Text in EditText elements can be selected by a user and copied 
from or pasted into. The text property can be assigned to in order to display text in the element, 
and it can be read from to obtain the current text value. 

The textselection property can be assigned to in order to replace the current selection with new text, 
or to insert text at the cursor (insertion point). It can be read from to obtain the current selection, 
if any. 

Using the same panel pictured above, the example now adds some EditText elements, with initial 
values that a user can accept or replace:

var dlg = new Window('dialog', 'Alert Box Builder',[100,100,480,245]);
dlg.msgPnl = dlg.add('panel', [25,15,355,130], 'Messages');
dlg.msgPnl.titleSt = dlg.msgPnl.add('statictext', [15,15,105,35],

 'Alert box title:');
dlg.msgPnl.titleEt = dlg.msgPnl.add('edittext', [115,15,315,35], 'Sample Alert');
dlg.msgPnl.msgSt = dlg.msgPnl.add('statictext', [15,65,105,85], 'Alert message:');
dlg.msgPnl.msgEt = dlg.msgPnl.add('edittext', [115,45,315,105], 

'<your message here>', {multiline:true});
dlg.show();

Note the creation property on the second EditText field, where multiline:true is specified. 
multiline:true indicates that the text in the item should wrap to the next page. In other words, it 
specifies a field in which a long text string may be entered, and the text will wrap to appear as 
multiple lines.



 JavaScript UI Interface Introduction16

The Button element

Button elements are typically used to initiate some action from a Window when a user clicks the 
mouse pointer over the button; for example: accepting a dialog’s current settings, canceling a 
dialog, bringing up a new dialog, etc. The text property provides a label to identify a Button’s 
function:

var dlg = new Window('dialog', 'Alert Box Builder',[100,100,480,245]);
dlg.btnPnl = dlg.add('panel', [15,50,365,95], 'Build it');
dlg.btnPnl.testBtn = dlg.btnPnl.add('button', [15,15,115,35], 'Test');
dlg.btnPnl.buildBtn = dlg.btnPnl.add('button', [125,15,225,35],

 'Build', {name:'ok'});
dlg.btnPnl.cancelBtn = dlg.btnPnl.add('button', [235,15,335,35], 

'Cancel', {name:'cancel'});
dlg.show();

The Checkbox element

Checkbox elements are typically used to set the state of a Boolean variable in a script. A Checkbox is 
similar to a Button; it can be clicked by a user, and it has a text property to specify an identifying 
text string that appears next to the box. 

When it is clicked, it changes its appearance, either showing a checkmark in the box area, or 
showing an empty box. When the checkmark appears, the state of the value property is true, and 
when the box is empty, the state of the value property is false. When you create a Checkbox, you can 
set its value property to specify its initial state and appearance.

//Add a checkbox to control the presence of buttons to dismiss the alert
//box
dlg.hasBtnsCb = dlg.add(‘checkbox’, [125,145,255,165], ‘Has

alert buttons?’);
dlg.hasBtnsCb.value = true;

The RadioButton element

RadioButton elements are typically used to select one choice from 2 or more choices. 



JavaScript Reference Guide  JavaScript UI Interface 17

A RadioButton is similar to a Button; it can be clicked by a user, and it has a text property to specify 
an identifying text string that appears next to the button. Like a Checkbox, it has a value property 
that has a Boolean value, representing the state of that button. 

You group a related set of RadioButtons by creating all the related elements one after another. The 
elements in a group interact with one another. Only one button’s value can be true, and its 
appearance differs from others in the same group. Setting a different button’s value property true 
changes the state of the button whose state was previously true to false. When you create a group 
of RadioButtons, you should set the state of one of them true:

var dlg = new Window('dialog', 'Alert Box Builder',[100,100,480,245]);
dlg.alertBtnsPnl = dlg.add('panel', [45,50,335,95], 'Button alignment');
dlg.alertBtnsPnl.alignLeftRb = dlg.alertBtnsPnl.add('radiobutton', 

[15,15,95,35], 'Left');
dlg.alertBtnsPnl.alignCenterRb = dlg.alertBtnsPnl.add('radiobutton',

 [105,15,185,35], 'Center');
dlg.alertBtnsPnl.alignRightRb = dlg.alertBtnsPnl.add('radiobutton',

 [195,15,275,35], 'Right');
dlg.alertBtnsPnl.alignCenterRb.value = true;
dlg.show();

The Slider element

Slider elements are typically used to select within a range of values, allowing the user to hold the 
mouse pointer down over a moveable position indicator on the slider and drag this indicator 
within the range of the slider. If you click the mouse pointer on a point on the slider bar, the 
position indicator will jump to that location. 

A Slider has a value property that reflects the position of the moveable indicator, and minvalue and 
maxvalue properties to define the endpoints of the slider’s range of values.

To make a slider control appear like those used in Photoshop, adjust the height of the control until 
the slider bar appears as a single line.

The Scrollbar element

Scrollbar elements are similar to Slider elements, in that they are often used to select within a range 
of values, and have a moveable position indicator. They have all the properties of sliders, and in 



 JavaScript UI Interface Introduction18

addition, they have ‘stepper buttons’ at each end of the scrollbar for moving the position indicator 
in fixed-size steps. 

You can control the size of each ‘step’ by setting the stepdelta property. Clicking the mouse pointer 
ahead of or behind the position indicator makes the position indicator jump a fixed number of 
values toward the point where you clicked. You can control the size of this ‘jump’ by setting the 
jumpdelta property. 

You can create scrollbars with horizontal or vertical orientation; if width is > height, the 
orientation is horizontal, otherwise it is vertical. The following example creates a Scrollbar element 
with associated StaticText and EditText elements within a panel:

dlg.sizePnl = dlg.add(‘panel’, [60,240,320,315], ‘Dimensions’);
dlg.sizePnl.widthSt = dlg.sizePnl.add(‘statictext’, [15,15,65,35], 

‘Width:’; 
dlg.sizePnl.widthScrl = dlg.sizePnl.add(‘scrollbar’, 

[75,15,195,35],300, 300, 800);
dlg.sizePnl.widthEt = dlg.sizePnl.add(‘edittext’, [205,15,245,35]);

Note that the last 3 arguments to the add() method that creates the scrollbar define the values for 
the value, minvalue and maxvalue properties. Scrollbars are often created with an associated EditText 
field to display the current value of the scrollbar, and to allow setting the scrollbar’s position to a 
specific value.

Creating a window using window resource specifications

A specially formatted string provides a simple and compact means of creating a window and its 
component elements as a resource specification. A resource specification allows you to define and 
configure multiple window components in one easy-to-reference script. 

The special string is passed as the type parameter to the Window constructor function, as follows:

// create a new dialog from a resource specification
var alertBuilderResource =

“dialog { text: ‘Alert Box Builder’, bounds:[100,100,480,490], \
msgPnl: Panel { text: ‘Messages’, bounds:[25,15,355,130], \

titleSt:StaticText { text:’Alert box title:’, \
bounds:[15,15,105,35] }, \

titleEt:EditText { text:’Sample Alert’, bounds:[115,15,315,35] }, \
msgSt: StaticText { text:’Alert message:’, \

bounds:[15,65,105,85] }, \
msgEt: EditText { text:’<your message here>’, \

 bounds:[115,45,315,105], properties:{multiline:true} } \
}, \
hasBtnsCb: Checkbox { text:’Has alert buttons?’, alignment:’center’, \

bounds:[125,145,255,165] }, \
alertBtnsPnl: Panel { text:‘Button alignment’, bounds:[45,180,335,225], \

alignLeftRb:RadioButton { text:’Left’, bounds:[15,15,95,35] }, \



JavaScript Reference Guide  JavaScript UI Interface 19

alignCenterRb:RadioButton { text:’Center’, \
bounds:[105,15,185,35] }, \

alignRightRb:RadioButton { text:’Right’, bounds:[195,15,275,35] } \
}, \

sizePnl: Panel { text: ‘Dimensions’, bounds:[60,240,320,315], \
widthSt:StaticText { text:’Width:’, bounds:[15,15,65,35] }, \
widthScrl:Scrollbar { minvalue:300, maxvalue:800, \

bounds:[75,15,195,35] }, \
widthEt:EditText { bounds:[205,15,245,35] }, \
heightSt:StaticText { text:’Height:’, bounds:[15,45,65,65] }, \
heightScrl:Scrollbar { minvalue:200, maxvalue:600, \

bounds:[75,45,195,65] }, \
heightEt:EditText { bounds:[205,45,245,65] } \
}, \

btnPnl: Panel { text: ‘Build it’, bounds:[15,330,365,375], \
testBtn:Button { text:’Test’, bounds:[15,15,115,35] }, \
buildBtn:Button { text:’Build’, bounds:[125,15,225,35], \

properties:{name:’ok’} }, \
cancelBtn:Button { text:’Cancel’, bounds:[235,15,335,35], \

properties:{name:’cancel’} } \
} \

}”;
dlg = new Window (alertBuilderResource);

Note: This example creates the same dialog as the complete example script described in 
“JavaScript UI Example” on page 24, using a resource specification instead of explicit calls to the 
add() method of a container element.

The general structure of a window resource specification is a Window type specification (i.e., 
“dialog”), followed by a set of braces enclosing one or more property definitions. Controls are 
defined as properties within windows and other containers by specifying the classname of the 
control in a property definition, with properties of the control enclosed in braces {}, for example: 
testBtn: Button { text: ‘Test’ }. 

Creation properties are specified in a properties property as named properties of an inline object (see 
example above). The syntax of window resource specification strings is completely described 
below.

Window resource specification syntax

The window resource specification syntax is given in BNF (Backus-Naur Form) below:

resourceSpec = ‘”’ windowTypeName inlineObject ‘”’

windowTypeName = [a modal dialog]

inlineObject = “{“ propertiesList “}”

propertiesList = propertyDefn { “,” propertyDefn }

propertyDefn = propertyName “:” propertyValue

propertyName = [a JavaScript property name]



 JavaScript UI Interface Introduction20

propertyValue = “null” | “true” | “false” | string | number 

| inlineArray |objectDefn

string = [a JavaScript string literal]

number = [any JavaScript integer or real number literal]

inlineArray = “[“ propertyValue { “,” propertyValue } “]”

objectDefn = ( namedObject | inlineObject )

namedObject = [any object classname] inlineObject

Note: To create a UI element, the classname in the namedObject definition above can be any 
element classname referred to in “Types of Interface Elements” on page 9. For example:

“dialog { \
text: ‘From Resource’, bounds: [10, 10, 210, 110], \
box: Panel { \

bounds: [10, 10, 190, 90], \
ok: Button { \

text: ‘OK’, bounds:[40, 30, 140, 50], \
} \

} \
}”;

Interacting with controls: events and event callbacks

When a script creates a window, it typically adds control elements to the window that a user 
can manipulate, for instance, by clicking a button, entering text in an edittext field, moving a 
scrollbar, etc. 

These user actions or manipulations generate events within the user interface system. The script 
that creates a window needs a way to be notified of events from that window or from controls 
within the window. The scripting user interface provides a number of event callback methods that a 
script can define as properties of any UI element that the script needs to interact with.

Each class of UI element has a set of callback methods defined for it. For windows, there are 
callbacks like onClose(), onMove(), and onResize(). For controls, callbacks vary from type to type. A 
typical callback is onClick() for button, radiobutton, and checkbox elements, and onChange() for 
edittext fields, scrollbars, and sliders.

To handle a given event for some UI element, simply define a property of the same name as the 
event callback in the element and assign a JavaScript function you have defined to it. The example 
below uses "in line" functions, which employ a unique syntax and do not require a name. 
However, you can also define the function elsewhere in the script. In that case, simply assign the 
name of the function to the event handler property. The scripting user interface calls these 
functions on event notifications if defined.



JavaScript Reference Guide  JavaScript UI Interface 21

Examples:

/*‘has buttons’ checkbox enables or disables the panel that
determines the justification of the ‘alert’ button group */
dlg.hasBtnsCb.onClick =

function () { this.parent.alertBtnsPnl.enabled = this.value; };

//The Build and Cancel buttons close this dialog
with (dlg.btnPnl) {

buildBtn.onClick =
function () { this.parent.parent.close(1); };

cancelBtn.onClick =
function () { this.parent.parent.close(2); };

};

Because event callback functions work as methods of the object in which they are defined, the 
functions have access to the object via the “this” JavaScript keyword. In the examples above, 
“this” refers to the UI object a given callback is defined in, so properties of the UI object can be 
accessed relative to the “this”. For example, because each UI object has a parent property which is 
a reference to its container object, this.parent gets you a reference to the object’s parent object. 

To elaborate further on this point, a button( ) is contained within a panel, which is contained within 
a window, all of which are ultimately closed. The progression is from smaller to larger UI moving 
from left to right.   

Also be aware that you can simulate user actions by sending an event notification directly to a UI 
element, via the element’s notify() method. In this manner, a script can generate events in the 
controls of a window, as if a user was clicking buttons, entering text, moving a window, etc. 

radiobutton and checkbox elements have a boolean value property; using notify() to simulate a click 
on these elements also changes the value of this property, just like clicking the element would do. 
For instance, if the value of a checkbox ‘hasBtnsCb’ in our example above is true, the following 
example changes the value to false:

if (dlg.hasBtnsCb.value == true)
dlg.hasBtnsCb.notify();

// dlg.hasBtnsCb.value is now false

A complete description of the different event callback methods and notify() can be found in 
the“Common Methods and Event Handlers” on page 35.

buildBtn.onClick = function () {this.parent.parent.close(1);}; 

button

panel

dialog



 JavaScript UI Interface Introduction22

Modal dialogs

A modal dialog is initially invisible. When calling its show() method, the dialog is displayed and 
starts executing. The call to show() does not return until the dialog has been dismissed, typically by 
the user clicking an OK or Cancel button.

When calling the hide() or close() methods during the execution of a modal dialog, the dialog is 
dismissed. The close() method accepts an optional argument that the call to show() returns.

Warning: You cannot use the JavaScript debugger to debug event callback functions for modal dialogs, 
because once the dialog starts executing, it captures all mouse events. Setting a breakpoint in an event 
callback function for a modal dialog will result in an apparent application hang if the breakpoint is ever 
reached.

To work around this restriction, an effective debugging technique is to create your dialog, but not call its 
show() method to make it visible. Then use the debugger to call the notify() method on controls whose event 
callback functions you wish to debug. It’s considered good design practice to keep the code in the event 
callback functions simple, while deferring the primary script logic execution until after the dialog has been 
dismissed.

Default and Cancel Elements

Modal dialogs can usually be dismissed by typing certain keyboard shortcuts. In addition to 
clicking the ‘OK’ or ‘Cancel’ buttons, typing the ‘Enter’ key normally produces the same results as 
clicking the ‘OK’ (or default) button, and typing the ‘Esc’ key is equivalent to clicking the ‘Cancel’ 
button. In each case, the keyboard shortcut is the same as if your script had called the notify() 
method for the associated Button. The dialog designer has explicit control over which Button 
elements are notified by these keyboard shortcuts: a newly-created dialog has defaultElement and 
cancelElement properties that are initially undefined. The dialog designer can set these properties 
to the objects representing the buttons that should be notified when the respective keyboard 
shortcut is typed. 

The scripting user interface provides reasonable defaults if the defaultElement and cancelElement 
properties are still undefined when the dialog is about to be shown for the first time. 

Default values for the defaultElement property are determined by the following algorithm: 

• The scripting user interface searches the dialog’s buttons for a button whose name property 
has the string value ‘ok’ (case is not important). If one is found, defaultElement is set to that 
object.

• If no matching named object is found, The scripting user interface searches the dialog’s 
buttons for a button whose text property has the string value ‘ok’ (case is not important). If 
one is found, defaultElement is set to that object.

Default value for the cancelElement property are determined by the following algorithm: 



JavaScript Reference Guide  JavaScript UI Interface 23

• The scripting user interface searches the dialog’s buttons for a button whose name property 
has the string value ‘cancel’ (case is not important). If one is found, cancelElement is set to that 
object.

• If no matching named object is found, the scripting user interface searches the dialog’s 
buttons for a button whose text property has the string value ‘cancel’ (case is not important). 
If one is found, cancelElement is set to that object.

These algorithms handle most dialog boxes without the designer having to explicitly set these 
properties. When you add buttons to a dialog that will be used to dismiss the dialog, use creation 
properties to set the name property of such buttons to ‘ok’ or ‘cancel’, depending on the desired 
semantics; this precaution makes the above algorithm work properly even when the text of such 
buttons is localized. If the scripting user interface cannot find a matching button for either case, 
the respective property is set to null, which means that keyboard shortcuts for default or cancel 
will not notify any elements.

Guidelines for creating and using modal dialogs

When your script creates a dialog, you typically create controls that the user must interact with in 
order to enter values that your script will use. In general, you can minimize the number of event 
callback functions you attach to various controls in your dialogs, unless interaction with those 
controls changes the operation of the dialog itself. In most cases where you simply want to read 
the states of various controls when the dialog is dismissed, you do not need to handle events for 
them. For instance, you often don’t need onClick() functions for every checkbox and radiobutton in 
your dialog: when the dialog is dismissed, read their states using their value properties.

Some exceptions to this guideline:

• onChange() functions are needed for edittext elements, if users enter values which must be 
validated (like a number within a range). The event callback must perform any necessary 
validation, and interact with the user on errors.

• Define onClick() for OK and Cancel buttons which close the dialog with a given value. 

Note: Perform this function only if you have not defined the defaultElement and/or 
cancelElement properties or named these buttons in such a way that they will automatically be 
identified as the "OK" and "Cancel" buttons.

Prompts and Alerts

Some JavaScript environments provide functions on the global window object to display message 
boxes or alert boxes and a prompt box that displays one or two lines of text and then allows the 
user to enter one line of text.

The scripting user interface defines functions alert(), confirm() and prompt() on the Window class 
that provides this standard functionality. The host application controls the appearance of these 
simple dialog boxes, so they are consistent with other alert and message boxes displayed by the 
application. See the “JavaScript UI Reference” on page 30 for details. 



 JavaScript UI Example Introduction24

JavaScript UI Example

Having explored the individual scripting components that make up the user interface, you are 
now ready to see the parts assembled into real-world JavaScript code that produces a fully 
functional user interface. 

The JavaScript UI code sample described below includes the following functions, which creates a 
simple user interface builder window populated with various panels, checkboxes, buttons and 
controls. When you run the builder, you can then cause it to create an Alert Box. 

• createBuilderDialog() -- Creates an empty dialog window near the upper left of the screen and 
adds a title panel, a checkbox, a control panel and a panel with buttons to test parameters 
and create the Alert Box specification.

• initializeBuilder() --Sets up initial control states and attaches event callback functions to 
controls.

• runBuilder() -- Runs the builder dialog and returns the resulting Alert Box UI
• createResource() -- Creates and returns a string containing a dialog resource specification that 

creates the Alert Box UI using the parameters entered
• stringProperty() -- Returns a formatted string
• arrayProperty() -- Returns a formatted array 
• createTestDialog() -- Creates a new Test dialog 

These functions are bundled together into a Main script, which assembles the final Alert Box 
dialog.



JavaScript Reference Guide  JavaScript UI Example 25

createBuilderDialog

Most of the heavy-lifting for visual components of the JavaScript UI code sample occurs in the 
createBuilderDialog() function, where the main components of the dialog are configured, as 
displayed below. 

function createBuilderDialog()
{

 //Create an empty dialog window near the upper left of the screen
var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,490]);

 //Add a panel to hold title and 'message text' strings
dlg.msgPnl = dlg.add('panel', [25,15,355,130], 'Messages');
dlg.msgPnl.titleSt = dlg.msgPnl.add('statictext', [15,15,105,35], 'Alert box title:');
dlg.msgPnl.titleEt = dlg.msgPnl.add('edittext', [115,15,315,35], 'Sample Alert');
dlg.msgPnl.msgSt = dlg.msgPnl.add('statictext', [15,65,105,85], 'Alert message:');
dlg.msgPnl.msgEt = dlg.msgPnl.add('edittext', [115,45,315,105], '<your message here>',
{multiline:true});

 //Add a checkbox to control the presence of buttons to dismiss the alert box
dlg.hasBtnsCb = dlg.add('checkbox', [125,145,255,165], 'Has alert buttons?');

 //Add panel to determine alignment of buttons on the alert box
dlg.alertBtnsPnl = dlg.add('panel', [45,180,335,225], 'Button alignment');
dlg.alertBtnsPnl.alignLeftRb = dlg.alertBtnsPnl.add('radiobutton', [15,15,95,35], 'Left');
dlg.alertBtnsPnl.alignCenterRb = dlg.alertBtnsPnl.add('radiobutton', [105,15,185,35], 

'Center');
dlg.alertBtnsPnl.alignRightRb = dlg.alertBtnsPnl.add('radiobutton', [195,15,275,35], 'Right');

 //Add a panel with controls for the dimensions of the alert box
dlg.sizePnl = dlg.add('panel', [60,240,320,315], 'Dimensions');
dlg.sizePnl.widthSt = dlg.sizePnl.add('statictext', [15,15,65,35], 'Width:');
dlg.sizePnl.widthScrl = dlg.sizePnl.add('scrollbar', [75,15,195,35], 300, 300, 800);
dlg.sizePnl.widthEt = dlg.sizePnl.add('edittext', [205,15,245,35]);
dlg.sizePnl.heightSt = dlg.sizePnl.add('statictext', [15,45,65,65], 'Height:');
dlg.sizePnl.heightScrl = dlg.sizePnl.add('scrollbar', [75,45,195,65], 200, 200, 600);
dlg.sizePnl.heightEt = dlg.sizePnl.add('edittext', [205,45,245,65]);

 //Add a panel with buttons to test parameters and create the alert box specification 
dlg.btnPnl = dlg.add('panel', [15,330,365,375], 'Build it');
dlg.btnPnl.testBtn = dlg.btnPnl.add('button', [15,15,115,35], 'Test');
dlg.btnPnl.buildBtn = dlg.btnPnl.add('button', [125,15,225,35], 'Build', {name:'ok'});
dlg.btnPnl.cancelBtn = dlg.btnPnl.add('button', [235,15,335,35], 'Cancel', {name:'cancel'});

return dlg;

} // createBuilderDialog

1

2

3

4



 JavaScript UI Example Introduction26

This code snippet, when broken down into smaller segments -- and run in the context of the 
entire UI sample code that follows -- produces the following succession of dialogs, which 
coalesce into one final Alert Box window.

1 

2

3

4

Final Dialog
Created 



JavaScript Reference Guide  JavaScript UI Example 27

For the final dialog to actually display, supporting code to initialize and run the Alert Box Builder 
must be included, as illustrated below. 

function initializeBuilder(builder)
{

 //Set up initial control states
with (builder) {

hasBtnsCb.value = true;
alertBtnsPnl.alignCenterRb.value = true;
with (sizePnl) {

widthEt.text = widthScrl.value;
heightEt.text = heightScrl.value;

}
}

 //Attach event callback functions to controls

 /*'has buttons' checkbox enables or disables the panel that
determines the justification of the 'alert' button group */

builder.hasBtnsCb.onClick =
function () { this.parent.alertBtnsPnl.enabled = this.value; };

 /*The edittext fields and scrollbars in sizePnl are connected */
with (builder.sizePnl) {

widthEt.onChange =
function () { this.parent.widthScrl.value = this.text; };

widthScrl.onChange =
function () { this.parent.widthEt.text = this.value; };

heightEt.onChange =
function () { this.parent.heightScrl.value = this.text; };

heightScrl.onChange =
function () { this.parent.heightEt.text = this.value; };

}

with (builder.btnPnl) {
 //The Test button creates a trial Alert box from the current specifications
testBtn.onClick =

function () {
Window.alert('Type Enter or Esc to dismiss the test Alert box');
createTestDialog(createResource(this.parent.parent));

};

 //The Build and Cancel buttons close this dialog
buildBtn.onClick =

function () { this.parent.parent.close(1); };
cancelBtn.onClick =

function () { this.parent.parent.close(2); };
};

} // initializeBuilder

function runBuilder(builder)
{

 //Run the builder dialog, return its result
return builder.show();

}

/*This function creates and returns a string containing a dialog
resource specification that will create an Alert dialog using
the parameters the user entered. */

function createResource(builder)
{

 //Define the initial part of the resource spec with dialog parameters
var dlgWidth = Number(builder.sizePnl.widthEt.text);
var dlgHeight = Number(builder.sizePnl.heightEt.text);
var res = "dialog { " +



 JavaScript UI Example Introduction28

stringProperty("text", builder.msgPnl.titleEt.text) +
arrayProperty("bounds", 0, 0, dlgWidth, dlgHeight) +
"\n";

 //Define the alert message statictext element, sizing it to the alert box
var margin = 15; var l, t;
var msgWidth, msgHeight;
var hasButtons = builder.hasBtnsCb.value;
var btnsHeightUsed = hasButtons ? 20 + margin : 0;
msgHeight = 60;
msgWidth = dlgWidth - (margin * 2);

l = margin;
t = (dlgHeight - msgHeight - btnsHeightUsed) / 2;
res += "  msg: StaticText { " +

stringProperty("text", builder.msgPnl.msgEt.text) +
arrayProperty("bounds", l, t, l + msgWidth, t + msgHeight) +
"justify:'center', properties:{multiline:true} }";

 //Define buttons if desired
if (hasButtons) {

var btnWidth = 90;
//Align buttons as specified
with (builder.alertBtnsPnl) {

if (alignLeftRb.value)
l = margin;

else if (alignCenterRb.value)
l = (dlgWidth - (btnWidth * 2 + 10)) / 2;

  else
l = dlgWidth - ((btnWidth * 2 + 10) + margin);

}
t = dlgHeight - btnsHeightUsed;
res += ",\n" +

"  okBtn: Button { " +
stringProperty("text", "OK") +
arrayProperty("bounds", l, t, l + btnWidth, t + 20) +
"},\n";

l += btnWidth + 10;
res += "  cancelBtn: Button { " +

stringProperty("text", "Cancel") +
arrayProperty("bounds", l, t, l + btnWidth, t + 20) +

"}";
}

//All done!
res += "\n}";
return res;

}

function stringProperty(pname, pval)
{

return pname + ":'" + pval + "', ";
}

function arrayProperty(pname, l, t, r, b)
{

return pname + ":[" + l + "," + t + "," + r + "," + b + "], ";
}

function createTestDialog(resource)
{

var target = new Window (resource);
return target.show();

}

//------------- Main script -------------//
var builder = createBuilderDialog();
initializeBuilder(builder);



JavaScript Reference Guide  JavaScript UI Example 29

if (runBuilder(builder) == 1) {
 //Create the Alert dialog resource specification string
var resSpec = createResource(builder);

 //Write the resource specification string to a file, using the standard file open dialog
var fname = File.openDialog('Save resource specification');
var f = File(fname);
if (f.open('w')) {

var ok = f.write(resSpec);
if (ok)

ok = f.close();
if (! ok)

Window.alert("Error creating " + fname + ": " + f.error);
}

}

Sample Code Summary

This sample code is used to demonstrate some practical applications of the scripting interface.. 
Here a few of the major intentions of the script:

• To provide a simple real-world example of creating a user interface with multiple 
components and controls 

• To show how certain controls such as sliders and edit text boxes can interact 
• To show how radio buttons work and how to set radio buttons to true and initialize them
• To show a multi-line text edit box as displayed in the messages panel of the dialog box
• To show how you can associate static text fields with edit text fields and static text with other 

types of controls
• To show how simple event callback functions work and how you can attach event handler 

functions to any controls that can generate events
• To show how to enable and disable sets of controls. For example, in the alert checkbox, 

if you unclick the checkbox then everything in the button alignment field suddenly gets 
greyed out.

• To demonstrate how you typically dismiss a modal dialog by providing an OK and Cancel 
button

• To show you can still read property values out of the dialog and its controls after the dialog 
has been dismissed

Resource Specification Sample Code

To run this JavaScript UI code using a resource specification, change the lines indicated below and 
include the resource specification sample code. For more information on resource specifications, 
refer to “Creating a window using window resource specifications” on page 18.

Note: This is a complete example of a resource specification string. The alertBuilderResource() code 
displayed below is a way to create the same main dialog box created by the createBuilderDialog() 
function.



 JavaScript UI Reference Introduction30

//------------- Alternate dialog creation using resource specification -------------//
/*
To use this code, replace the line above that says

var builder = createBuilderDialog();
with

var builder = createBuilderDialogFromResource();
*/

var alertBuilderResource =
"dialog { text: 'Alert Box Builder', bounds:[100,100,480,490], \

msgPnl: Panel { text: 'Messages', bounds:[25,15,355,130], \
titleSt:StaticText { text:'Alert box title:', bounds:[15,15,105,35] }, \
titleEt:EditText { text:'Sample Alert', bounds:[115,15,315,35] }, \
msgSt: StaticText { text:'Alert message:', bounds:[15,65,105,85] }, \
msgEt: EditText { text:'<your message here>', bounds:[115,45,315,105],

properties:{multiline:true} } \
   }, \

hasBtnsCb: Checkbox { text:'Has alert buttons?', alignment:'center',
bounds:[125,145,255,165] }, \

alertBtnsPnl: Panel { text:'Button alignment', bounds:[45,180,335,225], \
alignLeftRb:RadioButton { text:'Left', bounds:[15,15,95,35] }, \
alignCenterRb:RadioButton { text:'Center', bounds:[105,15,185,35] }, \
alignRightRb:RadioButton { text:'Right', bounds:[195,15,275,35] } \

   }, \
sizePnl: Panel { text: 'Dimensions', bounds:[60,240,320,315], \

widthSt:StaticText { text:'Width:', bounds:[15,15,65,35] }, \
widthScrl:Scrollbar { minvalue:300, maxvalue:800, bounds:[75,15,195,35] }, \
widthEt:EditText { bounds:[205,15,245,35] }, \
heightSt:StaticText { text:'Height:', bounds:[15,45,65,65] }, \
heightScrl:Scrollbar { minvalue:200, maxvalue:600, bounds:[75,45,195,65] }, \
heightEt:EditText { bounds:[205,45,245,65] } \

   }, \
btnPnl: Panel { text: 'Build it', bounds:[15,330,365,375], \
  testBtn:Button { text:'Test', bounds:[15,15,115,35] }, \
  buildBtn:Button { text:'Build', bounds:[125,15,225,35], properties:{name:'ok'} }, \
  cancelBtn:Button { text:'Cancel', bounds:[235,15,335,35], properties:{name:'cancel'} } \

    } \
}";

function createBuilderDialogFromResource()
{

//Create from resource
return new Window(alertBuilderResource);

} // createBuilderDialogFromResource

JavaScript UI Reference

The JavaScript user interface defines the global elements of the Window object and properties and 
methods of all the UI classes. 

Global elements of the Window object

The following functions are class methods of the global Window class only; windows created via 
new Window() do not have these functions defined. 

To call class methods, use the following example syntax: Window.alert("Class method!");



JavaScript Reference Guide  JavaScript UI Reference 31

alert (text)

Displays the specified string in a user alert box that provides an OK button. The alert dialog is 
not intended for lengthy messages. When the string argument to the alert method is too long, 
the alert dialog truncates it.

confirm (text)

Displays the specified string in a self-sizing modal dialog box that provides Yes (default) and 
No buttons. When this user clicks one of these buttons, this method hides the dialog and 
returns a value indicating the button the user clicked to dismiss the dialog. A return value of 
true indicates that the user clicked the Yes button to dismiss the confirm box. The confirmation 
dialog displays lengthier messages than the alert and prompt dialogs do, but if this string is 
too long, the dialog truncates it.

find (type, title)

return value: Object

Finds an existing window already created by a script. title is the title of the window and type is 
modal dialog. This value is a hint in case more than one window has the same title; if the type 
is unimportant, null or an empty string can be passed. If the window was found, the 
corresponding JavaScript Window object is generated and returned; if the window cannot be 
determined, the return value is null.

prompt (prompt [, default])

Displays a modal dialog that returns the user’s text input. When the dialog opens, it displays 
the given prompt text and its text edit field is initialized with any specified default text. When 
the user clicks OK to dismiss the dialog, it returns the text the user entered. If the user clicks 
the Cancel button in this dialog, this method’s result is the value null.

Common object properties

The following table shows the common properties defined for each element type.

W
in

d
o

w

P
an

el

St
at

ic
Te

x
t

Ed
it

Te
x

t

B
u

tt
o

n

C
h

ec
k

b
o

x

R
ad

io
B

u
tt

o
n

S
cr

o
ll

b
ar

S
li

d
er

active x x x x x x x

bounds x x x x x x x x x

children x x x x x x x x x

enabled x x x x x x x x x

jumpdelta x

justify x x x x x x x



 JavaScript UI Reference Introduction32

Properties

Following are the properties defined for each element types listed above. 

maxvalue x x

minvalue x x

parent x x x x x x x x x

stepdelta x

text x x x x x x x

textselection x

type x x x x x x x x x

value x x x x

visible x x x x x x x x x

Property Type Description 

active Boolean Contains true if the object is active, false otherwise. An active floating 
dialog is the front-most dialog. A modal dialog that is visible is by 
definition the active dialog. An active control is the one which will 
accept keystrokes, or in the case of a Button, be activated (clicked) 
when the user types a return. Set this true to make a given control or 
dialog active.

bounds Bounds Contains a Bounds object describing the location and size of the 
element as array values representing the coordinates of the upper 
left and lower right corners of the element: [left, top, right, bottom]. 
These are screen coordinates for window elements, and window-
relative coordinates for other elements. See “Element Size and 
Location “
for a definition of the Bounds object.

W
in

d
o

w

P
an

el

St
at

ic
Te

x
t

Ed
it

Te
x

t

B
u

tt
o

n

C
h

ec
k

b
o

x

R
ad

io
B

u
tt

o
n

S
cr

o
ll

b
ar

S
li

d
er



JavaScript Reference Guide  JavaScript UI Reference 33

children Object The collection of UI elements that the UI object contains. This is an 
array indexed by number or by a string containing an element’s 
name. The length property of this array is the number of child 
elements for container elements and is zero for controls; future 
implementations may return additional elements for composite 
controls. Read only.

enabled Boolean Contains true if the object is enabled, false otherwise. If set to true, 
control elements will accept input. If set to false, control elements will 
not accept input, and all types of elements may change to a ‘grayed-
out’ appearance. 

jumpdelta Number Contains the value to increment or decrement a Scrollbar element’s 
position by, when the user clicks ahead or behind the moveable 
element of the Scrollbar to make the scroll position ‘jump’.

justify String Controls justification of text in static text and edit text controls. The 
value is either “left”, “center”, or “right” and the default value is left-
justified. Some implementations may not fully support this property, 
and it may be ignored for some types of controls.

maxvalue Number Contains the maximum value that the value property can have. If 
maxvalue is reset less than value, value will be reset to maxvalue. If 
maxvalue is reset less than minvalue, minvalue will be reset to 
maxvalue. 

minvalue Number Contains the minimum value that the value property can have. If 
minvalue is reset greater than value, value will be reset to minvalue. If 
minvalue is reset greater than maxvalue, maxvalue will be reset to 
minvalue.

parent Object The parent object of a UI object. This property returns null for window 
objects. Read only.

placement Bounds An alternate name for the bounds property; bounds is the preferred 
name, and use of placement is deprecated.

stepdelta Number Contains the value to increment or decrement a Scrollbar element’s 
position by, when a stepper button at either end of the scrollbar is 
clicked.

text String The title, label or text. May be ignored for certain window types. For 
controls, its usage depends on the control type. Many controls like 
buttons use the text as a label, while other controls, such as edit 
fields, use the text to access its content.

textselection String Replace the current text selection with the specified text string, 
modifying the value of the text property. If there is no selection, the 
specified text is inserted into the text property string at the current 
insertion point. Reading the textselection property returns any 
selected text, or an empty string if there is no selection.

Property Type Description 



 JavaScript UI Reference Introduction34

Properties found only in Window elements

Window elements contain the following properties, in addition to those described in the previous 
section.

defaultElement -- Object

The element to notify when a user types the Enter key, with the intent to dismiss the dialog as 
if the “OK” button had been clicked. 

cancelElement -- Object

The element to notify when a user types the Esc key (or the <Cmd .> combination on a Mac), 
with the intent to dismiss the dialog as if the “Cancel” button had been clicked. 

Objects used as property values

The values of certain properties are represented by objects that the scripting interface defines. This 
section describes those objects. It includes a description of their semantics, ways to create them, 
and descriptions of their properties.

The Bounds Object

A Bounds object is used to define the boundaries of a Window or UI element within its coordinate 
space. You cannot directly create a Bounds object; one is created when you set an element’s bounds 
property. Reading the bounds property always yields a Bounds object. Bounds contains an array 
describing the position and size of a UI element. The array values represent the coordinates of the 
upper left and lower right corners of the element: [left, top, right, bottom]. These are screen 
coordinates for window elements, and are relative to the coordinate space of the parent (container) 
element for other element types.

type String Contains the type name of the element. For Window objects, this is 
the value of the first argument to the Window constructor function. 
For controls, this is the value of the first argument to the add() 
method. Read only.

value Boolean (for Checkbox and RadioButton) true if the control has been set (i.e., a 
checkbox shows a check mark), false if not set.

value Number (for Scrollbar and Slider) the value of the control, for instance, the 
position of the moveable part of a Scrollbar or Slider. If value is reset 
outside the bounded range minvalue, maxvalue, value is set to the 
closest boundary.

visible Boolean Contains true if the object is physically visible, false otherwise. If set to 
false, the UI object is hidden, and if set to true, the object is made 
visible.

Property Type Description 



JavaScript Reference Guide  JavaScript UI Reference 35

You can set an element’s bounds property and indirectly create a Bounds object in any of 
these ways:

e.bounds = Object

The object must contain properties named left, top, right, bottom, or x, y, width, height, where 
each property has an integer coordinate value. 

e.bounds = Array

The array must have integer coordinate values in the order [left, top, right, bottom].
e.bounds = String

The string must be an executable JavaScript inline object declaration, containing the same 
property names as in the object case just described.

See “Element size and location” on page 11 for examples.

A Bounds object may be accessed as an array. In addition, it supports the following properties

Common Methods and Event Handlers

Following are the common methods and event handlers defined for each element type.

Property Type Description 

left Number The ‘x’ coordinate value of the left edge of the element.

top Number The ‘y’ coordinate value of the top edge of the element.

right Number The ‘x’ coordinate value of the right edge of the element.

bottom Number The ‘y coordinate value of the bottom edge of the element.

x Number Same as left.

y Number Same as top.

width Number right - left.

height Number bottom - top.

W
in

d
o

w

P
an

el

St
at

ic
Te

x
t

Ed
it

Te
x

t

B
u

tt
o

n

C
h

ec
k

b
o

x

R
ad

io
B

u
tt

o
n

S
cr

o
ll

b
ar

S
li

d
er

add() x x

center() x

close() x

hide() x x x x x x x x x

notify() x x x x x x



 JavaScript UI Reference Introduction36

Methods

Descriptions of the common methods and event handlers listed above follow:

show() x x x x x x x x x

onChange() x x x

onClick() x x x

onClose() x

onMove() x

onResize() x

Method Returns Description

add (type [, bounds, text, { 
<creation

properties> } ]); 

Object Creates a new UI element and add it to the 
children array of its parent Window or Panel 
element. The optional parameter bounds is 
a Bounds object describing its position and 
size. This may also be a four-element array. 
The optional parameter text is assigned to 
the UI element as the initial text or title. The 
UI element itself decides how to use this 
string; it may be ignored. 

In general, a Button uses the text as its 
label, while a edit field uses it as its initial 
content. Internally, the text is assigned to 
the text property of the element. The 
optional parameter <creation properties> is 
an object with properties that specify 
attributes of the UI element that are used 
only when the element is created. <creation 
properties> are specific to the type of UI 
element, and are described below in the 
sections for each element type. The return 
value is the newly created UI element or 
null on errors.

center([window]) no return 
value

Centers a Window on screen, or optionally, 
within the specified window object.

W
in

d
o

w

P
an

el

St
at

ic
Te

x
t

Ed
it

Te
x

t

B
u

tt
o

n

C
h

ec
k

b
o

x

R
ad

io
B

u
tt

o
n

S
cr

o
ll

b
ar

S
li

d
er



JavaScript Reference Guide  JavaScript UI Reference 37

close ([value]) no return 
value

Closes a Window. For modal dialogs, the 
optional value is returned as the result of 
the show() call that caused the dialog to 
display and execute.

hide() no return 
value

Hides the element. If hide() is called on a 
modal dialog, dismiss the dialog and set 
the dialog result to 0. The application may 
choose to ignore this call for certain UI 
object types.

notify([event]) no return 
value

Sends a notification message to whatever 
listens to the UI object. notify() effectively 
lets you control a dialog programmatically. 
Calling this method with no argument on a 
control simulates the activation of the 
control; a Button signals that it has been 
clicked via its onClick() method, an EditText 
element tells its listener that it contents 
have changed via its onChange() method, 
and so on. You can supply an optional 
argument to notify(), which is the name of 
the event handler to call. For instance, to 
simulate a dialog dlg being moved by a 
user, you can send a notification message 
as follows: dlg.notify(“onMove”).

show() Number Displays the UI object. A Window may 
choose to ignore the setting of the visibility 
state if it is not applicable, like for 
inspectors whose visibility is controlled by 
the application only. If show() is called for a 
modal dialog, the dialog is displayed and 
executed. The call to show() will not return 
until the dialog has been dismissed. The 
result of show() is the dialog result as 
supplied to close(). For all other elements, 
the result is 0.

onClick() no return 
value

This method is called when a control has 
been activated by clicking it. Not all types 
of controls implement this callback. If you 
are interested in processing this event, 
define a function of this name in the control 
element.

Method Returns Description



 JavaScript UI Reference Introduction38

UI Object descriptions

This section describes UI objects such as windows, panels, buttons, checkboxes and so on. 

onChange() no return 
value

This method is called when the content of a 
control has been changed. Not all types of 
controls implement this callback. If you are 
interested in processing this event, define a 
function of this name in the control 
element.

onClose() no return 
value

This method is called when a Window is 
closed. If you are interested in processing 
this event, define a function of this name in 
the Window object.

onMove() no return 
value

This method is called when a Window has 
been moved. If you are interested in 
processing this event, define a function of 
this name in the Window object.

onResize() no return 
value This method is called when a Window has 

been resized. If you are interested in 
processing this event, define a function of 
this name in the Window object.

Method Returns Description



JavaScript Reference Guide  JavaScript UI Reference 39

Window object

To create a new Window object:

The panel element

To add a Panel element to a window w:

To add a border style around a panel. 

If you specify a Panel whose width is 0, it will appear as a vertical line; a panel whose height is 0 
will appear as a horizontal line. Making a panel invisible will also hide all its children; making it 
visible again will also make visible those children that were visible when the panel was made 
invisible.

Method Returns Description

new Window (“dialog” [, title, 
bounds]);

Object Creates a new Window. The required type 
argument contains the requested element 
type for a modal dialog. The optional title 
argument is used to set the window title, if 
specified. Optionally, a Bounds object or 
array may be supplied that describes the 
bounds of the window. If no bounds are 
given, a default bounds is chosen. The 
return value is the newly created window or 
null on errors.

Method Returns Description

w.add (“panel” [, bounds, text, 
{<creation properties>} ]);

Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter text is the text displayed in the 
border of the panel. The optional 
parameter <creation properties> is an 
object that can contain any of the following 
properties:

Method Returns Description

borderStyle String Specifies the appearance of the border 
drawn around the panel. It can be one of: 
none, etched, raised, sunken, black. The 
default borderStyle is etched.



 JavaScript UI Reference Introduction40

The statictext control

To add a StaticText element to a window w:

The edittext control

To add an EditText element to a window w:

Method Returns Description

w.add (“statictext” [, bounds, 
text, {<creation properties>}]);

Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter text is the text displayed by the 
control. The optional parameter <creation 
properties> is an object containing any of 
the following properties:

multiline Boolean If false (default) the control accepts a single 
line of text. If true, the control accepts 
multiple lines, in which case the text wraps 
within the width of the control.

scrolling Boolean If false (default), the text displayed cannot 
be scrolled. If true, scrolling buttons appear 
and the text displayed can be vertically 
scrolled; this case implies multiline.

Method Returns Description

w.add (“edittext” [, bounds, text, 
{<creation properties>}]);

Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter text is the initial text displayed 
by the control. The optional parameter 
<creation properties> is an object 
containing any of the following properties:

multiline Boolean If false (default) the control accepts a single 
line of text. If true, the control accepts 
multiple lines, in which case the text wraps 
within the width of the control.

readonly Boolean If false (default), the control accepts text 
input. If true, the control will not accept 
input text, but simply displays the contents 
of its text property.

noecho Boolean If false (default), the control displays text 
that is typed as input. If true, the control will 
not display input text (useful for password 
fields).



JavaScript Reference Guide  JavaScript UI Reference 41

The EditText control calls the onChange() event method if the editable text is changed or if its 
notify() method is called. It also has a textselection property to access any text selection within the 
edit field.

The button control

To add a Button element to a window w:

The Button control calls the onClick() event method if the control is clicked or if its notify() method 
is called.

The checkbox control

To add a Checkbox element to a window w:

The Checkbox control calls the onClick() event method if the control is clicked or if its notify() 
method is called. It also has a value property which indicates whether the control is set or not.

The radiobutton control

To add a RadioButton element to a window w:

All RadioButtons in a group must be created sequentially, with no intervening creation of other 
element types. Only one RadioButton in a group can be set at a time; setting a different RadioButton 

Method Returns Description

w.add (“button” [, bounds, text]); Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter text is the text displayed inside 
the button control.

Method Returns Description

w.add (“checkbox” [, bounds, 
text]);

Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter text is the text displayed next to 
the checkbox control.

Method Returns Description

w.add (“radiobutton” [, bounds, 
text]);

Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter text is the text displayed next to 
the radiobutton control.



 JavaScript UI Reference Introduction42

unsets the original one. The RadioButton control calls the onClick() event method if the control is 
clicked or if its notify() method is called. It also has a value property which indicates whether the 
control is set or not.

The scrollbar control

To add a Scrollbar element to a window w:

The Scrollbar control will have a horizontal orientation if the specified width is greater than its 
height at creation time; its orientation will be vertical if its height is greater than its width. It calls 
the onChange() event method if the position of the moveable element is changed by the user, or if 
its notify() method is called. The value property contains the current position of the scrollbar’s 
moveable position indicator within the scrolling area, within the range of minvalue and maxvalue.

The slider control

To add a Slider element to a window w:

All Slider controls have a horizontal orientation. The Slider control calls the onChange() event 
method if the position of the slider is changed by the user, or if its notify() method is called. The 
value property contains the current position of the slider’s moveable position indicator, within the 
range of minvalue and maxvalue. 

Method Returns Description

w.add (“scrollbar” [, bounds, value, 
minvalue, maxvalue]);

Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter value is the initial position of the 
moveable element. The optional 
parameters minvalue and maxvalue define 
the range of values that can be returned by 
changing the position of the moveable 
element.

Method Returns Description

w.add (“slider” [, bounds, value, 
minvalue, maxvalue]);

Object The optional parameter bounds defines the 
element’s position and size. The optional 
parameter value is the initial position of the 
moveable element. The optional 
parameters minvalue and maxvalue define 
the range of values that can be returned by 
changing the position of the moveable 
element.



43

3
Platform Interface

Different platforms implement different types of file systems. As a result, notations for specifying 
files and folders differ dramatically from one file system to the next. File system drives are 
organized into folders (or directories) and folders typically contain files or other folders. 

File systems are organized hierarchically and each file or folder hasd a position relative to the 
“top” of the file system. The complete description of a file’s location in the file system is called 
a path. 

File and Folder Objects

The File and Folder objects wrap the underlying file system. A File object corresponds to a disk 
file, while a Folder object matches a directory or folder.

To create a File or Folder object, use the corresponding File() and Folder() functions. You can also 
create them with the new operator if you like; both ways of calling File() or Folder() return a new 
object. The constructor accepts full or partial path names. In either case, the path stored internally 
is an absolute, full path name, so a File or Folder object, once created, always points to a fixed 
location of the disk. If you do not supply a file or folder name, a temporary name is generated. 
Path names are in a portable format (see below).

The Folder object supports file system functionality such as walking directories, creating, 
renaming or removing files, or resolving file aliases. The File class supports I/O functions to read 
or write files. Note that a File or Folder instance does not actually create a File or Folder in the file 
system, although each class has a method to accomplish this, if desired. 

File and Folder objects can be used at any place where a path name is required; its conversion to a 
string (the toString() method) returns the name of the file or folder as an absolute path name in 
URI notation (see the absoluteURI property below). If you need the operating system specific file 
name, use the fsName property. 



 File and Folder Objects JavaScript Reference Guide44

When you create two File objects that refer to the same disk file, they are treated as distinct objects. 
If you open one of the File objects for I/O, the operating system may inhibit access to the opened 
File object from the other File object because the disk file already is open.

There are several methods to distinguish between a File and a Folder object. Here are some 
examples:

if (f instanceof File) ...
if (typeof f.open == "undefined") ...//Folders have an open method

Path names

There are significant differences among Windows, Macintosh and Unix file systems. The File and 
Folder objects provide functionality that allows you to interact with these systems in both 
platform-specific and platform-neutral ways. 

Absolute and relative path names

To maximize portability of path names, File and Folder objects accept platform-neutral as well as 
operating-system-specific path names. Both objects support an URI-like form of path names that is 
very close to Unix conventions. The format loosely follows the RFC 2396 specification. This 
chapter describes how these path names work.

You can use absolute path names and relative path names. Absolute path names start with one or 
two slash characters. These path names describe the full path from a root directory down to a file 
or folder. Relative path names start off a known location, the current directory. A relative path 
name starts either with a directory name or with one of the special names "." and "..". The name "." 
refercs to the current directory, and the name ".." refers to the parent directory. The slash character 
is used to separate path elements.

Path Description

/dir1/dir2/file An absolute path name, describing the file file in the directory 
dir2, which is in the directory dir1, which again is in the root 
directory.

./file The file file in the current directory; you could also simple use 
file without the beginning "./" sequence.

../file The file file in the parent of the current directory.

../../file The file file in the grandparent of the current directory.

../dir1/file The file file in the directory dir1, which is parallel to the current 
directory.



JavaScript Reference Guide  File and Folder Objects 45

When using portable path names, it is always a good idea to use relative path names. Setting the 
current directory is as easy as assigning a new path name to the property Folder.current. Relative 
path names make you independent of different volume names on different machines and 
operating systems.

Internally, the File and Folder objects always operate on the operating system specific path names. 
You can always retrieve the "real" path name by looking at the fsName property.

Special characters -- characters that are not alphanumeric and not one of the characters / - - . ! ~ * ' 
( ) -- are encoded in UTF-8 notation. The file "Däumling" therefore has the portable name 
"D%C3%A4umling". Along the same lines, "Macintosh HD" would become "Macintosh%20HD". 
This encoding scheme is compatible to RFC 2396 as well as to the global JavaScript functions 
encodeURI() and decodeURI().

Volume names

There is no common location in the various file systems where the names of mounted volumes are 
stored. On Mac OS X, all mounted volumes are entries in the /Volumes directory. On Unix systems, 
there is no convention at all, and Windows does not mount remote volumes at all; there are only 
drive letters.

For this reasons, the File and Folder objects support a common convention. A volume name may 
be the first part of an absolute path. The objects know where to look for the volume names on the 
Macintosh and Windows and they translate the volume names accordingly. On Unix, no 
translation takes place.

On some occasions, there may actually be a directory in the root folder that has the same name as 
the volume name. Imagine a folder "C:\C" on Windows. Since the File and Folder objects do not 
know whether "/c" would address the drive C: or the directory "C:\C", a path name where the 
first element designates both a volume name and a directory name always describes the directory 
name. If you really need to access the volume by name, you will have to use an operating system 
specific path specifier.

The home directory

A path name can also start with the tilde "~" character. This character stands for the user's home 
directory -- the syntax has been borrowed from Unix systems. The home directory is the user 
directory that the operating system assigns to you when you log in. 

All three platforms (Windows, Unix and Mac OS X) provide a definition for a home directory 
based on the username of the current user, as illustrated below. 



 File and Folder Objects JavaScript Reference Guide46

Note: Windows systems look for the environment variable HOME and use whatever directory is 
found there as the home directory. If the HOME environment variable is undefined, the system 
uses the user's home directory, typically located in the "Documents and Settings" folder, as the 
home directory. In a Windows system, therefore, the following path would equate to the HOME 
directory: C:\Documents and Settings\<username>. Also note that on Windows (as well as on 
Unix) you can override the default home directory assignment by creating a HOME environment 
variable. The path name stored in the HOME environment variable must be a Windows path 
name or a UNC path name, not a portable path name.

The following examples assume jdoe as the username, and "~/file" as the file.  

Note: Path names may vary depending on the operating system version and language. 

The following code is used to reference a file in a script that is stored in the user’s home directory, 
regardless of the platform the script is running on.

var fileRef = new File( “~/custdata.cfg” ); 

Depending on the platform, the local path for the file reference (.fsName) would look something 
like this: 

Mac
/Users/jdoe/custdata.cfg

Windows
C:\Documents and Settings\jdoe\custdata.cfg

Unix 
/user/jdoe/custdata.cfg

Platform Path Description

Windows C:\home\file HOME set to C:\home

D:\file HOME set to D:\

C:\Documents and Settings\jdoe\file HOME not set

Mac OS X /Users/jdoe/file

Unix /home/jdoe/file This assumes that the HOME 
environment variable is set to /
home/jdoe

/users/jdoe/file



JavaScript Reference Guide  File and Folder Objects 47

Operating system specifics

There are a few operating system specific items that are discussed in this chapter. The last 
examples in each section show the usage of the home directory, assuming that the user logged in 
as jdoe.

Aliases on Windows and the Macintosh work much the same. All accesses to the alias file are 
transparently forwarded to the real file behind the alias file. Only the rename() and remove() calls 
affect an alias directly. 

Windows

On Windows, volume names correspond to drive letters. The path /c/temp/filetranslates, 
therefore, to C:\temp\file. If the current drive would contain a root directory with the same name 
as a drive letter, the directory would take precedence over the drive letter. Assume there is a 
directory D:\C, and the current drive was D. In that case, the path /c/temp/file would translate to 
D:\c\temp\file. In order to access drive C, you would have to use the Windows path name 
conventions.

Both the slash and the backslash character are valid path element separators. The file system is not 
case sensitive.

To access remote volumes, use UNC path names of the form //servername/sharename. These path 
names are portable, because both Max OS X and Unix ignore multiple slash characters. Despite the 
name (the U in UNC stands for Universal), UNC names do not work for local volumes.

The following examples assume D is the current drive:

On Windows, all file system aliases (here called shortcuts) are actual files whose name end with 
the extension ".lnk". You should never use this extension directly, however. The File and Folder 
objects work fine without these extensions. Imagine a shortcut to the file some.txt. The Windows 
file name would actually be some.txt.lnk. Use some.txt to create a File object matching this link. The 
alias property of this object would return true, and the resolve() method of the object would return 
the File object of the actual file. This behavior is the same as on the Macintosh. The ".lnk" extension 
for Windows aliases is used transparently; that is, renaming a Windows shortcut file renames the 
file name portion and leaves the ".lnk" extension intact. 

These behaviors are portable, but please keep in mind that Windows permits a file and its alias to 
reside in the same folder. If you have a file "test.txt" and its alias (which is "test.txt.lnk"), and you 

Portable Path Name Windows Path Name

/c/dir/file c:\dir\file

/remote/dir/file D:\remote\dir\file

/root/dir/file D:\root\dir\file

~/dir/file C:\Documents and Settings\jdoe\dir\file



 File and Folder Objects JavaScript Reference Guide48

create a File object with "test.txt" you will access the original file and not the alias file. There is no 
way for you to access the alias file on a Windows system in this case.

Macintosh

When Mac OS X boots, the boot volume is the root directory of the file system. All other volumes, 
including remote volumes, are part of the /Volumes directory. When looking at the first element of 
a path name, the File and Folder objects do the following:

• If the name is the name of the boot volume, discard it.
• If the name is a volume name, prepend the path with /Volumes.
• Otherwise, leave the path as is.

Mac OS X path names are not case sensitive, as opposed to all other Unix dialects.

The following examples assume the boot volume to be MacOSX, and a mounted volume Remote.

Mac OS 9 is not longer supported as an operating system. The old notation of path names using 
the colon as a path separator, however, is still supported and translates as follows:

Unix

Since the path name conventions are closely modeled after the Unix model, no translation takes 
place. For the home directory, the HOME environment variable is used, which is part of any shell 
environment. Symbolic links are treated as file system aliases.

Unix path names are case sensitive.

Portable Path Name Mac OS X Path Name

/macosx/dir/file /dir/file

/remote/dir/file /Volumes/remote/dir/file

/root/dir/file /root/dir/file

~/dir/file /Users/jdoe/dir/file

Mac OS 9 Path Name Portable Path Name

MacOSX:dir:file /macosx/dir/file

Remote:dir:file /remote/dir/file

Root:dir:file /root/dir/file

Portable Path Name Unix Path Name

/macosx/dir/file /macosx/dir/file

/remote/dir/file /remote/dir/file



JavaScript Reference Guide  File and Folder Objects 49

Portability issues

If you have to use multiple different machines and operating systems, try to use relative path 
names, or try to originate your path names from the home directory. If impossible, work with Mac 
OS X and Unix aliases and UNC names on Windows, and store your files on a machine that is 
remote to your Windows machine so you can use UNC names.

For example, use the Unix machine gonzo as the data storage. If you set up an alias share in the root 
directory of gonzo and if you set up a Samba share at share pointing to the same data location, the 
path name //gonzo/share/file would work well for Windows, Macintosh and Unix machines.

Unicode I/O

Usually, the contents of a file are in some 8-bit encoding; most often, the current system encoding 
is used, like code page 1252 on Windows or Mac Roman on the Macintosh. When doing file I/O, 
the encoding used to convert between 8-bit character sets and Unicode is by default assumed to be 
the system encoding. You can, however, set a large number of encodings by setting the encoding 
property of a file to the name of the desired encoding. This name is one of the standard Internet 
names that are used to describe the encoding of HTML files. Typical examples are ASCII, X-SJIS, or 
ISO-8859-1. The File object attempts to find the corresponding encoder in the operating system. If 
present, this encoder will be used for subsequent I/O. Reading the encoding property returns the 
current encoding.

A special encoder, BINARY, is present for binary I/O. This encoder simply extends every 8-bit 
character it finds to a Unicode character between 0 and 255. When using this encoder to write 
binary files, the encoder writes the lower 8 bits of the Unicode character. If, for example, the 
Unicode character 1000 is written, the encoder actually writes the character 232 (1000 is 0x3E8, and 
0xE8 gets written, which is 232).

The data of some of the common file formats (UCS-2, UCS-4, UTF-8, UTF-16) starts with a special 
Byte Order Mark (BOM) character ("\uFEFF"). The File method open() reads a few bytes of a file 
and tries to detect this character. If successful, the corresponding encoding is set automatically and 
the character is skipped. If there is no BOM character at the beginning of the file, open() reads the 
first 2 Kbytes of the file and checks whether the data might be valid UTF-8 encoded data, and sets 
the encoding to UTF-8 if so.

/root/dir/file /root/dir/file

~/dir/file /home/jdoe/dir/file

Portable Path Name Unix Path Name



 Scriptable properties and methods JavaScript Reference Guide50

To write 16-bit Unicode files in UTF-16 format, use the encoding UCS-2. This encoding uses 
whatever endian format the host system supports. Make sure to write the Byte Order Mark 
character "\uFEFF" as the first character of the file. Do this also when using the UTF-8 encoding.

Error handling

Each object has an error property. If accessing a property or calling a method caused an error, this 
property contains a message describing the type of the error. On success, the property contains the 
empty string. The property can be set, but setting it only causes the error message to be cleared. If 
a file is open, assigning an arbitrary value to the property also resets its error flag.

Scriptable properties and methods

This section distinguishes among three different sets of methods.

• Constructors

A constructor is a global function that is used to create the actual objects of a class. It has the 
same name as the class of the object that it creates (like File or Folder). When called, it returns 
a new instance of the desired object.

• Class methods

These methods are attached to the constructor. They are used for working with objects that the 
constructor returns, but they do not require an actual object of that class to work upon. These 
methods are also often refereed to as static methods. A typical example is File.openDialog(), 
which returns a new File object if the user specifies a file in the Open dialog.

• Object methods

These methods are attached to an instance of an object, because they need a specific object to 
act upon. The open() method of a File object is a typical example; in order to work correctly, it 
needs the path name of the disk file that the File object actually wraps.

You may also see class properties and object properties referenced in a similar manner. Class 
properties provide access to general data related to a class, while object properties provide 
access to data specific to an object, like the creation date of a specific file.

To give you some idea of how these distinctions play out in practice, here are some real-world 
examples: 

// File and Folder constructors are in fact class methods which return
// objects, as illustrated below: 
var fRef = new File( "~/myDoc" );

//The Folder class method selectDialog() is called directly
var selectedFolder = Folder.selectDialog( "Pick a folder", "~/Documents" );



JavaScript Reference Guide  Scriptable properties and methods 51

// This code illustrates a Property that returns the name of the current
// operating system
File.fs;

// To access one of the File class object properties, you need to
// use an object instance
fRef.exists; 

A key point to remember is that class members do not require an instance of the class to be created 
in order to access them. 



 Scriptable properties and methods JavaScript Reference Guide52

Common elements

Both the File and the Folder objects share a common set of properties and methods. All properties 
and methods resolve file system aliases automatically unless indicated otherwise.

Class properties

Class methods

Property Type Description

fs String The name of the file system. Read-only. Possible values are "Windows", 
"Macintosh" or "Unix".

Method Returns Description

isEncodingAvailable (String name); Boolean This method checks whether your system 
supports a specific encoding. You supply 
the name of the desired encoding; the 
method returns true if that encoding is 
available, false otherwise.

decode (String what); String The method File.decode() or 
Folder.decode() decodes its input string as 
required by RFC 2396. All characters with a 
numeric value greater than 127 are 
encoded in UTF-8; they are stored as 
escaped characters starting with the 
percent sign followed by two hex digits. 
Also the characters / - _ . ! ~ * ' ( ) are 
encoded the same way. The String " 
D%C3%A4umling" would be decoded as 
"Däumling".

encode (String what); String The method File.encode() or 
Folder.encode() encodes its input string as 
required by RFC 2396. All characters with a 
numeric value greater than 127 are 
encoded in UTF-8; they are returned as 
escaped characters starting with the 
percent sign followed by two hex digits. 
Also the characters / - _ . ! ~ * ' ( ) are 
encoded the same way. The string 
"Däumling" would be encoded as " 
D%C3%A4umling".



JavaScript Reference Guide  Scriptable properties and methods 53

Object properties

Property Type Description

absoluteURI String The full path name for the object in URI notation. Read-only.

alias Boolean Returns true if the object refers to a file system alias. Read-only.

created Date The creation date of the object. If the object does not refer to a folder or 
file on disk, the value is null. Read-only.

error String Contains a message describing the last file system error.  Setting this 
value clears any error message and resets the error bit for opened files.

exists Boolean Returns true if the path name of this object refers to an actually existing 
file or folder. Read only.

fsName String The file-system specific name of the object as a full path name. Read-
only.

modified Date The date of the object's last modification. If the object does not refer to a 
folder or file on disk, the value is null. Read-only.

name String The name of the object without the path specification. Read-only.

parent Folder The folder object containing this object. If this object already is the root 
folder of a volume, the property value is null. Read-only.

path String The path portion of the absolute URI. If the name does not have a path, 
this property contains the empty string. Read-only.

relativeURI String The path name for the object in URI notation, relative to the current 
folder. Read-only.



 Scriptable properties and methods JavaScript Reference Guide54

Object methods

Method Returns Description

execute(); Boolean Attempt to find the application associated 
with this file or folder. If found, load the 
application and cause it to load the file. 
This method may be used to execute a file 
much as it had been double-clicked in the 
Finder or Explorer. It can be used to run 
scripts, to launch other applications and 
much more. Folders pop open as if 
double-clicked.

Since this method opens a severe security 
hole, it is disabled by default. 

The method returns immediately after 
launching the application. It does not wait 
for the application to terminate. It returns 
true if the launch was successful.

getRelativeURI (String basePath); String Calculate and return the relative URI, 
given a base path, in URI notation. If the 
base path is omitted, the path of the 
current folder is assumed.

remove(); Boolean Delete the file or folder that this object 
represents. Folders must be empty before 
they can be deleted. The return value is 
true if the file or folder has been deleted.

IMPORTANT: The remove() method deletes 
the referenced file or folder immediately. 
It does not move the referenced the file or 
folder to the system trash. The effects of 
the remove method cannot be undone. It 
is recommended that you prompt the user 
for permission to delete a file or folder 
before deleting it. The method does not 
resolve aliases; it rather deletes the file 
alias itself.



JavaScript Reference Guide  Scriptable properties and methods 55

The Folder object

A Folder object wraps the underlying file system and corresponds to a directory or folder.

Class properties

rename (String newName); Boolean Rename the object to the new name. The 
new name must not have a path. Returns 
true if the object was renamed. The 
method does not resolve aliases, but 
rather renames the alias file.

resolve(); File, Folder 
or null.

Attempt to resolve the file system alias 
that this object points to. If successful, a 
new File or Folder object is returned that 
points to the resolved file system element. 
If the object is not an alias, or if the alias 
could not be resolved, the return value is 
null.

Property Type Description

current Folder The current folder is returned as a Folder object. Assigning either a 
Folder object or a string containing the new path name sets the current 
folder.

startup Folder The folder containing the executable image of the running application. 
Read-only.

system Folder The folder containing the operating system files. Read-only

temp Folder The default folder for temporary files. Read-only.

trash Folder The folder containing deleted items. Read-only

Method Returns Description



 Scriptable properties and methods JavaScript Reference Guide56

Constructor

Folder (path);
new Folder (path);

This function constructs a new Folder object. If the given path name refers to an already 
existing disk file, a File object is returned instead.

Class Methods

selectDialog (prompt, preset);

Open a dialog box that permits you to select a folder using the OS specific folder select dialog. 
Both arguments are optional. 

For example: Class method select.Dialog()

The following code presents a dialog with which to interactively select a directory/folder. In this 
example, the dialog defaults to the local user HOME directory/folder as a starting location for 
browsing. The method returns a Folder object reference on success; null on failure. 

var selectedFolder = Folder.selectDialog( “Select the inputfolder”, Folder( “~” ) ); 

Parameter Type Description Returns

path String The full or partial path name of the folder. 
The folder that the path name refers to does 
not need to exist. If he argument is omitted, a 
temporary name is generated.

Folder or File

Parameter Type Description Returns

prompt String The first argument displays a prompt text if 
the dialog allows the display of such a 
message.

If the user selected a 
folder and clicked the 
OK button, the return 
value is a Folder 
object pointing to the 
selected folder. If the 
user clicked the 
Cancel button instead, 
the return value is null.

preset Folder The second argument is a folder that is pre-
selected when the dialog opens. 



JavaScript Reference Guide  Scriptable properties and methods 57

Object methods

The File object

A File object wraps the underlying file system and corresponds to a disk file.

Constructor

File (path);
new File (path);

This function constructs a new File object. If the given path name refers to an already existing 
folder, a Folder object is returned instead. The CRLF sequence is preset to the system default, 
and the encoding is preset to the default system encoding.

Method Returns Description

create(); Boolean Attempt to create a folder at the location the path name 
points to. Returns true if the folder was created.

getFiles (String mask); Array Get a list of File and Folder objects contained in the folder 
object. The mask is the search mask for the file names. It 
may contain question marks and asterisks and is preset to * 
to find all files. Alternatively, a function may be supplied. 
This function is called with a File or Folder object for every 
file or folder in the directory search. If the function returns 
true, the object is added to the array.

On Windows, all aliases end with the extension ".lnk". This 
extension is stripped from the file name when found to 
preserve compatibility with other operating systems. You 
can, however, search for all aliases by supplying the search 
mask "*.lnk". This is NOT recommended, however, because 
it is not portable.

The return value is an array of File and/or Folder objects 
that correspond to the files found. The return value is null if 
the folder does not exist.

Parameter Type Description Returns

path String The full or partial path name of the folder. 
The folder that the path name refers to does 
not need to exist. If he argument is omitted, a 
temporary name is generated.

Folder or File



 Scriptable properties and methods JavaScript Reference Guide58

Class Methods

openDialog (prompt, select);
saveDialog (prompt, select);

Opens the built-in OS dialog to either select an existing file to open, or to select a file name to 
save a file into.

Parameter Type Description Returns

prompt String An optional prompt that is displayed as part 
of the dialog if the dialog permits the display 
of an additional message.

Nothing

select See Win 
and Mac 
versions 
below

This argument allows the pre-selection of the 
files that the dialog displays. Unfortunately, 
this argument is different on the Macintosh 
and on Windows, as described below. 

select (Win) String The Windows selection string is actually a list 
of file types with explanative text. This list is 
displayed in the bottom of the dialog as a 
drop-down list box so the user can select 
which types of files to display. The elements 
of this list are separated by commas. Each 
element starts with the descriptive text, 
followed by a colon and the file search masks 
for this text. Again, each search mask is 
separated by a semicolon. A Selection list 
that allowed the selection of all text files 
(*.TXT and *.DOC) or all files would look like 
this:
Text Files:*.TXT;*.DOC,All 
files:*
A single asterisk character is a placeholder for 
all files.

File Object 

select (Mac) Function On the Macintosh, the optional second 
argument is a callback function. This function 
takes one argument, which is a File object. 
When the dialog is set up, it calls this callback 
function for each file that is about to be 
displayed. If the function returns anything 
else than true, the file is not displayed. This is 
only true fo the openDialog() method, the 
saveDialog() method ignores this callback 
method.

File Handler



JavaScript Reference Guide  Scriptable properties and methods 59

For example: Class method openDialog() 

The following code presents the user with a dialog with which to interactively select a file. The 
optional second argument, the form of which differs between Windows and Macintosh, provides a 
means to filter the list of files shown in the dialog display list. The point of the example is to show 
how to obtain a reference to an existing JavaScript script file. The method returns a Folder object 
reference on success; null on failure. 

// Windows 

if ( Folder.fs == “Windows” ) {

var openFile = File.openDialog( “Select a JavaScriptfile”, 

“JavaScript files:*.js” );

} else if ( Folder.fs == “Macintosh” ) {

var openFile = File.openDialog( “Select a JavaScriptfile”, fileFilter );} 

// Mac only -- Accept entries which: 

// have a ".js" extension (regardless of case); 

// have a .type of 'TEXT'; 

// are Folders (which will allow browsing the Folder heirarchy)

function fileFilter( f ) 

{ 

var jsExtension = “.js”;

var lCaseName = f.name;

lCaseName.toLowerCase();

if ( lCaseName.indexOf(jsExtension ) == f.name.length

– jsExtension.length )

return true;

else if ( f.type == “TEXT” )

  return true; 

else if ( f instanceof Folder )

  return true; 

else 

 return false; 

} 

For example: Class method saveDialog() 

The following code sample is similar to the one presented above for openDialog(). However, it is 
intended for use in specifying a file save target. Note that a name to a not-already-existing 
document can be entered by the user (including extension if desired), but that the dialog does not 
create to file, nor does it actually save a file if an existing file is selected. Rather, the reference 



 Scriptable properties and methods JavaScript Reference Guide60

returned is used to perform that operation. When used in support of document operations in 
Photoshop, for example, that means that using the File object reference with the client’s saveAs() 
method, would look something like this: 

var saveRef = File.saveDialog( “Save As” );

if ( saveRef ) {

app.activeDocument.saveAs( saveRef );} 

else {

alert( “Save cancelled” );

} 

Object properties

Property Type Description

creator String The Macintosh file creator as a four-character string. On Windows, the 
return value is always "????". Read-only.

encoding String Gets or sets the encoding for subsequent read/write operations. The 
encoding is one of several predefined constants that follow the 
common Internet encoding names. Valid names are UCS-2, X-SJIS, ISO-
8851-9, ASCII or the like. A special encoder, BINARY, is used to read 
binary files. This encoder stores each byte of the file as one Unicode 
character regardless of any encoding. When writing, the lower byte of 
each Unicode character is treated as a single byte to write. See appendix 
A for a list of encodings. If an unrecognized encoding is used, the 
encoding reverts to the system default encoding.

eof Boolean This property has the value true if a read attempt caused the current 
position to be behind the end of the file. Read only. If the file is not open, 
the value is true.

hidden Boolean Returns true if the file is invisible. Assigning a Boolean value sets or 
clears this attribute. 

length Number The size of the file in bytes. When setting the file size, the file must not 
be open.

lineFeed String The way line feed characters are written. This can be one of the three 
values macintosh, unix or windows (actually, only the first character is 
interpreted).

readonly Boolean This attribute, when set, prevents the file from being altered or deleted. 

type String The Macintosh file type as a four-character string. On the Macintosh, the 
file type is returned. On Windows, "appl" is returned for .EXE files, "shlb" 
for .DLLs and  "TEXT" for any other file. If the file does not exist, the file 
type is "????". Read-only.



JavaScript Reference Guide  Scriptable properties and methods 61

Object methods

close();

Closes the open file. The return value is true if the file was closed, false on I/O errors.

copy (target);

Copies the file to the given location. You can supply an URI path name as well as another File 
object. If there is a file at the target location, it is overwritten. The method returns true if the 
copy was successful, false otherwise. The method resolves any aliases to find the source file.

open (mode, type, creator);

Open the file for subsequent read/write operations. The type and creator arguments optional 
arguments that are Macintosh specific; they specify the file type and creator as two four-
character strings. They are used if the file is newly created. On other platforms, they are 
ignored.

When open() is used to open a file for read access, the method attempts to detect the encoding 
of the open file. It reads a few bytes at the current location and tries to detect the Byte Order 
Mark character 0xFFFE. If found, the current position is advanced behind the detected 
character and the encoding property is set to one of the strings UCS-2BE, UCS-2LE, UCS4-BE, 
UCS-4LE or UTF-8. If the marker character cannot be found, it checks for zero bytes at the 
current location and makes an assumption about one of the above formats (except for UTF-8). 
If everything fails, the encoding property is set to the system encoding. The method resolves 
any aliases to find the file.

You should be careful if you try to open a file more than once. The operating system usually 
permits you to do so, but if you start writing to the file using two different File objects, you 
may destroy your data!

Parameter Type Description Returns

none Boolean

Parameter Type Description Returns

target String/File The target location. Boolean



 Scriptable properties and methods JavaScript Reference Guide62

The return value is true if the file has been opened successfully, false otherwise.

read (chars);

Read the contents of the file from the current position on. Returns a string that contains up to 
the number of characters that were supposed to be read.

readch();

Read one single text character. Line feeds are recognized as CR, LF, CRLF or LFCR pairs. If the 
file is encoded, multiple bytes may be read to create single Unicode characters.

Parameter Type Description Returns

mode String r (read) Opens for reading. If the file does not 
exist or cannot be found the call fails.
w (write) Opens an empty file for writing. If 
the file exists, its contents are destroyed.
e (edit) Opens an existing file for reading and 
writing.

Boolean

type String The Macintosh file type; a four-byte character 
string; ignored on non-Macintosh operating 
systems.

creator String The Macintosh file creator; a four-byte 
character string; ignored on non-Macintosh 
operating systems.

Parameter Type Description Returns

chars Number The number of characters to read. If the 
number of characters to read is not supplied, 
the entire file is read in one big chunk, 
starting at the current position. If the file is 
encoded, multiple bytes may be read to 
create single Unicode characters.

String

Parameter Type Description Returns

none String



JavaScript Reference Guide  Scriptable properties and methods 63

readln();

Read one line of text. Line feeds are recognized as CR, LF, CRLF or LFCR pairs. If the file is 
encoded, multiple bytes may be read to create single Unicode characters.

seek (pos, mode);

Seek to a certain position in the file. Returns true if the position was changed. This method 
does not permit seeking to positions less than 0 or greater than the current file size.

tell();

Returns the current position in the file as a an offset in bytes.

write (text, …);

Write the given string to the file. The parameters of this function are concatenated to a single 
string. Returns true on success. For encoded files, writing a single Unicode character may 
result in multiple bytes being written. You should take care not to write to a file that is open in 
another application or object. This may cause loss of data, since a second write issued from 
another File object may overwrite your data!

Parameter Type Description Returns

none String

Parameter Type Description Returns

pos Number The new current position inside the file as an 
offset in bytes, dependent on the seek mode.

Boolean

mode Number The seek mode (0 = seek to absolute 
position, 1 = seek relative to the current 
position, 2 = seek backwards from the end of 
the file).

Parameter Type Description Returns

none Number

Parameter Type Description Returns

text String All arguments are concatenated to form the 
string to be written.

Boolean



 Error messages JavaScript Reference Guide64

writeln (text, …);

Write the given string to the file. The parameters of this function are concatenated to a single 
string, and a Line Feed sequence is appended. Returns true on success. If the file is encoded, 
multiple bytes may be read to create single Unicode characters.

Error messages

The following messages may be returned in the error property.

Parameter Type Description Returns

text String All arguments are concatenated to form the 
string to be written.

Boolean

Error Message Description 

File does not exist The file or folder does not exist, but the parent folder 
exists.

File exists The file or folder already exists.

File is not open An I/O operation was attempted on a file that was 
closed.

EOF Attempt to read behind the end of a file.

Bad encoding Unable to read encoded characters from a file.

Permission denied The OS did not allow the attempted operation.

Cannot change directory Cannot change the current folder.

Cannot create Cannot create a folder.

Cannot rename Cannot rename a file or folder.

Cannot delete Cannot delete a file or folder.

I/O error Unspecified I/O error.

Cannot set size Setting the file size failed.

Cannot open Opening of a file failed.

Cannot close Closing a file failed.

Read error Reading from a file failed.

Write error Writing to a file failed.

Cannot seek Seek failure.

Cannot execute Unable to execute the specified file.



JavaScript Reference Guide  Supported encoding names 65

Supported encoding names

The following list of names is a basic set of encoding names supported by the File object. Some of 
the character encoders are built in, while the operating system is queried for most of the other 
encoders. Depending on the language packs installed, some of the encodings may not be 
available. Names that refer to the same encoding are listed in one line. Underlines are replaced 
with dashes before matching an encoding name.

Note, however, that the File object cannot process extended Unicode characters with values 
greater than 65535. These characters are left encoded as specified in the UTF-16 standard in as two 
characters in the range from 0xD700-0xDFFF.

Built-in encodings are:

US-ASCII, ASCII,ISO646-US,I SO-646.IRV:1991, ISO-IR-6,
ANSI-X3.4-1968,CP367,IBM367,US,ISO646.1991-IRV
UCS-2,UCS2, ISO-10646-UCS-2
UCS2LE,UCS-2LE,ISO-10646-UCS-2LE
UCS2BE,UCS-2BE,ISO-10646-UCS-2BE
UCS-4,UCS4, ISO-10646-UCS-4
UCS4LE,UCS-4LE,ISO-10646-UCS-4LE
UCS4BE,UCS-4BE,ISO-10646-UCS-4BE
UTF-8,UTF8,UNICODE-1-1-UTF-8,UNICODE-2-0-UTF-8,X-UNICODE-2-0-UTF-8
UTF16,UTF-16,ISO-10646-UTF-16
UTF16LE,UTF-16LE,ISO-10646-UTF-16LE
UTF16BE,UTF-16BE,ISO-10646-UTF-16BE
CP1252,WINDOWS-1252,MS-ANSI
ISO-8859-1,ISO-8859-1,ISO-8859-1:1987,ISO-IR-100,LATIN1
MACINTOSH,X-MAC-ROMAN
BINARY

The ASCII encoder raises errors for characters greater than 127, and the BINARY encoder simply 
converts between bytes and Unicode characters by using the lower 8 bits. The latter encoder is 
convenient for reading and writing binary data.

Additional encodings

In Windows, all encodings use so-called code pages. These code pages are assigned numeric 
values. The usual Western character set that Windows uses is e.g. the code page 1252. Windows 
code pages may be selected by prepending the number of the code page with "CP" or 
"WINDOWS- like "CP1252" for the code page 1252. The File object has a lot of other encoding 
names built-in that match predefined code page numbers. If a code page is not present, the 
encoding cannot be selected.



 Supported encoding names JavaScript Reference Guide66

On the Macintosh, encoders may be selected by name rather than by code page number. The File 
object queries the Macintosh OS directly for an encoder. As far as Macintosh character sets are 
identical with Windows code pages, the Macintosh also knows the Windows code page numbers.

On Unix systems, the number of available encoders depends on the installation of the iconv library.

Common encoding names

The following encoding names are implemented both on Windows and Macintosh systems:

UTF-7,UTF7,UNICODE-1-1-UTF-7,X-UNICODE-2-0-UTF-7
ISO-8859-2,ISO-8859-2,ISO-8859-2:1987,ISO-IR-101,LATIN2
ISO-8859-3,ISO-8859-3,ISO-8859-3:1988,ISO-IR-109,LATIN3
ISO-8859-4,ISO-8859-4,ISO-8859-4:1988,ISO-IR-110,LATIN4,BALTIC
ISO-8859-5,ISO-8859-5,ISO-8859-5:1988,ISO-IR-144,CYRILLIC
ISO-8859-6,ISO-8859-6,ISO-8859-6:1987,ISO-IR-127,ECMA-114,ASMO-708,ARABIC
ISO-8859-7,ISO-8859-7,ISO-8859-7:1987,ISO-IR-126,ECMA-118,ELOT-928,GREEK8,GREEK
ISO-8859-8,ISO-8859-8,ISO-8859-8:1988,ISO-IR-138,HEBREW
ISO-8859-9,ISO-8859-9,ISO-8859-9:1989,ISO-IR-148,LATIN5,TURKISH
ISO-8859-10,ISO-8859-10,ISO-8859-10:1992,ISO-IR-157,LATIN6
ISO-8859-13,ISO-8859-13,ISO-IR-179,LATIN7
ISO-8859-14,ISO-8859-14,ISO-8859-14,ISO-8859-14:1998,ISO-IR-199,LATIN8
ISO-8859-15,ISO-8859-15,ISO-8859-15:1998,ISO-IR-203
ISO-8859-16,ISO-885,ISO-885,MS-EE
CP850,WINDOWS-850,IBM850
CP866,WINDOWS-866,IBM866
CP932,WINDOWS-932,SJIS,SHIFT-JIS,X-SJIS,X-MS-SJIS,MS-SJIS,MS-KANJI
CP936,WINDOWS-936,GBK,WINDOWS-936,GB2312,GB-2312-80,ISO-IR-58,CHINESE
CP949,WINDOWS-949,UHC,KSC-5601,KS-C-5601-1987,KS-C-5601-1989,ISO-IR-149,KOREAN
CP950,WINDOWS-950,BIG5,BIG-5,BIG-FIVE,BIGFIVE,CN-BIG5,X-X-BIG5
CP1251,WINDOWS-1251,MS-CYRL
CP1252,WINDOWS-1252,MS-ANSI
CP1253,WINDOWS-1253,MS-GREEK
CP1254,WINDOWS-1254,MS-TURK
CP1255,WINDOWS-1255,MS-HEBR
CP1256,WINDOWS-1256,MS-ARAB
CP1257,WINDOWS-1257,WINBALTRIM
CP1258,WINDOWS-1258
CP1361,WINDOWS-1361,JOHAB
EUC-JP,EUCJP,X-EUC-JP
EUC-KR,EUCKR,X-EUC-KR
HZ,HZ-GB-2312
X-MAC-JAPANESE
X-MAC-GREEK
X-MAC-CYRILLIC
X-MAC-LATIN
X-MAC-ICELANDIC
X-MAC-TURKISH



JavaScript Reference Guide  Supported encoding names 67

Additional Windows encoding names

CP437,IBM850,WINDOWS-437
CP709,WINDOWS-709,ASMO-449,BCONV4
EBCDIC
KOI-8R
KOI-8U
ISO-2022-JP
ISO-2022-KR

Additional Macintosh encoding names

These names are alias names for encodings that the Macintosh operating system might know.

TIS-620,TIS620,TIS620-0,TIS620.2529-1,TIS620.2533-0,TIS620.2533-1,ISO-IR-166
CP874,WINDOWS-874
JP,JIS-C6220-1969-RO,ISO646-JP,ISO-IR-14
JIS-X0201,JISX0201-1976,X0201
JIS-X0208,JIS-X0208-1983,JIS-X0208-1990,JIS0208,X0208,ISO-IR-87
JIS-X0212,JIS-X0212.1990-0,JIS-X0212-1990,X0212,ISO-IR-159
CN,GB-1988-80,ISO646-CN,ISO-IR-57
ISO-IR-16,CN-GB-ISOIR165
KSC-5601,KS-C-5601-1987,KS-C-5601-1989,ISO-IR-149
EUC-CN,EUCCN,GB2312,CN-GB
EUC-TW,EUCTW,X-EUC-TW

Unix encodings

On Unix systems, the File object looks for the presence of the iconv library, and it uses whatever 
encoding it finds there. If you, therefore, need a special encoding on a Unix system, make sure that 
there is an iconv encoding module installed that converts between UTF-16 (the internal format that 
the File object uses) and the desired encoding.



 Supported encoding names JavaScript Reference Guide68



69

4
JavaScript Debugging

This section describes the information and controls of the JavaScript Debugger window, as 
illustrated below. 

command line

debug output
view

stack trace
view

JavaScript 
source view

resume

pause

stop step over

step into

step out

breakpoints display



 The Debugger Window JavaScript Reference Guide70

The Debugger Window

The current stack trace appears in the upper-left pane of the JavaScript Debugger window. This 
stack trace view displays the calling hierarchy at the time of the breakpoint. Double-clicking a line 
in this view changes the current scope, enabling you to inspect and modify scope specific data. 

All debugging output appears in the upper-right pane of the JavaScript Debugger window. 
Specifically, output from the print method of the “$” object appears in this debug output view.

The currently executing JavaScript source appears in the lower pane of the JavaScript Debugger 
window. Double-clicking a line in this JavaScript source view sets or clears an unconditional 
breakpoint on that line. That is, if a breakpoint is in effect for that line, double-clicking it clears the 
breakpoint, and vice-versa. The line number column to the left of the source view displays a red 
dot for all lines with a breakpoint.

Controlling Code Execution in the JavaScript Debugger Window

This section describes the buttons that control the execution of code when the JavaScript Debugger 
window is active. Most of these buttons also provide a keyboard shortcut available as a Ctrl-key 
combination on Windows platforms or a Cmd-key combination on Mac OS platforms.

Resume

Cmd-R (Mac OS)

Ctrl-R (Windows)

Resumes execution of the script with the JavaScript Debugger window open. When the script 
terminates, the application closes the JavaScript Debugger window automatically. Closing the 
debugger window manually also causes script execution to resume. This button is enabled when 
script execution is paused or stopped.

Pause

Cmd-P (Mac OS)

Ctrl-P (Windows)

Halts the currently executing script temporarily and reactivate the JavaScript Debugger window. 
This button is enabled when a script is running.



JavaScript Reference Guide  The Debugger Window 71

Stop

Cmd-K (Mac OS)

Ctrl-K (Windows)

Stops execution of the script and generate a runtime error. This button is enabled when a script is 
running.

Step Over

Cmd-S (Mac OS)

Ctrl-S (Windows)

Halts after executing a single JavaScript statement in the script; if the statement calls a JavaScript 
function, execute the function in its entirety before stopping.

Step Into

Cmd-T (Mac OS)

Ctrl-T (Windows)

Halts after executing a single JavaScript statement in the script or after executing a single 
statement in any JavaScript function that the script calls.

Step Out

Cmd-U (Mac OS)

Ctrl-U (Windows)

When the debugger is paused within the body of a JavaScript function, clicking this button 
resumes script execution until the function returns. When paused outside the body of a function, 
clicking this button resumes script execution until the script terminates.

Script Breakpoints Display

(no keyboard shortcuts)

Clicking this button displays the Script Breakpoints Window. Type in a line number that 
corresponds to a desired breakpoint and a condition about whether to stop or not. For more 
information on breakpoints, see “JavaScript Breakpoints Window” on page 75.



 The Debugger Window JavaScript Reference Guide72

Using the JavaScript Command Line Entry Field

You can use the JavaScript Debugger window’s command line entry field to enter and execute 
JavaScript code interactively within a specified stack scope. Commands entered in this field 
execute with a time-out of one second. If a command takes longer than one second to execute, the 
script terminates and generates a time-out error.

Command line entry field.

Enter in this field a JavaScript statement to execute within the stack scope of the line highlighted in 
the Stack Trace view. When you’ve finished entering the JavaScript expression, you can execute it 
by clicking the command line entry button or pressing the Enter key. Click the button next to the 
field or press Enter to execute the JavaScript code in the command line entry field. The application 
executes the contents of the command line entry field within the stack scope of the line 
highlighted in the Stack Trace view.

The command line entry field accepts any JavaScript code, making it very convenient to use for 
inspecting or changing the contents of variables. 

Note: To list the contents of an object as if it were JavaScript source code, enter the 
object.toSource() command, replacing object with the object that you want to display.

Setting Breakpoints

You can set breakpoints in the debugger itself, by calling methods of the $ object, or by defining 
them in your JavaScript code.

Setting Breakpoints in the JavaScript Debugger Window

When the JavaScript Debugger window is active, you can double-click a line in the source view to 
set or clear a breakpoint at that line. Alternatively, you can click the button to display the Script 
Breakpoints window and set or clear breakpoints in this window as described in “Setting 
Breakpoints in the JavaScript Breakpoints Window”.

Setting Breakpoints in JavaScript Code

Adding the debugger statement to a script sets an unconditional breakpoint. For example, the 
following code causes the script to halt and display the script debug window as soon as it enters 
the setupBox function. Note that debugging must be enabled; if not, the debugger statement is 
ignored.

object.toSource



JavaScript Reference Guide  The Debugger Window 73

function setupBox(box) {
// break unconditionally at the next line
debugger;
box.width  = 48;
box.height = 48;
box.url    = "none";

}

To execute a breakpoint in runtime code, call the $.bp() method, as shown in the following 
example:

function setupBox(box) {
box.width  = (box.width == undefined) ? $.bp() : 48;
box.height = (box.height == undefined) ? $.bp() : 48;
box.url    = (box.url == undefined) ? $.bp() : "none";

}

This example breaks if any of the width, height, or url attributes of the custom element are 
undefined. Of course, you wouldn’t put bp method calls into commercial code—it’s more 
appropriate for shipping code to set default values for undefined properties, as the previous 
example does. Again, debugging must be enabled; if not, the system ignores the $.bp() method.

You can also use $.bp() with a conditional JavaScript statement:

function setupBox(box) {
box.width  = 48; $.bp (box.width == undefined);
box.height = 48; $.bp (box.height == undefined);
box.url    = "none"; $.bp (box.url == undefined);

}

Embedding Debugger Instructions into a Script 

The JavaScript engine implements a global object, ‘$’, which has a .level property useful when 
embedding instructions on debugger behavior directly into a script. The following values are 
supported: 

• 0 -- Display of the debugger is suppressed (default) 
• 1 -- Break on run-time errors, or when a ‘debugger’ statement is encountered 
• 2 -- Display the debugger at the beginning of script execution 

For example: 

$.level = 1; // Show the debugger if run-time errors are thrown 

Provided that $.level is set to a value greater than zero, the debugger will become activated and 
stop on a line containing this statement. This property effectively functions as a breakpoint 
statement. See “The Debugger Object ($)” on page 77 for more information. 



 The Debugger Window JavaScript Reference Guide74

Script Prompt 

When a run-time error is encountered while debugging a script, the following dialog is typically 
displayed. 

The following conditions apply:

• If Yes is selected, the error is ignored and script processing attempts to continue on the next 
executable line

• If No is selected, the error is handled as it would be during normal (non-debug) execution
• If the error was encountered in a script-defined try block, execution jumps to the first line of 

the try’s associated catch block
• If the error was not encountered in a script-defined try block, script execution is terminated 

immediately

Note: To debug through the normal flow of execution in such try block circumstances, users 
typically select No. However, if the error is determined not to be of a nature that would 
compromise continued in-line execution (such as during script development), you are given 
the option of not having to terminate, fix or restart. 



JavaScript Reference Guide  The Debugger Window 75

JavaScript Breakpoints Window

This section describes the information and controls that the JavaScript Breakpoints window 
provides. Display of the Script Breakpoints window is controlled by the JavaScript Breakpoints 
button in the main JavaScript Debugger Window.

 This dialog displays all defined breakpoints. This dialog does not display:

• Breakpoints defined by the debugger statement in JavaScript code.
• Temporary breakpoints.

The JavaScript Breakpoints window provides the following controls:

• The Line field contains the line number of the breakpoint.
• The Condition field may contain a JavaScript expression to evaluate when the breakpoint is 

reached. If the expression evaluates to false, the breakpoint is not executed.

Breakpoints set in this window persist across multiple executions of a script. When the application 
quits, or a script is reloaded, it removes all breakpoints.

Setting Breakpoints in the JavaScript Breakpoints Window

Take the following steps to set a breakpoint in the JavaScript Breakpoints Window:

• Click the breakpoint that you wish to edit if applicable.
• Enter a line number in the Line Number field, or change the existing line number.
• Optionally, enter a condition such as "j == 1000" in the Condition field. This can be any valid 

JavaScript expression. If the result of evaluating the expression is true, the breakpoint 



 The Debugger Window JavaScript Reference Guide76

activates. The breakpoint also activates if there is a syntax or runtime error during the 
execution of the condition.

• Click “New” to change the line number of the breakpoint, to add or remove a breakpoint 
condition, or to create a new breakpoint.



JavaScript Reference Guide  The Debugger Object ($) 77

The Debugger Object ($)

The $ Object (Debugger Object) provides properties and methods you can use to debug your 
JavaScript code. For example, you can call Debugger methods to set or clear breakpoints 
programmatically, or to change the language flavor of the script currently executing. It also 
provides properties that hold information about the version of the host platform’s operating 
system.

Note: The $ object is not a standard JavaScript object. 

Properties

Debug output
write (text, …);
writeln (text, …);

Writes the given string to the Debug Output window. The writeln method appends a New 
Line character to its arguments.

Property Type Description

error Error Retrieves the last runtime error. Reading this property returns an Error object 
containing information about the last runtime error. 

level Number Sets the debugging level. This may be one of three values:
0 – disable debugging.
1 – break on runtime errors.  
2 – break at the beginning of the script.

Note that the debugger statement is disabled as well if the debugging level is 
0. Also, your scripting environment needs to support level 2 explicitly. If level 
2 does not work, use the statement "$.level = 1; debugger;" at the beginning 
of your script.

version String Returns the version number of the engine as a three-part number like "3.1.11". 
Read only.

os String Outputs the current operating system version. Read only.

Parameter Type Description Returns

text String All parameters are concatenated to a single 
string.

Undefined



 The Debugger Object ($) JavaScript Reference Guide78

Breakpoints
setbp (scriptletName, line, [condition]);

Sets a breakpoint. The breakpoint is defined by the name of the scriptlet or function and the 
line number. If the name is the empty string or missing, the name of the currently executing 
scriptlet is used. If the line number is zero or not supplied, the current line number is used. 
Thus, the call $.setbp() without parameters sets a breakpoint at the current position.

Optionally, a condition may be supplied. This is a JavaScript expression string that is 
evaluated before the breakpoint is executed. The breakpoint is only executed if the expression 
returns true. 

The special string "NEXTCALL", as the scriptlet name suggests, causes the engine to execute a 
breakpoint the next time a function call is executed.

clearbp (scriptletName, line);

Clears a breakpoint. The breakpoint is defined by the name of the scriptlet or function and the 
line number. If the scriptlet name is the empty string or missing, the name of the currently 
executing scriptlet is used. If the line number is zero or not supplied, the current line number 
is used. Thus, the call $.clearbp() without parameters clears a breakpoint at the current 
position.

The special string "NEXTCALL," as the scriptlet name suggests, causes the engine to clear a 
breakpoint at the next function call.

Parameter Type Description Returns

scriptletName String The name of the scriptlet or function where 
the breakpoint is to be set.

Undefined

line Number The line number where the breakpoint is to 
be set.

condition String An optional JavaScript expression that is 
evaluated before the breakpoint is executed. 
The expression needs to evaluate to the 
equivalent of true in order to activate the 
breakpoint.

Parameter Type Description Returns

scriptletName String The name of the scriptlet or function where 
the breakpoint is to be cleared.

Undefined

line Number The line number where the breakpoint is to 
be cleared.



JavaScript Reference Guide  The Debugger Object ($) 79

bp([condition]);

Executes a breakpoint at the current position. Optionally, a condition may be supplied. This is 
a JavaScript expression string that is evaluated before the breakpoint is executed. The 
breakpoint is only executed if the expression returns true. If no condition is given, the use of 
the debugger statement is recommended.

Other methods
gc()

Initiates garbage collection. Garbage collection is a convenience function that automatically 
collects all varibles declared as var. This method allow you to manually invoke garbage 
collection. 

Returns: Undefined

Parameter Type Description Returns

condition String An optional JavaScript expression string that 
is evaluated before the breakpoint is 
executed. The expression needs to evaluate 
to the equivalent of true in order to activate 
the breakpoint.

Undefined



 The Debugger Object ($) JavaScript Reference Guide80



81

5
Utilities

Photoshop actions are different from scripts. A Photoshop action is a series of tasks you have 
recorded while using the application—menu choices, tool choices, selection, and other commands. 
When you “play” an action, Photoshop performs all of the recorded commands.

Actions and scripts are two ways of automating repetitive tasks, but they work very differently.

• You cannot add conditional logic to an action. Unlike a script, actions cannot make decisions 
based on the current situation.

• A single script can target multiple hosts. Actions can’t. For example, you could target both 
Photoshop and Illustrator in the same script.

The Actions palette, invoked under the Window menu, supports actions with a great deal of 
sophistication (including the ability to display dialogs) and allows users to work with selected 
objects, as illustrated below. 

The action manager is a Photoshop CS utility that helps you manage and manipulate actions when 
writing JavaScripts. 



 JavaScript Reference Guide82

Action Manager scripting

In addition to accessing Action Manager from the palette, you can incorporate Action Manager 
functionality into your scripts. Moreover, the Action Manager allows you to write scripts that 
target Photoshop functionality that is not otherwise accessible. You are able to script third party 
plug-ins, filters, and other tasks that are not otherwise included in the scripting interface. The only 
requirement is that the task that you want to access from the Action Manager is recordable.

The classes “ActionDescriptor”, “ActionReference” and “ActionList” are all part of the Action 
Manager functionality.

When you write scripts that use the Action Manager, you should install the “ScriptingListener” 
plug-in. This plug-in is located in the “Scripting Guide” folder. Look inside the “utilities” folder 
that is part of the scripting support download. 

To install the plug-in place it in the Adobe Photoshop CS\Plug-Ins\Adobe Photoshop 
Only\Automate\ folder.

“ScriptingListener” records most of your actions to a file on your hard drive. To avoid slowing 
down Photoshop as well as not to create a big file on your drive, only install the plug-in when you 
are creating Action Manager scripts.

When “ScriptingListener” is installed it will record a file with scripting code corresponding to the 
actions that you perform from the UI.

The Windows version of “ScriptingListener” creates the following file:

• C:\ScriptingListenerJS.log: contains JavaScript code corresponding to the actions that are 
performed from the UI.

The Macintosh version “ScriptingListener” creates the following file:

• ScriptingListenerJS.log: the file is created on the desktop and contains JavaScript code 
corresponding to the actions that are performed from the UI.

Note: There is no AppleScript interface to the Action Manager, but you can execute JavaScripts 
from AppleScript, so you are able to access Action Manager functionality from AppleScripts.

Using the Action Manager from JavaScript

Imagine, for example, that you want to be able to use the Emboss filter. The Emboss filter is not 
part of the filters that are exposed to the various scripting languages, but using the Action 
Manager you are able to use this filter. First make sure that you have installed the 
“ScriptingListener”. Then from the UI, open a document and apply the Emboss filter using the 
settings: angle 135, height 3 and amount 100.



JavaScript Reference Guide 83

When the ScriptingListener is installed, running the Emboss filter is recorded to a file called 
“ScriptingListenerJS.log” (see above for location of this file on the various platforms).

Open the “ScriptingListenerJS.log” file. At the end of the file you will see something like the 
following. Note the numbers may vary:

var id19 = charIDToTypeID( "Embs" );
var desc4 = new ActionDescriptor();
var id20 = charIDToTypeID( "Angl" );
desc4.putInteger( id20, 135 );
var id21 = charIDToTypeID( "Hght" );
desc4.putInteger( id21, 3 );
var id22 = charIDToTypeID( "Amnt" );
desc4.putInteger( id22, 100 );
executeAction( id19, desc4 );

The ScriptingListener divides every command by a line, so it is easy to find the last command.

The next step in making Emboss scriptable is to identify the values that you entered (135, 3 and 
100). Copy the JavaScript code from the “ScriptingListenerJS.log” file to another file and substitute 
the filter values with variable names. In the following example, we have wrapped the code in a 
JavaScript function and replaced 135 with angle, 3 with height, and 100 with amount.

function emboss( angle, height, amount )
{
var id32 = charIDToTypeID( "Embs" );
var desc7 = new ActionDescriptor();
var id33 = charIDToTypeID( "Angl" );
desc7.putInteger( id33, angle );
var id34 = charIDToTypeID( "Hght" );
desc7.putInteger( id34, height );
var id35 = charIDToTypeID( "Amnt" );
desc7.putInteger( id35, amount );
executeAction( id32, desc7 );

}

You now have a JavaScript function that performs the Emboss filter on the current document. To 
activate the Emboss filter from JavaScript you must include the function definition shown above 
and then call the function with the desired parameters. To apply Emboss with angle 75, height 2 
and amount 89, you say:

// First include the emboss function somewhere in your JavaScript
// file
function emboss( angle, height, amount )
{
var id32 = charIDToTypeID( "Embs" );
var desc7 = new ActionDescriptor();
var id33 = charIDToTypeID( "Angl" );
desc7.putInteger( id33, angle );



 JavaScript Reference Guide84

var id34 = charIDToTypeID( "Hght" );
desc7.putInteger( id34, height );
var id35 = charIDToTypeID( "Amnt" );
desc7.putInteger( id35, amount );
executeAction( id32, desc7 );
}
// Then call emboss with desired parameters
emboss( 75, 2, 89 );

Running JavaScript based Action Manager code from AppleScript

As there is no Action Manager functionality in AppleScript you will have to use JavaScript to use 
the Action Manager on the Mac. To do this you use the AppleScript command: “do javascript.” 
Provide filter settings in the “arguments” parameter.

You need to re-write your JavaScript code slightly to work with the “do javascript” command to 
use the “arguments” collection to get access to the AppleScript values from JavaScript. For 
example change the Emboss JavaScript shown in the previous section to the following and save it 
in a file called “Emboss.js”:

function emboss( angle, height, amount )
{
var id32 = charIDToTypeID( "Embs" );
var desc7 = new ActionDescriptor();
var id33 = charIDToTypeID( "Angl" );
desc7.putInteger( id33, angle );
var id34 = charIDToTypeID( "Hght" );
desc7.putInteger( id34, height );
var id35 = charIDToTypeID( "Amnt" );
desc7.putInteger( id35, amount );
executeAction( id32, desc7 );
}
// Call emboss with values provided in the "arguments" collection
emboss( arguments[0], arguments[1], arguments[2] );
From AppleScript you can then run the Emboss filter by saying:
tell application "Adobe Photoshop CS"
do javascript (file <a path to Emboss.js>) ¬

with arguments { 75,2,89 }
end tell

Running JavaScript based Action Manager code from VBScript

From VBScript you have a choice of either running JavaScript based Action Manager code or 
VBScript based Action Manager code. This section describes how to access JavaScript based 
Action Manager code. The next section covers how to run VBScript based Action Manager code.



JavaScript Reference Guide 85

To access JavaScript code from VBScript, you must use the “DoJavaScriptFile” command and 
provide specific settings in the “arguments” parameter.

Save the following script in a file called “C:\Emboss.js”

function emboss( angle, height, amount )
{
var id32 = charIDToTypeID( "Embs" );
var desc7 = new ActionDescriptor();
var id33 = charIDToTypeID( "Angl" );
desc7.putInteger( id33, angle );
var id34 = charIDToTypeID( "Hght" );
desc7.putInteger( id34, height );
var id35 = charIDToTypeID( "Amnt" );
desc7.putInteger( id35, amount );
executeAction( id32, desc7 );
}
// Call emboss with values provided in the "arguments" collection
emboss( arguments[0], arguments[1], arguments[2] );

From VBScript you can then run the Emboss filter by saying:

Set objApp = CreateObject("Photoshop.Application")
objApp.DoJavaScriptFile "C:\Emboss.js", Array(75, 2, 89)



 JavaScript Reference Guide86



87

6
JavaScript Interface

The object classes of the JavaScript type library are presented alphabetically and in tabular format 
in this interface section. 

Class properties and methods are described. 

• Properties of a class include the property itself, access status (read only or read/write) , 
value type, and a description. 

When the value type is an enumeration, enumerated values are defined in UPPER CASE, as 
illustrated below: 

• Methods of a class include the method name, a description, parameters and return values, if 
applicable. 

Italics indicates that a parameter type is optional. 

When the parameter type is an enumeration, enumerated values are defined in UPPER CASE.

Note: Descriptions are omitted for properties and methods that are self-explanatory; for example: 
removeAll. Return values and parameter types, if none apply, may also be left blank. 

Sample code for several object model classes is given to help illustrate the syntax as well as usage 
of the object class. 

Property Access Value Type What it is

displayDialogs R/W DialogModes
DialogModes.ALL
DialogModes.ERROR
DialogModes.NO

controls whether or not Photoshop 
displays dialogs

Method What it does Parameter Type Returns

purge Purges one or more 
caches

target as PurgeTarget
PurgeTarget.ALLCACHES
PurgeTarget.CLIPBOARDCACHE
PurgeTarget.HISTORYCACHES
PurgeTarget.UNDOCACHES



 ActionDescriptor JavaScript Reference Guide88

ActionDescriptor

Properties

Methods

Property Access Value Type What it is

count RO Long number of keys contained in the 
descriptor

Method What it does Parameter Type Returns

clear Clears the descriptor

erase Erases a key from the 
descriptor

Key as Long

getBoolean Gets the value of a key 
of type boolean

Key as Long Boolean

getClass Gets the value of a key 
of type class

Key as Long Long

getDouble Gets the value of a key 
of type double

Key as Long Double

getEnumerationType Gets the enumeration 
type of a key

Key as Long Long

getEnumerationValue Gets the enumeration 
value of a key

Key as Long Long

getInteger Gets the value of a key 
of type integer

Key as Long Long

getKey Gets ID of the Nth key Index as Long Long

getList Gets the value of a key 
of type list

Key as Long ActionList

getObjectType Gets the class ID of an 
object in a key of type 
object

Key as Long Long

getObjectValue Gets the value of a key 
of type object

Key as Long ActionDescriptor

getPath Gets the value of a key 
of type Alias

Key as Long File

getReference Gets the value of a key 
of type 
ActionReference

Key as Long ActionReference



JavaScript Reference Guide  ActionDescriptor 89

getString Gets the value of a key 
of type string

Key as Long String

getType Gets the type of a key Key as Long DescValueType

getUnitDoubleType Gets the unit type of a 
key of type UnitDouble

Key as Long Long

getUnitDoubleValue Gets the value of a key 
of type UnitDouble

Key as Long Double

hasKey Does the descriptor 
contain the provided 
key?

Key as Long Boolean

isEqual otherDesc as ActionDescriptor Boolean

putBoolean Key as Long
Value as Boolean

putClass Key as Long
Value as Long

putDouble Key as Long
Value as Double

putEnumerated Key as Long
enumType as Long
Value as Long

putInteger Key as Long
Value as Long

putList Key as Long
Value as ActionList

putObject Key as Long
classID as Long
Value as ActionDescriptor

putPath Key as Long
Value as File

putReference Key as Long
Value as ActionReference

putString Key as Long
Value as String

putUnitDouble Key as Long
unitID as Long
Value as Double

Method What it does Parameter Type Returns



 ActionList JavaScript Reference Guide90

ActionList

Properties

Methods

Property Access Value Type What it is

count RO Long number of items in the list

Method What it does Parameter Type Returns

clear Clear the list

getBoolean Gets the value of an 
item of type boolean

Index as Long Boolean

getClass Gets the value of an 
item of type class

Index as Long Long

getDouble Gets the value of an 
item of type double

Index as Long Double

getEnumerationType Gets the enumeration 
type of an item

Index as Long Long

getEnumerationValue Gets the enumeration 
value of an item

Index as Long Long

getInteger Gets the value of an 
item of type integer

Index as Long Long

getList Gets the value of an 
item of type list

Index as Long ActionList

getObjectType Gets the class ID of an 
object in an item of 
type object

Index as Long Long

getObjectValue Gets the value of an 
item of type object

Index as Long ActionDescriptor

getPath Gets the value of an 
item of type Alias

Index as Long File

getReference Gets the value of an 
item of type 
ActionReference

Index as Long ActionReference

getString Gets the value of an 
item of type string

Index as Long String

getType Gets the type of an 
item

Index as Long DescValueType



JavaScript Reference Guide  ActionList 91

getUnitDoubleType Gets the unit type of 
an item of type 
UnitDouble

Index as Long Long

getUnitDoubleValue Gets the value of anm 
item of type 
UnitDouble

Index as Long Double

putBoolean Value as Boolean

putClass Value as Long

putDouble Value as Double

putEnumerated enumType as Long
Value as Long

putInteger Value as Long

putList Value as ActionList

putObject classID is Long
Value as ActionDescriptor

putPath Value as File

putReference Value as ActionReference

putString Value as String

putUnitDouble classID is Long
Value as Double

Method What it does Parameter Type Returns



 ActionReference JavaScript Reference Guide92

ActionReference

Methods

Method What it does Parameter Type Returns

getContainer ActionReference

getDesiredClass Long

getEnumeratedType Gets type of 
enumeration of an 
ActionReference 
whose form is 
'Enumerated'

Long

getEnumeratedValue Gets value of 
enumeration of an 
ActionReference 
whose form is 
'Enumerated'

Long

getForm Gets form of 
ActionReference

ReferenceFormType

getIdentifier Gets identifier value for 
an ActionReference 
whoxse form is 
'Identifier'

Long

getIndex Gets index value for an 
ActionReference 
whoxse form is 'Index'

Long

getName Gets name value for an 
ActionReference 
whoxse form is 'Name'

String

getOffset Gets offset value for an 
ActionReference 
whoxse form is 'Offset'

Long

getProperty Gets property ID value 
for an ActionReference 
whoxse form is 
'Property'

Long

putClass desiredClass as Long

putEnumerated desiredClass as Long
enumType as Long
Value as Long

putIdentifier desiredClass as Long
Value as Long



JavaScript Reference Guide  ActionReference 93

putIndex desiredClass as Long
Value as Long

putName desiredClass as Long
Value as String

putOffset desiredClass as Long
Value as Long

putProperty desiredClass as Long
Value as Long

Method What it does Parameter Type Returns



 Application JavaScript Reference Guide94

Application

Properties

Methods

Property Access Value Type What it is

activeDocument R/W Document the frontmost document

backgroundColor R/W SolidColor

colorSettings R/W ANYTHING name of selected color settings' set

displayDialogs R/W DialogModes
DialogModes.ALL
DialogModes.ERROR
DialogModes.NO

controls whether or not Photoshop 
displays dialogs

documents RO Documents the open documents

fonts RO TextFonts the fonts installed on this system

foregroundColor R/W SolidColor

freeMemory RO Double the amount of unused memory available 
to Adobe Photoshop

name RO String the application's name

path RO File the full path of the location of the 
Photoshop application

preferences RO Preferences preference settings

scriptingVersion RO String the version of the Scripting interface

version RO String the version of Adobe Photoshop 
application

Method What it does Parameter Type Returns

beep

charIDToTypeID Converts from a four 
character code to a 
runtime ID

charID as String Long 

doAction Plays an action from 
the Actions Palette

action as String
from as String



JavaScript Reference Guide  Application 95

First Sample Script 

The following application script invokes an alert box to display properties important to an 
application such as version number, path to the application, memory available, and number of 
documents open. 

Pressing the OK button on the alert box opens a second dialog, which asks users whether they 
would like the foreground and background colors set for the document presently open. If no 
document is open, the script opens a new document for the user. 

executeAction Plays an 
ActionManager event

eventID as Long 

descriptor as ActionDescriptor
displayDialogs as DialogModes
DialogModes.ALL
DialogModes.ERROR
DialogModes.NO

ActionDescriptor

executeActionGet Obtains an action 
descriptor

reference as ActionReference ActionDescriptor

load()

makePhotoGallery Creates a web photo 
gallery

inputFolder as File
outputFolder as File
options as GalleryOptions

String

makePDFPresentation()

open Opens the specified 
document

document asFile
option as ANYTHING

Document

purge Purges one or more 
caches

target as PurgeTarget
PurgeTarget.ALLCACHES
PurgeTarget.CLIPBOARDCACHE
PurgeTarget.HISTORYCACHES
PurgeTarget.UNDOCACHES

stringIDToTypeID Converts from a string 
ID to a runtime ID

stringID as String Long

typeIDToCharID Converts from a 
runtime ID to a 
character ID

typeID as Long String

typeIDToStringID Converts from a 
runtime ID to a string 
ID

typeID as Long String

Method What it does Parameter Type Returns



 Application JavaScript Reference Guide96

The script (with no document open) produces the following progression of dialogs. 

Code (application.js) 

// build up a message to display to the user

// append the name of the application and the version
var message = “Welcome to “ + app.name;
message += “ version “ + app.version + “\r\r”;

// find out where Photoshop is installed
message += “I’m installed in “ + app.path.fsName + “\r\r”;

// see how much memory Photoshop has to play with
message += “You have this much memory available for Photoshop “ + 
app.freeMemory + “\r\r”;

// see how many docments are open
var documentsOpen = app.documents.length;
message += “You currently have “ + documentsOpen + “ document(s) open.\r\r”;

// display the message to the user
alert(message);

// answer will be true for a “Yes” answer and false for a “No” answer
var answer = confirm(“Do you want me to set the foreground and background to my 
favorite colors?”);

// set the colors
if (answer) {



JavaScript Reference Guide  Application 97

// I don’t have a favorite color. Why did I ask you may wonder?
app.foregroundColor.rgb.red = Math.random() * 255;
app.foregroundColor.rgb.green = Math.random() * 255;
app.foregroundColor.rgb.blue = Math.random() * 255;

app.backgroundColor.rgb.red = Math.random() * 255;
app.backgroundColor.rgb.green = Math.random() * 255;
app.backgroundColor.rgb.blue = Math.random() * 255;

}

// You really need a document open
if (app.documentsOpen == 0) {

// use the application’s path and the offset to the samples folder
var sampleDocToOpen = File(app.path + “/Samples/Eagle.psd”);

// compose a message with the name of the file
message = “Would you like me to open a sample for you? (“;
message += sampleDocToOpen.fsName;
message += “)”;

// ask the user another question
answer = confirm(message);

// open the document accordingly
if (answer) {

open(sampleDocToOpen);
}

}



 Application JavaScript Reference Guide98

Second Sample Script 

The following PDF presentation script presents a slide show images in PDF format.

The script produces the following progression of images as a PDF slide show. 

Code (PDFPresentation.js)

// use all the files in the Samples folder
var inputFolder = new Folder(app.path + “/Samples/”);

// see if we got something interesting
if ( inputFolder != null) {

// get all the files found in this folder that are Photoshop (.psd)
var inputFiles = inputFolder.getFiles(“*.psd”);

// output to the desktop
var outputFile = File(“~/Desktop/JavaScriptPresentation.pdf”);

// there are defaults but I like to set the options myself
var options = new PresentationOptions;
options.presentation = true;



JavaScript Reference Guide  Application 99

options.view = true;
options.autoAdvance = true;
options.interval = 5;
options.loop = true;
options.transition = TransitionType.RANDOM;

// create the presentation
makePDFPresentation(inputFiles, outputFile, options);

}

Note: To run this code on non-English platforms, substitue the following path for the outputFile 
variable:

var outputFile = File(“~/JavaScriptPresentation.pdf”);



 ArtLayer JavaScript Reference Guide100

ArtLayer

Properties

Property Access Value Type What it is

allLocked R/W Boolean

blendMode R/W BlendMode
BlendMode.COLORBLEND
BlendMode.COLORBURN
BlendMode.COLORDODGE
BlendMode.DARKEN
BlendMode.DIFFERENCE
BlendMode.DISSOLVE
BlendMode.EXCLUSION
BlendMode.HARDLIGHT
BlendMode.HUE
BlendMode.LIGHTEN
BlendMode.LINEARBURN
BlendMode.LINEARDODGE
BlendMode.LINEARLIGHT
BlendMode.LUMINOSITY
BlendMode.MULTIPLY
BlendMode.NORMAL
BlendMode.OVERLAY
BlendMode.PASSTHROUGH
BlendMode.PINLIGHT
BlendMode.SATURATION
BlendMode.SCREEN
BlendMode.SOFTLIGHT
BlendMode.VIVIDLIGHT

bounds RO Array( UnitValue ) Bounding rectangle of the 
Layer

fillOpacity R/W Double the interior opacity of the 
layer (between 0.0 and 
100.0)

grouped R/W Boolean is the layer grouped with 
the layer below? 
Photoshop CS changed the 
menu name to Create/
Release Clipping Mask

isBackgroundLayer R/W Boolean is the layer a background 
layer?



JavaScript Reference Guide  ArtLayer 101

kind R/W LayerKind
LayerKind.BRIGHTNESSCONTRAST
LayerKind.CHANNELMIXER
LayerKind.COLORBALANCE
LayerKind.CURVES
LayerKind.GRADIENTFILL
LayerKind.GRADIENTMAP
LayerKind.HUESATURATION
LayerKind.INVERSION
LayerKind.LEVELS
LayerKind.NORMAL
LayerKind.PATTERNFILL
LayerKind.POSTERIZE
LayerKind.SELECTIVECOLOR
LayerKind.SOLIDFILL
LayerKind.TEXT
LayerKind.THRESHOLD

to create a text layer set 
this property to 'text layer' 
on an empty art layer of 
type 'normal'

linkedLayers RO Object

name R/W String the name of the layer

opacity R/W Double master opacity of layer ( 0.0 
- 100.0 )

parent RO Object the object's container

pixelsLocked R/W Boolean

positionLocked R/W Boolean

textItem RO TextItem the text item that is 
associated with the art 
layer. Only valid for art 
layers whose 'has text' is 
true

transparentPixelsLocked R/W Boolean

visible R/W Boolean

Property Access Value Type What it is



 ArtLayer JavaScript Reference Guide102

Methods

Method What it does Parameter Type Returns

adjustBrightnessContrast Adjusts 
brightness and 
contrast

brightness as Long
contrast as Long

adjustColorBalance shadows as Object
midtones as Object
highlights as Object
preserveLuminosity as Boolean

adjustCurves Adjusts curves 
of the selected 
channels

curveShape as Object

adjustLevels Adjusts levels 
of the selected 
channels

inputRangeStart as Long 
inputRangeEnd as Long 
inputRangeGamma as Double
outputRangeStart as Long 
outputRangeEnd as Long 

applyAddNoise Applies the add 
noise filter

amount as Double

distribution as NoiseDistribution
NoiseDistribution.GAUSSIAN
NoiseDistribution.UNIFORM

monochromatic as Boolean

applyBlur Applies the blur 
filter

applyBlurMore Applies the blur 
more filter

applyClouds Applies the 
clouds filter

applyCustomFilter Applies the 
custom filter

characteristics as Object
scale as  Long 
offset as Long 

applyDeInterlace Applies the De-
Interlace filter

eliminateFields as EliminateFields
EliminateFields.EVENFIELDS
EliminateFields.ODDFIELDS

createFields as CreateFields
CreateFields.DUPLICATION
CreateFields.INTERPOLATION

applyDespeckle Applies the 
despeckle filter



JavaScript Reference Guide  ArtLayer 103

applyDifferenceClouds Applies the 
difference 
clouds filter

applyDiffuseGlow Applies the 
diffuse glow 
filter

graininess as Long 
glowAmount as Long 
clearAmount as Long 

applyDisplace Applies the 
displace filter

horizontalScale as Long 
verticalScale as Long 

displacement as Type as DisplacementMapType
DisplacementMapType.STRETCHTOFIT
DisplacementMapType.TILE

undefinedAreass as UndefinedAreas
UndefinedAreas.REPEATEDGEPIXELS
UndefinedAreas.WRAPAROUND

displacementMapFile as File

applyDustAndScratches Applies the 
dust and 
scratches filter

radius as Long 
threshold as Long 

applyGaussianBlur Applies the 
Gaussian blur 
filter

radius as Double 

applyGlassEffect Applies the 
glass filter

distortion as Long
smoothness as Long
scaling as Long 
invert as Boolean

texture as TextureType
TextureType.BLOCKS
TextureType.CANVAS
TextureType.FILE
TextureType.FROSTED
TextureType.TINYLENS

textureFile as File

applyHighPass Applies the 
high pass filter

radius as Double 

Method What it does Parameter Type Returns



 ArtLayer JavaScript Reference Guide104

applyLensFlare Applies the lens 
flare filter

brightness as Long 
flareCenter as Array( UnitValue )

lensType as LensType
LensType.MOVIEPRIME
LensType.PRIME105
LensType.PRIME35
LensType.ZOOMLENS

applyMaximum Applies the 
maximum filter

radius as Double

applyMedianNoise Applies the 
median noise 
filter 

radius as Double 

applyMinimum Applies the 
minimum filter

radius as Double 

applyMotionBlur Applies the 
motion blur 
filter

angle as Long 
radius as Double 

applyNTSC Applies the 
NTSC colors 
filter

applyOceanRipple Applies the 
ocean ripple 
filter

size as Long 
magnitude as Long

applyOffset Applies the 
offset filter

horizontal as UnitValue
vertical as UnitValue
undefinedAreas as OffsetUndefinedAreas
OffsetUndefinedAreas.REPEATEDGEPIXELS
OffsetUndefinedAreas.SETTOBACKGROUND
OffsetUndefinedAreas.WRAPAROUND

applyPinch Applies the 
pinch filter

amount as Long 

applyPolarCoordinates Applies the 
polar 
coordinates 
filter

conversion as PolarConversionType
PolarConversionType.POLARTORECTANGULAR
PolarConversionType.RECTANGULARTOPOLAR

Method What it does Parameter Type Returns



JavaScript Reference Guide  ArtLayer 105

applyRadialBlur Applies the 
radial blur filter

amount as Long 

blurMethod as RadialBlurMethod
RadialBlurMethod.SPIN
RadialBlurMethod.ZOOM

blurQuality as RadialBlurQuality
RadialBlurQuality.BEST
RadialBlurQuality.DRAFT
RadialBlurQuality.GOOD

applyRipple Applies the 
ripple filter

amount as Long 

size as RippleSize
RippleSize.LARGE
RippleSize.MEDIUM
RippleSize.SMALL

applySharpen Applies the 
sharpen filter

applySharpenEdges Applies the 
sharpen edges 
filter

applySharpenMore Applies the 
sharpen more 
filter

applyShear Applies the 
shear filter

curve as Object

undefinedAreas as UndefinedAreas
UndefinedAreas.REPEATEDGEPIXELS
UndefinedAreas.WRAPAROUND

applySmartBlur Applies the 
smart blur filter

radius as Double 
threshold as Double 

blurQuality as SmartBlurQuality
SmartBlurQuality.HIGH
SmartBlurQuality.LOW
SmartBlurQuality.MEDIUM

mode as SmartBlurMode
SmartBlurMode.EDGEONLY
SmartBlurMode.NORMAL
SmartBlurMode.OVERLAYEDGE

Method What it does Parameter Type Returns



 ArtLayer JavaScript Reference Guide106

applySpherize Applies the 
spherize filter

amount as Long 

mode as SpherizeMode
SpherizeMode.HORIZONTAL
SpherizeMode.NORMAL
SpherizeMode.VERTICAL

applyStyle styleName as String

applyTextureFill Applies the 
texture fill filter

textureFile as File

applyTwirl Applies the 
twirl filter

angle as Long 

applyUnSharpMask Applies the 
unsharp mask 
filter

amount as Double 
radius as Double 
threshold as Long 

applyWave Applies the 
wave filter

generatorNumber as Long 
minimumWavelength as Long 
maximumWavelength as Long 
minimumAmplitude as Long 
maximumAmplitude as Long 
horizontalScale as Long 
verticalScale as Long 

waveType as WaveType
WaveType.SINE
WaveType.SQUARE
WaveType.TRIANGULAR

undefinedAreas as UndefinedAreas
UndefinedAreas.REPEATEDGEPIXELS
UndefinedAreas.WRAPAROUND
randomSeed as Long 

applyZigZag Applies the 
zigzag filter

amount as Long 
ridges as Long 

style as ZigZagType
ZigZagType.AROUNDCENTER
ZigZagType.OUTFROMCENTER
ZigZagType.PONDRIPPLES

autoContrast Adjusts 
contrast of the 
selected 
channels 
automatically

Method What it does Parameter Type Returns



JavaScript Reference Guide  ArtLayer 107

autoLevels Adjusts levels 
of the selected 
channels using 
auto levels 
option

clear

copy merge as Boolean

cut

desaturate

duplicate Creates a 
duplicate of the 
object

relativeObject as Object

insertionLocation as ElementPlacement
ElementPlacement.INSIDE
ElementPlacement.PLACEATBEGINNING
ElementPlacement.PLACEATEND
ElementPlacement.PLACEBEFORE
ElementPlacement.PLACEAFTER

Object 
(Layer)

equalize Equalizes the 
levels

invert Inverts the 
currently 
selected layer 
or channels

link Links the layer 
with another 
layer

with as Object (Layer)

merge Merges the 
layer down. 
This will 
remove the 
layer from the 
document. The 
method returns 
a reference to 
the art layer 
that this layer is 
merged into

ArtLayer

mixChannels only valid for 
RGB or CMYK 
documents

outputChannels as Object
monochrome as Boolean

Method What it does Parameter Type Returns



 ArtLayer JavaScript Reference Guide108

move Moves the 
object

relativeObject as Object

insertionLocation as ElementPlacement
ElementPlacement.INSIDE
ElementPlacement.PLACEATBEGINNING
ElementPlacement.PLACEATEND
ElementPlacement.PLACEBEFORE
ElementPlacement.PLACEAFTER

posterize levels as Long 

rasterize target as RasterizeType
RasterizeType.ENTIRELAYER
RasterizeType.FILLCONTENT
RasterizeType.LAYERCLIPPINGPATH
RasterizeType.LINKEDLAYERS
RasterizeType.SHAPE
RasterizeType.TEXTCONTENTS

remove Deletes the 
object

resize horizontal as Double 
vertical as Double 

anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
.AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

rotate angle as Double
]
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
.AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

Method What it does Parameter Type Returns



JavaScript Reference Guide  ArtLayer 109

selectiveColor selectionMethod as AdjustmentReference
AdjustmentReference.ABSOLUTE
AdjustmentReference.RELATIVE
reds as Object
yellows as Object
greens as Object
cyans as Object
blues as Object
magentas as Object
whites as Object
neutrals as Object
blacks as Object

threshold level as Long 

translate Moves  the 
position 
relative to its 
current 
position

deltaX as UnitValue
deltaY as UnitValue

unlink Unlinks the 
layer

Method What it does Parameter Type Returns



 ArtLayer JavaScript Reference Guide110

Sample Script 

The following script creates art layers to display a duck and a sand dune in an overlying 
checkerboard pattern. An alert box prompts the user to press OK. A multi-layered collage then 
displays. 

The script typically produces the following progression of dialogs. 

Code (ArtLayer.js) 

// Save the current preferences
var startRulerUnits = app.preferences.rulerUnits;
var startTypeUnits = app.preferences.typeUnits;
var startDisplayDialogs = app.displayDialogs;

// Set Photoshop to use pixels and display no dialogs
app.preferences.rulerUnits = Units.PIXELS;
app.preferences.typeUnits = TypeUnits.PIXELS;
app.displayDialogs = DialogModes.NO;

// first close all the open documents
 while (app.documents.length) {

app.activeDocument.close();



JavaScript Reference Guide  ArtLayer 111

}

// create a new document to merge all the samples into
var mergedDoc = app.documents.add(1000, 1000, 72, “Merged Samples”, 
NewDocumentMode.RGB, DocumentFill.TRANSPARENT, 1);

// Use the path to the application and append Samples
var samplesFolder = Folder(app.path + “/Samples/”);

// get all the files found in this folder
var fileList = samplesFolder.getFiles();

// open each one in turn
for (var i = 0; i < fileList.length; i++) {

// The fileList is folders and files so open only files
if (fileList[i] instanceof File) {

open(fileList[i]);

// use the document name for the layer name in the merged document
var docName = app.activeDocument.name;

// flatten the document so we get everything and then copy
app.activeDocument.flatten();
app.activeDocument.selection.selectAll();
app.activeDocument.selection.copy();

// don’t save anything we did
app.activeDocument.close(SaveOptions.DONOTSAVECHANGES);

// make a random selection on the document to paste into
// I divided the document up in 4 quadrants and I paste
// into one of them by selecting that area
var topLeftH = Math.floor(Math.random() * 2);
var topLeftV = Math.floor(Math.random() * 2);
var docH = app.activeDocument.width.value / 2;
var docV = app.activeDocument.height.value / 2;
var selRegion = Array(Array(topLeftH * docH, topLeftV * docV),

                      Array(topLeftH * docH + docH, topLeftV * docV),
                      Array(topLeftH * docH + docH, topLeftV * docV + docV),
                      Array(topLeftH * docH, topLeftV * docV + docV),
                      Array(topLeftH * docH, topLeftV * docV));

app.activeDocument.selection.select(selRegion);
app.activeDocument.paste();

// change the layer name and muck with the opacity
app.activeDocument.activeLayer.name = docName;
app.activeDocument.activeLayer.fillOpacity = 50;

}
}



 ArtLayer JavaScript Reference Guide112

// sort the layers by name
// use good old bubble sort
for (var x = 0; x < app.activeDocument.layers.length; x++) {

for (var y = 0; y < app.activeDocument.layers.length - 1 - x; y++) {
// Compare in a non-case sensitive way
var doc1 = app.activeDocument.layers[y].name;
var doc2 = app.activeDocument.layers[y + 1].name;
if (doc1.toUpperCase() > doc2.toUpperCase()) {

app.activeDocument.layers[y].move(app.activeDocument.layers[y+1],
ElementPlacement.PLACEAFTER);

}
}

}

// Reset the application preferences
app.preferences.rulerUnits = startRulerUnits;
app.preferences.typeUnits = startTypeUnits;
app.displayDialogs = startDisplayDialogs;



JavaScript Reference Guide  ArtLayers 113

ArtLayers

Properties

Methods

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

add Creates a new object ArtLayer

getByName Get the first element in 
the collection with the 
provided name

name as String ArtLayer

removeAll



 BitmapConversionOptions JavaScript Reference Guide114

BitmapConversionOptions

Properties

Property Access Value Type What it is

angle R/W Double only valid for 'halftone screen' 
conversions

frequency R/W Double only valid for 'halftone screen' 
conversions

method R/W BitmapConversionType.CUSTOMPATTERN
BitmapConversionType.DIFFUIONDITHER
BitmapConversionType.HALFTHRESHOLD
BitmapConversionType.HALFTONESCREEN
BitmapConversionType.PATTERNDITHER

( default: BitmapConversionType 
BitmapConversionType.-->
DIFFUSIONDITHER )

patternName R/W only valid for 'custom pattern' conversions String

resolution R/W output resolution (in pixels per inch) Double

shape R/W only valid for 'halftone screen' conversions BitmapHalfToneType



JavaScript Reference Guide  BMPSaveOptions 115

BMPSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

depth R/W BMPDepthType
BMPDepthType.BMP_A1R5G5B5
BMPDepthType.BMP_A4R4G4B4
BMPDepthType.BMP_A8R8G8B8
BMPDepthType.BMP_R5G6B5
BMPDepthType.BMP_R8G8B8
BMPDepthType.BMP_X1R5G5B5
BMPDepthType.BMP_X4R4G4B4
BMPDepthType.BMP_X8R8G8B8
BMPDepthType.EIGHT
BMPDepthType.FOUR
BMPDepthType.ONE
BMPDepthType.SIXTEEN
BMPDepthType.THIRTYTWO
BMPDepthType.TWENTYFOUR

number of bits per sample

flipRowOrder R/W Boolean

osType R/W OperatingSystem
OperatingSystem.OS2
OperatingSystem.WINDOWS

target OS. Windows or OS/2 ( default: 
OperatingSystem.WINDOWS )

rleCompression R/W Boolean should RLE compression be used?



 Channel JavaScript Reference Guide116

Channel

Properties

Methods

Property Access Value Type What it is

color R/W SolidColor color of the channel (not valid for 
component channels)

histogram RO Object color of the channel (not valid for 
component channels)

kind R/W ChannelType
ChannelType.COMPONENT
ChannelType.MASKEDAREA
ChannelType.SELECTEDAREA
ChannelType.SPOTCOLOR

type of the channel

name R/W String the channel's name

opacity R/W Double opacity of alpha channels (called solidity 
for spot channels)

parent RO Object the object's container

visible R/W Boolean

Method What it does Parameter Type Returns

duplicate Duplicates  the 
channel

targetDocument as Document Channel

merge Merges  a spot channel 
into the component 
channels

remove Deletes  the object



JavaScript Reference Guide  Channels 117

Channels

Properties

Methods

Sample Script

The following script produces a strobe effect, as a progression of dialogs display.

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object’s container

Method What it does Parameter Type Returns

add Creates a new object Channel

getByName Get the first element in 
the collection with the 
provided name

name as String Channel

removeAll



 Channels JavaScript Reference Guide118

Code (Histogram.js)

// Save the current preferences
var startRulerUnits = app.preferences.rulerUnits;
var startTypeUnits = app.preferences.typeUnits;
var startDisplayDialogs = app.displayDialogs;

// Set Photoshop to use pixels and display no dialogs
app.preferences.rulerUnits = Units.PIXELS;
app.preferences.typeUnits = TypeUnits.PIXELS;
app.displayDialogs = DialogModes.NO;

// if there are no documents open then try to open a sample file
if (app.documents.length == 0) {

open(File(app.path + “/Samples/Eagle.psd”));
}

// get a reference to the working document
var docRef = app.activeDocument;

// create the output file
// first figure out which kind of line feeds we need
if ($.os.search(/windows/i) != -1) {

fileLineFeed = “windows”;
} else {

fileLineFeed = “macintosh”;
}

// create the output file accordingly
fileOut = new File(“~/Desktop/Histogram.log”);
fileOut.lineFeed = fileLineFeed;
fileOut.open(“w”, “TEXT”, “????”);

// write out a header
fileOut.write(“Histogram report for “ + docRef.name);

// find out how many pixels I have
var totalCount = docRef.width.value * docRef.height.value;

// more info to the out file
fileOut.write(“ with a total pixel count of “ + totalCount + “\n”);

// channel indexer
var channelIndex = 0;

// remember which channels are currently active
var activeChannels = app.activeDocument.activeChannels;

// document histogram only works in these modes



JavaScript Reference Guide  Channels 119

if (docRef.mode == DocumentMode.RGB || 
    docRef.mode == DocumentMode.INDEXEDCOLOR ||
    docRef.mode == DocumentMode.CMYK) {

// activate the main channels so we can get the documents histogram
TurnOnDocumentHistogramChannels(docRef);

// Output the documents histogram
OutputHistogram(docRef.histogram, “Luminosity”, fileOut);

}

// local reference to work from
var myChannels = docRef.channels;

// loop through each channel and output the histogram
for (var channelIndex = 0; channelIndex < myChannels.length; channelIndex++) {

// the channel has to be visible to get a histogram
myChannels[channelIndex].visible= true;

// turn off all the other channels
for (var secondaryIndex = 0; secondaryIndex < myChannels.length;

secondaryIndex++) {
if (channelIndex != secondaryIndex) {

myChannels[secondaryIndex].visible= false;
}

}

// Use the function to dump the histogram 
OutputHistogram(myChannels[channelIndex].histogram,

myChannels[channelIndex].name, fileOut);
}

// close down the output file
fileOut.close();

// reset the active channels
docRef.activeChannels = activeChannels;

// Reset the application preferences
app.preferences.rulerUnits = startRulerUnits;
app.preferences.typeUnits = startTypeUnits;
app.displayDialogs = startDisplayDialogs;

// Utility function that takes a histogram and name 
// and dumps to the output file
function OutputHistogram(inHistogram, inHistogramName, inOutFile) {

// find ouch which count has the largest number



 Channels JavaScript Reference Guide120

// I scale everthing to this number for the output
var largestCount = 0;

// a simple indexer I can reuse
var histogramIndex = 0;

// see how many samples we have toal
var histogramCount = 0;

// search through all and find the largest single item
for (histogramIndex = 0; histogramIndex < inHistogram.length;

histogramIndex++) {
histogramCount += inHistogram[histogramIndex];
if (inHistogram[histogramIndex] > largestCount)

largestCount = inHistogram[histogramIndex];
}

// These should match
if (histogramCount != totalCount) {

alert(“Something bad is happening!”);
}

// see how much each “X” is going to count as
var pixelsPerX = largestCount / 100;

// output this data to the file
inOutFile.write(“One X = “ + pixelsPerX + “ pixels.\n”);

// output the name of this histogram
inOutFile.write(inHistogramName + “\n”);

// loop through all the items and output in the following format
// 001 XXXXX
// 002 XX
for (histogramIndex = 0; histogramIndex < inHistogram.length;

histogramIndex++) {

// I need an extra “0” for this line item to keep everything in line
if (histogramIndex < 10) 

inOutFile.write(“0”);

// I need an extra “0” for this line item to keep everything in line
if (histogramIndex < 100)

inOutFile.write(“0”);

// output the index to file
inOutFile.write(histogramIndex);

// some spacing to make it look nice
inOutFile.write(“ “);



JavaScript Reference Guide  Channels 121

// figure out how many X’s I need
var outputX = inHistogram[histogramIndex] / largestCount * 100;

// output the X’s
for (var a = 0; a < outputX; a++)

inOutFile.write(“X”);

inOutFile.write(“\n”);
}

inOutFile.write(“\n”);
}

// Function to active all the channels according to the documents mode
// Takes a document reference for input
function TurnOnDocumentHistogramChannels(inDocument) {

// see how many channels we need to activate
var visibleChannelCount = 0;

// based on the mode of the document
switch (inDocument.mode) {

case DocumentMode.BITMAP:
case DocumentMode.GRAYSCALE:
case DocumentMode.INDEXEDCOLOR:

visibleChannelCount = 1;
break;

case DocumentMode.DUOTONE:
visibleChannelCount = 2;
break;

case DocumentMode.RGB:
case DocumentMode.LAB:

visibleChannelCount = 3;
break;

case DocumentMode.CMYK:
visibleChannelCount = 4;
break;

case DocumentMode.DUOTONE:
visibleChannelCount = 4;
break;

case DocumentMode.MULTICHANNEL:
default:

visibleChannelCount = inDocument.channels.length + 1;



 Channels JavaScript Reference Guide122

break;
}

// now get the channels to activate into a local array
var aChannelArray = new Array();

// index for the active channels array
var aChannelIndex = 0;

for(var channelIndex = 0; channelIndex < inDocument.channels.length;
channelIndex++) {

if (channelIndex < visibleChannelCount) {
aChannelArray[aChannelIndex++] = inDocument.channels[channelIndex];

}
}

// now activate them 
inDocument.activeChannels = aChannelArray;

}



JavaScript Reference Guide  CMYKColor 123

CMYKColor

Properties

Property Access Value Type What it is

black R/W Double the black color value (between 0.0 and 
100.0)

cyan R/W Double the black color value (between 0.0 and 
100.0)

magenta R/W Double the magenta color value (between 0.0 and 
100.0)

yellow R/W Double the yellow color value (between 0.0 and 
100.0)



 DCS1_SaveOptions JavaScript Reference Guide124

DCS1_SaveOptions

Properties

Property Access Value Type What it is

dCS R/W DCSType
DCSType.COLORCOMPOSITE
DCSType.GRAYSCALECOMPOSITE
DCSType.NOCOMPOSITE

( default: 
DCSType.COLORCOMPOSITE )

embedColorProfil
e

R/W Boolean embed color profile in document

encoding R/W SaveEncoding
SaveEncoding.ASCII
SaveEncoding.BINARY
SaveEncoding.JPEGHIGH
SaveEncoding.JPEGLOW
SaveEncoding.JPEGMAXIMUM
SaveEncoding.JPEGMEDIUM

type of encoding to use for 
document ( default: 
SaveEncoding.BINARY )

halftoneScreen R/W Boolean include halftone screen ( default: 
false )

interpolation R/W Boolean use image interpolation ( default: 
false )

preview R/W Preview
Preview.EIGHTBITTIFF
Preview.MACOSEIGHTBIT
Preview.MACOSJPEG
Preview.MACOSMONOCHROME
Preview.MONOCHROMETIFF
Preview.NONE

type of preview ( default: 
Preview.MACOSEIGHTBIT )

transferFunction R/W Boolean include transfer functions in 
document ( default: false )

vectorData R/W Boolean include vector data



JavaScript Reference Guide  DCS2_SaveOptions 125

DCS2_SaveOptions

Properties

Property Access Value Type What it is

dCS R/W DCSType
DCSType.COLORCOMPOSITE
DCSType.GRAYSCALECOMPOSITE
DCSType.NOCOMPOSITE

( default: DCSType.NOCOMPOSITE )

embedColorProfile R/W Boolean embed color profile in document

encoding R/W SaveEncoding
SaveEncoding.ASCII
SaveEncoding.BINARY
SaveEncoding.JPEGHIGH
SaveEncoding.JPEGLOW
SaveEncoding.JPEGMAXIMUM
SaveEncoding.JPEGMEDIUM

type of encoding to use for 
document ( default: 
SaveEncoding.BINARY )

halftoneScreen R/W Boolean include halftone screen ( default: 
false )

interpolation R/W Boolean use image interpolation ( default: 
false )

multiFileDCS R/W Boolean ( default: false )

preview R/W Preview
Preview.EIGHTBITTIFF
Preview.MACOSEIGHTBIT
Preview.MACOSJPEG
Preview.MACOSMONOCHROME
Preview.MONOCHROMETIFF
Preview.NONE

type of preview ( default: 
Preview.MACOSEIGHTBIT )

spotColors R/W Boolean save spot colors

transferFunction R/W Boolean include transfer functions in 
document ( default: false )

vectorData R/W Boolean include vector data



 Document JavaScript Reference Guide126

Document

Properties

Property Access Value Type What it is

activeChannels R/W Object selected channels for 
document

activeHistoryBrushSource R/W HistoryState the current history state to 
use with the history brush for 
this document

activeHistoryState R/W HistoryState the current history state for 
this document

activeLayer R/W Object (Layer) selected layer for document

artLayers RO ArtLayers the top level art layers in this 
document

backgroundLayer RO ArtLayer background layer for the 
document. Only valid for 
documents that have a 
background layer

bitsPerChannel R/W BitsPerChannelType
BitsPerChannelType.EIGHT
BitsPerChannelType.ONE
BitsPerChannelType.SIXTEEN

number of bits per channel

channels RO Channels the channels in this 
document

colorProfileName R/W String name of color profile for 
document. Only valid for 
documents that have been 
assigned a color profile

colorProfileType R/W ColorProfile
ColorProfile.CUSTOM
ColorProfile.NONE
ColorProfile.WORKING

type of color profile 
management for document

componentChannels RO Object all color component channels 
for this document

fullName RO File full path name of document

height RO UnitValue height of document (unit 
value)

histogram RO Object a histogram of values for the 
composite document (only 
for RGB, CMYK and 'Indexed 
colors' documents)



JavaScript Reference Guide  Document 127

historyStates RO HistoryStates the history states associated 
with this document

info RO DocumentInfo document information

layerComps RO LayerComps the layer comps associated 
with this document

layers RO Layers the top level layers in this 
document

layerSets RO LayerSets the top level layer sets in this 
document

managed RO Boolean is the document a workgroup 
document?

mode RO DocumentMode
DocumentMode.BITMAP
DocumentMode.CMYK
DocumentMode.DUOTONE
DocumentMode.GRAYSCALE
DocumentMode.INDEXEDCOLOR
DocumentMode.LAB
DocumentMode.MULTICHANNEL
DocumentMode.RGB

document mode

name RO String the document's name

parent RO Object the object's container

path RO File the path of the document

pathItems RO pathItems the art paths associated with 
this document

pixelAspectRatio R/W Double the pixel aspect ration of the 
document

quickMaskMode R/W Boolean is the document in the quick 
mask mode?

resolution RO Double the resolution of the 
document (in pixels per inch)

saved RO Boolean has the document been 
saved since last change?

selection RO Selection the document's selection

typename RO String the class name of the object

width RO UnitValue width of document (unit 
value)

xmpMetadata RO xmpMetadata

Property Access Value Type What it is



 Document JavaScript Reference Guide128

Methods

Method What it does Parameter Type Returns

changeMode Changes the mode of 
the document

destinationMode as ChangeMode
ChangeMode.BITMAP
ChangeMode.CMYK
ChangeMode.GRAYSCALE
ChangeMode.INDEXEDCOLOR
ChangeMode.LAB
ChangeMode.MULTICHANNEL
ChangeMode.RGB

options as Object 
(DocumentConversionOptions)

close Closes the document saving as SaveOptions
SaveOptions.DONOTSAVECHANGES
SaveOptions.PROMPTTOSAVECHANGES
SaveOptions.SAVECHANGES

convertProfile Convert sthe 
document from using 
one color profile to 
using an other

destinationProfile as String
intent as Intent
Intent.ABSOLUTECOLORIMETRIC
Intent.PERCEPTUAL
Intent.RELATIVECOLORIMETRIC
Intent.SATURATION

blackPointCompensation as Boolean
dither as Boolean
Dither.DIFFUSION
Dither.NOISE
Dither.NONE
Dither.PATTERN

crop Crops the document bounds as Array( UnitValue )
angle as Double 
width as UnitValue
height  as UnitValue

duplicate Creates a duplicate of 
the object

Document

exportDocument exportIn as File
exportAs as ExportType
ExportType.ILLUSTRATORPATHS

options as ExportOptionsIllustrator

flatten Flattens all layers in the 
document



JavaScript Reference Guide  Document 129

flipCanvas Flips the canvas 
horizontally or 
vertically

direction  as Direction
Direction.HORIZONTAL
Direction.VERTICAL

importAnnotations Import sannotations 
into the document

file as File

mergeVisibleLayers Flattens all visible 
layers in the document

paste Pastes contents of 
clipboard into the 
document

intoSelection as Boolean ArtLayer

print Prints the document postScriptEncoding as PrintEncoding
PrintEncoding.ASCII
PrintEncoding.BINARY
PrintEncoding.JPEG

sourceSpace as SourceSpaceType
SourceSpaceType.DOCUMENT
SourceSpaceType.PROOF

printSpace as String
intent as Intent
Intent.ABSOLUTECOLORIMETRIC
Intent.PERCEPTUAL
Intent.RELATIVECOLORIMETRIC
Intent.SATURATION

blackPointCompensation as Boolean

rasterizeAllLayers Rasterizes all layers

resizeCanvas Changes the size of the 
canvas

width as UnitValue
height as UnitValue
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
.AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

Method What it does Parameter Type Returns



 Document JavaScript Reference Guide130

resizeImage Changes  the size of 
the image

width as UnitValue
height as UnitValue
resolution as Double 

resampleMethod as ResampleMethod
ResampleMethod.BICUBIC
ResampleMethod.BICUBICSHARPER
ResampleMethod.BICUBICSMOOTHER
ResampleMethod.BILINEAR
ResampleMethod.NEARESTNEIGHBOR
ResampleMethod.NONE

revealAll Expands  document to 
show clipped sections

rotateCanvas Rotates canvas of 
document

angle as Double 

save Saves  the document

saveAs Saves  the document 
with specific save 
options

saveIn as File
options as ANYTHING
asCopy as Boolean

extensionType as Extension
Extension.LOWERCASE
Extension.NONE
Extension.UPPERCASE

splitChannels Splits channels of the 
document

Object

trap Applies trap to a CMYK 
document

width as Long 

trim type as TrimType
TrimType.BOTTOMRIGHT
TrimType.TOPLEFT
TrimType.TRANSPARENT

top as Boolean
left as Boolean
bottom as Boolean
right as Boolean

Method What it does Parameter Type Returns



JavaScript Reference Guide  Document 131

Sample Script 

The following script creates a document that contains two images (an eagle and a duck) obtained 
from the Photoshop samples folder. 

First, a test is made to determine which image is larger. Then the smaller image is resized to match 
the larger image. A merged document twice as high as either image is subsequently created in 
order to hold the two images, one stacked on top of the other.

A selection is made on the upper part of the document to paste in the eagle. The selection process 
is then inverted and the duck is pasted into the lower part of the document. In the final display, the 
eagle is positioned over the duck. 

Code (Document.js) 

// Save the current preferences
var startRulerUnits = app.preferences.rulerUnits;
var startTypeUnits = app.preferences.typeUnits;
var startDisplayDialogs = app.displayDialogs;

// Set Photoshop to use pixels and display no dialogs
app.preferences.rulerUnits = Units.PIXELS;
app.preferences.typeUnits = TypeUnits.PIXELS;
app.displayDialogs = DialogModes.NO;

// first close all the open documents
while (app.documents.length) {

app.activeDocument.close();



 Document JavaScript Reference Guide132

}

// Now open some samples, path is the location of the executable
var eagleDoc = open(File(app.path + “/Samples/Eagle.psd”));
var duckDoc = open(File(app.path + “/Samples/Ducky.tif”));

// Find out which document is bigger
// make the smaller document the same size
// the resize requires the document be the active/front document
if ((eagleDoc.width.value * eagleDoc.height.value) > (duckDoc.width.value * 
duckDoc.height.value)) {

app.activeDocument = duckDoc;
duckDoc.resize(eagleDoc.width, eagleDoc.height);

} else {
app.activeDocument = eagleDoc;
eagleDoc.resizeImage(duckDoc.width, duckDoc.height);

}

// make a new one twice as high as two files
var mergedDoc = app.documents.add(duckDoc.width, duckDoc.height * 2, 
duckDoc.resolution, “EagleOverDuck”);

// copy the eagle to the top, we need to make it active first
app.activeDocument = eagleDoc;
eagleDoc.activeLayer.copy();

// paste to the merged, again making the document active
app.activeDocument = mergedDoc;

// set up a square selection for the top of the new document
var selRegion = Array(Array(0, 0),
                      Array(mergedDoc.width.value, 0), 
                      Array(mergedDoc.width.value, mergedDoc.height.value / 2), 
                      Array(0, mergedDoc.height.value / 2), 
                      Array(0, 0));
// make the selection                      
mergedDoc.selection.select(selRegion);

// paste in the eagle
mergedDoc.paste();

// do the same thing for the duck
app.activeDocument = duckDoc;
duckDoc.activeLayer.copy();

app.activeDocument = mergedDoc;
mergedDoc.selection.select(selRegion);

// inverting the selection we made before gets us the bottom of the document
mergedDoc.selection.invert();



JavaScript Reference Guide  Document 133

// and paste the duck
mergedDoc.paste();

// get rid of our originals without modifying them
duckDoc.close(SaveOptions.DONOTSAVECHANGES);
eagleDoc.close(SaveOptions.DONOTSAVECHANGES);

// Reset the application preferences
app.preferences.rulerUnits = startRulerUnits;
app.preferences.typeUnits = startTypeUnits;
app.displayDialogs = startDisplayDialogs;



 DocumentInfo JavaScript Reference Guide134

DocumentInfo

Properties

Property Access Value Type What it is

author R/W String

authorPosition R/W String

caption R/W String

captionWriter R/W String

category R/W String

city R/W String

copyrighted R/W CopyrightedType
CopyrightedType.COPYRIGHTEDWORK
CopyrightedType.PUBLICDOMAIN
CopyrightedType.UNMARKED

copyrightNotice R/W String

country R/W String

creationDate R/W String

credit R/W String

exif read 
onlly

Object An array of 2 element 
arrays of type string 
(key/value pairs)

headline R/W String

instructions R/W String

jobName R/W String

keywords R/W Object list of keywords

ownerUrl R/W String

parent RO Object the object's container

provinceState R/W String

source R/W String

supplementalCategories R/W Object

title R/W String



JavaScript Reference Guide  DocumentInfo 135

Sample Script 

The following script opens a pop-up that allows you to select a file. 

Code (DocumentInfo.js) 

// Save the current preferences
var startDisplayDialogs = app.displayDialogs;

// Set Photoshop to use pixels and display no dialogs
app.displayDialogs = DialogModes.NO;

// ask the user for the input folder
// tag all of the documents with the photo shoot information
var inputFolder = Folder.selectDialog(“Select a folder to tag”);

// ask the user for the output folder

transmissionReference R/W String

urgency R/W Urgency
Urgency.FOUR
Urgency.HIGH
Urgency.LOW
Urgency.NONE
Urgency.NORMAL
Urgency.SEVEN
Urgency.SIX
Urgency.THREE
Urgency.TWO

Property Access Value Type What it is



 DocumentInfo JavaScript Reference Guide136

var outputFolder = Folder.selectDialog(“Select a folder for the output files”);

// see if we got something interesting from the dialog
if ( inputFolder != null && outputFolder != null) {

// get all the files found in this folder
 var fileList = inputFolder.getFiles();

// save the output’s in JPEG with quality really low for small files
var jpegOptions = new JPEGSaveOptions();

// and I mean really small
jpegOptions.quality = 1;

// open each one in turn
for (var i = 0; i < fileList.length; i++) {

// The fileList is folders and files so open only files
if (fileList[i] instanceof File && fileList[i].hidden == false) {

// get a reference to our new document
var docRef = open(fileList[i]);

// set the file info
docRef.info.author = “Mr. Adobe Programmer”;
docRef.info.caption = “Adobe Photo shoot”;
docRef.info.captionWriter = “Mr. Adobe Programmer”;
docRef.info.city = “San Jose”;
docRef.info.copyrightNotice = “Copyright (c) Adobe Programmer

Photography”;
docRef.info.copyrighted = CopyrightedType.COPYRIGHTEDWORK;
docRef.info.country = “USA”;
docRef.info.provinceState = “CA”;

// change the date to a Photoshop date format
// “YYYYMMDD”
var theDate = new Date();

// the year is from 1900 ????
var theYear = (theDate.getYear() + 1900).toString();

// convert the month from 0..12 to 00..12
var theMonth = theDate.getMonth().toString();

if (theDate.getMonth() < 10) {
theMonth = “0” + theMonth;

}

// convert the day from 0..31 to 00.31
var theDay = theDate.getDate().toString();



JavaScript Reference Guide  DocumentInfo 137

if (theDate.getDate() < 10) {
theDay = “0” + theDay;

}

// stick them all together
docRef.info.creationDate = theYear + theMonth + theDay;

// flatten, we are saving to JPEG
docRef.flatten();

// go to 8 bit, we are saving to JPEG
docRef.bitsPerChannel = BitsPerChannelType.EIGHT;

// save and close
docRef.saveAs(new File(outputFolder + “/Output” + i + “.jpg”),

jpegOptions);

// don’t modify the original
docRef.close(SaveOptions.DONOTSAVECHANGES);

}
}

}

// Reset the application preferences
app.displayDialogs = startDisplayDialogs;



 Documents JavaScript Reference Guide138

Documents

Properties

Methods

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

add Adds a document width as UnitValue
height as UnitValue
resolution as Double 
name as String
mode as NewDocumentMode
NewDocumentMode.BITMAP
NewDocumentMode.CMYK
NewDocumentMode.GRAYSCALE
NewDocumentMode.LAB
NewDocumentMode.RGB

initialFill as DocumentFill
DocumentFill.BACKGROUNDCOLOR
DocumentFill.TRANSPARENT
DocumentFill.WHITE

pixelAspectRatio as Double 

Document

getByName Get the first element in 
the collection with the 
provided name

name as String Document



JavaScript Reference Guide  EPSOpenOptions 139

EPSOpenOptions

Properties

Property Access Value Type What it is

antiAlias R/W Boolean use antialias?

constrainProportions R/W Boolean constrain proportions of image

height R/W UnitValue height of image (unit value)

mode R/W OpenDocumentMode
OpenDocumentMode.CMYK
OpenDocumentMode.GRAYSC
OpenDocumentMode.ALE
OpenDocumentMode.LAB
OpenDocumentMode.RGB

the document mode

resolution R/W Double the resolution of the document (in 
pixels per inch)

width R/W UnitValue width of image (unit value)



 EPSSaveOptions JavaScript Reference Guide140

EPSSaveOptions

Properties

Property Access Value Type What it is

embedColorProfile R/W Boolean embed color profile in document

encoding R/W SaveEncodingSaveEncoding.ASCII
SaveEncoding.BINARY
SaveEncoding.JPEGHIGH
SaveEncoding.JPEGLOW
SaveEncoding.JPEGMAXIMUM
SaveEncoding.JPEGMEDIUM

type of encoding to use for 
document ( default: 
SaveEncoding.BINARY )

halftoneScreen R/W Boolean include halftone screen ( default: 
false )

interpolation R/W Boolean use image interpolation ( default: 
false )

preview R/W Preview
Preview.EIGHTBITTIFF
Preview.MACOSEIGHTBIT
Preview.MACOSJPEG
Preview.MACOSMONOCHROME
Preview.MONOCHROMETIFF
Preview.NONE

type of preview

psColorManagement R/W Boolean use Postscript color management ( 
default: false )

transferFunction R/W Boolean include transfer functions in 
document 
( default: false )

transparentWhites R/W Boolean only valid when saving BitMap 
documents

vectorData R/W Boolean include vector data



JavaScript Reference Guide  ExportOptionsIllustrator 141

ExportOptionsIllustrator

Properties

Property Access Value Type What it is

path R/W IllustratorPathType
IllustratorPathType.ALLPATHS
IllustratorPathType.DOCUMENTBOUNDS
IllustratorPathType.NAMEDPATH

which path to export ( default: 
IllustratorPathType.DOCUMENTBOUNDS )

pathName R/W String name of path to export. Only valid if 
you are exporting a named path



 GalleryBannerOptions JavaScript Reference Guide142

GalleryBannerOptions

Properties

Property Access Value Type What it is

contactInfo R/W String web photo gallery contact info

date R/W String web photo gallery date 

font R/W GalleryFontType
GalleryFontType.ARIAL
GalleryFontType.COURIERNEW
GalleryFontType.HELVETICA
GalleryFontType.TIMESNEWROMAN

the font setting for the banner text 
( default: GalleryFontType.ARIAL )

fontSize R/W Long the size of the font for the banner 
text ( 1 - 7; default: 3 )

photographer R/W String web photo gallery photographer ( 
default:  )

siteName R/W String web photo gallery site name ( 
default: Adobe Web Photo Gallery )



JavaScript Reference Guide  GalleryCustomColorOptions 143

GalleryCustomColorOptions

Properties

Property Access Value Type What it is

activeLinkColor R/W RGBColor active link color

backgroundColor R/W RGBColor background color

bannerColor R/W RGBColor banner color

linkColor R/W RGBColor link color

textColor R/W RGBColor text color

visitedLinkColor R/W RGBColor visited link color



 GalleryImagesOptions JavaScript Reference Guide144

GalleryImagesOptions

Properties

Property Access Value Type What it is

border R/W Long the amount of border pixels 
you want between your 
images ( 0 - 99; default: 0 )

caption R/W Boolean generate a caption for the 
images ( default: false )

dimension R/W Long resized image dimensions in 
pixels ( default: 350 )

font R/W GalleryFontType
GalleryFontType.ARIAL
GalleryFontType.COURIERNEW
GalleryFontType.HELVETICA
GalleryFontType.TIMESNEWROMAN

font for the gallery images text 
( default: 
GalleryFontType.ARIAL )

fontSize R/W Long font size for the gallery images 
text ( 1 - 7; default: 3 )

imageQuality R/W Long the quality setting for the JPEG 
image ( 0 - 12; default: 5 )

includeCopyright R/W Boolean include the copyright in the 
text for the gallery images ( 
default: false )

includeCredits R/W Boolean include the credits in the text 
for the gallery images ( default: 
false )

includeFilename R/W Boolean include the file name in the 
text for the gallery images ( 
default: true )

includeTitle R/W Boolean include the title in the text for 
the gallery images ( default: 
false )

numericLinks R/W Boolean add numeric links ( default: 
true )

resizeConstraint R/W GalleryConstrainType
GalleryConstrainType.CONSTRAINBOTH
GalleryConstrainType.CONSTRAINHEIGHT
GalleryConstrainType.CONSTRAINWIDTH

how should the image be 
constrained ( default: 
GalleryConstrainType.CONSTR
AINBOTH )

resizeImages R/W Boolean resize images data ( default: 
true )



JavaScript Reference Guide  GalleryOptions 145

GalleryOptions

Properties

Property Access Value Type What it is

addSizeAttributes R/W Boolean add width and height attributes for 
images ( default: true )

bannerOptions R/W GalleryBannerOptions options related to banner settings

customColorOptions R/W GalleryCustomColorOptions options related to custom color settings

emailAddress R/W String the email address to show on the web 
page ( default:  )

imagesOptions R/W GalleryImagesOptions options related to images settings

includeSubFolders R/W Boolean include all files found in sub folders of 
the input folder ( default: true )

layoutStyle R/W String the style to use for laying out the web 
page ( default: Centered Frame 1 - Basic )

preserveAllMetadata R/W Boolean save all of the metadata in the JPEG files 
( default: false )

securityOptions R/W GallerySecurityOptions options related to security settings

thumbnailOptions R/W GalleryThumbnailOptions options related to thumbnail settings

useShortExtension R/W Boolean short web page extension .htm or long 
web page extension .html ( default: true 
)

useUTF8Encoding R/W Boolean web page should use UTF-8 encoding ( 
default: false )



 GallerySecurityOptions JavaScript Reference Guide146

GallerySecurityOptions

Properties

Property Acce
ss Value Type What it is

content R/W GallerySecurityType
GallerySecurityType.CAPTION
GallerySecurityType.COPYRIGHT
GallerySecurityType.CREDIT
GallerySecurityType.CUSTOMTEXT
GallerySecurityType.FILENAME
GallerySecurityType.NONE
GallerySecurityType.TITLE

web photo gallery 
security content ( 
default: 
GallerySecurityType.NO
NE )

font R/W GalleryFontType
GalleryFontType.ARIAL
GalleryFontType.COURIERNEW
GalleryFontType.HELVETICA
GalleryFontType.TIMESNEWROMAN

web photo gallery 
security font ( default: 
GalleryFontType.ARIAL 
)

fontSize R/W Long web photo gallery 
security font size ( 1 - 
72; default: 3 )

opacity R/W Long web page security 
opacity as a percent ( 
default: 100 )

text R/W String web photo gallery 
security custom text

textColor R/W RGBColor web page security text 
color

textPosition R/W GallerySecurityTextPositionType
GallerySecurityTextPositionType.CENTERED
GallerySecurityTextPositionType.LOWERLEFT
GallerySecurityTextPositionType.LOWERRIGHT
GallerySecurityTextPositionType.UPPERLEFT
GallerySecurityTextPositionType.UPPERRIGHT

web photo gallery 
security text position ( 
default: 
GallerySecurityTextPosi
tionType.CENTERED )

textRotate R/W GallerySecurityTextRotateType
GallerySecurityTextRotateType.CLOCKWISE45
GallerySecurityTextRotateType.CLOCKWISE90
GallerySecurityTextRotateType.COUNTERCLOCKWISE45
GallerySecurityTextRotateType.COUNTERCLOCKWISE90
GallerySecurityTextRotateType.ZERO

web photo gallery 
security text rotate ( 
default: 
GallerySecurityTextRot
ateType.ZERO )



JavaScript Reference Guide  GalleryThumbnailOptions 147

GalleryThumbnailOptions

Properties

Property Access Value Type What it is

border R/W Long the amount of border pixels you 
want around your thumbnail 
images ( 0 - 99; default: 0 )

caption R/W Boolean with caption ( default: false )

columnCount R/W Long web photo gallery thumbnail 
columns ( default: 5 )

dimension R/W Long web photo gallery thumbnail 
dimension in pixels ( default: 75 )

font R/W GalleryFontType
GalleryFontType.ARIAL
GalleryFontType.COURIERNEW
GalleryFontType.HELVETICA
GalleryFontType.TIMESNEWROMAN

web photo gallery font ( default: 
GalleryFontType.ARIAL )

fontSize R/W Long the size of the font for the 
thumbnail images text ( 1 - 7; 
default: 3 )

includeCopyright R/W Boolean include copyright for thumbnail ( 
default: false )

includeCredits R/W Boolean include credits for thumbnail ( 
default: false )

includeFilename R/W Boolean include file name for thumbnail ( 
default: false )

includeTitle R/W Boolean include title for thumbnail ( default: 
false )

rowCount R/W Long web photo gallery thumbnail rows ( 
default: 3 )

size R/W GalleryThumbSizeType
GalleryThumbSizeType.CUSTOM
GalleryThumbSizeType.LARGE
GalleryThumbSizeType.MEDIUM
GalleryThumbSizeType.SMALL

the size of the thumbnail images ( 
default: 
GalleryThumbSizeType.MEDIUM )



 GIFSaveOptions JavaScript Reference Guide148

GIFSaveOptions

Properties

Property Access Value Type What it is

colors R/W Long number of colors in palette (only 
settable for some palette types)

dither R/W Dither
Dither.DIFFUSION
Dither.NOISE
Dither.NONE
Dither.PATTERN

type of dither

ditherAmount R/W Long amount of dither. Only valid for 
diffusion ( 1 - 100; default: 75 )

forced R/W ForcedColors
ForcedColors.BLACKWHITE
ForcedColors.NONE
ForcedColors.PRIMARIES
ForcedColors.WEB

interlaced R/W Boolean should rows be interlaced? ( default: 
false )

matte R/W MatteType
MatteType.BACKGROUND
MatteType.BLACK
MatteType.FOREGROUND
MatteType.NETSCAPENONE
MatteType.SEMIGRAY
MatteType.WHITE

palette R/W Palette
Palette.EXACT
Palette.LOCALADAPTIVE
Palette.LOCALPERCEPTUAL
Palette.LOCALSELECTIVE
Palette.MACOSPALETTE
Palette.MASTERADAPTIVE
Palette.MASTERPERCEPTUAL
Palette.MASTERSELECTIVE
Palette.PREVIOUSPALETTE
Palette.UNIFORM
Palette.WEBPALETTE
Palette.WINDOWSPALETTE

( default: Palette.LOCALSELECTIVE )

preserveExactColors R/W Boolean

transparency Boolean



JavaScript Reference Guide  GrayColor 149

GrayColor

Properties

Property Access Value Type What it is

gray R/W Double the gray value ( 0.0 - 100.0; default: 0.0 )



 HistoryState JavaScript Reference Guide150

HistoryState

Properties

Property Access Value Type What it is

name RO String the channel's name

parent RO Object the object's container

snapshot RO Boolean is the history state a snapshot?



JavaScript Reference Guide  HistoryStates 151

HistoryStates

Properties

Methods

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

getByName Get the first element in 
the collection with the 
provided name

name as String HistoryState



 HSBColor JavaScript Reference Guide152

HSBColor

Properties

Property Access Value Type What it is

brightness R/W Double the brightness value (between 0.0 and 
100.0)

hue R/W Double the hue value (between 0.0 and 360.0)

saturation R/W Double the saturation value (between 0.0 and 
100.0)



JavaScript Reference Guide  IndexedConversionOptions 153

IndexedConversionOptions

Properties

Property Access Value Type What it is

colors R/W Long number of colors in palette (only 
settable for some palette types)

dither R/W Dither
Dither.DIFFUSION
Dither.NOISE
Dither.NONE
Dither.PATTERN

type of dither

ditherAmount R/W Long amount of dither. Only valid for 
diffusion ( 1 - 100 )

forced R/W ForcedColors
ForcedColors.BLACKWHITE
ForcedColors.NONE
ForcedColors.PRIMARIES
ForcedColors.WEB

matte R/W MatteType
MatteType.BACKGROUND
MatteType.BLACK
MatteType.FOREGROUND
MatteType.NETSCAPENONE
MatteType.SEMIGRAY
MatteType.WHITE

palette R/W Palette
Palette.EXACT
Palette.LOCALADAPTIVE
Palette.LOCALPERCEPTUAL
Palette.LOCALSELECTIVE
Palette.MACOSPALETTE
Palette.MASTERADAPTIVE
Palette.MASTERPERCEPTUAL
Palette.MASTERSELECTIVE
Palette.PREVIOUSPALETTE
Palette.UNIFORM
Palette.WEBPALETTE
Palette.WINDOWSPALETTE

Type of palette ( default: 
Palette.EXACT )

preserveExactColors R/W Boolean

transparency R/W Boolean



 JPEGSaveOptions JavaScript Reference Guide154

JPEGSaveOptions

Properties

Property Access Value Type What it is

embedColorProfile R/W Boolean embed color profile in 
document

formatOptions R/W FormatOptions
FormatOptions.OPTIMIZEDBSELINE
FormatOptions.PROGRESSIVE
FormatOptions.STANDARDBASELINE

( default: 
FormatOptions.STANDARDBA
SELINE )

matte R/W MatteType
MatteType.BACKGROUND
MatteType.BLACK
MatteType.FOREGROUND
MatteType.NETSCAPENONE
MatteType.SEMIGRAY
MatteType.WHITE

quality R/W Long quality of produced image ( 0 - 
12; default: 3 )

scans R/W Long number of scans. Only valid for 
progressive type JPEG files ( 3 - 
5 )



JavaScript Reference Guide  LabColor 155

LabColor

Properties

Property Access Value Type What it is

a R/W Double the a-value (between -128.0 and 127.0)

b R/W Double the b-value (between -128.0 and 127.0)

l R/W Double the L-value (between 0.0 and 100.0)



 LayerComp JavaScript Reference Guide156

LayerComp

Properties

Methods

Property Access Value Type What it is

appearance R/W Boolean use layer appearance

comment R/W ANYTHING the description of the layer comp

name R/W String the name of the layer comp

parent RO Object the object's container

position R/W Boolean use layer position

selected RO Boolean the layer comp is currently selected

visibility R/W Boolean use layer visibility

Method What it does Parameter Type Returns

apply Applies the layer comp 
to the document

recapture Recaptures the current 
layer state(s) for this 
layer comp

remove Deletes  the object

resetFromComp Resets the layer comp 
state to the document 
state



JavaScript Reference Guide  LayerComps 157

LayerComps

Properties

Methods

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

add a layer comp name as String
comment as String
appearance as Boolean
position as Boolean
visibility as Boolean

LayerComp

getByName Get the first element in 
the collection with the 
provided name

name as String LayerComp

removeAll



 Layers JavaScript Reference Guide158

Layers

Properties

Methods

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

getByName Get the first element in 
the collection with the 
provided name

name as String Layer

removeAll



JavaScript Reference Guide  LayerSet 159

LayerSet

Properties

Property Access Value Type What it is

allLocked R/W Boolean

artLayers RO ArtLayers the art layers in this layer set

blendMode R/W BlendMode
BlendMode.COLORBLEND
BlendMode.COLORBURN
BlendMode.COLORDODGE
BlendMode.DARKEN
BlendMode.DIFFERENCE
BlendMode.DISSOLVE
BlendMode.EXCLUSION
BlendMode.HARDLIGHT
BlendMode.HUE
BlendMode.LIGHTEN
BlendMode.LINEARBURN
BlendMode.LINEARDODGE
BlendMode.LINEARLIGHT
BlendMode.LUMINOSITY
BlendMode.MULTIPLY
BlendMode.NORMAL
BlendMode.OVERLAY
BlendMode.PASSTHROUGH
BlendMode.PINLIGHT
BlendMode.SATURATION
BlendMode.SCREEN
BlendMode.SOFTLIGHT
BlendMode.VIVIDLIGHT

bounds RO Array( UnitValue ) Bounding rectangle of the Layer

enabledChannels R/W Object channels that are enabled for the layer set. 
Must be a list of component channels

layers RO Layers the layers in this layer set

layerSets RO LayerSets LayerSets contained within a LayerSet

linkedLayers RO Object

name R/W String the name of the layer

opacity R/W Double master opacity of layer ( 0.0 - 100.0 )

parent RO Object the object's container

visible R/W Boolean



 LayerSet JavaScript Reference Guide160

Methods

Method What it does Parameter Type Returns

duplicate Creates a duplicate of 
the object

relativeObject as Object
insertionLocation as ElementPlacement
ElementPlacement.INSIDE
ElementPlacement.PLACEATBEGINNING
ElementPlacement.PLACEATEND
ElementPlacement.PLACEBEFORE
ElementPlacement.PLACEAFTER

Object (Layer)

link Links the layer with 
another layer

with as Object (Layer)

merge Merges the layerset. 
Returns a reference to 
the art layer that is 
created by this method

ArtLayer

move Moves the object relativeObject as Object
insertionLocation as ElementPlacement
ElementPlacement.INSIDE
ElementPlacement.PLACEATBEGINNING
ElementPlacement.PLACEATEND
ElementPlacement.PLACEBEFORE
ElementPlacement.PLACEAFTER

remove Deletes  the object

resize horizontal as Double 
vertical as Double 
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT



JavaScript Reference Guide  LayerSet 161

rotate angle as Double 
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

translate Moves the position 
relative to its current 
position

deltaX as UnitValue
deltaY as UnitValue

unlink Unlinks the layer set

Method What it does Parameter Type Returns



 LayerSets JavaScript Reference Guide162

LayerSets

Properties

Methods

Code (LayerSets.js)
$.level = 1;

// first close all the open documents
while (app.documents.length) {

app.activeDocument.close();
}

// create a working document
var docRef = app.documents.add();

// create an array to hold the layer sets
var myLayerSets = new Array();

// a helpful array to hold some text for us
var textArray = Array(“First”, “Second”, “Third”);

// an indexer
var i = 0;

// create three layer sets at the top level
for (i = 0; i < 3; i++) {

myLayerSets[i] = new Array();

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

add Creates a new object LayerSet

getByName Get the first element in 
the collection with the 
provided name

name as String LayerSet

removeAll Removes the layer set 
and any contained 
layers or layer sets



JavaScript Reference Guide  LayerSets 163

myLayerSets[i][0] = docRef.layerSets.add();
}

// rearrange them so the first one is on top, second next, etc.
myLayerSets[1][0].moveAfter(myLayerSets[0][0]);
myLayerSets[2][0].moveAfter(myLayerSets[1][0]);

// create a layer set inside each layer set
for (i = 0; i < 3; i++) {

myLayerSets[i][0].name = textArray[i] + “ Set”;
myLayerSets[i][1] = myLayerSets[i][0].layerSets.add();
myLayerSets[i][1].name = “Inside “ + textArray[i] + “ Set”;

}

// create another array to hold the layers
var myLayers = new Array();

// create a text layer with a description inside each layer set
for (i = 0; i < 3; i++) {

myLayers[i] = myLayerSets[i][1].artLayers.add();
myLayers[i].kind = LayerKind.TEXT;
myLayers[i].textItem.contents = “Layer in “ + textArray[i] + “ Set Inside “

+ textArray[i] + “ Set”;
myLayers[i].textItem.position = Array(app.activeDocument.width * i * 0.33,

app.activeDocument.height * (i + 1) * 0.25);
myLayers[i].textItem.size = 12;

}



 PathItem JavaScript Reference Guide164

PathItem

Properties

Methods

Property Access Value Type What it is

kind R/W PathKind
PathKind.CLIPPINGPATH
PathKind.NORMALPATH
PathKind.WORKPATH

name

parent RO PathKind
PathKind.CLIPPINGPATH
PathKind.NORMALPATH
PathKind.WORKPATH

the object's container

subPathItems RO SubPathItems sub items for this path item

Method What it does Parameter Type Returns

remove Deletes  this path

duplicate Duplicates  this path 
with a new name

name as String



JavaScript Reference Guide  PathItem 165

fillPath Fills the path with the 
following information

fillColor as Anything
mode as ColorBlendMode
ColorBlendMode.BEHIND
ColorBlendMode.CLEAR
ColorBlendMode.COLOR
ColorBlendMode.COLORBURN
ColorBlendMode.COLORDODGE
ColorBlendMode.DARKEN
ColorBlendMode.DIFFERENCE
ColorBlendMode.DISSOLVE
ColorBlendMode.EXCLUSION
ColorBlendMode.HARDLIGHT
ColorBlendMode.HUE
ColorBlendMode.LIGHTEN
ColorBlendMode.LINEARBURN
ColorBlendMode.LINEARDODGE
ColorBlendMode.LINEARLIGHT
ColorBlendMode.LUMINOSITY
ColorBlendMode.MULTIPLY
ColorBlendMode.NORMAL
ColorBlendMode.OVERLAY
ColorBlendMode.PINLIGHT
ColorBlendMode.SATURATION
ColorBlendMode.SCREEN
ColorBlendMode.SOFTLIGHT
ColorBlendMode.VIVIDLIGHT

opacity as Double 
preserveTransparency as Boolean
feather as Double 
wholePath as Boolean
antiAlias as Boolean
antiAlias.CRISP
antiAlias.NONE
antiAlias.SHARP
antiAlias.SMOOTH
antiAlias.STRONG

makeClippingPath Makes this path item 
the clipping path for 
this document

flatness as Double 

Method What it does Parameter Type Returns



 PathItem JavaScript Reference Guide166

makeSelection Makes  a selection 
from this path

feather as Double 
antiAlias as Boolean
antiAlias as Boolean
antiAlias.CRISP
antiAlias.NONE
antiAlias.SHARP
antiAlias.SMOOTH
antiAlias.STRONG

operation as SelectionType
SelectionType.DIMINISH
SelectionType.EXTEND
SelectionType.INTERSECT
SelectionType.REPLACE

strokePath Strokes the path with 
the following 
information

tool as ToolType
ToolType.ARTHISTORYBRUSH
ToolType.BACKGROUNDERASER
ToolType.BLUR
ToolType.BRUSH
ToolType.BURN
ToolType.CLONESTAMP
ToolType.COLORREPLACEMENTTOOL
ToolType.DODGE
ToolType.ERASER
ToolType.HEALINGBRUSH
ToolType.HISTORYBRUSH
ToolType.PATTERNSTAMP
ToolType.PENCIL
ToolType.SHARPEN
ToolType.SMUDGE
ToolType.SPONGE

simulatePressure as Boolean

Method What it does Parameter Type Returns



JavaScript Reference Guide  PathItem 167

Sample Script 

The following script manipulates multiple art paths to produce a multi-colored version of “Hello 
World”. 

Code (ArtPaths.js) 

// Save the current preferences
var startRulerUnits = app.preferences.rulerUnits;
var startTypeUnits = app.preferences.typeUnits;
var startDisplayDialogs = app.displayDialogs;

// Set Photoshop to use pixels and display no dialogs
app.preferences.rulerUnits = Units.PIXELS;
app.preferences.typeUnits = TypeUnits.PIXELS;
app.displayDialogs = DialogModes.NO;

// first close all the open documents
while (app.documents.length) {

app.activeDocument.close();
}

// create a document to work with
var docRef = app.documents.add(5000, 7000, 72, “Hello World“);

// figure out how big a letter would be



 PathItem JavaScript Reference Guide168

var letterBoxWidth = docRef.width / 7;
var letterWidth = letterBoxWidth * .75;
var letterBoxHeight = docRef.height / 4;
var letterHeight = letterBoxHeight * .75;

// move to the top left corner for the first letter
var letterLocationX =  letterBoxWidth.value;
var letterLocationY = letterBoxHeight.value;

// this array will hold all the sub paths
// each AddLetter.Path routine will append to the end
var letterSubPaths = new Array();

// add all the paths needed for the letter H
AddLetterHPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

// move over to the next letter
letterLocationX += letterBoxWidth.value;
AddLetterEPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

letterLocationX += letterBoxWidth.value;
AddLetterLPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

letterLocationX += letterBoxWidth.value;
AddLetterLPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

letterLocationX += letterBoxWidth.value;
AddLetterOPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

// move back to the left and down one row
letterLocationX = letterBoxWidth.value;
letterLocationY += letterBoxHeight.value;
AddLetterWPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

letterLocationX += letterBoxWidth.value;
AddLetterOPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

letterLocationX += letterBoxWidth.value;
AddLetterRPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

letterLocationX += letterBoxWidth.value;



JavaScript Reference Guide  PathItem 169

AddLetterLPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

letterLocationX += letterBoxWidth.value;
AddLetterDPath(letterSubPaths, letterLocationX, letterLocationY, 
letterWidth.value, letterHeight.value);

// create the path
var myPathItem = docRef.pathItems.add(“Testing“, letterSubPaths);

// stroke it so we can see something
myPathItem.strokePath(ToolType.BRUSH);

// deselect it
myPathItem.deselect();

// each of the functions below are for each individual letter
// bad design but it makes the stuff above easier to read

function AddLetterDPath(inOutSubPaths, inX, inY, inWidth, inHeight) {
// create the letter D
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX, inY);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX + inWidth, inY + inHeight / 2);
letterPoints[1].leftDirection = Array(inX + inWidth, inY + inHeight);
letterPoints[1].rightDirection = Array(inX + inWidth, inY);

letterPoints[2] = new PathPointInfo;
letterPoints[2].kind = PointKind.CORNERPOINT;
letterPoints[2].anchor = Array(inX, inY + inHeight);
letterPoints[2].leftDirection = letterPoints[2].anchor;
letterPoints[2].rightDirection = letterPoints[2].anchor;

letterPoints[3] = new PathPointInfo;
letterPoints[3].kind = PointKind.CORNERPOINT;
letterPoints[3].anchor = Array(inX, inY);
letterPoints[3].leftDirection = letterPoints[3].anchor;
letterPoints[3].rightDirection = letterPoints[3].anchor;

var insertIndex = inOutSubPaths.length;



 PathItem JavaScript Reference Guide170

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

}

function AddLetterRPath(inOutSubPaths, inX, inY, inWidth, inHeight) {
// create the letter R
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX, inY + inHeight);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX, inY);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

letterPoints[2] = new PathPointInfo;
letterPoints[2].kind = PointKind.CORNERPOINT;
letterPoints[2].anchor = Array(inX + inWidth, inY + inHeight * .33);
letterPoints[2].leftDirection = Array(inX + inWidth, inY + inHeight / 2);
letterPoints[2].rightDirection = Array(inX + inWidth, inY);

letterPoints[3] = new PathPointInfo;
letterPoints[3].kind = PointKind.CORNERPOINT;
letterPoints[3].anchor = Array(inX, inY + inHeight / 2);
letterPoints[3].leftDirection = letterPoints[3].anchor;
letterPoints[3].rightDirection = letterPoints[3].anchor;

letterPoints[4] = new PathPointInfo;
letterPoints[4].kind = PointKind.CORNERPOINT;
letterPoints[4].anchor = Array(inX + inWidth, inY + inHeight);
letterPoints[4].leftDirection = letterPoints[4].anchor;
letterPoints[4].rightDirection = letterPoints[4].anchor;

var insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

}



JavaScript Reference Guide  PathItem 171

function AddLetterWPath(inOutSubPaths, inX, inY, inWidth, inHeight) {
// create the letter W
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX, inY);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX + inWidth * .33, inY + inHeight);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

letterPoints[2] = new PathPointInfo;
letterPoints[2].kind = PointKind.CORNERPOINT;
letterPoints[2].anchor = Array(inX + inWidth / 2, inY + inHeight / 2);
letterPoints[2].leftDirection = letterPoints[2].anchor;
letterPoints[2].rightDirection = letterPoints[2].anchor;

letterPoints[3] = new PathPointInfo;
letterPoints[3].kind = PointKind.CORNERPOINT;
letterPoints[3].anchor = Array(inX + inWidth * .66, inY + inHeight);
letterPoints[3].leftDirection = letterPoints[3].anchor;
letterPoints[3].rightDirection = letterPoints[3].anchor;

letterPoints[4] = new PathPointInfo;
letterPoints[4].kind = PointKind.CORNERPOINT;
letterPoints[4].anchor = Array(inX + inWidth, inY);
letterPoints[4].leftDirection = letterPoints[4].anchor;
letterPoints[4].rightDirection = letterPoints[4].anchor;

var insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

}

function AddLetterOPath(inOutSubPaths, inX, inY, inWidth, inHeight) {

// create the letter O
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;



 PathItem JavaScript Reference Guide172

letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX + inWidth / 2, inY);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX + inWidth, inY + inHeight / 2);
letterPoints[1].leftDirection = Array(inX + inWidth, inY + inHeight);
letterPoints[1].rightDirection = Array(inX + inWidth, inY);

letterPoints[2] = new PathPointInfo;
letterPoints[2].kind = PointKind.CORNERPOINT;
letterPoints[2].anchor = Array(inX + inWidth / 2, inY + inHeight);
letterPoints[2].leftDirection = letterPoints[2].anchor;
letterPoints[2].rightDirection = letterPoints[2].anchor;

letterPoints[3] = new PathPointInfo;
letterPoints[3].kind = PointKind.CORNERPOINT;
letterPoints[3].anchor = Array(inX, inY + inHeight / 2);
letterPoints[3].leftDirection = Array(inX, inY);
letterPoints[3].rightDirection = Array(inX, inY + inHeight);

letterPoints[4] = new PathPointInfo;
letterPoints[4].kind = PointKind.CORNERPOINT;
letterPoints[4].anchor = Array(inX + inWidth / 2, inY);
letterPoints[4].leftDirection = letterPoints[4].anchor;
letterPoints[4].rightDirection = letterPoints[4].anchor;

var insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

}

function AddLetterLPath(inOutSubPaths, inX, inY, inWidth, inHeight) {

// create the letter L
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX, inY);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;



JavaScript Reference Guide  PathItem 173

letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX, inY + inHeight);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

letterPoints[2] = new PathPointInfo;
letterPoints[2].kind = PointKind.CORNERPOINT;
letterPoints[2].anchor = Array(inX + inWidth, inY + inHeight);
letterPoints[2].leftDirection = letterPoints[2].anchor;
letterPoints[2].rightDirection = letterPoints[2].anchor;

var insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

}

function AddLetterEPath(inOutSubPaths, inX, inY, inWidth, inHeight) {

// create the letter E top, left, and bottom side
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX + inWidth, inY);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX, inY);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

letterPoints[2] = new PathPointInfo;
letterPoints[2].kind = PointKind.CORNERPOINT;
letterPoints[2].anchor = Array(inX, inY + inHeight);
letterPoints[2].leftDirection = letterPoints[2].anchor;
letterPoints[2].rightDirection = letterPoints[2].anchor;

letterPoints[3] = new PathPointInfo;
letterPoints[3].kind = PointKind.CORNERPOINT;
letterPoints[3].anchor = Array(inX + inWidth, inY + inHeight);
letterPoints[3].leftDirection = letterPoints[3].anchor;
letterPoints[3].rightDirection = letterPoints[3].anchor;

var insertIndex = inOutSubPaths.length;



 PathItem JavaScript Reference Guide174

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

// create the letter E cross bar
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX, inY + inHeight / 2);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX + inWidth * 0.66, inY + inHeight / 2);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

}

function AddLetterHPath(inOutSubPaths, inX, inY, inWidth, inHeight) {

// create the letter H left side
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX, inY);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX, inY + inHeight);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

var insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();



JavaScript Reference Guide  PathItem 175

inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

// create the letter H cross bar
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX, inY + inHeight / 2);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX + inWidth, inY + inHeight / 2);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

// create the letter H right side
var letterPoints = new Array();

letterPoints[0] = new PathPointInfo;
letterPoints[0].kind = PointKind.CORNERPOINT;
letterPoints[0].anchor = Array(inX + inWidth, inY);
letterPoints[0].leftDirection = letterPoints[0].anchor;
letterPoints[0].rightDirection = letterPoints[0].anchor;

letterPoints[1] = new PathPointInfo;
letterPoints[1].kind = PointKind.CORNERPOINT;
letterPoints[1].anchor = Array(inX + inWidth, inY + inHeight);
letterPoints[1].leftDirection = letterPoints[1].anchor;
letterPoints[1].rightDirection = letterPoints[1].anchor;

insertIndex = inOutSubPaths.length;

inOutSubPaths[insertIndex] = new SubPathInfo();
inOutSubPaths[insertIndex].operation = ShapeOperation.SHAPEXOR;
inOutSubPaths[insertIndex].closed = false;
inOutSubPaths[insertIndex].entireSubPath = letterPoints;

}



 PathItem JavaScript Reference Guide176

// Reset the application preferences
app.preferences.rulerUnits = startRulerUnits;
app.preferences.typeUnits = startTypeUnits;
app.displayDialogs = startDisplayDialogs;



JavaScript Reference Guide  PathItems 177

PathItems

Properties

Methods

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

add Creates a new path 
item

name as String
entirePath as Object

PathItem

getByName Get the first element in 
the collection with the 
provided name

name as String PathItem

removeAll



 PathPoint JavaScript Reference Guide178

PathPoint

Properties

Property Access Value Type What it is

anchor R/W Array( UnitValue ) the edit point on the curve --
leftDirection/rightDirection are points 
representing the control handle end 
points

kind R/W PointKind
PointKind.CORNERPOINT
PointKind.SMOOTHPOINT

leftDirection R/W Array( UnitValue )

parent RO Object the object's container

rightDirection R/W Array( UnitValue )



JavaScript Reference Guide  PathPointInfo 179

PathPointInfo

Properties

Property Access Value Type What it is

anchor R/W ANYTHING the position of the anchor (in coordinates)

kind R/W PointKind
PointKind.CORNERPOINT
PointKind.SMOOTHPOINT

the point type, smooth/conner

leftDirection R/W ANYTHING location of the left direction point (in 
position) 

rightDirection R/W ANYTHING location of the left direction point (out 
position) 



 PathPoints JavaScript Reference Guide180

PathPoints

Properties

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container



JavaScript Reference Guide  PDFOpenOptions 181

PDFOpenOptions

Properties

Property Access Value Type What it is

antiAlias R/W Boolean use antialias?

constrainProportions R/W Boolean constrain proportions of image

height R/W UnitValue height of image (unit value)

mode R/W OpenDocumentMode
OpenDocumentMode.CMYK
OpenDocumentMode.GRAYSC
OpenDocumentMode.ALE
OpenDocumentMode.LAB
OpenDocumentMode.RGB

the document mode

page R/W Long number of page to open

resolution R/W Double the resolution of the document (in 
pixels per inch)

width R/W UnitValue width of image (unit value)



 PDFSaveOptions JavaScript Reference Guide182

PDFSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

annotations R/W Boolean save annotations

downgradeColorProfile R/W Boolean should the embedded color profile be 
downgraded to version 2

embedColorProfile R/W Boolean embed color profile in document

embedFonts R/W Boolean embed fonts? Only valid if vector data is 
included

encoding R/W PDFEncoding
PDFEncoding.JPEG
PDFEncoding.PDFZIP

( default: PDFEncoding.PDFZIP )

interpolation R/W Boolean use image interpolation?

jpegQuality R/W Long quality of produced image. Only valid for 
JPEG encoded PDF documents ( 0 - 12 )

layers R/W Boolean save layers

spotColors R/W Boolean save spot colors

transparency R/W Boolean

useOutlines R/W Boolean use outlines for text? Only valid if vector 
data is included

vectorData R/W Boolean include vector data



JavaScript Reference Guide  PhotoCDOpenOptions 183

PhotoCDOpenOptions

Properties

Property Access Value Type What it is

colorProfileName R/W String profile to use when reading the image

colorSpace R/W PhotoCDColorSpace
PhotoCDColorSpace.LAB16
PhotoCDColorSpace.LAB8
PhotoCDColorSpace.RGB16
PhotoCDColorSpace.RGB8

colorspace for image

orientation R/W Orientation
Orientation.LANDSCAPE
Orientation.PORTRAIT

pixelSize R/W PhotoCDSize
PhotoCDSize.EXTRALARGE
PhotoCDSize.LARGE
PhotoCDSize.MAXIMUM
PhotoCDSize.MEDIUM
PhotoCDSize.MINIMUM
PhotoCDSize.SMALL

dimensions of image

resolution R/W Double the resolution of the image (in pixels per 
inch)



 PhotoshopSaveOptions JavaScript Reference Guide184

PhotoshopSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

annotations R/W Boolean save annotations

embedColorProfile R/W Boolean embed color profile in document

layers R/W Boolean save layers

spotColors R/W Boolean save spot colors



JavaScript Reference Guide  PICTFileSaveOptions 185

PICTFileSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

compression R/W PICTCompression
PICTCompression.JPEGHIGHPICT
PICTCompression.JPEGLOWPICT
PICTCompression.JPEGMAXIMUMPICT
PICTCompression.JPEGMEDIUMPICT
PICTCompression.NONE

( default: 
PICTCompression.NONE )

embedColorProfile R/W Boolean embed color profile in 
document

resolution R/W PICTBitsPerPixels
PICTBitsPerPixels.EIGHT
PICTBitsPerPixels.FOUR
PICTBitsPerPixels.SIXTEEN
PICTBitsPerPixels.THIRTYTWO
PICTBitsPerPixels.TWO

number of bits per pixel



 PICTResourceSaveOptions JavaScript Reference Guide186

PICTResourceSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

compression R/W PICTCompression
PICTCompression.JPEGHIGHPICT
PICTCompression.JPEGLOWPICT
PICTCompression.JPEGMAXIMUMPICT
PICTCompression.JPEGMEDIUMPICT
PICTCompression.NONE

( default: 
PICTCompression.NONE )

embedColorProfile R/W Boolean embed color profile in 
document

name R/W String name of PICT resource ( 
default: \"\" )

resolution R/W PICTBitsPerPixels
PICTBitsPerPixels.EIGHT
PICTBitsPerPixels.FOUR
PICTBitsPerPixels.SIXTEEN
PICTBitsPerPixels.THIRTYTWO
PICTBitsPerPixels.TWO

number of bits per pixel

resourceID R/W PICTBitsPerPixels
PICTBitsPerPixels.EIGHT
PICTBitsPerPixels.FOUR
PICTBitsPerPixels.SIXTEEN
PICTBitsPerPixels.THIRTYTWO
PICTBitsPerPixels.TWO

ID of PICT resource ( default: 
128 )



JavaScript Reference Guide  PixarSaveOptions 187

PixarSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels



 PNGSaveOptions JavaScript Reference Guide188

PNGSaveOptions

Properties

Property Access Value Type What it is

interlaced R/W Boolean should rows be interlaced? ( default: false )



JavaScript Reference Guide  Preferences 189

Preferences

Properties

Property Access Value Type What it is

additionalPluginFolder R/W File

appendExtension R/W SaveBehavior
SaveBehavior.ALWAYSSAVE
SaveBehavior.ASKWHENSAVING
SaveBehavior.NEVERSAVE

on 
Windows, 
files are 
always 
saved with 
extensions.

askBeforeSavingLayeredTIFF R/W Boolean

autoUpdateOpenDocuments R/W Boolean

beepWhenDone R/W Boolean

colorChannelsInColor R/W Boolean

colorPicker R/W ColorPicker
ColorPicker.ADOBE
ColorPicker.APPLE
ColorPicker.PLUGIN
ColorPicker.WINDOWS

columnGutter R/W Double gutter of 
columns 
(in points)

columnWidth R/W Double width of 
columns 
(in points)

createFirstSnapshot R/W Boolean automatica
lly make 
first 
snapshot 
when a 
new 
document 
is created?

dynamicColorSliders R/W Boolean

editLogItems R/W EditLogItemsType
EditLogItemsType.CONCISE
EditLogItemsType.DETAILED
EditLogItemsType.SESSIONONLY

options for 
edit log 
items

exportClipboard R/W Boolean

fullSizePreview R/W Boolean Mac only



 Preferences JavaScript Reference Guide190

gamutWarningOpacity R/W Double

gridSize R/W GridSize
GridSize.LARGE
GridSize.MEDIUM
GridSize.NONE
GridSize.SMALL

gridStyle R/W GridLineStyle
GridLineStyle.DASHED
GridLineStyle.DOTTED
GridLineStyle.SOLID

gridSubDivisions R/W Long

guideStyle R/W GuideLineStyle
GuideLineStyle.DASHED
GuideLineStyle.SOLID

iconPreview R/W Boolean Mac only

imageCacheForHistograms R/W Boolean

imageCacheLevels R/W Long

imagePreviews R/W SaveBehavior
SaveBehavior.ALWAYSSAVE
SaveBehavior.ASKWHENSAVING
SaveBehavior.NEVERSAVE

interpolation R/W ResampleMethod
ResampleMethod.BICUBIC
ResampleMethod.BICUBICSHARPER
ResampleMethod.BICUBICSMOOTHER
ResampleMethod.BILINEAR
ResampleMethod.NEARESTNEIGHBOR
ResampleMethod.NONE

keyboardZoomResizesWindows R/W Boolean

macOSThumbnail R/W Boolean Mac only

maximizeCompatibility R/W QueryStateType
QueryStateType.ALWAYS
QueryStateType.ASK
QueryStateType.NEVER

maximize 
compatibili
ty for 
Photoshop 
(PSD) files

maxRAMuse R/W Long Maximum 
percentage 
of available 
RAM used 
by 
Photoshop 
( 5 - 100 )

Property Access Value Type What it is



JavaScript Reference Guide  Preferences 191

nonLinearHistory R/W Boolean allow non-
linear 
history?

numberOfHistoryStates R/W Long number of 
history 
states to 
remember 
(between 1 
and 100)

otherCursors R/W OtherPaintingCursors
OtherPaintingCursors.PRECISEOTHER
OtherPaintingCursors.STANDARDOTHER

paintingCursors R/W PaintingCursors
PaintingCursors.BRUSHSIZE
PaintingCursors.PRECISE
PaintingCursors.STANDARD

parent RO Object the 
object's 
container

pixelDoubling R/W Boolean

pointSize R/W PointType
PointType.POSTSCRIPT
PointType.TRADITIONAL

size of 
point/pica

recentFileListLength R/W Long number of 
items in 
the recent 
file list 
(between 0 
and 30)

rulerUnits R/W Units
Units.CM
Units.INCHES
Units.MM
Units.PERCENT
Units.PICAS
Units.PIXELS
Units.POINTS

Note: this is 
the unit 
that the 
scripting 
system will 
use when 
receiving 
and 
returning 
values

saveLogItems R/W SaveLogItemsType
SaveLogItemsType.LOGFILE
SaveLogItemsType.LOGFILEANDMETADATA
SaveLogItemsType.METADATA

options for 
saving the 
history 
items

saveLogItemsFile R/W File

Property Access Value Type What it is



 Preferences JavaScript Reference Guide192

savePaletteLocations R/W Boolean

showAsianTextOptions R/W Boolean

showEnglishFontNames R/W Boolean

showSliceNumber R/W Boolean

showToolTips R/W Boolean

smartQuotes R/W Boolean

typeUnits R/W TypeUnits
TypeUnits.MM
TypeUnits.PIXELS
TypeUnits.POINTS

unit type-
size that 
the 
numeric 
inputs are 
assumed 
to 
represent

useAdditionalPluginFolder R/W Boolean

useDiffusionDither R/W Boolean

useHistoryLog R/W Boolean

useLowerCaseExtension R/W Boolean should the 
file 
extension 
be 
lowercase

useShiftKeyForToolSwitch R/W Boolean

useVideoAlpha R/W Boolean this option 
requires 
hardware 
support

windowsTumbnail R/W Boolean this option 
requires 
hardware 
support

Property Access Value Type What it is



JavaScript Reference Guide  PresentationOptions 193

PresentationOptions

Properties

Property Access Value Type What it is

autoAdvance R/W Boolean auto advance when viewing ( default: true )

downgradeColorProfile R/W Boolean should the embedded color profile be 
downgraded to version 2 ( default: false ) 

embedFonts R/W Boolean embed fonts? Only valid if a text layer is 
included ( default: false ) 

encoding R/W PDFEncoding ( default: PDFEncoding.PDFZIP ) 

interpolation R/W Boolean use image interpolation? ( default: false ) 

interval R/W Long time in seconds before auto advancing the 
view ( default: 5 ) 

jpegQuality R/W Long quality of produced image. Only valid for 
JPEG encoded PDF documents ( 0 12; 
default: 10 ) 

loop R/W Boolean loop after last page ( default: false ) 

presentation R/W Boolean true if the file type is presentation false for 
Multi-Page document ( default: false ) 

transition R/W TransitionType transition type when switching to the next 
document ( default: Transition-Type.NONE ) 

transparency R/W Boolean ( default: true ) 

vectorData R/W Boolean include vector data ( default: false ) 

view R/W Boolean view the document after saving ( default: 
false ) 



 RawFormatOpenOptions JavaScript Reference Guide194

RawFormatOpenOptions

Properties

Property Access Value Type What it is

bitsPerChannel R/W Long number of bits for each channel (8 or 16)

byteOrder R/W Byte Order only relevant for images with 16 bits per 
channel

channelNumber R/W Long number of channels in image

headerSize R/W Long

height R/W Long height of image (in pixels)

interleaveChannels R/W Boolean are the channels in the image interleaved?

retainHeader R/W Boolean retain header when saving?

width R/W Long width of image (in pixels)



JavaScript Reference Guide  RawSaveOptions 195

RawSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

spotColors R/W Boolean save spot colors



 RGBColor JavaScript Reference Guide196

RGBColor

Properties

Property Access Value Type What it is

blue R/W Double the blue color value ( 0.0 - 255.0; default: 
255.0 )

green R/W Double the green color value ( 0.0 - 255.0; default: 
255.0 )

hexValue R/W String Hex representation of this color

red R/W Double Hex representation of this color



JavaScript Reference Guide  Selection 197

Selection

Properties

Methods

Property Access Value Type What it is

parent RO Object the object's container

Method What it does Parameter Type Returns

clear Clears selection

contract Contracts the selection by UnitValue

copy Copies  selection to the 
clipboard

merge as Boolean

cut Cuts current selection 
to the clipboard

deselect

expand Expands  selection by as UnitValue

feather Feathers edges of 
selection

by as UnitValue



 Selection JavaScript Reference Guide198

fill Fills the selection fillType as ANYTHING
mode as ColorBlendMode
ColorBlendMode.BEHIND
ColorBlendMode.CLEAR
ColorBlendMode.COLOR
ColorBlendMode.COLORBURN
ColorBlendMode.COLORDODGE
ColorBlendMode.DARKEN
ColorBlendMode.DIFFERENCE
ColorBlendMode.DISSOLVE
ColorBlendMode.EXCLUSION
ColorBlendMode.HARDLIGHT
ColorBlendMode.HUE
ColorBlendMode.LIGHTEN
ColorBlendMode.LINEARBURN
ColorBlendMode.LINEARDODGE
ColorBlendMode.LINEARLIGHT
ColorBlendMode.LUMINOSITY
ColorBlendMode.MULTIPLY
ColorBlendMode.NORMAL
ColorBlendMode.OVERLAY
ColorBlendMode.PINLIGHT
ColorBlendMode.SATURATION
ColorBlendMode.SCREEN
ColorBlendMode.SOFTLIGHT
ColorBlendMode.VIVIDLIGHT

opacity as Long 
preserveTransparency as Boolean

grow Grows selection to 
include all adjacent 
pixels falling within the 
specified tolerance 
range

tolerance as  Long 
antiAlias as Boolean
antiAlias.CRISP
antiAlias.NONE
antiAlias.SHARP
antiAlias.SMOOTH
antiAlias.STRONG

invert Inverts the selection

Method What it does Parameter Type Returns



JavaScript Reference Guide  Selection 199

load Loads the selection 
from a channel

from as Channel
combination as SelectionType
SelectionType.DIMINISH
SelectionType.EXTEND
SelectionType.INTERSECT
SelectionType.REPLACE

inverting as Boolean

resize horizontal as Double 
vertical as  Double 
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
.AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

resizeBoundary Scales the boundary of 
selection

horizontal as  Double 
vertical as Double 
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
.AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

rotate angle as Double 
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
.AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

Method What it does Parameter Type Returns



 Selection JavaScript Reference Guide200

rotateBoundary Rotates the boundary 
of selection

angle as Double 
anchor as AnchorPosition
AnchorPosition.BOTTOMCENTER
.AnchorPosition.BOTTOMLEFT
AnchorPosition.BOTTOMRIGHT
AnchorPosition.MIDDLECENTER
AnchorPosition.MIDDLELEFT
AnchorPosition.MIDDLERIGHT
AnchorPosition.TOPCENTER
AnchorPosition.TOPLEFT
AnchorPosition.TOPRIGHT

select region as Object
type as SelectionTypeSelectionType.DIMINISH
SelectionType.EXTEND
SelectionType.INTERSECT
SelectionType.REPLACE

feather as Double 
antiAlias as Boolean
antiAlias.CRISP
antiAlias.NONE
antiAlias.SHARP
antiAlias.SMOOTH
antiAlias.STRONG

selectAll

selectBorder Selects the border of 
the selection

width as UnitValue

similar Grows selection to 
include pixels 
throughout the image 
falling within the 
tolerance range

tolerance as Long 
antiAlias as Boolean
antiAlias.CRISP
antiAlias.NONE
antiAlias.SHARP
antiAlias.SMOOTH
antiAlias.STRONG

smooth radius as Long 

store Saves  the selection as 
a channel

into as Channel
combination as SelectionType
SelectionType.DIMINISH
SelectionType.EXTEND
SelectionType.INTERSECT
SelectionType.REPLACE

Method What it does Parameter Type Returns



JavaScript Reference Guide  Selection 201

stroke Strokes the selection strokeColor as ANYTHING
width as Long 
location as StrokeLocation
StrokeLocation.CENTER
StrokeLocation.INSIDE
StrokeLocation.OUTSIDE

mode as ColorBlendMode
ColorBlendMode.BEHIND
ColorBlendMode.CLEAR
ColorBlendMode.COLOR
ColorBlendMode.COLORBURN
ColorBlendMode.COLORDODGE
ColorBlendMode.DARKEN
ColorBlendMode.DIFFERENCE
ColorBlendMode.DISSOLVE
ColorBlendMode.EXCLUSION
ColorBlendMode.HARDLIGHT
ColorBlendMode.HUE
ColorBlendMode.LIGHTEN
ColorBlendMode.LINEARBURN
ColorBlendMode.LINEARDODGE
ColorBlendMode.LINEARLIGHT
ColorBlendMode.LUMINOSITY
ColorBlendMode.MULTIPLY
ColorBlendMode.NORMAL
ColorBlendMode.OVERLAY
ColorBlendMode.PINLIGHT
ColorBlendMode.SATURATION
ColorBlendMode.SCREEN
ColorBlendMode.SOFTLIGHT
ColorBlendMode.VIVIDLIGHT

opacity as Long 
preserveTransparency as Boolean

translate Moves the position 
relative to its current 
position

deltaX as UnitValue
deltaY as UnitValue

translateBoundary Moves the boundary of 
selection relative to its 
current position

deltaX as UnitValue
deltaY as UnitValue

Method What it does Parameter Type Returns



 Selection JavaScript Reference Guide202

Sample Script 

The following selection script creates a new document by dividing an 800 pixel board into 100 x 100 
pixel squares. 

The checkerboard is created by iterating through an array of alternating selections in the shape of 
squares. One alternating selection of squares is filled with a foreground color from the palette. 
Then the procedure is inverted and the other selection of squares is filled with a background color 
from the palette. The squares are then de-selected to remove the “marching ants”. 

The script successively produces the following checkerboards. 

Note: For this script to be effective, the foreground and background colors of the current palette 
much be different colors. 

Code (Selection.js) 

// Save the current preferences
var startRulerUnits = app.preferences.rulerUnits;
var startTypeUnits = app.preferences.typeUnits;
var startDisplayDialogs = app.displayDialogs;

// Set Photoshop to use pixels and display no dialogs
app.preferences.rulerUnits = Units.PIXELS;



JavaScript Reference Guide  Selection 203

app.preferences.typeUnits = TypeUnits.PIXELS;
app.displayDialogs = DialogModes.NO;

// first close all the open documents
while (app.documents.length) {

app.activeDocument.close();
}

// 800 pixel board divided in even 100 x 100 squares
var docSize = 800;
var cells = 8;
var cellSize = docSize / cells;

// create a new document
var checkersDoc = app.documents.add(docSize, docSize, 72, “Checkers”);

// select the checker board 
// every other row I need to shift my selection
// one square to the right, this is done with shiftIt
var shiftIt = true;

// loop through vertically
for (var v = 0; v < docSize; v += cellSize) {

// i’m on a new row so switch the shift
shiftIt = !shiftIt;

// loop through horizontally
for (var h = 0; h < docSize; h += (cellSize * 2)) {

// push over the cellSize to start with only
if (shiftIt && h == 0) {

h += cellSize;
}

// make me a square selection
selRegion = Array(Array(h, v),

                  Array(h + cellSize, v),
                  Array(h + cellSize, v + cellSize),
                  Array(h, v + cellSize),

          Array(h, v));
          

// if i just started then start the selection
// otherwise extend the selection
if (h == 0 && v == 0) {

checkersDoc.selection.select(selRegion);
} else {

checkersDoc.selection.select(selRegion, SelectionType.EXTEND);
}



 Selection JavaScript Reference Guide204

// turn this off for faster execution 
// turn this on for debugging
WaitForRedraw();

}
}

// now I have my selection I will fill with the foreground
checkersDoc.selection.fill( app.foregroundColor );

// invert the selection
checkersDoc.selection.invert();

// and fill with the background
checkersDoc.selection.fill( app.backgroundColor );

// and clear the selection
checkersDoc.selection.deselect();

// Reset the application preferences
app.preferences.rulerUnits = startRulerUnits;
app.preferences.typeUnits = startTypeUnits;
app.displayDialogs = startDisplayDialogs;

// I little helper function I use for debugging
// It also helps the use see what is going on
// if you turn it off for this example you 
// just get a flashing cursor for a long time
function WaitForRedraw()
{

// comment or uncomment the next line
// to slow down or speed up this action
// return;
var eventWait = charIDToTypeID( ‘Wait’ );
var enumRedrawComplete = charIDToTypeID( ‘RdCm’ );
var typeState = charIDToTypeID( ‘Stte’ );
var keyState = charIDToTypeID( ‘Stte’ );

var desc = new ActionDescriptor();

    desc.putEnumerated( keyState, typeState, enumRedrawComplete );

executeAction( eventWait, desc, DialogModes.NO );
}



JavaScript Reference Guide  SGIRGBSaveOptions 205

SGIRGBSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

spotColors R/W Boolean save spot colors



 SolidColor JavaScript Reference Guide206

SolidColor

Properties

Methods

Property Access Value Type What it is

cmyk R/W CMYKColor return a grayscale representation of the 
color

gray R/W GrayColor return a grayscale representation of the 
color

hsb R/W HSBColor return a grayscale representation of the 
color

lab R/W LabColor return a grayscale representation of the 
color

model R/W ColorMode
ColorMode.CMYK
ColorMode.GRAYSCALE
ColorMode.HSB
ColorMode.LAB
ColorMode.NONE
ColorMode.RGB

color model

nearestWebColor RO RGBColor The nearest web color to the current color

rgb R/W RGBColor return an rgb representation of the color

Method What it does Parameter Type Returns

isEqual Returns true if the 
provided color is 
visually equal to this 
color

color as SolidColor Boolean



JavaScript Reference Guide  SubPathInfo 207

SubPathInfo

Properties

Property Access Value Type What it is

closed R/W Boolean is this path closed?

entireSubPath R/W Object all the sub path item's path points 

operation R/W ShapeOperation sub path operation on other sub paths 



 SubPathItem JavaScript Reference Guide208

SubPathItem

Properties

Property Access Value Type What it is

closed RO Boolean is this path closed?

operation RO ShapeOperation sub path operation on other sub paths 

parent RO Object the object's container 

pathPoints RO PathPoints



JavaScript Reference Guide  SubPathItems 209

SubPathItems

Properties

Property Access Value Type What it is

length RO Long number of elements in the collection 

parent RO Object the object's container 



 TargaSaveOptions JavaScript Reference Guide210

TargaSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

resolution R/W TargaBitsPerPixels
TargaBitsPerPixels.SIXTEEN
TargaBitsPerPixels.THIRTYTWO
TargaBitsPerPixels.TWENTYFOUR

number of bits per pixel ( default: 
TargaBitsPerPixels.TWENTYFOUR )

rleCompression R/W Boolean should RLE compression be used? ( 
default: true )



JavaScript Reference Guide  TextFont 211

TextFont

Properties

Property Access Value Type What it is

family RO String the family of the font

name RO String the name of the font

parent RO Object the object's container

postScriptName RO String this is the string used to assign a font to a 
text item.

style RO String the style of the font



 TextFonts JavaScript Reference Guide212

TextFonts

Properties

Methods

Property Access Value Type What it is

length RO Long number of elements in the collection

parent RO Object the object's container

Method What it does Parameter Type Returns

getByName Get the first element in 
the collection with the 
provided name

name as String TextFont



JavaScript Reference Guide  TextItem 213

TextItem

Properties

Property Access Value Type What it is

alternateLigatures R/W Boolean use alternate 
ligatures?

antiAliasMethod R/W Anti Alias

autoKerning R/W AutoKernType
AutoKernType.MANUAL
AutoKernType.METRICS
AutoKernType.OPTICAL

options for auto 
kerning

autoLeadingAmount R/W Double percentage to use for 
auto leading

baselineShift R/W UnitValue baseline offset of text 
(unit value)

capitalization R/W TextCase
TextCase.ALLCAPS
TextCase.NORMAL
TextCase.SMALLCAPS

the case of the text

color R/W SolidColor color of text

contents R/W String the text in the layer

desiredGlyphScaling R/W Double

desiredLetterScaling R/W Double

desiredWordScaling R/W Double

direction R/W Direction
Direction.HORIZONTAL
Direction.VERTICAL

text orientation

fauxBold R/W Boolean use faux bold?

fauxItalic R/W Boolean use faux italic?

firstLineIndent R/W UnitValue (unit value)

font R/W String text face of the 
character

hangingPuntuation R/W Boolean use Roman Hanging 
Punctuation?

height R/W UnitValue the height of 
paragraph text (unit 
value)

horizontalScale R/W Long horizontal scaling of 
characters (in percent)



 TextItem JavaScript Reference Guide214

hyphenateAfterFirst R/W Long hyphenate after this 
many letters

hyphenateBeforeLast R/W Long hyphenate before this 
many letters

hyphenateCapitalWords R/W Boolean wheter to hyphenate 
capitalized words

hyphenateWordsLongerThan R/W Long hyphenate words that 
have more than this 
number of letters ( 
minimum 0 )

hyphenation R/W Boolean use hyphenation?

hyphenationZone R/W UnitValue the hyphenation zone 
(unit value)

hyphenLimit R/W Long maximum number of 
consecutive hyphens

justification R/W Justification
Justification.CENTER
Justification.CENTERJUSTIFIED
Justification.FULLYJUSTIFIED
Justification.LEFT
Justification.LEFTJUSTIFIED
Justification.RIGHT
Justification.RIGHTJUSTIFIED

paragraph justification

kind R/W TextType
TextType.PARAGRAPHTEXT
TextType.POINTTEXT

the type of the text

language R/W Language
Language.BRAZILLIANPORTUGUESE
Language.CANADIANFRENCH
Language.DANISH
Language.DUTCH
Language.ENGLISHUK
Language.ENGLISHUSA
Language.FINNISH
Language.FRENCH
Language.GERMAN
Language.ITALIAN
Language.NORWEGIAN
Language.NYNORSKNORWEGIAN
Language.OLDGERMAN
Language.PORTUGUESE
Language.SPANISH
Language.SWEDISH
Language.SWISSGERMAN

Property Access Value Type What it is



JavaScript Reference Guide  TextItem 215

leading R/W UnitValue leading (unit value)

leftIndent R/W UnitValue (unit value)

ligatures R/W Boolean use ligatures?

maximumGlyphScaling R/W Double

maximumLetterScaling R/W Double

maximumWordScaling R/W Double

minimumGlyphScaling R/W Double

minimumLetterScaling R/W Double

minimumWordScaling R/W Double

noBreak R/W Boolean

oldStyle R/W Boolean use old style?

parent RO Object the object's container

position R/W Array( UnitValue ) position of origin (unit 
value)

rightIndent R/W UnitValue (unit value)

size R/W Double font size in points

spaceAfter R/W UnitValue (unit value)

spaceBefore R/W UnitValue (unit value)

strikeThru R/W StrikeThruType
StrikeThruType.STRIKEBOX
StrikeThruType.STRIKEHEIGHT
StrikeThruType.STRIKEOFF

options for strik thru of 
the text

textComposer R/W TextComposer
TextComposer.ADOBEEVERYLINE
TextComposer.ADOBESINGLELINE

type of text 
composing engine to 
use

tracking R/W Double controls uniform 
spacing between 
multiple characters

underline R/W UnderlineType
UnderlineType.UNDERLINELEFT
UnderlineType.UNDERLINEOFF
UnderlineType.UNDERLINERIGHT

options for 
underlining of the text

useAutoLeading R/W Boolean whether to use a font's 
built-in leading 
information

verticalScale R/W Long vertical scaling of 
characters (in percent)

warpBend R/W Double percentage from -100 
to 100

Property Access Value Type What it is



 TextItem JavaScript Reference Guide216

Methods

warpDirection R/W Direction
Direction.HORIZONTAL
Direction.VERTICAL

warpHorizontalDistortion R/W Double percentage from -100 
to 100

warpStyle R/W WarpStyle
WarpStyle.ARC
WarpStyle.ARCH
WarpStyle.ARCLOWER
WarpStyle.ARCUPPER
WarpStyle.BULGE
WarpStyle.FISH
WarpStyle.FISHEYE
WarpStyle.FLAG
WarpStyle.INFLATE
WarpStyle.NONE
WarpStyle.RISE
WarpStyle.SHELLLOWER
WarpStyle.SHELLUPPER
WarpStyle.SQUEEZE
WarpStyle.TWIST
WarpStyle.WAVE

warpVerticalDistortion R/W Double percentage from -100 
to 100

width R/W UnitValue the width of 
paragraph text (unit 
value)

Method What it does Parameter Type Returns

convertToShape Converts the text item 
and its containing layer 
to a fill layer with the 
text changed to a 
clipping path

createPath Creates a work path 
based on the text 
object

Property Access Value Type What it is



JavaScript Reference Guide  TiffSaveOptions 217

TiffSaveOptions

Properties

Property Access Value Type What it is

alphaChannels R/W Boolean save alpha channels

annotations R/W Boolean save annotations

byteOrder R/W ByteOrder
ByteOrder.IBM
ByteOrder.MACOS

Default value is 'Mac OS' when running on 
MacOS, and 'IBM PC' when running on a 
PC

embedColorProfile R/W Boolean embed color profile in document

imageCompression R/W TIFFEncoding
TIFFEncoding.JPEG
TIFFEncoding.NONE
TIFFEncoding.TIFFLZW
TIFFEncoding.TIFFZIP

compression type ( default: 
TIFFEncoding.NONE )

jpegQuality R/W Long quality of produced image. Only valid for 
JPEG compressed TIFF documents ( 0 - 12 )

layerCompression R/W LayerCompression
LayerCompression.RLE
LayerCompression.ZIP

should only be used when you are saving 
layers

layers R/W Boolean save layers

saveImagePyramid R/W Boolean ( default: false )

spotColors R/W Boolean save spot colors

transparency R/W Boolean



 xmpMetadata JavaScript Reference Guide218

xmpMetadata

Properties

Property Access Value Type What it is

parent RO Object the object's container

rawData R/W String raw XML form of file information



219

7
JavaScript Syntax

JavaScript is a powerful, object-oriented scripting language that was first developed by Netscape 
Communications to enhance web-page interactivity. Originally named LiveScript, JavaScript 
actually has very little to do with Java. Although it uses a language syntax similar to Java (or to C, 
for that matter) it is a language of its own, with rules that are often very different from those found 
in Java. 

JavaScript is an interpreted language. Before you can run your programs in C, C++ or Java, you 
need to create a source file, then run a compiler program that translates the source file into an 
executable file containing machine code instructions. In a JavaScript environment, however, all 
commands and program statements are executed as soon as you type them in.

Originally designed for Netscape's browser software, JavaScript has rapidly evolved to become a 
widely used, general-purpose programming language. It is now accepted as a standard under 
ISO-16262 of the International Standards Organization. (The first industry-standard version of the 
language, endorsed by the European Computer Manufacturers Association, was known as 
ECMAScript). The core language has undergone several revisions, the most current being version 
1.5. 

JavaScript is designed to use the Unicode character set. Therefore, you are free to use your local 
characters as long as they fit into the Unicode character set.



 Core JavaScript Language Features JavaScript Reference Guide220

Core JavaScript Language Features

In this section, a brief discussion of some of the syntax rules used in JavaScript is given.

Identifiers

An identifier is a name that appears in JavaScript code. Identifiers are used for the names of 
variables, functions and labels. An identifier must begin with a letter, an underscore or a dollar 
sign, subsequent characters can also include digits. Thus, myVar1, _myFunction, $my_Var17 are all 
legal identifiers. Identifiers can contain Unicode characters, so the identifier "" is perfectly legal.

Case Sensitivity

The JavaScript language is case sensitive, the identifier myField is considered different from 
myfield. As a result, great care must be taken when typing program statements, an awareness of the 
case sensitivity of the language is very important.

Semicolons

The semicolon (;) is used to separate JavaScript statements. If the statements are on separate lines, 
the semicolon is optional.

x = 1
y = 2

If the statements are on the same line, which is not good practice, the semicolon separator is 
required:

x = 1; y = 2

Using a semicolon at the end of each statement is good practice:

x = 17;
y = x + 1;
z = y * y;

Comments

Comments can be inserted into JavaScript code using either the C++ or C-style commenting 
protocol. Any text between a double-slash (//) and the end of a line will be ignored by JavaScript. 
Also, any text between /* and */ will be treated as a non-executable item (or comment). The 
following are valid comment styles:

// This is a single-line comment.
x = 1;

http://www.toyota.co.jp/company/index.html" \t "_top
http://www.toyota.co.jp/company/index.html" \t "_top


JavaScript Reference Guide  Core JavaScript Language Features 221

/* This is also a comment. */
y = 2; // as is this
/*
*
* An extended comment
*
*/
z = 3;

Comments are extremely important tools because they make programs much more readable and 
easier to maintain. JavaScript uses a succinct, C-like syntax, which means a lot can be 
accomplished in just a few lines of code. 

JavaScript can be quite compact, but nearly indecipherable and hard to debug. Comment the code 
liberally as it is written: explain the goal of each code segment, document the parameters used, list 
any dependencies, or explain the reasoning used to write the code. The resulting commented code 
will make it much easier to read, maintain, extend or debug at a later time.



 Data Types JavaScript Reference Guide222

Data Types

JavaScript supports primitive (core) data types—such as booleans, numbers, and strings—as well 
as composite data types, like objects, arrays and functions. The primitive data types are used most 
often; consequently, it is important to understand these types and how JavaScript interprets them.

Primitive Data Types

Booleans are the simplest data type, since they can have just two values, true and false. Internally, 
JavaScript represents true and false values as 1 and 0, respectively. But anything that has a non-
zero value will be evaluated by the JavaScript interpreter as true in a Boolean context.

Numbers are represented using standard scientific notation, for example, 17, -88, 3.14159, or 
6.023e+23. Unlike some other languages, JavaScript does not distinguish between integer or 
floating-point values. In JavaScript, all numbers are represented internally as 64-bit IEEE floating-
point values. In base-ten terms, there are about 20 digits of precision in which to work, which 
ought to be adequate for most applications.

Note that integer values should not be written with leading zeros in JavaScript. JavaScript 
interprets '021' as the octal representation of the base-ten number 17. (In addition to octal triplets, 
hexadecimal numbers can be represented using the '0x' prefix plus two hexadecimal digits; for 
example, 0xFF represents a value of 255.)

A string is a sequence of letters, digits, punctuation, or other characters enclosed in quotation 
marks. Single quotations or double quotations can be used, it doesn't matter as long as they match. 
(If a string contains double-quotes as part of the desired string sequence, enclose the entire string 
in single quotes. Likewise, if a string contains single-quotes as part of the string sequence, enclose 
the entire string in double quotes.) The following are all legal string values:

'This will work.'
"3.14"
'The password is "xyzzy"'

Strings can be concatenated using the "+" operator. For example

"Roses are red " + "and Violets are blue."

JavaScript recognizes a number of escape sequences for representing characters inside strings that 
would otherwise be impossible to represent. The following table summarizes those escape 
sequences.

Escape Sequence Description

\b Backspace 

\f Form feed



JavaScript Reference Guide  Data Types 223

Escape sequences can be exploited to better handle strings with embedded single or double 
quotation marks in them, for example:

"\"Quoth the raven, \'Nevermore!\'\""

Composite data types

JavaScript defines another data type called an object, a structure used for holding a collection of 
name/value pairs. The values held in the object can be accessed through its (associated) name. 
The names are referred to as the properties of the object. The value of a property can be a primitive 
data type, or another object.

Other composite data types, such as arrays and functions, are special types of objects. Though 
arrays and functions are objects, JavaScript defines a special syntax for handling each of them. 
These composite data types are discussed in the following sections.

Declaring and Accessing Variables

Some important points to keep in mind concerning JavaScript variables are listed below:

• All variable names in JavaScript are case-sensitive, which means that a variable named 
MyVariable is not the same as one named myVariable.

• A variable name, which is an identifier, must begin with a letter, an underscore, or a dollar 
sign. Subsequent characters in a variable name can be letters, digits, underscores or dollar 
signs. Thus, address1, address2, _name, $income are all valid variable names. Since JavaScript 
supports Unicode, the usage of Unicode characters in a variable name is OK as well.

• Variables created in JavaScript are permanent, within their scope. Once a variable is 
declared, you can use the delete operator to delete a variable. For variables declared with the 
var statement, there is no way to manually “undeclare” or destroy them. (JavaScript's 

\n Newline

\r Carriage return

\t Tab

\ Single quote

\ Double quote

\\ Backslash

\xXX Character specified by two hexadecimal digits

\uXXXX Unicode character specified by four hexadecimal digits

Escape Sequence Description



 Data Types JavaScript Reference Guide224

garbage-collection mechanism will automatically de-allocate variables when they are no 
longer needed.)

• All variables in JavaScript have a scope which determines the variable's lifetime and 
accessibility. A variable declared inside a function is said to have local scope, which means it 
can be used only inside the function in which it was declared.

Declaration of variables can be made by typing the keyword 'var' followed by the name of the 
variable being declared. For example,

var radius;

Several declarations can be made by separating each variable declaration by a comma. For 
example,

var radius, pi, circumference, area; // only one var needed here

Declaring a variable, and initializing its value can be accomplished by using the “assignment” 
operator. For example,

var radius = 2, pi = 3.14, circumference, area;

The following example declares variables for different primitive data types:

var creditCard = false; // Boolean
var cost = 19.95; // number
var name = "John Doe"; // string

After declaring a variable and assigning it a value, it is no longer necessary to preface it with the 
var keyword. The data is simply accessed through the variable name.

var radius = 2, pi = 3.14, circumference, area;
area = pi * radius * radius;
circumference = 2 * pi * radius;
var strArea = "The area of the circle is " + area;

Here, a string is concatenated with a number. In this case, the JavaScript interpreter converts area, 
a number type, into a string type.

It is legal, in JavaScript, to declare a variable without using the 'var' keyword. But since (as we 
mentioned) all JavaScript variables must have a scope, this leaves the interpreter in a bit of a 
quandary as to how to "scope" a non-'var' variable. The interpreter resolves this problem by 
attaching the unscoped variable to the global name space, which has the effect of making the 
variable in question "usable" from all points in a program.



JavaScript Reference Guide  Data Types 225

Undefined Variables

In JavaScript, as in other languages, any attempt to use a variable in an expression without first 
declaring it generates an exception. Consider the following code:

var x = 1;
z = x + y;

where y is a new variable that was not declared anywhere. When these two lines are executed, a 
JavaScript exception ReferenceError would be thrown.

JavaScript has relaxed typing rules, but this is not the same as saying that it is an untyped 
language. JavaScript does have data types. The operator typeof can be used to identify the data 
type of a variable. To test if the variable y has been defined in the document, execute the following 
script:

if (typeof y == "undefined")
alert("Undefined variable.");

else {
// the variable is safe to use

}

Here, the predefined alert method is used to put an alert dialog onscreen if the variable being 
tested is not defined. Notice that JavaScript uses the C-like “== operator to test for equality. Also 
note that strings are compared by value; hence two strings can be compared directly using the “== 
operator.

Variables declared with the var keyword do not follow this rule, because the JavaScript interpreter 
creates these variables as the var statement is executed. If the var statement did not assign a value 
to the variable, its contents are undefined, which is not equal to the variable being undefined.

Actually, JavaScript treats undefined data as being a special value. The predefined global variable 
undefined contains this value, and the result of non-existing object properties (as you will see 
below) is reported as undefined.

Operators

As in many other programming languages, a large number of operators are built in to JavaScript. 
The following table details the available operators; you may notice that there are a few operators 
very specific to the JavaScript language.



 Data Types JavaScript Reference Guide226

Unary operators

These are operators that apply to one operand only.

Binary operators

Binary operators concatenate two operands. They are sorted in their order of precedence. If you 
are not sure whether one operator takes precedence of the other, use brackets. This example 
demonstrates the usefulness of brackets:

a instanceof String ? b / c : typeof d

This has the same meaning, but is far more readable:

(a instanceof String) ? (b / c) : (typeof d)

Unary Operators Description

delete Delete a variable. The delete operator applies to a variable or 
property reference, like e.g. hoopla, yArray[3] or myObject.prop. 
Note that the delete operator cannot delete variables declared 
with the var statement. If the variable contains an object, the 
object is not destroyed immediately; the garbage collector 
destroys it once all references to the object are gone. The value 
of the delete operation is either true or false, depending on 
whether the operand could be deleted.

void This operand instructs JavaScript to forget about the results of 
an operation. Usually, an operation like 4+5 would be 9, but 
void(4+5) is Undefined.

typeof Return the type of its operand. The result is one of the strings 
"undefined", "Boolean", "number", "string", "function" or "object".

+, - Unary plus and minus.

~ Bitwise inversion.

! Boolean negation.

++, -- Increment and decrement. This operator is either a prefix 
operator (++i) or a postfix operator (i++). The result depends on 
the type of operator. For a prefix operator, the operand is first 
incremented (or decremented), and the result is the outcome of 
that operation. For a postfix operation, the result is the contents 
of the operand before the operation has been applied.



JavaScript Reference Guide  Data Types 227

Binary Operators Description

* / % Multiplication, division and modulus.

+ - Addition and subtraction. The '+' operator applied to a string 
converts its arguments to strings and concatenates them.

<< >> >>> Bitwise shift operators. The left-hand side operand is converted 
to an integer and shifted left or right as indicated by the right-
hand operand. The right-shift operation is either signed (>>) or 
unsigned (>>>).

< > <= >= Comparison operators. The comparison depends on the type of 
operators. If both are strings, the comparison is a string 
comparison, otherwise, JavaScript attempts to convert both 
operands to a number and to perform a numeric comparison.

instanceof Test whether the class of the object given as the left-hand 
operator is an instance of the class given as the right-hand 
operator. The right-hand operator must be the name of a global 
class constructor function, like e.g. String or Object. The result is 
a Boolean value.

in Test whether the left-hand operator is a property of the right-
hand operator. The left-hand operator must either evaluate to a 
string or a number, and the right-hand operator must be an 
object. The result is a Boolean value. All of the comparison 
operators form a group of the same operator precedence 
weight.

== != Equality operators. JavaScript attempts to convert both 
operand to the same type before comparing them.

=== !== Identity operators. JavaScript does not attempt to convert both 
operands to the same type before comparing them. The 
identity and equality operators have the same precedence 
weight, however.

& | ^ Bitwise AND, OR and XOR. Both operands are converted to 
integers before applying the operation, and the result is a 
number containing the resulting bits.

&& || Boolean AND and OR. Both operands are converted to Boolean 
operands before applying the operator. If the left-hand operand 
already satisfies the condition (like being false on an AND or true 
on an OR operation), the right-hand side operator is not 
evaluated. The result is the Boolean combination of the 
operands.



 Data Types JavaScript Reference Guide228

Ternary operators

The ternary operator is actually an abbreviation of the if statement. It has the syntax:

condition ? true-expression : false-expression

The condition is evaluated, and, it if it evaluates to true, the result of the operation is the result of 
the true-expression; otherwise, the result is the result of the false-expression. An example:

a = i > 5 ? "Yes" : "No";

The variable a contains "Yes" if i is greater than 5, or "No" otherwise.

Assignment operators

The assignment operators are almost at the very bottom of the operator precedence list. 
Assignment operations have a value, which is the value of the right-hand operand. Therefore, a 
statement like "a=b=c=0" makes perfect sense.

JavaScript has the simple assignment operator "=" as well as compound assignment operators, 
which are the assignment operator combined with an arithmetic or logic operator:

*= /= %= += -= <<= >>= >>>= &= |= ^=

These operators are a short form of

left-hand = left-hand op right-hand

Defining and Using Objects

The treatment of objects will be highly abbreviated. For a more in depth discussion, refer to any 
good book covering core JavaScript.

A convenient way of defining an object is the object literal. An object literal is a collection of name/
value pairs, set apart by commas, and enclosed in matching curly braces. The name/value pairs 
are separated by a colon. For example:

{ question: "How are you today?", title: "Your Health Status"}

This defines an object with two properties; the property names are question and title. The order in 
which the properties are listed is immaterial. Objects can be assigned to variable names, just as 
primitive data types can:

var params = { question: "How are you today?", 
    title: "Your Health Status" };



JavaScript Reference Guide  Data Types 229

Data within the object can be accessed through the “.” notation. As opposed to simple variables, 
variables as part of an object are called properties. For example, the value of the question property 
of the params object is params.question. It is important to note that params.question, in this example, 
behaves much like a variable. Here, params.question represents the string "How are you today?".

Values of existent properties can be modified easily:

params.question = "How were you yesterday?";

Properties can be added to the object as well: 

params.dflt ="Fine";

Note that you can also use numeric or string constants as property names to define an object; it 
depends on whether the property name conforms to the syntax rules of identifiers or not. An 
example:

var myObj = { 5: "Five", "John Doe": "My name" };

The [] operator can also be used to access the properties of an object. For example, 
params["question"] represents the string "How are you today?". Note that the expression enclosed 
in the brackets is a string, not an identifier. As will be seen in the paragraphs on the for/in Loop, 
this method of accessing the properties and values of an object is quite useful, and, if the above 
example, it is the only way to access the properties of myObj.

As was mentioned before, the value of a property can be a primitive data type, a function, an array, 
or another object. If a property of an object has as its value a function, that property is referred to 
as a method of the object. JavaScript defines a number of objects, each having properties and 
methods.

Example: JavaScript defines the String object. String object have a number of methods that work 
on the string contained in the String object, like e.g. the charAt method The method is accessed in 
the same way as a property, using the “.” notation, for example,

s = new String ("Hi world");
ch = s.charAt (0);// ch now contains the string "H"

You can also define objects the procedural way, using the Object constructor function:

var params = new Object;
params.question = "How are you today?";
params.title = "Your Health Status";

Declaring and Using Arrays

An object, as described in the previous paragraphs, is an unordered collection of data. An array, is 
an ordered collection of data. The data is indexed by the nonnegative integers. There are two 



 Data Types JavaScript Reference Guide230

methods of declaring an array that will be discussed in these paragraphs. Arrays can be declared 
using an array literal, or an array constructor.

Example:

// array literal
var myArray1 = [ "This", "is", "ExtendScript", 3.0 ];
var myArray2 = [ 1, "String", { x:1, y:2 } ];

Note that the myArray2 contains a mixture of data types: number, string and object.

// Array constructor
var colors = new Array("red", "green", "blue");

The indexing system is 0-based, the first element of the array has index 0, the second element has 
index 1, and so on. To access the elements of an array, the [] operator is used, with the index 
number inserted between the brackets. For example

var str = myArray1[0]; // now str = "This"
var version = myArray1[3]; // version = 3.0
// The element myArray2[2] is an object, to access it, 
// the dot notation is used to access property y
var z = myArray2[2].y; // z is initialized to a value of 2.

The declaration var myArray = new Array() creates an empty array of length zero. The elements of 
myArray are undefined:

if (typeof myArray[0] == "undefined")
alert("No such element"); // this message appears

else
alert("There is a 0th element in the array");

One the empty array is declared, elements can be added to it; for example, after the code lines

myArray[0] = "Adobe";
myArray[1] = "Acrobat";

are executed, myArray is an array of length two.

There is no need to supply each element of the array. If you use two consecutive commas, the 
element that is missing remains undefined. Note, however, that you will have to use two commas 
at the end of the array literal if you want the last array element to be undefined. Examples:

myArray = ["One", "Two",,"Four"];// myArray[2] is undefined
myArray = ["One", "Two", "Three", ];// a three-element array
myArray = ["One", "Two", "Three",, ];// a four-element array



JavaScript Reference Guide  Data Types 231

Regular expressions

JavaScript contains a full regular expression object which you can use to parse strings in very 
complex ways. The full syntax of regular expressions would be too much for this document; 
please refer to more elaborate books about JavaScript. There is a way to declare a regular 
expression by enclosing it in slashes:

var regex = /a*/i

This statement creates a RegExp object. The object has a number of methods and properties, the 
exec() method being the most important one. That method returns an array of matches, the first 
element being the match found, and other elements containing the result of enclosed regular 
expression captures. Examples:

var regex = /a+/i
regex.exec ("Bart Simpson"); // returns ["a"]
/(\w*) (\w*)/.exec ("Bart Simpson");
// returns ["Bart Simpson", "Bart", "Simpson"]



 Functions JavaScript Reference Guide232

Functions

A function is a block of JavaScript code that is compiled once, but can be executed many times. 
Some of the important points concerning functions include:

• Parameters can be passed to a function
• The function may have a return value
• Within the body of the function definition, any variables declared with the var keyword have 

local scope.

There are a number of ways of defining a JavaScript function. Only the most popular style is 
presented here. The syntax for defining a function is

function functionName (parameter list)
{
JavaScript statements
}

The labels functionName and parameter list are replaced by the name of the function that is being 
defined, and by the list of parameters of the function, respectively. The following defines a 
function mySum and will be used to illustrate the itemized points above.

function mySum (x, y) // parameters x and y
{
var z = x + y; // add the two parameters
return z; // use the sum as the return value
}

Once this function is defined, it can be called, consider the following:

var sum = mySum(10, 7); // sum = 17

Here, the values 10 and 7 are passed to the function mySum as its required parameters. The 
function then returns the sum of the two passed parameters. In the body definition, a local variable 
z is declared. The (local) variable z is unknown outside this function. (Recall the assumption of 
this example that the variable z has not been declared anywhere at the top level outside the 
function.) To demonstrate this last statement, executing the line

var str = "The value of z is " + z;

results in a ReferenceError being thrown.

A function need not have any parameters or a return value. For example:

function helloWorld() {
alert("Hello world");
}



JavaScript Reference Guide  Functions 233

The helloWorld function simply pop ups an alert box on the screen.

If a function is attached to an object, it is called a method. You can attach a function to an object by 
assigning the function name to the property or by declaring the function directly:

var obj = new Object();
obj.foo = helloWorld;// note the missing brackets ()
obj.bar = function() {

alert ("This is a wonderful world!");
     }

The call obj.foo() would pop up the "Hello world" alert box, and the call obj.bar() would pop up the 
alert "This is a wonderful world!".

Actually, a function is just a Function object; therefore, you can attach it to whatever object you 
like, or move it around, or even store it into an array. Consider this example of an array literal:

fooArray = [
function() { return "One"; },
function() { return "Two"; },
function() { return "Three"; }

];

This creates an array containing three functions. You could call any of these functions by indexing 
the array as usual:

fooArray [0]();// would return "One"

If a function is attached to an object, it can use the this keyword to access the object that it is 
attached to. An example:

obj = { value: 5, getValue: function() { return this.value; } };

The call obj.getValue() would return 5. If the this keyword was omitted, it would attempt to locate 
the variable value in its scope chain; if it was executed within a function body containing the 
variable value defined as var, it would use that value, or it would use the value of the global 
variable value if present; so the results may become pretty unpredictable.



 Predefined variables and functions JavaScript Reference Guide234

Predefined variables and functions

The global namespace of JavaScript contains a few variables and functions that are worth 
mentioning.

Variables and Functions Description

undefined This variable always contains the value undefined.

NaN This variable contains the special numeric value Not-A-Number. 
The value is used for undefined arithmetic operations, like 
Math.sqrt (-1).

Infinity This is the value for +∞.

eval (text) Evaluate and run the JavaScript program scriptlet. eval ("a=5") 
has the same meaning as a=5.

parseInt (text) Convert the given text to an integer number. Optionally, you 
can supply a conversion radix. parseInt ("12", 16) would return 
18.

parseFloat (s) Convert the given text to a floating point number.

isNaN (n) Check whether the number is Not-A-Number.

isFinite (n) Check whether the number is a finite number, which is a 
number between -∞ and +∞.

this Yes, this keyword also works with the global name space. The 
global name space is actually an object containing methods 
and properties, and the this keyword points to the global 
object. Since undefined properties do not throw an error if 
accessed, you could use the following code to work with global 
variables without having to care about a ReferenceError being 
thrown if the variable is undefined:
var global = this;
a = global.notThere;// assigns Undefined



JavaScript Reference Guide  Predefined Core Objects 235

Predefined Core Objects

An object is a collection of named values, called the properties of the object. Properties of an object 
can be any type: strings, numbers, boolean, arrays, functions and even other objects. If a property 
of an object is a function, it is referred to as a method of that object. In JavaScript, a number of 
predefined objects are available: Array, Boolean, Date, Function, Math, Number, RegExp, String. These 
objects, in conjunction with their properties and methods, can be used, for example, to manipulate 
arrays and dates, make advanced math calculations, and search and manipulate strings.

The String object has a number of methods for searching and replacing strings. Some of these 
methods use regular expressions. The RegExp object also has methods for searching strings. 

Example: Math Object.

str1 = "The area of a circle of radius 1 is " + Math.PI;
str2 = "The sine of 45 degrees is " + Math.sin(45);

In addition to these core objects, applications usually define a large number of objects, again, each 
with their own properties and methods used for manipulating the objects.



 Conditionals and Loops JavaScript Reference Guide236

Conditionals and Loops

Two important program constructs present in all programming languages are conditional 
statements and looping.

The Conditional Statement

The syntax for a conditional statement is

if (expression) 
statement // to be executed if expression is true

else
statement // to be executed if expression is false

This construct is very important. The parentheses that surround expression are required. If multiple 
statements need to be executed, make sure that matching braces enclose the statements.

Examples:

if (i == 1)
alert("The variable i equals 1");

else
alert("The variable i has a value of " + i);

// testing two conditions: if str equals "Yes" and i is greater than 4
if ((str == "Yes") && (i > 4))

alert("You are granted access!");
else // here, str != "Yes" or i <= 4

alert("You may not enter!");

When testing for equality, the == (equality) or === (identity) operator can be used; for testing 
inequality, use != (inequality), or !== (non-identity). Other comparisons include < (less than), > 
(greater than), <= (less than or equal) and >= (greater than or equal to). 

Compound logic can be accomplished using the logical operators of && (and), || (or) and ! (not).

JavaScript has precise operator precedence; however, in the above example, the logical expressions 
are grouped using parentheses to be certain the logic is correct. 

Another conditional construct, the switch, can execute code based on a series of mutually exclusive 
and exhaustive cases. The syntax for the switch statement is illustrated below:

// Assume the variable, myNum, has some numerical 
// value when the code below executes
var msg;
switch (myNum) {

case 1:  msg = "Case 1";
   // possibly other statements



JavaScript Reference Guide  Conditionals and Loops 237

   break; // break out of case study
case 2:  msg = "Case 2"; break;
case 3:  msg = "Case 3"; break;
default: msg = "This is the default case";

}
alert(msg);

The switch statement evaluates the expression, myVar, in this case, and tries to match it up with one 
of the values listed in the case statements. The switch statement uses the identity operator, ===, to 
make the comparisons; consequently, if myVar = "1" (a string value), the above switch would 
evaluate to the default case, since (1 === "1") is false. A workaround would be to convert myVar to 
a number type.

You can use multiple case statements, like this:

switch (myNum) {
case 1:
case 2:
case 3:  msg = "Between 1 and 3"; break;
default: msg = "This is the default case";

}
alert(msg);

Or, you can use arbitrary complex expressions to express your case:

var one = 1, two = 2;
switch (myNum) {

case one:      msg = "Case 1"; break;
case two:      msg = "Case 2"; break;
case one+two:  msg = "Case 3"; break;
default:       msg = "This is the default case";

}
alert(msg);

Loops

Loops enable a block of code to be executed repeatedly under (possibly) different conditions 
each time. 

The while loop

The while loop is a very common way of looping. The general form for the loop is:

while (condition) {
// loop body (JavaScript statements)
}



 Conditionals and Loops JavaScript Reference Guide238

The loop runs repeatedly until the condition is false. JavaScript tests the condition before it executes 
the statements inside the loops. An alternate version tests the condition after the statements inside 
the loop have been run.

do {
// loop body (JavaScript statements)
} while (condition);

You can leave a loop with the break statement, and you can skip over the remaining statements 
inside the loop and have the next check processed with the continue statement.

The for Loop

The for loop is a very common way of looping. The general form for the for loop is

for (initialize; test; increment) {
// loop body (JavaScript statements)
}

The initialize part of the for loop is used to initialize some variables that are used in the loop. 
(Multiple initializations must be separated with a comma). The test component is evaluated in a 
boolean context: If test evaluates to true, the loop body is executed, otherwise, the loop is 
terminated. After the loop body has been executed, the increment expression is evaluated. The 
increment expression is usually some sort of assignment, for example, i=i+1. (An assignment of the 
form i=i+1 is quite common; the more compact ++ operator is often used. The assignment i=i+1 is 
equivalent to i++). The enclosing parentheses are required; the grouping braces are required only 
if there are multiple lines within the body of the loop. Prematurely exiting a loop can be 
accomplished by executing the break statement, and you can use the continue statement to skip the 
remainder of the statements inside the loop and proceed to the next increment operation.

Example: Search through an array for a particular element.

var colors = [ "red", "green", "blue" ];
var msg = "I'm thinking of three colors, guess one of them";
var response = prompt (msg, "");
if (response != null) {

response.toLowerCase();
for (var i = 0; i < colors.length; i++) {

if (colors[i] == response) 
break;

}
if (i < colors.length) 

alert("You found one!");
else 

alert("Guess again");
}
else

alert ("Why don't you guess?");



JavaScript Reference Guide  Conditionals and Loops 239

Comments on the Example: After the initial three declarations, the prompt method is used to 
acquire a response from the user. The return value of this method is assigned to the variable 
response. The documentation for this method states that the return value will be the null value if 
the user cancels the dialog. A conditional statement is used, the search will occur only if response is 
non-null.

The three components of a for loop appear in the above example:

• Initialize: The variable i is used to index the loop and it is initialized to 0 with the statement 
var i = 0.

• Test: The testing condition is i < colors.length. The loop body is repeatedly executed until the 
index i is equal to the length of the colors array.

• Increment: After the loop body is executed, the increment expression, i++, is evaluated, 
which increases the value of the index i by one. At this point, the test is evaluated and the 
body of the loop is executed again, if i < colors.length, or the loop is exited, if i >= colors.length.

In the loop body, note the use of the break statement. If the ith array element favorably compares 
with the user’s response, break is executed. If the user did not guess one of the colors, then on exit 
from the loop, the value of i will be colors.length. This fact is exploited to determine whether the 
user successfully guessed one of the colors.

The for/in Loop

The for/in statement can be used to loop through an object. The syntax for this loop is:

for (variable in object) {
JavaScript statements
}

The enclosing braces are only required it there are multiple lines of JavaScript code contained 
within the loop body. Again, you can use the break statement to exit the loop, or the continue 
statement to skip the remaining statements inside the loop.

The for/in loop creates an internal snapshot of the object's properties. Every time the loop is run, 
the loop variable receives the name of the next property of this snapshot. You can then use the [] 
notation to access the contents of that property. Note, however, that most properties and method 
of built-in object types are not enumerable; you cannot reach them in a for/in loop.

For example, consider this declaration:

params = { question: "How are you today?", 
title: "Your Health Status", 
dflt: "Fine" };



 Conditionals and Loops JavaScript Reference Guide240

Executing the following code,

for (var p in params)
alert("params." + p + " = " + params[p]);

yields the following results:

params.question = How are you today?
params.title = Your Health Status
params.dflt = Fine

Since an array is also an object, arrays can be searched using the for/in loop as well.



JavaScript Reference Guide  Making code readable: the with statement 241

Making code readable: the with statement

The with statement makes code more readable by specifying the object that the statement operates 
upon so you do not have to use the object.property notation. Imagine an array of objects that you 
need to work on, each containing the same property:

var data = [
{ value: 111 },
{ value: 222 },
{ value: 333 }

];
function sum (objArray) {

var result = 0;
for (var i = 0; i < objArray.length; i++) {

with (objArray [i]) {
// instead of objArray[i].value
result += value;

}
}
return result;

}
alert (sum (data));



 Dealing With Exceptions JavaScript Reference Guide242

Dealing With Exceptions

JavaScript methods throw an exception if a run-time error occurs. You can better control these 
exceptions by using try, catch and finally statement blocks, possibly in conjunction with the throw 
statement.

The following code defines a method that attempts to access the variable notThere, causing a 
ReferenceError to be thrown. The statement below would try to execute the function and catch the 
thrown error.

function testMe() {
return notThere;
}

try {
testMe();
}

catch (e) {
alert (e);
}

finally {
alert ("OK, I am done.");
}

The finally statement is always executed, either after a successful try or after a successful catch 
operation.

Error handlers can be written to deal with exceptions thrown by the application and by custom 
written JavaScript code. A very common case for throwing an exception is if the underlying object 
no longer exists inside the application (i.e. it is dead, but a reference to the object still exists). 
Consider the following piece of code:

var myDoc = app.newDoc();
myDoc.closeDoc();
myDoc.pageNum = 3;

This will throw an exception when the third line is executed. The document has been closed and 
no longer exists. A reference to this document is still being held in myDoc and any attempt to use it 
will throw an exception.

If you want to catch multiple different errors or other objects, you can use multiple catch clauses. 
The argument of a catch clause can be expanded with an if statement:

catch (if condition) {
statements
}

Note that, unlike the regular if statement, the conditional expression is not surrounded by 
brackets.



JavaScript Reference Guide  Dealing With Exceptions 243

For example,:

function throwIt() {
throw "Ouch!";
}

try {
throwIt();
alert ("Nothing appeared to be thrown");
}

catch (e if e instanceof Object) {
// catch all objects
alert ("An object was caught");
}

catch (e if e == "Ouch!") {
// catch the string "Ouch!"
alert ("Ouch! This hurt!");
}

catch (e) {
// catch everything else
alert ("Caught " + e);
}

As demonstrated, a JavaScript program can throw anything, from simple numbers or strings to 
complex objects. JavaScript will throw runtime errors as Error objects; there are a number of 
specialized objects like ReferenceError or TypeError that are derived from Error. Finally, you have to 
use an unconditional catch clause as the last of your catch clauses.



 Coding conventions JavaScript Reference Guide244

Coding conventions

This section contains a set of recommendations for writing JavaScript programs. It is organized as 
a set of rules with explanations. You are strongly encouraged to follow these rules.

• Use interCaps instead of Underscores

Do not use underscores inside a property or method name to separate parts of the name. Use 
interCaps instead. Instead of append_data, use appendData. Which gets us to the next rule:

• Always start a property or a method name with a lowercase letter

In JavaScript, symbols starting with an uppercase letter are considered class names. So, do not 
use Document as a property name, but use document, and have that property return a Document 
object. Therefore:

• Always start a class name with a uppercase letter

Class names, like String or Boolean, should always start with an uppercase letter so you can 
distinguish class names from property or method names. Analog to class names, there are 
special constructor functions in the global namespace that carry the same name as the class 
name, like String() for the String class etc.

• Do not pollute the global namespace

Define as few global functions and properties as possible, since users will be happy to add 
their own stuff. This reduces confusion and possible name collisions. Use objects to group 
names instead. Do not, for example, create global functions or properties that deal with the 
application. Create an Application object and create a global property app instead, containing 
an Application object with all of your application-specific properties.

• Make sure to use undefined for missing arguments

Unfortunately, JavaScript does not support missing arguments in the form

myDoc.addLayer ("My Layer",,"Initial text");
Do Not Use null or "" (an empty string) to indicate missing arguments!

JavaScript defines missing arguments as being undefined. The value null indicates "no object", 
and the empty string is clearly a string. The variable undefined is available for these purposes:

myDoc.addLayer ("My Layer",null,"Initial text"); // WRONG!
myDoc.addLayer ("My Layer","","Initial text");   // WRONG!
// THIS IS CORRECT!
myDoc.addLayer ("My Layer",undefined,"Initial text");

Remember that undefined refers to the contents of a global variable named "undefined". Its 
value is a special value that JavaScript considers to be an undefined value.



Symbols
~ character as home reference, 5

A
Action Manager, 82
Action manager, 82
ActionDescriptor, 88
ActionList, 90
ActionReference, 92
Actions, 81
Actions, palette, 81
Active document, 2
Alerts, 23
Application, 94
Application object, 1
ArtLayer, 100
ArtLayers, 113
Assignment operators, 228

B
Binary operators, 226
BitmapConversionOptions, 114
BMPSaveOptions, 115
Bounds object, 34
Breakpoints, 72, 78

C
Channel, 116
Channel class, 2
Channels, 117
CMYKColor, 123
Color classes, 4
Command line entry, 72

Conditionals, 236
Controls, user interface, 20
Creating a window, 10

D
Data types, 222
DCS1_SaveOptions, 124
DCS2_SaveOptions, 125
Debugger object, 77
Debugger window, 70
Debugging, 69
Document, 126
DocumentInfo, 134
DocumentInfo class, 3
Documents, 138

E
Elements, user interface, 16
Encodings, 65
EPSOpenOptions, 139
EPSSaveOptions, 140
Error messages, 64
Event callbacks, user interface, 20
Event handlers, user interface, 35
Exceptions, 242
ExportOptionsIllustrator, 141

F
File and Folder objects, 5
File and folder objects, 43
File object, 57
Folder object, 55
Functions, 232

Index



 JavaScript Reference Guide246

G
GalleryBannerOptions, 142
GalleryCustomColorOptions, 143
GalleryImagesOptions, 144
GalleryOptions, 145
GallerySecurityOptions, 146
GalleryThumbnailOptions, 147
GIFSaveOptions, 148
GrayColor, 149

H
History class, 3
HistoryState, 150
HistoryStates, 151
Home directory, 5, 45
HSBColor, 152

I
IndexedConversionOptions, 153
Interface, 87

J
JavaScript syntax, 219
JPEGSaveOptions, 154

L
LabColor, 155
Layer class, 3
LayerComp, 156
LayerComps, 157
Layers, 158
LayerSet, 159
LayerSets, 162
Loops, 236

M
Modal dialogs, 22

O
Object properties, user interface, 31
Operators, 225

P
Panel element, 14
Path names, 44
PathItem, 164

PathItems, 177
PathPoint, 178
PathPointInfo, 179
PathPoints, 180
PDFOpenOptions, 181
PDFSaveOptions, 182
PhotoCDOpenOptions, 183
Photoshop actions, 81
PhotoshopSaveOptions, 184
PICTFileSaveOptions, 185
PICTResourceSaveOptions, 186
PixarSaveOptions, 187
Platform interface, 5, 43
PNGSaveOptions, 188
Portability, issues, 49
Predefined core objects, 235
Predefined functions, 234
Predefined variables, 234
Preferences, 189
Preprocessing statements, 5
PresentationOptions, 193
Prompt, script, 74
Prompts and alerts, 23

R
RawFormatOpenOptions, 194
RawSaveOptions, 195
Regular expressions, 231
Resource specification, 18
RGBColor, 196

S
Script prompt, 74
Selection, 197
Selection class, 2
SGIRGBSaveOptions, 205
Solid color classes, 4
SolidColor, 206
Static text element, 14
SubPathInfo, 207
SubPathItem, 208
SubPathItems, 209
Syntax, JavaScript, 219

T
TargaSaveOptions, 210



JavaScript Reference Guide 247

Ternary operators, 228
TextFont, 211
TextFonts, 212
TextItem, 213
TiffSaveOptions, 217

U
UI objects, 10
Unary operators, 226
Unicode I/O, 49
User Interface, 5

User interface, 9
Utilities, 81

W
Window object, 30
Window resource specification, 19
Window, constructor, 10
Window, debugger, 70

X
xmpMetadata, 218



 JavaScript Reference Guide248


	Photoshop CS JavaScript Reference Guide
	Table of Contents
	Introduction
	JavaScript Sample Code
	Photoshop’s object model
	New in Photoshop CS

	Creating User Interface Elements
	Types of Interface Elements
	JavaScript UI Interface
	UI Objects
	Creating a window
	Container elements
	Element size and location
	Adding elements
	Types of UI Elements
	Creating a window using window resource specifications
	Interacting with controls: events and event callbacks
	Modal dialogs

	JavaScript UI Example
	createBuilderDialog
	Sample Code Summary

	JavaScript UI Reference
	Global elements of the Window object
	Common object properties
	Properties
	Objects used as property values
	Common Methods and Event Handlers
	UI Object descriptions


	Platform Interface
	File and Folder Objects
	Path names
	Absolute and relative path names
	Volume names
	The home directory
	Operating system specifics
	Portability issues
	Unicode I/O
	Error handling

	Scriptable properties and methods
	Common elements
	The Folder object
	The File object

	Error messages
	Supported encoding names
	Additional encodings


	JavaScript Debugging
	The Debugger Window
	Controlling Code Execution in the JavaScript Debugger Window
	Using the JavaScript Command Line Entry Field
	Setting Breakpoints
	JavaScript Breakpoints Window

	The Debugger Object ($)
	Properties
	Debug output
	Breakpoints
	Other methods


	Utilities
	Action Manager scripting
	Using the Action Manager from JavaScript
	Running JavaScript based Action Manager code from AppleScript
	Running JavaScript based Action Manager code from VBScript

	JavaScript Interface
	ActionDescriptor
	ActionList
	ActionReference
	Application
	ArtLayer
	ArtLayers
	BitmapConversionOptions
	BMPSaveOptions
	Channel
	Channels
	CMYKColor
	DCS1_SaveOptions
	DCS2_SaveOptions
	Document
	DocumentInfo
	Documents
	EPSOpenOptions
	EPSSaveOptions
	ExportOptionsIllustrator
	GalleryBannerOptions
	GalleryCustomColorOptions
	GalleryImagesOptions
	GalleryOptions
	GallerySecurityOptions
	GalleryThumbnailOptions
	GIFSaveOptions
	GrayColor
	HistoryState
	HistoryStates
	HSBColor
	IndexedConversionOptions
	JPEGSaveOptions
	LabColor
	LayerComp
	LayerComps
	Layers
	LayerSet
	LayerSets
	PathItem
	PathItems
	PathPoint
	PathPointInfo
	PathPoints
	PDFOpenOptions
	PDFSaveOptions
	PhotoCDOpenOptions
	PhotoshopSaveOptions
	PICTFileSaveOptions
	PICTResourceSaveOptions
	PixarSaveOptions
	PNGSaveOptions
	Preferences
	PresentationOptions
	RawFormatOpenOptions
	RawSaveOptions
	RGBColor
	Selection
	SGIRGBSaveOptions
	SolidColor
	SubPathInfo
	SubPathItem
	SubPathItems
	TargaSaveOptions
	TextFont
	TextFonts
	TextItem
	TiffSaveOptions
	xmpMetadata

	JavaScript Syntax
	Core JavaScript Language Features
	Data Types
	Primitive Data Types
	Composite data types
	Declaring and Accessing Variables
	Undefined Variables
	Operators
	Defining and Using Objects
	Declaring and Using Arrays
	Regular expressions

	Functions
	Predefined variables and functions
	Predefined Core Objects
	Conditionals and Loops
	The Conditional Statement
	Loops

	Making code readable: the with statement
	Dealing With Exceptions
	Coding conventions

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	W
	X


