
ActionScript Reference Guide



Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware, 
Authorware Star, Backstage, Bright Tiger, Clustercats, ColdFusion, Contribute, Design In Motion, Director, Dream Templates, 
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Fontographer, FreeHand, Generator, HomeSite, 
JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track, LikeMinds, Lingo, Live 
Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Flash, Macromedia M Logo and 
Design, Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel, Made with Macromedia, Made with 
Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic, Open Sesame!, Roundtrip, Roundtrip 
HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what the web can be, and Xtra are either 
registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions 
including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within this publication may 
be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in certain jurisdictions 
including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not 
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your 
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia 
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com). 

Sorenson™ Spark™ video compression and decompression technology licensed from 
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE 
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY 
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES. 
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC 
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO 
STATE.

Copyright © 2003 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, 
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of 
Macromedia, Inc. Part Number ZFL70M400

Acknowledgments

Director: Erick Vera

Project Management: Stephanie Gowin, Barbara Nelson 

Writing: Jody Bleyle, Mary Burger, Kim Diezel, Stephanie Gowin, Dan Harris, Barbara Herbert, Barbara Nelson, Shirley Ong, 
Tim Statler

Managing Editor: Rosana Francescato

Editing: Linda Adler, Mary Ferguson, Mary Kraemer, Noreen Maher, Antonio Padial, Lisa Stanziano, Anne Szabla

Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, Christopher Basmajian, Aaron Begley, John Francis, Jeff Harmon

First Edition: Septermber 2003

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103



CONTENTS
INTRODUCTION: Getting Started with ActionScript  . . . . . . . . . . . . . . . . . . . . . . . 9

Intended audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
System requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Using the documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Typographical conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Terms used in this document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Additional resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

PART I: Welcome to ActionScript

CHAPTER 1: What’s New in Flash MX 2004 ActionScript. . . . . . . . . . . . . . . . . . 13

New and changed language elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
New security model and legacy SWF files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Porting existing scripts to Flash Player 7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ActionScript editor changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Debugging changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
New object-oriented programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 2: ActionScript Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Differences between ActionScript and JavaScript  . . . . . . . . . . . . . . . . . . . . . . . . . 25
Unicode support for ActionScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
About data types   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Assigning data types to elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
About variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Using operators to manipulate values in expressions  . . . . . . . . . . . . . . . . . . . . . . . 45
Specifying an object’s path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Using built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Creating functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3



CHAPTER 3: Writing and Debugging Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Controlling when ActionScript runs   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Using the Actions panel and Script window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Using the ActionScript editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Debugging your scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Using the Output panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Updating Flash Player for testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

PART II: Handling Events and Creating Interaction

CHAPTER 4: Handling Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Using event handler methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Using event listeners  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Using button and movie clip event handlers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Creating movie clips with button states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Event handler scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Scope of the “this” keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

CHAPTER 5: Creating Interaction with ActionScript  . . . . . . . . . . . . . . . . . . . . . . 91

About events and interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Controlling SWF file playback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Creating interactivity and visual effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Deconstructing a sample script   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

PART III: Working with Objects and Classes

CHAPTER 6: Using the Built-In Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

About classes and instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Overview of built-in classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

CHAPTER 7: Working with Movie Clips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

About controlling movie clips with ActionScript . . . . . . . . . . . . . . . . . . . . . . . . . 121
Calling multiple methods on a single movie clip . . . . . . . . . . . . . . . . . . . . . . . . . 122
Loading and unloading additional SWF files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Specifying a root Timeline for loaded SWF files  . . . . . . . . . . . . . . . . . . . . . . . . . 123
Loading JPEG files into movie clips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Changing movie clip position and appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Dragging movie clips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Creating movie clips at runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Adding parameters to dynamically created movie clips  . . . . . . . . . . . . . . . . . . . . 128
Managing movie clip depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Drawing shapes with ActionScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Using movie clips as masks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4 Contents



Handling movie clip events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Assigning a class to a movie clip symbol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Initializing class properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

CHAPTER 8: Working with Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Using the TextField class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Creating text fields at runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Using the TextFormat class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Formatting text with Cascading Style Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Using HTML-formatted text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Creating scrolling text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

CHAPTER 9: Creating Classes with ActionScript 2.0  . . . . . . . . . . . . . . . . . . . . 155

Principles of object-oriented programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Using classes: a simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Creating and using classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Instance and class members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Creating and using interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Understanding the classpath  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Using packages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Importing classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Implicit get/set methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Creating dynamic classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
How classes are compiled and exported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

PART IV: Working with External Data and Media

CHAPTER 10: Working with External Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Sending and loading variables to and from a remote source . . . . . . . . . . . . . . . . . 177
Sending messages to and from Flash Player . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Flash Player security features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

CHAPTER 11: Working with External Media  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Overview of loading external media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Loading external SWF and JPEG files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Loading external MP3 files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Reading ID3 tags in MP3 files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Playing back external FLV files dynamically  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Preloading external media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Contents 5



PART V: Reference

CHAPTER 12: ActionScript Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Sample entry for most ActionScript elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Sample entry for classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Contents of the dictionary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Accessibility class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Arguments class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Array class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Boolean class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Button class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Camera class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Color class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
ContextMenu class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
ContextMenuItem class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
CustomActions class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Date class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Error class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Function class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Key class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
LoadVars class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
LocalConnection class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Math class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Microphone class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Mouse class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
MovieClip class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
MovieClipLoader class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
NetConnection class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
NetStream class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
Number class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
Object class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
PrintJob class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
Selection class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
SharedObject class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
Sound class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
Stage class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
String class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
System class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
System.capabilities object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666
System.security object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
TextField class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
TextField.StyleSheet class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
TextFormat class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
TextSnapshot object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
Video class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
XML class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
XMLNode class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
XMLSocket class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
6 Contents



APPENDIX A: Error Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

APPENDIX B: Operator Precedence and Associativity  . . . . . . . . . . . . . . . . . . . 787

APPENDIX C: Keyboard Keys and Key Code Values . . . . . . . . . . . . . . . . . . . . . 789

Letters A to Z and standard numbers 0 to 9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
Keys on the numeric keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790
Function keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Other keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792

APPENDIX D: Writing Scripts for Earlier Versions of Flash Player. . . . . . . . . . . 795

About targeting older versions of Flash Player . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Using Flash MX 2004 to create content for Flash Player 4. . . . . . . . . . . . . . . . . . 796

APPENDIX E: Object-Oriented Programming with ActionScript 1 . . . . . . . . . . . 799

About ActionScript 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799

INDEX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
Contents 7



8 Contents



INTRODUCTION
Getting Started with ActionScript
Macromedia Flash MX 2004 and Flash MX Professional 2004 are the professional standard 
authoring tools for producing high-impact web experiences. ActionScript is the language you use 
when you want to develop an application within Flash. You don’t have to use ActionScript to use 
Flash, but if you want to provide user interactivity, work with objects other than those built into 
Flash (such as buttons and movie clips), or otherwise turn a SWF file into a more robust user 
experience, you’ll probably want to use ActionScript.

Intended audience

This book assumes that you already have Flash MX 2004 or Flash MX Professional 2004 installed 
and know how to use it. You should know how to place objects on the Stage and manipulate them 
in the Flash authoring environment. If you have written programs before, ActionScript will feel 
familiar. But even if you haven’t, ActionScript isn’t hard to learn. It’s easy to start with very simple 
commands and build more complexity as you go along.

System requirements

ActionScript does not have any system requirements in addition to Flash MX 2004 or Flash MX 
Professional 2004. However, the documentation assumes that you are using the default 
publishing settings for your Flash files: Flash Player 7 and ActionScript 2.0. If you change 
either of these settings, explanations and code samples shown in the documentation may not 
work correctly.

Using the documentation

This document provides an overview of ActionScript syntax, information on how to use 
ActionScript when working with different types of objects, and details on the syntax and usage of 
every language element. Start by learning the terminology and basic concepts used in the rest of 
the document (see Chapter 2, “ActionScript Basics,” on page 25). Next, learn the mechanics of 
writing and debugging Flash scripts (see Chapter 3, “Writing and Debugging Scripts,” 
on page 55). 

Before writing your own scripts, you should complete the lessons “Write Scripts with 
ActionScript” and “Create a Form with Conditional Logic and Send Data,” which provide a 
hands-on introduction to working with ActionScript. To find these lessons, select Help > 
How Do I > Quick Tasks.
9



After you understand the basics, you are ready to use the information in the rest of this document 
as it applies to the specific effect you are trying to achieve. For example, if you want to learn how 
to write a script that performs a certain action when a user clicks the mouse, see Chapter 4, 
“Handling Events,” on page 83.

When you find information about a certain command you want to use, you can look up its entry 
in Chapter 12, “ActionScript Dictionary,” on page 205; every language element is listed there in 
alphabetical order.

Typographical conventions

The following typographical conventions are used in this book:

• Code font indicates ActionScript code.
• Code font italic indicates an element, such as an ActionScript parameter or object name, 

that you replace with your own text when writing a script.

Terms used in this document

The following terms are used in this book:

• You refers to the developer who is writing a script or application.
• The user refers to the person who will be running your scripts and applications.
• Compile time is the time at which you publish, export, test, or debug your document. 
• Runtime is the time at which your script is running in Flash Player. 

ActionScript terms such as method and object are defined in Chapter 2, “ActionScript Basics,” 
on page 25.

Additional resources 

Specific documentation about Flash and related products is available separately. 

• For information about working in the Flash authoring environment, see Using Flash Help. For 
information about working with components, see Using Components Help.

• For information about creating communication applications with Flash Communication 
Server, see Developing Communications Applications and Managing Flash Communication Server. 

• For information about accessing web services with Flash applications, see Using Flash Remoting.

The Macromedia DevNet website (www.macromedia.com/devnet) is updated regularly with the 
latest information on Flash, plus advice from expert users, advanced topics, examples, tips, and 
other updates. Check the website often for the latest news on Flash and how to get the most out 
of the program.

The Macromedia Flash Support Center (www.macromedia.com/support/flash) provides 
TechNotes, documentation updates, and links to additional resources in the Flash community.
10 Introduction:  Getting Started with ActionScript

http://www.macromedia.com/devnet
http://www.macromedia.com/support/flash


P
A

R
T

 I
PART I
Welcome to ActionScript
This part includes basic information on the ActionScript language. 

Chapter 1 includes information on what is new or changed in ActionScript and Flash Player 7. If 
you have used ActionScript before, be sure to review this information carefully.

If you are new to ActionScript, read Chapters 2 and 3 to get a good foundation for understanding 
ActionScript terminology and syntax and for learning how to write and debug your scripts.

Chapter 1: What’s New in Flash MX 2004 ActionScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2: ActionScript Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 3: Writing and Debugging Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55





CHAPTER 1
What’s New in Flash MX 2004 ActionScript
Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 provide several 
enhancements that make it easier for you to write more robust scripts using the ActionScript 
language. These new features, which are discussed in this chapter, include new language elements, 
improved editing and debugging tools (see “ActionScript editor changes” on page 21 and 
“Debugging changes” on page 22), and the introduction of a more object-oriented programming 
model (see “New object-oriented programming model” on page 22). 

This chapter also contains an extensive section that you should read carefully if you plan to 
publish any of your existing Flash MX or earlier files to Flash Player 7 (see “Porting existing 
scripts to Flash Player 7” on page 15).

New and changed language elements

This section describes the ActionScript language elements that are new or changed in Flash MX 
2004. To use any of these elements in your scripts, you must target Flash Player 7 (the default) 
when you publish your documents.

• The Array.sort() and Array.sortOn() methods let you add parameters to specify 
additional sorting options, such as ascending and descending sorting, whether to consider case 
sensitivity when sorting, and so on.

• The Button.menu, MovieClip.menu, and TextField.menu properties work with the new 
ContextMenu and ContextMenuItem classes to let you associate context menu items with 
Button, MovieClip, or TextField objects.

• The ContextMenu class and ContextMenuItem class let you customize the context menu that 
is displayed when a user right-clicks (Microsoft Windows) or Control-clicks (Macintosh) in 
Flash Player.

• The Error class and the throw and try..catch..finally commands let you implement 
more robust exception handling.  

• The LoadVars.addRequestHeader() and XML.addRequestHeader() methods add or change 
HTTP request headers (such as Content-Type or SOAPAction) sent with POST actions. 

• The MMExecute() function lets you issue Flash JavaScript API commands from ActionScript.
• (Windows only) The Mouse.onMouseWheel event listener is generated when the user scrolls 

using the mouse wheel. 
13



• The MovieClip.getNextHighestDepth() method lets you create MovieClip instances at 
runtime and be guaranteed that their objects render in front of the other objects in a parent 
movie clip’s z-order space. The MovieClip.getInstanceAtDepth() method lets you access 
dynamically created MovieClip instances using the depth as a search index.

• The MovieClip.getSWFVersion() method lets you determine which version of Flash Player 
is supported by a loaded SWF file.

• The MovieClip.getTextSnapshot() method and the TextSnapshot object let you work with 
text that is in static text fields in a movie clip.

• The MovieClip._lockroot property lets you specify that a movie clip will act as _root for 
any movie clips loaded into it, or that the meaning of _root in a movie clip won’t change if 
that movie clip is loaded into another movie clip. 

• The MovieClipLoader class lets you monitor the progress of files as they are being loaded into 
movie clips. 

• The NetConnection class and NetStream class let you stream local video files (FLV files). 
• The PrintJob class gives you (and the user) more control over printing from Flash Player.
• The Sound.onID3 event handler provides access to ID3 data associated with a Sound object 

that contains an MP3 file.
• The Sound.ID3 property provides access to the metadata that is part of an MP3 file.
• The System class has new objects and methods, and the System.capabilities object has several 

new properties. 
• The TextField.condenseWhite property lets you remove extra white space from HTML text 

fields that are rendered in a browser.
• The TextField.mouseWheelEnabled property lets you specify whether a text field’s contents 

should scroll when the mouse pointer is positioned over a text field and the user rolls the 
mouse wheel. 

• The TextField.StyleSheet class lets you create a style sheet object that contains text formatting 
rules such as font size, color, and other formatting styles. 

• The TextField.styleSheet property lets you attach a style sheet object to a text field. 
• The TextFormat.getTextExtent() method accepts a new parameter, and the object it 

returns contains a new member. 
• The XML.addRequestHeader() method lets you add or change HTTP request headers (such 

as Content-Type or SOAPAction) sent with POST actions. 

New security model and legacy SWF files

Rules for how Flash Player determines whether two domains are the same have changed in Flash 
Player 7. In addition, rules that determine whether and how a SWF file served from an HTTP 
domain can access a SWF file or load data from an HTTPS domain have changed. In most cases, 
these changes won’t affect you unless you are porting your existing SWF files to Flash Player 7. 

However, if you have SWF files published for Flash Player 6 or earlier that load data from a file 
stored on a server, and the calling SWF is playing in Flash Player 7, the user might see a dialog 
box that didn’t appear before, asking whether to allow access. You can prevent this dialog box 
from appearing by implementing a policy file on the site where the data is stored. For more 
information on this dialog box, see “About compatibility with previous Flash Player security 
models” on page 191. 
14 Chapter 1:  What’s New in Flash MX 2004 ActionScript



You might also need to implement a policy file if you are using runtime shared libraries. If either 
the loading or loaded SWF file is published for Flash Player 7 and the loading and loaded files 
aren’t served from the exact same domain, use a policy file to permit access. For more information 
on policy files, see “About allowing cross-domain data loading” on page 190.  

Porting existing scripts to Flash Player 7

As with any new release, Flash Player 7 supports more ActionScript commands than previous 
versions of the player; you can use these commands to implement more robust scripts. (See “New 
and changed language elements” on page 13.)However, if you used any of these commands in 
your existing scripts, the script might not work correctly if you publish it for Flash Player 7.  

For example, if you have a script with a function named Error, the script might appear to compile 
correctly but might not run as expected in Flash Player 7, because Error is now a built-in class 
(and thus a reserved word) in ActionScript. You can fix your script by renaming the Error 
function to something else, such as ErrorCondition.

Also, Flash Player 7 implements a number of changes that affect how one SWF file can access 
another SWF file, how external data can be loaded, and how local settings and data (such as 
privacy settings and locally persistent shared objects) can be accessed. Finally, the behavior of 
some existing features has changed. 

If you have existing scripts written for Flash Player 6 or earlier that you want to publish for Flash 
Player 7, you might need to modify the scripts so they conform with the implementation of Flash 
Player 7 and work as designed. These modifications are discussed in this section. 

ECMA-262 Edition 4 compliance

Several changes have been implemented in Flash Player 7 to conform more closely to the 
ECMA-262 Edition 4 proposal (see www.mozilla.org/js/language/es4/index.html). In addition to 
the class-based programming techniques available in ActionScript 2.0 (see “New object-oriented 
programming model” on page 22), other features have been added and certain behaviors have 
changed. Also, when publishing for Flash Player 7 and using ActionScript 2.0, you can cast one 
object type to another. For more information, see “Casting objects” on page 39. These capabilities 
don’t require you to update existing scripts; however, you may want to use them if you publish 
your scripts to Flash Player 7 and then continue to revise and enhance them. 
Porting existing scripts to Flash Player 7 15

http://www.mozilla.org/js/language/es4/index.html


Unlike the changes mentioned above, the changes listed in the following table (some of which 
also improve ECMA compliance) may cause existing scripts to work differently than they did 
previously. If you used these features in existing scripts that you want to publish to Flash Player 7, 
review the changes to make sure your code still works as intended or to determine whether you 
need to rewrite your code. In particular, because undefined is evaluated differently in certain 
cases, you should initialize all variables in scripts that you port to Flash Player 7.

SWF file published for Flash Player 7 SWF file published for earlier versions of 
Flash Player

Case sensitivity is supported (variable names that 
differ only in capitalization are interpreted as being 
different variables). This change also affects files 
loaded with #include and external variables loaded 
with LoadVars.load(). For more information, see 
“Case sensitivity” on page 29.

Case sensitivity is not supported (variable 
names that differ only in capitalization are 
interpreted as being the same variable).

Evaluating undefined in a numeric context returns 
NaN. 
myCount +=1;
trace(myCount); // NaN

Evaluating undefined in a numeric context 
returns 0.
myCount +=1;
trace(myCount); // 1

When undefined is converted to a string, the result is 
undefined. 
firstname = "Joan ";
lastname = "Flender";
trace(firstname + middlename + lastname);
// Joan undefinedFlender

When undefined is converted to a string, the 
result is "" (an empty string).
firstname = "Joan ";
lastname = "Flender";
trace(firstname + middlename + lastname);
// Joan Flender

When you convert a string to a Boolean value, the 
result is true if the string has a length greater than 
zero; the result is false for an empty string. 

When you convert a string to a Boolean value, 
the string is first converted to a number; the 
result is true if the number is nonzero, false 
otherwise.

When setting the length of an array, only a valid 
number string sets the length. For example, "6" 
works but " 6" or "6xyz" does not. 
my_array=new Array();
my_array[" 6"] ="x";
trace(my_array.length); // 0
my_array["6xyz"] ="x";
trace(my_array.length); // 0
my_array["6"] ="x";
trace(my_array.length); // 7

When setting the length of an array, even a 
malformed number string sets the length: 
my_array=new Array();
my_array[" 6"] ="x";
trace(my_array.length); // 7
my_array["6xyz"] ="x";
trace(my_array.length); // 7
my_array["6"] ="x";
trace(my_array.length); // 7
16 Chapter 1:  What’s New in Flash MX 2004 ActionScript



Domain-name rules for settings and local data

In Flash Player 6, superdomain matching rules are used by default when accessing local settings 
(such as camera or microphone access permissions) or locally persistent data (shared objects). 
That is, the settings and data for SWF files hosted at here.xyz.com, there.xyz.com, and xyz.com 
are shared, and are all stored at xyz.com. 

In Flash Player 7, exact-domain matching rules are used by default. That is, the settings and data 
for a file hosted at here.xyz.com are stored at here.xyz.com, the settings and data for a file hosted 
at there.xyz.com are stored at there.xyz.com, and so on. 

A new property, System.exactSettings, lets you specify which rules to use. This property is 
supported for files published for Flash Player 6 or later. For files published for Flash Player 6, the 
default value is false, which means superdomain matching rules are used. For files published for 
Flash Player 7, the default value is true, which means exact-domain matching rules are used.

If you use settings or persistent local data and want to publish a Flash Player 6 SWF file for Flash 
Player 7, you might need to set this value to false in the ported file. 

For more information, see System.exactSettings on page 662.

Cross-domain and subdomain access between SWF files

When you develop a series of SWF files that communicate with each other—for example, when 
using loadMovie(), MovieClip.loadMovie(), MovieClipLoader.LoadClip(), or Local 
Connection objects—you might host the movies in different domains, or in different subdomains 
of a single superdomain.     

In files published for Flash Player 5 or earlier, there were no restrictions on cross-domain or 
subdomain access. 

In files published for Flash Player 6, you could use the LocalConnection.allowDomain handler 
or System.security.allowDomain() method to specify permitted cross-domain access (for 
example, to let a file at someSite.com be accessed by a file at someOtherSite.com), and no 
command was needed to permit subdomain access (for example, a file at www.someSite.com 
could be accessed by a file at store.someSite.com). 

Files published for Flash Player 7 implement access between SWF files differently from earlier 
versions in two ways. First, Flash Player 7 implements exact-domain matching rules instead of 
superdomain matching rules. Therefore, the file being accessed (even if it is published for a Player 
version earlier than Flash Player 7) must explicitly permit cross-domain or subdomain access; this 
topic is discussed below. Second, a file hosted at a site using a secure protocol (HTTPS) must 
explicitly permit access from a file hosted at a site using an insecure protocol (HTTP or FTP); 
this topic is discussed in the next section (see “HTTP to HTTPS protocol access between SWF 
files” on page 19).
Porting existing scripts to Flash Player 7 17



Because Flash Player 7 implements exact-domain matching rules instead of superdomain 
matching rules, you might have to modify existing scripts if you want to access them from files 
that are published for Flash Player 7. (You can still publish the modified files for Flash Player 6.) 
If you used any LocalConnection.allowDomain() or System.security.allowDomain() 
statements in your files and specified superdomain sites to permit, you must change your 
parameters to specify exact domains instead. The following code shows an example of the kinds of 
changes you might have to make:
// Flash Player 6 commands in a SWF file at www.anyOldSite.com 
// to allow access by SWF files that are hosted at www.someSite.com
// or at store.someSite.com
System.security.allowDomain("someSite.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="someSite.com");
}
// Corresponding commands to allow access by SWF files
// that are published for Flash Player 7
System.security.allowDomain("www.someSite.com", "store.someSite.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="www.someSite.com" ||
sendingDomain=="store.someSite.com");

}

You might also have to add statements like these to your files if you aren’t currently using them. 
For example, if your SWF file is hosted at www.someSite.com and you want to allow access by a 
SWF file published for Flash Player 7 at store.someSite.com, you must add statements like the 
following to the file at www.someSite.com (you can still publish the file at www.someSite.com for 
Flash Player 6):
System.security.allowDomain("store.someSite.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="store.someSite.com");
}

To summarize, you might have to modify your files to add or change allowDomain statements if 
you publish files for Flash Player 7 that meet the following conditions:

• You implemented cross-SWF scripting (using loadMovie(), MovieClip.loadMovie(), 
MovieClipLoader.LoadClip(), or Local Connection objects).

• The called SWF file (of any version) is not hosted at a site using a secure protocol (HTTPS), or 
the calling and called SWF files are both hosted at HTTPS sites. (If only the called SWF file is 
HTTPS, see “HTTP to HTTPS protocol access between SWF files” on page 19.)

• The SWF files are not in same domain (for example, one file is at www.domain.com and one is 
at store.domain.com).
18 Chapter 1:  What’s New in Flash MX 2004 ActionScript



You have to make the following changes:

• If the called SWF file is published for Flash Player 7, include System.security.allowDomain 
or LocalConnection.allowDomain in the called SWF file, using exact domain-
name matching.

• If the called SWF file is published for Flash Player 6, modify the called file to add or change a 
System.security.allowDomain or LocalConnection.allowDomain statement, using exact 
domain-name matching, as shown in the code examples earlier in this section. You can publish 
the modified file for either Flash Player 6 or 7.

• If the called SWF file is published for Flash Player 5 or earlier, port the called file to 
Flash Player 6 or 7 and add a System.security.allowDomain statement, using exact 
domain-name matching, as shown in the code examples earlier in this section. 
(LocalConnection objects aren’t supported in Flash Player 5 or earlier.)

HTTP to HTTPS protocol access between SWF files

As discussed in the previous section, rules for cross-domain and subdomain access have changed 
in Flash Player 7. In addition to the exact-domain matching rules now being implemented, you 
must explicitly permit files hosted at sites using a secure protocol (HTTPS) to be accessed by files 
hosted at sites using an insecure protocol. Depending on whether the called file is published for 
Flash Player 7 or Flash Player 6, you must implement either one of the allowDomain statements 
(see “Cross-domain and subdomain access between SWF files” on page 17), or use the new 
LocalConnection.allowInsecure Domain or System.security.allowInsecureDomain() 
statements.    
Warning: Implementing an allowInsecureDomain() statement compromises the security offered 
by the HTTPS protocol. You should make these changes only if you can’t reorganize your site so that 
all SWF files are served from the HTTPS protocol.

The following code shows an example of the kinds of changes you might have to make:
// Commands in a Flash Player 6 SWF file at https://www.someSite.com 
// to allow access by Flash Player 7 SWF files that are hosted 
// at http://www.someSite.com or at http://www.someOtherSite.com
System.security.allowDomain("someOtherSite.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="someOtherSite.com");
}
// Corresponding commands in a Flash Player 7 SWF file
// to allow access by Flash Player 7 SWF files that are hosted 
// at http://www.someSite.com or at http://www.someOtherSite.com
System.security.allowInsecureDomain("www.someSite.com", 

"www.someOtherSite.com");
my_lc.allowInsecureDomain = function(sendingDomain) {

return(sendingDomain=="www.someSite.com" ||
sendingDomain=="www.someOtherSite.com");

}

You might also have to add statements like these to your files if you aren’t currently using them. 
A modification might be necessary even if both files are in same domain (for example, a file in 
http://www.domain.com is calling a file in https://www.domain.com). 
Porting existing scripts to Flash Player 7 19



To summarize, you might have to modify your files to add or change statements if you publish 
files for Flash Player 7 that meet the following conditions:

• You implemented cross-SWF scripting (using loadMovie(), MovieClip.loadMovie(), 
MovieClipLoader.LoadClip(), or Local Connection objects).

• The calling file is not hosted using an HTTPS protocol, and the called file is HTTPS.

You must make the following changes:

• If the called file is published for Flash Player 7, include 
System.security.allowInsecureDomain or LocalConnection.allowInsecureDomain in 
the called file, using exact domain-name matching, as shown in the code examples earlier in 
this section. This statement is required even if the calling and called SWF files are in 
same domain.

• If the called file is published for Flash Player 6 or earlier, and both the calling and called files 
are in same domain (for example, a file in http://www.domain.com is calling a file in https://
www.domain.com), no modification is needed.

• If the called file is published for Flash Player 6, the files are not in same domain, and you don’t 
want to port the called file to Flash Player 7, modify the called file to add or change a 
System.security.allowDomain or LocalConnection.allowDomain statement, using exact 
domain-name matching, as shown in the code examples earlier in this section. 

• If the called file is published for Flash Player 6 and you want to port the called file to Flash 
Player 7, include System.security.allowInsecureDomain or 
LocalConnection.allowInsecureDomain in the called file, using exact domain-name 
matching, as shown in the code examples earlier in this section. This statement is required even 
if both files are in same domain. 

• If the called file is published for Flash Player 5 or earlier, and both files are not in the same 
domain, you can do one of two things. You can either port the called file to Flash Player 6 and 
add or change a System.security.allowDomain statement, using exact domain-name 
matching, as shown in the code examples earlier in this section, or you can port the called file 
to Flash Player 7, and include a System.security.allowInsecureDomain statement in the 
called file, using exact domain-name matching, as shown in the code examples earlier in 
this section. 

Server-side policy files for permitting access to data

A Flash document can load data from an external source by using one of the following data 
loading calls: XML.load(), XML.sendAndLoad(), LoadVars.load(), 
LoadVars.sendAndLoad(), loadVariables(), loadVariablesNum(), 
MovieClip.loadVariables(), XMLSocket.connect(), and Macromedia Flash Remoting 
(NetServices.createGatewayConnection). Also, a SWF file can import runtime shared 
libraries (RSLs), or assets defined in another SWF file, at runtime. By default, the data or RSL 
must reside in the same domain as the SWF file that is loading that external data or media.    

To make data and assets in runtime shared libraries available to SWF files in different domains, 
you should use a cross-domain policy file. A cross-domain policy file is an XML file that provides a 
way for the server to indicate that its data and documents are available to SWF files served from 
certain domains, or from all domains. Any SWF file that is served from a domain specified by the 
server’s policy file is permitted to access data or RSLs from that server. 
20 Chapter 1:  What’s New in Flash MX 2004 ActionScript



If you are loading external data, you should create policy files even if you don’t plan to port any of 
your files to Flash Player 7. If you are using RSLs, you should create policy files if either the 
calling or called file is published for Flash Player 7. 

For more information, see “About allowing cross-domain data loading” on page 190.

ActionScript editor changes

The ActionScript editor has been updated in a number of ways to make it more robust and easier 
to use. These changes are summarized in this section.

Word wrapping You can now use the Options pop-up menu in the Script pane, Debugger 
panel, and Output panel to enable or disable word wrapping. You can also toggle word wrapping 
using the pop-up menu in the Actions panel. The keyboard shortcut is Control+Shift+W 
(Windows) or Command+Shift+W (Macintosh).

Viewing context-sensitive help When your pointer is positioned over an ActionScript 
language element in the Actions toolbox or in the Script pane, you can use the View Help item in 
the context menu to display a help page about that element.

Importing scripts When you select Import Script from the pop-up menu in the Actions panel, 
the imported script is copied into the script at the insertion point in your code file. In previous 
versions of Flash, importing a script overwrote the contents of the existing script.

Single-click breakpoints To add a debugging breakpoint before a line of code in the Debugger 
panel or the Script pane of the Actions panel, you can click in the left margin. In previous 
versions of Flash, clicking in the left margin selected a line of code. The new way to select a line of 
code is to Control-click (Windows) or Command-click (Macintosh).

Normal and expert modes no longer in Actions panel In previous versions of Flash, you could 
work in the Actions panel either in normal mode, in which you filled in options and parameters 
to create code, or in expert mode, in which you added commands directly into the Script pane. In 
Flash MX 2004 and Flash MX Professional 2004, you can work in the Actions panel only by 
adding commands directly to the Script pane. You can still drag commands from the Actions 
toolbox into the Script pane or use the Add (+) button above the Script pane to add commands to 
a script.

Pinning multiple scripts You can pin multiple scripts within a FLA file along the bottom of the 
Script pane in the Actions panel. In previous versions of Flash, you could pin only one script at 
a time.

Script navigator The left side of the Actions panel now contains two panes: the Actions toolbox 
and a new Script navigator. The Script navigator is a visual representation of the structure of your 
FLA file; you can navigate through your FLA file here to locate ActionScript code.

Integrated Script window for editing external files (Flash Professional only) You can use the 
ActionScript editor in a Script window (separate from the Actions panel) to write and edit 
external script files. Syntax coloring, code hinting, and other preferences are supported in the 
Script window, and the Actions toolbox is also available. To display the Script window, use 
File > New and then select the type of external file you want to edit. You can have multiple 
external files open at the same time; filenames are displayed on tabs across the top of the Script 
window. (The tabs appear only in Windows.)
ActionScript editor changes 21



Debugging changes

This section describes changes that improve your ability to debug your scripts.

Output window changed to Output panel You can now move and dock the Output panel in 
the same way as any other panel in Flash.

Improved error reporting at compile time In addition to providing more robust exception 
handling, ActionScript 2.0 provides a number of new compile-time errors. For more information, 
see Appendix A, “Error Messages,” on page 783.

Improved exception handling The Error class and the throw and try..catch..finally 
commands let you implement more robust exception handling.

New object-oriented programming model

The ActionScript language has grown and developed since its introduction several years ago. With 
each new release of Flash, additional keywords, objects, methods, and other language elements 
have been added to the language. However, unlike earlier releases of Flash, Flash MX 2004 and 
Flash MX Professional 2004 introduce several new language elements that implement object-
oriented programming in a more standard way than before. Because these language elements 
represent a significant enhancement to the core ActionScript language, they represent a new 
version of ActionScript itself: ActionScript 2.0. 

ActionScript 2.0 is not a new language. Rather, it comprises a core set of language elements that 
make it easier to develop object-oriented programs. With the introduction of keywords such as 
class, interface, extends, and implements, ActionScript syntax is now easier to learn for 
programmers familiar with other languages. New programmers can learn more standard 
terminology that they can apply to other object-oriented languages they may study in the future. 

ActionScript 2.0 supports all the standard elements of the ActionScript language; it simply 
enables you to write scripts that more closely adhere to standards used in other object-oriented 
languages, such as Java. ActionScript 2.0 should be of interest primarily to intermediate or 
advanced Flash developers who are building applications that require the implementation of 
classes and subclasses. ActionScript 2.0 also lets you declare the object type of a variable when you 
create it (see “Strict data typing” on page 38) and provides significantly improved compiler errors 
(see Appendix A, “Error Messages,” on page 783).

The language elements that are new in ActionScript 2.0 are listed below.

• class

• extends

• implements

• interface

• dynamic

• static

• public

• private

• get

• set

• import
22 Chapter 1:  What’s New in Flash MX 2004 ActionScript



Key facts about ActionScript 2.0 include the following points:

• Scripts that use ActionScript 2.0 to define classes or interfaces must be stored as external script 
files, with a single class defined in each script; that is, classes and interfaces cannot be defined 
in the Actions panel.

• You can import individual class files implicitly (by storing them in a location specified by 
global or document-specific search paths and then using them in a script) or explicitly (by 
using the import command); you can import packages (collections of class files in a directory) 
by using wildcards.

• Applications developed with ActionScript 2.0 are supported by Flash Player 6 and later. 
Caution: The default publish setting for new files created in Flash MX 2004 is ActionScript 2.0. If 
you plan to modify an existing FLA file to use ActionScript 2.0 syntax, ensure that the FLA file 
specifies ActionScript 2.0 in its publish settings. If it does not, your file will compile incorrectly, 
although Flash will not generate compiler errors. 

For more information on using ActionScript 2.0 to write object-oriented programs in Flash, see 
Chapter 9, “Creating Classes with ActionScript 2.0,” on page 155. 
New object-oriented programming model 23



24 Chapter 1:  What’s New in Flash MX 2004 ActionScript



CHAPTER 2
ActionScript Basics
ActionScript has rules of grammar and punctuation that determine which characters and words 
are used to create meaning and in which order they can be written. For example, in English, a 
period ends a sentence. In ActionScript, a semicolon ends a statement.

The following general rules apply to all ActionScript. Most ActionScript terms also have 
individual requirements; for the rules for a specific term, see its entry in Chapter 12, 
“ActionScript Dictionary,” on page 205.

Differences between ActionScript and JavaScript 

ActionScript is similar to the core JavaScript programming language. You don’t need to know 
JavaScript to use and learn ActionScript; however, if you know JavaScript, ActionScript will 
appear familiar. 

This manual does not attempt to teach general programming. There are many resources that 
provide more information about general programming concepts and the JavaScript language. 

• The European Computers Manufacturers Association (ECMA) document ECMA-262 is 
derived from JavaScript and serves as the international standard for the JavaScript language. 
ActionScript is based on the ECMA-262 specification. 

• Netscape DevEdge Online has a JavaScript Developer Central site (http://
developer.netscape.com/tech/javascript/index.html) that contains documentation and articles 
useful for understanding ActionScript. The most valuable resource is the Core JavaScript Guide. 

Some of the differences between ActionScript and JavaScript are as follows:.

• ActionScript does not support browser-specific objects such as Document, Window, 
and Anchor.

• ActionScript does not completely support all the JavaScript built-in objects.
• ActionScript does not support some JavaScript syntax constructs, such as statement labels.
• In ActionScript, the eval() action can perform only variable references.
25

http://developer.netscape.com/tech/javascript/index.html
http://developer.netscape.com/tech/javascript/index.html


Unicode support for ActionScript

Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 support Unicode text 
encoding for ActionScript. This means that you can include text in different languages in an 
ActionScript file. For example, you could include text in English, Japanese, and French in the 
same file.   

You can set ActionScript preferences to specify the type of encoding to use when importing or 
exporting ActionScript files. You can select either UTF-8 encoding or Default Encoding. UTF-8 
is 8-bit Unicode format; Default Encoding is the encoding form supported by the language your 
system is currently using, also called the traditional code page.  

In general, if you are importing or exporting ActionScript files in UTF-8 format, use the UTF-8 
preference. If you are importing or exporting files in the traditional code page in use on your 
system, use the Default Encoding preference.   

If text in your scripts doesn’t look as expected when you open or import a file, change the import 
encoding preference. If you receive a warning message when exporting ActionScript files, you can 
change the export encoding preference or turn this warning off in ActionScript preferences. 

To select text encoding options for importing or exporting ActionScript files: 

1 In the Preferences dialog box (Edit > Preferences), click the ActionScript tab.
2 Under Editing Options, do one or both of the following:

■ For Open/Import, select UTF-8 to open or import using Unicode encoding, or select 
Default Encoding to open or import using the encoding form of the language currently 
used by your system.

■ For Save/Export, select UTF-8 to save or export using Unicode encoding, or select Default 
Encoding to save or export using the encoding form of the language currently used by your 
system.

To turn the export encoding warning off or on:

1 In the Preferences dialog box (Edit > Preferences), click the Warnings tab.
2 Select or deselect Warn on Encoding Conflicts When Exporting .as Files.
Caution: The Test Movie command (see “Debugging your scripts” on page 68) will fail if any part of 
the SWF file path has characters that cannot be represented using the MBCS encoding scheme. For 
example, Japanese paths on an English system will not work. All areas of the application that use the 
external player are subject to this limitation. 

Terminology

As with any scripting language, ActionScript uses its own terminology. The following list provides 
an introduction to important ActionScript terms. 

Actions are statements that instruct a SWF file to do something while it is playing. For example, 
gotoAndStop() sends the playhead to a specific frame or label. In this manual, the terms action 
and statement are interchangeable.

Boolean is a true or false value.

Classes are data types that you can create to define a new type of object. To define a class, 
you use the class keyword in an external script file (not in a script you are writing in the 
Actions panel). 
26 Chapter 2:  ActionScript Basics



Constants are elements that don’t change. For example, the constant Key.TAB always has the 
same meaning: it indicates the Tab key on a keyboard. Constants are useful for comparing values. 

Constructors are functions that you use to define the properties and methods of a class. 
By definition, constructors are functions within a class definition that have the same name 
as the class. For example, the following code defines a Circle class and implements a 
constructor function: 
// file Circle.as
class Circle {

private var radius:Number
private var circumference:Number

// constructor
function Circle(radius:Number) {

circumference = 2 * Math.PI * radius;
}

}

The term constructor is also used when you create (instantiate) an object based on a particular 
class. The following statements are constructors for the built-in Array class and the custom 
Circle class:
my_array:Array = new Array();
my_circle:Circle = new Circle();

Data types describe the kind of information a variable or ActionScript element can hold. The 
ActionScript data types are String, Number, Boolean, Object, MovieClip, Function, null, and 
undefined. For more information, see “About data types” on page 34.

Events are actions that occur while a SWF file is playing. For example, different events are 
generated when a movie clip loads, the playhead enters a frame, the user clicks a button or movie 
clip, or the user types on the keyboard.

Event handlers are special actions that manage events such as mouseDown or load. There are two 
kinds of ActionScript event handlers: event handler methods and event listeners. (There are also 
two event handlers, on() and onClipEvent(), that you can assign directly to buttons and movie 
clips.) In the Actions toolbox, each ActionScript object that has event handler methods or event 
listeners has a subcategory called Events or Listeners. Some commands can be used both as event 
handlers and as event listeners and are included in both subcategories. 

Expressions are any legal combination of ActionScript symbols that represent a value. An 
expression consists of operators and operands. For example, in the expression x + 2, x and 2 are 
operands and + is an operator.

Functions are blocks of reusable code that can be passed parameters and can return a value. For 
more information, see “Creating functions” on page 51.

Identifiers are names used to indicate a variable, property, object, function, or method. The first 
character must be a letter, underscore (_), or dollar sign ($). Each subsequent character must be a 
letter, number, underscore, or dollar sign. For example, firstName is the name of a variable.

Instances are objects that belong to a certain class. Each instance of a class contains all the 
properties and methods of that class. For example, all movie clips are instances of the MovieClip 
class, so you can use any of the methods or properties of the MovieClip class with any movie 
clip instance.
Terminology 27



Instance names are unique names that let you target movie clip and button instances in scripts. 
You use the Property inspector to assign instance names to instances on the Stage. For example, a 
master symbol in the library could be called counter and the two instances of that symbol in 
the SWF file could have the instance names scorePlayer1_mc and scorePlayer2_mc. The 
following code sets a variable called score inside each movie clip instance by using 
instance names:
_root.scorePlayer1_mc.score += 1;
_root.scorePlayer2_mc.score -= 1;

You can use special suffixes when naming instances so that code hints (see “Using code hints” 
on page 63) appear as you type your code. For more information, see “Using suffixes to trigger 
code hints” on page 62.

Keywords are reserved words that have special meaning. For example, var is a keyword used to 
declare local variables. You cannot use a keyword as an identifier. For example, var is not a legal 
variable name. For a list of keywords, see “Keywords” on page 33. 

Methods are functions associated with a class. For example, getBytesLoaded() is a built-in 
method associated with the MovieClip class. You can also create functions that act as methods, 
either for objects based on built-in classes or for objects based on classes that you create. For 
example, in the following code, clear() becomes a method of a controller object that you 
have previously defined:  
function reset(){

this.x_pos = 0;
this.x_pos = 0;

}
controller.clear = reset;
controller.clear();

Objects are collections of properties and methods; each object has its own name and is an 
instance of a particular class. Built-in objects are predefined in the ActionScript language. For 
example, the built-in Date object provides information from the system clock. 

Operators are terms that calculate a new value from one or more values. For example, the 
addition (+) operator adds two or more values together to produce a new value. The values that 
operators manipulate are called operands.

Parameters (also called arguments) are placeholders that let you pass values to functions. 
For example, the following welcome() function uses two values it receives in the parameters 
firstName and hobby:  
function welcome(firstName, hobby) {

welcomeText = "Hello, " + firstName + "I see you enjoy " + hobby;
}

Packages are directories that contain one or more class files, and reside in a designated classpath 
directory (see “Understanding the classpath” on page 169).

Properties are attributes that define an object. For example, _visible is a property of all movie 
clips that defines whether a movie clip is visible or hidden.
28 Chapter 2:  ActionScript Basics



Target paths are hierarchical addresses of movie clip instance names, variables, and objects in a 
SWF file. You name a movie clip instance in the movie clip Property inspector. (The main 
Timeline always has the name _root.) You can use a target path to direct an action at a movie clip 
or to get or set the value of a variable. For example, the following statement is the target path to 
the variable volume inside the movie clip stereoControl:
_root.stereoControl.volume

For more information on target paths, see “Absolute and relative target paths” in Using Flash 
Help.

Variables are identifiers that hold values of any data type. Variables can be created, changed, and 
updated. The values they store can be retrieved for use in scripts. In the following example, the 
identifiers on the left side of the equal signs are variables:
var x = 5;
var name = "Lolo";
var c_color = new Color(mcinstanceName);

For more information on variables, see “About variables” on page 40.

Syntax

As with any language, ActionScript has syntax rules that you must follow in order to create scripts 
that can compile and run correctly. This section describes the elements that comprise 
ActionScript syntax.

Case sensitivity

In a case-sensitive programming language, variable names that differ only in case (book and Book) 
are considered different from each other. Therefore, it’s good practice to follow consistent 
capitalization conventions, such as those used in this manual, to make it easy to identify names of 
functions and variables in ActionScript code.  

When you publish files for Flash Player 7 or later, Flash implements case sensitivity whether you 
are using ActionScript 1 or ActionScript 2.0. This means that keywords, class names, variables, 
method names, and so on are all case sensitive. For example:
// In file targeting Flash Player 7
// and either ActionScript 1 or ActionScript 2.0
//
// Sets properties of two different objects
cat.hilite = true;
CAT.hilite = true;

// Creates three different variables
var myVar=10;
var myvar=10;
var mYvAr=10;
// Does not generate an error
var array = new Array(); 
var date = new Date();

This change also affects external variables loaded with LoadVars.load(). 
Syntax 29



In addition, case sensitivity is implemented for external scripts, such as ActionScript 2.0 class files 
or scripts that you import using the #include command. If you are publishing files for Flash 
Player 7 and have previously created external files that you add to your scripts by using the 
#include statement, you should review each file and confirm that you used consistent 
capitalization throughout. One way to do this is to open the file in the Script window (Flash 
Professional only) or, in a new FLA file, set your publish settings to Flash Player 7 and copy the 
file’s contents into the Actions panel. Then use the Check Syntax button (see “Checking syntax 
and punctuation” on page 66) or publish your file; errors that are caused by naming conflicts 
appear in the Output panel.

When Syntax coloring is enabled, language elements written with correct capitalization are blue 
by default. For more information, see “Keywords” on page 33 and “Syntax highlighting” 
on page 61.

Dot syntax 

In ActionScript, a dot (.) is used to indicate the properties or methods related to an object or 
movie clip. It is also used to identify the target path to a movie clip, variable, function, or object. 
A dot syntax expression begins with the name of the object or movie clip followed by a dot, and 
ends with the element you want to specify.

For example, the _x movie clip property indicates a movie clip’s x axis position on the Stage. The 
expression ballMC._x refers to the _x property of the movie clip instance ballMC.

As another example, submit is a variable set in the form movie clip, which is nested inside the 
movie clip shoppingCart. The expression shoppingCart.form.submit = true sets the submit 
variable of the instance form to true.

Expressing a method of an object or movie clip follows the same pattern. For example, the 
play() method of the ball_mc movie clip instance moves the playhead in the Timeline of 
ball_mc, as shown in the following statement:
ball_mc.play();

Dot syntax also uses two special aliases, _root and _parent. The alias _root refers to the main 
Timeline. You can use the _root alias to create an absolute target path. For example, the 
following statement calls the function buildGameBoard() in the movie clip functions on the 
main Timeline:
_root.functions.buildGameBoard();

You can use the alias _parent to refer to a movie clip in which the current object is nested. You 
can also use _parent to create a relative target path. For example, if the movie clip dog_mc is 
nested inside the movie clip animal_mc, the following statement on the instance dog_mc tells 
animal_mc to stop:
_parent.stop();

Slash syntax  

Slash syntax was used in Flash 3 and 4 to indicate the target path of a movie clip or variable. This 
syntax is still supported by Flash Player 7, but its use is not recommended, and slash syntax is not 
supported in ActionScript 2.0. However, if you are creating content intended specifically for 
Flash Player 4, you must use slash syntax. For more information, see “Using slash syntax” 
on page 797. 
30 Chapter 2:  ActionScript Basics



Curly braces    

ActionScript event handlers, class definitions, and functions are grouped together into blocks 
with curly braces ({}). You can put the opening brace on the same line as your declaration or on 
the next line, as shown in the following examples. To make your code easier to read, it’s a good 
idea to choose one format and use it consistently.
// Event handler
on(release) {

myDate = new Date();
currentMonth = myDate.getMonth();

}

on(release) 
{

myDate = new Date();
currentMonth = myDate.getMonth();

}

// Class
class Circle(radius) {
}

class Square(side)
{
}

// Function 
circleArea = function(radius) {

return radius * radius * MATH.PI;
}
squareArea = function(side) 
{

return side * side;
}

You can check for matching curly braces in your scripts; see “Checking syntax and punctuation” 
on page 66.

Semicolons   

An ActionScript statement is terminated with a semicolon (;), as shown in these examples:
var column = passedDate.getDay();
var row    = 0;

If you omit the terminating semicolon, Flash still compiles your script successfully. However, 
using semicolons is good scripting practice.
Syntax 31



Parentheses  

When you define a function, place any parameters inside parentheses:
function myFunction (name, age, reader){

// your code here
}

When you call a function, include any parameters passed to the function in parentheses, as 
shown here:
myFunction ("Steve", 10, true);

You can also use parentheses to override the ActionScript order of precedence or to make your 
ActionScript statements easier to read. (See “Operator precedence and associativity” on page 45.) 

You also use parentheses to evaluate an expression on the left side of a dot in dot syntax. For 
example, in the following statement, the parentheses cause new Color(this) to evaluate and 
create a Color object:
onClipEvent(enterFrame) {

(new Color(this)).setRGB(0xffffff);
}

If you don’t use parentheses, you must add a statement to evaluate the expression:
onClipEvent(enterFrame) {

myColor = new Color(this);
myColor.setRGB(0xffffff);

}

You can check for matching parentheses in your scripts; see “Checking syntax and punctuation” 
on page 66.

Comments

Using comments to add notes to scripts is highly recommended. Comments are useful for 
keeping track of what you intended and for passing information to other developers if you work 
in a collaborative environment or are providing samples. Even a simple script is easier to 
understand if you make notes as you create it. 

To indicate that a line or portion of a line is a comment, precede the comment with two forward 
slashes (//):
on(release) {

// create new Date object
myDate = new Date();
currentMonth = myDate.getMonth();
// convert month number to month name
monthName = calcMonth(currentMonth);
year = myDate.getFullYear();
currentDate = myDate.getDate();

}

When Syntax coloring is enabled (see “Syntax highlighting” on page 61), comments are gray by 
default. Comments can be any length without affecting the size of the exported file, and they do 
not need to follow rules for ActionScript syntax or keywords.

If you want to “comment out” an entire portion of your script, place it in a comment block rather 
than adding // at the beginning of each line. This technique is easier and is useful when you want 
to test only parts of a script by commenting out large chunks of it.
32 Chapter 2:  ActionScript Basics



To create a comment block, place /* at the beginning of the commented lines and */ at the end. 
For example, when the following script runs, none of the code in the comment block is executed:
// The code below runs
var x:Number = 15;
var y:Number = 20;
// The code below doesn’t run
/*
on(release) {

// create new Date object
myDate = new Date();
currentMonth = myDate.getMonth();
// convert month number to month name
monthName = calcMonth(currentMonth);
year = myDate.getFullYear();
currentDate = myDate.getDate();

}
*/
// The code below runs
var name:String = "My name is";
var age:Number = 20;

Keywords 

ActionScript reserves words for specific use within the language, so you can’t use them 
as identifiers, such as variable, function, or label names. The following table lists all 
ActionScript keywords:

Constants 

A constant is a property whose value never changes.

For example, the constants BACKSPACE, ENTER, QUOTE, RETURN, SPACE, and TAB are properties of 
the Key object and refer to keyboard keys. To test whether the user is pressing the Enter key, you 
could use the following statement:
if(Key.getCode() == Key.ENTER) {

alert = "Are you ready to play?";
controlMC.gotoAndStop(5);

}

break case class continue

default delete dynamic else

extends for function get

if implements import in

instanceof interface intrinsic new

private public return set

static switch this typeof

var void while with
Syntax 33



About data types  

A data type describes the kind of information a variable or ActionScript element can hold. There 
are two kinds of data types built into Flash: primitive and reference. The primitive data types—
String, Number, and Boolean—have a constant value and therefore can hold the actual value of 
the element they represent. The reference data types—MovieClip and Object—have values that 
can change and therefore contain references to the actual value of the element. Variables 
containing primitive data types behave differently in certain situations than those containing 
reference types. (See “Using variables in a program” on page 43.) There are also two special data 
types: null and undefined.

In Flash, any built-in object that isn’t a primitive data type or a movie clip data type, such as Array 
or Math, is of the Object data type.

Each data type has its own rules and is described in the following topics:

• “String” on page 34
• “Number” on page 35
• “Boolean” on page 35
• “Object” on page 36
• “MovieClip” on page 36
• “Null” on page 36
• “Undefined” on page 36

When you debug scripts, you may need to determine the data type of an expression or variable to 
understand why it is behaving a certain way. You can do this with the typeof operator (see 
“Determining an item’s data type” on page 37). 

You can convert one data type to another using one of the following conversion functions: 
Array(), Boolean(), Number(), Object(), String().    

String

A string is a sequence of characters such as letters, numbers, and punctuation marks. You enter 
strings in an ActionScript statement by enclosing them in single or double quotation marks. 
Strings are treated as characters instead of as variables. For example, in the following statement, 
"L7" is a string: 
favoriteBand = "L7";

You can use the addition (+) operator to concatenate, or join, two strings. ActionScript treats 
spaces at the beginning or end of a string as a literal part of the string. The following expression 
includes a space after the comma: 
greeting = "Welcome," + firstName;
34 Chapter 2:  ActionScript Basics



To include a quotation mark in a string, precede it with a backslash character (\). This is called 
escaping a character. There are other characters that cannot be represented in ActionScript except 
by special escape sequences. The following table provides all the ActionScript escape characters:  

Number

The number data type is a double-precision floating-point number. You can manipulate numbers 
using the arithmetic operators addition (+), subtraction (-), multiplication (*), division (/), 
modulo (%), increment (++), and decrement (--). You can also use methods of the built-in Math 
and Number classes to manipulate numbers. The following example uses the sqrt() (square 
root) method to return the square root of the number 100:   
Math.sqrt(100);

For more information, see “Numeric operators” on page 45.

Boolean

A Boolean value is one that is either true or false. ActionScript also converts the values true 
and false to 1 and 0 when appropriate. Boolean values are most often used with logical 
operators in ActionScript statements that make comparisons to control the flow of a script. For 
example, in the following script, the SWF file plays if the variable password is true:  
onClipEvent(enterFrame) {

if (userName == true && password == true){
play();

}
}

See “Using built-in functions” on page 51 and “Logical operators” on page 47.

Escape sequence Character

\b Backspace character (ASCII 8)

\f Form-feed character (ASCII 12)

\n Line-feed character (ASCII 10)

\r Carriage return character (ASCII 13)

\t Tab character (ASCII 9)

\" Double quotation mark

\' Single quotation mark

\\ Backslash

\000 - \377 A byte specified in octal

\x00 - \xFF A byte specified in hexadecimal

\u0000 - \uFFFF A 16-bit Unicode character specified in hexadecimal
About data types 35



Object 

An object is a collection of properties. Each property has a name and a value. The value of a 
property can be any Flash data type, even the object data type. This allows you to arrange objects 
inside each other, or nest them. To specify objects and their properties, you use the dot (.) 
operator. For example, in the following code, hoursWorked is a property of weeklyStats, which 
is a property of employee:
employee.weeklyStats.hoursWorked

You can use the built-in ActionScript objects to access and manipulate specific kinds of 
information. For example, the Math object has methods that perform mathematical operations 
on numbers you pass to them. This example uses the sqrt() method:
squareRoot = Math.sqrt(100);

The ActionScript MovieClip object has methods that let you control movie clip symbol instances 
on the Stage. This example uses the play() and nextFrame() methods: 
mcInstanceName.play();
mc2InstanceName.nextFrame();

You can also create custom objects to organize information in your Flash application. To add 
interactivity to an application with ActionScript, you’ll need many different pieces of 
information: for example, you might need a user’s name, the speed of a ball, the names of items in 
a shopping cart, the number of frames loaded, the user’s ZIP Code, or the key that was pressed 
last. Creating custom objects lets you organize this information into groups, simplify your 
scripting, and reuse your scripts.

MovieClip    

Movie clips are symbols that can play animation in a Flash application. They are the only data 
type that refers to a graphic element. The MovieClip data type allows you to control movie clip 
symbols using the methods of the MovieClip class. You call the methods using the dot (.) 
operator, as shown here:
my_mc.startDrag(true);
parent_mc.getURL("http://www.macromedia.com/support/" + product);

Null 

The null data type has only one value, null. This value means “no value”—that is, a lack of data. 
The null value can be used in a variety of situations. Here are some examples:

• To indicate that a variable has not yet received a value
• To indicate that a variable no longer contains a value
• As the return value of a function, to indicate that no value was available to be returned by 

the function
• As a parameter to a function, to indicate that a parameter is being omitted

Undefined 

The undefined data type has one value, undefined, and is used for a variable that hasn’t been 
assigned a value.
36 Chapter 2:  ActionScript Basics



Determining an item’s data type 

While testing and debugging your programs, you may discover problems that seem to be related 
to the data types of different items. In these cases, you may want to determine an item’s data type. 
To do so, use the typeof operator, as shown in this example:
trace(typeof(variableName));

For more information on testing and debugging, see Chapter 3, “Writing and Debugging 
Scripts,” on page 55.

Assigning data types to elements

Flash automatically assigns data types to the following kinds of language elements, as discussed in 
the next section, “Automatic data typing”: 

• Variables
• Parameters passed to a function, method, or class
• Values returned from a function or method
• Objects created as subclasses of existing classes

However, you can also explicitly assign data types to items, which can help prevent or diagnose 
certain errors in your scripts. For more information, see “Strict data typing” on page 38.

Automatic data typing 

In Flash, you do not need to explicitly define an item as holding either a number, a string, or 
other data type. Flash determines the data type of an item when it is assigned:
var x = 3;

In the expression var x = 3, Flash evaluates the element on the right side of the operator and 
determines that it is of the number data type. A later assignment may change the type of x; for 
example, the statement x = "hello" changes the type of x to a string. A variable that hasn’t been 
assigned a value has a type of undefined.

ActionScript converts data types automatically when an expression requires it. For example, when 
you pass a value to the trace() action, trace() automatically converts the value to a string and 
sends it to the Output panel. In expressions with operators, ActionScript converts data types as 
needed; for example, when used with a string, the + operator expects the other operand to be 
a string.
"Next in line, number " + 7

ActionScript converts the number 7 to the string "7" and adds it to the end of the first string, 
resulting in the following string:
"Next in line, number 7"
Assigning data types to elements 37



Strict data typing  

ActionScript 2.0 lets you explicitly declare the object type of a variable when you create it; this is 
called strict data typing. Because data type mismatches trigger compiler errors, strict data typing 
helps prevent you from assigning the wrong type of data to an existing variable. To assign a 
specific data type to an item, specify its type using the var keyword and post-colon syntax:
// strict typing of variable or object
var x:Number = 7;
var birthday:Date = new Date(); 

// strict typing of parameters
function welcome(firstName:String, age:Number){ 
}

// strict typing of parameter and return value
function square(x:Number):Number {

var squared = x*x;
return squared;

}

Because you must use the var keyword when strictly typing variable, you can’t strictly type a 
global variable (see “Scoping and declaring variables” on page 41).   

You can declare the data type of objects based on built-in classes (Button, Date, MovieClip, and 
so on) and on classes and interfaces that you create. For example, if you have a file named 
Student.as in which you define the Student class, you can specify that objects you create are of 
type Student:
var student:Student = new Student();

You can also specify that objects are of type Function or Void.

Using strict typing helps ensure that you don’t inadvertently assign an incorrect type of value to an 
object. Flash checks for typing mismatch errors at compile time. For example, suppose you type 
the following code:
// in the Student.as class file
class Student {

var status:Boolean; // property of Student objects
}

// in a script
var studentMaryLago:Student = new Student();
studentMaryLago.status = "enrolled";

When Flash compiles this script, a “Type mismatch” error is generated. 

Another advantage of strict data typing is that Flash MX 2004 automatically displays code hints 
for built-in objects when they are strictly typed. For more information, see “Strictly typing objects 
to trigger code hints” on page 62.

Files published using ActionScript 1 do not respect strict data typing assignments at compile 
time. Thus, assigning the wrong type of value to a variable that you have strictly typed doesn’t 
generate a compiler error. 
var x:String = "abc"
x = 12 ; // no error in ActionScript 1, type mismatch error in ActionScript 2
38 Chapter 2:  ActionScript Basics



The reason for this is that when you publish a file for ActionScript 1, Flash interprets a statement 
such as var x:String = "abc" as slash syntax rather than as strict typing. (ActionScript 2.0 
doesn’t support slash syntax.) This behavior can result in an object that is assigned to a variable of 
the wrong type, causing the compiler to let illegal method calls and undefined property references 
pass through unreported. 

Therefore, if you are implementing strict data typing, make sure you are publishing files for 
ActionScript 2.0.

Casting objects 

ActionScript 2.0 lets you cast one data type to another. The cast operator that Flash uses takes the 
form of a function call and is concurrent with explicit coercion, as specified in the ECMA-262 
Edition 4 proposal. Casting lets you assert that an object is of a certain type so that when type-
checking occurs, the compiler treats the object as having a set of properties that its initial type 
does not contain. This can be useful, for example, when iterating over an array of objects that 
might be of differing types.  

In files published for Flash Player 7 or later, cast statements that fail at runtime return null. In 
files published for Flash Player 6, no runtime support for failed casts is implemented.

The syntax for casting is type(item), where you want the compiler to behave as if the data type 
of item is type. Casting is essentially a function call, and the function call returns null if the cast 
fails. If the cast succeeds, the function call returns the original object. However, the compiler 
doesn’t generate type mismatch errors when you cast items to data types that you  created in 
external class files, even if the cast fails at runtime.
// in Animal.as
class Animal {}

// in Dog.as 
class Dog extends Animal { function bark (){} }

// in Cat.as 
class Cat extends Animal { function meow (){} }

// in FLA file
var spot:Dog = new Dog();
var temp:Cat = Cat (spot); // assert that a Dog object is of type Cat
temp.meow(); // doesn't do anything, but no compiler error either

In this situation, you asserted to the compiler that temp is a Cat object, and, therefore, the 
compiler assumes that temp.meow() is a legal statement. However, the compiler doesn’t know 
that the cast will fail (that is, that you tried to cast a Dog object to a Cat type), so no compile-time 
error occurs. If you include a check in your script to make sure that the cast succeeds, you can 
find type mismatch errors at runtime.
var spot:Dog = new Dog();
var temp:Cat = Cat (spot);
trace(temp); // displays null at runtime

You can cast an expression to an interface. If the expression is an object that implements the 
interface or has a base class that implements the interface, the object is returned. If not, null 
is returned.
Assigning data types to elements 39



The following example shows the results of casting built-in object types. As the first line in the 
with(results) block shows, an illegal cast—in this case, casting a string to a movie clip—
returns null. As the last two lines show, casting to null or undefined returns undefined.
var mc:MovieClip;
var arr:Array;
var bool:Boolean;
var num3:Number;
var obj:Object;
var str:String;
_root.createTextField("results",2,100,100,300,300);
with(results){
text = "type MovieClip : "+(typeof MovieClip(str)); // returns null
text += "\ntype object : "+(typeof Object(str)); // returns object
text += "\ntype Array : "+(typeof Array(num3)); // returns object
text += "\ntype Boolean : "+(typeof Boolean(mc)); // returns boolean
text += "\ntype String : "+(typeof String(mc)); // returns string
text += "\ntype Number : "+(typeof Number(obj)); // returns number
text += "\ntype Function : "+(typeof Function(mc)); // returns object
text += "\ntype null : "+(typeof null(arr)); // returns undefined
text += "\ntype undefined : "+(typeof undefined(obj)); // returns undefined
}
//Results in Output panel
type MovieClip : null
type object : object
type Array : object
type Boolean : boolean
type String : string
type Number : number
type Function : object
type null : undefined
type undefined : undefined

You can’t override primitive data types such as Boolean, Date, and Number with a cast operator of 
the same name. 

About variables

A variable is a container that holds information. The container itself is always the same, but the 
contents can change. By changing the value of a variable as the SWF file plays, you can record and 
save information about what the user has done, record values that change as the SWF file plays, or 
evaluate whether a condition is true or false. 

It’s a good idea always to assign a variable a known value the first time you define the variable. 
This is known as initializing a variable and is often done in the first frame of the SWF file. 
Initializing a variable helps you track and compare the variable’s value as the SWF file plays.

Variables can hold any type of data (see “About data types” on page 34). The type of data a 
variable contains affects how the variable’s value changes when it is assigned in a script. 

Typical types of information that you can store in a variable include a URL, a user’s name, the 
result of a mathematical operation, the number of times an event occurred, or whether a button 
has been clicked. Each SWF file and movie clip instance has a set of variables, with each variable 
having a value independent of variables in other SWF files or movie clips. 
40 Chapter 2:  ActionScript Basics



To test the value of a variable, use the trace() action to send the value to the Output panel. For 
example, trace(hoursWorked) sends the value of the variable hoursWorked to the Output panel 
in test mode. You can also check and set the variable values in the Debugger in test mode. For 
more information, see “Using the trace statement” on page 79 and “Displaying and modifying 
variables” on page 72.  

Naming a variable 

A variable’s name must follow these rules:

• It must be an identifier (see “Terminology” on page 26).
• It cannot be a keyword or an ActionScript literal such as true, false, null, or undefined.
• It must be unique within its scope (see “Scoping and declaring variables” on page 41).

Also, you should not use any element in the ActionScript language as a variable name; doing so 
can cause syntax errors or unexpected results. For example, if you name a variable String and 
then try to create a String object using new String(), the new object is undefined.
hello_str = new String();
trace(hello_str.length); // returns 0

String = "hello"; // Giving a variable the same name as a built-in class
hello_str = new String();
trace(hello_str.length); // returns undefined

The ActionScript editor supports code hints for built-in classes and for variables that are based on 
these classes. If you want Flash to provide code hints for a particular object type that is assigned to 
a variable, you can strictly type the variable or name the variable using a specific suffix. 

For example, suppose you type the following code:
var members:Array = new Array();
members.

As soon as you type the period (.), Flash displays a list of methods and properties available for 
Array objects. For more information, see “Writing code that triggers code hints” on page 61. 

Scoping and declaring variables 

A variable’s scope refers to the area in which the variable is known and can be referenced. There are 
three types of variable scope in ActionScript: 

• Local variables are available within the function body in which they are declared (delineated by 
curly braces).

• Timeline variables are available to any script on that Timeline.
• Global variables and functions are visible to every Timeline and scope in your document. 
Note: ActionScript 2.0 classes that you create support public, private, and static variable scopes. For 
more information, see “Controlling member access” on page 164 and “Creating class members” 
on page 165.
About variables 41



Local variables

To declare local variables, use the var statement inside the body of a function. A local variable is 
scoped to the block and expires at the end of the block. A local variable not declared within a 
block expires at the end of its script.

For example, the variables i and j are often used as loop counters. In the following example, i is 
used as a local variable; it exists only inside the function makeDays(): 
function makeDays() {

var i;
for( i = 0; i < monthArray[month]; i++ ) {

_root.Days.attachMovie( "DayDisplay", i, i + 2000 );

_root.Days[i].num = i + 1;
_root.Days[i]._x = column * _root.Days[i]._width;
_root.Days[i]._y = row * _root.Days[i]._height;

column = column + 1;

if (column == 7 ) {

column = 0;
row = row + 1;

}
}

}

Local variables can also help prevent name conflicts, which can cause errors in your application. 
For example, if you use name as a local variable, you could use it to store a user name in one 
context and a movie clip instance name in another; because these variables would run in separate 
scopes, there would be no conflict.

It’s good practice to use local variables in the body of a function so that the function can act as an 
independent piece of code. A local variable is only changeable within its own block of code. If an 
expression in a function uses a global variable, something outside the function can change its 
value, which would change the function. 

You can assign a data type to a local variable when you define it, which helps prevent you from 
assigning the wrong type of data to an existing variable. For more information, see “Strict data 
typing” on page 38. 

Timeline variables 

Timeline variables are available to any script on that Timeline. To declare Timeline variables, 
initialize them on any frame in the Timeline. Be sure to initialize the variable before trying to 
access it in a script. For example, if you put the code var x = 10; on Frame 20, a script attached 
to any frame before Frame 20 cannot access that variable.
42 Chapter 2:  ActionScript Basics



Global variables  

Global variables and functions are visible to every Timeline and scope in your document. To 
create a variable with global scope, use the _global identifier before the variable name, and do 
not use the var = syntax. For example, the following code creates the global variable myName:
var _global.myName = "George"; // syntax error
_global.myName = "George";

However, if you initialize a local variable with the same name as a global variable, you don’t have 
access to the global variable while you are in the scope of the local variable:
_global.counter = 100;
counter++;
trace(counter); // displays 101
function count(){

for( var counter = 0; counter <= 10 ; counter++ ) {
trace(counter); // displays 0 through 10
}

}
count();
counter++;
trace(counter); // displays 102

Using variables in a program 

You must declare a variable in a script before you can use it in an expression. If you use an 
undeclared variable, as shown in the following example, the variable’s value will be NaN or 
undefined, and your script might produce unintended results: 
var squared = x*x; 
trace(squared); // NaN
var x = 6;

In the following example, the statement declaring the variable x must come first so that squared 
can be replaced with a value:
var x = 6;
var squared = x*x; 
trace(squared); // 36

Similar behavior occurs when you pass an undefined variable to a method or function:
getURL(myWebSite); // no action
var myWebSite = "http://www.macromedia.com";

var myWebSite = "http://www.macromedia.com"; 
getURL(myWebSite); // browser displays www.macromedia.com

You can change the value of a variable many times in a script. The type of data that the variable 
contains affects how and when the variable changes. Primitive data types, such as strings and 
numbers, are passed by value. This means that the actual content of the variable is passed to 
the variable.

In the following example, x is set to 15 and that value is copied into y. When x is changed to 30 
in line 3, the value of y remains 15 because y doesn’t look to x for its value; it contains the value of 
x that it received in line 2.
var x = 15;
var y = x;
var x = 30;
About variables 43



As another example, the variable inValue contains a primitive value, 3, so the actual value is 
passed to the sqrt() function and the returned value is 9: 
function sqrt(x){

return x * x;
}

var inValue = 3;
var out = sqrt(inValue);

The value of the variable inValue does not change.

The object data type can contain such a large and complex amount of information that a variable 
with this type doesn’t hold the actual value; it holds a reference to the value. This reference is like 
an alias that points to the contents of the variable. When the variable needs to know its value, 
the reference asks for the contents and returns the answer without transferring the value to 
the variable. 

The following is an example of passing by reference: 
var myArray = ["tom", "josie"];
var newArray = myArray;
myArray[1] = "jack";
trace(newArray);

The above code creates an Array object called myArray that has two elements. The variable 
newArray is created and is passed a reference to myArray. When the second element of myArray is 
changed, it affects every variable with a reference to it. The trace() action sends tom, jack to 
the Output panel.

In the following example, myArray contains an Array object, so it is passed to function 
zeroArray() by reference. The zeroArray() function changes the content of the array 
in myArray.
function zeroArray (theArray){

var i;
for (i=0; i < theArray.length; i++) {

theArray[i] = 0;
}

} 

var myArray = new Array();
myArray[0] = 1;
myArray[1] = 2;
myArray[2] = 3;
zeroArray(myArray);

The function zeroArray() accepts an Array object as a parameter and sets all the elements of 
that array to 0. It can modify the array because the array is passed by reference.
44 Chapter 2:  ActionScript Basics



Using operators to manipulate values in expressions

An expression is any statement that Flash can evaluate and that returns a value. You can create an 
expression by combining operators and values or by calling a function. 

Operators are characters that specify how to combine, compare, or modify the values of an 
expression. The elements that the operator performs on are called operands. For example, in the 
following statement, the + operator adds the value of a numeric literal to the value of the variable 
foo; foo and 3 are the operands:
foo + 3 

This section describes general rules about common types of operators, operator precedence, and 
operator associativity. For detailed information on each operator mentioned here, as well as 
special operators that don’t fall into these categories, see the entries in Chapter 12, “ActionScript 
Dictionary,” on page 205.

Operator precedence and associativity   

When two or more operators are used in the same statement, some operators take precedence over 
others. ActionScript follows a precise hierarchy to determine which operators to execute first. For 
example, multiplication is always performed before addition; however, items in parentheses take 
precedence over multiplication. So, without parentheses, ActionScript performs the 
multiplication in the following example first:
total = 2 + 4 * 3;

The result is 14.

But when parentheses surround the addition operation, ActionScript performs the addition first:
total = (2 + 4) * 3;

The result is 18.

When two or more operators share the same precedence, their associativity determines the order 
in which they are performed. Associativity can be either left-to-right or right-to-left. For example, 
the multiplication operator has an associativity of left-to-right; therefore, the following two 
statements are equivalent:
total = 2 * 3 * 4;
total = (2 * 3) * 4;

For a table of all operators and their precedence and associativity, see Appendix B, “Operator 
Precedence and Associativity,” on page 787.

Numeric operators 

Numeric operators add, subtract, multiply, divide, and perform other arithmetic operations.

The most common usage of the increment operator is i++ instead of the more verbose i = i+1. 
You can use the increment operator before or after an operand. In the following example, age is 
incremented first and then tested against the number 30:
if (++age >= 30)

In the following example, age is incremented after the test is performed:
if (age++ >= 30)
Using operators to manipulate values in expressions 45



The following table lists the ActionScript numeric operators:

Comparison operators  

Comparison operators compare the values of expressions and return a Boolean value (true or 
false). These operators are most commonly used in loops and in conditional statements. In the 
following example, if the variable score is 100, a certain SWF file loads; otherwise, a different 
SWF file loads:
if (score > 100){

loadMovieNum("winner.swf", 5);
} else {

loadMovieNum("loser.swf", 5);
}

The following table lists the ActionScript comparison operators:

String operators 

The + operator has a special effect when it operates on strings: it concatenates the two string 
operands. For example, the following statement adds "Congratulations," to "Donna!":
"Congratulations, " + "Donna!"

The result is "Congratulations, Donna!" If only one of the + operator’s operands is a string, 
Flash converts the other operand to a string. 

The comparison operators >, >=, <, and <= also have a special effect when operating on strings. 
These operators compare two strings to determine which is first in alphabetical order. 
The comparison operators only compare strings if both operands are strings. If only one of 
the operands is a string, ActionScript converts both operands to numbers and performs a 
numeric comparison.

Operator Operation performed

+ Addition

* Multiplication

/ Division

% Modulo (remainder of division)

- Subtraction

++ Increment

-- Decrement

Operator Operation performed

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal
46 Chapter 2:  ActionScript Basics



Logical operators  

Logical operators compare Boolean values (true and false) and return a third Boolean value. 
For example, if both operands evaluate to true, the logical AND operator (&&) returns true. If 
one or both of the operands evaluate to true, the logical OR operator (||) returns true. Logical 
operators are often used with comparison operators to determine the condition of an if action. 
For example, in the following script, if both expressions are true, the if action will execute:
if (i > 10 && _framesloaded > 50){

play();
}

The following table lists the ActionScript logical operators:

Bitwise operators  

Bitwise operators internally manipulate floating-point numbers to change them into 32-bit 
integers. The exact operation performed depends on the operator, but all bitwise operations 
evaluate each binary digit (bit) of the 32-bit integer individually to compute a new value. 

The following table lists the ActionScript bitwise operators:

Equality operators 

You can use the equality (==) operator to determine whether the values or identities of two 
operands are equal. This comparison returns a Boolean (true or false) value. If the operands are 
strings, numbers, or Boolean values, they are compared by value. If the operands are objects or 
arrays, they are compared by reference. 

It is a common mistake to use the assignment operator to check for equality. For example, the 
following code compares x to 2: 
if (x == 2)

In that same example, the expression x = 2 is incorrect because it doesn’t compare the operands, 
it assigns the value of 2 to the variable x.

Operator Operation performed

&& Logical AND

|| Logical OR

! Logical NOT

Operator Operation performed

& Bitwise AND

| Bitwise OR

^ Bitwise XOR

~ Bitwise NOT

<< Shift left

>> Shift right

>>> Shift right zero fill
Using operators to manipulate values in expressions 47



The strict equality (===) operator is like the equality operator, with one important difference: the 
strict equality operator does not perform type conversion. If the two operands are of different 
types, the strict equality operator returns false. The strict inequality (!==) operator returns the 
inversion of the strict equality operator. 

The following table lists the ActionScript equality operators:

Assignment operators 

You can use the assignment (=) operator to assign a value to a variable, as shown in the 
following example:
var password = "Sk8tEr";

You can also use the assignment operator to assign multiple variables in the same expression. In 
the following statement, the value of a is assigned to the variables b, c, and d:  
a = b = c = d;

You can also use compound assignment operators to combine operations. Compound operators 
perform on both operands and then assign the new value to the first operand. For example, the 
following two statements are equivalent:  
x += 15;
x = x + 15;

The assignment operator can also be used in the middle of an expression, as shown in the 
following example:
// If the flavor is not vanilla, output a message.
if ((flavor = getIceCreamFlavor()) != "vanilla") {

trace ("Flavor was " + flavor + ", not vanilla.");
}

This code is equivalent to the following slightly more verbose code:
flavor = getIceCreamFlavor();
if (flavor != "vanilla") {

trace ("Flavor was " + flavor + ", not vanilla.");
}

The following table lists the ActionScript assignment operators:

Operator Operation performed

== Equality

=== Strict equality

!= Inequality

!== Strict inequality

Operator Operation performed

= Assignment

+= Addition and assignment

-= Subtraction and assignment

*= Multiplication and assignment
48 Chapter 2:  ActionScript Basics



Dot and array access operators         

You can use the dot operator (.) and the array access operator ([]) to access built-in or custom 
ActionScript object properties, including those of a movie clip.

The dot operator uses the name of an object on its left side and the name of a property or variable 
on its right side. The property or variable name can’t be a string or a variable that evaluates to a 
string; it must be an identifier. The following examples use the dot operator:
year.month = "June";
year.month.day = 9;

The dot operator and the array access operator perform the same role, but the dot operator takes 
an identifier as its property, whereas the array access operator evaluates its contents to a name and 
then accesses the value of that named property. For example, the following expressions access the 
same variable velocity in the movie clip rocket:
rocket.velocity;
rocket["velocity"];

You can use the array access operator to dynamically set and retrieve instance names and variables. 
For example, in the following code, the expression inside the [] operator is evaluated, and the 
result of the evaluation is used as the name of the variable to be retrieved from movie clip name: 
name["mc" + i]

You can also use the eval() function, as shown here:
eval("mc" + i)

The array access operator can also be used on the left side of an assignment statement. This allows 
you to dynamically set instance, variable, and object names, as shown in the following example:
name[index] = "Gary";

%= Modulo and assignment

/= Division and assignment

<<= Bitwise shift left and assignment

>>= Bitwise shift right and assignment

>>>= Shift right zero fill and assignment

^= Bitwise XOR and assignment

|= Bitwise OR and assignment

&= Bitwise AND and assignment

Operator Operation performed
Using operators to manipulate values in expressions 49



You create multidimensional arrays in ActionScript by constructing an array, the elements of 
which are also arrays. To access elements of a multidimensional array, you can nest the array access 
operator with itself, as shown in the following example:  
var chessboard = new Array();
for (var i=0; i<8; i++) {

chessboard.push(new Array(8));
}
function getContentsOfSquare(row, column){

chessboard[row][column];
}

You can check for matching [] operators in your scripts; see “Checking syntax and punctuation” 
on page 66.

Specifying an object’s path 

To use an action to control a movie clip or loaded SWF file, you must specify its name and its 
address, called a target path.

In ActionScript, you identify a movie clip by its instance name. For example, in the following 
statement, the _alpha property of the movie clip named star is set to 50% visibility: 
star._alpha = 50;

To give a movie clip an instance name:  

1 Select the movie clip on the Stage.
2 Enter an instance name in the Property inspector.

To identify a loaded SWF file:  

• Use _levelX, where X is the level number specified in the loadMovie() action that loaded the 
SWF file.
For example, a SWF file loaded into level 5 has the target path _level5. In the following 
example, a SWF file is loaded into level 5 and its visibility is set to false:
onClipEvent(load) {

loadMovieNum("myMovie.swf", 5);
}
onClipEvent(enterFrame) {

_level5._visible = false;
}

To enter a SWF file’s target path: 

• In the Actions panel (Window > Development > Actions), click the Insert Target Path button 
and select a movie clip from the list that appears.

For more information on target paths, see “Absolute and relative target paths” in Using 
Flash Help.
50 Chapter 2:  ActionScript Basics



Using built-in functions  

A function is a block of ActionScript code that can be reused anywhere in a SWF file. If you pass 
values as parameters to a function, the function will operate on those values. A function can also 
return values.

Flash has built-in functions that let you access certain information and perform certain tasks, such 
as getting the version number of  Flash Player hosting the SWF file (getVersion()). Functions 
that belong to an object are called methods. Functions that don’t belong to an object are called top-
level functions and are found in the Functions category of the Actions panel.

Each function has its own characteristics, and some functions require you to pass certain values. If 
you pass more parameters than the function requires, the extra values are ignored. If you don’t 
pass a required parameter, the empty parameters are assigned the undefined data type, which can 
cause errors when you export a script. To call a function, it must be in a frame that the playhead 
has reached.

To call a function, simply use the function name and pass any required parameters:
isNaN(someVar);
getTimer();
eval("someVar");

For more information on each function, see its entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Creating functions 

You can define functions to execute a series of statements on passed values. Your functions can 
also return values. After a function is defined, it can be called from any Timeline, including the 
Timeline of a loaded SWF file.

A well-written function can be thought of as a “black box.” If it has carefully placed comments 
about its input, output, and purpose, a user of the function does not need to understand exactly 
how the function works internally. 

Defining a function

Functions, like variables, are attached to the Timeline of the movie clip that defines them, and 
you must use a target path to call them. As with variables, you can use the _global identifier to 
declare a global function that is available to all Timelines without using a target path. To define a 
global function, precede the function name with the identifier _global, as shown in the 
following example:
_global.myFunction = function (x) {
   return (x*2)+3;
}

To define a Timeline function, use the function action followed by the name of the function, 
any parameters to be passed to the function, and the ActionScript statements that indicate what 
the function does.

The following example is a function named areaOfCircle with the parameter radius:
function areaOfCircle(radius) {

return Math.PI * radius * radius;
}

Creating functions 51



You can also define a function by creating a function literal—an unnamed function that is 
declared in an expression instead of in a statement. You can use a function literal to define a 
function, return its value, and assign it to a variable in one expression, as shown in the 
following example:
area = (function() {return Math.PI * radius *radius;})(5);

When a function is redefined, the new definition replaces the old definition. 

Passing parameters to a function  

Parameters are the elements on which a function executes its code. (In this manual, the terms 
parameter and argument are interchangeable.) For example, the following function takes the 
parameters initials and finalScore:
function fillOutScorecard(initials, finalScore) {

scorecard.display = initials;
scorecard.score = finalScore;

}

When the function is called, the required parameters must be passed to the function. The 
function substitutes the passed values for the parameters in the function definition. In this 
example, scorecard is the instance name of a movie clip; display and score are input text 
fields in the instance. The following function call assigns the value "JEB" to the variable display 
and the value 45000 to the variable score:
fillOutScorecard("JEB", 45000);

The parameter initials in the function fillOutScorecard() is similar to a local variable; it 
exists while the function is called and ceases to exist when the function exits. If you omit 
parameters during a function call, the omitted parameters are passed as undefined. If you provide 
extra parameters in a function call that are not required by the function declaration, they 
are ignored. 

Using variables in a function  

Local variables are valuable tools for organizing code and making it easy to understand. When a 
function uses local variables, it can hide its variables from all other scripts in the SWF file; local 
variables are scoped to the body of the function and ceases to exist when the function exits. Any 
parameters passed to a function are also treated as local variables. 

You can also use global and regular variables in a function. However, if you modify global or 
regular variables, it is good practice to use script comments to document these modifications.
52 Chapter 2:  ActionScript Basics



Returning values from a function

Use the return statement to return values from functions. The return statement stops the 
function and replaces it with the value of the return action. The following rules govern the use of 
the return statement in functions:

• If you specify a return type other than void for a function, you must include a return 
statement in the function. 

• If you specify a return type of void, you should not include a return statement.
• If you don’t specify a return type, including a return statement is optional. If you don’t 

include one, an empty string is returned.

For example, the following function returns the square of the parameter x and specifies that the 
returned value must be a Number: 
function sqr(x):Number {

return x * x;
}

Some functions perform a series of tasks without returning a value. For example, the following 
function initializes a series of global variables:
function initialize() {

boat_x = _global.boat._x;
boat_y = _global.boat._y;
car_x = _global.car._x;
car_y = _global.car._y;

}

Calling a user-defined function

You can use a target path to call a function in any Timeline from any Timeline, including from 
the Timeline of a loaded SWF file. If a function was declared using the _global identifier, you do 
not need to use a target path to call it.

To call a function, enter the target path to the name of the function, if necessary, and pass any 
required parameters inside parentheses. For example, the following statement invokes the 
function sqr() in the movie clip MathLib on the main Timeline, passes the parameter 3 to it, 
and stores the result in the variable temp:
var temp = _root.MathLib.sqr(3);

The following example uses an absolute path to call the initialize() function that was defined 
on the main Timeline and requires no parameters:
_root.initialize();

The following example uses a relative path to call the list() function that was defined in the 
functionsClip movie clip:
_parent.functionsClip.list(6);
Creating functions 53



54 Chapter 2:  ActionScript Basics



CHAPTER 3
Writing and Debugging Scripts
In Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004, you can write 
scripts that are embedded in your FLA file or stored externally on your computer. (If you are 
writing ActionScript 2.0 class files, you must store each class as an external file that has the same 
name as the class.) To write embedded scripts, use the Actions panel and attach the action to a 
button or movie clip, or to a frame in the Timeline (see “Controlling when ActionScript runs” 
on page 56). To write external script files, you can use any text editor or code editor. In Flash 
Professional, you can also use the built-in Script window. For more information, see “Using the 
Actions panel and Script window” on page 58. 

When using the ActionScript editor, you can also check syntax for errors, automatically format 
code, and use code hints to help you complete syntax. In addition, the punctuation balance 
feature helps you pair parentheses, braces, or brackets. For more information, see “Using the 
ActionScript editor” on page 61.

As you work on a document, test it often to ensure that it plays as smoothly as possible and that it 
plays as expected. You can use the Bandwidth Profiler to simulate how your document will appear 
at different connection speeds (see “Testing document download performance” in Using Flash 
Help). To test your scripts, you use a special debugging version of Flash Player that helps you 
troubleshoot. If you use good authoring techniques in your ActionScript, your scripts will be 
easier to troubleshoot when something behaves unexpectedly. For more information, see 
“Debugging your scripts” on page 68.
55



Controlling when ActionScript runs   

When you write a script, you use the Actions panel to attach the script to a frame on a Timeline, 
or to a button or movie clip on the Stage. Scripts attached to a frame run, or execute, when the 
playhead enters that frame. However, scripts attached to the first frame of a SWF file may behave 
differently from those attached to subsequent frames, because the first frame in a SWF file is 
rendered incrementally—objects are drawn on the Stage as they download into Flash Player—and 
this can affect when actions execute. All frames after the first frame are rendered all at once, when 
every object in the frame is available. 

Scripts attached to movie clips or buttons execute when an event occurs. An event is an occurrence 
in the SWF file such as a mouse movement, a keypress, or a movie clip being loaded. You can use 
ActionScript to find out when these events occur and execute specific scripts depending on the 
event. For more information, see Chapter 4, “Handling Events,” on page 83.

To perform an action depending on whether a condition exists, or to repeat an action, you can use 
if, else, else if, for, while, do while, for..in, or switch statements, which are briefly 
described in the rest of this section.

Checking a condition

Statements that check whether a condition is true or false begin with the term if. If the 
condition exists, ActionScript executes the statement that follows. If the condition doesn’t exist, 
ActionScript skips to the next statement outside the block of code.

To optimize your code’s performance, check for the most likely conditions first. 

The following statements test three conditions. The term else if specifies alternative tests to 
perform if previous conditions are false.
if (password == null || email == null) {

gotoAndStop("reject");
} else if (password == userID){

gotoAndPlay("startMovie");
}

If you want to check for one of several conditions, you can use the switch statement instead of 
using multiple else if statements.

Repeating an action 

ActionScript can repeat an action a specified number of times or while a specific condition exists. 
Use the while, do..while, for, and for..in actions to create loops. 

To repeat an action while a condition exists:    

• Use the while statement. 

A while loop evaluates an expression and executes the code in the body of the loop if the 
expression is true. After each statement in the body is executed, the expression is evaluated again. 
In the following example, the loop executes four times:
i = 4;
while (var i > 0) {

my_mc.duplicateMovieClip("newMC" + i, i );
i--;

}

56 Chapter 3:  Writing and Debugging Scripts



You can use the do..while statement to create the same kind of loop as a while loop. In a 
do..while loop, the expression is evaluated at the bottom of the code block so the loop always 
runs at least once, as shown in the following example:
i = 4;
do {

my_mc.duplicateMovieClip("newMC" +i, i );
i--;

} while (var i > 0);

To repeat an action using a built-in counter:   

• Use the for statement.

Most loops use a counter of some kind to control how many times the loop executes. Each 
execution of a loop is called an iteration. You can declare a variable and write a statement that 
increases or decreases the variable each time the loop executes. In the for action, the counter and 
the statement that increments the counter are part of the action. In the following example, the 
first expression (var i = 4) is the initial expression that is evaluated before the first iteration. The 
second expression (i > 0) is the condition that is checked each time before the loop runs. The 
third expression (i--) is called the post expression and is evaluated each time after the loop runs.
for (var i = 4; i > 0; i--){

myMC.duplicateMovieClip("newMC" + i, i + 10);
}

To loop through the children of a movie clip or object:    

• Use the for..in statement. 

Children include other movie clips, functions, objects, and variables. The following example uses 
the trace statement to print its results in the Output panel: 
myObject = { name:'Joe', age:25, city:'San Francisco' };
for (propertyName in myObject) {

trace("myObject has the property: " + propertyName + ", with the value: " + 
myObject[propertyName]);

}

This example produces the following results in the Output panel: 
myObject has the property: name, with the value: Joe
myObject has the property: age, with the value: 25
myObject has the property: city, with the value: San Francisco

You may want your script to iterate over a particular type of child—for example, over only movie 
clip children. You can do this with for..in in conjunction with the typeof operator. 
for (name in myMovieClip) {

if (typeof (myMovieClip[name]) == "movieclip") {
trace("I have a movie clip child named " + name);

}
}

For more information on each action, see individual entries in Chapter 12, “ActionScript 
Dictionary,” on page 205.
Controlling when ActionScript runs 57



Using the Actions panel and Script window

You can embed Flash scripts in your FLA file or store them as external files. It’s a good idea to 
store as much of your ActionScript code in external files as possible. This makes it easier to reuse 
code in multiple FLA files. Then, in your FLA file, create a script that uses #include statements 
to access the code you’ve stored externally. Use the .as suffix to identify your scripts as 
ActionScript (AS) files. (If you are writing custom class files, you must store them as external 
AS files.)
Note: ActionScript code in external files is compiled into a SWF file when you publish, export, test, or 
debug a FLA file. Therefore, if you make any changes to an external file, you must save the file and 
recompile any FLA files that use it. 

When you embed ActionScript code in your FLA file, you can attach code to Frames and to 
objects. Try to attach embedded ActionScript to the first frame of the Timeline whenever 
possible. That way, you won’t have to search through a FLA file to find all your code; it is 
centralized in one location. Create a layer called “Actions” and place your code there. That way, 
even if you do place code on other Frames or attach it to objects, you’ll have to look at only one 
layer to find it all. 

To create scripts that are part of your document, you enter ActionScript directly into the Actions 
panel. To create external scripts, use your preferred text editor or, in Flash Professional, you can 
use the Script window. When you use the Actions panel or Script window, you are using the same 
ActionScript editor, and are typing your code in the Script pane at the right side of the panel or 
window. To reduce the amount of typing you have to do, you can also select or drag actions from 
the Actions toolbox to the Script pane.  

To display the Actions panel, do one of the following:

• Select Window > Development Panels > Actions.
• Press F9.

(Flash Professional only) To display the Script window, do one of the following:

• To begin writing a new script, select File > New > ActionScript File.
• To open an existing script, select File > Open, and then open an existing AS file.
• To edit a script that is already open, click the document tab that displays the script’s name. 

(Document tabs are supported only in Microsoft Windows.) 

About the ActionScript editor environment

The ActionScript editor environment consists of two sections. The section on the right is the 
Script pane, the area where you type your code. The section on the left is an Actions toolbox that 
contains an entry for each ActionScript language element.       
58 Chapter 3:  Writing and Debugging Scripts



In the Actions panel, the Actions toolbox also contains a Script navigator, which is a visual 
representation of the locations in the FLA file that have associated ActionScript; you can navigate 
through your FLA file here to locate ActionScript code. If you click an item in the Script 
navigator, the script associated with that item appears in the Script pane, and the playhead moves 
to that position on the Timeline. If you double-click an item in the Script navigator, the script 
gets pinned (see “Managing scripts in a FLA file” on page 60). 

There are also several buttons above the Script pane: 

You edit actions, enter parameters for actions, or delete actions directly in the Script pane. You 
can also double-click on an item in the Actions toolbox or the Add (+) button above the Script 
pane to add actions to the Script pane. 

Actions toolbox Script navigator* Pop-up menu*

* Actions panel only

View Options pop-up menu

Debug Options*

* Actions panel only

Reference

Replace

Find

Add item to script

Insert target path*

Check Syntax

Auto Format

Show Code Hint
Using the Actions panel and Script window 59



Managing scripts in a FLA file

If you don’t centralize all your code within a FLA file in one location, you can pin (lock in place) 
multiple scripts in the Actions panel to make it easier to move among them. In the following 
figure, the script associated with the current location on the Timeline is on Frame 1 of the layer 
named Cleanup. (The tab at the far left always follows your location along the Timeline.) That 
script is also pinned (it is shown as the rightmost tab). Two other scripts are pinned; one on 
Frame 1 and the other on Frame 15 of the layer named Intro. You can move among the pinned 
scripts by clicking on the tabs or by using keyboard shortcuts. Moving among pinned scripts does 
not change your current position on the Timeline. 

Tip: If the content displayed in the Script pane isn’t changing to reflect the location that you are 
selecting on the Timeline, the Script pane is probably displaying a pinned script. Click the leftmost tab 
at the lower left of the Script pane to display the ActionScript associated with your location along 
the Timeline.

To pin a script:

1 Position your pointer on the Timeline so the script appears in a tab at the lower left of the Script 
pane in the Actions panel.

2 Do one of the following:
■ Click the pushpin icon to the right of the tab. (If the pushpin looks like the icon at the far 

left, the script is already pinned; clicking that icon unpins it.)
■ Right-click (Windows) or Control-click (Macintosh) on the tab, and select Pin Script.
■ Select Pin Script from the Options pop-up menu (at the upper right of the panel).

To unpin one or more scripts: 

• Do one of the following:
■ If a pinned script appears in a tab at the lower left of the Script pane in the Actions panel, 

click the pushpin icon to the right of the tab. (If the pushpin looks like the icon on the far 
left, the script is already unpinned; clicking that icon pins it.)

■ Right-click (Windows) or Control-click (Macintosh) on a tab, and select Close Script or 
Close All Scripts.

■ Select Close Script or Close All Scripts from the Options pop-up menu (at the upper right 
of the panel).

To use keyboard shortcuts with pinned scripts:

• You can use the following keyboard shortcuts to work with pinned scripts:

Action Windows shortcut key Macintosh shortcut key

Pin script Control-= (equal sign) Command-=

Unpin script Control-- (minus sign) Command-- 

Move focus to tab on the right Control-Shift-. (period) Command-Shift-.
60 Chapter 3:  Writing and Debugging Scripts



Using the ActionScript editor

Flash MX 2004 and Flash MX Professional 2004 provide several tools to help you write 
syntactically correct code and lets you set preferences for code formatting and other options. 
These capabilities are discussed in this section.

Syntax highlighting

In ActionScript, as in any language, syntax is the way elements are put together to create meaning. 
If you use incorrect ActionScript syntax, your scripts will not work.

When you write scripts in Flash MX 2004 and Flash MX Professional 2004, commands that are 
not supported by the version of the player you are targeting appear in yellow in the Actions 
toolbox. For example, if the Flash Player SWF version is set to Flash 6, ActionScript that is 
supported only by Flash Player 7 appears in yellow in the Actions toolbox. (For information on 
setting the Flash Player SWF version, see “Setting publish options for the Flash SWF file format” 
in Using Flash Help.) 

You can also set a preference to have Flash “color-code” parts of your scripts as you write them, to 
bring typing errors to your attention. For example, suppose you set your Syntax coloring 
preference to have keywords appear in deep green. While you are typing code, if you type var, the 
word var appears in green. However, if you mistakenly type vae, the word vae remains black, 
providing you with an immediate clue that you made a typing error.   

To set preferences for syntax coloring as you type, do one of the following:

• Select Edit > Preferences, and specify Syntax coloring settings on the ActionScript tab.
• In the Actions panel, select Preferences from the Options pop-up menu (at the upper right of 

the panel) and specify Syntax coloring settings on the ActionScript tab.

Writing code that triggers code hints 

When you work in the ActionScript editor (either in the Actions panel or Script window), Flash 
can detect what action you are entering and display a code hint—a tooltip that contains the 
complete syntax for that action, or a pop-up menu that lists possible method or property names. 
Code hints appear for parameters, properties, and events when you strictly type or name your 
objects so that the ActionScript editor knows which code hints to display, as discussed in the rest 
of this section. For information on using code hints when they appear, see “Using code hints” 
on page 63.  
Note: Code hinting is enabled automatically for native classes that don’t require you to create and 
name an object of the class, such as Math, Key, Mouse, and so on.

Move focus to tab on the left Control-Shift-, (comma) Command-Shift-,

Unpin all scripts Control-Shift-- (minus) Command-Shift--

Action Windows shortcut key Macintosh shortcut key
Using the ActionScript editor 61



Strictly typing objects to trigger code hints

When you use ActionScript 2.0, you can strictly type a variable that is based on a built-in class, 
such as Button, Array, and so on. If you do so, the ActionScript editor displays code hints for the 
variable. For example, suppose you type the following: 
var names:Array = new Array();
names.

As soon as you type the period (.), Flash displays a list of methods and properties available for 
Array objects, because you have typed the variable as an array. For more information on data 
typing, see “Strict data typing” on page 38. For information on using code hints when they 
appear, see “Using code hints” on page 63.

Using suffixes to trigger code hints

If you use ActionScript 1 or you want to display code hints for objects you create without strictly 
typing them (see “Strictly typing objects to trigger code hints” on page 62), you must add a 
special suffix to the name of each object when you create it. For example, the suffixes that trigger 
code hinting for the Array class and the Camera class are _array and _cam, respectively. If you 
type the following code:    
var my_array = new Array();
var my_cam = Camera.get();

and then type either of the following (the variable name followed by a period), code hints for the 
Array and Camera object, respectively, appear.
my_array.
my_cam.

For objects that appear on the Stage, use the suffix in the Instance Name text box in the Property 
inspector. For example, to display code hints for MovieClip objects, use the Property inspector to 
assign instance names with the suffix _mc to all MovieClip objects. Then, whenever you type the 
instance name followed by a period, code hints appear. 

Although suffixes are not required for triggering code hints when you strictly type an object, using 
them consistently helps you and others understand your scripts.

The following table lists the suffixes required for support of automatic code hinting:

Object type Variable suffix

Array _array

Button _btn

Camera _cam

Color _color

ContextMenu _cm

ContextMenuItem _cmi

Date _date

Error _err

LoadVars _lv
62 Chapter 3:  Writing and Debugging Scripts



For information on using code hints when they appear, see “Using code hints” on page 63.

Using comments to trigger code hints

You can also use ActionScript comments to specify an object’s class for code hinting. The 
following example tells ActionScript that the class of the instance theObject is Object, and so on. 
If you were to enter mc followed by a period after these comments, a code hint would display the 
list of MovieClip methods and properties; if you were to enter theArray followed by a period, a 
code hint would display a list of Array methods and properties; and so on. 
// Object theObject;
// Array theArray;
// MovieClip mc;

However, Macromedia recommends using strict data typing (see “Strictly typing objects to trigger 
code hints” on page 62) or suffixes (see “Using suffixes to trigger code hints” on page 62) instead 
of this technique, because those techniques enable code hinting automatically and make your 
code more understandable.

Using code hints

Code hints are enabled by default. By setting preferences, you can disable code hints or determine 
how quickly they appear. When code hints are disabled in preferences, you can still display a code 
hint for a specific command. 

LocalConnection _lc

Microphone _mic

MovieClip _mc

MovieClipLoader _mcl

PrintJob _pj

NetConnection _nc

NetStream _ns

SharedObject _so

Sound _sound

String _str

TextField _txt

TextFormat _fmt

Video _video

XML _xml

XMLNode _xmlnode

XMLSocket _xmlsocket

Object type Variable suffix
Using the ActionScript editor 63



To specify settings for automatic code hints, do one of the following:

• Select Edit > Preferences, and then enable or disable Code Hints on the ActionScript tab.
• In the Actions panel, select Preferences from the Options pop-up menu (at the upper right of 

the panel) and enable or disable Code Hints on the ActionScript tab.

If you enable code hints, you can also specify a delay in seconds before the code hints should 
appear. For example, if you are new to ActionScript, you might prefer no delay so that code hints 
always appear immediately. However, if you usually know what you want to type and only need 
hints when you use unfamiliar language elements, you can specify a delay so that code hints don’t 
appear when you don’t plan to use them.

To work with tooltip-style code hints:

1 Display the code hint by typing an open parenthesis [(] after an element that requires 
parentheses, such as a method name, a command such as if or do while, and so on.
The code hint appears. 

Note: If a code hint doesn’t appear, make sure you haven’t disabled code hints on the ActionScript 
tab. If you want to display code hints for a variable or object you created, make sure that you have 
named your variable or object correctly (see “Using suffixes to trigger code hints” on page 62) or 
that you have strictly typed your variable or object (see “Strictly typing objects to trigger code 
hints” on page 62). 

2 Enter a value for the parameter. If there is more than one parameter, separate the values 
with commas. 
Overloaded commands such as gotoAndPlay() or for (that is, functions or methods that can 
be invoked with different sets of parameters) display an indicator that allows you to select the 
parameter you want to set. Click the small arrow buttons or press Control+Left Arrow and 
Control+Right Arrow to select the parameter.

3 To dismiss the code hint, do one of the following:
■ Type a closing parenthesis [)].
■ Click outside the statement.
■ Press Escape.
64 Chapter 3:  Writing and Debugging Scripts



To work with menu-style code hints:

1 Display the code hint by typing a period after the variable or object name.
The code hint menu appears.

Note: If a code hint doesn’t appear, make sure you haven’t disabled code hints on the ActionScript 
tab. If you want to display code hints for a variable or object you created, make sure that you have 
named your variable or object correctly (see “Using suffixes to trigger code hints” on page 62) or 
that you have strictly typed your variable or object (see “Strictly typing objects to trigger code 
hints” on page 62). 

2 To navigate through the code hints, use the Up and Down Arrow keys.
3 To select an item in the menu, press Return or Tab, or double-click the item.
4 To dismiss the code hint, do one of the following:

■ Select one of the menu items.
■ Click outside the statement.
■ Type a closing parenthesis [)] if you’ve already typed an open parenthesis.
■ Press Escape.

To manually display a code hint:

1 Click in a code location where code hints can appear. Here are some examples:
■ After the dot following a statement or command, where a property or method must 

be entered
■ Between parentheses in a method name

2 Do one of the following:
■ Click the Show Code Hint button above the Script pane.
■ Press Control+Spacebar (Windows) or Command+Spacebar (Macintosh). 
■ If you are working in the Actions panel, open the pop-up menu (at the right side of the title 

bar), and select Show Code Hint.

Using Escape shortcut keys

You can add many elements to a script by using shortcut keys—pressing the Escape key and then 
two other keys. (These shortcuts are different from the keyboard shortcuts that initiate certain 
menu commands.) For example, if you are working in the Script pane and type Escape+d+o, the 
following code is placed in your script, and the insertion point is placed immediately following 
the word while, so you can begin typing your condition:
do {
} while ();
Using the ActionScript editor 65



Similarly, if you type Escape+c+h, the following code is placed in your script, and the insertion 
point is placed between the parentheses, so you can begin typing your condition:
catch () {
}

If you want to learn (or be reminded) which commands have Escape shortcut keys, you can 
display them next to elements in the Actions panel.

To display or hide Escape shortcut keys:

• From the View Options pop-up menu, enable or disable View Escape Shortcut Keys.

Checking syntax and punctuation  

To thoroughly determine whether the code you wrote performs as planned, you need to publish 
or test the file. However, you can do a quick check of your ActionScript code without leaving the 
FLA file. Syntax errors are listed in Output panel. (When you check syntax, only the current 
script is checked; other scripts that may be in the FLA file are not checked.) You can also check to 
see if a set of parentheses, curly braces, or brackets (array access operators) around a block of code 
is balanced.

To check syntax, do one of the following:

• Click the Check Syntax button above the Script pane.
• In the Actions panel, display the pop-up menu (at the upper right of the panel) and select 

Check Syntax. 
• Press Control+T (Windows) or Command+T (Macintosh).
66 Chapter 3:  Writing and Debugging Scripts



To check for punctuation balance:     
1 Click between braces ({}), array access operators ([]), or parentheses (()) in your script.
2 Press Control+' (Windows) or Command+' (Macintosh) to highlight the text between braces, 

brackets, or parentheses. 
The highlighting helps you check whether opening punctuation has correct corresponding 
closing punctuation.

Formatting code 

You can specify settings to determine if your code is formatted and indented automatically or 
manually. You can also choose whether to view line numbers and whether to wrap long lines 
of code. 

To set format options:

1 Do one of the following
■ In the Actions panel, select Auto Format Options from the Options pop-up menu (at the 

upper right of the panel).
■ (Flash Professional only) In an external script file, choose Edit > Auto Format Options.
The Auto Format Options dialog box appears.

2 Select any of the check boxes. To see the effect of each selection, look in the Preview pane.
After you set Auto Format Options, your settings are applied automatically to code you write, but 
not to existing code. To apply your settings to existing code, you must do so manually. You might 
use this procedure to format code that was formatted using different settings, that you imported 
from another editor, and so on.

To format code according to Auto Format Options settings, do one of the following:

• Click the Auto Format button above the Script pane.
• Select Auto Format from the Actions panel pop-up menu.
• Press Control+Shift+F (Windows) or Command+Shift+F (Macintosh).

To use automatic indentation:  

• Automatic indentation is turned on by default. To turn it off, deselect Automatic Indentation 
in ActionScript preferences.
When automatic indentation is turned on, the text you type after ( or { is automatically 
indented according to the Tab Size setting in ActionScript preferences. To indent another line, 
select the line and press Tab. To remove the indent, press Shift+Tab.

To enable or disable line numbers and word wrap:    

• From the View Options pop-up menu, enable or disable View Line Numbers and Word Wrap.
Using the ActionScript editor 67



Debugging your scripts

Flash provides several tools for testing ActionScript in your SWF files. The Debugger, discussed 
in the rest of this section, lets you find errors in a SWF file while it’s running in Flash Player. Flash 
also provides the following additional debugging tools:     

• The Output panel, which displays error messages and lists of variables and objects (see “Using 
the Output panel” on page 77) 

• The trace statement, which sends programming notes and values of expressions to the 
Output panel (see “Using the trace statement” on page 79) 

• The throw and try..catch..finally statements, which let you test and respond to runtime 
errors from within your script

• The availability of comprehensive compiler error messages, which let you diagnose and fix 
problems more readily (see Appendix A, “Error Messages,” on page 783)

You must be viewing your SWF file in a special version of  Flash Player called Flash Debug Player. 
When you install the authoring tool, Flash Debug Player is installed automatically. So if you 
install Flash and browse a website that has Flash content, or do a Test Movie, then you’re using 
Flash Debug Player. You can also run the installer in the <app_dir>\Players\Debug\ directory, or 
launch the stand-alone Flash Debug Player from the same directory. 

When you use the Test Movie command to test movies that implement keyboard controls 
(tabbing, keyboard shortcuts created using Key.addListener(), and so on), select Control > 
Disable Keyboard Shortcuts. Selecting this option prevents the authoring environment from 
“grabbing” keystrokes, and lets them pass through to the player. For example, in the authoring 
environment, Control+U opens the Preferences dialog box. If your script assigns Control+U to an 
action that underlines text onscreen, when you use Test Movie, pressing Control+U will open the 
Preferences dialog box instead of running the action that underlines text. To let the Control+U 
command pass through to the player, you must select Control > Disable Keyboard Shortcuts.    
Caution: The Test Movie command fails if any part of the SWF file path has characters that cannot 
be represented using the MBCS encoding scheme. For example, Japanese paths on an English 
system do not work. All areas of the application that use the external player are subject to 
this limitation.  

The Debugger shows a hierarchical display list of movie clips currently loaded in Flash Player. 
Using the Debugger, you can display and modify variable and property values as the SWF file 
plays, and you can use breakpoints to stop the SWF file and step through ActionScript code line 
by line. 

You can use the Debugger in test mode with local files, or you can use it to test files on a web 
server in a remote location. The Debugger lets you set breakpoints in your ActionScript that stop 
Flash Player and step through the code as it runs. You can then go back to your scripts and edit 
them so that they produce the correct results.  

After it’s activated, the Debugger status bar displays the URL or local path of the file, tells 
whether the file is running in test mode or from a remote location, and shows a live view of the 
movie clip display list. When movie clips are added to or removed from the file, the display list 
reflects the changes immediately. You can resize the display list by moving the horizontal splitter.
68 Chapter 3:  Writing and Debugging Scripts



To activate the Debugger in test mode:

• Select Control > Debug Movie.
This opens the Debugger. It also opens the SWF file in test mode. 

Debugging a SWF file from a remote location

You can debug a remote SWF file using the stand-alone, ActiveX, or plug-in versions of Flash 
Player. When exporting a SWF file, you can enable debugging in your file and create a debugging 
password. If you don’t enable debugging, the Debugger will not activate. 

To ensure that only trusted users can run your SWF files in the Flash Debug Player, you can 
publish your file with a debugging password. As in JavaScript or HTML, it’s possible for users to 
view client-side variables in ActionScript. To store variables securely, you must send them to a 
server-side application instead of storing them in your file. However, as a Flash developer, you 
may have other trade secrets, such as movie clip structures, that you do not want to reveal. You 
can use a debugging password to protect your work.

When you export, publish, or test a movie, Flash creates a SWD file that contains debug 
information. To debug remotely, you must place the SWD file in the same directory as the SWF 
file on the server.

Display list Code view

Status bar Watch list
Debugging your scripts 69



To enable remote debugging of a Flash movie:

1 Select File > Publish Settings.
2 On the Flash tab of the Publish Settings dialog box, select Debugging permitted.

3 To set a password, enter a password in the Password box.
After you set this password, no one can download information to the Debugger without the 
password. However, if you leave the Password box blank, no password is required.

4 Close the Publish Settings dialog box, and select one of the following commands:
■ Control > Debug Movie
■ File > Export Movie
■ File > Publish Settings > Publish
Flash creates a debugging file with the .swd extension and saves it alongside the SWF file. The 
SWD file contains information that allows you to use breakpoints and step through code. 

5 Place the SWD file in the same directory as the SWF file on the server.
If the SWD file is not in the same directory as the SWF file, you can still debug remotely, but 
the Debugger ignores breakpoints and you can’t step through code. 

6 In Flash, select Window > Development Panels > Debugger.
• In the Debugger, select Enable Remote Debugging from the Options pop-up menu (at the 

upper right of the panel).
70 Chapter 3:  Writing and Debugging Scripts



To activate the Debugger from a remote location:

1 Open the Flash authoring application.
2 In a browser or in the stand-alone player, open the published SWF file from the 

remote location.
The Remote Debug dialog box appears.

If that dialog box doesn’t appear, Flash can’t find the SWD file. In this case, right-click 
(Windows) or Control-click (Macintosh) in the SWF file to display the context menu, and 
select Debugger.

3 In the Remote Debug dialog box, select Localhost or Other Machine: 
■ Select Localhost if the Debug player and the Flash authoring application are on the 

same computer. 
■ Select Other Machine if the Debug player and the Flash authoring application are not 

on the same computer. Enter the IP address of the computer running the Flash 
authoring application.

4 When a connection is established, a password prompt appears. Enter your debugging password 
if you set one.
The display list of the SWF file appears in the Debugger.
Debugging your scripts 71



Displaying and modifying variables   

The Variables tab in the Debugger displays the names and values of any global and Timeline 
variables in the SWF file. If you change the value of a variable on the Variables tab, you can see 
the change reflected in the SWF file while it runs. For example, to test collision detection in a 
game, you can enter the variable value to position a ball in the correct location next to a wall.

The Locals tab in the Debugger displays the names and values of any local variables that are 
available wherever the SWF file has stopped at a breakpoint or anywhere else within a user-
defined function.

To display a variable:

1 Select the movie clip containing the variable from the display list. 
To display global variables, select the _global clip in the display list.

2 Click the Variables tab.
The display list updates automatically as the SWF file plays. If a movie clip is removed from the 
SWF file at a specific frame, that movie clip, along with its variable and variable name, is also 
removed from the display list in the Debugger. However, if you mark a variable for the Watch list 
(see “Using the Watch list” on page 73), that variable is not removed.

To modify a variable value: 

• Double-click the value, and enter a new value.

The value cannot be an expression. For example, you can use "Hello", 3523, or "http://
www.macromedia.com", and you cannot use x + 2 or eval("name:" +i). The value can be a 
string (any value surrounded by quotation marks), a number, or a Boolean value (true or false).
Note: To write the value of an expression to the Output panel in test mode, use the trace statement. 
See “Using the trace statement” on page 79. 
72 Chapter 3:  Writing and Debugging Scripts



Using the Watch list   

To monitor a set of critical variables in a manageable way, you can mark variables to appear in the 
Watch list. The Watch list displays the absolute path to the variable and the value. You can also 
enter a new variable value in the Watch list the same way as in the Variables tab.

If you add a local variable to the Watch list, its value appears only when Flash Player is stopped at 
a line of ActionScript where that variable is in scope. All other variables appear while the SWF file 
is playing. If the Debugger can’t find the value of the variable, the value is listed as Undefined.

The Watch list can display only variables, not properties or functions.

Variables marked for the Watch list and variables in the Watch list

To add variables to the Watch list, do one of the following:

• On the Variables or Locals tab, right-click (Windows) or Control-click (Macintosh) a selected 
variable and then select Watch from the context menu. A blue dot appears next to the variable.

• On the Watch tab, right-click (Windows) or Control-click (Macintosh) and select Add from 
the context menu. Enter the target path to the variable name and the value in the fields.

To remove variables from the Watch list:

• On the Watch tab, right-click (Windows) or Control-click (Macintosh) and select Remove 
from the context menu.
Debugging your scripts 73



Displaying movie clip properties and changing editable properties  

The Debugger’s Properties tab displays all the property values of any movie clip on the Stage. You 
can change a value and see its effect in the SWF file while it runs. Some movie clip properties are 
read-only and cannot be changed.

To display a movie clip’s properties in the Debugger: 

1 Select a movie clip from the display list.
2 Click the Properties tab in the Debugger.

To modify a property value:

• Double-click the value, and enter a new value.

The value cannot be an expression. For example, you can enter 50 or "clearwater", but you 
cannot enter x + 50. The value can be a string (any value surrounded by quotation marks), a 
number, or a Boolean value (true or false). You can’t enter object or array values (for example, 
{id: "rogue"} or [1, 2, 3]) in the Debugger.

For more information, see “String operators” on page 46 and “Using operators to manipulate 
values in expressions” on page 45.
Note: To write the value of an expression to the Output panel in test mode, use the trace statement. 
See “Using the trace statement” on page 79.

Setting and removing breakpoints

A breakpoint lets you stop a SWF file running in Flash Player at a specific line of ActionScript. 
You can use breakpoints to test possible trouble spots in your code. For example, if you’ve written 
a set of if..else if statements and can’t determine which one is executing, you can add a 
breakpoint before the statements and step through them one by one in the Debugger. 
74 Chapter 3:  Writing and Debugging Scripts



You can set breakpoints in the Actions panel or in the Debugger. (To set breakpoints in external 
scripts, you must use the Debugger.) Breakpoints set in the Actions panel are saved with the Flash 
document (FLA file). Breakpoints set in the Debugger are not saved in the FLA file and are valid 
only for the current debugging session. 

To set or remove a breakpoint in the Actions panel, do one of the following:

• Click in the left margin. A red dot indicates a breakpoint.
• Click the Debug options button above the Script pane.
• Right-click (Windows) or Control-click (Macintosh) to display the context menu, and select 

Breakpoint, Remove Breakpoint, or Remove All Breakpoints.
• Press Control+Shift+B (Windows) or Command+Shift+B (Macintosh).
Note: In previous versions of Flash, clicking in the left margin of the Script pane selected the line of 
code; now it adds or removes a breakpoint. To select a line of code, use Control-click (Windows) or 
Command-click (Macintosh). 

To set and remove breakpoints in the Debugger, do one of the following:

• Click in the left margin. A red dot indicates a breakpoint.
• Click the Toggle Breakpoint or Remove All Breakpoints button above the code view.
• Right-click (Windows) or Control-click (Macintosh) to display the context menu, and select 

Breakpoint, Remove Breakpoint, or Remove All Breakpoints.
• Press Control+Shift+B (Windows) or Command+Shift+B (Macintosh).

Once Flash Player is stopped at a breakpoint, you can step into, step over, or step out of that 
line of code. If you set a breakpoint in a comment or on an empty line in the Actions panel, the 
breakpoint is ignored.

Stepping through lines of code  

When you start a debugging session, Flash Player is paused. If you set breakpoints in the Actions 
panel, you can simply click the Continue button to play the SWF file until it reaches a 
breakpoint. For example, in the following code, suppose a breakpoint is set inside a button on the 
line myFunction():
on(press){

myFunction();
}

When you click the button, the breakpoint is reached and Flash Player pauses. You can now step 
in to bring the Debugger to the first line of myFunction() wherever it is defined in the 
document. You can also step through or out of the function. 

If you didn’t set breakpoints in the Actions panel, you can use the jump menu in the Debugger to 
select any script in the movie. Once you’ve selected a script, you can add breakpoints to it. After 
adding breakpoints, you must click the Continue button to start the movie. The Debugger stops 
when it reaches the breakpoint. 
Debugging your scripts 75



As you step through lines of code, the values of variables and properties change in the Watch list 
and in the Variables, Locals, and Properties tabs. A yellow arrow along the left side of the 
Debugger’s code view indicates the line at which the Debugger stopped. Use the following 
buttons along the top of the code view: 

Step In advances the Debugger (indicated by the yellow arrow) into a function. Step In works 
only for user-defined functions.

In the following example, if you place a breakpoint at line 7 and click Step In, the Debugger 
advances to line 2, and a subsequent click of Step In will advance you to line 3. Clicking Step In 
for lines that do not have user-defined functions in them advances the Debugger over a line of 
code. For example, if you stop at line 2 and select Step In, the Debugger advances to line 3, as 
shown in the following example:
1 function myFunction() {
2 x = 0;
3 y = 0;
4 }
5
6 mover = 1;
7 myFunction();
8 mover = 0;

Step Out advances the Debugger out of a function. This button works only if you are currently 
stopped in a user-defined function; it moves the yellow arrow to the line after the one where that 
function was called. In the example above, if you place a breakpoint at line 3 and click Step Out, 
the Debugger moves to line 8. Clicking Step Out at a line that is not within a user-defined 
function is the same as clicking Continue. For example, if you stop at line 6 and click Step Out, 
the player continues executing the script until it encounters a breakpoint. 

Step Over advances the Debugger over a line of code. This button moves the yellow arrow to the 
next line in the script and ignores any user-defined functions. In the example above, if you are 
stopped at line 7 and click Step Over, you go directly to line 8, and myFunction() is ignored.

Continue leaves the line at which the player is stopped and continues playing until a breakpoint 
is reached.

Stop Debugging makes the Debugger inactive but continues to play the SWF file in Flash Player. 

Stop Debugging

Toggle Breakpoint

Remove All Breakpoints

Continue

Step Over

Step In

Step Out
76 Chapter 3:  Writing and Debugging Scripts



Using the Output panel 

In test mode, the Output panel displays information to help you troubleshoot your SWF file. 
Some information, such as syntax errors, is displayed automatically. You can display other 
information by using the List Objects and List Variables commands. (See “Listing a SWF file’s 
objects” on page 77 and “Listing a SWF file’s variables” on page 78.)

If you use the trace statement in your scripts, you can send specific information to the Output 
panel as the SWF file runs. This could include notes about the SWF file’s status or the value of an 
expression. (See “Using the trace statement” on page 79.)

To display the Output panel, select Window > Development Panels > Output or press F2.
Note: If there are syntax errors in a script, the Output panel appears automatically when you check 
syntax or test your SWF file.

To work with the contents of the Output panel, use the Options pop-up menu in the upper 
right corner.  

Listing a SWF file’s objects

In test mode, the List Objects command displays the level, frame, object type (shape, movie clip, 
or button), target paths, and instance names of movie clips, buttons, and text fields in a 
hierarchical list. This is especially useful for finding the correct target path and instance name. 
Unlike the Debugger, the list does not update automatically as the SWF file plays; you must select 
the List Objects command each time you want to send the information to the Output panel.    

The List Objects command does not list all ActionScript data objects. In this context, an object is 
considered to be a shape or symbol on the Stage.

To display a list of objects in a movie:

1 If your movie is not running in test mode, select Control > Test Movie. 
2 Select Debug > List Objects.
A list of all the objects currently on the Stage is displayed in the Output panel, as shown in 
this example:
Level #0: Frame=1 Label="Scene_1"
  Button: Target="_level0.myButton"
    Shape:
  Movie Clip: Frame=1 Target="_level0.myMovieClip"
    Shape:
  Edit Text: Target="_level0.myTextField" Text="This is sample text."
Using the Output panel 77



Listing a SWF file’s variables    

In test mode, the List Variables command displays a list of all the variables currently in the SWF 
file. This is especially useful for finding the correct variable target path and variable name. Unlike 
the Debugger, the list does not update automatically as the SWF file plays; you must select the 
List Variables command each time you want to send the information to the Output panel.

The List Variables command also displays global variables declared with the _global identifier. 
The global variables are displayed at the top of the List Variables output in a “Global Variables” 
section, and each variable is prefixed with _global.

In addition, the List Variables command displays getter/setter properties—properties that are 
created with the Object.addProperty() method and invoke get or set methods. A getter/
setter property is displayed alongside any other properties in the object it belongs to. To make 
these properties easily distinguishable from ordinary variables, the value of a getter/setter property 
is prefixed with the string [getter/setter]. The value displayed for a getter/setter property is 
determined by evaluating the get function of the property. 

To display a list of variables in a SWF file:

1 If your SWF file is not running in test mode, select Control > Test Movie. 
2 Select Debug > List Variables.

A list of all the variables currently in the SWF file is displayed in the Output panel, as shown in 
this example:
Global Variables:
  Variable _global.MyGlobalArray = [object #1] [
    0:1,
    1:2,
    2:3
  ]
Level #0: 
  Variable _level0.$version = "WIN 6,0,0,101"
  Variable _level0.RegularVariable = "Gary" 
  Variable _level0.AnObject = [object #1] {
    MyProperty: [getter/setter] 3.14159
  }

Displaying text field properties for debugging

To get debugging information about TextField objects, you can use the Debug > List Variables 
command in test movie mode. The Output panel uses the following conventions in displaying 
TextField objects:  

• If a property is not found on the object, it is not displayed.
• No more than four properties are displayed on a line.
• A property with a string value is displayed on a separate line.
• If there are any other properties defined for the object after the built-in properties are 

processed, they are added to the display using the rules in the second and third points above.
• Color properties are displayed as hexadecimal numbers (0x00FF00).
• The properties are displayed in the following order: variable, text, htmlText, html, 

textWidth, textHeight, maxChars, borderColor, backgroundColor, textColor, border, 
background, wordWrap, password, multiline, selectable, scroll, hscroll, maxscroll, 
maxhscroll, bottomScroll, type, embedFonts, restrict, length, tabIndex, autoSize.
78 Chapter 3:  Writing and Debugging Scripts



The Debug > List Objects command in test mode lists TextField objects. If an instance name is 
specified for a text field, the Output panel displays the full target path including the instance 
name in the following form:
Target = "target path"

Using the trace statement

When you use the trace statement in a script, you can send information to the Output panel. 
For example, while testing a movie or scene, you can send specific programming notes to the 
panel or have specific results appear when a button is pressed or a frame is played. The trace 
statement is similar to the JavaScript alert statement.   

When you use the trace statement in a script, you can use expressions as parameters. The value 
of an expression is displayed in the Output panel in test mode, as shown here:

The trace statement returns values that appear in the Output panel.

onClipEvent(enterFrame){
trace("onClipEvent enterFrame " + enterFrame++)

}

Updating Flash Player for testing

You can download the latest version of Flash Player from the Macromedia Support Center at 
www.macromedia.com/support/flash and use it to test your SWF files with the most recent 
version of Flash Player. 
Updating Flash Player for testing 79

http://www.macromedia.com/support/flash/


80 Chapter 3:  Writing and Debugging Scripts



P
A

R
T

 II
PART II
Handling Events and Creating Interaction
Events can be user-generated, such as mouse clicks or keypresses, or can occur as a result of some 
other process, such as an XML file loading over the network. The first chapter in this part 
describes the different types of events in Macromedia Flash and discusses how to handle them in 
ActionScript. The second chapter shows how to apply these principles to create simple interactive 
presentations, applications, and animations.

Chapter 4: Handling Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Chapter 5: Creating Interaction with ActionScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91





CHAPTER 4
Handling Events
An event is a software or hardware occurrence that requires a response from a Macromedia Flash 
application. For example, an event such as a mouse click or a keypress is called a user event, since it 
occurs as a result of direct user interaction. An event generated automatically by Flash Player, such 
as the initial appearance of a movie clip on the Stage, is called a system event, because it isn’t 
generated directly by the user. 

In order for your application to react to events, you must use event handlers—ActionScript code 
associated with a particular object and event. For example, when a user clicks a button on the 
Stage, you might advance the playhead to the next frame. Or when an XML file finishes loading 
over the network, you might display the contents of that file in a text field. 

ActionScript provides a few different ways to handle events: event handler methods, event 
listeners, and button and movie clip event handlers.

Using event handler methods

An event handler method is a class method that is invoked when an event occurs on an instance of 
that class. For example, the Button class defines an onPress event handler that is invoked 
whenever the mouse is pressed on a Button object. Unlike other methods of a class, however, you 
don’t invoke an event handler directly; Flash Player invokes it automatically when the appropriate 
event occurs. 

By default, event handler methods are undefined: when a particular event occurs, its 
corresponding event handler is invoked, but your application doesn’t respond further to the event. 
To have your application respond to the event, you define a function with the function statement 
and then assign that function to the appropriate event handler. The function you assign to the 
event handler is then automatically invoked whenever the event occurs.

An event handler consists of three parts: the object to which the event applies, the name of the 
object’s event handler method, and the function you assign to the event handler. The following 
example shows the basic structure of an event handler. 
object.eventMethod = function () {

// Your code here, responding to event
}

83



For example, suppose you have a button named next_btn on the Stage. The following code 
assigns a function to the button’s onPress event handler; this function advances the playhead to 
the next frame in the Timeline.
next_btn.onPress = function () 

nextFrame();
}

In the above code, the nextFrame() function is assigned directly to onPress. You can also assign 
a function reference (name) to an event handler method and then define the function later.
// Assign a function reference to button’s onPress event handler method
next_btn.onPress = goNextFrame;

// Define doSubmit() function
function goNextFrame() {

nextFrame();
}

Notice that you assign the function reference, not the function’s return value, to the onPress 
event handler.
// Incorrect!
next_btn.onPress = goNextFrame();
// Correct.
next_btn.onPress = goNextFrame;

Some event handlers receive passed parameters that provide information about the event that 
occurred. For example, the TextField.onSetFocus event handler is invoked when a text field 
instance gains keyboard focus. This event handler receives a reference to the text field object that 
previously had keyboard focus.

For example, the following code inserts some text into the text field that just lost keyboard focus.
userName_txt.onSetFocus = function(oldFocus_txt) {

oldFocus_txt.text = "I just lost keyboard focus";
}

The following ActionScript classes define event handlers: Button, ContextMenu, 
ContextMenuItem, Key, LoadVars, LocalConnection, Mouse, MovieClip, MovieClipLoader, 
Selection, SharedObject, Sound, Stage, TextField, XML, and XMLSocket. For more information 
about the event handlers they provide, see these class entries in Chapter 12, “ActionScript 
Dictionary,” on page 205.

You can also assign functions to event handlers for objects you create at runtime. For example, the 
following code creates a new movie clip instance (newclip_mc) and then assigns a function to the 
clip’s onPress event handler.
_root.attachMovie("symbolID", "newclip_mc", 10);
newclip_mc.onPress = function () {

trace("You pressed me");
}

For more information, see “Creating movie clips at runtime” on page 126.
84 Chapter 4:  Handling Events



Using event listeners

Event listeners let an object, called a listener object, receive events generated by another object, 
called a broadcaster object. The broadcaster object registers the listener object to receive events 
generated by the broadcaster. For example, you could register a movie clip object to receive 
onResize notifications from the Stage, or a button instance could receive onChanged 
notifications from a text field object. You can register multiple listener objects to receive events 
from a single broadcaster, and you can register a single listener object to receive events from 
multiple broadcasters.    

The event model for event listeners is similar to that of event handlers (see “Using event handler 
methods” on page 83), with two main differences:

• The object to which you assign the event handler is not the object that emits the event.
• You call a special method of the broadcaster object, addListener(), which registers the 

listener object to receive its events. 

To use event listeners, you create a listener object with a property that has the name of the event 
being generated by the broadcaster object. You then assign a function to the event listener that 
responds in some way to the event. Lastly, you call addListener() on the object that’s 
broadcasting the event, passing it the name of the listener object. The following code outlines the 
event listener model.
listenerObject.eventName = function(){

// your code here
};
broadcastObject.addListener(listenerObject);

The specified listener object can be any object, such as a movie clip or button instance on the 
Stage, or an instance of any ActionScript class. The event name is an event that occurs on 
broadCastObject, which then broadcasts the event to listenerObject. You can register 
multiple listeners to one event broadcaster.

The following example shows how to use the Selection.onSetFocus event listener to create a 
simple focus manager for a group of input text fields. In this case, the border of the text field that 
receives keyboard focus is enabled (displayed), and the border of the text field that lost focus 
is disabled.
Using event listeners 85



To create a simple focus manager with event listeners:

1 Using the Text tool, create a text field on the Stage.
2 Select the text field and, in the Property inspector, select Input from the Text Type pop-up 

menu, and select the Show Border Around Text option. 
3 Create another input text field below the first one.

Make sure the Show Border Around Text option is not selected for this text field. Continue to 
create input text fields if desired. 

4 Select Frame 1 in the Timeline and open the Actions panel (Window > Development 
Panels > Actions).

5 To create an object that listens for focus notification from the Selection class, enter the following 
code in the Actions panel:
var focusListener = new Object();
focusListener.onSetFocus = function(oldFocus_txt, newFocus_txt) {

oldFocus_txt.border = false;
newFocus_txt.border = true;

}

This code creates a new (generic) ActionScript object named focusListener. This object 
defines for itself an onSetFocus property, to which it assigns a function. The function takes 
two parameters: a reference to the text field that lost focus, and one to the text field that gained 
focus. The function sets the border property of the text field that lost focus to false, and sets 
the border property of the text field that gained focus to true.

6 To register the focusListener object to receive events from the Selection object, add the 
following code to the Actions panel:
Selection.addListener(focusListener);

7 Test the movie (Control > Test Movie), click in the first text field, and press Tab to switch focus 
between fields.

To unregister a listener object from receiving events, you call the removeListener() method of 
the broadcaster object, passing it the name of the listener object.
broadcastObject.removeListener(listenerObject);

Event listeners are available to objects of the following ActionScript classes: Key, Mouse, 
MovieClipLoader, Selection, TextField, and Stage. For a list of event listeners available to each 
class, see these class entries in Chapter 12, “ActionScript Dictionary,” on page 205. 
86 Chapter 4:  Handling Events



Using button and movie clip event handlers

You can attach event handlers directly to a button or movie clip instance by using the 
onClipEvent() and on() handlers. The onClipEvent() handler handles movie clip events, and 
the on() handler handles button events. You can also use on() with movie clips to create movie 
clips that receive button events. For more information, see “Creating movie clips with button 
states” on page 88.

To use an on() or onClipEvent() handler, attach it directly to an instance of a button or movie 
clip on the Stage and specify the event you want to handle for that instance. For example, the 
following on() event handler executes whenever the user clicks the button that the handler is 
attached to.
on(press) {

trace("Thanks for pressing me.");
}

You can specify two or more events for each on() handler, separated by commas. The 
ActionScript in a handler executes when either of the events specified by the handler occurs. For 
example, the following on() handler attached to a button executes whenever the mouse rolls over 
out of the button.
on(rollOver, rollOut) {

trace("You rolled over, or rolled out");
}

You can also attach more than one handler to an object if you want different scripts to run when 
different events occur. For example, you could attach the following onClipEvent() handlers to 
the same movie clip instance. The first executes when the movie clip first loads (or appears on the 
Stage); the second executes when the movie clip is unloaded from the Stage.
onClipEvent(load) {

trace("I've loaded");
}
onClipEvent (unload) {

trace("I've unloaded");
}

For a complete list of events supported by the on() and onClipEvent() event handlers, see on() 
on page 583 and onClipEvent() on page 584.

Event handling through on() and onClipEvent() doesn’t conflict with event handling through 
event handler methods that you define. For example, suppose you have a button in a SWF file; 
the button can have an on(press) handler that tells the SWF file to play, and the same button 
can have an onPress method, for which you define a function that tells an object on the Stage to 
rotate. When the button is clicked, the SWF file plays and the object rotates. Depending on your 
preference, you can use on() and onClipEvent(), event handler methods, or both types of event 
handling. However, the scope of variables and objects in on() and onClipEvent() handlers is 
different than in event handler and event listeners. (See “Event handler scope” on page 88.)

You can attach onClipEvent() and on() only to movie clip instances that have been placed on 
the Stage during authoring. You cannot attach onClipEvent() or on() to movie clip instances 
that are created at runtime (using the attachMovie() method, for example). To attach event 
handlers to objects created at runtime, use event handler methods or event listeners. (See “Using 
event handler methods” on page 83 and “Using event listeners” on page 85.)  
Using button and movie clip event handlers 87



Creating movie clips with button states

When you attach an on() handler to a movie clip, or assign a function to one of the MovieClip 
mouse event handlers for a movie clip instance, the movie clip responds to mouse events in the 
same way as a button does. You can also create automatic button states (Up, Over, and Down) in 
a movie clip by adding the frame labels _up, _over, and _down to the movie clip’s Timeline. 

When the user moves the mouse over the movie clip or clicks it, the playhead is sent to the frame 
with the appropriate frame label. To designate the hit area used by a movie clip, you use the 
hitArea property of the MovieClip class.

To create button states in a movie clip:

1 Select a frame in a movie clip’s Timeline to use as a button state (Up, Over, or Down).
2 Enter a frame label in the Property inspector (_up, _over, or _down).
3 To add additional button states, repeat steps 1–2.
4 To make the movie clip respond to mouse events, do one of the following:

■ Attach an on() event handler to the movie clip instance, as discussed in “Using button and 
movie clip event handlers” on page 87.

■ Assign a function to one of the movie clip object’s mouse event handlers (onPress, 
onRelease, and so forth), as discussed in “Using event handler methods” on page 83.

Event handler scope

The scope, or context, of variables and commands that you declare and execute within an event 
handler depends on the type of event handler you’re using: event handlers or event listeners, or 
on() and onClipEvent() handlers. 

Functions assigned to event handler methods and event listeners (like all ActionScript functions 
that you write) define a local variable scope, but on() and onClipEvent() handlers do not.

For example, consider the following two event handlers. The first is an onPress event handler 
associated with a movie clip named clip_mc. The second is an on() handler attached to the same 
movie clip instance.
// Attached to clip_mc’s parent clip Timeline:
clip_mc.onPress = function () {

var color; // local function variable
color = "blue";

}
// on() handler attached to clip_mc:
on(press) {

var color; // no local variable scope
color = "blue";

}

Although both event handlers contain the same code, they have different results. In the first case, 
the color variable is local to the function defined for onPress. In the second case, because the 
on() handler doesn’t define a local variable scope, the variable scopes to the Timeline of the movie 
clip clip_mc.

For on() event handlers attached to buttons, rather than to movie clips, variables (as well as 
function and method calls) are scoped to the Timeline that contains the button instance.
88 Chapter 4:  Handling Events



For instance, the following on() event handler will produce different results depending on 
whether it’s attached to a movie clip or button object. In the first case, the play() function call 
starts the playback head of the Timeline that contains the button; in the second case, the play() 
function call starts the Timeline of the movie clip to which the handler is attached.
// Attached to button
on(press) {

play(); // plays parent Timeline
}
// Attached to movie clip
on(press) {

play(); // plays movie clip’s Timeline
}

That is, when attached to a button object, the play() method call applies to the Timeline that 
contains the button—that is, the button’s parent Timeline. But when the same handler is attached 
to a movie clip object, then the play() applies to the movie clip that bears the handler.

Within an event handler or event listener function definition, the same play() function would 
apply to the Timeline that contains the function definition. For example, suppose the following 
MovieClip.onPress event handler function were declared on the Timeline that contains the 
movie clip instance myMovieClip. 
// Function defined on movie clip Timeline:
myMovieClip.onPress = function () {

play(); // plays Timeline that contains the function definition
}

If you want to play the movie clip that defines the onPress event handler, then you have to refer 
explicitly to that clip using the this keyword, as follows:
myMovieClip.onPress = function () {

this,play(); // plays Timeline of clip that defines the onPress handler
}

Event handler scope 89



Scope of the “this” keyword

The this keyword refers to the object in the currently executing scope. Depending on what type 
of event handler technique you’re using, this can refer to different objects.

Within an event handler or event listener function, this refers to the object that defines the 
event handler or event listener method. For example, in the following code this refers to 
myClip itself.
// onPress() event handler attached to _level0.myClip:
myClip.onPress = function () {

trace(this); // displays '_level0.myClip'
}

Within an on() handler attached to a movie clip, this refers to the movie clip to which the 
on() handler is attached.
// Attached to movie clip named 'myClip'
on(press) {

trace(this); displays '_level0.myClip'
}

Within an on() handler attached to a button, this refers to the Timeline that contains the 
button.
// Attached to button on main Timeline
on(press) {

trace(this); // displays '_level0'
}

90 Chapter 4:  Handling Events



CHAPTER 5
Creating Interaction with ActionScript
In simple animation, Macromedia Flash Player plays the scenes and frames of a SWF file 
sequentially. In an interactive SWF file, your audience uses the keyboard and mouse to jump to 
different parts of a SWF file, move objects, enter information in forms, and perform many other 
interactive operations.   

You use ActionScript to create scripts that tell Flash Player what action to perform when an event 
occurs. Some events that can trigger a script occur when the playhead reaches a frame, when a 
movie clip loads or unloads, or when the user clicks a button or presses a key.

A script can consist of a single command, such as instructing a SWF file to stop playing, or a 
series of commands and statements, such as first evaluating a condition and then performing an 
action. Many ActionScript commands are simple and let you create basic controls for a SWF file. 
Other actions require some familiarity with programming languages and are intended for 
advanced development.

About events and interaction

Whenever a user clicks the mouse or presses a key, an event is generated. These types of events are 
generally called user events, because they are generated in response to some action by the end user. 
You can write ActionScript to respond to, or handle, these events. For example, when a user clicks 
a button, you might want to send the playhead to another frame in the SWF file or load a new 
web page into the browser.

In a SWF file, buttons, movie clips, and text fields all generate events to which you can respond. 
ActionScript provides three ways to handle events: event handler methods, event listeners, and 
on() and onClipEvent() handlers. For more information about events and handling events, see 
Chapter 4, “Handling Events,” on page 83.
91



Controlling SWF file playback

The following ActionScript functions let you control the playhead in the Timeline and load a new 
web page into a browser window:

• The gotoAndPlay() and gotoAndStop() functions send the playhead to a frame or scene. 
These are global functions that you can call from any script. You can also use the 
MovieClip.gotoAndPlay() and MovieClip.gotoAndStop() methods to navigate the 
Timeline of a specific movie clip object. 

• The play() and stop() actions play and stop movies.
• The getURL() action jumps to a different URL.

Jumping to a frame or scene 

To jump to a specific frame or scene in the SWF file, you can use the gotoAndPlay() and 
gotoAndStop() global functions or the equivalent gotoAndPlay() and gotoAndStop() 
methods of the MovieClip class. Each function or method lets you specify a frame to jump to in 
the current scene. If your document contains multiple scenes, you can specify a scene and frame 
to jump to.

The following example uses the global gotoAndPlay() function within a button object’s 
onRelease event handler to send the playhead of the Timeline that contains the button to 
Frame 10.
jump_btn.onRelease = function () {

gotoAndPlay(10);
}

In the next example, the MovieClip.gotoAndStop() method sends the Timeline of a movie clip 
named categories_mc to Frame 10 and stops. When you use the MovieClip methods 
gotoAndPlay() and gotoAndStop(), you must specify an instance to which the method.
jump_btn.onPress = function () {

categories_mc.gotoAndStop(10);
}

Playing and stopping movie clips 

Unless instructed otherwise, after a SWF file starts, it plays through every frame in the Timeline. 
You can stop or start a SWF file by using the play() and stop() global functions or the 
equivalent MovieClip methods. For example, you can use stop() to stop a SWF file at the end of 
a scene before proceeding to the next scene. After a SWF file stops, it must be explicitly started 
again by calling play().

You can use the play() and stop() functions or MovieClip methods to control the main 
Timeline or the Timeline of any movie clip or loaded SWF file. The movie clip you want to 
control must have an instance name and must be present in the Timeline.

The following on(press) handler attached to a button starts the playhead moving in the SWF 
file or movie clip that contains the button object.
// Attached to a button instance
on(press) {

// Plays the Timeline that contains the button
play();

}

92 Chapter 5:  Creating Interaction with ActionScript



This same on() event handler code will produce a different result when attached to a movie clip 
object rather than a button. When attached to a button object, statements made within an on() 
handler are applied to the Timeline that contains the button, by default. However, when attached 
to a movie clip object, statements made within an on() handler are applied to the movie clip to 
which the on() handler is attached. 

For example, the following on() handler code stops the Timeline of the movie clip to which the 
handler is attached, not the Timeline that contains the movie clip.
on(press) {

stop();
}

The same conditions apply to onClipEvent() handlers attached to movie clip objects. For 
instance, the following code stops the Timeline of the movie clip that bears the onClipEvent() 
handler when the clip first loads or appears on the Stage.
onClipEvent(load) {

stop();
}

Jumping to a different URL    

To open a web page in a browser window, or to pass data to another application at a defined URL, 
you can use the getURL() global function or the MovieClip.getURL() method. For example, 
you can have a button that links to a new website, or you can send Timeline variables to a CGI 
script for processing in the same way as you would an HTML form. You can also specify a target 
window, just as you would when targeting a window with an HTML anchor (<a></a>) tag.

For example, the following code opens the macromedia.com home page in a blank browser 
window when the user clicks the button instance named homepage_btn.
homepage_btn.onRelease = function () {

getURL("http://www.macromedia.com", _blank);
}

You can also send variables along with the URL, using GET or POST. This is useful if the page you 
are loading from an application server, like a ColdFusion Server (CFM) page, expects to receive 
form variables. For example, suppose you want to load a CFM page named addUser.cfm that 
expects two form variables, name and age. To do this, you could create a movie clip named 
variables_mc that defines those two variables, as shown below.
variables_mc.name = "Francois";
variables_mc.age = 32;

The following code then loads addUser.cfm into a blank browser window and passes to the CFM 
page variables_mc.name and variables_mc.age in the POST header.
variables_mc.getURL("addUser.cfm", "_blank", "POST");

For more information, see getURL() on page 394.
Controlling SWF file playback 93



Creating interactivity and visual effects

To create interactivity and other visual effects, you need to understand the following techniques: 

• Creating a custom mouse pointer
• Getting the mouse position
• Capturing keypresses
• Setting color values
• Creating sound controls
• Detecting collisions
• Creating a simple line drawing tool

Creating a custom mouse pointer   

A standard mouse pointer is the operating system’s onscreen representation of the position of the 
user’s mouse. By replacing the standard mouse pointer with one you design in Flash, you can 
integrate the user’s mouse movement within the SWF file more closely. The sample in this section 
uses a custom pointer that looks like a large arrow. The power of this feature, however, lies in your 
ability to make the custom pointer look like anything—for example, a football to be carried to the 
goal line or a swatch of fabric pulled over a couch to change its color.

To create a custom pointer, you design the pointer movie clip on the Stage. Then, in 
ActionScript, you hide the standard pointer and track its the movement. To hide the standard 
pointer, you use the Mouse.hide() method of the built-in Mouse class. To use a movie clip as the 
custom pointer, you use the startDrag() action.

To create a custom pointer:

1 Create a movie clip to use as a custom pointer, and place an instance of the clip on the Stage.
2 Select the movie clip instance on the Stage.
3 Select Window > Development Panels > Actions to open the Actions panel if it is not 

already visible.
4 Type the following in the Actions panel:

onClipEvent (load) {
Mouse.hide();
startDrag(this, true);

}
onClipEvent(mouseMove){

updateAfterEvent();
}

The first onClipEvent() handler hides the mouse when the movie clip first appears on the 
Stage; the second handler calls updateAfterEvent whenever the user moves the mouse. 
The updateAfterEvent function immediately refreshes the screen after the specified event 
occurs, rather than when the next frame is drawn, which is the default behavior. (See 
updateAfterEvent() on page 743.)

5 Select Control > Test Movie to test your custom pointer.
94 Chapter 5:  Creating Interaction with ActionScript



Buttons still function when you use a custom pointer. It’s a good idea to put the custom pointer 
on the top layer of the Timeline so that it moves in front of buttons and other objects as you move 
the mouse in the SWF file. Also, the tip of a custom mouse pointer is the registration point of the 
movie clip you’re using as the custom pointer. Therefore, if you want a certain part of the movie 
clip to act as the mouse tip, set the registration point coordinates of the clip to be that point.

For more information about the methods of the Mouse class, see the Mouse class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

Getting the mouse position

You can use the _xmouse and _ymouse properties to find the location of the mouse pointer 
(cursor) in a SWF file. Each Timeline has an _xmouse and _ymouse property that returns the 
location of the mouse within its coordinate system. The position is always relative to the 
registration point. For the main Timeline (_level0), the registration point is the upper 
left corner.

The _xmouse and _ymouse properties within the main Timeline and a movie clip Timeline

The following procedures show two ways to get the mouse position.

To get the current mouse position within the main Timeline:

1 Create two dynamic text boxes, and name them x_pos and y_pos.
2 Select Window > Development Panels > Actions to open the Actions panel if it is not 

already visible.
3 To return the mouse position within the main Timeline, add the following code to any frame 

in the _level0 SWF file:
x_pos = _root._xmouse;
y_pos = _root._ymouse;

The variables x_pos and y_pos are used as containers to hold the values of the mouse positions. 
You could use these variables in any script in your document. In the following onClipEvent() 
handler, the values of x_pos and y_pos update every time the user moves the mouse.
onClipEvent(mouseMove){

x_pos = _root._xmouse;
y_pos = _root._ymouse;

}

Creating interactivity and visual effects 95



To get the current mouse position within a movie clip:

1 Create a movie clip.
2 Select the movie clip instance on the Stage. Using the Property inspector, name it myMovieClip.
3 Select Window > Development Panels > Actions to open the Actions panel if it is not 

already visible.
4 Use the movie clip’s instance name to return the mouse position within the main Timeline. 

For example, the following statement could be placed on any Timeline in the _level0 SWF 
file to return the _ymouse position in the myMovieClip instance:
x_pos = _root.myMovieClip._xmouse
y_pos = _root.myMovieClip._ymouse

The code returns the _xpos and _ypos of the mouse, relative to the registration point.
5 Select Control > Test Movie to test the movie.
You can also determine the mouse position within a movie clip by using the _xmouse and 
_ymouse properties in a clip event, as shown in the following code:
onClipEvent(enterFrame){

xmousePosition = this._xmouse;
ymousePosition = this._ymouse;

}

For more information about the _xmouse and _ymouse properties, see MovieClip._xmouse 
on page 541 and MovieClip._ymouse on page 543.

Capturing keypresses     

You can use the methods of the built-in Key class to detect the last key pressed by the user. The 
Key class does not require a constructor function; to use its methods, you simply call the methods 
on the class itself, as shown in the following example:
Key.getCode();

You can obtain either virtual key codes or ASCII (American Standard Code for Information 
Interchange) values of keypresses:

• To obtain the virtual key code of the last key pressed, use the getCode() method.
• To obtain the ASCII value of the last key pressed, use the getAscii() method.

A virtual key code is assigned to every physical key on a keyboard. For example, the Left Arrow 
key has the virtual key code 37. By using a virtual key code, you ensure that your SWF file’s 
controls are the same on every keyboard, regardless of language or platform. 

ASCII values are assigned to the first 127 characters in every character set. ASCII values provide 
information about a character on the screen. For example, the letter “A” and the letter “a” have 
different ASCII values. 

To decide which keys to use and determine their virtual key codes, use one of these approaches:

• See the list of key codes in Appendix C, “Keyboard Keys and Key Code Values,” on page 789.
• Use a Key class constant. (In the Actions toolbox, click the Built-in Classes category, click 

Movie, click Key, and click Constants.)
96 Chapter 5:  Creating Interaction with ActionScript



• Assign the following onClipEvent() handler to a movie clip, then select Control > Test Movie 
and press the desired key.
onClipEvent(keyDown) {

trace(Key.getCode());
}

The key code of the desired key appears in the Output panel.

A common place to use Key class methods is within an event handler. In the following example, 
the user moves the car using the arrow keys. The Key.isDown() method indicates whether the 
key being pressed is the right, left, up, or down arrow. The event handler, onEnterFrame, 
determines the Key.isDown(keyCode) value from the if statements. Depending on the value, 
the handler instructs Flash Player to update the position of the car and to display the direction.

The input from the keyboard keys moves the car.

The following procedure shows how to capture keypresses to move a movie clip up, down, left, or 
right on the Stage, depending on which corresponding arrow key (up, down, left, or right) is 
currently pressed. The movie clip is confined to an arbitrary area that is 400 pixels wide and 300 
pixels high. Also, a text field displays the name of the pressed key.
Creating interactivity and visual effects 97



To create a keyboard-activated movie clip: 

1 On the Stage, create a movie clip that will move in response to keyboard arrow activity.
In this example, the movie clip instance name is car.

2 On the Stage, create a dynamic text box that will be updated with the direction of the car. Using 
the Property inspector, give it an instance name of display_txt.
Note: Don’t confuse variable names with instance names. For more information, see “About text 
field instance and variable names” on page 136.

3 Select Frame 1 in the Timeline; then select Window > Development Panels > Actions to open 
the Actions panel if it is not already visible.

4 To set how far the car moves across the screen with each keypress, define a distance variable 
and set its initial value to 10.
var distance = 10;

5 To create the event handler for the car movie clip that checks which arrow key (left, right, up, 
or down) is currently pressed, add the following code to the Actions panel:
car.onEnterFrame = function() {

}

6 Add a with statement to the body of the onEnterFrame handler, and specify car as the object 
of the with statement.
Your code should look like this:
var distance = 10;
car.onEnterFrame = function() {
    with (car) {
    }
}

7 To check if the Right Arrow key is being pressed, and to move the car movie clip accordingly, 
add code to the body of the with statement. Your code should look like this:
distance = 10;
car.onEnterFrame = function() {

with (car) {
if (Key.isDown(Key.RIGHT)) {

_x += distance;
if (_x >= 400) {

_x = 400;
}
_root.display_txt.text = "Right";

}
}

}

If the Right Arrow key is down, the car’s _x property is increased by the amount specified by 
the distance variable. The next if statement tests if the value of the clip’s _x property is 
greater than or equal to 400 (if(_x >=400)); if so, its position is fixed at 400. Also, the word 
Right should appear in the SWF file.
98 Chapter 5:  Creating Interaction with ActionScript



8 Use similar code to check if the Left Arrow, Up Arrow, or Down Arrow key is being pressed. 
Your code should look like this:
var distance = 10;
car.onEnterFrame = function() {

with (car) {
if (Key.isDown(Key.RIGHT)) {

_x += distance;
if (_x >= 400) {

_x = 400;
}
_root.display_txt.text = "Right";

} else if (Key.isDown(Key.LEFT)) {
_x -= distance;
if (_x < 0) {

_x = 0;
}
_root.display_txt.text = "Left";

} else if (Key.isDown(Key.UP)) {
_y -= distance;

if (_y < 0) {
_y = 0 ;

}
_root.display_txt.text = "Up";
} else if (Key.isDown(Key.DOWN)) {

_y += distance;
if (_y > 300) {

_y = 300;
}

_root.display_txt.text = "Down";
}

}
}

9 Select Control > Test Movie to test the file.
For more information about the methods of the Key class, see the Key class entry in Chapter 12, 
“ActionScript Dictionary,” on page 205.
Creating interactivity and visual effects 99



Setting color values    

You can use the methods of the built-in Color class to adjust the color of a movie clip. The 
setRGB() method assigns hexadecimal RGB (red, green, blue) values to the movie clip. The 
following example uses setRGB() to change an object’s color based on user input.

The button action creates a Color object and changes the color of the car based on user input.

To set the color value of a movie clip:

1 Select a movie clip on the Stage.
2 In the Property inspector, enter carColor as the instance name.
3 Create a button named color chip, place four instances of the button on the Stage, and name 

them red, green, blue, and black. 
4 Select Frame 1 in the main Timeline, and select Window > Development Panels > Actions.
5 To create a Color object that targets the carColor movie clip, add the following code to the 

Actions panel:
myColor = new Color(_root.carColor);

6 To make the blue button change the color of the carColor movie clip to blue, add the following 
code to the Actions panel:
_root.blue.onRelease = function(){

myColor.setRGB(0x0000ff)
}

The hexadecimal value 0x0000ff is blue. The following table displays the other colors you’ll use 
and their hexadecimal values: 
100 Chapter 5:  Creating Interaction with ActionScript



7 Repeat step 6 for the other buttons (red, green, and black) to change the color of the movie clip 
to the corresponding color. Your code should now look like this:
myColor = new Color(_root.carColor)
_root.blue.onRelease = function(){

myColor.setRGB(0x0000ff)
}
_root.red.onRelease = function(){

myColor.setRGB(0xff0000)
}
_root.green.onRelease = function(){

myColor.setRGB(0x00ff00)
}
_root.black.onRelease = function(){

myColor.setRGB(0x000000)
}

8 Select Control > Test Movie to change the color of the movie clip.
For more information about the methods of the Color class, see the Color class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

Creating sound controls  

You use the built-in Sound class to control sounds in a SWF file. To use the methods of the 
Sound class, you must first create a Sound object. Then you can use the attachSound() method 
to insert a sound from the library into a SWF file while the SWF file is running.

When the user releases the Play button, a song plays through the speaker.
Creating interactivity and visual effects 101



The Sound class’s setVolume() method controls the volume, and the setPan() method adjusts 
the left and right balance of a sound.

When the user drags the volume slider, the setVolume() method is called.

The following procedures show how to create sound controls like the ones shown above.

To attach a sound to a Timeline:  

1 Select File > Import to import a sound.
2 Select the sound in the library, right-click (Windows) or Control-click (Macintosh), and 

select Linkage.
3 Select Export for ActionScript and Export in First Frame; then give it the identifier 

a_thousand_ways.
4 Add a button to the Stage and name it playButton. 
5 Add a button to the Stage and name it stopButton. 
6 Add a movie clip to the Stage and name it speaker.
102 Chapter 5:  Creating Interaction with ActionScript



7 Select Frame 1 in the main Timeline, and select Window > Development Panels > Actions. Add 
the following code to the Actions panel:
speaker.stop();
song = new Sound();
song.onSoundComplete = function() {

speaker.stop();
};
song.attachSound("a_thousand_ways");
playButton.onRelease = function() {

song.start();
speaker.play();

};
stopButton.onRelease = function () {

song.stop();
speaker.stop();

}

This code first stops the speaker movie clip. It then creates a new Sound object (song) and 
attaches the sound whose linkage identifier is a_thousand_ways. Next, it defines an 
onSoundComplete handler for the song object, which stops the speaker movie clip once the 
sound has finished. Lastly, onRelease handlers associated with the playButton and 
stopButton objects start and stop the sound using the Sound.start() and Sound.stop() 
methods, and also play and stop the speaker movie clip.

8 Select Control > Test Movie to hear the sound.

To create a sliding volume control: 

1 Drag a button to the Stage.
2 Select the button and select Modify > Convert to Symbol. Be careful to select the movie 

clip behavior. 
This creates a movie clip with the button on its first frame.

3 Select the movie clip and select Edit > Edit Selected.
4 Select the button and select Window > Development Panels > Actions.
5 Enter the following actions:

on (press) {
    startDrag(this, false, left, top, right, bottom);
}
on (release) {
    stopDrag();
}

The startDrag() parameters left, top, right, and bottom are variables set in a clip action.
6 Select Edit > Edit Document to return to the main Timeline.
7 Select the movie clip on the Stage.
Creating interactivity and visual effects 103



8 Enter the following actions: 
onClipEvent (load) {
    top = _y;
    bottom = _y;
    left = _x;
    right = _x+100;
    _x += 100;
}
onClipEvent (enterFrame) {
    _parent.song.setVolume(_x-left);
}

9 Select Control > Test Movie to use the volume slider.

To create a sliding balance control:  

1 Drag a button to the Stage.
2 Select the button and select Insert > Convert to Symbol. Select the movie clip property.
3 Select the movie clip and select Edit > Edit Symbol.
4 Select the button and select Window > Development Panels > Actions.
5 Enter the following actions:

on (press) {
startDrag ("", false, left, top, right, bottom);
dragging = true;

}
on (release, releaseOutside) {

stopDrag ();
dragging = false;

}

The startDrag() parameters left, top, right, and bottom are variables set in a clip action.
6 Select Edit > Edit Document to return to the main Timeline.
7 Select the movie clip on the Stage.
8 Enter the following actions:

onClipEvent(load){
top=_y;
bottom=_y;
left=_x-50;
right=_x+50;
center=_x;

}

onClipEvent(enterFrame){
if (dragging==true){

_parent.setPan((_x-center)*2);
}

}

9 Select Control > Test Movie to use the balance slider.
For more information about the methods of the Sound class, see the Sound class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.
104 Chapter 5:  Creating Interaction with ActionScript



Detecting collisions    

The hitTest() method of the MovieClip class detects collisions in a SWF file. It checks to see if 
an object has collided with a movie clip and returns a Boolean value (true or false). 

There are two cases in which you would want to know whether a collision has occurred: to test if 
the user has arrived at a certain static area on the Stage, and to determine when one movie clip has 
reached another. With hitTest(), you can determine these results.

You can use the parameters of hitTest() to specify the x and y coordinates of a hit area on the 
Stage, or use the target path of another movie clip as a hit area. When specifying x and y, 
hitTest() returns true if the point identified by (x, y) is a nontransparent point. When a target 
is passed to hitTest(), the bounding boxes of the two movie clips are compared. If they overlap, 
hitTest() returns true. If the two boxes do not intersect, hitTest() returns false.

“True” appears in the text field whenever the mouse pointer is over the car body.

You can also use hitTest() to test a collision between two movie clips.

“True” appears in the text field whenever one movie clip touches the other.
Creating interactivity and visual effects 105



The following procedures show how to detect collision using the car example.

To perform collision detection between a movie clip and a point on the Stage: 

1 Create a new movie clip on the Stage, and enter box as the instance name in the 
Property inspector.

2 Create a dynamic text box on the Stage, and enter status as the instance name in the 
Property inspector.

3 Select the first frame on Layer 1 in the Timeline.
4 Select Window > Development Panels > Actions to open the Actions panel, if it is not 

already visible.
5 Add the following code in the Actions panel:

box.onEnterFrame = function () {
status.text = this.hitTest(_xmouse, _ymouse, true);

}

6 Select Control > Test Movie, and move the mouse over the movie clip to test the collision.
The value true is displayed whenever the mouse is over a nontransparent pixel.

To perform collision detection on two movie clips: 

1 Drag two movie clips to the Stage, and give them the instance names car and area.
2 Create a dynamic text box on the Stage, and enter status as the instance name in the 

Property inspector.
3 Select the first frame on Layer 1 in the Timeline. 
4 Select Window > Development Panels > Actions to open the Actions panel, if it is not 

already visible.
5 Enter the following code in the Actions panel:

area.onEnterFrame = function () {
status.text=this.hitTest(car);

}
car.onPress = function (){

this.startDrag(false);
updateAfterEvent();

}
car.onRelease = function () {

this.stopDrag();
}

6 Select Control > Test Movie, and drag the movie clip to test the collision detection.
Whenever the bounding box of the car intersects the bounding box of the area, the 
status is true.

For more information, see MovieClip.hitTest() in Chapter 12, “ActionScript Dictionary,” 
on page 205.
106 Chapter 5:  Creating Interaction with ActionScript



Creating a simple line drawing tool

You can use methods of the MovieClip class to draw lines and fills on the Stage as the SWF file 
plays. This allows you to create drawing tools for users and to draw shapes in the SWF file in 
response to events. The drawing methods are beginFill(), beginGradientFill(), clear(), 
curveTo(), endFill(), lineTo(), lineStyle(), and moveTo(). You can apply these methods 
to any movie clip instance (for instance, myClip.lineTo()) or to a level (_root.curveTo()).

The lineTo() and curveTo() methods let you draw lines and curves, respectively. You specify a 
line color, thickness, and alpha setting for a line or curve with the lineStyle() method. The 
moveTo() drawing method sets the current drawing position to x and y Stage coordinates 
you specify.

The beginFill() and beginGradientFill() methods fill a closed path with a solid or gradient 
fill, respectively, and endFill() applies the fill specified in the last call to beginFill() or 
beginGradientFill(). The clear() method erases what’s been drawn in the specified movie 
clip object.

For more information, see MovieClip.beginFill() on page 489, 
MovieClip.beginGradientFill() on page 490, MovieClip.clear() on page 493, 
MovieClip.curveTo() on page 496, MovieClip.endFill() on page 499, 
MovieClip.lineTo() on page 511, MovieClip.lineStyle() on page 510, and 
MovieClip.moveTo() on page 516.

To create a simple line drawing tool:

1 In a new document, create a button on the Stage, and enter clear_btn as the instance name in 
the Property inspector. 

2 Select Frame 1 in the Timeline; then select Window > Development Panels > Actions to open 
the Actions panel if it’s not already visible.

3 In the Actions panel, enter the following code:
_root.onMouseDown = function() {
    _root.lineStyle(5, 0xFF0000, 100);
    _root.moveTo(_root._xmouse, _root._ymouse);
    isDrawing = true;
};
_root.onMouseMove = function() {
    if (isDrawing == true) {
        _root.lineTo(_root._xmouse, _root._ymouse);
        updateAfterEvent();
    }
};
_root.onMouseUp = function() {
    isDrawing = false;
};
clear_btn.onRelease = function() {
    _root.clear();
};

4 Select Control > Test Movie to test the movie. Click and drag your mouse to draw a line on the 
Stage. Click the button to erase what you’ve drawn.
Creating interactivity and visual effects 107



Deconstructing a sample script   

In the sample SWF file zapper.swf (which you can view in Using Flash Help), when a user drags 
the bug to the electrical outlet, the bug falls and the outlet shakes. The main Timeline has only 
one frame and contains three objects: the ladybug, the outlet, and a reset button. Each of these 
objects is a movie clip instance.

There is one script in the SWF file; it’s attached to the bug instance, as shown in the following 
Actions panel:

The Actions panel with the script attached to the bug instance 

The bug’s instance name is bug, and the outlet’s instance name is zapper. In the script, the bug is 
referred to as this because the script is attached to the bug and the reserved word this refers to 
the object that contains it. 

Event handler

Action

Variable

if conditional statement

Event
108 Chapter 5:  Creating Interaction with ActionScript



There are two onClipEvent() handlers with two different events: load and enterFrame. The 
actions in the onClipEvent(load) statement execute only once, when the SWF file loads. The 
actions in the onClipEvent(enterFrame) statement execute every time the playhead enters a 
frame. Even in a one-frame SWF file, the playhead still enters that frame repeatedly and the script 
executes repeatedly. The following actions occur within each onClipEvent() handler:

onClipEvent(load) Two variables, initx and inity, are defined to store the initial x and y 
positions of the bug movie clip instance. A function is defined and assigned to the onRelease 
event of the Reset instance. This function is called each time the mouse button is pressed and 
released on the Reset button. The function places the ladybug back in its starting position on the 
Stage, resets its rotation and alpha values, and resets the zapped variable to false.

onClipEvent(enterFrame) A conditional if statement uses the hitTest() method to check 
whether the bug instance is touching the outlet instance (_root.zapper). There are two possible 
outcomes of the evaluation, true or false: 
onClipEvent (load) {

initx = _x;
inity = _y;
_root.Reset.onRelease = function() {

zapped = false;
_x = initx;
_y = inity;
_alpha = 100
_rotation = 0;

};
}

If the hitTest() method returns true, the stopDrag() method is called, the zapper variable is 
set to true, the alpha and rotation properties are changed, and the zapped instance is told to play.

If the hitTest() method returns false, none of the code within the curly braces ({}) 
immediately following the if statement runs.

There are two on() handlers attached to the bug instance with two different events: press and 
release. The actions in the on(press) statement execute when the mouse button is pressed over 
the bug instance. The actions in the on(release) statement execute when the mouse button is 
released over the bug instance. The following actions occur within each onClipEvent() handler:

on(press) A startDrag() action makes the ladybug draggable. Because the script is attached to 
the bug instance, the keyword this indicates that it is the bug instance that is draggable:
on (press) {

this.startDrag();
}

on(release) A stopDrag() action stops the drag action:
on (release) {

stopDrag();
}

To watch the SWF file play, see ActionScript Reference Guide Help.
Deconstructing a sample script 109



110 Chapter 5:  Creating Interaction with ActionScript



P
A

R
T

 III
PART III
Working with Objects and Classes
This part discusses the Macromedia Flash runtime object model and its capabilities, focusing on 
working with movie clips and text. This part also describes how to create your own classes and 
interfaces with ActionScript 2.0.

Chapter 6: Using the Built-In Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Chapter 7: Working with Movie Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 8: Working with Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Chapter 9: Creating Classes with ActionScript 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155





CHAPTER 6
Using the Built-In Classes
In addition to the ActionScript core language elements and constructs (for and while loops, for 
example) and primitive data types (numbers, strings, and arrays) described earlier (see 
“ActionScript Basics” on page 25), ActionScript also provides a number of built-in classes, or 
complex data types. These classes provide you with a variety of scripting features and functionality. 

Some of these classes are based on the ECMAScript specification and are referred to as core 
ActionScript classes. These classes include the Array, Boolean, Date, and Math classes. For more 
information, see “Core classes” on page 115.)

The rest of the built-in ActionScript classes are specific to Macromedia Flash and Flash Player 
object model. To understand the distinction between core ActionScript classes and those specific 
to Flash, consider the distinction between core and client-side JavaScript: just as client-side 
JavaScript classes provide control over the client environment (the web browser and web page 
content), the classes specific to Flash provide runtime control over the appearance and behavior of 
a Flash application.

This chapter introduces the built-in ActionScript classes, describes common tasks you can 
perform with these classes, and provides code examples. For an overview of these classes, see 
“Overview of built-in classes” on page 115. For an overview of working with classes and objects in 
object-oriented programming, see “About classes and instances” on page 114.
113



About classes and instances

In object-oriented programming, a class defines a category of object. A class describes the 
properties (data) and behavior (methods) for an object, much like an architectural blueprint 
describes the characteristics of a building. To use the properties and methods defined by a class, 
you must first create an instance of that class. The relationship between an instance and its class is 
similar to the relationship between a house and its architectural blueprints. 

Creating a new object

To create an instance of an ActionScript class, use the new operator to invoke the class’s 
constructor function. The constructor function always has the same name as the class, and returns 
an instance of the class, which you typically assign to a variable.  
For example, the following code creates a new Sound object.
var song:Sound= new Sound();

In some cases, you don’t need to create an instance of a class to use it. For more information, see 
“About class (static) members” on page 114.

Accessing object properties

Use the dot (.) operator to access the value of a property in an object. Put the name of the object 
on the left side of the dot, and put the name of the property on the right side. For example, in the 
following statement, myObject is the object and name is the property: 
myObject.name

The following code creates a new TextField object, and then sets its autoSize property to true.
var my_text = new TextField();
my_text.autoSize = true;

You can also use the array access operator ([]) to access the properties of an object. See “Dot and 
array access operators” on page 49.

Calling object methods

You call an object’s method by using the dot (.) operator followed by the method. For example, 
the following code creates a new Sound object and calls its setVolume() method. 
mySound = new Sound(this);
mySound.setVolume(50);

About class (static) members

Some built-in ActionScript classes have what are called class members (or static members). Class 
members (properties and methods) are accessed or invoked not on an instance of the class but on 
the class name itself. That is, you don’t create an instance of the class in order to use those 
properties and methods. 

For example, all of the properties of the Math class are static. The following code invokes the 
max() method of the Math class to determine the larger of two numbers.
var largerNumber = Math.max(10, 20);
114 Chapter 6:  Using the Built-In Classes



Overview of built-in classes

This section lists all the ActionScript classes, including a brief description of each class and cross-
references to other relevant sections of the documentation.

Core classes

The core ActionScript classes are those borrowed directly from ECMAScript. In the Actions 
toolbox, these classes are located in the Built-in Classes > Core subfolder.

Class Description

Arguments An array that contains the values that were passed as parameters to any 
function. See the Arguments class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205.

Array The Array class contains methods and properties for working with array 
objects. See the Array class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Boolean The Boolean class is a wrapper for Boolean (true or false) values. See the 
Boolean class entry in Chapter 12, “ActionScript Dictionary,” on page 205.

Button The Button class provides methods and properties for working with button 
objects. See the Button class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Date The Date class provides access to date and time values relative to universal 
time (Greenwich Mean Time) or relative to the operating system on which 
Flash Player is running. See the Date class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205.

Error The Error class contains information about errors that occur in your scripts. 
You typically use the throw statement to generate an error condition, which you 
can then handle using a try..catch..finally statement. See 
try..catch..finally and the Error class entries in Chapter 12, “ActionScript 
Dictionary,” on page 205.

Function The Function class is the class representation of all ActionScript functions, 
including those native to ActionScript and those that you define. See the 
Function class entry in Chapter 12, “ActionScript Dictionary,” on page 205.

Math The Math class lets you access and manipulate mathematical constants and 
functions. All of the properties and methods of the Math class are static, and 
must be called with the syntax Math.method(parameter) or Math.constant. See 
the Math class entry in Chapter 12, “ActionScript Dictionary,” on page 205.

Number The Number class is a wrapper for the primitive number data type. See the 
Number class entry in Chapter 12, “ActionScript Dictionary,” on page 205.

Object The Object class is at the root of the ActionScript class hierarchy; all other 
classes inherit its methods and properties. See the Object class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

String The String class is a wrapper for the string primitive data type, which allows you 
to use the methods and properties of the String object to manipulate primitive 
string value types. See the String class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205.
Overview of built-in classes 115



Classes specific to Flash Player

The following tables list the classes that are specific to Flash Player and the Flash runtime model. 
These classes are typically split into four categories: movie classes (which provide overall control of 
SWF files and Flash Player), media classes (for working with sound and video), client-server 
classes (for working with XML and other external data sources), and authoring classes (which 
provide control over the Flash authoring environment). 
Note: This categorization affects the locations of the classes in the Actions toolbox, but not how you 
use the classes.

Movie classes

The movie classes provide control over most visual elements in a SWF file, including movie clips, 
text fields, and buttons. The movie classes are located in the Actions toolbox in the Built-in 
Classes > Movie subfolder.

Class Description

Accessibility The Accessibility class manages communication between SWF files and 
screen reader applications. You use the methods of this class together with 
the global _accProps property to control accessible properties for movie clips, 
buttons, and text fields at runtime. See _accProps and the Accessibility class 
entries in Chapter 12, “ActionScript Dictionary,” on page 205.

Button Every button in a SWF file is an instance of the Button class. The Button 
class provides methods, properties, and event handlers for working with 
buttons. See the Button class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Color The Color class lets you get and set RGB color values for movie clip objects. 
For more information, see the Color class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205. For an example of using the Color class to change 
the color of movie clips, see “Setting color values” on page 100.

ContextMenu The ContextMenu class lets you control the contents of the Flash Player 
context menu. You can associate separate ContextMenu objects with 
MovieClip, Button, or TextField objects by using the menu property available 
to those classes. You can also add custom menu items to a ContextMenu 
object by using the ContextMenuItem class. See the ContextMenu class and 
ContextMenuItem class entries in Chapter 12, “ActionScript Dictionary,” 
on page 205.

ContextMenuItem The ContextMenuItem class lets you create new menu items that appear in 
the Flash Player context menu. You add new menu items that you create with 
this class to the Flash Player context menu by using the ContextMenu class. 
See the ContextMenu class and ContextMenuItem class entries in 
Chapter 12, “ActionScript Dictionary,” on page 205.

Key The Key class provides methods and properties for getting information about 
the keyboard and keypresses. For more information, see the Key class entry 
in Chapter 12, “ActionScript Dictionary,” on page 205. For an example of 
capturing keypresses to create an interactive SWF file, see “Capturing 
keypresses” on page 96.
116 Chapter 6:  Using the Built-In Classes



LocalConnection The LocalConnection class lets two SWF files running on the same computer 
communicate. See the LocalConnection class entry in Chapter 12, 
“ActionScript Dictionary,” on page 205.

Mouse The Mouse class provides control over the mouse in a SWF file; for example, 
this class lets you hide or show the mouse pointer. For more information, see 
the Mouse class entry in Chapter 12, “ActionScript Dictionary,” on page 205. 
For an example of using the Mouse class, see “Creating a custom mouse 
pointer” on page 94.

MovieClip Every movie clip in a Flash movie is an instance of the MovieClip class. You 
use the methods and properties of this class to control movie clip objects. 
See Chapter 7, “Working with Movie Clips,” on page 121 and the MovieClip 
class entry in Chapter 12, “ActionScript Dictionary,” on page 205.

MovieClipLoader The MovieClipLoader class lets you track the download progress of SWF 
and JPEG files using an event listener mechanism. See “Preloading SWF 
and JPEG files” on page 199 and the MovieClipLoader class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

PrintJob The PrintJob class lets you print content that is rendered dynamically and 
multipage documents. See the PrintJob class entry in Chapter 12, 
“ActionScript Dictionary,” on page 205 and “Using the ActionScript PrintJob 
class” in Using Flash Help.

Selection The Selection class lets you get and set text field focus, text field selection 
spans, and text field insertion points. See the Selection class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

SharedObject The SharedObject class provides local data storage on the client computer. 
See the SharedObject class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Stage The Stage class provides information about a SWF file’s dimensions, 
alignment, and scale mode, and reports Stage resize events. See the Stage 
class entry in Chapter 12, “ActionScript Dictionary,” on page 205.

System The System class provides information about Flash Player and the system on 
which Flash Player is running (for example, screen resolution and current 
system language). It also lets you show or hide the Flash Player Settings 
panel and modify SWF file security settings. See the System class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

TextField The TextField class provides control over dynamic and input text fields. See 
Chapter 8, “Working with Text,” on page 135 and the TextField class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

TextField.StyleSheet The TextField.StyleSheet class (an “inner class” of the TextField class) lets 
you create and apply CSS text styles to HTML- or XML-formatted text. See 
“Formatting text with Cascading Style Sheets” on page 139 and the 
TextField.StyleSheet class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

TextFormat The TextFormat class lets you apply formatting styles to characters or 
paragraphs in a TextField object. See “Using the TextFormat class” 
on page 137 and the TextFormat class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205.

Class Description
Overview of built-in classes 117



Media classes

The media classes provide playback control of sound and video in a SWF file, as well as access to 
the user’s microphone and camera, if they are installed. These classes are located in the Built-In 
Classes > Media subfolder in the Actions toolbox.

Client-server classes

The following table lists classes that let you send and receive data from external sources or 
communicate with application servers over FTP, HTTP, or HTTPS. 
Note: In Flash Player 7, a SWF file can load data only from exactly the same domain from which it 
was served. For more information, see “Flash Player security features” on page 188 and “About 
allowing cross-domain data loading” on page 190.

Class Description

Camera The Camera class provides access to the user’s camera, if one is installed. 
When used with Flash Communication Server MX, your SWF file can 
capture, broadcast, and record images and video from a user’s camera. See 
the Camera class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Microphone The Microphone class provides access to the user’s microphone, if one is 
installed. When used with Flash Communication Server MX, your SWF file 
can broadcast and record audio from a user’s microphone. See the 
Microphone class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

NetConnection The NetConnection class is used to establish a local streaming connection for 
playing a Flash Video (FLV) file from an HTTP address or from the local file 
system. For more information, see the NetConnection class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205. For more information on 
playing FLV files over the Internet, see “Playing back external FLV files 
dynamically” on page 197.

NetStream The NetStream class is used to control playback of FLV files. For more 
information, see the NetStream class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205. For more information on playing FLV files over the 
Internet, see “Playing back external FLV files dynamically” on page 197.

Sound The Sound class provides control over sounds in a SWF file. For more 
information, see the Sound class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205. For an example of using the Sound class to create 
volume and balance controllers, see “Creating sound controls” on page 101.

Video The Video class is used to display video objects in a SWF file. See the Video 
class entry in Chapter 12, “ActionScript Dictionary,” on page 205.
118 Chapter 6:  Using the Built-In Classes



These classes are located in the Built-In Classes > Client/Server subfolder in the Actions panel.

Authoring classes

The authoring classes are available only in the Flash authoring environment. These classes are 
found in the Built-In Classes > Authoring subfolder in the Actions toolbox.

Class Description

LoadVars The LoadVars class is an alternative to the loadVariables() action for 
transferring variables between a SWF file and a server in name-value pairs. 
See “Using the LoadVars class” on page 180 and the LoadVars class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

XML The XML class extends the XMLNode class and provides methods, 
properties, and event handlers for working with XML-formatted data, 
including loading and parsing external XML, creating new XML documents, 
and navigating XML document trees. See “Using the XML class” on page 181 
and the XML class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

XMLNode The XMLNode class represents a single node in an XML document tree. It is 
the XML class’s superclass. See the XMLNode class entry in Chapter 12, 
“ActionScript Dictionary,” on page 205.

XMLSocket The XMLSocket class lets you create a persistent socket connection with 
another computer for low-latency data transfer, like that required for real-time 
chat applications. See “Using the XMLSocket class” on page 184 and the 
XMLSocket class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Class Description

CustomActionsg The CustomActions class lets you manage any custom actions that are 
registered with the authoring tool. See the CustomActions class entry in 
Chapter 12, “ActionScript Dictionary,” on page 205.

Live Preview The Live Preview feature (listed under Built-in Classes in the Actions toolbox, 
though not a class) provides a single function called onUpdate that is used by 
component developers. See onUpdate in Chapter 12, “ActionScript 
Dictionary,” on page 205.
Overview of built-in classes 119



120 Chapter 6:  Using the Built-In Classes



CHAPTER 7
Working with Movie Clips
Movie clips are self-contained miniature SWF files that run independently of each other and the 
Timeline that contains them. For example, if the main Timeline has only one frame and a movie 
clip in that frame has ten frames, each frame in the movie clip plays when you play the main SWF 
file. A movie clip can, in turn, contain other movie clips, or nested clips. Movie clips nested in this 
way have a hierarchical relationship, where the parent clip contain one or more child clips.      

Every movie clip instance has a name, called its instance name, that uniquely identifies it as an 
object that can be controlled with ActionScript. Specifically, the instance name identifies it as an 
object of the MovieClip class type. You use the properties and methods of the MovieClip class to 
control the appearance and behavior of movie clips at runtime. 

You can think of movie clips as autonomous objects that can respond to events, send messages to 
other movie clip objects, maintain their state, and manage their child clips. In this way, movie 
clips provide the foundation of component-based architecture in Macromedia Flash MX 2004 and 
Macromedia Flash MX Professional 2004. In fact, the components available in the Components 
panel (Window > Development Panels > Components) are sophisticated movie clips that have 
been designed and programmed to look and behave in certain ways. For information on creating 
components, see Using Components. 

About controlling movie clips with ActionScript

You can use global ActionScript functions or the methods of the MovieClip class to perform tasks 
on movie clips. Some MovieClip methods perform the same tasks as functions of the same name; 
other MovieClip methods, such as hitTest() and swapDepths(), don’t have corresponding 
function names. 

The following example illustrates the difference between using a method and using a function. 
Both statements duplicate the instance my_mc, name the new clip newClip, and place it at a depth 
of 5. 
my_mc.duplicateMovieClip("newClip", 5);
duplicateMovieClip("my_mc", "newClip", 5);

When a function and a method offer similar behaviors, you can choose to control movie clips by 
using either one. The choice depends on your preference and familiarity with writing scripts in 
ActionScript. Whether you use a function or a method, the target Timeline must be loaded in 
Flash Player when the function or method is called.
121



To use a method, invoke it by using the target path of the instance name, a dot, and then the 
method name and parameters, as in the following statements:
myMovieClip.play();
parentClip.childClip.gotoAndPlay(3);

In the first statement, play() moves the playhead in the myMovieClip instance. In the second 
statement, gotoAndPlay() sends the playhead in childClip (which is a child of the instance 
parentClip) to Frame 3 and continues to move the playhead.

Global functions that control a Timeline have a target parameter that allows you to specify the 
target path to the instance that you want to control. For example, in the following script 
startDrag() targets the customCursor instance and makes it draggable:
on(press){

startDrag("customCursor");
}

The following functions target movie clips: loadMovie(), unloadMovie(), loadVariables(), 
setProperty(), startDrag(), duplicateMovieClip(), and removeMovieClip(). To use 
these functions, you must enter a target path for the function’s target parameter to indicate the 
target of the function.  

The following MovieClip methods can control movie clips or loaded levels and do not have 
equivalent functions: MovieClip.attachMovie(), MovieClip.createEmptyMovieClip(), 
MovieClip.createTextField(), MovieClip.getBounds(), MovieClip.getBytesLoaded(), 
MovieClip.getBytesTotal(), MovieClip.getDepth(), MovieClip.getInstanceAtDepth(), 
MovieClip.getNextHighestDepth(), MovieClip.globalToLocal(), 
MovieClip.localToGlobal(), MovieClip.hitTest(), MovieClip.setMask(), 
MovieClip.swapDepths().  

For more information about these functions and methods, see Chapter 12, “ActionScript 
Dictionary,” on page 205.

Calling multiple methods on a single movie clip

You can use the with statement to address a movie clip once, and then execute a series of methods 
on that clip. The with statement works on all ActionScript objects (for example, Array, Color, 
and Sound), not just movie clips. 

The with statement takes an object as a parameter. The object you specify is added to the end of 
the current target path. All actions nested inside a with statement are carried out inside the new 
target path, or scope. For example, in the following script, the with statement is passed the object 
donut.hole to change the properties of hole:
with (donut.hole){

_alpha = 20;
_xscale = 150;
_yscale = 150;

}

The script behaves as if the statements inside the with statement were called from the Timeline of 
the hole instance. The above code is equivalent to the following:
donut.hole._alpha = 20;
donut.hole._xscale = 150;
donut.hole._yscale = 150;
122 Chapter 7:  Working with Movie Clips



The above code is also equivalent to the following:
with (donut){

hole._alpha = 20;
hole._xscale = 150;
hole._yscale = 150;

}

Loading and unloading additional SWF files

To play additional SWF files without closing Flash Player, or to switch SWF files without loading 
another HTML page, you can use the global loadMovie() function or loadMovie() method of 
the MovieClip class. You can also use loadMovie() to send variables to a CGI script, which 
generates a SWF file as its CGI output. When you load a SWF file, you can specify a level or 
movie clip target into which the SWF file will load. If you load a SWF file into a target, the 
loaded SWF file inherits the properties of the targeted movie clip. Once the movie is loaded, you 
can change those properties.      

The unloadMovie() method removes a SWF file previously loaded by loadMovie(). Explicitly 
unloading SWF files with unloadMovie() ensures a smooth transition between SWF files and 
may decrease the memory required by Flash Player. 

Use loadMovie() to do any of the following:

• Play a sequence of banner ads that are SWF files by placing a loadMovie() function at the end 
of each SWF file to load the next SWF file.

• Develop a branching interface that lets the user choose among several different SWF files.
• Build a navigation interface with navigation controls in level 0 that load other levels. Loading 

levels produces smoother transitions than loading new HTML pages in a browser.

For more information on loading movies, see “Loading external SWF and JPEG files” 
on page 194.

Specifying a root Timeline for loaded SWF files

The _root ActionScript property specifies or returns a reference to the root Timeline of a SWF 
file. If a SWF file has multiple levels, the root Timeline is on the level that contains the currently 
executing script. For example, if a script in level 1 evaluates _root, _level1 is returned. 
However, the Timeline specified by _root can change depending on whether a SWF file is 
running independently (in its own level) or has been loaded into a movie clip instance by a 
loadMovie() call.  

For example, consider a file named container.swf that has a movie clip instance named target_mc 
on its main Timeline. The container.swf file declares a variable named userName on its main 
Timeline; the same script then loads another file called contents.swf into the movie clip 
target_mc.
// In container.swf:
_root.userName = "Tim";
target_mc.loadMovie("contents.swf");

The loaded SWF file, contents.swf, also declares a variable named userName on its root Timeline.
// In content.swf:
_root.userName = "Mary";
Specifying a root Timeline for loaded SWF files 123



When contents.swf loads into the movie clip in container.swf, the value of userName that’s 
attached to the root Timeline of the hosting SWF file (container.swf ) would be set to "Mary". 
This could cause code in container.swf (as well as contents.swf ) to malfunction.

To force _root to always evaluate to the Timeline of the loaded SWF file, rather than the actual 
root Timeline, use the _lockroot property. This property can be set either by the loading SWF 
file or the SWF file being loaded. When _lockroot is set to true on a movie clip instance, that 
movie clip will act as _root for any SWF file loaded into it. When _lockroot is set to true 
within a SWF file, that SWF file will act as its own root, no matter what other SWF file loads it. 
Any movie clip, and any number of movie clips, can set _lockroot to true. By default, this 
property is false.

For example, the author of container.swf could attach the following code to the target_mc movie 
clip: 
// Attached to target_mc movie clip:
onClipEvent (load) {

this._lockroot = true;
}

This would ensure that references to _root in contents.swf—or any SWF file loaded into 
target_mc—will refer to its own Timeline, not the actual root Timeline of container.swf.

Equivalently, the author of contents.swf could add the following code to its main Timeline.
// Within contents.swf:
this._lockroot = true;

This would ensure that no matter where contents.swf is loaded, any reference it makes to _root 
will refer to its own main Timeline, not that of the hosting SWF file.

For more information, see MovieClip._lockroot on page 515.

Loading JPEG files into movie clips

You can use the loadMovie() function, or the MovieClip method of the same name, to load 
JPEG image files into a movie clip instance. You can also use the loadMovieNum() function to 
load a JPEG file into a level.  

When you load an image into a movie clip, the upper left corner of the image is placed at the 
registration point of the movie clip. Because this registration point is often the center of the movie 
clip, the loaded image may not appear centered. Also, when you load an image to a root Timeline, 
the upper left corner of the image is placed on the upper left corner of the Stage. The loaded 
image inherits rotation and scaling from the movie clip, but the original content of the movie clip 
is removed. 

For more information, see “Loading external SWF and JPEG files” on page 194, loadMovie() 
on page 420, MovieClip.loadMovie() on page 512, and loadMovieNum() on page 421.
124 Chapter 7:  Working with Movie Clips



Changing movie clip position and appearance

To change the properties of a movie clip as it plays, write a statement that assigns a value to a 
property or use the setProperty() function. For example, the following code sets the rotation of 
instance mc to 45:  
mc._rotation = 45;

This is equivalent to the following code, which uses the setProperty() function:
setProperty("mc", _rotation, 45);

Some properties, called read-only properties, have values that you can read but not set. (These 
properties are specified as read-only in their ActionScript Dictionary entries.) The following are 
read-only properties: _currentframe, _droptarget, _framesloaded, _parent, _target, 
_totalframes, _url, _xmouse, and _ymouse.

You can write statements to set any property that is not read-only. The following statement sets 
the _alpha property of the movie clip instance wheel, which is a child of the car instance:
car.wheel._alpha = 50;

In addition, you can write statements that get the value of a movie clip property. For example, the 
following statement gets the value of the _xmouse property on the current level’s Timeline and 
sets the _x property of the customCursor instance to that value:
onClipEvent(enterFrame){

customCursor._x = _root._xmouse;
}

This is equivalent to the following code, which uses the getProperty() function:
onClipEvent(enterFrame){

customCursor._x = getProperty(_root, _xmouse);
}

The _x, _y, _rotation, _xscale, _yscale, _height, _width, _alpha, and _visible properties 
are affected by transformations on the movie clip’s parent, and transform the movie clip and any 
of the clip’s children. The _focusrect, _highquality, _quality, and _soundbuftime 
properties are global; they belong only to the level 0 main Timeline. All other properties belong to 
each movie clip or loaded level. 

For a list of movie clip properties, see “Property summary for the MovieClip class” on page 484.

Dragging movie clips

You can use the global startDrag() function or the MovieClip.startDrag() method to make 
a movie clip draggable. For example, you can make a draggable movie clip for games, drag-and-
drop functions, customizable interfaces, scroll bars, and sliders.  

A movie clip remains draggable until explicitly stopped by stopDrag(), or until another movie 
clip is targeted with startDrag(). Only one movie clip can be dragged at a time.

To create more complicated drag-and-drop behavior, you can evaluate the _droptarget property 
of the movie clip being dragged. For example, you might examine the _droptarget property to 
see if the movie clip was dragged to a specific movie clip (such as a “trash can” movie clip) and 
then trigger another action. For detailed information, see startDrag() on page 645 or 
MovieClip.startDrag() on page 534.
Dragging movie clips 125



Creating movie clips at runtime

Not only can you create movie clip instances in the Flash authoring environment, but you can 
also create them at runtime. ActionScript provides three ways to create new movie clips 
at runtime:

• By creating a new, empty movie clip instance
• By duplicating an existing movie clip instance
• By attaching an instance of a movie clip library symbol to the Stage

Each movie clip instance you create at runtime must have an instance name and a depth 
(stacking, or z-order) value. The depth you specify determines how the new clip overlaps with 
other clips on the same Timeline. (See “Managing movie clip depths” on page 129.)

Creating an empty movie clip

To create an empty movie clip on the Stage, use the createEmptyMovieClip() method of the 
MovieClip class. This method creates a movie clip as a child of the clip that calls the method. The 
registration point for a newly created empty movie clip is the upper left corner.

For example, the following code creates a new child movie clip named new_mc at a depth of 10 in 
the movie clip named parent_mc.
parent_mc.createEmptyMovieClip("new_mc", 10);

The following code creates a new movie clip named canvas_mc on the root Timeline of the SWF 
file in which the script is run, and then invokes loadMovie() to load an external JPEG file 
into itself.
_root.createEmptyMovieClip("canvas_mc", 10);
canvas_mc.loadMovie("flowers.jpg");

For more information, see MovieClip.createEmptyMovieClip() on page 494.

Duplicating or removing a movie clip

To duplicate or remove movie clip instances, use the duplicateMovieClip() or 
removeMovieClip() global functions, or the MovieClip class methods of the same name. The 
duplicateMovieClip() method creates a new instance of an existing movie clip instance, assigns 
it a new instance name, and gives it a depth, or z-order. A duplicated movie clip always starts at 
Frame 1 even if the original movie clip was on another frame when duplicated, and is always in 
front of all previously defined movie clips placed on the Timeline.     

To delete a movie clip you created with duplicateMovieClip(), use removeMovieClip(). 
Duplicated movie clips are also removed if the parent movie clip is deleted. 

For more information, see duplicateMovieClip() on page 373 and removeMovieClip() 
on page 605.
126 Chapter 7:  Working with Movie Clips



Attaching a movie clip symbol to the Stage

The last way to create movie clip instances at runtime is to use attachMovie(). The 
attachMovie() method attaches an instance of a movie clip symbol in the SWF file’s library to 
the Stage. The new clip becomes a child clip of the clip that attached it. 

To use ActionScript to attach a movie clip symbol from the library, you must export the symbol 
for ActionScript and assign it a unique linkage identifier. To do this, you use the Linkage 
Properties dialog box.  

By default, all movie clips that are exported for use with ActionScript load before the first frame 
of the SWF file that contains them. This can create a delay before the first frame plays. When you 
assign a linkage identifier to an element, you can also specify whether this content should be 
added before the first frame. If it isn’t added in the first frame, you must include an instance of it 
in some other frame of the SWF file; if you don’t, the element will not be exported to the 
SWF file.   

To assign a linkage identifier to movie clip:

1 Select Window > Library to open the Library panel.
2 Select a movie clip in the Library panel.
3 In the Library panel, select Linkage from the Library panel options menu.

The Linkage Properties dialog box appears.
4 For Linkage, select Export for ActionScript.
5 For Identifier, enter an ID for the movie clip.

By default, the identifier is the same as the symbol name.
6 You can optionally assign an ActionScript 2.0 class to the movie clip symbol. (See “Assigning a 

class to a movie clip symbol” on page 133.)
7 If you don’t want the movie clip to load before the first frame, deselect the Export in First 

Frame option.
If you deselect this option, place an instance of the movie clip on the frame of the Timeline 
where you’d like it to be available. For example, if the script you’re writing doesn’t reference the 
movie clip until Frame 10, then place an instance of the symbol at or before that frame in 
the Timeline.

8 Click OK.
After you’ve assigned a linkage identifier to a movie clip, you can attach an instance of the symbol 
to the Stage at runtime by using attachMovie().
Creating movie clips at runtime 127



To attach a movie clip to another movie clip:

1 Assign a linkage identifier to a movie clip library symbol, as described above.
2 With the Actions panel open (Window > Development Panels > Actions), select a frame in 

the Timeline.
3 In the Actions panel’s Script pane, type the name of the movie clip or level to which you want 

to attach the new movie clip. For example, to attach the movie clip to the root Timeline, 
type _root.

4 In the Actions toolbox (at the left of the Actions panel), click the Built-in Classes category, the 
Movie category, and the MovieClip category, and double-click attachMovie().

5 Using the code hints that appear as a guide, enter values for the following parameters:
■ For idName, specify the identifier you entered in the Linkage Properties dialog box.
■ For newName, enter an instance name for the attached clip so that you will be able to 

target it. 
■ For depth, enter the level at which the duplicate movie clip will be attached to the movie 

clip. Each attached movie clip has its own stacking order, with level 0 as the level of the 
originating movie clip. Attached movie clips are always on top of the original movie clip. 
Here is an example:
myMovieClip.attachMovie("calif", "california", 10);

For more information, see MovieClip.attachMovie() on page 488.

Adding parameters to dynamically created movie clips

When you create or duplicate a movie clip dynamically using MovieClip.attachMovie() and 
MovieClip.duplicateMovie(), you can populate the movie clip with parameters from another 
object. The initObject parameter of attachMovie() and duplicateMovie() allows 
dynamically created movie clips to receive clip parameters. The initObject parameter 
is optional.

For more information, see MovieClip.attachMovie() on page 488 and 
MovieClip.duplicateMovieClip() on page 498. 

To populate a dynamically created movie clip with parameters from a specified object, do 
one of the following:

• Use the following syntax with attachMovie():
myMovieClip.attachMovie(idName, newName, depth [, initObject])

• Use the following syntax with duplicateMovie():
myMovieClip.duplicateMovie(idName, newName, depth [, initObject])

The initObject parameter specifies the name of the object whose parameters you want to use to 
populate the dynamically created movie clip.
128 Chapter 7:  Working with Movie Clips



To populate a movie clip with parameters by using attachMovie(): 

1 In a new Flash document, create a movie clip symbol by selecting Insert > New Symbol. Type 
dynamic in the Symbol Name text box and select the Movie Clip behavior.

2 Inside the symbol, create a dynamic text field on the Stage with an instance name of name_txt.
3 Select the first frame of the movie clip’s Timeline and open the Actions panel (Window > 

Development Panels > Actions). 
4 Create a new variable called name, and then assign its value to the text property of name_txt, 

as shown here:
var name:String;
name_txt.text = name;

5 Select Edit > Edit Document to return to the main Timeline.
6 Select the movie clip symbol in the library and select Linkage Properties from the Library panel’s 

options menu.
The Linkage Properties dialog box appears.

7 Select the Export for ActionScript option, and click OK.
8 Select the first frame of the main Timeline and add the following code to the Actions panel’s 

Script pane:
_root.attachMovie("dynamic", "newClipName", 10, {name:"Erick"});

9 Test the movie (Control > Test Movie). The name you specified in the attachMovie() call 
appears inside the new movie clip’s text field.

Managing movie clip depths

Every movie clip has its own z-order space that determines how objects overlap within its parent 
SWF file or movie clip. Every movie clip has an associated depth value, which determines if it will 
render in front of or behind other movie clips in the same movie clip Timeline. When you create 
a movie clip at runtime using MovieClip.attachMovie(), 
MovieClip.duplicateMovieClip(), or MovieClip.createEmptyMovieClip(), you always 
specify a depth for the new clip as a method parameter. For example, the following code attaches 
a new movie clip to the Timeline of a movie clip named container_mc with a depth value of 10. 
container_mc.attachMovie("symbolID", "clip_1", 10);

This creates a new movie clip with a depth of 10 within the z-order space of container_mc.

For example, the following code attaches two new movie clips to container_mc. The first clip, 
named clip_1, will render behind clip_2, because it was assigned a lower depth value.
container_mc.attachMovie("symbolID", "clip_1", 10);
container_mc.attachMovie("symbolID", "clip_2", 15);

Depth values for movie clips can range from -16384 to 1048575.

The MovieClip class provides several methods for managing movie clip depths: see 
MovieClip.getNextHighestDepth() on page 504, MovieClip.getInstanceAtDepth() 
on page 503, MovieClip.getDepth() on page 503, and MovieClip.swapDepths() 
on page 535.
Managing movie clip depths 129



Determining the next highest available depth

To determine the next highest available depth within a movie clip, use 
MovieClip.getNextHighestDepth(). The integer value returned by this method indicates the 
next available depth that will render in front of all other objects in the movie clip. 

The following code creates a new movie clip, with a depth value of 10, on the Timeline of the 
movie clip named menus_mc. It then determines the next highest available depth in that same 
movie clip, and creates a new movie clip at that depth.
menus_mc.attachMovie("menuClip","file_menu", 10);
var nextDepth = menus_mc.getNextHighestDepth();
menus_mc.attachMovie("menuClip", "edit_menu", nextDepth);

In this case, the variable named nextDepth contains the value 11, because that’s the next highest 
available depth for the movie clip menus_mc.

To obtain the current highest occupied depth, subtract 1 from the value returned by 
getNextHighestDepth(), as shown in the next section (see “Determining the instance at a 
particular depth” on page 130).

Determining the instance at a particular depth

To determine the instance at particular depth, use MovieClip.getInstanceAtDepth(). This 
method returns a reference to the instance at the specified depth. 

The following code combines getNextHighestDepth() and getInstanceAtDepth() to 
determine the movie clip at the (current) highest occupied depth on the root Timeline.
var highestOccupiedDepth = _root.getNextHighestDepth() - 1;
var instanceAtHighestDepth = _root.getInstanceAtDepth(highestOccupiedDepth);

For more information, see MovieClip.getInstanceAtDepth() on page 503.

Determining the depth of an instance

To determine the depth of a movie clip instance, use MovieClip.getDepth().  

The following code iterates over all the movie clips on a SWF file’s main Timeline and displays 
each clip’s instance name and depth value in the Output panel.
for(each in _root) {

var obj = _root[each];
if(obj instanceof MovieClip) {

var objDepth = obj.getDepth();
trace(obj._name + ":" + objDepth)

}
}

For more information, see MovieClip.getDepth() on page 503.

Swapping movie clip depths

To swap the depths of two movie clips on the same Timeline, use MovieClip.swapDepths(). For 
more information, see MovieClip.swapDepths() on page 535.
130 Chapter 7:  Working with Movie Clips



Drawing shapes with ActionScript

You can use methods of the MovieClip class to draw lines and fills on the Stage. This allows you 
to create drawing tools for users and to draw shapes in the movie in response to events. The 
drawing methods are beginFill(), beginGradientFill(), clear(), curveTo(), endFill(), 
lineTo(), lineStyle(), and moveTo(). 

You can use the drawing methods with any movie clip. However, if you use the drawing methods 
with a movie clip that was created in authoring mode, the drawing methods execute before the 
clip is drawn. In other words, content that is created in authoring mode is drawn on top of 
content drawn with the drawing methods.

You can use movie clips with drawing methods as masks; however, as with all movie clip masks, 
strokes are ignored. 

To draw a shape:

1 Use createEmptyMovieClip() to create an empty movie clip on the Stage. 
The new movie clip is a child of an existing movie clip or of the main Timeline, as in the 
following example:
_root.createEmptyMovieClip ("triangle", 1);

2 Use the empty movie clip to call drawing methods.
The following example draws a triangle with 5-point magenta lines and no fill:
with (_root.triangle) {

lineStyle (5, 0xff00ff, 100);
moveTo (200, 200);
lineTo (300, 300);
lineTo (100, 300);
lineTo (200, 200);

}

For detailed information on these methods, see their entries in Chapter 12, “ActionScript 
Dictionary,” on page 205.
Drawing shapes with ActionScript 131



Using movie clips as masks

You can use a movie clip as a mask to create a hole through which the contents of another movie 
clip are visible. The mask movie clip plays all the frames in its Timeline, just like a regular movie 
clip. You can make the mask movie clip draggable, animate it along a motion guide, use separate 
shapes within a single mask, or resize a mask dynamically. You can also use ActionScript to turn a 
mask on and off.  

You cannot use a mask to mask another mask. You cannot set the _alpha property of a mask 
movie clip. Only fills are used in a movie clip that is used as a mask; strokes are ignored.

To create a mask:

1 On the Stage, select a movie clip to be masked.
2 In the Property inspector, enter an instance name for the movie clip, such as image.
3 Create a movie clip to be a mask. Give it an instance name in the Property inspector, such 

as mask.
The masked movie clip will be revealed under all opaque (nontransparent) areas of the movie 
clip acting as the mask.

4 Select Frame 1 in the Timeline.
5 Open the Actions panel (Window > Development Panels > Actions) if it isn’t already open.
6 In the Actions panel, enter the following code: 

image.setMask(mask);

For detailed information, see MovieClip.setMask() on page 533.

About masking device fonts

You can use a movie clip to mask text that is set in a device font. In order for a movie clip mask on 
a device font to work properly, the user must have Flash Player 6 release 40 or later. 

When you use a movie clip to mask text set in a device font, the rectangular bounding box of the 
mask is used as the masking shape. That is, if you create a nonrectangular movie clip mask for 
device font text in the Flash authoring environment, the mask that appears in the SWF file will be 
the shape of the rectangular bounding box of the mask, not the shape of the mask itself.

You can mask device fonts only by using a movie clip as a mask. You cannot mask device fonts by 
using a mask layer on the Stage.

Handling movie clip events

Movie clips can respond to user events, such as mouse clicks and keypresses, as well as system-level 
events, such as the initial loading of a movie clip on the Stage. ActionScript provides two ways to 
handle movie clip events: through event handler methods and through onClipEvent() and on() 
event handlers. For more information, see Chapter 4, “Handling Events,” on page 83.
132 Chapter 7:  Working with Movie Clips



Assigning a class to a movie clip symbol

Using ActionScript 2.0, you can create your own class that extends the behavior of the built-in 
MovieClip class, and then assign that class to a movie clip library symbol using the Linkage 
Properties dialog box. Whenever you create an instance of the movie clip to which the class is 
assigned, it assumes the properties and behaviors defined by the class assigned to it. (For more 
information about ActionScript 2.0, see Chapter 9, “Creating Classes with ActionScript 2.0,” 
on page 155.)   

In a subclass of the MovieClip class, you can provide method definitions for the built-in 
MovieClip methods and event handlers, like onEnterFrame and onRelease. In the following 
procedure, you’ll create a class called MoveRight that extends the MovieClip class; MoveRight 
defines an onPress handler that moves the clip 20 pixels to the right whenever the user clicks the 
movie clip. In the second procedure, you’ll create a movie clip symbol in a new Flash (FLA) 
document and assign the MoveRight class to that symbol. 

To create a movie clip subclass:

1 Create a new directory called BallTest.
2 Create a new ActionScript file by doing one of the following:

■ (Flash MX Professional 2004) Select File > New, and select ActionScript file from the list of 
document types.

■ (Flash MX 2004) Create a text file in your preferred text editor.
3 Enter the following code in your script:

// MoveRight class -- moves clip to the right 5 pixels every frame
class MoveRight extends MovieClip {

function onPress() {
this._x += 20;

}
}

4 Save the document as MoveRight.as in the BallTest directory.

To assign the class to a movie clip symbol:

1 In Flash, select File > New, select Flash Document from the list of file types, and click OK.
2 Using the Oval tool, draw a circle on the Stage. 
3 Select the circle, then select Modify > Convert to Symbol. In the Convert to Symbol dialog box, 

select Movie Clip as the symbol’s behavior and enter Ball in the Name text box.
4 Open the Library panel (Window > Library) and select the Ball symbol. 
5 Select Linkage from the Library panel’s options menu to open the Linkage Properties 

dialog box.
6 In the Linkage Properties dialog box, select the Export for ActionScript option, and type 

MoveRight in the AS 2.0 Class text box. Click OK.
7 Save the file as Ball.fla in the BallTest directory (the same directory that contains the 

MoveRight.as file).
8 Test the movie (Control > Test Movie).

Each time you click the ball movie clip, it moves 20 pixels to the right.
Assigning a class to a movie clip symbol 133



Initializing class properties

In the example presented earlier, you added the instance of the Ball symbol to the Stage 
manually—that is, while authoring. As discussed previously (see “Adding parameters to 
dynamically created movie clips” on page 128), you can assign parameters to clips you create at 
runtime using the initObject parameter of attachMovie() and duplicateMovie(). You can 
use this feature to initialize properties of the class you’re assigning to a movie clip.    

For example, the following class named MoveRightDistance is a variation of the MoveRight class 
discussed earlier (see “Assigning a class to a movie clip symbol” on page 133). The difference is a 
new property named distance, whose value determines how many pixels a movie clip moves 
each time it is clicked.
// MoveRightDistance class -- moves clip to the right 5 pixels every frame
class MoveRightDistance extends MovieClip {

// distance property determines how many
// pixels to move clip each mouse press
var distance:Number;
function onPress() {

this._x += distance;
}

}

Assuming this class is assigned to a symbol with a linkage identifier of Ball, the following code 
creates two new instances of the symbol on the root Timeline of the SWF file. The first instance, 
named ball_50, moves 50 pixels each time it is clicked; the second, named ball_125, moves 125 
pixels each time its clicked.
_root.attachMovie("Ball", "ball_50", 10, {distance:50});
_root.attachMovie("Ball", "ball_125", 20, {distance:125});
134 Chapter 7:  Working with Movie Clips



CHAPTER 8
Working with Text
A dynamic or input text field is a TextField object (an instance of the TextField class). When you 
create a text field, you can assign it an instance name in the Property inspector. You can use the 
instance name in ActionScript statements to set, change, and format the text field and its content 
using the TextField and TextFormat classes. 

The methods of the TextField class let you set, select, and manipulate text in a dynamic or input 
text field that you create during authoring or at runtime. For more information, see “Using the 
TextField class” on page 135. For information on debugging text fields at runtime, see 
“Displaying text field properties for debugging” on page 78. 

ActionScript also provides several ways to format your text at runtime. The TextFormat class lets 
you set character and paragraph formatting for TextField objects (see “Using the TextFormat 
class” on page 137). Flash Player also supports a subset of HTML tags that you can use to format 
text (see “Using HTML-formatted text” on page 147). Flash Player 7 and later supports the 
<img> HTML tag, which lets you embed not just external images, but also external SWF files, as 
well as movie clips that reside in the library *see “Image tag (<img>)” on page 149).

In Flash Player 7 and later, you can apply Cascading Style Sheets (CSS) styles to text fields using 
the TextField.StyleSheet class. You can use CSS to style built-in HTML tags, define new 
formatting tags, or apply styles. For more information on using CSS, see “Formatting text with 
Cascading Style Sheets” on page 139. 

You can also assign HTML formatted text, which may optionally use CSS styles, directly to a text 
field. In Flash Player 7 and later, HTML text that you assign to a text field can contain embedded 
media (movie clips, SWF files, and JPEG files). The text will wrap around the embedded media, 
just as a web browser wraps text around media embedded in an HTML document. For more 
information, see “Image tag (<img>)” on page 149.

Using the TextField class

The TextField class represents any dynamic or selectable (editable) text field you create using the 
Text tool in Flash. You use the methods and properties of this class to control text fields at 
runtime. TextField objects support the same properties as MovieClip objects, with the exception 
of the _currentframe, _droptarget, _framesloaded, and _totalframes properties. You can 
get and set properties and invoke methods for text fields dynamically.  
135



To control a dynamic or input text field using ActionScript, you must assign it an instance name 
in the Property inspector. You can then reference the text field with the instance name, and use 
the methods and properties of the TextField class to control the contents or basic appearance of 
the text field. You can also create TextField objects at runtime, and assign them instance names, 
using the MovieClip.createTextField() method. For more information, see “Creating text 
fields at runtime” on page 137.

Assigning text to a text field at runtime

To assign text to a text field, use the TextField.text property. 

To assign text to a text field at runtime:

1 Using the Text tool, create a text field on the Stage. 
2 With the text field selected, in the Property inspector (Window > Properties), enter 

headline_txt in the Instance Name text box, directly below the Text Type pop-up menu on 
the left side of the inspector.
Instance names can consist only of letters, underscores (_), and dollar signs ($).

3 In the Timeline, select the first frame in Layer 1 and open the Actions panel 
(Window > Development Panels > Actions).

4 Type the following code in the Actions panel:
headline_txt.text = "Brazil wins World Cup";

5 Select Control > Test Movie to test the movie.

About text field instance and variable names

In the Property inspector, you can also assign a variable name to a dynamic or input text field, as 
well as an instance name. You can then refer to the text field’s variable name in ActionScript, 
whose value determines the text field’s contents. A text field’s instance name and variable name 
should not be confused, however.  

You use the instance name assigned to a text field to invoke methods and get and set properties on 
that text field. A text field’s variable name is simply a variable reference to the text contained by 
that text field; it is not a reference to an object.

For example, if you assigned a text field the variable name mytextVar, you could then set the 
contents of the text field using the following code:
var mytextVar = "This is what will appear in the text field";

However, you couldn’t use the mytextVar variable to set the same text field’s text property to 
some text. 
//This won’t work
myTextVar.text = "A text field variable is not an object reference";

In general, use the TextField.text property to control the contents of a text field, unless you’re 
targeting a version of Flash Player that doesn’t support the TextField class. This will lessen the 
chances of a variable name conflict, which could result in unexpected behavior at runtime. 
136 Chapter 8:  Working with Text



Creating text fields at runtime

You can use the createTextField() method of the MovieClip class to create an empty text field 
on the Stage at runtime. The new text field is attached to the Timeline of the movie clip that calls 
the method. The createTextField() method uses the following syntax:
movieClip.createTextField(instanceName, depth, x, y, width, height)

For example, the following code creates a 300 x 100 pixel text field named test_txt at point 
(0,0) and a depth (z-order) of 10.
_root.createTextField("test_txt", 10, 0, 0, 300, 100);

You use the instance name specified in the createTextField() call to access the methods and 
properties of the TextField class. For example, the following code creates a new text field named 
test_txt, and then modifies its properties to make it a multiline, word-wrapping text field that 
expands to fit inserted text. Lastly, it assigns some text to the text field’s text property.
_root.createTextField("test_txt", 10, 0, 0, 100, 50);
test_txt.multiline = true;
test_txt.wordWrap = true;
test_txt.autoSize = true;
test_txt.text = "Create new text fields with the MovieClip.createTextField 

method.";

You can use the TextField.removeTextField() method to remove a text field created with 
createTextField(). The removeTextField() method does not work on a text field placed by 
the Timeline during authoring.

For more information, see MovieClip.createTextField() on page 494 and 
TextField.removeTextField() on page 698.

Using the TextFormat class

You can use the ActionScript TextFormat class to set formatting properties of a text field. The 
TextFormat class incorporates character and paragraph formatting information. Character 
formatting information describes the appearance of individual characters: font name, point size, 
color, and an associated URL. Paragraph formatting information describes the appearance of a 
paragraph: left margin, right margin, indentation of the first line, and left, right, or 
center alignment. 

To use the TextFormat class, you first create a TextFormat object and set its character and 
paragraph formatting styles. You then apply the TextFormat object to a text field using the 
TextField.setTextFormat() or TextField.setNewTextFormat() methods.

The setTextFormat() method changes the text format applied to individual characters, to 
groups of characters, or to the entire body of text in a text field. Newly inserted text, however—
such as that entered by a user or inserted with ActionScript—does not assume the formatting 
specified by a setTextFormat() call. To specify the default formatting for newly inserted text, 
use TextField.setNewTextFormat(). For more information, see 
TextField.setTextFormat() on page 702 and TextField.setNewTextFormat() 
on page 701.
Using the TextFormat class 137



To format a text field with the TextFormat class:

1 In a new Flash document, create a text field on the Stage using the Text tool. Type some text 
in the text field on the Stage, like “Bold, italic, 24 point text”.

2 In the Property inspector, type myText_txt in the Instance Name text box, select Dynamic 
from the Text Type pop-up menu, and select Multiline from the Line Type pop-up menu.

3 In the Timeline, select the first frame in Layer 1 and open the Actions panel (Window > 
Development Panels > Actions).

4 Enter the following code in the Actions panel to create a TextFormat object, and set its bold 
and italic properties to true, and its size property to 24. 
// Create a TextFormat object
var txtfmt_fmt = new TextFormat();
// Specify paragraph and character formatting
txtfmt_fmt.bold = "true";
txtfmt_fmt.italic = "true";
txtfmt_fmt.size = "24"

5 Apply the TextFormat object to the text field you created in step 1 using 
TextField.setTextFormat(). 
myText_txt.setTextFormat(txtfmt_fmt);

This version of setTextFormat() applies the specified formatting to the entire text field. 
There are two other versions of this method that let you apply formatting to individual 
characters or groups of characters. For example, the following code applies bold, italic, 24-
point formatting to the first four characters you entered in the text field.
myText_txt.setTextFormat(txtfmt_fmt, 0, 3);

For more information, see TextField.setTextFormat() on page 702.
6 Select Control > Test Movie to test the movie.

Default properties of new text fields

Text fields created at runtime with createTextField() receive a default TextFormat object with 
the following properties:
font = "Times New Roman"
size = 12
textColor = 0x000000
bold = false
italic = false
underline = false
url = ""
target = ""
align = "left"
leftMargin = 0
rightMargin = 0
indent = 0
leading = 0
bullet = false
tabStops = [] (empty array)

For a complete list of TextFormat methods and their descriptions, see the TextFormat class entry 
in Chapter 12, “ActionScript Dictionary,” on page 205.
138 Chapter 8:  Working with Text



Getting text metric information

You can use the TextFormat.getTextExtent() method to obtain detailed text measurements 
for a text string with specific formatting applied. For example, suppose you need to create, at 
runtime, a new TextField object containing an arbitrary amount of text that is formatted with a 
24-point, bold, Arial font, and a 5-pixel indent. You need to determine how wide or high the new 
TextField object must be to display all of the text. The getTextExtent() method provides 
measurements such as ascent, descent, width, and height. 

For more information, see TextFormat.getTextExtent() on page 719.

Formatting text with Cascading Style Sheets

Cascading Style Sheets are a mechanism for creating text styles that can be applied to HTML or 
XML documents. A style sheet is a collection of formatting rules that specify how to format 
HTML or XML elements. Each rule associates a style name, or selector, with one or more style 
properties and their values. For example, the following style defines a selector named bodyText.   
bodyText { text-align: left}

You can create styles that redefine built-in HTML formatting tags used by Flash Player (such as 
<p> and <li>), create style “classes” that can be applied to specific HTML elements using the <p> 
or <span> tag’s class attribute, or define new tags.

You use the TextField.StyleSheet class to work with text style sheets. You can load styles from an 
external CSS file or create them natively using ActionScript. To apply a style sheet to a text field 
that contains HTML- or XML-formatted text, you use the TextField.styleSheet property. 
The styles defined in the style sheet are mapped automatically to the tags defined in the HTML 
or XML document. 

Using styles sheets involves three basic steps: 

• Create a style sheet object from the TextField.StyleSheet class. See “Creating a style sheet 
object” on page 140.

• Add styles to the style sheet object, either by importing them from an external CSS file or by 
defining them with ActionScript. See “Loading external CSS files” on page 141 and “Creating 
new styles with ActionScript” on page 142.

• Assign the style sheet object to a text field that contains XML- or HTML-formatted text. See 
“Applying styles to a TextField object” on page 142, “An example of using styles with HTML” 
on page 144, and “An example of using styles with XML” on page 146.
Formatting text with Cascading Style Sheets 139



Supported CSS properties

Flash Player supports a subset of properties in the original CSS1 specification (www.w3.org/TR/
REC-CSS1). The following table shows the supported CSS properties and values, and their 
corresponding ActionScript property names. (Each ActionScript property name is derived from 
the corresponding CSS property name; the hyphen is omitted and the subsequent character 
is capitalized.)

Creating a style sheet object

CSS style sheets are represented in ActionScript by the TextField.StyleSheet class. This class 
is only available for SWF files that target Flash Player 7 or later. To create a style sheet object, call 
the TextField.StyleSheet class’s constructor function. 
var newStyle = new TextField.StyleSheet();

To add styles to a style sheet object, you can either load an external CSS file into the object, or 
define the styles in ActionScript. See “Loading external CSS files” on page 141 and “Creating new 
styles with ActionScript” on page 142.

CSS property ActionScript property Usage and supported values

text-align textAlign Recognized values are left, center, and right.

font-size fontSize Only the numeric part of the value is used; units (px, pt) 
are not parsed; pixels and points are equivalent.

text-decoration textDecoration Recognized values are none and underline.

margin-left marginLeft Only the numeric part of the value is used. Units (px, pt) 
are not parsed; pixels and points are equivalent.

margin-right marginRight Only the numeric part of the value is used. Units (px, pt) 
are not parsed; pixels and points are equivalent.

font-weight fontWeight Recognized values are normal and bold. 

font-style fontStyle Recognized values are normal and italic.

text-indent textIndent Only the numeric part of the value is used. Units (px, pt) 
are not parsed; pixels and points are equivalent.

font-family fontFamily A comma-separated list of fonts to use, in descending 
order of desirability. Any font family name can be used. 
If you specify a generic font name, it will be converted 
to an appropriate device font. The following font 
conversions are available: mono is converted to 
_typewriter, sans-serif is converted to _sans, and 
serif is converted to _serif.

color color Only hexadecimal color values are supported. Named 
colors (like blue) are not supported.

display display Supported values are inline, block, and none.
140 Chapter 8:  Working with Text

http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/REC-CSS1


Loading external CSS files

You can define styles in an external CSS file and then load that file into a style sheet object. The 
styles defined in the CSS file are added to the style sheet object. To load an external CSS file, you 
use the load() method of the TextField.StyleSheet class. To determine when the CSS file has 
finished loading, use the style sheet object’s onLoad event handler.

In the following example, you’ll create and load an external CSS file and use the 
TextField.StyleSheet.getStyleNames() method to retrieve the names of the loaded styles.

To load an external style sheet:

1 In your preferred text or XML editor, create a file.
2 Add the following style definitions to the file:

// Filename: styles.css
bodyText {

font-family: Arial,Helvetica,sans-serif;
  font-size: 12px;
}

headline {
font-family: Arial,Helvetica,sans-serif;

  font-size: 24px;
}

3 Save the CSS file as styles.css.
4 In Flash, create a FLA document.
5 In the Timeline (Window > Timeline), select Layer 1.
6 Open the Actions panel (Window > Development Panels > Actions).
7 Add the following code to the Actions panel:

var css_styles = new TextField.StyleSheet();
css_styles.load("styles.css");
css_styles.onLoad = function(ok) {

if(ok) {
// display style names
trace(this.getStyleNames());

} else {
trace("Error loading CSS file.");

}
}

8 Save the file to the same directory that contains styles.css.
9 Test the movie (Control > Test Movie).

You should see the names of the two styles displayed in the Output panel:
body
headLine

If you see “Error loading CSS file” displayed in the Output panel, make sure the FLA file and 
the CSS file are in the same directory and that you typed the name of the CSS file correctly.

As with all other ActionScript methods that load data over the network, the CSS file must reside 
in the same domain as the SWF file that is loading the file. (See “About allowing cross-domain 
data loading” on page 190.)
Formatting text with Cascading Style Sheets 141



Creating new styles with ActionScript

You can create new text styles with ActionScript by using the setStyle() method of the 
TextField.StyleSheet class. This method takes two parameters: the name of the style and an object 
that defines that style’s properties.  

For example, the following code creates a style sheet object named styles that defines two styles 
that are identical to those you imported earlier (see “Loading external CSS files” on page 141). 
var styles = new TextField.StyleSheet();
styles.setStyle("bodyText", 

{fontFamily: 'Arial,Helvetica,sans-serif', 
fontSize: '12px'}

);
styles.setStyle("headline", 

{fontFamily: 'Arial,Helvetica,sans-serif',
fontSize: '24px'}

);

Applying styles to a TextField object

To apply a style sheet object to a text field, you assign the style sheet object to the text field’s 
styleSheet property. 
textObj_txt.styleSheet = styleSheetObj;

Note: Be careful not to confuse the TextField.styleSheet property with the TextField.StyleSheet 
class. The capitalization indicates the difference.

When you assign a style sheet object to a TextField object, the following changes occur to the text 
field’s normal behavior:

• The text field’s text and htmlText properties, and any variable associated with the text field, 
always contain the same value and behave identically.

• The text field becomes read-only and cannot be edited by the user.
• The setTextFormat() and replaceSel() methods of the TextField class no longer function 

with the text field. The only way to change the field is by altering the text field’s text or 
htmlText properties, or by changing the text field’s associated variable.

• Any text assigned to the text field’s text property, htmlText property, or associated variable is 
stored verbatim; anything written to one of these properties can be retrieved in the text’s 
original form.

Combining styles

CSS styles in Flash Player are additive; that is, when styles are nested, each level of nesting can 
contribute additional style information, which is added together to result in the final formatting.

For example, here is some XML data assigned to a text field:
<sectionHeading>This is a section</sectionHeading>
<mainBody>This is some main body text, with one 
<emphasized>emphatic</emphasized> word.</mainBody>

For the word emphatic in the above text, the emphasized style is nested within the mainBody 
style. The mainBody style contributes color, font-size, and decoration rules. The emphasized 
style adds a font-weight rule to these rules. The word emphatic will be formatted using a 
combination of the rules specified by mainBody and emphasized.
142 Chapter 8:  Working with Text



Using style classes

You can create style “classes” that you can apply to a <p> or <span> tag using either tag’s class 
attribute. When applied to a <p> tag, the style affects the entire paragraph. You can also style a 
span of text that uses a style class by using the <span> tag. 

For example, the following style sheet defines two styles classes: mainBody and emphasis.
.mainBody {

font-family: Arial,Helvetica,sans-serif;
font-size: 24px;

}
.emphasis {

color: #666666;
font-style: italic;

}

Within HTML text you assign to a text field, you can apply these styles to <p> and <span> tags, 
as shown below.
<p class="mainBody">This is <span class="emphasis">really exciting!</span></p>

Styling built-in HTML tags

Flash Player supports a subset of HTML tags. (For more information, see “Using HTML-
formatted text” on page 147.) You can assign a CSS style to every instance of a built-in HTML 
tag that appears in a text field. For example, the following defines a style for the built-in <p> 
HTML tag. All instances of that tag will be styled in the manner specified by the style rule. 
p {

font-family: Arial,Helvetica,sans-serif;
font-size: 12px;
display: inline;

}

The following table shows which built-in HTML tags can be styled and how each style is applied:

Style name How the style is applied

p Affects all <p> tags.

body Affects all <body> tags. The p style, if specified, takes precedence over the body 
style.

li Affects all <li> bullet tags.

a Affects all <a> anchor tags.

a:link Affects all <a> anchor tags. This style is applied after any a style.

a:hover Applied to an <a> anchor tag when the mouse is hovering over the link. This style is 
applied after any a and a:link style.
Once the mouse moves off the link, the a:hover style is removed from the link.

a:active Applied to an <a> anchor tag when the user clicks the link. This style is applied after 
any a and a:link style.
Once the mouse button is released, the a:active style is removed from the link.
Formatting text with Cascading Style Sheets 143



An example of using styles with HTML

This section presents an example of using styles with HTML tags. You’ll create a style sheet that 
styles some built-in tags and defines some style classes. You’ll then apply that style sheet to a 
TextField object that contains HTML-formatted text. 

To format HTML with a style sheet, do the following:

1 In your preferred text editor, create a file.
2 Add the following style sheet definition to the file:

p {
color: #000000;
font-family: Arial,Helvetica,sans-serif;
font-size: 12px;
display: inline;

}

a:link {
color: #FF0000;

}

a:hover{
text-decoration: underline;

}

.headline {
color: #000000;
font-family: Arial,Helvetica,sans-serif;
font-size: 18px;
font-weight: bold;
display: block;

}

.byline {
color: #666600;
font-style: italic;
font-weight: bold;
display: inline;

}

This style sheet defines styles for two built-in HTML tags (<p> and <a>) that will be applied to 
all instances of those tags. It also defines two style classes (.headline and .byline) that will 
be applied to specific paragraphs and text spans.

3 Save the file as html_styles.css.
4 In Flash, create a FLA file.
5 Using the Text tool, create a text field approximately 400 pixels wide and 300 pixels high.
6 Open the Property inspector (Window > Properties) and select the text field.
7 In the Property inspector, select Dynamic Text from the Text Type menu, select Multiline from 

the Line Type menu, select the Render Text as HTML option, and type news_txt in the 
Instance Name text box.

8 Select the first frame in Layer 1 in the Timeline (Window > Timeline).
144 Chapter 8:  Working with Text



9 Open the Actions panel (Window > Development Panels > Actions) and add the following code 
to the Actions panel:
// Create a new style sheet object
var style_sheet = new TextField.StyleSheet();
// Location of CSS file that defines styles
var css_url = "html_styles.css";
// Create some HTML text to display
var storyText:String = "<p class='headline'>Flash Player now supports 

Cascading Style Sheets!</p><p><span class='byline'>San Francisco, CA</
span>--Macromedia Inc. announced today a new version of Flash Player that 
supports Cascading Style Sheet (CSS) text styles. For more information, 
visit the <a href='http://www.macromedia.com'>Macromedia Flash web site.</
a></p>";

// Load CSS file and define onLoad handler:
style_sheet.load(css_url);
style_sheet.onLoad = function(ok) {

if (ok) {
// If the style sheet loaded without error, 
// then assign it to the text object, 
// and assign the HTML text to the text field.
news_txt.styleSheet = style_sheet;
news_txt.text = storyText;

}
};

Note: For simplicity, the HTML text being styled is “hard-coded” into the script; in a real-world 
application you’ll probably want to load the text from an external file. For information on loading 
external data, see Chapter 10, “Working with External Data,” on page 177. 

10 Save the file as news_html.fla to the same directory that contains the CSS file you 
created previously.

11 Run the movie (Control > Test Movie) to see the styles applied to the HTML 
text automatically.

Using styles to define new tags

If you define a new style in a style sheet, that style can be used as a tag, just as you would use a 
built-in HTML tag. For example, if a style sheet defines a CSS style named sectionHeading, 
you can use <sectionHeading> as an element in any text field associated with the style sheet. 
This feature lets you assign arbitrary XML-formatted text directly to a text field, so that the text 
will be automatically formatted using the rules in the style sheet. 

For example, the following style sheet creates the new styles sectionHeading, mainBody, 
and emphasized.
sectionHeading {

font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 18px; display: block

}
mainBody {

color: #000099;
text-decoration: underline;
font-size: 12px; display: block

}
emphasized {

font-weight: bold; display: inline
}

Formatting text with Cascading Style Sheets 145



You could then populate a text field associated with that style sheet with the following XML-
formatted text:
<sectionHeading>This is a section</sectionHeading>
<mainBody>This is some main body text, 
with one <emphasized>emphatic</emphasized> word.
</mainBody>

An example of using styles with XML

In this section, you’ll create the same FLA file that you created earlier (see “An example of using 
styles with HTML” on page 144) but with XML-formatted text. In this example, you’ll create the 
style sheet using ActionScript, rather than importing styles from a CSS file. 

To format XML with a style sheet:

1 In Flash, create a FLA file.
2 Using the Text tool, create a text field approximately 400 pixels wide and 300 pixels high.
3 Open the Property inspector (Window > Properties) and select the text field.
4 In the Property inspector, select Dynamic Text from the Text Type menu, select Multiline from 

the Line Type menu, select the Render Text as HTML option, and type news_txt in the 
Instance Name text box.

5 On Layer 1 in the Timeline (Window > Timeline), select the first frame.
6 To create the style sheet object, open the Actions panel (Window > Development Panels > 

Actions) and add the following code to the Actions panel: 
var xml_styles = new TextField.StyleSheet();
xml_styles.setStyle("mainBody", {

color:'#000000', 
fontFamily:'Arial,Helvetica,sans-serif', 
fontSize:'12', 
display:'block'

});
xml_styles.setStyle("title", {

color:'#000000', 
fontFamily:'Arial,Helvetica,sans-serif', 
fontSize:'18', 
display:'block', 
fontWeight:'bold'

});
xml_styles.setStyle("byline", {

color:'#666666', 
fontWeight:'bold', 
fontStyle:'italic', 
display:'inline'

});
xml_styles.setStyle("a:link", {

color:'#FF0000'
});
xml_styles.setStyle("a:hover", {

textDecoration:'underline'
});

This code creates a new style sheet object named xml_styles that defines styles by using the 
setStyle() method. The styles exactly match those you created in an external CSS file earlier 
in this chapter.
146 Chapter 8:  Working with Text



7 To create the XML text to assign to the text field, add the following code to the Actions panel:
var storyText = "<title>Flash Player now supports CSS</

title><mainBody><byline>San Francisco, CA</byline>--Macromedia Inc. 
announced today a new version of Flash Player that supports Cascading 
Style Sheets (CSS) text styles. For more information, visit the <a 
href=\"http://www.macromedia.com\">Macromedia Flash website</a></
mainBody>";

8 Last, add the following code to apply the style sheet object to the text field’s styleSheet 
property and assign the XML text to the text field.
news_txt.styleSheet = xml_styles;
news_txt.text = storyText;

9 Save the file as news_xml.fla.
10 Run the movie (Control > Test Movie) to see the styles automatically applied to the text in 

the field.

Using HTML-formatted text

Flash Player supports a subset of standard HTML tags such as <p> and <li> that you can use to 
style text in any dynamic or input text field. Text fields in Flash Player 7 and later also support the 
<img> tag, which lets you embed JPEG files, SWF files, and movie clips in a text field. Flash 
Player automatically wraps text around images embedded in text fields in much the same way a 
web browser wraps text around embedded images in an HTML page. For more information, see 
“Embedding images, SWF files, and movie clips in text fields” on page 152. 

Flash Player also supports the <textformat> tag, which lets you apply paragraph formatting 
styles of the TextFormat class to HTML-enabled text fields. For more information, see “Using the 
TextFormat class” on page 137.

Overview of using HTML-formatted text

To use HTML in a text field, you must enable the text field’s HTML formatting either by 
selecting the Render Text as HTML option in the Property inspector, or by setting the text field’s 
html property to true. To insert HTML into a text field, use the TextField.htmlText property.

For example, the following code enables HTML formatting for a text field named headline_txt, 
and then assigns some HTML to the text field.
headline_txt.html = true;
headline_txt.htmlText = "<font face='Times New Roman' size='24'>This is how 

you assign HTML text to a text field.</font>";

Attributes of HTML tags must be enclosed in double or single quotation marks. Attribute values 
without quotation marks may produce unexpected results, such as improper rendering of text. 
For example, the following HTML snippet will not be rendered properly by Flash Player because 
the value assigned to the align attribute (left) is not enclosed in quotation marks:
textField.htmlText = "<p align=left>This is left-aligned text</p>";

If you enclose attribute values in double quotation marks, you must “escape” the quotation marks 
(\"). For example, either of the following are acceptable:
textField.htmlText = "<p align='left'>This uses single quotes</p>";
textField.htmlText = "<p align=\"left\">This uses escaped double quotes</p>";

It’s not necessary to escape double quotation marks if you’re loading text from an external file; it’s 
only necessary if you’re assigning a string of text in ActionScript.
Using HTML-formatted text 147



Supported HTML tags

This section lists the built-in HTML tags supported by Flash Player. You can also create new 
styles and tags using Cascading Style Sheets; see “Formatting text with Cascading Style Sheets” 
on page 139.

Anchor tag (<a>)

The <a> tag creates a hyperlink and supports the following attributes:

• href Specifies the URL of the page to load in the browser. The URL can absolute or relative 
to the location of the SWF file that is loading the page.

• target Specifies the name of the target window to load the page into.

For example, the following HTML snippet creates the link “Go home,” which opens 
www.macromedia.com in a new browser window.
<a href="../home.htm" target="_blank">Go home</a>

You can also define a:link, a:hover, and a:active styles for anchor tags by using style sheets. 
See “Styling built-in HTML tags” on page 143.

Bold tag (<b>)

The <b> tag renders text as bold. A bold typeface must be available for the font used to display 
the text.
<b>This is bold text.</b>

Break tag (<br>)

The <br> tag creates a line break in the text field, as shown in this example:
One line of text<br>Another line of text<br>

Font tag (<font>)

The <font> tag specifies a font or list of fonts to display the text.

The font tag supports the following attributes:

• color Only hexadecimal color (#FFFFFF) values are supported. For example, the following 
HTML code creates red text.
<font color="#FF0000">This is red text</font>

• face Specifies the name of the font to use. You can also specify a list of comma-separated 
font names, in which case Flash Player chooses the first available font. If the specified font is 
not installed on the playback system, or isn’t embedded in the SWF file, then Flash Player 
chooses a substitute font. 
Example:
<font face="Times, Times New Roman">This is either Times or Times New 

Roman..</font>

For more information on embedding fonts in Flash applications, see TextField.embedFonts 
on page 687 and “Setting dynamic and input text options” in Using Flash Help.

• size Specifies the size of the font, in pixels. You can also use relative point sizes (+2 or -4).
<font size="24" color="#0000FF">This is green, 24-point text</font>
148 Chapter 8:  Working with Text



Image tag (<img>)

The <img> tag lets you embed external JPEG files, SWF files, and movie clips inside text fields. 
Text automatically flows around images you embed in text fields. This tag is supported only in 
dynamic and input text fields that are multiline and wrap their text.  

To create a multiline text field with word wrapping, do one of the following:

• In the Flash authoring environment, select a text field on the Stage and then, in the Property 
inspector, select Multiline from the Text Type pop-up menu.

• For a text field created at runtime with MovieClip.createTextField(), set the new text field 
instance’s TextField.multiline and TextField.wordWrap properties to true.

The <img> tag has one required attribute, src, which specifies the path to a JPEG file, a SWF file, 
or the linkage identifier of a movie clip symbol. All other attributes are optional.

The <img> tags supports the following attributes:

• src Specifies the URL to a JPEG or SWF file, or the linkage identifier for a movie clip 
symbol in the library. This attribute is required; all other attributes are optional. External files 
(JPEG and SWF files) are not displayed until they have downloaded completely.
Note: Flash Player does not support progressive JPEG files.

• id Specifies the name for the movie clip instance (created by Flash Player) that contains the 
embedded JPEG file, SWF file, or movie clip. This is useful if you want to control the 
embedded content with ActionScript.

• width The width of the image, SWF file, or movie clip, in pixels.
• height The height of the image, SWF file, or movie clip being inserted, in pixels.
• align Specifies the horizontal alignment of the embedded image within the text field. Valid 

value are left and right. The default value is left.
• hspace Specifies the amount of horizontal space that surrounds the image where no text will 

appear. The default value is 8.
• vspace Specifies the amount of vertical space that surrounds the image where no text will 

appear. The default value is 8.

For more information and examples of using the <img> tag, see “Embedding images, SWF files, 
and movie clips in text fields” on page 152.

Italic tag (<i>)

The <i> tag displays the tagged text in italics. An italic typeface must be available for the 
font used.
That is very <i>interesting</i>.

The above code would render as follows:

That is very interesting.
Using HTML-formatted text 149



List item tag (<li>)

The <li> tag places a bullet in front of the text that it encloses.
Grocery list:
<li>Apples</li>
<li>Oranges</li>
<li>Lemons</li>

The above code would render as follows:

Grocery list:
■ Apples
■ Oranges
■ Lemons

Paragraph tag (<p>)

The <p> tag creates a new paragraph. It supports the following attributes:

• align Specifies alignment of text within the paragraph; valid values are left, right, 
and center.

• class Specifies a CSS style class defined by an TextField.StyleSheet object. (For more 
information, see “Using style classes” on page 143.)
The following example uses the align attribute to align text on the right side of a text field.
textField.htmlText = "<p align='right'>This text is aligned on the right 

side of the text field</p>";

The following example uses the class attribute to assign a text style class to a <p> tag.
var myStyleSheet = new TextField.StyleSheet();
myStyleSheet.secreateTextField("test", 10, 0,0, 300,100);
createTextField("test", 10, 0,0, 300,100);
test.styleSheet = myStyleSheet;
test.htmlText = "<p class='body'>This is some body-styled text.</p>.";

Span tag (<span>)

The <span> tag is available only for use with CSS text styles. (For more information, see 
“Formatting text with Cascading Style Sheets” on page 139.) It supports the following attribute:

• class Specifies a CSS style class defined by an TextField.StyleSheet object. For more 
information on creating text style classes, see “Using style classes” on page 143.

Text format tag (<textformat>)

The <textformat> tag lets you use a subset of paragraph formatting properties of the TextFormat 
class within HTML text fields, including line leading, indentation, margins, and tab stops. You 
can combine <textformat> tags with the built-in HTML tags.

The <textformat> tag has the following attributes:

• blockindent Specifies the block indentation in points; corresponds to 
TextFormat.blockIndent. (See TextFormat.blockIndent on page 718.)

• indent Specifies the indentation from the left margin to the first character in the paragraph; 
corresponds to TextFormat.indent. (See TextFormat.indent on page 722.)
150 Chapter 8:  Working with Text



• leading Specifies the amount of leading (vertical space) between lines; corresponds to 
TextFormat.leading. (See TextFormat.leading on page 722.)

• leftmargin Specifies the left margin of the paragraph, in points; corresponds to 
TextFormat.leftMargin. (See TextFormat.leftMargin on page 723.)

• rightmargin Specifies the right margin of the paragraph, in points; corresponds to 
TextFormat.rightMargin. (See TextFormat.rightMargin on page 723.)

• tabstops Specifies custom tab stops as an array of non-negative integers; corresponds to 
TextFormat.tabStops. (See TextFormat.tabStops on page 723.)

The following code example uses the tabstops attribute of the <textformat> tag to create a 
table of data with boldfaced row headers, as shown below:

To create a formatted table of data using tab stops:

1 Using the Text tool, create a dynamic text field that’s approximately 300 pixels wide and 100 
pixels high.

2 In the Property inspector, enter table_txt in the Instance Name text box, select Multiline 
from the Line Type menu, and select the Render Text as HTML option.

3 In the Timeline, select the first frame on Layer 1. 
4 Open the Actions panel (Window > Development Panels > Actions) and enter the following 

code in the Actions panel:
var rowHeaders = "<b>Name\t</b><b>Age\t</b><b>Department";
var row_1 = "Tim\t31\tIMD";
var row_2 = "Edwin\t42\tQA";
table_txt.htmlText = "<textformat tabstops='[100, 200]'>";
table_txt.htmlText += rowHeaders;
table_txt.htmlText += row_1;
table_txt.htmlText += row_2 ;
table_txt.htmlText += "</textformat>";

Note the use of the tab character escape sequence (\t) to add tabs between each “column” in 
the table.

5 Select Control > Test Movie to test the movie.

Underline tag (<u>)

The <u> tag underlines the tagged text.
This text is <u>underlined</u>.

The above code would render as follows:

This text is underlined.

Name Age Department

Tim 32 IMD

Edwin 46 Engineering
Using HTML-formatted text 151



Embedding images, SWF files, and movie clips in text fields   

In Flash Player 7 and later, you can use the <img> tag to embed JPEG files, SWF files, and movie 
clips inside dynamic and input text fields. (For a full list of attributes for the <img> tag, see 
“Image tag (<img>)” on page 149.) 

By default, Flash displays media embedded in a text field at full size. To specify dimensions for 
embedded media, use the <img> tags’s height and width attributes. (See “Specifying height and 
width values” on page 152.)

In general, an image embedded in a text field appears on the line following the <img> tag. 
However, when the <img> tag is the first character in the text field, the image appears on the first 
line of the text field.

Embedding SWF and JPEG files

To embed a JPEG or SWF file in a text field, specify the absolute or relative path to the JPEG or 
SWF file in the <img> tag’s src attribute. For example, the following code inserts a JPEG file 
that’s located in the same directory as the SWF file.
textField_txt.htmlText = "<p>Here’s a picture from my last vacation:<img 

src='beach.jpg'>";

Embedding movie clip symbols

To embed a movie clip symbol in a text field, you specify the symbol’s linkage identifier for the 
<img> tag’s src attribute. (For information on defining a linkage identifier, see “Attaching a 
movie clip symbol to the Stage” on page 127.)

For example, the following code inserts a movie clip symbol with the linkage identifier 
symbol_ID.
textField_txt.htmlText = "<p>Here’s a movie clip symbol:<img 

src='symbol_ID'>";

In order for an embedded movie clip to display properly and completely, the registration point for 
its symbol should be at point (0,0).

Specifying height and width values

If you specify width and height attributes for an <img> tag, space is reserved in the text field for 
the JPEG file, SWF file, or movie clip. After a JPEG or SWF file has downloaded completely it is 
displayed in the reserved space. Flash scales the media up or down according to the height and 
width values.

If you don’t specify height and width values, no space is reserved for the embedded media. After 
a JPEG or SWF file has downloaded completely, Flash inserts it into the text field at full size and 
rebreaks text around it.

Controlling embedded media with ActionScript

Flash Player creates a new movie clip for each <img> tag and embeds that movie clip within the 
TextField object. The <img> tag’s id attribute lets you assign an instance name to the movie clip 
that is created. This lets you control that movie clip with ActionScript.

The movie clip created by Flash Player is added as a child movie clip to the text field that contains 
the image.
152 Chapter 8:  Working with Text



For example, the following code embeds a SWF file named animation.swf in the text field named 
textField_txt on level 0 and assigns the instance name animation_mc to the movie clip that 
contains the SWF file. 
_level0.textField_txt.htmlText = "Here’s an interesting animation: <img 

src='animation.swf' id='animation_mc'>

In this case, the fully qualified path to the newly create movie clip is 
_level0.textField_txt.animation_mc. For example, you could attach the following code to a 
button (on the same Timeline as textField_txt) that would stop the playhead of the embedded 
SWF file.
on(press) {

textField_txt.animation_mc.stop();
}

Making hyperlinks out of embedded media

To make a hyperlink out of an embedded JPEG file, SWF file, or movie clip, enclose the <img> 
tag in an <a> tag:
textField.htmlText = "Click the image to return home<a href='home.htm'><img 

src='home.jpg'></a>";

When the mouse is over an image, SWF file, or movie clip that is enclosed by <a> tags, the mouse 
pointer turns into a “hand” icon, just like standard hyperlinks. Interactivity, such as mouse clicks 
and keypresses, do not register in SWF files and movie clips that are enclosed by <a> tags.

Creating scrolling text

There are several ways to create scrolling text in Flash. You can make dynamic and input text 
fields scrollable by selecting the Scrollable Mode option in the Text menu or the context menu, or 
by Shift-double-clicking the text block handle. 

You can use the scroll and maxscroll properties of the TextField object to control vertical 
scrolling and the hscroll and maxhscroll properties to control horizontal scrolling in a text 
block. The scroll and hscroll properties specify the current vertical and horizontal scrolling 
positions, respectively; you can read and write these properties. The maxscroll and maxhscroll 
properties specify the maximum vertical and horizontal scrolling positions, respectively; you can 
only read these properties.

The TextArea component in Flash MX 2004 provides an easy way to create scrolling text fields 
with a minimum of scripting. For more information, see the “TextArea component entry” in 
Using Components Help.

To create a scrollable dynamic text block, do one of the following:

• Shift-double-click the handle on the dynamic text block.
• Select the dynamic text block with the Arrow tool, and select Text > Scrollable.
• Select the dynamic text block with the Arrow tool. Right-click (Windows) or Control-click 

(Macintosh) the dynamic text block, and select Text > Scrollable.
Creating scrolling text 153



To use the scroll property to create scrolling text:

1 Do one of the following:
■ Use the Text tool to drag a text field on the Stage. Assign the text field the instance name 

textField in the Property inspector.
■ Use ActionScript to create a text field dynamically with the 

MovieClip.createTextField() method. Assign the text field the instance name 
textField as a parameter of the method.

2 Create an Up button and a Down button, or select Window > Other Panels > Common 
Libraries > Buttons and drag buttons to the Stage. 
You will use these buttons to scroll the text up and down.

3 Select the Down button on the Stage.
4 In the Actions panel (Window > Development Panels > Actions), enter the following code to 

scroll the text down in the text field:
on(press) {

textField.scroll += 1;
}

5 Select the Up button on the Stage.
6 In the Actions panel, enter the following code to scroll the text up:

on(press) {
textField.scroll += 1;

}

Close collapsed procedure
154 Chapter 8:  Working with Text



CHAPTER 9
Creating Classes with ActionScript 2.0
ActionScript 2.0 is a restructuring of the ActionScript language that provides several powerful 
new programming features found in other programming languages, such as Java. ActionScript 2.0 
encourages program structures that are reusable, scalable, robust, and maintainable. It also 
decreases development time by providing users with thorough coding assistance and debugging 
information. ActionScript 2.0 conforms to existing standards and is based on the ECMAScript 4 
proposal (www.mozilla.org/js/language/es4/). ActionScript 2.0 is available in Macromedia Flash 
MX 2004 and Macromedia Flash MX Professional 2004.

The features of ActionScript 2.0 are described below.

Familiar object-oriented programming (OOP) model The primary feature of 
ActionScript 2.0 is a familiar model for creating object-oriented programs. ActionScript 2.0 
introduces several new object-oriented concepts and keywords such as class, interface, and packages 
that will be familiar to you if you’ve ever programmed with Java.

The OOP model provided by ActionScript 2.0 is a “syntactic formalization” of the prototype 
chaining method used in previous versions of Macromedia Flash to create objects and 
establish inheritance.

Strict data typing ActionScript 2.0 also lets you explicitly specify data types for variables, 
function parameters, and function return types. For example, the following code declares a 
variable named userName of type String (a built-in ActionScript data type, or class). 
var userName:String = "";

Compiler warnings and errors The above two features enable the authoring tool and compiler 
to provide compiler warnings and error messages that help you find bugs in your applications 
faster than was previously possible in Flash.
Caution: If you plan to use ActionScript 2.0 syntax, ensure that the Publish settings for the FLA file 
specify ActionScript 2.0. This is the default for files created in Flash MX 2004. However, if you open 
an older FLA file that uses ActionScript 1 and begin rewriting it in ActionScript 2.0, change the 
Publish Settings of the FLA file to ActionScript 2.0. If you don’t do so, your FLA file will not compile 
correctly, but no errors will be generated. 
155

http://www.mozilla.org/js/language/es4/


Principles of object-oriented programming

This section provides a brief introduction to principles involved in developing object-oriented 
programs. These principles are described in more depth in the rest of this chapter, along with 
details on how they are implemented in Macromedia Flash MX 2004 and Macromedia Flash MX 
Professional 2004.

Objects

Think of a real-world object—for example, a cat. A cat could be said to have properties (or states) 
such as name, age, and color; a cat also has behaviors such as sleeping, eating, and purring. In the 
world of object-oriented programming, objects also have properties and behaviors. Using object-
oriented techniques, you can model a real-world object (like a cat) or a more abstract object (like 
a chemical process).

Classes and class members

Continuing with the real-world analogy, consider that there are cats of different colors, ages, and 
names, with different ways of eating and purring. But all cats belong to a certain class of object, 
an object of type “cat.” Each individual (real-world) cat is an instance of the cat class type.  

Likewise, in object-oriented programming, a class defines a blueprint for a type of object. The 
characteristics and behaviors that belong to a class are referred to as members of that class. The 
characteristics (in the cat example, name, age, and color) are called properties of the class, which 
are represented as variables; the behaviors (eating, sleeping) are called methods of the class, and are 
represented as functions.

For example, you could create a Person class, and then create an individual person that would be 
an instance of that class, also called a Person object. The Person object would contain all the 
properties and methods of the Person class. 

In ActionScript, you define a class with the class statement (see “Creating and using classes” 
on page 161). ActionScript includes a number of built-in classes, such as the MovieClip, 
TextField, and String classes. For more information, see Chapter 6, “Using the Built-In Classes,” 
on page 113. 

Inheritance

One of the primary benefits of object-oriented programming is that you can create subclasses of a 
class; the subclass then inherits all the properties and methods of the superclass. The subclass 
typically defines additional methods and properties, or extends the superclass. Subclasses can also 
override (provide their own definitions for) methods inherited from a superclass.

For example, you might create a Mammal class that defines certain properties and behaviors 
common to all mammals. You could then create a Cat class that extends the Mammal class. In this 
way, inheritance can promote code reuse: instead of recreating all the code common to both 
classes, you can simply extend an existing class. Another subclass, in turn, could extend the Cat 
class, and so on. In a complex application, determining how to structure the hierarchy of your 
classes is a large part of the design process.

In ActionScript, you use the extends keyword to establish inheritance between a class and its 
superclass. For more information, see “Creating subclasses” on page 162.
156 Chapter 9:  Creating Classes with ActionScript 2.0



Interfaces

Interfaces in object-oriented programming can be described as classes whose methods are not 
implemented (defined). Another class can implement the methods declared by the interface.

An interface can also be thought of as a “programming contract” that can be used to enforce 
relationships between otherwise unrelated classes. For example, suppose you are working with a 
team of programmers, each of whom is working on a different part (class) of the same application. 
While designing the application, you agree on a set of methods that the different classes will use 
to communicate. So you create an interface that declares these methods, their parameters, and 
their return types. Any class that implements this interface must provide definitions for those 
methods; otherwise, a compiler error will result.

You can also use interfaces to provide a limited form of “multiple inheritance,” which is not 
allowed in ActionScript 2.0. In multiple inheritance, a class extends more than one class. For 
example, in C++ the Cat class could extend the Mammal class, as well as a Playful class, which has 
methods ChaseTail and EatCatNip. ActionScript 2.0, like Java, does not allow a class to extend 
multiple classes directly. However, you could create a Playful interface that declares the ChaseTail 
and EatCatNip methods. A Cat class, or any other class, could then implement this interface and 
provide definitions for those methods.

For more information, see “Creating an interface” on page 167.

Using classes: a simple example

For those who are new to object-oriented programming, this section provides an overview of the 
workflow involved in creating and using classes in Flash. At a minimum, this workflow involves 
the following steps:

1 Defining a class in an external ActionScript class file.
2 Saving the class file to a designated classpath directory (a location where Flash looks for classes).
3 Creating an instance of the class in another script, either in a Flash (FLA) document or an 

external script file, or creating a subclass based the original class.
Also discussed in this section is a new feature in ActionScript 2.0 called strict data typing, which 
lets you specify the data type for a variable, function parameter, or function return type.

Although this section discusses only classes, the general workflow is the same for using interfaces. 
For more information, see “Creating and using interfaces” on page 167.

Creating a class file

To create a class, you must first create an external ActionScript (AS) file. Classes (and interfaces) 
can only be defined in external script files. For example, you can’t define a class in a script 
attached to a frame or button in a Flash document (FLA). To create an external AS file, use the 
ActionScript editor included with Flash or your preferred code or text editor.   
Note: ActionScript code in external files is compiled into a SWF file when you publish, export, test, or 
debug a FLA file. Therefore, if you make any changes to an external file, you must save the file and 
recompile any FLA files that use it. 

In the steps below you’ll create a class called Person that contains two properties (age and name) 
and a single method (showInfo()) that displays the values of those properties in the 
Output panel. 
Using classes: a simple example 157



To create the class file:

1 Create a new directory on your hard disk and name it PersonFiles. This directory will contain 
all the files for this project.

2 Do one of the following:
■ Create a new file in your preferred text or code editor.
■ (Flash Professional only) Select File > New to open the New Document dialog box, select 

ActionScript File from the list of file types, and click OK. The Script window opens with a 
blank file.

3 Save the file as Person.as in the PersonFiles directory.
4 In the Script window, enter the following code:

class Person {
}

This is called the class declaration. In its most basic form, a class declaration consists of the 
class keyword, followed by the class name (Person, in this case), and then left and right curly 
braces ({}). Everything between the braces is called the class body and is where the class’s 
properties and methods are defined.
Note: The name of the class (Person) matches the name of the AS file that contains it (Person.as). 
This is very important; if these two names don’t match, the class won’t compile.

5 To create the properties for the Person class, use the var keyword to define two variables named 
age and name, as shown below.
class Person {

var age:Number;
var name:String;

}

Tip: By convention, class properties are defined at the top of the class body, which makes the 
code easier to understand, but this isn’t required.

Notice the colon syntax (var age:Number and var name:String) used in the variable 
declarations. This is an example of strict data typing. When you type a variable in this way 
(var variableName:variableType), the ActionScript 2.0 compiler ensures that any values 
assigned to that variable match the specified type. Although this syntax is not required, it is 
good practice and can make debugging your scripts easier. (For more information, see “Strict 
data typing” on page 38.)
158 Chapter 9:  Creating Classes with ActionScript 2.0



6 Next you’ll create the showInfo() method, which returns a preformatted string containing the 
values of the age and name properties. Add the showInfo() function definition to the class 
body, as shown below.
class Person {

var age:Number;
var name:String;

// Method to return property values
function showInfo():String {

return("Hello, my name is " + name + " and I’m " + age + " years old.");
}

}

Notice the use of data typing (optional but recommended) in the function definition.
function showInfo():String {...}

In this case, what’s being typed is the showInfo() function’s return value (a string). 
7 The last bit of code you’ll add in this section is a special function called a constructor function. 

In object-oriented programming, the constructor function initializes each new instance of 
a class.
The constructor function always has the same name as the class. To create the class’s 
constructor function, add the following code:
class Person {

var age:Number;
var name:String;

// Method to return property values
function showInfo():String {

return("Hello, my name is " + name + " and I’m " + age + " years old.");
}

// Constructor function
function Person (myName:String, myAge:Number) {

name = myName;
age = myAge;

}
}

The Person() constructor function takes two parameters, myName and myAge, and assigns 
those parameters to the name and age properties. The two function parameters are strictly 
typed as String and Number, respectively. For more information about constructor functions, 
see “Constructor functions” on page 163. 
Note: If you don’t create a constructor function, an empty one is created automatically 
during compilation.

8 Save the file as Person.as in the PersonFiles directory that you created in step 1.
If you’re using Flash MX 2004 (not Flash Professional), proceed to the next section.

9 (Flash Professional only) Check the syntax of the class file by selecting Tools > Check Syntax, 
or pressing Control+T (Windows) or Command+T (Macintosh). 
If any errors are reported in the Output panel, compare the code in your script to the final 
code in step 7, above. If you can’t fix the code errors, copy the completed code in step 7 from 
the Help panel.
Using classes: a simple example 159



Creating an instance of the Person class

The next step is to create an instance of the Person class in another script, such as a frame script in 
a Flash (FLA) document or another AS script, and assign it to a variable. To create an instance of 
a custom class, you use the new operator, just as you would when creating an instance of a built-in 
ActionScript class (such as the XML or TextField class). 

For example, the following code creates an instance of the Person class and assigns it to the 
variable newPerson.
var newPerson:Person = new Person("Nate", 32);

This code invokes the Person class’s constructor function, passing as parameters the values "Nate" 
and 32. 

The newPerson variable is typed as a Person object. Typing your objects in this way enables the 
compiler to ensure that you don’t try to access properties or methods that aren’t defined in the 
class. (The exception is if you declare the class to be dynamic using the dynamic keyword. See 
“Creating dynamic classes” on page 173.)

To create an instance of the Person class in a Flash document:

1 In Flash, select File > New, select Flash Document from the list of document types, and 
click OK.

2 Save the file as createPerson.fla in the PersonFiles directory you created previously.
3 Select Layer 1 in the Timeline and open the Actions panel (Window > Development 

Panels > Actions).
4 In the Actions panel, enter the following code:

var person_1:Person = new Person("Nate", 32);
var person_2:Person = new Person("Jane", 28);
trace(person_1.showInfo());
trace(person_2.showInfo());

The above code creates two instances of the Person class, person_1 and person_2, and then 
calls the showInfo() method on each instance.

5 Save your work, then select Control > Test Movie. You should see the following in the 
Output panel:
Hello, my name is Nate and I'm 32 years old.
Hello, my name is Jane and I'm 28 years old.

When you create an instance of a class by calling its constructor function, Flash looks for an 
ActionScript file of the same name as the constructor in a set of predetermined directory 
locations. This group of directory locations is known collectively as the classpath (see 
“Understanding the classpath” on page 169).

You should now have an overall idea of how to create and use classes in your Flash documents. 
The rest of this chapter explores classes and interfaces in more detail.
160 Chapter 9:  Creating Classes with ActionScript 2.0



Creating and using classes

As discussed previously, a class consists of two parts: the declaration and the body. The class 
declaration consists minimally of the class statement, followed by an identifier for the class 
name, then left and right curly braces. Everything inside the braces is the class body.
class className {

// class body
}

You can define classes only in ActionScript (AS) files. For example, you can’t define a class on a 
frame script in a FLA file. Also, the specified class name must match the name of the AS file that 
contains it. For example, if you create a class called Shape, the AS file that contains the class 
definition must be named Shape.as.
// In file Shape.as
class Shape {

// Shape class body
}

All AS class files that you create must be saved in one of the designated classpath directories—
directories where Flash looks for class definitions when compiling scripts. (See “Understanding 
the classpath” on page 169.)

Class names must be identifiers; that is the first character must be a letter, underscore (_), or 
dollar sign ($), and each subsequent character must be a letter, number, underscore, or dollar sign. 
Also, the class name must be fully qualified within the file in which it is declared; that is, it must 
reflect the directory in which it is stored. For example, to create a class named RequiredClass that 
is stored in the myClasses/education/curriculum directory, you must declare the class in the 
RequiredClass.as file like this:  
class myClasses.education.curriculum.RequiredClass {
}

For this reason, it’s good practice to plan your directory structure before you begin creating 
classes. Otherwise, if you decide to move class files after you create them, you will have to modify 
the class declaration statements to reflect their new location. 

Creating properties and methods

A class’s members consist of properties (variable declarations) and methods (function 
declarations). You must declare all properties and methods inside the class body (the curly braces); 
otherwise, an error will occur during compilation.   

Any variable declared within a class, but outside a function, is a property of the class. For 
example, the Person class discussed earlier has two properties, age and name, of type Number and 
String, respectively.
class Person {

var age:Number;
var name:String;

}

Creating and using classes 161



Similarly, any function declared within a class is considered a method of the class. In the Person 
class example, you created a single method called showInfo().
class Person {

var age:Number;
var name:String;
function showInfo() {

// showInfo() method definition
}

}

Initializing properties inline

You can initialize properties inline—that is, when you declare them—with default values, as 
shown here: 
class Person {

var age:Number = 50;
var name:String = "John Doe";

}

When you initialize properties inline the expression on the right side of an assignment must be a 
compile-time constant. That is, the expression cannot refer to anything that is set or defined at 
runtime. Compile-time constants include string literals, numbers, Boolean values, null, and 
undefined, as well as constructor functions for the following built-in classes: Array, Boolean, 
Number, Object, and String.

For example, the following class definition initializes several properties inline:
class CompileTimeTest {

var foo:String = "my foo"; // OK
var bar:Number = 5; // OK
var bool:Boolean = true; // OK
var name:String = new String("Jane"); // OK
var who:String = foo; // OK, because 'foo' is a constant

var whee:String = myFunc(); // error! not compile-time constant expression
var lala:Number = whee; // error! not compile-time constant expression
var star:Number = bar + 25; // OK, both 'bar' and '25' are constants

function myFunc() {
return "Hello world";

}
}

This rule only applies to instance variables (variables that are copied into each instance of a class), 
not class variables (variables that belong to the class itself ). For more information about these 
kinds of variables, see “Instance and class members” on page 165.

Creating subclasses

In object-oriented programming, a subclass can inherit the properties and methods of another 
class, called the superclass. To create this kind of relationship between two classes, you use the 
class statement’s extends clause. To specify a superclass, use the following syntax:        
class SubClass extends SuperClass {}
162 Chapter 9:  Creating Classes with ActionScript 2.0



The class you specify in SubClass inherits all the properties and methods defined by the 
superclass. For example, you might create a Mammal class that defines properties and methods 
common to all mammals. To create a variation of the Mammal class, such as a Marsupial class, 
you would extend the Mammal class—that is, create a subclass of the Mammal class.
class Marsupial extends Mammal {}

The subclass inherits all the properties and methods of the superclass, including any properties or 
methods that you have declared to be private using the private keyword. (For more information 
on private variables, see “Controlling member access” on page 164.)

You can extend your own custom classes, as well as any of the built-in ActionScript classes, such as 
the XML, Sound, or MovieClip class. When you extend a built-in ActionScript class, your 
custom class inherits all the methods and properties of the built-in class.    

For example, the following code defines the class JukeBox, which extends the built-in Sound class. 
It defines an array called songList and a method called playSong() that plays a song and 
invokes the loadSound() method, which it inherits from the Sound class.
class JukeBox extends Sound {

var songList:Array = new Array("beethoven.mp3", "bach.mp3", "mozart.mp3");
function playSong(songID:Number) {

this.loadSound(songList[songID]);
}

}

If you don’t place a call to super() in the constructor function of a subclass, the compiler 
automatically generates a call to the constructor of its immediate superclass with no parameters as 
the first statement of the function. If the superclass doesn’t have a constructor, the compiler 
creates an empty constructor function and then generates a call to it from the subclass. However, 
if the superclass takes parameters in its definition, you must create a constructor in the subclass 
and call the superclass with the required parameters. 

Multiple inheritance, or inheriting from more than one class, is not allowed. However, classes can 
effectively inherit from multiple classes if you use individual extends statements:
// not allowed
class C extends A, B {}
// allowed
class B extends A {}
class C extends B {}

You can also use the extends keyword to create subclasses of an interface:
interface iA extends interface iB {}

Constructor functions

A class’s constructor is a special function that is called automatically when you create an instance of 
a class using the new operator. The constructor function has the same name as the class that 
contains it. For example, the Person class you created earlier contained the following constructor 
function:
// Person class constructor function
function Person (myName:String, myAge:Number) {

name = myName;
age = myAge;

}

Creating and using classes 163



If no constructor function is explicitly declared—that is, if you don’t create a function whose 
name matches that of the class—the compiler automatically creates an empty constructor 
function for you. 

A class can contain only one constructor function; overloaded constructor functions are not 
allowed in ActionScript 2.0.

Controlling member access

By default, any property or method of a class can be accessed by any other class: all members of a 
class are public by default. However, in some cases you may want to protect data or methods of a 
class from access by other classes. You’ll need to make those members private—available only to 
the class that declares or defines them.  

You specify public or private members using the public or private member attribute. For 
example, the following code declares a private variable (a property) and a private method 
(a function).

For example, the following class (LoginClass) defines a private property named userName and a 
private method named getUserName().
class LoginClass {

private var userName:String;
private function getUserName() {

return userName;
}
// Constructor:
function LoginClass(user:String) {

this.userName = user;
}

}

Private members (properties and methods) are accessible only to the class that defines those 
members and to subclasses of that original class. Instances of the original class, or instances of 
subclasses of that class, cannot access privately declared properties and methods; that is, private 
members are accessible only within class definitions; not at the instance level.

For example, you could create a subclass of LoginClass called NewLoginClass. This subclass can 
access the private property (userName) and method (getUserName()) defined by LoginClass.
class NewLoginClass extends LoginClass {

// can access userName and getUserName()
}

However, an instance of LoginClass or NewLoginClass cannot access those private members. For 
example, the following code, added to a frame script in a FLA file, would result in a compiler 
error indicating that getUserName() is private and can’t be accessed.
var loginObject:LoginClass = new LoginClass("Maxwell");
var user = loginObject.getUserName();

Also note that member access control is a compile-time only feature; at runtime, Flash Player does 
not distinguish between private or public members.
164 Chapter 9:  Creating Classes with ActionScript 2.0



Instance and class members

In object-oriented programming, members (properties or methods) of a class can be either 
instance members or class members. Instance members are created for, and copied into, each 
instance of the class; in contrast, class members are created just once per class. (Class members are 
also known as static members.)   

To invoke an instance method or access an instance property, you reference an instance of the 
class. For example, the following code invokes the showInfo() method on an instance of the 
MovieClip class called clip_mc:
clip_mc.showInfo();

Class (static) members, however, are assigned to the class itself, not to any instance of the class. To 
invoke a class method or access a class property, you reference the class name itself, rather than a 
specific instance of the class: 
ClassName.classMember;

For example, the ActionScript Math class consists only of static methods and properties. To call 
any of its methods, you don’t create an instance of the Math class. Instead, you simply call the 
methods on the Math class itself. The following code calls the sqrt() method of the Math class:
var square_root:Number = Math.sqrt(4);

Instance members can read static members, but cannot write them. Instance members are not 
enumerable in for or for..in loops. 

Creating class members

To specify that a property of a class is static, you use the static modifier, as shown below.
static var variableName;

You can also declare methods of a class to be static. 
static function functionName() {

// function body
}

Class (static) methods can access only class (static) properties, not instance properties. For 
example, the following code will result in a compiler error, because the class method getName() 
references the instance variable name. 
class StaticTest {

var name="Ted";

static function getName() {
var local_name = name; 
// Error! Instance variables cannot be accessed in static functions.

}
}

To solve this problem, you could either make the method an instance method or make the 
variable a class variable.
Instance and class members 165



Using class members: a simple example

One use of class (static) members is to maintain state information about a class and its instances. 
For example, suppose you want to keep track of the number of instances that have been created 
from a particular class. An easy way to do this is to use a class property that’s incremented each 
time a new instance is created.

In the following example, you’ll create a class called Widget that defines a single, static instance 
counter named widgetCount. Each time a new instance of the class is created, the value of 
widgetCount is incremented by 1 and the current value of widgetCount is displayed in the 
Output panel.

To create an instance counter using a class variable:

1 Create a new ActionScript (AS) file.
2 Add the following code to the file:

class Widget {
static var widgetCount:Number = 0; // initialize class variable
function Widget() {

trace("Creating widget #" + widgetCount);
widgetCount++;

}
}

The widgetCount variable is declared as static, and so initializes to 0 only once. Each time the 
Widget class’s constructor function is called, it adds 1 to widgetCount, and then displays the 
number of the current instance that’s being created.

3 Save your file as Widget.as.
4 Create a new Flash (FLA) document and save it as createWidget.fla in the same directory as 

Widget.as.
In this file, you’ll create new instances of the Widget class.

5 In createWidget.fla, select Layer 1 in the Timeline and open the Actions panel (Window > 
Development Panels > Actions).

6 Add the following code to the Actions panel.
// Before you create any instances of the class, 
// widgetCount is zero (0)
trace("Widget count at start: " + Widget.widgetCount);
var widget_1 = new Widget();
var widget_2 = new Widget();
var widget_3 = new Widget();

7 Save the file, and then test it (Control > Test Movie).
You should see the following in the Output panel:
Widget count at start: 0
Creating widget # 0
Creating widget # 1
Creating widget # 2
166 Chapter 9:  Creating Classes with ActionScript 2.0



Class members and subclasses

Class members propagate to subclasses of the superclass that defines those members. In the 
previous example (see “Using class members: a simple example” on page 166), you used a class 
property to keep track of the number of instances of that class you created. You could create a 
subclass of the Widget class, as shown below. 
class SubWidget extends Widget {

function SubWidget() {
trace("Creating subwidget # "+Widget.widgetCount);

}
}

Creating and using interfaces

An interface in object-oriented programming is like a class whose methods have been declared, 
but otherwise don’t “do” anything. That is, an interface consists of “empty” methods.     

One use of interfaces is to enforce a protocol between otherwise unrelated classes, as discussed 
next. For example, suppose you’re part of a team of programmers, each of whom is working on a 
different part—that is, a different class—of a large application. Most of these classes are unrelated, 
but you still need a way for the different classes to communicate. That is, you need to define an 
interface, or communication protocol, that all the classes must adhere to. 

One way to do this would be to create a Communication class that defines all of these methods, 
and then have each class extend, or inherit from, this superclass. But because the application 
consists of classes that are unrelated, it doesn’t make sense to force them all into a common class 
hierarchy. A better solution is to create an interface that declares the methods these classes will use 
to communicate, and then have each class implement (provide its own definitions for) 
those methods.

You can usually program successfully without using interfaces. When used appropriately, 
however, interfaces can make the design of your applications more elegant, scalable, 
and maintainable.

Creating an interface

The process for creating an interface is the same as for creating a class. As with classes, you can 
only define interfaces in external ActionScript (AS) files. You declare an interface using the 
interface keyword, followed by the interface name, and then left and right curly braces, which 
define the body of the interface.  
interface interfaceName {

// interface method declarations
}

An interface can contain only method (function) declarations, including parameters, parameter 
types, and function return types. 
Creating and using interfaces 167



For example, the following code declares an interface named MyInterface that contains two 
methods, method_1() and method_2(). The first method takes no parameters and has no return 
type (specified as Void). The second method declaration takes a single parameter of type String, 
and specifies a return type of Boolean. 
interface MyInterface {

function method_1():Void;
function method_2(param:String):Boolean;

}

Interfaces cannot contain any variable declarations or assignments. Functions declared in an 
interface cannot contain curly braces. For example, the following interface won’t compile.
interface BadInterface{

// Compiler error. Variable declarations not allowed in interfaces.
var illegalVar; 

// Compiler error. Function bodies not allowed in interfaces.
function illegalMethod(){
}

}

The rules for naming interfaces and storing them in packages are the same as those for classes; see 
“Creating and using classes” on page 161 and “Using packages” on page 171.

Interfaces as data types

Like a class, an interface defines a new data type. Any class that implements an interface can be 
considered to be of the type defined by the interface. This is useful for determining if a given 
object implements a given interface. For example, consider the following interface.  
interface Movable {

function moveUp();
function moveDown();

}

Now consider the class Box that implements the Movable interface.
class Box implements Movable {

var x_pos, y_pos;

function moveUp() {
// method definition

}
function moveDown() {

// method definition 
}

}

Then, in another script where you create an instance of the Box class, you could declare a variable 
to be of the Movable type.
var newBox:Movable = new Box();

At runtime, in Flash Player 7 and later, you can cast an expression to an interface type. If the 
expression is an object that implements the interface or has a superclass that implements the 
interface, the object is returned. Otherwise, null is returned. This is useful if you want to make 
sure that a particular object implements a certain interface.   
168 Chapter 9:  Creating Classes with ActionScript 2.0



For example, the following code first checks if the object name someObject implements the 
Movable interface before calling the moveUp() method on the object.
if(Movable(someObject) != null) {

someObject.moveUp();
}

Understanding the classpath

In order to use a class or interface that you’ve defined, Flash must be able to locate the external AS 
files that contain the class or interface definition. The list of directories in which Flash searches for 
class and interface definitions is called the classpath.  

When you create an ActionScript class file, you need to save the file to one of the directories 
specified in the classpath, or a subdirectory therein. (You can modify the classpath to include the 
desired directory path; see “Modifying the classpath” on page 170.) Otherwise, Flash won’t be 
able to resolve, or locate, the class or interface specified in the script. Subdirectories that you create 
within a classpath directory are called packages and let you organize your classes. (For more 
information, see “Using packages” on page 171.)

Global and document-level classpaths

Flash has two classpath settings: a global classpath and a document-level classpath. The global 
classpath applies to external AS and FLA files and is set in the Preferences dialog box (Edit > 
Preferences). The document-level classpath applies only to FLA files and is set in the Publish 
Settings dialog (File > Publish Settings) for a particular FLA.   

By default, the global classpath contains two directory paths: a relative path that points to the 
directory that contains the current document, and the Classes directory located in the user 
configuration directory installed with Flash. The location of this directory is shown here: 

• Windows 2000 or Windows XP: C:\Documents and Settings\<user>\Local Settings\ 
Application Data\Macromedia\Flash MX2004\<language>\Configuration\

• Windows 98: C:\Windows\Application Data\Macromedia\Flash MX  2004\ 
<language>\Configuration\

• Macintosh OS X: Hard Drive/Users/Library/Application Support/Macromedia/
Flash MX 2004/<language>/Configuration/

The document-level classpath is empty by default. 

How the compiler resolves class references

When Flash attempts to resolve class references in a FLA script, it first searches the document-
level classpath specified for that FLA. If the class is not found in that classpath, or if that classpath 
is empty, Flash searches the global classpath. If the class is not found in the global classpath, a 
compiler error occurs. 

When Flash attempts to resolve class references in an AS script, it searches only the global 
classpath directories, since AS files don’t have an associated document class path.
Understanding the classpath 169



Modifying the classpath

You can modify the global classpath using the Preferences dialog box. To modify the document-
level classpath setting, you use the Publish Settings dialog box for the FLA file. You can add 
absolute directory paths (for example, C:/my_classes) and relative directory paths (for example, ../
my_classes or “.”). 

By default, the global classpath contains one absolute path (the Classes directory in the user 
configuration directory) and a relative classpath, denoted by a single dot (.), which points to the 
current document directory. Be aware that relative classpaths can point to different directories, 
depending on the location of the document being compiled or published. For more information, 
see “Global and document-level classpaths” on page 169.

To modify the global classpath:

1 Select Edit > Preferences to open the Preferences dialog box.
2 Click the ActionScript tab, then click the ActionScript 2.0 Settings button.
3 Do any of the following:

■ To add a directory to the classpath, click the Browse to Path button, browse to the directory 
you want to add, and click OK.
Alternatively, click the Add New Path (+) button to add a new line to the Classpath list. 
Double-click the new line, type a relative or absolute path, and click OK.

■ To edit an existing classpath directory, select the path in the Classpath list, click the Browse 
to Path button, browse to the directory you want to add, and click OK.
Alternatively, double-click the path in the Classpath list, type the desired path, and 
click OK.

■ To delete a directory from the classpath, select the path in the Classpath list and click the 
Remove from Path button.

To modify the document-level classpath:

1 Select File > Publish Settings to open the Publish Settings dialog box.
2 Click the Flash tab.
3 Click the Settings button next to the ActionScript Version pop-up menu.
4 Do any of the following: 

■ To add a directory to the classpath, click the Browse to Path button, browse to the directory 
you want to add, and click OK.
Alternatively, click the Add New Path (+) button to add a new line to the Classpath list. 
Double-click the new line, type a relative or absolute path, and click OK.

■ To edit an existing classpath directory, select the path in the Classpath list, click the Browse 
to Path button, browse to the directory you want to add, and click OK.
Alternatively, double-click the path in the Classpath list, type the desired path, and 
click OK.

■ To delete a directory from the classpath, select the path in the Classpath list and click the 
Remove from Path button.
170 Chapter 9:  Creating Classes with ActionScript 2.0



Using packages

You can organize your ActionScript class files in packages. A package is a directory that contains 
one or more class files, and that resides in a designated classpath directory. (See “Understanding 
the classpath” on page 169.) A package can, in turn, contain other packages, called subpackages, 
each with its own class files. 

Package names must be identifiers; that is the first character must be a letter, underscore (_), or 
dollar sign ($), and each subsequent character must be a letter, number, underscore, or dollar sign.  

Packages are commonly used to organize related classes. For example, you might have three 
related classes, Square, Circle, and Triangle, that are defined in Square.as, Circle.as, and 
Triangle.as. Assume that you’ve saved the AS files to a directory specified in the classpath.
// In Square.as:
class Square {}

// In Circle.as:
class Circle {}

// In Triangle.as:
class Triangle {}

Because these three class files are related, you might decide to put them in a package (directory) 
called Shapes. In this case, the fully qualified class name would contain the package path, as well 
as the simple class name. Package paths are denoted with dot syntax, where each dot indicates 
a subdirectory. 

For example, if you placed each AS file that defines a shape in the Shapes directory, you would 
need to change the name of each class file to reflect the new location, as follows: 
// In Shapes/Square.as:
class Shapes.Square {}

// In Shapes/Circle.as:
class Shapes.Circle {}

// In Shapes/Triangle.as:
class Shapes.Triangle {}

To reference a class that resides in a package directory, you can either specify its fully qualified 
class name or import the package by using the import statement (see below).

Importing classes

To reference a class in another script, you must prefix the class name with the class’s package path. 
The combination of a class’s name and its package path is the class’s fully qualified class name. If a 
class resides in a top-level classpath directory—not in a subdirectory in the classpath directory—
then its fully qualified class name is just its class name.  

To specify package paths, use dot notation to separate package directory names. Package paths are 
hierarchical, where each dot represents a nested directory. For example, suppose you create a class 
named Data that resides in a com/network/ package in your classpath. To create an instance of 
that class, you could specify the fully qualified class name, as follows:
var dataInstance = new com.network.Data();
Importing classes 171



You can use the fully qualified class name to type your variables, as well:
var dataInstance:com.network.Data = new Data();

You can use the import statement to import packages into a script, which lets you use a class’s 
abbreviated name rather than its fully qualified name. You can also use the wildcard character (*) 
to import all the classes in a package.  

For example, suppose you created a class named UserClass that’s included in the package directory 
path macr/util/users: 
// In the file macr/util/users/UserClass.as
class macr.util.users.UserClass { ... }

Suppose that in another script, you imported that class as follows using the import statement:
import macr.util.users.UserClass;

Later in the same script you could reference that class by its abbreviated name:
var myUser:UserClass = new UserClass();

You can use the wildcard character (*) to import all the classes in a given package. For example, 
suppose you have a package named macr.util that contains two ActionScript class files, foo.as 
and bar.as. In another script, you could import both classes in that package using the wildcard 
character, as shown below.
import macr.util.*;

In the same script, you can then reference either the foo or bar class directly.
var myFoo:foo = new foo();
var myBar:bar = new bar();

The import statement applies only to the current script (frame or object) in which it’s called. If 
an imported class is not used in a script, the class is not included in the resulting SWF file’s 
bytecode, and the class isn’t available to any SWF files that the FLA file containing the import 
statement might call. For more information, see import on page 400. 

Implicit get/set methods

Object-oriented programming practice discourages direct access to properties within a class. 
Classes typically define “get” methods that provide read access and “set” methods that provide 
write access to a given property. For example, imagine a class that contains a property called 
userName:  
var userName:String;

Instead of allowing instances of the class to directly access this property (obj.userName = 
"Jody", for example), the class might have two methods, getUserName and setUserName, that 
would be implemented as follows:
function getUserName:String() {

return userName;
}

function setUserName(name:String): {
userName = name;

}

172 Chapter 9:  Creating Classes with ActionScript 2.0



As you can see, getUserName returns the current value of userName, and setUserName sets the 
value of userName to the string parameter passed to the method. An instance of the class would 
then use the following syntax to get or set the userName property.
// calling "get" method
var name = obj.getUserName();
// calling "set" method
obj.setUserName("Jody");

However, if you want to use a more concise syntax, use implicit get/set methods. Implicit get/set 
methods let you access class properties in a direct manner, while maintaining good OOP practice.

To define these methods, use the get and set method attributes. You create methods that get or 
set the value of a property, and add the keyword get or set before the method name.
function get user():String {

return userName;
}

function set user(name:String):Void {
userName = name;

}

A get method must not take any parameters. A set method must take exactly one required 
parameter. A set method can have the same name as a get method in the same scope. Get/set 
methods cannot have the same name as other properties. For example, in the example code above 
that defines get and set methods named user, you could not also have a property named user in 
the same class.

Unlike ordinary methods, get/set methods are invoked without any parentheses or arguments. For 
example, the following syntax could now be used to access or modify the value of userName with 
the get/set methods defined above.
var name = obj.user;
obj.user = "Jack";

Note: Implicit get/set methods are syntactic shorthand for the Object.addProperty() method 
in ActionScript 1.

Creating dynamic classes

By default, the properties and methods of a class are fixed. That is, an instance of a class can’t 
create or access properties or methods that weren’t originally declared or defined by the class. For 
example, consider a Person class that defines two properties, name and age:  
class Person {

var name:String;
var age:Number;

}

If, in another script, you create an instance of the Person class and try to access a property of the 
class that doesn’t exist, the compiler generates an error. For example, the following code creates a 
new instance of the Person class (a_person) and then tries to assign a value to a property named 
hairColor, which doesn’t exist.
var a_person:Person = new Person();
a_person.hairColor = "blue"; // compiler error

This code causes a compiler error because the Person class doesn’t declare a property named 
hairColor. In most cases, this is exactly what you want to happen.
Creating dynamic classes 173



In some cases, however, you might want to add and access properties or methods of a class at 
runtime that aren’t defined in the original class definition. The dynamic class modifier lets you do 
just that. For example, the following code adds the dynamic modifier to the Person class 
discussed previously: 
dynamic class Person {

var name:String;
var age:Number;

}

Now, instances of the Person class can add and access properties and methods that aren’t defined 
in the original class. 
var a_person:Person = new Person();
a_person.hairColor = "blue"; // no compiler error because class is dynamic

Subclasses of dynamic classes are also dynamic.

How classes are compiled and exported

By default, classes used by a SWF file are packaged and exported on the SWF’s first frame. You 
can also specify the frame where your classes are packaged and exported. This is useful, for 
example, if a SWF file uses many classes that require a long time to download. If the classes are 
exported on the first frame, the user would have to wait until all the class code has downloaded 
before that frame would appear. By specifying a later frame in the Timeline, you could display a 
short loading animation in the first few frames of the Timeline while the class code in the later 
frame downloads.   

To specify the export frame for classes for a Flash document:

1 With a FLA file open, select File > Publish Settings.
2 In the Publish Settings dialog box, click the Flash tab.
3 Click the Settings button next to the ActionScript version pop-up menu to open the 

ActionScript Settings dialog box.
4 In the Export Frame for Classes text box, enter the number of the frame where you want to 

export your class code.
If the frame specified does not exist in the Timeline, you will get an error message when you 
publish your SWF.

5 Click OK to close the ActionScript Settings dialog box, then click OK to close the Publish 
Settings dialog box.
174 Chapter 9:  Creating Classes with ActionScript 2.0



P
A

R
T

 IV
PART IV
Working with External Data and Media
This part discusses how to incorporate external data and media into your Macromedia 
Flash applications.

Chapter 10: Working with External Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Chapter 11: Working with External Media  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193





CHAPTER 10
Working with External Data
In Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004, you can use 
ActionScript to load data from external sources into a SWF file. You can also send data from a 
SWF file for processing by an application server (such as Macromedia ColdFusion MX or 
Macromedia JRun) or another type of server-side script, such as PHP or Perl. Flash Player can 
send and load data over HTTP or HTTPS or from a local text file. You can also create persistent 
TCP/IP socket connections for applications that require low latency—for example, chat 
applications or a stock quote services. 

Data that you load into or send from a SWF file can be formatted as XML (Extensible Markup 
Language) or as name-value pairs.

Flash Player can also send data to and receive data from its host environment—a web browser, for 
example—or another instance of Flash Player on the same computer.

By default, a SWF file can only access data that resides in the same domain (for example, 
www.macromedia.com) that the Flash movie originated from. (For more information, see “Flash 
Player security features” on page 188.)

Sending and loading variables to and from a remote source

A SWF file is a window for capturing and displaying information, much like an HTML page. 
However, SWF files can stay loaded in the browser and continuously update with new 
information without having to reload the entire page. Using ActionScript functions and methods, 
you can send information to and receive information from server-side scripts, text files, and 
XML files.     

In addition, server-side scripts can request specific information from a database and relay it to a 
SWF file. Server-side scripts can be written in many different languages: some of the most 
common are CFML, Perl, ASP (Microsoft Active Server Pages), and PHP. By storing information 
in a database and retrieving it, you can create dynamic and personalized content for your SWF 
file. For example, you could create a message board, personal profiles for users, or a shopping cart 
that keeps track of a user’s purchases so that it can determine the user’s preferences. 
177



Several ActionScript functions and methods let you pass information into and out of a SWF file. 
Each function or method uses a protocol to transfer information, and requires information to be 
formatted in a certain way.    

• The functions and MovieClip methods that use the HTTP or HTTPS protocol to send 
information in URL-encoded format are getURL(), loadVariables(), 
loadVariablesNum(), loadMovie(), and loadMovieNum().   

• The LoadVars methods that use the HTTP or HTTPS protocol to send and load information 
in URL-encoded format are load(), send(), and sendAndLoad().

• The methods that use HTTP or HTTPS protocol to send and load information as XML are 
XML.send(), XML.load(), and XML.sendAndLoad(). 

• The methods that create and use a TCP/IP socket connection to send and load information as 
XML are XMLSocket.connect() and XMLSocket.send(). 

Checking for loaded data 

Each function or method that loads data into a SWF file (except XMLSocket.send()) is 
asynchronous: the results of the action are returned at an indeterminate time.     

Before you can use loaded data in a SWF file, you must check to see if it has been loaded. For 
example, you can’t load variables and manipulate their values in the same script. In the following 
script, you can’t use the variable lastFrameVisited until you’re sure the variable has loaded from 
the file myData.txt:  
loadVariables("myData.txt", 0);
gotoAndPlay(lastFrameVisited);

Each function or method has a specific technique you can use to check data it has loaded. If you 
use loadVariables() or loadMovie(), you can load information into a movie clip target and 
use the data event of the onClipEvent() handler to execute a script. If you use 
loadVariables() to load the data, the onClipEvent(data) handler executes when the last 
variable is loaded. If you use loadMovie() to load the data, the onClipEvent(data) handler 
executes each time a fragment of the SWF file is streamed into Flash Player.   

For example, the following button action loads the variables from the file myData.txt into the 
movie clip loadTargetMC:
on(release){

loadVariables("myData.txt", _root.loadTargetMC);
}

An onClipEvent() handler assigned to the loadTargetMC instance uses the variable 
lastFrameVisited, which is loaded from the file myData.txt. The following will execute only 
after all the variables, including lastFrameVisited, are loaded:
onClipEvent(data) {

goToAndPlay(lastFrameVisited);
}

If you use the XML.load(), XML.sendAndLoad(), and XMLSocket.connect() methods, you 
should define a handler that will process the data when it arrives. This handler is a property of an 
XML or XMLSocket object to which you assign a function you have defined. The handlers are 
called automatically when the information is received. For the XML object, use XML.onLoad() or 
XML.onData(). For the XMLSocket object, use XMLSocket.onConnect(). 
178 Chapter 10:  Working with External Data



For more information, see “Using the XML class” on page 181 and “Using the XMLSocket class” 
on page 184.

Using HTTP to connect to server-side scripts

The loadVariables(), loadVariablesNum(), getURL(), loadMovie(), and loadMovieNum() 
functions and the MovieClip.loadVariables(), MovieClip.loadMovie(), and 
MovieClip.getURL() methods can all communicate with server-side scripts over HTTP or 
HTTPS protocols. These functions send all the variables from the Timeline to which the 
function is attached. When used as methods of the MovieClip object, loadVariables(), 
getURL(), and loadMovie() send all the variables of the specified movie clip; each function (or 
method) handles its response as follows:  

• getURL() returns any information to a browser window, not to Flash Player.
• loadVariables() loads variables into a specified Timeline or level in Flash Player. 
• loadMovie() loads a SWF file into a specified level or movie clip in Flash Player. 

When you use loadVariables(), getURL(), or loadMovie(), you can specify 
several parameters:

• URL is the file in which the remote variables reside.
• Location is the level or target in the SWF file that receives the variables. (The getURL() 

function does not take this parameter.)
For more information about levels and targets, see “About multiple Timelines and levels” in 
Using Flash Help.

• Variables sets the HTTP method, either GET or POST, by which the variables will be sent. 
When omitted, Flash Player defaults to GET, but no variables are sent.

For example, if you wanted to track the high scores for a game, you could store the scores on a 
server and use loadVariables() to load them into the SWF file each time someone played the 
game. The function call might look like this:
loadVariables("http://www.mySite.com/scripts/high_score.php", _root.scoreClip, 

GET);

This loads variables from the PHP script called high_score.php into the movie clip instance 
scoreClip using the GET HTTP method.

Any variables loaded with the loadVariables() function must be in the standard MIME format 
application/x-www-form-urlencoded (a standard format used by CGI scripts). The file you specify 
in the URL parameter of loadVariables() must write out the variable and value pairs in this 
format so that Flash can read them.This file can specify any number of variables; variable and 
value pairs must be separated with an ampersand (&), and words within a value must be separated 
with a plus (+). For example, this phrase defines several variables: 
highScore1=54000&playerName1=rockin+good&highScore2=53455&playerName2=

bonehelmet&highScore3=42885&playerName3=soda+pop

For more information, see loadVariables() on page 422, getURL() on page 394, 
loadMovie() on page 420, and the LoadVars class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205.
Sending and loading variables to and from a remote source 179



Using the LoadVars class

You can use the LoadVars class instead of loadVariables() to transfer variables between a SWF 
file and a server. The LoadVars class lets you send all the variables in an object to a specified URL 
and load all the variables at a specified URL into an object. The response from the server triggers 
the LoadVars.onLoad() method and sets variables in the target. You can use LoadVars to obtain 
error information and progress indications and to stream the data while it downloads.   

The LoadVars class is similar to the XML class; it uses the methods load(), send(), and 
sendAndLoad() to initiate communication with the server. The main difference between the 
LoadVars and XML classes is that the LoadVars data is a property of the LoadVars object, rather 
than an XML DOM (Document Object Model) tree stored in the XML object.

You must create a LoadVars object to call its methods. This object is a container to hold the 
loaded data. 

The following procedure shows how to use a LoadVars object to load variables from a text file and 
display those variables in a text field.

To load data with the LoadVars object:

1 In a text editor such as Notepad or SimpleText, create a text file and add the following text to 
the text file:
day=11&month=July&year=2003

2 Save the file as date.txt.
3 In Flash, create a document.
4 Create a dynamic text field on the Stage and give it the instance name date_txt.
5 Select Frame 1 in the Timeline and open the Actions panel (Window > Development Panels > 

Actions) if it isn’t already open.
6 Enter the following code in the Actions panel:

var dateVars = new LoadVars();
dateVars.onLoad = function(ok) {

if (ok) {
date_txt.text = dateVars.day+"/"+dateVars.month+"/"+dateVars.year;

}
};
dateVars.load("date.txt");

This code loads the variables in data.txt (day, month, year), then formats and displays them in 
the text field date_txt.

7 Save the document as dateReader.fla to the same directory that contains date.txt (the text file 
you saved in step 3).

8 Select Control > Test Movie to test the document.
For more information, see the LoadVars class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.
180 Chapter 10:  Working with External Data



About XML

XML (Extensible Markup Language) is becoming the standard for the interchange of structured 
data in Internet applications. You can integrate data in Flash with servers that use XML 
technology to build sophisticated applications, such as chat systems or brokerage systems.  

In XML, as with HTML, you use tags to mark up, or specify, a body of text. In HTML, you use 
predefined tags to indicate how text should appear in a web browser (for example, the <b> tag 
indicates that text should be bold). In XML, you define tags that identify the type of a piece of 
data (for example, <password>VerySecret</password>). XML separates the structure of the 
information from the way it’s displayed, so the same XML document can be used and reused in 
different environments.

Every XML tag is called a node, or an element. Each node has a type (1, which indicates an XML 
element, or 3, which indicates a text node), and elements may also have attributes. A node nested 
in a node is called a child node. This hierarchical tree structure of nodes is called the XML 
Document Object Model (DOM)—much like the JavaScript DOM, which is the structure of 
elements in a web browser. 

In the following example, <PORTFOLIO> is the parent node; it has no attributes and contains the 
child node <HOLDING>, which has the attributes SYMBOL, QTY, PRICE, and VALUE: 
<PORTFOLIO>

<HOLDING SYMBOL="RICH"
QTY="75"
PRICE="245.50"
VALUE="18412.50" />

</PORTFOLIO>

Using the XML class

The methods of the ActionScript XML class (for example, appendChild(), removeNode(), and 
insertBefore()) let you structure XML data in Flash to send to a server and manipulate and 
interpret downloaded XML data.   

The following XML class methods send and load XML data to a server by using the HTTP 
POSTmethod:

• The load() method downloads XML from a URL and places it in an ActionScript 
XML object.

• The send() method passes an XML object to a URL. Any returned information is sent to 
another browser window.

• The sendAndLoad() method sends an XML object to a URL. Any returned information is 
placed in an ActionScript XML object.

For example, you could create a brokerage system that stores all its information (user names, 
passwords, session IDs, portfolio holdings, and transaction information) in a database. 
Sending and loading variables to and from a remote source 181



The server-side script that passes information between Flash and the database reads and writes the 
data in XML format. You can use ActionScript to convert information collected in the SWF file 
(for example, a user name and password) to an XML object and then send the data to the server-
side script as an XML document. You can also use ActionScript to load the XML document that 
the server returns into an XML object to be used in the SWF file. 

The flow and conversion of data between a Flash movie, a server-side script, and a database

The password validation for the brokerage system requires two scripts: a function defined on 
Frame 1, and a script that creates and sends the XML objects attached to the Submit button in 
the form. 

When users enter their information into text fields in the SWF file with the variables username 
and password, the variables must be converted to XML before being passed to the server. The 
first section of the script loads the variables into a newly created XML object called loginXML. 
When a user clicks the Submit button, the loginXML object is converted to a string of XML and 
sent to the server.  

The following script is attached to the Submit button. To understand this script, read the 
commented lines (indicated by the characters //): 
on (release) {

// A. Construct an XML document with a LOGIN element
loginXML = new XML();
loginElement = loginXML.createElement("LOGIN");
loginElement.attributes.username = username;
loginElement.attributes.password = password;
loginXML.appendChild(loginElement);

// B. Construct an XML object to hold the server's reply
loginReplyXML = new XML();
loginReplyXML.onLoad = onLoginReply;

// C. Send the LOGIN element to the server,
//    place the reply in loginReplyXML
loginXML.sendAndLoad("https://www.imexstocks.com/main.cgi",

loginReplyXML);
}

The first section of the script generates the following XML when the user clicks the 
Submit button:
<LOGIN USERNAME="JeanSmith" PASSWORD="VerySecret" />

��������	
��

��������

��������	
��



�����


�����
��
��

����	
��
��
���

�
�����������

����������
��	���


�
��
�����
������� �������


����������

�������

�
������
182 Chapter 10:  Working with External Data



The server receives the XML, generates an XML response, and sends it back to the SWF file. If 
the password is accepted, the server responds with the following:
<LOGINREPLY STATUS="OK" SESSION="rnr6f7vkj2oe14m7jkkycilb" />

This XML includes a SESSION attribute that contains a unique, randomly generated session ID, 
which will be used in all communications between the client and server for the rest of the session. 
If the password is rejected, the server responds with the following message:
<LOGINREPLY STATUS="FAILED" />

The LOGINREPLY XML node must load into a blank XML object in the SWF file. The following 
statement creates the XML object loginreplyXML to receive the XML node:
// B. Construct an XML object to hold the server's reply
loginReplyXML = new XML();
loginReplyXML.onLoad = onLoginReply;

The second statement assigns the onLoginReply() function to the 
loginReplyXML.onLoad handler. 

The LOGINREPLY XML element arrives asynchronously, much like the data from a 
loadVariables() function, and loads into the loginReplyXML object. When the data arrives, 
the onLoad handler of the loginReplyXML object is called. You must define the onLoginReply() 
function and assign it to the loginReplyXML.onLoad handler so that it can process the 
LOGINREPLY element. You must also assign the onLoginReply() function to the frame that 
contains the Submit button.
Sending and loading variables to and from a remote source 183



The onLoginReply() function is defined in the first frame of the SWF file. (To understand this 
script, read the commented lines.) 
function onLoginReply() {

// Get the first XML element
var e = this.firstChild;
// If the first XML element is a LOGINREPLY element with
// status OK, go to the portfolio screen. Otherwise,
// go to the login failure screen and let the user try again.
if (e.nodeName == "LOGINREPLY" && e.attributes.status == "OK") {

// Save the session ID for future communications with server
sessionID = e.attributes.session;

// Go to the portfolio viewing screen
gotoAndStop("portfolioView");

} else {
// Login failed!  Go to the login failure screen.
gotoAndStop("loginFailed");

}
}

The first line of this function, var e = this.firstChild, uses the keyword this to refer to the 
XML object loginReplyXML that has just been loaded with XML from the server. You can use 
this because onLoginReply() has been invoked as loginReplyXML.onLoad, so even though 
onLoginReply() appears to be a normal function, it actually behaves as a method of 
loginReplyXML.

To send the user name and password as XML to the server and to load an XML response back 
into the SWF file, you can use the sendAndLoad() method, as shown here:
// C. Send the LOGIN element to the server,
//    place the reply in loginReplyXML

loginXML.sendAndLoad("https://www.imexstocks.com/main.cgi", loginReplyXML);

Note: This design is only an example, and Macromedia can make no claims about the level of security 
it provides. If you are implementing a secure password-protected system, make sure you have a good 
understanding of network security.

For more information, see “Integrating XML and Flash in a Web Application” at 
www.macromedia.com/support/flash/interactivity/xml/ and the XML class entry in Chapter 12, 
“ActionScript Dictionary,” on page 205.

Using the XMLSocket class

ActionScript provides a built-in XMLSocket class that allows you to open a continuous 
connection with a server. A socket connection allows the server to publish (or “push”) 
information to the client as soon as that information is available. Without a continuous 
connection, the server must wait for an HTTP request. This open connection removes latency 
issues and is commonly used for real-time applications such as chats. The data is sent over the 
socket connection as one string and should be in XML format. You can use the XML class to 
structure the data.      

To create a socket connection, you must create a server-side application to wait for the socket 
connection request and send a response to the SWF file. This type of server-side application can 
be written in a programming language such as Java. 
184 Chapter 10:  Working with External Data

http://www.macromedia.com/support/flash/interactivity/xml/


You can use the connect() and send() methods of the XMLSocket class to transfer XML to and 
from a server over a socket connection. The connect() method establishes a socket connection 
with a web server port. The send() method passes an XML object to the server specified in the 
socket connection.

When you invoke the connect() method, Flash Player opens a TCP/IP connection to the server 
and keeps that connection open until one of the following happens: 

• The close() method of the XMLSocket class is called.
• No more references to the XMLSocket object exist.
• Flash Player exits.
• The connection is broken (for example, the modem disconnects).

The following example creates an XML socket connection and sends data from the XML object 
myXML. To understand the script, read the commented lines (indicated by the characters //): 
// Create a new XMLSocket object
sock = new XMLSocket();
// Call its connect() method to establish a connection with port 1024
// of the server at the URL
sock.connect("http://www.myserver.com", 1024);
// Define a function to assign to the sock object that handles
// the server’s response. If the connection succeeds, send the
// myXML object. If it fails, provide an error message in a text
// field.
function onSockConnect(success){

if (success){
sock.send(myXML);

} else {
msg="There has been an error connecting to "+serverName;

}
}
// Assign the onSockConnect() function to the onConnect property
sock.onConnect = onSockConnect;

For more information, see the XMLSocket class entry in Chapter 12, “ActionScript Dictionary,” 
on page 205.

Sending messages to and from Flash Player

To send messages from a SWF file to its host environment (for example, a web browser, a 
Macromedia Director movie, or the stand-alone Flash Player), you can use the fscommand() 
function. This function lets you extend your SWF file by using the capabilities of the host. For 
example, you could pass an fscommand() function to a JavaScript function in an HTML page 
that opens a new browser window with specific properties.    

To control a SWF in Flash Player from web browser scripting languages such as JavaScript, 
VBScript, and Microsoft JScript, you can use Flash Player methods—functions that send 
messages from a host environment to the SWF. For example, you could have a link in an HTML 
page that sends your SWF file to a specific frame.
Sending messages to and from Flash Player 185



Using fscommand() 

Use the fscommand() function to send a message to whichever program is hosting Flash Player. 
The fscommand() function has two parameters: command and arguments. To send a message to 
the stand-alone version of Flash Player, you must use predefined commands and arguments. For 
example, the following action sets the stand-alone player to scale the SWF file to the full monitor 
screen size when the button is released:
on(release){

fscommand("fullscreen", "true");
}

The following table shows the values you can specify for the command and arguments parameters 
of fscommand() to control a SWF file playing in the stand-alone player (including projectors): 

To use fscommand() to send a message to a scripting language such as JavaScript in a web 
browser, you can pass any two parameters in the command and arguments parameters. These 
parameters can be strings or expressions and will be used in a JavaScript function that “catches,” 
or handles, the fscommand() function. 

An fscommand() function invokes the JavaScript function moviename_DoFSCommand in the 
HTML page that embeds the SWF file, where moviename is the name of Flash Player as assigned 
by the NAME attribute of the EMBED tag or the ID attribute of the OBJECT tag. If Flash Player is 
assigned the name myMovie, the JavaScript function invoked is myMovie_DoFSCommand.

Command Arguments Purpose

quit None Closes the projector.

fullscreen true or false Specifying true sets Flash Player to full-screen mode. 
Specifying false returns the player to normal menu view.

allowscale   true or false Specifying false sets the player so that the SWF file is always 
drawn at its original size and never scaled. Specifying true 
forces the SWF file to scale to 100% of the player.

showmenu  true or false Specifying true enables the full set of context menu items. 
Specifying false dims all the context menu items except 
Settings and About Flash Player.

exec Path to 
application

Executes an application from within the projector.
186 Chapter 10:  Working with External Data



To use fscommand() to open a message box from a SWF file in the HTML page 
through JavaScript: 

1 In the HTML page that embeds the SWF file, add the following JavaScript code:
function theMovie_DoFSCommand(command, args) {

if (command == "messagebox") {
alert(args);

}
}

If you publish your SWF file using the Flash with FSCommand template in the HTML 
Publish Settings dialog box, this code is inserted automatically. The SWF file’s NAME and ID 
attributes will be the filename. For example, for the file myMovie.fla, the attributes would be 
set to myMovie. (For more information about publishing, see “Publishing” in Using 
Flash Help.)
Alternatively, for Microsoft Internet Explorer applications, you can attach an event handler 
directly in the <SCRIPT> tag, as shown in this example:
<Script Language = "JavaScript" event="FSCommand (command, args)" for= 

"theMovie">
...
</Script>

2 In the Flash document, add the fscommand() function to a button, as shown in this example:
on(press) {

fscommand("messagebox", "This is a message box invoked from within 
Flash.");

}

You can also use expressions for fscommand() and parameters, as in this example:
fscommand("messagebox", "Hello, " + name + ", welcome to our website!")

3 Select File > Publish Preview > HTML to test the document.
The fscommand() function can send messages to Macromedia Director that are interpreted by 
Lingo as strings, events, or executable Lingo code. If the message is a string or an event, you must 
write the Lingo code to receive it from the fscommand() function and carry out an action in 
Director. For more information, see the Director Support Center at www.macromedia.com/
support/director. 

In Visual Basic, Visual C++, and other programs that can host ActiveX controls, fscommand() 
sends a VB event with two strings that can be handled in the environment’s programming 
language. For more information, use the keywords Flash method to search the Flash Support 
Center at www.macromedia.com/support/flash.

About Flash Player methods  

You can use Flash Player methods to control a SWF file in Flash Player from web browser 
scripting languages such as JavaScript and VBScript. As with other methods, you can use Flash 
Player methods to send calls to SWF files from a scripting environment other than ActionScript. 
Each method has a name, and most methods take parameters. A parameter specifies a value that 
the method operates upon. The calculation performed by some methods returns a value that can 
be used by the scripting environment. 
Sending messages to and from Flash Player 187

http://www.macromedia.com/support/director
http://www.macromedia.com/support/director
http://www.macromedia.com/support/flash


There are two different technologies that enable communication between the browser and Flash 
Player: LiveConnect (Netscape Navigator 3.0 or later on Windows 95/98/2000/NT or Power 
Macintosh) and ActiveX (Internet Explorer 3.0 and later on Windows 95/98/2000/NT). 
Although the techniques for scripting are similar for all browsers and languages, there are 
additional properties and events available for use with ActiveX controls. 

For more information, including a complete list of Flash Player scripting methods, use the 
keywords Flash method to search the Flash Support Center at www.macromedia.com/support/
flash.

About using Flash JavaScript methods with Flash Player

Flash Player 6 version 40 and later supports Flash JavaScript methods and FSCommand in 
Netscape 6.2 and later. Earlier versions do not support Flash JavaScript methods and 
FSCommand in Netscape 6.2 or later. 

For Netscape 6.2 and later, you do not need to set swLiveConnect to true. However, setting 
swLiveConnect to true has no adverse effects.

Flash Player security features

By default, Flash Player 7 and later prevents a SWF file served from one domain from accessing 
data, objects, or variables from SWF files that are served from different domains cannot access 
each other’s objects and variables. In addition, content that is loaded through nonsecure (non-
HTTPS) protocols cannot access content loaded through a secure (HTTPS) protocol, even when 
both are in exactly the same domain. For example, a SWF file located at http://
www.macromedia.com/main.swf cannot load data from https://www.macromedia.com/data.txt 
without explicit permission. Nor can a SWF file served from one domain load data (using 
loadVariables(), for example) from another domain.  

Identical numeric IP addresses are compatible. However, a domain name is not compatible with 
an IP address, even if the domain name resolves to the same IP address.  

The following table shows examples of compatible domains:

The following table shows examples of incompatible domains:

www.macromedia.com www.macromedia.com

data.macromedia.com data.macromedia.com

65.57.83.12 65.57.83.12

www.macromedia.com data.macromedia.com

macromedia.com www.macromedia.com

www.macromedia.com macromedia.com

65.57.83.12 www.macromedia.com (even if this domain resolves to 65.57.83.12 )

www.macromedia.com 65.57.83.12 (even if www.macromedia.com resolves to this IP)
188 Chapter 10:  Working with External Data

http://www.macromedia.com/support/flash
http://www.macromedia.com/support/flash


For information on how to permit a SWF file served from one domain to access data, objects, or 
variables from SWF files that are served from another domain, see “About allowing data access 
between cross-domain SWF files” on page 189. For information on how to permit a SWF file 
served from a secure (HTTPS) protocol to access data, objects, or variables from SWF files that 
are served from insecure protocols, see “About allowing HTTP to HTTPS protocol access 
between SWF files” on page 190. For information on how to permit a SWF file served from one 
domain to load data (using loadVariables(), for example) from another domain, see “About 
allowing cross-domain data loading” on page 190. 

For information about how these security changes affect content authored in Flash MX and 
earlier, see “About compatibility with previous Flash Player security models” on page 191.

About allowing data access between cross-domain SWF files

One SWF file can load another SWF file from any location on the Internet. However, in order for 
the two SWF files to be able to access each other’s data (variables and objects), the two files must 
originate from the same domain. By default, in Flash Player 7 and later, the two domains must 
match exactly in order for the two files to share data. However, a SWF file may grant access to 
SWF files served from specific domains by calling LocalConnection.allowDomain or 
System.security.allowDomain().  

For example, suppose main.swf is served from www.macromedia.com. That SWF file then loads 
another SWF file (data.swf ) from data.macromedia.com into a movie clip instance (target_mc).
// In macromedia.swf
target_mc.loadMovie("http://data.macromedia.com/data.swf");

Furthermore, suppose that data.swf defines a method named getData() on its main Timeline. 
By default, main.swf cannot call the getData() method defined in data.swf once that file has 
loaded. This is because the two SWF files don’t reside in the same domain. For example, the 
following method call in main.swf, once data.swf has loaded, will fail.
// In macromedia.swf, after data.swf has loaded:
target_mc.getData(); // This method call will fail

However, data.swf may grant access to SWF files served from www.macromedia.com by using the 
LocalConnection.allowDomain handler or the System.security.allowDomain() method, 
depending on the type of access required. The following code, added to data.swf, allows a SWF 
file served from www.macromedia.com to access its variables and methods:
// Within data.swf
System.security.allowDomain("www.macromedia.com");
my_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="www.macromedia.com");
}

Notice that allowDomain permits any SWF file in the allowed domain to script any other SWF 
file in the domain permitting the access, unless the SWF file being accessed is hosted on a site 
using a secure protocol (HTTPS). In this case, you must use allowInsecureDomain instead of 
allowDomain; see “About allowing HTTP to HTTPS protocol access between SWF files” below. 

For more information on domain-name matching, see “Flash Player security features” 
on page 188.
Flash Player security features 189



About allowing HTTP to HTTPS protocol access between SWF files

As discussed in the previous section, you must use an allowDomain handler or method to permit 
a SWF file in one domain to be accessed by a SWF file in another domain. However, if the SWF 
being accessed is hosted at a site that uses a secure protocol (HTTPS), the allowDomain handler 
or method doesn’t permit access from a SWF file hosted at a site that uses an insecure protocol. To 
permit such access, you must use the LocalConnection.allowInsecure Domain() or 
System.security.allowInsecureDomain() statements. 

For example, if the SWF file at https://www.someSite.com/data.swf must allow access by a SWF 
file at http://www.someSite.com, the following code added to data.swf allows such access:
// Within data.swf
System.security.allowInsecureDomain("www.someSite.com");
my_lc.allowInsecureDomain = function(sendingDomain) {

return(sendingDomain=="www.someSite.com");
}

About allowing cross-domain data loading

A Flash document can load data from an external source by using one of the following data 
loading calls: XML.load(), XML.sendAndLoad(), LoadVars.load(), 
LoadVars.sendAndLoad(), loadVariables(), loadVariablesNum(). Also, a SWF file can 
import runtime shared libraries, or assets defined in another SWF file, at runtime. By default, the 
data or SWF media, in the case of runtime shared libraries, must reside in the same domain as the 
SWF that is loading that external data or media. 

To make data and assets in runtime shared libraries available to SWF files in different domains, 
use a cross-domain policy file. A cross-domain policy file is an XML file that provides a way for the 
server to indicate that its data and documents are available to SWF files served from certain 
domains, or from all domains. Any SWF file that is served from a domain specified by the server’s 
policy file will be permitted to access data or assets from that server.   

When a Flash document attempts to access data from another domain, Flash Player automatically 
attempts to load a policy file from that domain. If the domain of the Flash document that is 
attempting to access the data is included in the policy file, the data is automatically accessible.

Policy files must be named crossdomain.xml and reside at the root directory of the server that is 
serving the data. Policy files function only on servers that communicate over HTTP, HTTPS, or 
FTP. The policy file is specific to the port and protocol of the server where it resides. 

For example, a policy file located at https://www.macromedia.com:8080/crossdomain.xml will 
apply only to data loading calls made to www.macromedia.com over HTTPS at port 8080. 

An exception to this rule is the use of an XMLSocket object to connect to a socket server in 
another domain. In that case, an HTTP server running on port 80 in the same domain as the 
socket server must provide the policy file for the method call.
190 Chapter 10:  Working with External Data



An XML policy file contains a single <cross-domain-policy> tag, which in turn contains zero 
or more <allow-access-from> tags. Each <allow-access-from> tag contains one attribute, 
domain, which specifies either an exact IP address, an exact domain, or a wildcard domain (any 
domain). Wildcard domains are indicated by either a single asterisk (*), which matches all 
domains and all IP addresses, or an asterisk followed by a suffix, which matches only those 
domains that end with the specified suffix. Suffixes must begin with a dot. However, wildcard 
domains with suffixes can match domains that consist of only the suffix without the leading dot. 
For example, foo.com is considered to be part of *.foo.com. Wildcards are not allowed in IP 
domain specifications.

If you specify an IP address, access will be granted only to SWF files loaded from that IP address 
using IP syntax (for example, http://65.57.83.12/flashmovie.swf ), not those loaded using 
domain-name syntax. Flash Player does not perform DNS resolution.

Here is an example policy file that permits access to Flash documents that originate from 
foo.com, friendOfFoo.com, *.foo.com, and 105.216.0.40, from a Flash document on foo.com:
<?xml version="1.0"?>
<!-- http://www.foo.com/crossdomain.xml -->
<cross-domain-policy>
  <allow-access-from domain="www.friendOfFoo.com" />
  <allow-access-from domain="*.foo.com" />
  <allow-access-from domain="105.216.0.40" />
</cross-domain-policy>

A policy file that contains no <allow-access-from> tags has the same effect as not having a 
policy on a server.

About compatibility with previous Flash Player security models

As a result of the security feature changes in Flash Player (see “Flash Player security features” 
on page 188), content that runs properly in Flash Player 6 or earlier may not run properly in 
Flash Player 7 or later.  

For example, in Flash Player 6, a SWF file that resides in www.macromedia.com could access data 
on a server located at data.macromedia.com. That is, Flash Player 6 allowed a SWF file from one 
domain to load data from a “similar” domain. 

In Flash Player 7 and later, if a version 6 (or earlier) SWF file attempts to load data from a server 
that resides in another domain, and that server doesn’t provide a policy file that allows access from 
that SWF file’s domain, then the Macromedia Flash Player Settings dialog box appears. The 
dialog box asks the user to allow or deny the cross-domain data access.

If the user clicks Allow, the SWF file is permitted to access the requested data; if the user clicks 
Deny, the SWF file is not allowed to access the requested data.

To prevent this dialog box from appearing, create a security policy file on the server providing the 
data. For more information, see “About allowing cross-domain data loading” on page 190. 
Flash Player security features 191



192 Chapter 10:  Working with External Data



CHAPTER 11
Working with External Media
If you import an image or a sound while you author a document in Macromedia Flash MX 2004 
or Macromedia Flash MX Professional 2004, the image and sound are packaged and stored in the 
SWF file when you publish it. In addition to importing media while authoring, you can load 
external media at runtime. There are several reasons you might want to keep media outside a 
Flash document. 

Reduce file size By keeping large media files outside your Flash document and loading them at 
runtime, you can reduce the initial download time for your applications and presentations, 
especially over slow Internet connections.

Modularize large presentations You can break up a large presentation or application into 
separate SWF files and then load those separate files as needed at runtime. Not only does this 
reduce initial download time, but it also makes maintaining and updating the contents of the 
presentation easier.

Separate content from presentation This a common theme in application development, 
especially data-driven applications. For example, a shopping cart application might display a 
JPEG image of each product. By loading the JPEG files for each image at runtime, you can easily 
update a product’s image without modifying the original FLA file.

Take advantage of runtime-only features Some features, such as streaming FLV and MP3 
playback, are only available at runtime through ActionScript.

Overview of loading external media

There are four types of media files that you can load into a Flash application at runtime: SWF, 
MP3, JPEG, and FLV files. Flash Player can load external media from any HTTP or FTP address, 
from a local disk using a relative path, or by using the file:// protocol.

To load external SWF and JPEG files, you can use either the loadMovie() or loadMovieNum() 
function, or the MovieClip.loadMovie() method. When you load a SWF or JPEG file, you 
specify a movie clip or movie level as the target for that media. For more information on loading 
SWF and JPEG files, see “Loading external SWF and JPEG files” on page 194.

To play back an external MP3 (MPEG Layer 3) file, use the loadSound() method of the Sound 
class. This method lets you specify whether the MP3 file should stream or download completely 
before it starts to play. You can also read the ID3 information embedded in MP3 files, if they’re 
available. For more information, see “Reading ID3 tags in MP3 files” on page 196.
193



Flash Video (FLV) is the native video format used by Flash Player. You can play back FLV files 
over HTTP, or from the local file system. Playing external FLV files provides several advantages 
over embedding video in a Flash document, such as better performance and memory 
management, and independent video and Flash frame rates. For more information, see “Playing 
back external FLV files dynamically” on page 197.

You can also preload, or track the download progress, of external media. Flash Player 7 introduces 
the MovieClipLoader class, which you can use to track the download progress of SWF or JPEG 
files. To preload MP3 and FLV files, you can use the getBytesLoaded() method of the Sound 
class and the bytesLoaded property of the NetStream class. For more information, see 
“Preloading external media” on page 198.

Loading external SWF and JPEG files

To load a SWF or JPEG file, use the loadMovie() or loadMovieNum() global function, or the 
loadMovie() method of the MovieClip class. To load a SWF or JPEG file into a level in Flash 
Player, use loadMovieNum(). To load a SWF or JPEG file into a movie clip target, use the 
loadMovie() function or method. In either case, the loaded content replaces the content of the 
specified level or target movie clip.  

When you load a SWF or JPEG file into a movie clip target, the upper left corner of the SWF file 
or JPEG image is placed on the registration point of the movie clip. Because this registration 
point is often the center of the movie clip, the loaded content may not appear centered. Also, 
when you load a SWF file or JPEG image to a root Timeline, the upper left corner of the image is 
placed on the upper left corner of the Stage. The loaded content inherits rotation and scaling 
from the movie clip, but the original content of the movie clip is removed.

You can optionally send ActionScript variables with a loadMovie() or loadMovieNum() call. 
This is useful, for example, if the URL you’re specifying in the method call is a server-side script 
that returns a JPEG or SWF file according to data passed from the Flash application.

For image files, Flash supports only the standard JPEG image file type, not progressive JPEG files.

When you use the global loadMovie() or loadMovieNum() function, specify the target level or 
clip as a parameter. For example, the following code loads the Flash application contents.swf into 
the movie clip instance named target_mc: 
loadMovieNum("contents.swf", target_mc);

Equivalently, you can use MovieClip.loadMovie() to achieve the same result:
target_mc.loadMovie("contents.swf");

The following code loads the JPEG image flowers.jpg into the movie clip instance image_clip:
image_clip.loadMovie("flowers.jpg");

For more information about loadMovie(), loadMovieNum(), and MovieClip.loadMovie(), see 
their entries in Chapter 12, “ActionScript Dictionary,” on page 205.
194 Chapter 11:  Working with External Media



About loaded SWF files and the root Timeline

The ActionScript property _root specifies or returns a reference to the root Timeline of a SWF 
file. If you load a SWF file into a movie clip in another SWF file, any references to _root in the 
loaded SWF file resolve to the root Timeline in the host SWF file, not that of the loaded SWF 
file. This can sometimes lead to unexpected behavior at runtime, for example, if the host SWF file 
and the loaded SWF file both use _root to specify a variable.

In Flash Player 7 and later, you can use the MovieClip._lockroot property to force references to 
_root made by a movie clip to resolve to its own Timeline, rather than to the Timeline of the 
SWF file that contains that movie clip. For more information, see “Specifying a root Timeline for 
loaded SWF files” on page 123.

About accessing data in loaded SWF files

One SWF file can load another SWF file from any location on the Internet. However, for one 
SWF file to access data (variables, methods, and so forth) defined in the other SWF file, the two 
files must originate from the same domain. In Flash Player 7 and later, cross-domain scripting is 
prohibited unless the loaded SWF file specifies otherwise by calling 
System.security.allowDomain(). 

For more information, see “Flash Player security features” on page 188 and 
System.security.allowDomain() in Chapter 12, “ActionScript Dictionary,” on page 205.

Loading external MP3 files

To load MP3 files at runtime, use the loadSound() method of the Sound class. First, create a  
Sound object:   
var song_1_sound = new Sound();

You then use the new object to call loadSound() to load an event or a streaming sound. Event 
sounds are loaded completely before being played; streaming sounds are played as they are 
downloaded. You can set the isStreaming parameter of loadSound() to specify a sound as an 
event sound or a streaming sound. After you load an event sound, you must call the start() 
method of the Sound class to make the sound play. Streaming sounds begin playing when 
sufficient data is loaded into the SWF file; you don’t need to use start().

For example, the following code creates a Sound object named classical and then loads an 
MP3 file named beethoven.mp3:
var classical:Sound = new Sound();
classical.loadSound("http://server.com/mp3s/beethoven.mp3", true);

In most cases, set the isStreaming parameter to true, especially if you’re loading large sound 
files that should start playing as soon as possible—for example, when creating an MP3 “jukebox” 
application. However, if you’re downloading shorter sound clips and need to play them at a 
specified time (for example, when a user clicks a button), set isStreaming to false. 

To determine when a sound has completely downloaded, use the Sound.onLoad event handler. 
This event handler automatically receives a Boolean (true or false) value that indicates whether 
the file downloaded successfully.
Loading external MP3 files 195



For example, suppose you’re creating an online game that uses different sounds depending 
on what level the user has reached in the game. The following code loads an MP3 file 
(blastoff.mp3) into a Sound object named gameSound, and then plays the sound when it has 
completely downloaded: 
var gameSound = new Sound();
gameSound.onLoad = function (loadedOK) {

if(loadedOK) {
gameSound.start();

}
}
gameSound.loadSound("http://server.com/sounds/blastoff.mp3", false);

For sound files, Flash Player supports only the MP3 sound file type.

For more information, see Sound.loadSound(), Sound.start(), and Sound.onLoad in 
Chapter 12, “ActionScript Dictionary,” on page 205.

Reading ID3 tags in MP3 files

ID3 tags are data fields added to an MP3 file that contain information about the file, such as the 
song name, album name, and artist name. 

To read ID3 tags from an MP3 file, use the Sound.ID3 property, whose properties correspond to 
the names of ID3 tags included in the MP3 file being loaded. To determine when ID3 tags for a 
downloading MP3 file are available, use the Sound.onID3 event handler. Flash Player 7 supports 
version 1.0, 1.1, 2.3, and 2.4 tags; version 2.2 tags are not supported.

For example, the following code loads an MP3 file named favoriteSong.mp3 into the Sound 
object named song. When the ID3 tags for the file are available, a text field named display_txt 
displays the artist name and song name.
var song = new Sound();
song.onID3 = function () {

display_txt.text = "Artist: " + song.id3.TCOM + newline;
display_txt.text += "Song: " + song.id3.TIT2);

}
song.loadSound("mp3s/favoriteSong.mp3, true");

Because ID3 2.0 tags are located at the beginning of an MP3 file (before the sound data), they 
are available as soon as the file starts downloading. ID3 1.0 tags, however, are located at the end 
of the file (after the sound data) and thus aren’t available until the entire MP3 file has 
finished downloading. 

The onID3 event handler is called each time new ID3 data is available. This means that if an MP3 
file contains ID3 2.0 tags and ID3 1.0 tags, the onID3 handler will be called twice, because the 
tags are located in different parts of the file.

For a list of supported ID3 tags, see Sound.ID3 on page 629.
196 Chapter 11:  Working with External Media



Playing back external FLV files dynamically

As an alternative to importing video into the Flash authoring environment, you can use 
ActionScript to dynamically play back external FLV files in Flash Player. You can play back FLV 
files from an HTTP address or from the local file system. To play back FLV files, you use the 
NetConnection and NetStream classes and the attachVideo() method of the Video class. (For 
complete information, see the NetConnection class, NetStream class, and Video.attachVideo() 
entries in Chapter 12, “ActionScript Dictionary,” on page 205.)   

You can create FLV files by importing video into the Flash authoring tool and exporting it as an 
FLV file. (See “Macromedia Flash Video” in Using Flash Help.) If you have Flash Professional, 
you can use the FLV Export plug-in to export FLV files from supported video-editing 
applications. (See “Exporting FLV files from video-editing applications (Flash Professional only)” 
in Using Flash Help.)

Using external FLV files provides certain capabilities that are not available when you use 
imported video: 

• You can use longer video clips in your Flash documents without slowing down playback. 
External FLV files are played using cached memory. This means that large files are stored in 
small pieces and accessed dynamically, and do not require as much memory as embedded 
video files.

• An external FLV file can have a different frame rate than the Flash document in which it plays. 
For example, you can set the Flash document frame rate to 30 fps and the video frame rate to 
21 fps. This gives you greater control in ensuring smooth video playback.

• With external FLV files, Flash document playback does not have to be interrupted while the 
video file is loading. Imported video files may sometimes interrupt document playback to 
perform certain functions; for example, accessing a CD-ROM drive. FLV files can perform 
functions independently of the Flash document, and thus do not interrupt playback.

• Captioning of video content is easier with external FLV files, because you can use event 
handlers to access metadata for the video.

The following procedure shows how you would play back a file named videoFile.flv that is stored 
in the same location as your SWF file.
Playing back external FLV files dynamically 197



To play back an external FLV file in a Flash document:

1 With the document open in the Flash authoring tool, in the Library panel (Window > Library) 
select New Video from the Library options menu to create a video object.

2 Drag a video object from the Library panel onto the Stage. This creates a video object instance.
3 With the video object selected on the Stage, in the Property inspector (Window > Properties) 

enter my_video in the Instance Name text box.
4 Open the Components panel (Window > Development Panels > Components) and drag a 

TextArea component to the Stage.
5 With the TextArea object selected on the Stage, enter status in the Instance Name text box in 

the Property inspector.
6 Select Frame 1 in the Timeline, and open the Actions panel (Window > Development 

Panels > Actions).
7 Add the following code to the Actions panel:

// Create a NetConnection object:
var netConn:NetConnection = new NetConnection();
// Create a local streaming connection:
netConn.connect(null);
// Create a NetStream object and define an onStatus() function:
var netStream:NetStream = new NetStream(netConn);
netStream.onStatus = function(infoObject) {

status.text += "Status (NetStream)" + newline;
status.text += "Level: "+infoObject.level + newline;
status.text += "Code: "+infoObject.code + newline;

};
// Attach the NetStream video feed to the Video object:
my_video.attachVideo(netStream);
// Set the buffer time:
netStream.setBufferTime(5);
// Being playing the FLV file:
netStream.play("videoFile.flv");

Preloading external media

ActionScript provides several ways to preload or track the download progress of external media. 
To preload SWF and JPEG files, use the MovieClipLoader class, which provides an event listener 
mechanism for checking download progress. This class is new in Flash Player 7. For more 
information, see “Preloading SWF and JPEG files” on page 199.

To track the download progress of MP3 files, use the Sound.getBytesLoaded() and 
Sound.getBytesTotal() methods; to track the download progress of FLV files, use the 
NetStream.bytesLoaded and NetStream.bytesTotal properties. For more information, see 
“Preloading MP3 and FLV files” on page 201.
198 Chapter 11:  Working with External Media



Preloading SWF and JPEG files

To preload SWF and JPEG files into movie clip instances, you can use the MovieClipLoader class. 
This class provides an event listener mechanism to give notification about the status of file 
downloads into movie clips. Using a MovieClipLoader object to preload SWF and JPEG files 
involves the following steps:   

Create a new MovieClipLoader object You can use a single MovieClipLoader object to track 
the download progress of multiple files, or create a separate object for each file’s progress.
var loader:MovieClipLoader = new MovieClipLoader();

Create a listener object and create event handlers The listener object can be any 
ActionScript object, such as a generic Object object, a movie clip, or a custom component.

For example, the following code creates a generic listener object named loadListener, and 
defines for itself onLoadStart, onLoadProgress, and onLoadComplete functions.
// Create listener object:
var loadListener:Object = new Object();
loadListener.onLoadStart = function (loadTarget) {

trace("Loading into " + loadTarget + " has started.");
}
loadListener.onLoadProgress = function(loadTarget, bytesLoaded, bytesTotal) {

var percentLoaded = bytesLoaded/bytesTotal * 100;
trace("%" + percentLoaded + " into target " + loadTarget);

}
loadListener.onLoadComplete = function(loadTarget) {

trace("Load completed into: " + loadTarget);
}

Register the listener object with the MovieClipLoader object In order for the listener object 
to receive the loading events, you must register it with the MovieClipLoader object.
loader.addListener(loadListener);

Begin loading the file (JPEG or SWF) into a target clip To start the download of the JPEG or 
SWF file, you use the MovieClipLoader.loadClip() method.
loader.loadClip("scene_2.swf");

Note: You can use only MovieClipLoader methods to track the download progress of files loaded 
with the MovieClipLoader.loadClip() method. You cannot use the loadMovie() function or 
MovieClip.loadMovie() method.

The following example uses the setProgress() method of the ProgressBar component to 
display the download progress of a SWF file. (See “ProgressBar component” in Using 
Components Help.)
Preloading external media 199



To display download progress using the ProgressBar component:

1 In a new Flash document, create a movie clip on the Stage and name it target_mc.
2 Open the Components panel (Window > Development Panels > Components).
3 Drag a ProgressBar component from the Components panel to the Stage.
4 In the Property inspector, give the ProgressBar component the name pBar and, on the 

Parameters tab, select Manual from the Mode pop-up menu.
5 Select Frame 1 in the Timeline and then open the Actions panel (Window > Development 

Panels > Actions).
6 Add the following code to the Actions panel:

// create both a MovieClipLoader object and a listener object
myLoader = new MovieClipLoader();
myListener = new Object();
// add the MovieClipLoader callbacks to your listener object
myListener.onLoadStart = function(clip) {

// this event is triggered once, when the load starts
pBar.label = "Now loading: " + clip;

};
myListener.onLoadProgress = function(clip, bytesLoaded, bytesTotal) {

var percentLoaded = int (100*(bytesLoaded/bytesTotal));
pBar.setProgress(bytesLoaded, bytesTotal);

};myLoader.addListener(myListener);
myLoader.loadClip("veryLargeFile.swf", target_mc);

7 Test the document by selecting Control > Test Movie.
For more information, see the MovieClipLoader class entry in Chapter 12, “ActionScript 
Dictionary,” on page 205.
200 Chapter 11:  Working with External Media



Preloading MP3 and FLV files

To preload MP3 and FLV files, you can use the setInterval() function to create a “polling” 
mechanism that checks the bytes loaded for a Sound or NetStream object at predetermined 
intervals. To track the download progress of MP3 files, use the Sound.getBytesLoaded() and 
Sound.getBytesTotal() methods; to track the download progress of FLV files, use the 
NetStream.bytesLoaded and NetStream.bytesTotal properties.   

The following code uses setInterval() to check the bytes loaded for a Sound or NetStream 
object at predetermined intervals.
// Create a new Sound object to play the sound.
var songTrack = new Sound();
// Create the polling function that tracks download progress.
// This is the function that is "polled." It checks 
// the download progress of the Sound object passed as a reference.
checkProgress = function (soundObj) {

var bytesLoaded = soundObj.getBytesLoaded();
var bytesTotal = soundObj.getBytesTotal();
var percentLoaded = Math.floor(bytesLoaded/bytesTotal * 100);
trace("%" + percentLoaded + " loaded.");

}
// When the file has finished loading, clear the interval polling.
songTrack.onLoad = function () {

clearInterval(poll);
}
// Load streaming MP3 file and start calling checkProgress()
songTrack.loadSound("beethoven.mp3", true);
var poll = setInterval(checkProgress, 1000, songTrack);

You can use this same kind of polling technique to preload external FLV files. To get the total 
bytes and current number of bytes loaded for an FLV file, use the NetStream.bytesLoaded and 
NetStream.bytesTotal properties. 

Another way to preload FLV files is to use the NetStream.setBufferTime() method. This 
method takes a single parameter that indicates the number of seconds of the FLV stream to 
download before playback begins. 

For more information, see MovieClip.getBytesLoaded(), MovieClip.getBytesTotal(), 
NetStream.bytesLoaded, NetStream.bytesTotal, NetStream.setBufferTime(), 
setInterval(), Sound.getBytesLoaded(), and Sound.getBytesTotal() in Chapter 12, 
“ActionScript Dictionary,” on page 205.
Preloading external media 201



202 Chapter 11:  Working with External Media



P
A

R
T

 V
PART V
Reference
This part contains the ActionScript Dictionary, which provides syntax and usage information for 
every element in the ActionScript language. It also contains appendixes that provide reference 
material you may want to review as you write your scripts.

Chapter 12: ActionScript Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Appendix A: Error Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783

Appendix B: Operator Precedence and Associativity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787

Appendix C: Keyboard Keys and Key Code Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

Appendix D: Writing Scripts for Earlier Versions of Flash Player . . . . . . . . . . . . . . . . . . . . . . 795

Appendix E: Object-Oriented Programming with ActionScript 1  . . . . . . . . . . . . . . . . . . . . . 799





CHAPTER 12
ActionScript Dictionary
This dictionary describes the syntax and use of ActionScript elements in Macromedia Flash MX 
2004 and Macromedia Flash MX Professional 2004. To use examples in a script, copy the 
example code from this dictionary and paste it in the Script pane or into an external script file. 
The dictionary lists all ActionScript elements—operators, keywords, statements, actions, 
properties, functions, classes, and methods. For an overview of all dictionary entries, see 
“Contents of the dictionary” on page 207; the tables in this section are a good starting point for 
looking up symbolic operators or methods whose class you don’t know. For information on 
components, see Using Components.

There are two types of entries in this dictionary:

• Individual entries for operators, keywords, functions, variables, properties, methods, 
and statements

• Class entries, which provide general information about built-in classes

Use the information in the sample entries to interpret the structure and conventions used in these 
types of entries.
205



Sample entry for most ActionScript elements

The following sample dictionary entry explains the conventions used for all ActionScript 
elements that are not classes.

Entry title

All entries are listed alphabetically. The alphabetization ignores capitalization, leading 
underscores, and so on.

Availability

Unless otherwise noted, the Availability section tells which versions of Flash Player support the 
element. This is not the same as the version of Flash used to author the content. For example, if 
you use Macromedia Flash MX 2004 or Macromedia Flash MX Professional 2004 to create 
content for Flash Player 6, you can use only ActionScript elements that are available to Flash 
Player 6.

In a few cases, this section also indicates which version of the authoring tool supports an element. 
For an example, see System.setClipboard().

Finally, if an element is supported only in ActionScript 2.0, that information is also noted in 
this section.

Usage

This section provides correct syntax for using the ActionScript element in your code. The 
required portion of the syntax is in code font, and the code that you provide is in italicized 
code font. Brackets ([]) indicate optional parameters.

Parameters

This section describes any parameters listed in the syntax. 

Returns

This section identifies what, if any, values the element returns. 

Description

This section identifies the type of element (for example, operator, method, function, and so on) 
and then describes how to use the element. 

Example

This section provides a code sample demonstrating how to use the element.

See also

This section lists related ActionScript dictionary entries.
206 Chapter 12:  ActionScript Dictionary



Sample entry for classes

The following sample dictionary entry explains the conventions used for built-in ActionScript 
classes. Classes are listed alphabetically with all other elements in the dictionary. 

Entry title

The entry title provides the name of the class. The class name is followed by general 
descriptive information.

Method and property summary tables

Each class entry contains a table listing all of the associated methods. If the class has properties 
(often constants), event handlers, or event listeners, these elements are summarized in additional 
tables. All of the elements listed in these tables also have their own dictionary entries, which 
follow the class entry.

Constructor

If a class requires that you use a constructor to access its methods and properties, the constructor 
is described in each class entry. This description has all of the standard elements (syntax, 
description, and so on) of other dictionary entries. 

Method and property listings

The methods and properties of a class are listed alphabetically after the class entry. 

Contents of the dictionary

All dictionary entries are listed alphabetically. However, some operators are symbols and are 
presented in ASCII order. In addition, methods that are associated with a class are listed along 
with the class name—for example, the abs() method of the Math class is listed as Math.abs().

The following two tables help you locate these elements. The first table lists the symbolic 
operators in the order in which they occur in the dictionary. The second table lists all other 
ActionScript elements.

Symbolic operators See entry

–– –– (decrement) 

++ ++ (increment)

! ! (logical NOT)

!= != (inequality)

!== !== (strict inequality)

% % (modulo) 

%= %= (modulo assignment) 

& & (bitwise AND operator) 

&& && (logical AND)
Contents of the dictionary 207



&= &= (bitwise AND assignment) 

() () (parentheses)

– – (minus) 

* * (multiplication)

*= *= (multiplication assignment) 

, , (comma)

. . (dot)

: : (type)

?: ?: (conditional)

/ / (division)

// // (comment delimiter)

/* /* (comment delimiter)

/= /= (division assignment) 

[] [] (array access) 

^ ^ (bitwise XOR)

^= ^= (bitwise XOR assignment) 

{} {} (object initializer) 

| | (bitwise OR) 

|| || (logical OR) 

|= |= (bitwise OR assignment) 

~ ~ (bitwise NOT) 

+ + (addition)

+= += (addition assignment) 

< < (less than) 

<< << (bitwise left shift) 

<<= <<= (bitwise left shift and assignment) 

<= <= (less than or equal to) 

<> <> (inequality)

= = (assignment)

-=  -= (subtraction assignment)

== == (equality)

=== === (strict equality)

> > (greater than)

Symbolic operators See entry
208 Chapter 12:  ActionScript Dictionary



The following table lists all ActionScript elements that are not symbolic operators.

>= >= (greater than or equal to)

>> >> (bitwise right shift) 

>>= >>= (bitwise right shift and assignment)

>>>  >>> (bitwise unsigned right shift)

>>>= >>>= (bitwise unsigned right shift and assignment)

ActionScript element See entry

#endinitclip #endinitclip

#include #include

#initclip #initclip

__proto__ Object.__proto__

_accProps _accProps

_alpha MovieClip._alpha, Button._alpha, TextField._alpha

_currentframe MovieClip._currentframe

_droptarget MovieClip._droptarget

_focusrect _focusrect, Button._focusrect, MovieClip._focusrect

_framesloaded MovieClip._framesloaded

_global _global object

_height Button._height, MovieClip._height, TextField._height 

_highquality _highquality, Button._highquality, MovieClip._highquality, 
TextField._highquality

_lockroot MovieClip._lockroot

_name Button._name, MovieClip._name, TextField._name

_parent _parent, Button._parent, MovieClip._parent, TextField._parent

_quality _quality, Button._quality, TextField._quality 

_root _root

_rotation Button._rotation, MovieClip._rotation, TextField._rotation

_soundbuftime _soundbuftime, Button._soundbuftime, MovieClip._soundbuftime, 
TextField._soundbuftime

_target Button._target, MovieClip._target, TextField._target

_totalframes MovieClip._totalframes

_url Button._url, MovieClip._url, TextField._url 

_visible Button._visible, MovieClip._visible, TextField._visible

Symbolic operators See entry
Contents of the dictionary 209



_width Button._width, MovieClip._width, TextField._width 

_x Button._x, MovieClip._x, TextField._x

_xmouse Button._xmouse, MovieClip._xmouse, TextField._xmouse

_xscale Button._xscale, MovieClip._xscale, TextField._xscale

_y Button._y, MovieClip._y, TextField._y

_ymouse Button._ymouse, MovieClip._ymouse, TextField._ymouse

_yscale Button._yscale, MovieClip._yscale, TextField._yscale

abs Math.abs()

Accessibility Accessibility class

acos Math.acos()

activityLevel Camera.activityLevel, Microphone.activityLevel

add add

addListener Key.addListener(), Mouse.addListener(), MovieClipLoader.addListener(), 
Selection.addListener(), Stage.addListener(), 
TextField.addListener()

addPage PrintJob.addPage()

addProperty Object.addProperty()

addRequestHeader LoadVars.addRequestHeader(), XML.addRequestHeader()

align Stage.align, TextFormat.align

allowDomain LocalConnection.allowDomain, System.security.allowDomain()

allowInsecureDomain LocalConnection.allowInsecureDomain, 
System.security.allowInsecureDomain()

and and

appendChild XML.appendChild()

apply Function.apply()

Arguments Arguments class

Array Array class, Array()

asfunction asfunction

asin Math.asin()

atan Math.atan()

atan2 Math.atan2()

attachAudio MovieClip.attachAudio()

attachMovie MovieClip.attachMovie()

attachSound Sound.attachSound()

ActionScript element See entry
210 Chapter 12:  ActionScript Dictionary



attachVideo Video.attachVideo()

attributes XML.attributes

autosize TextField.autoSize

avHardwareDisable System.capabilities.avHardwareDisable

background TextField.background

backgroundColor TextField.backgroundColor

BACKSPACE Key.BACKSPACE

bandwidth Camera.bandwidth

beginFill MovieClip.beginFill()

beginGradientFill MovieClip.beginGradientFill()

blockIndent TextFormat.blockIndent

bold TextFormat.bold

Boolean Boolean(), Boolean class

border TextField.border

borderColor TextField.borderColor

bottomScroll TextField.bottomScroll

break break

bufferLength NetStream.bufferLength

bufferTime NetStream.bufferTime

builtInItems ContextMenu.builtInItems

bullet TextFormat.bullet

Button Button class

bytesLoaded NetStream.bytesLoaded

bytesTotal NetStream.bytesTotal

call call(), Function.call()

callee arguments.callee

caller arguments.caller

Camera Camera class 

capabilities System.capabilities object

CAPSLOCK Key.CAPSLOCK

caption ContextMenuItem.caption

case case

catch try..catch..finally

ActionScript element See entry
Contents of the dictionary 211



ceil Math.ceil()

charAt String.charAt()

charCodeAt String.charCodeAt()

childNodes XML.childNodes

chr chr

class class

clear MovieClip.clear(), SharedObject.clear(), Video.clear()

clearInterval clearInterval()

cloneNode XML.cloneNode()

close LocalConnection.close(), NetStream.close(), XMLSocket.close()

Color Color class, TextFormat.color

concat Array.concat(), String.concat()

connect LocalConnection.connect(), NetConnection.connect(), 
XMLSocket.connect()

condenseWhite TextField.condenseWhite

constructor Array class, Boolean class, Camera class, Color class, ContextMenu class, 
ContextMenuItem class, Date class, Error class, LoadVars class, 
LocalConnection class, Microphone class, NetConnection class, 
NetStream class, Number class, Object class, PrintJob class, 
SharedObject class, Sound class, String class, TextField.StyleSheet 
class, TextFormat class, XML class, XMLSocket class

contentType LoadVars.contentType, XML.contentType

ContextMenu ContextMenu class

ContextMenuItem ContextMenuItem class

continue continue

CONTROL Key.CONTROL

copy ContextMenu.copy(), ContextMenuItem.copy()

cos Math.cos()

createElement XML.createElement()

createEmptyMovieClip MovieClip.createEmptyMovieClip()

createTextField MovieClip.createTextField()

createTextNode XML.createTextNode()

currentFps Camera.currentFps, NetStream.currentFps

curveTo MovieClip.curveTo()

CustomActions CustomActions class

ActionScript element See entry
212 Chapter 12:  ActionScript Dictionary



customItems ContextMenu.customItems

data SharedObject.data

Date Date class

deblocking Video.deblocking

default default

delete delete

DELETEKEY Key.DELETEKEY

do while do while

docTypeDecl XML.docTypeDecl

domain LocalConnection.domain()

DOWN Key.DOWN

duplicateMovieClip duplicateMovieClip(), MovieClip.duplicateMovieClip()

duration Sound.duration

dynamic dynamic

E Math.E

else else

else if else if

embedFonts TextField.embedFonts

enabled Button.enabled, ContextMenuItem.enabled, MovieClip.enabled

END Key.END

endFill MovieClip.endFill()

ENTER Key.ENTER

eq eq (equal — string specific)

Error Error class

ESCAPE (constant) Key.ESCAPE

escape (function) escape

eval eval()

exactSettings System.exactSettings

exp Math.exp()

extends extends

false false

finally try..catch..finally

findText TextSnapshot.findText()

ActionScript element See entry
Contents of the dictionary 213



firstChild XML.firstChild

floor Math.floor()

flush SharedObject.flush()

focusEnabled MovieClip.focusEnabled

font TextFormat.font

for for

for..in for..in

fps Camera.fps

fromCharCode String.fromCharCode()

fscommand fscommand()

function function, Function class

gain Microphone.gain

ge ge (greater than or equal to — string specific)

get Camera.get(), CustomActions.get(), get, Microphone.get()

getAscii Key.getAscii()

getBeginIndex Selection.getBeginIndex()

getBounds MovieClip.getBounds()

getBytesLoaded LoadVars.getBytesLoaded(), MovieClip.getBytesLoaded(), 
Sound.getBytesLoaded(), XML.getBytesLoaded()

getBytesTotal LoadVars.getBytesTotal(), MovieClip.getBytesTotal(), 
Sound.getBytesTotal(), XML.getBytesTotal()

getCaretIndex Selection.getCaretIndex()

getCode Key.getCode()

getCount TextSnapshot.getCount()

getDate Date.getDate()

getDay Date.getDay()

getDepth Button.getDepth(), MovieClip.getDepth(), TextField.getDepth()

getEndIndex Selection.getEndIndex()

getFocus Selection.getFocus()

getFontList TextField.getFontList()

getFullYear Date.getFullYear()

getHours Date.getHours()

getInstanceAtDepth MovieClip.getInstanceAtDepth()

getLocal SharedObject.getLocal()

ActionScript element See entry
214 Chapter 12:  ActionScript Dictionary



getMilliseconds Date.getMilliseconds()

getMinutes Date.getMinutes()

getMonth Date.getMonth()

getNewTextFormat TextField.getNewTextFormat()

getNextHighestDepth MovieClip.getNextHighestDepth()

getPan Sound.getPan()

getProgress MovieClipLoader.getProgress()

getProperty getProperty

getRGB Color.getRGB()

getSeconds Date.getSeconds()

getSelected TextSnapshot.getSelected()

getSelectedText TextSnapshot.getSelectedText()

getSize SharedObject.getSize()

getStyle TextField.StyleSheet.getStyle()

getStyleNames TextField.StyleSheet.getStyleNames()

getSWFVersion MovieClip.getSWFVersion()

getText TextSnapshot.getText()

getTextExtent TextFormat.getTextExtent()

getTextFormat TextField.getTextFormat()

getTextSnapshot MovieClip.getTextSnapshot()

getTime Date.getTime()

getTimer getTimer

getTimezoneOffset Date.getTimezoneOffset()

getTransform Color.getTransform(), Sound.getTransform()

getURL getURL(), MovieClip.getURL()

getUTCDate Date.getUTCDate()

getUTCDay Date.getUTCDay()

getUTCFullYear Date.getUTCFullYear()

getUTCHours Date.getUTCHours()

getUTCMilliseconds Date.getUTCMilliseconds()

getUTCMinutes Date.getUTCMinutes()

getUTCMonth Date.getUTCMonth()

getUTCSeconds Date.getUTCSeconds()

ActionScript element See entry
Contents of the dictionary 215



getVersion getVersion

getVolume Sound.getVolume()

getYear Date.getYear()

globalToLocal MovieClip.globalToLocal()

goto gotoAndPlay(), gotoAndStop()

gotoAndPlay gotoAndPlay(), MovieClip.gotoAndPlay()

gotoAndStop gotoAndStop(), MovieClip.gotoAndStop()

gt gt (greater than — string specific)

hasAccessibility System.capabilities.hasAccessibility

hasAudio System.capabilities.hasAudio

hasAudioEncoder System.capabilities.hasAudioEncoder

hasChildNodes XML.hasChildNodes()

hasEmbeddedVideo System.capabilities.hasEmbeddedVideo

hasMP3 System.capabilities.hasMP3

hasPrinting System.capabilities.hasPrinting

hasScreenBroadcast System.capabilities.hasScreenBroadcast

hasScreenPlayback System.capabilities.hasScreenPlayback

hasStreamingAudio System.capabilities.hasStreamingAudio

hasStreamingVideo System.capabilities.hasStreamingVideo

hasVideoEncoder System.capabilities.hasVideoEncoder

height Camera.height, Stage.height, Video.height

hide Mouse.hide()

hideBuiltInItems ContextMenu.hideBuiltInItems()

hitArea MovieClip.hitArea

hitTest MovieClip.hitTest()

hitTestTextNearPos TextSnapshot.hitTestTextNearPos()

HOME Key.HOME

hscroll TextField.hscroll

html TextField.html

htmlText TextField.htmlText

ID3 Sound.ID3

if if

ifFrameLoaded ifFrameLoaded

ActionScript element See entry
216 Chapter 12:  ActionScript Dictionary



ignoreWhite XML.ignoreWhite

implements implements

import import

indent TextFormat.indent

index Camera.index, Microphone.index

indexOf String.indexOf()

Infinity Infinity

-Infinity -Infinity

INSERT Key.INSERT

insertBefore XML.insertBefore()

install CustomActions.install()

instanceof instanceof

int int

interface interface

isActive Accessibility.isActive()

isDebugger System.capabilities.isDebugger

isDown Key.isDown()

isFinite isFinite

isNaN isNaN()

isToggled Key.isToggled()

italic TextFormat.italic

join Array.join()

Key Key class

language System.capabilities.language

lastChild XML.lastChild

lastIndexOf String.lastIndexOf()

le le (less than or equal to — string specific)

leading TextFormat.leading

LEFT Key.LEFT

leftMargin TextFormat.leftMargin

length length, arguments.length, Array.length, String.length, 
TextField.length

level _level

ActionScript element See entry
Contents of the dictionary 217



lineStyle MovieClip.lineStyle()

lineTo MovieClip.lineTo()

list CustomActions.list()

LN10 Math.LN10

LN2 Math.LN2

load LoadVars.load(), TextField.StyleSheet.load(), XML.load(), 

loadClip MovieClipLoader.loadClip()

loaded LoadVars.loaded, XML.loaded

loadMovie loadMovie(), MovieClip.loadMovie()

loadMovieNum loadMovieNum()

loadSound Sound.loadSound()

loadVariables loadVariables(), MovieClip.loadVariables()

loadVariablesNum loadVariablesNum()

LoadVars LoadVars class

LocalConnection LocalConnection class

localFileReadDisable System.capabilities.localFileReadDisable

localToGlobal MovieClip.localToGlobal()

log Math.log()

LOG10E Math.LOG10E

LOG2E Math.LOG2E

lt lt (less than — string specific)

manufacturer System.capabilities.manufacturer

Math Math class

max Math.max()

MAX_VALUE Number.MAX_VALUE

maxChars TextField.maxChars

maxhscroll TextField.maxhscroll

maxscroll maxscroll, TextField.maxscroll

mbchr mbchr

mblength mblength

mbord mbord

mbsubstring mbsubstring

menu Button.menu, MovieClip.menu, TextField.menu

ActionScript element See entry
218 Chapter 12:  ActionScript Dictionary



message Error.message

Microphone Microphone class

min Math.min()

MIN_VALUE Number.MIN_VALUE

MMExecute MMExecute()

motionLevel Camera.motionLevel

motionTimeOut Camera.motionTimeOut

Mouse Mouse class

mouseWheelEnabled TextField.mouseWheelEnabled

moveTo MovieClip.moveTo()

MovieClip MovieClip class

MovieClipLoader MovieClipLoader class

multiline TextField.multiline

muted Camera.muted, Microphone.muted

name Error.name, Microphone.name

names Camera.names, Microphone.names

NaN NaN, Number.NaN

ne ne (not equal — string specific)

NEGATIVE_INFINITY Number.NEGATIVE_INFINITY

NetConnection NetConnection class

NetStream NetStream class

new (operator) new

newline newline

nextFrame nextFrame(), MovieClip.nextFrame()

nextScene nextScene()

nextSibling XML.nextSibling

nodeName XML.nodeName

nodeType XML.nodeType

nodeValue XML.nodeValue

not not

null null

Number Number(), Number class

Object Object class, Object()

ActionScript element See entry
Contents of the dictionary 219



on on()

onActivity Camera.onActivity, Microphone.onActivity

onChanged TextField.onChanged

onClipEvent onClipEvent()

onClose XMLSocket.onClose()

onConnect XMLSocket.onConnect()

onData LoadVars.onData, MovieClip.onData, XML.onData, XMLSocket.onData()

onDragOut Button.onDragOut, MovieClip.onDragOut

onDragOver Button.onDragOver, MovieClip.onDragOver

onEnterFrame MovieClip.onEnterFrame

onID3 Sound.onID3

onKeyDown Button.onKeyDown, Key.onKeyDown, MovieClip.onKeyDown

onKeyUp Button.onKeyUp, Key.onKeyUp, MovieClip.onKeyUp

onKillFocus Button.onKillFocus, MovieClip.onKillFocus, TextField.onKillFocus

onLoad LoadVars.onLoad, MovieClip.onLoad, Sound.onLoad, 
TextField.StyleSheet.onLoad, XML.onLoad()

onLoadComplete MovieClipLoader.onLoadComplete()

onLoadError MovieClipLoader.onLoadError()

onLoadInit MovieClipLoader.onLoadInit()

onLoadProgress MovieClipLoader.onLoadProgress()

onLoadStart MovieClipLoader.onLoadStart()

onMouseDown Mouse.onMouseDown, MovieClip.onMouseDown

onMouseMove Mouse.onMouseMove, MovieClip.onMouseMove

onMouseUp Mouse.onMouseUp, MovieClip.onMouseUp

onMouseWheel Mouse.onMouseWheel

onPress Button.onPress, MovieClip.onPress

onRelease Button.onRelease, MovieClip.onRelease

onReleaseOutisde Button.onReleaseOutside, MovieClip.onReleaseOutside

onResize Stage.onResize

onRollOut Button.onRollOut, MovieClip.onRollOut

onRollOver Button.onRollOver, MovieClip.onRollOver

onScroller TextField.onScroller

onSelect ContextMenu.onSelect, ContextMenuItem.onSelect

ActionScript element See entry
220 Chapter 12:  ActionScript Dictionary



onSetFocus Button.onSetFocus, MovieClip.onSetFocus, Selection.onSetFocus, 
TextField.onSetFocus

onSoundComplete Sound.onSoundComplete

onStatus Camera.onStatus, LocalConnection.onStatus, Microphone.onStatus, 
NetStream.onStatus, SharedObject.onStatus, System.onStatus

onUnload MovieClip.onUnload

onUpdate onUpdate

onXML XMLSocket.onXML()

or (logical OR) or

ord ord

os System.capabilities.os

parentNode XML.parentNode

parseCSS TextField.StyleSheet.parseCSS()

parseFloat parseFloat()

parseInt parseInt

parseXML XML.parseXML()

password TextField.password

pause NetStream.pause()

PGDN Key.PGDN

PGUP Key.PGUP

PI Math.PI

pixelAspectRatio System.capabilities.pixelAspectRatio

play play(), MovieClip.play(), NetStream.play()

playerType System.capabilities.playerType

pop Array.pop()

position Sound.position

POSITIVE_INFINITY Number.POSITIVE_INFINITY

pow Math.pow()

prevFrame prevFrame(), MovieClip.prevFrame()

previousSibling XML.previousSibling

prevScene prevScene()

print print()

printAsBitmap printAsBitmap()

printAsBitmapNum printAsBitmapNum()

ActionScript element See entry
Contents of the dictionary 221



PrintJob PrintJob class

printNum printNum()

private private

prototype Function.prototype

public public

push Array.push()

quality Camera.quality

random random, Math.random()

rate Microphone.rate

registerClass Object.registerClass()

removeListener Key.removeListener(), Mouse.removeListener(), 
MovieClipLoader.removeListener(), Selection.removeListener(), 
Stage.removeListener(), TextField.removeListener()

removeMovieClip removeMovieClip(), MovieClip.removeMovieClip()

removeNode XML.removeNode()

removeTextField TextField.removeTextField()

replaceSel TextField.replaceSel()

replaceText TextField.replaceText()

resolutionX System.capabilities.screenResolutionX

resolutionY System.capabilities.screenResolutionY

restrict TextField.restrict

return return

reverse Array.reverse()

RIGHT Key.RIGHT

rightMargin TextFormat.rightMargin

round Math.round()

scaleMode Stage.scaleMode

screenColor System.capabilities.screenColor

screenDPI System.capabilities.screenDPI

screenResolutionX System.capabilities.screenResolutionX

screenResolutionY System.capabilities.screenResolutionY

scroll scroll, TextField.scroll

seek NetStream.seek()

selectable TextField.selectable

ActionScript element See entry
222 Chapter 12:  ActionScript Dictionary



Selection Selection class

send LoadVars.send(), LocalConnection.send(), PrintJob.send(), XML.send(), 
XMLSocket.send()

sendAndLoad LoadVars.sendAndLoad(), XML.sendAndLoad()

separatorBefore ContextMenuItem.separatorBefore

serverString System.capabilities.serverString

set set

set variable set variable

setBufferTime NetStream.setBufferTime()

setClipboard System.setClipboard()

setDate Date.setDate()

setFocus Selection.setFocus()

setFullYear Date.setFullYear()

setGain Microphone.setGain()

setHours Date.setHours()

setInterval setInterval()

setMask MovieClip.setMask() 

setMilliseconds Date.setMilliseconds()

setMinutes Date.setMinutes()

setMode Camera.setMode()

setMonth Date.setMonth()

setMotionLevel Camera.setMotionLevel()

setNewTextFormat TextField.setNewTextFormat()

setPan Sound.setPan()

setProperty setProperty()

setQuality Camera.setQuality()

setRate Microphone.setRate()

setRGB Color.setRGB()

setSeconds Date.setSeconds()

setSelectColor TextSnapshot.setSelectColor()

setSelected TextSnapshot.setSelected()

setSelection Selection.setSelection()

setSilenceLevel Microphone.setSilenceLevel()

ActionScript element See entry
Contents of the dictionary 223



setStyle TextField.StyleSheet.setStyle()

setTextFormat TextField.setTextFormat()

setTime Date.setTime()

setTransform Color.setTransform(), Sound.setTransform()

setUseEchoSuppression Microphone.setUseEchoSuppression()

setUTCDate Date.setUTCDate()

setUTCFullYear Date.setUTCFullYear()

setUTCHours Date.setUTCHours()

setUTCMilliseconds Date.setUTCMilliseconds()

setUTCMinutes Date.setUTCMinutes()

setUTCMonth Date.setUTCMonth()

setUTCSeconds Date.setUTCSeconds()

setVolume Sound.setVolume()

setYear Date.setYear()

SharedObject SharedObject class

SHIFT (constant) Key.SHIFT

shift (method) Array.shift()

show Mouse.show()

showMenu Stage.showMenu

showSettings System.showSettings()

silenceLevel Microphone.silenceLevel()

silenceTimeout Microphone.silenceTimeout()

sin Math.sin()

size TextFormat.size

slice Array.slice(), String.slice()

smoothing Video.smoothing

sort Array.sort()

sortOn Array.sortOn()

Sound Sound class

SPACE Key.SPACE

splice Array.splice()

split String.split()

sqrt Math.sqrt()

ActionScript element See entry
224 Chapter 12:  ActionScript Dictionary



SQRT1_2 Math.SQRT1_2

SQRT2 Math.SQRT2

Stage Stage class

start PrintJob.start(), Sound.start()

startDrag startDrag(), MovieClip.startDrag()

static static

status XML.status

stop stop(), MovieClip.stop(), Sound.stop()

stopAllSounds stopAllSounds()

stopDrag stopDrag(), MovieClip.stopDrag()

String String class, String()

StyleSheet (class) TextField.StyleSheet class

styleSheet (property) TextField.styleSheet

substr String.substr()

substring substring, String.substring()

super super

swapDepths MovieClip.swapDepths()

switch switch

System System class

TAB Key.TAB

tabChildren MovieClip.tabChildren

tabEnabled Button.tabEnabled, MovieClip.tabEnabled, TextField.tabEnabled

tabIndex Button.tabIndex, MovieClip.tabIndex, TextField.tabIndex

tabStops TextFormat.tabStops

tan Math.tan()

target TextFormat.target

targetPath targetPath

tellTarget tellTarget

text TextField.text

textColor TextField.textColor

TextField TextField class

TextFormat TextFormat class

textHeight TextField.textHeight

ActionScript element See entry
Contents of the dictionary 225



TextSnapshot TextSnapshot object

textWidth TextField.textWidth

this this

throw throw

time NetStream.time

toggleHighQuality toggleHighQuality()

toLowerCase String.toLowerCase()

toString Array.toString(), Boolean.toString(), Date.toString(), 
Error.toString(), LoadVars.toString(), Number.toString(), 
Object.toString(), XML.toString()

toUpperCase String.toUpperCase()

trace trace()

trackAsMenu Button.trackAsMenu, MovieClip.trackAsMenu

true true

try try..catch..finally

type TextField.type

typeof typeof

undefined undefined

underline TextFormat.underline

unescape unescape

uninstall CustomActions.uninstall()

unloadClip MovieClipLoader.unloadClip()

unloadMovie unloadMovie(), MovieClip.unloadMovie()

unLoadMovieNum unloadMovieNum()

unshift Array.unshift()

unwatch Object.unwatch()

UP Key.UP

updateAfterEvent updateAfterEvent()

updateProperties Accessibility.updateProperties()

url TextFormat.url

useCodePage System.useCodepage

useEchoSuppression Microphone.useEchoSuppression()

useHandCursor Button.useHandCursor, MovieClip.useHandCursor 

UTC Date.UTC()

ActionScript element See entry
226 Chapter 12:  ActionScript Dictionary



–– (decrement)

Availability

Flash Player 4.

Usage

––expression

expression––

Parameters

None.

Returns

A number.

Description

Operator (arithmetic); a pre-decrement and post-decrement unary operator that subtracts 1 from 
the expression. The pre-decrement form of the operator (––expression) subtracts 1 from 
expression and returns the result. The post-decrement form of the operator (expression––) 
subtracts 1 from the expression and returns the initial value of expression (the value prior to 
the subtraction).

valueOf Boolean.valueOf(), Number.valueOf(), Object.valueOf()

var var

variable TextField.variable

version System.capabilities.version

Video Video class

visible ContextMenuItem.visible

void void

watch Object.watch()

while while

width Camera.width, Stage.width, Video.width

with with

wordwrap TextField.wordWrap

XML XML class

xmlDecl XML.xmlDecl

XMLNode XMLNode class

XMLSocket XMLSocket class

ActionScript element See entry
–– (decrement) 227



Example

The pre-decrement form of the operator decrements x to 2 (x - 1 = 2), and returns the result 
as y:
x = 3;
y = --x;
//y is equal to 2

The post-decrement form of the operator decrements x to 2 (x - 1 = 2), and returns the original 
value of x as the result y:
x = 3; 
y = x--
//y is equal to 3

++ (increment)

Availability

Flash Player 4.

Usage

++expression

expression++

Parameters

None.

Returns

A number.

Description

Operator (arithmetic); a pre-increment and post-increment unary operator that adds 1 to 
expression. The expression can be a variable, element in an array, or property of an object. 
The pre-increment form of the operator (++expression) adds 1 to expression and returns the 
result. The post-increment form of the operator (expression++) adds 1 to expression and 
returns the initial value of expression (the value prior to the addition).

The pre-increment form of the operator increments x to 2 (x + 1 = 2), and returns the result 
as y:
x = 1;
y = ++x
//y is equal to 2

The post-increment form of the operator increments x to 2 (x + 1 = 2), and returns the original 
value of x as the result y:
x = 1;
y = x++;
//y is equal to 1
228 Chapter 12:  ActionScript Dictionary



Example 

The following example uses ++ as a post-increment operator to make a while loop run five times.
i = 0;
while(i++ < 5){
trace("this is execution " + i);
}

This example uses ++ as a pre-increment operator.
var a = [];
var i = 0;
while (i < 10) {

a.push(++i);
}
trace(a.join());

This script displays the following result in the Output panel:
1,2,3,4,5,6,7,8,9,10

The following example uses ++ as a post-increment operator.
var a = [];
var i = 0;
while (i < 10) {
a.push(i++);

}
trace(a.join());

This script displays the following result in the Output panel:
0,1,2,3,4,5,6,7,8,9

! (logical NOT)

Availability

Flash Player 4.

Usage

!expression

Parameters

None.

Returns

A Boolean value.

Description

Operator (logical); inverts the Boolean value of a variable or expression. If expression is a 
variable with the absolute or converted value true, the value of !expression is false. If the 
expression x && y evaluates to false, the expression !(x && y) evaluates to true.

The following expressions illustrate the result of using the ! operator:

!true returns false

!false returns true
! (logical NOT) 229



Example

In the following example, the variable happy is set to false. The if condition evaluates the 
condition !happy, and if the condition is true, the trace() action sends a string to the 
Output panel.
happy = false;
if (!happy) {

trace("don’t worry, be happy");
}

!= (inequality)

Availability

Flash Player 5. 

Usage

expression1 != expression2

Parameters

None.

Returns

A Boolean value.

Description

Operator (inequality); tests for the exact opposite of the == operator. If expression1 is equal to 
expression2, the result is false. As with the == operator, the definition of equal depends on the 
data types being compared.

• Numbers, strings, and Boolean values are compared by value.
• Variables, objects, arrays, and functions are compared by reference. 

Example

The following example illustrates the result of the != operator:

5 != 8 returns true

5 != 5 returns false

This example illustrates the use of the != operator in an if statement.
a = "David";
b = "Fool" 
if (a != b){

trace("David is not a fool");
}

See also

!== (strict inequality), == (equality), === (strict equality) 
230 Chapter 12:  ActionScript Dictionary



!== (strict inequality)

Availability

Flash Player 6.

Usage

expression1 !== expression2

Description

Operator; tests for the exact opposite of the === operator. The strict inequality operator performs 
the same as the inequality operator except that data types are not converted. If expression1 is 
equal to expression2, and their data types are equal, the result is false. As with the === 
operator, the definition of equal depends on the data types being compared. 

• Numbers, strings, and Boolean values are compared by value.
• Variables, objects, arrays, and functions are compared by reference. 

Example

The following code displays the returned value of operations that use the equality, strict equality, 
and strict inequality operators.
s1 = new String("5");
s2 = new String("5");
s3 = new String("Hello");
n  = new Number(5);
b = new Boolean(true);

s1 == s2; // true
s1 == s3; // false
s1 == n; // true
s1 == b; // false

s1 === s2;  // true
s1 === s3; // false
s1 === n; // false
s1 === b; // false

s1 !== s2; // false
s1 !== s3; // true
s1 !== n; // true
s1 !== b; // true

See also

!= (inequality), == (equality), === (strict equality)
!== (strict inequality) 231



% (modulo)

Availability

Flash Player 4. In Flash 4 files, the % operator is expanded in the SWF file as x - int(x/y) * y, 
and may not be as fast or as accurate in later versions of Flash Player.

Usage

expression1 % expression2

Parameters

None.

Returns

Nothing.

Description

Operator (arithmetic); calculates the remainder of expression1 divided by expression2. If 
either of the expression parameters are non-numeric, the modulo operator attempts to convert 
them to numbers. The expression can be a number or string that converts to a numeric value.

Example

The following is a numeric example that uses the modulo (%) operator.
trace (12 % 5);
// returns 2
trace (4.3 % 2.1);
// returns approximately 0.1

%= (modulo assignment)

Availability

Flash Player 4.

Usage

expression1 %= expression2

Parameters

None.

Returns

Nothing.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of expression1 % 
expression2. For example, the following two expressions are the same:
x %= y
x = x % y
232 Chapter 12:  ActionScript Dictionary



Example

The following example assigns the value 4 to the variable x.
x = 14;
y = 5;
trace(x %= y);
// returns 4

See also

% (modulo)

& (bitwise AND operator)

Availability

Flash Player 5. In Flash 4, the & operator was used for concatenating strings. In Flash 5 and later, 
the & operator is a bitwise AND, and you must use the add and + operators to concatenate strings. 
Flash 4 files that use the & operator are automatically updated to use add when brought into the 
Flash 5 or later authoring environment. 

Usage

expression1 & expression2

Parameters

None.

Returns

Nothing.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned integers, and 
performs a Boolean AND operation on each bit of the integer parameters. The result is a new 32-
bit unsigned integer.

&& (logical AND)

Availability

Flash Player 4.

Usage

expression1 && expression2

Parameters

None.

Returns

A Boolean value.
&& (logical AND) 233



Description

Operator (logical); performs a Boolean operation on the values of one or both of the expressions. 
Evaluates expression1 (the expression on the left side of the operator) and returns false if the 
expression evaluates to false. If expression1 evaluates to true, expression2 (the expression 
on the right side of the operator) is evaluated. If expression2 evaluates to true, the final result is 
true; otherwise, it is false. 

Example

This example uses the && operator to perform a test to determine if a player has won the game. 
The turns variable and the score variable are updated when a player takes a turn or scores points 
during the game. The following script displays “You Win the Game!” in the Output panel when 
the player’s score reaches 75 or higher in 3 turns or less.
turns=2;
score=77;
winner = (turns <= 3) && (score >= 75);
if (winner) {

trace("You Win the Game!");
} else {

trace("Try Again!");
}

&= (bitwise AND assignment)

Availability

Flash Player 5.

Usage

expression1 &= expression2

Parameters

None.

Returns

Nothing.

Description

Operator; assigns expression1 the value of expression1 & expression2. For example, the 
following two expressions are the same.
x &= y;
x = x & y;

Example

The following example assigns the value 9 to x.
x = 15;
y = 9;
trace(x &= y);
// returns 9

See also

& (bitwise AND operator)
234 Chapter 12:  ActionScript Dictionary



() (parentheses)

Availability

Flash Player 4.

Usage

(expression1, expression2)

function(parameter1,..., parameterN)

Parameters

expression1, expression2 Numbers, strings, variables, or text.

function The function to be performed on the contents of the parentheses.

parameter1...parameterN A series of parameters to execute before the results are passed as 
parameters to the function outside the parentheses.

Returns

Nothing.

Description

Operator; performs a grouping operation on one or more parameters, or surrounds one or more 
parameters and passes them as parameters to a function outside the parentheses.

Usage 1: Controls the order in which the operators are executed in the expression. Parentheses 
override the normal precedence order and cause the expressions within the parentheses to be 
evaluated first. When parentheses are nested, the contents of the innermost parentheses are 
evaluated before the contents of the outer ones.

Usage 2: Surrounds one or more parameters and passes them as parameters to the function 
outside the parentheses.

Example

Usage 1: The following statements illustrate the use of parentheses to control the order in which 
expressions are executed. The value of each expression is displayed below each line, as follows:
trace((2 + 3) * (4 + 5));
// displays 45

trace(2 + (3 * (4 + 5)));
// displays 29

trace(2 + (3 * 4) + 5);
// displays 19

Usage 2: The following examples illustrate the use of parentheses with functions.
getDate();

invoice(item, amount);

function traceParameter(param){
trace(param);

}
traceParameter(2*2);
() (parentheses) 235



See also

with

– (minus)

Availability

Flash Player 4.

Usage

(Negation) -expression

(Subtraction) expression1 - expression2

Parameters

None.

Returns

Nothing.

Description

Operator (arithmetic); used for negating or subtracting.

Usage 1: When used for negating, it reverses the sign of the numerical expression.

Usage 2: When used for subtracting, it performs an arithmetic subtraction on two numerical 
expressions, subtracting expression2 from expression1. When both expressions are integers, 
the difference is an integer. When either or both expressions are floating-point numbers, the 
difference is a floating-point number.

Example

Usage 1: The following statement reverses the sign of the expression 2 + 3.
-(2 + 3)

The result is -5.

Usage 2: The following statement subtracts the integer 2 from the integer 5.
5 - 2

The result is 3, which is an integer.

Usage 2: The following statement subtracts the floating-point number 1.5 from the floating-point 
number 3.25.
3.25 - 1.5

The result is 1.75, which is a floating-point number.
236 Chapter 12:  ActionScript Dictionary



* (multiplication)

Availability

Flash Player 4.

Usage

expression1 * expression2

Parameters

None.

Returns

Nothing.

Description

Operator (arithmetic); multiplies two numerical expressions. If both expressions are integers, the 
product is an integer. If either or both expressions are floating-point numbers, the product is a 
floating-point number.

Example

Usage 1: The following statement multiplies the integers 2 and 3.
2 * 3

The result is 6, which is an integer.

Usage 2: This statement multiplies the floating-point numbers 2.0 and 3.1416.
2.0 * 3.1416

The result is 6.2832, which is a floating-point number.

*= (multiplication assignment)

Availability

Flash Player 4.

Usage

expression1 *= expression2

Parameters

None.

Returns

Nothing.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of expression1 * 
expression2. For example, the following two expressions are the same:
x *= y
x = x * y
*= (multiplication assignment) 237



Example

Usage 1: The following example assigns the value 50 to the variable x. 
x = 5;
y = 10;
trace (x *= y);
// returns 50

Usage 2: The second and third lines of the following example calculate the expressions on the 
right-hand side of the equals sign and assign the results to x and y.
i = 5;
x = 4 - 6;
y = i + 2;
trace(x *= y);
// returns -14

See also

* (multiplication)

, (comma)

Availability

Flash Player 4.

Usage

expression1, expression2

Parameters

None.

Returns

Nothing.

Description

Operator; evaluates expression1, then expression2, and returns the value of expression2. 
This operator is primarily used with the for loop statement.

Example

The following code sample uses the comma operator: 
var a=1, b=2, c=3;

This is equivalent to writing the following code: 
var a=1;
var b=2;
var c=3;
238 Chapter 12:  ActionScript Dictionary



. (dot)

Availability

Flash Player 4.

Usage

object.property_or_method

instancename.variable

instancename.childinstance.variable

Parameters

object An instance of a class. The object can be an instance of any of the built-in ActionScript 
classes or a custom class. This parameter is always to the left of the dot (.) operator.

property_or_method The name of a property or method associated with an object. All of the 
valid method and properties for the built-in classes are listed in the method and property 
summary tables for that class. This parameter is always to the right of the dot (.) operator.

instancename The instance name of a movie clip.

childinstance A movie clip instance that is a child of, or nested in, another movie clip.

variable A variable on the Timeline of the movie clip instance name to the left of the dot 
(.) operator.

Returns

Nothing.

Description

Operator; used to navigate movie clip hierarchies in order to access nested (child) movie clips, 
variables, or properties. The dot operator is also used to test or set the properties of an object, 
execute a method of an object, or create a data structure. 

Example

The following statement identifies the current value of the variable hairColor in the movie clip 
person_mc.
person_mc.hairColor

This is equivalent to the following Flash 4 syntax: 
/person_mc:hairColor

: (type)

Availability

Flash Player 6.

Usage

[modifiers] [var] variableName:[type]

function functionName():[type] { ... }

function functionName(parameter1[:type], ... , parameterN[:type]) { ... }
: (type) 239



Parameters

variableName An identifier for a variable.

type A native data type, class name that you have defined, or interface name.

functionName An identifier for a function.

parameter An identifier for a function parameter.

Description

Operator; specifies the variable type, function return type, or function parameter type. When 
used in a variable declaration or assignment, this operator specifies the variable’s type; when used 
in a function declaration or definition, this operator specifies the function’s return type; when 
used with a function parameter in a function definition, this operator specifies the variable type 
expected for that parameter.

Types are a compile-time-only feature. All types are checked at compile time, and errors are 
generated when there is a mismatch. (For more information, see Appendix A, “Error Messages,” 
on page 783.) Mismatches can occur during assignment operations, function calls, and class 
member dereferencing using the dot (.) operator. To avoid type mismatch errors, use explicit 
typing (see “Strict data typing” on page 38).

Types that you can use include all native object types, classes and interfaces that you define, and 
Void and Function (which exist only as types, not as objects). The recognized native types are 
Array, Boolean, Button, Color, CustomActions, Date, Function, LoadVars, LocalConnection, 
Microphone, MovieClip, NetConnection, NetStream, Number, Object, SharedObject, Sound, 
String, TextField, TextFormat, Video, Void, XML, XMLNode, and XMLSocket.

Example

Usage 1: The following example declares a public variable named userName whose type is String 
and assigns an empty string to it.
public var userName:String = "";

Usage 2: This example demonstrates how to specify a function’s parameter type. The following 
code defines a function named setDate() that takes a parameter named currentDate of 
type Date.
function setDate(currentDate:Date) {

 this.date = currentDate;
}

Usage 3: The following code defines a function named squareRoot() that takes a parameter 
named val of the Number type and returns the square root of val, also a Number type.
function squareRoot(val:Number):Number {

return Math.sqrt(val);
}

240 Chapter 12:  ActionScript Dictionary



?: (conditional)

Availability

Flash Player 4.

Usage

expression1 ? expression2 : expression3

Parameters

expression1 An expression that evaluates to a Boolean value, usually a comparison expression, 
such as x < 5.

expression2, expression3 Values of any type.

Returns

Nothing.

Description

Operator; instructs Flash to evaluate expression1, and if the value of expression1 is true, it 
returns the value of expression2; otherwise it returns the value of expression3. 

Example

The following statement assigns the value of variable x to variable z because expression1 
evaluates to true:
x = 5;
y = 10;
z = (x < 6) ? x: y;
trace (z);
// returns 5

/ (division)

Availability

Flash Player 4.

Usage

expression1 / expression2

Parameters

expression A number or a variable that evaluates to a number.

Returns

Nothing.

Description

Operator (arithmetic); divides expression1 by expression2. The result of the division 
operation is a double-precision floating-point number. 
/ (division) 241



Example

The following statement divides the floating-point number 22.0 by 7.0 and then displays the 
result in the Output panel.
trace(22.0 / 7.0);

The result is 3.1429, which is a floating-point number.

// (comment delimiter)

Availability

Flash 1.

Usage

// comment

Parameters

comment Any characters.

Returns

Nothing.

Description

Comment; indicates the beginning of a script comment. Any characters that appear between the 
comment delimiter // and the end-of-line character are interpreted as a comment and ignored by 
the ActionScript interpreter. 

Example

This script uses comment delimiters to identify the first, third, fifth, and seventh lines as 
comments.
// record the X position of the ball movie clip
ballX = ball._x;
// record the Y position of the ball movie clip
ballY = ball._y;
// record the X position of the bat movie clip
batX = bat._x;
// record the Y position of the bat movie clip
batY = bat._y;

See also

/* (comment delimiter)
242 Chapter 12:  ActionScript Dictionary



/* (comment delimiter)

Availability

Flash Player 5.

Usage

/* comment */

/*
comment
comment
*/ 

Parameters

comment Any characters.

Returns

Nothing.

Description

Comment; indicates one or more lines of script comments. Any characters that appear between 
the opening comment tag /* and the closing comment tag */, are interpreted as a comment 
and ignored by the ActionScript interpreter. Use the first type of syntax to identify single-line 
comments. Use the second type of syntax to identify comments on multiple successive lines. 
Leaving off the closing tag */ when using this form of comment delimiter returns an 
error message. 

Example

This script uses comment delimiters at the beginning of the script.
/* records the X and Y positions of the 
ball and bat movie clips
*/

ballX = ball._x;
ballY = ball._y;
batX = bat._x;
batY = bat._y;

See also

// (comment delimiter)
/* (comment delimiter) 243



/= (division assignment)

Availability

Flash Player 4.

Usage

expression1 /= expression2

Parameters

expression1,expression2 A number or a variable that evaluates to a number.

Returns

Nothing.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of expression1 / 
expression2. For example, the following two statements are the same:
x /= y
x = x / y

Example

The following code illustrates using the /= operator with variables and numbers.
x = 10;
y = 2;
x /= y;
// x now contains the value 5

[] (array access)

Availability

Flash Player 4.

Usage

my_array = ["a0", a1,...aN]

myMultiDimensional_array = [["a0",...aN],...["a0",...aN]]

my_array[E] = value

myMultiDimensional_array[E][E] = value

object["value"]

Parameters

my_array The name of an array.

a0, a1,...aN Elements in an array. 

myMultiDimensional_array The name of a simulated multidimensional array.

E The number (or index) of an element in an array.

object The name of an object.

value A string or an expression that evaluates to a string that names a property of the object.
244 Chapter 12:  ActionScript Dictionary



Returns

Nothing.

Description

Operator; initializes a new array or multidimensional array with the specified elements (a0, and so 
on), or accesses elements in an array. The array access operator lets you dynamically set and 
retrieve instance, variable, and object names. It also lets you access object properties. 

Usage 1: An array is an object whose properties are called elements, which are each identified by a 
number called an index. When you create an array, you surround the elements with the array 
access operator (or brackets). An array can contain elements of various types. For example, the 
following array, called employee, has three elements; the first is a number and the second two are 
strings (inside quotation marks).
employee = [15, "Barbara", "Erick"];

Usage 2: You can nest brackets to simulate multidimensional arrays. The following code creates 
an array called ticTacToe with three elements; each element is also an array with three elements.
ticTacToe = [[1,2,3],[4,5,6],[7,8,9]];

// choose Debug > List Variables in test movie mode 
// to see a list of the array elements

Usage 3: Surround the index of each element with brackets to access it directly; you can add a new 
element to an array, change or retrieve the value of an existing element. The first element in an 
array is always 0:
my_array[0] = 15;
my_array[1] = "Hello";
my_array[2] = true;

You can use brackets to add a fourth element, as in the following:
my_array[3] = "George";

Usage 4: You can use brackets to access an element in a multidimensional array. The first set of 
brackets identifies the element in the original array, and the second set identifies the element in 
the nested array. The following line of code sends the number 6 to the Output panel.
ticTacToe = [[1,2,3],[4,5,6],[7,8,9]];
trace(ticTacToe[1][2]);

// returns 6

Usage 5: You can use the array access operator instead of the eval function to dynamically set and 
retrieve values for movie clip names or any property of an object:
name["mc" + i] = "left_corner";

Example

Usage 1: The following code samples show two different ways of creating a new empty Array 
object; the first line uses brackets.
my_array =[];
my_array = new Array();
[] (array access) 245



Usage 1 and 2: The following example creates an array called employee_array and uses the 
trace() action to send the elements to the Output panel. In the fourth line, an element in the 
array is changed and the fifth line sends the newly modified array to the Output panel:
employee_array = ["Barbara", "George", "Mary"];
trace(employee_array);
// Barbara, George, Mary
employee_array[2]="Sam";
trace(employee_array);
// Barbara, George, Sam

Usage 3: In the following example, the expression inside the brackets ("piece" + i) is evaluated 
and the result is used as the name of the variable to be retrieved from the my_mc movie clip. In this 
example, the variable i must live on the same Timeline as the button. If the variable i is 
equal to 5, for example, the value of the variable piece5 in the my_mc movie clip will be displayed 
in the Output panel: 
on(release){

x = my_mc["piece"+i];
trace(x);

}

Usage 3: In the following code, the expression inside the brackets is evaluated and the result is 
used as the name of the variable to be retrieved from movie clip name_mc: 
name_mc["A" + i];

If you are familiar with the Flash 4 ActionScript slash syntax, you can use the eval function to 
accomplish the same result:
eval("name.A" & i);

Usage 3: You can also use the array access operator on the left side of an assignment statement to 
dynamically set instance, variable, and object names: 
name[index] = "Gary";

See also

Array class, Object class, eval()

^ (bitwise XOR)

Availability

Flash Player 5.

Usage

expression1 ^ expression2

Parameters

expression1,expression2 A number.

Returns

None.
246 Chapter 12:  ActionScript Dictionary



Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned integers, and 
returns a 1 in each bit position where the corresponding bits in expression1 or expression1, 
but not both, are 1.

Example

The following example uses the bitwise XOR operator on the decimals 15 and 9 and assigns the 
result to the variable x.
// 15 decimal = 1111 binary
// 9 decimal = 1001 binary
x = 15 ^ 9 
trace(x)
// 1111 ^ 1001 = 0110
// returns 6 decimal( = 0110 binary)

^= (bitwise XOR assignment)

Availability

Flash Player 5.

Usage

expression1 ^= expression2

Parameters

expression1,expression2 Integers and variables.

Returns

None.

Description

Operator (bitwise compound assignment); assigns expression1 the value of expression1 ^ 
expression2. For example, the following two statements are the same:
x ^= y
x = x ^ y

Example

The following is an example of a ^= operation.
// 15 decimal = 1111 binary
x = 15;
// 9 decimal = 1001 binary
y = 9;
trace(x ^= y);
//returns 6 decimal ( = 0110 binary)

See also

^ (bitwise XOR)
^= (bitwise XOR assignment) 247



{} (object initializer)

Availability

Flash Player 5.

Usage

object = {name1: value1, name2: value2,...nameN: valueN}

Parameters

object The object to create.

name1,2,...N The names of the properties.

value1,2,...N The corresponding values for each name property. 

Returns

None.

Description

Operator; creates a new object and initializes it with the specified name and value property pairs. 
Using this operator is the same as using the new Object syntax and populating the property pairs 
using the assignment operator. The prototype of the newly created object is generically named the 
Object object.

Example

The first line of the following code creates an empty object using the object initializer operator; 
the second line creates a new object using a constructor function.
object = {};
object = new Object();

The following example creates an object account and initializes the properties name, address, 
city, state, zip, and balance with accompanying values.
account = { name: "Betty Skate",

address: "123 Main Street",
city: "Blossomville",
state: "California",
zip: "12345",
balance: "1000" };

The following example shows how array and object initializers can be nested within each other.
person = { name: "Gina Vechio",

children: [ "Ruby", "Chickie", "Puppa"] };

The following example uses the information in the previous example and produces the same 
result using constructor functions.
person = new Object();
person.name = 'Gina Vechio';
person.children = new Array();
person.children[0] = 'Ruby';
person.children[1] = 'Chickie';
person.children[2] = 'Puppa';
248 Chapter 12:  ActionScript Dictionary



See also

[] (array access), new, Object class

| (bitwise OR)

Availability

Flash Player 5.

Usage

expression1 | expression2

Parameters

expression1,expression2 A number.

Returns

None.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit unsigned integers, and 
returns a 1 in each bit position where the corresponding bits of either expression1 or 
expression2 are 1.

Example

The following is an example of a bitwise OR operation.
// 15 decimal = 1111 binary
x = 15;
// 9 decimal = 1001 binary
y = 9;
trace(x | y);
// 1111 | 0011 = 1111
//returns 15 decimal (= 1111 binary)

|| (logical OR)

Availability

Flash Player 4.

Usage

expression1 || expression2

Parameters

expression1,expression2 A Boolean value or an expression that converts to a Boolean value.

Returns

A Boolean value.
|| (logical OR) 249



Description

Operator (logical); evaluates expression1 and expression2. The result is true if either or both 
expressions evaluate to true; the result is false only if both expressions evaluate to false. You 
can use the logical OR operator with any number of operands; if any operand evaluates to true, 
the result is true.

With non-Boolean expressions, the logical OR operator causes Flash to evaluate the expression on 
the left; if it can be converted to true, the result is true. Otherwise, it evaluates the expression on 
the right and the result is the value of that expression.

Example

Usage 1: The following example uses the || operator in an if statement. The second expression 
evaluates to true so the final result is true:
x = 10
y = 250
start = false
if(x > 25 || y > 200 || start){

trace('the logical OR test passed');
}

Usage 2: This example demonstrates how a non-Boolean expression can produce an unexpected 
result. If the expression on the left converts to true, that result is returned without converting the 
expression on the right.
function fx1(){

trace ("fx1 called");
returns true;

}
function fx2(){

trace ("fx2 called");
return true;

}
if (fx1() || fx2()){

trace ("IF statement entered");
}
// The following is sent to the Output panel:
// fx1 called
// IF statement entered

|= (bitwise OR assignment)

Availability

Flash Player 5.

Usage

expression1 |= expression2

Parameters

expression1,expression2 A number or variable.

Returns

None.
250 Chapter 12:  ActionScript Dictionary



Description

Operator (bitwise compound assignment); assigns expression1 the value of expression1 | 
expression2. For example, the following two statements are the same:
x |= y;
x = x | y;

Example

The following example uses the |= operator:
// 15 decimal = 1111 binary
x = 15;
// 9 decimal = 1001 binary
y = 9;
trace(x |= y); 
// 1111 |= 1001
//returns 15 decimal (= 1111 binary)

See also

| (bitwise OR)

~ (bitwise NOT)

Availability

Flash Player 5.

Usage

~ expression

Parameters

expression A number.

Returns

None.

Description

Operator (bitwise); converts the expression to a 32-bit unsigned integer, then inverts the bits. A 
bitwise NOT operation changes the sign of a number and subtracts 1.

Example

The following example shows a bitwise NOT operation performed on a variable.
a = 0;
trace ("when a = 0, ~a = "+~a);
// when a = 0, ~a = -1
a = 1;
trace ("when a = 1, ~a = "+~a);
// when a = 0, ~a = -2
// therefore, ~0=-1 and ~1=-2
~ (bitwise NOT) 251



+ (addition)

Availability

Flash Player 4; Flash Player 5. In Flash 5 and later, + is either a numeric operator or string 
concatenator depending on the data type of the parameter. In Flash 4, + is only a numeric 
operator. Flash 4 files brought into the Flash 5 or later authoring environment undergo a 
conversion process to maintain data type integrity. The following example illustrates the 
conversion of a Flash 4 file containing a numeric quality comparison:

Flash 4 file:
x + y

Converted Flash 5 or later file:
Number(x) + Number(y)

Usage

expression1 + expression2

Parameters

expression1,expression2 A number or string.

Returns

None.

Description

Operator; adds numeric expressions or concatenates (combines) strings. If one expression is a 
string, all other expressions are converted to strings and concatenated.

If both expressions are integers, the sum is an integer; if either or both expressions are floating-
point numbers, the sum is a floating-point number. 

Example

Usage 1: The following example concatenates two strings and displays the result in the 
Output panel.
name = "Cola";
instrument = "Drums";
trace (name + " plays " + instrument);

Usage 2: Variables associated with dynamic and input text fields have the data type String. In the 
following example, the variable deposit is an input text field on the Stage. After a user enters a 
deposit amount, the script attempts to add deposit to oldBalance. However, because deposit 
is a String data type, the script concatenates (combines to form one string) the variable values 
rather than summing them.
oldBalance = 1345.23;
currentBalance = deposit + oldBalance;
trace (currentBalance);

For example, if a user enters 475 in the deposit text field, the trace() action sends the value 
4751345.23 to the Output panel.

To correct this, use the Number() function to convert the string to a number, as in the following:
currentBalance = Number(deposit) + oldBalance;
252 Chapter 12:  ActionScript Dictionary



Usage 3: This statement adds the integers 2 and 3 and displays the resulting integer, 5, in the 
Output panel:
trace (2 + 3);

This statement adds the floating-point numbers 2.5 and 3.25 and displays the result, 5.75, a 
floating-point number, in the Output panel:
trace (2.5 + 3.25);

See also

_accProps

+= (addition assignment)

Availability

Flash Player 4.

Usage

expression1 += expression2

Parameters

expression1,expression2 A number or string.

Returns

Nothing.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of expression1 + 
expression2. For example, the following two statements have the same result:
x += y;
x = x + y;

This operator also performs string concatenation. All the rules of the addition operator (+) apply 
to the addition assignment (+=) operator. 

Example

The following example shows a numeric use of the += operator.
x = 5;
y = 10;
x += y;
trace(x);
//x returns 15 

This example uses the += operator with a string expression and sends "My name is Gilbert" to the 
Output panel.
x = "My name is "
x += "Gilbert"
trace (x)
// returns "My name is Gilbert"

See also

+ (addition)
+= (addition assignment) 253



< (less than)

Availability

Flash Player 4; Flash Player 5. In Flash 5 and later, the < (less than) operator is a comparison 
operator capable of handling various data types. In Flash 4, < is an numeric operator. Flash 4 files 
brought into the Flash 5 or later authoring environment undergo a conversion process to 
maintain data type integrity. The following illustrates the conversion of a Flash 4 file containing a 
numeric quality comparison.

Flash 4 file:
x < y

Converted Flash 5 or later file:
Number(x) < Number(y)

Usage

expression1 < expression2

Parameters

expression1,expression2 A number or string.

Description

Operator (comparison); compares two expressions and determines whether expression1 is less 
than expression2; if so, the operator returns true. If expression1 is greater than or equal to 
expression2, the operator returns false. String expressions are evaluated using alphabetical 
order; all capital letters come before lowercase letters.

Example

The following examples illustrate true and false returns for both numeric and string 
comparisons.
3 < 10;
// true

10 < 3;
// false

"Allen" < "Jack";
// true

"Jack" < "Allen";
// false

"11" < "3";
//true

"11" < 3;
// numeric comparison
// false

"C" < "abc";
// false

"A" < "a";
// true
254 Chapter 12:  ActionScript Dictionary



<< (bitwise left shift)

Availability

Flash Player 5.

Usage

expression1 << expression2

Parameters

expression1 A number or expression to be shifted left.

expression2 A number or expression that converts to an integer from 0 to 31.

Returns

Nothing.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit integers, and shifts all of 
the bits in expression1 to the left by the number of places specified by the integer resulting from 
the conversion of expression2. The bit positions that are emptied as a result of this operation are 
filled in with 0. Shifting a value left by one position is the equivalent of multiplying it by 2.

Example

In the following example, the integer 1 is shifted 10 bits to the left.
x = 1 << 10

The result of this operation is x = 1024. This is because 1 decimal equals 1 binary, 1 binary 
shifted left by 10 is 10000000000 binary, and 10000000000 binary is 1024 decimal. 

In the following example, the integer 7 is shifted 8 bits to the left.
x = 7 << 8

The result of this operation is x = 1792. This is because 7 decimal equals 111 binary, 111 binary 
shifted left by 8 bits is 11100000000 binary, and 11100000000 binary is 1792 decimal.

See also

>>= (bitwise right shift and assignment), >> (bitwise right shift), <<= (bitwise 
left shift and assignment)

<<= (bitwise left shift and assignment)

Availability

Flash Player 5.

Usage

expression1 <<= expression2

Parameters

expression1 A number or expression to be shifted left.

expression2 A number or expression that converts to an integer from 0 to 31.
<<= (bitwise left shift and assignment) 255



Returns

Nothing.

Description

Operator (bitwise compound assignment); this operator performs a bitwise left shift operation 
and stores the contents as a result in expression1. The following two expressions are equivalent.
A <<= B
A = (A << B)

See also

<< (bitwise left shift), >>= (bitwise right shift and assignment), >> (bitwise 
right shift)

<= (less than or equal to)

Availability

Flash Player 4. 

Flash 4 file:
x <= y

Converted Flash 5 or later file:
Number(x) <= Number(y)

Usage

expression1 <= expression2

Parameters

expression1,expression2 A number or string.

Returns

A Boolean value.

Description

Operator (comparison); compares two expressions and determines whether expression1 is less 
than or equal to expression2 ; if it is, the operator returns true. If expression1 is greater than 
expression2, the operator returns false. String expressions are evaluated using alphabetical 
order; all capital letters come before lowercase letters.

In Flash 5 or later, the less than or equal to (<=) operator is a comparison operator capable of 
handling various data types. In Flash 4, <= is a numeric operator. Flash 4 files brought into the 
Flash 5 or later authoring environment undergo a conversion process to maintain data type 
integrity. The following illustrates the conversion of a Flash 4 file containing a numeric 
quality comparison.

Example

The following examples illustrate true and false results for both numeric and 
string comparisons:
5 <= 10;
256 Chapter 12:  ActionScript Dictionary



// true

2 <= 2;
// true

10 <= 3;
// false

"Allen" <= "Jack";
// true

"Jack" <= "Allen";
// false

"11" <= "3";
//true

"11" <= 3;
// numeric comparison
// false

"C" <= "abc";
// false

"A" <= "a";
// true

<> (inequality)

Availability

Flash 2. 

Usage

expression1 <> expression2

Parameters

expression1,expression2 A number, string, Boolean value, variable, object, array, 
or function.

Returns

A Boolean value.

Description

Operator (inequality); tests for the exact opposite of the == operator. If expression1 is equal to 
expression2, the result is false. As with the == operator, the definition of equal depends on the 
data types being compared:

• Numbers, strings, and Boolean values are compared by value.
• Variables, objects, arrays, and functions are compared by reference. 

This operator was deprecated in Flash 5, and Macromedia recommends that you use the 
!= operator.

See also

!= (inequality)
<> (inequality) 257



= (assignment)

Availability

Flash Player 4. 

Flash 4 file:
x = y

Converted Flash 5 or later file:
Number(x) == Number(y)

Usage

expression1 = expression2

Parameters

expression1 A variable, element of an array, or property of an object.

expression2 A value of any type. 

Returns

Nothing.

Description

Operator; assigns the type of expression2 (the parameter on the right) to the variable, array 
element, or property in expression1.

In Flash 5 or later, = is an assignment operator, and the == operator is used to evaluate equality. In 
Flash 4, = is a numeric equality operator. Flash 4 files brought into the Flash 5 or later authoring 
environment undergo a conversion process to maintain data type integrity. 

Example

The following example uses the assignment operator to assign the Number data type to the 
variable x.
x = 5

The following example uses the assignment operator to assign the String data type to the variable 
x.
x = "hello"

See also

== (equality)
258 Chapter 12:  ActionScript Dictionary



-= (subtraction assignment)

Availability

Flash Player 4.

Usage

expression1 -= expression2

Parameters

expression1,expression2 A number or expression that evaluates to a number.

Returns

Nothing.

Description

Operator (arithmetic compound assignment); assigns expression1 the value of expression1 - 
expression2. For example, the following two statements are the same:
x -= y;
x = x - y;

String expressions must be converted to numbers; otherwise, NaN is returned.

Example

Usage 1: The following example uses the -= operator to subtract 10 from 5 and assign the result 
to the variable x.
x = 5;
y = 10;
x -= y
trace(x);
//returns -5 

Usage 2: The following example shows how strings are converted to numbers.
x = "5";
y = "10";
x -= y;
trace(x);
// returns -5
-= (subtraction assignment) 259



== (equality)

Availability

Flash Player 5. 

Usage

expression1 == expression2

Parameters

expression1,expression2 A number, string, Boolean value, variable, object, array, 
or function.

Returns

A Boolean value.

Description

Operator (equality); tests two expressions for equality. The result is true if the expressions 
are equal.

The definition of equal depends on the data type of the parameter:

• Numbers and Boolean values are compared by value, and are considered equal if they have the 
same value.

• String expressions are equal if they have the same number of characters and the characters 
are identical.

• Variables, objects, arrays, and functions are compared by reference. Two variables are equal if 
they refer to the same object, array, or function. Two separate arrays are never considered equal, 
even if they have the same number of elements.

Example

Usage 1: The following example uses the == operator with an if statement:
a = "David" , b = "David";
if (a == b){

trace("David is David");
}

Usage 2: These examples show the results of operations that compare mixed types.
x = "5"; y = "5";
trace(x == y);
// true

x = "5"; y = "66";
trace(x ==y);
// false

x = "chris"; y = "steve";
trace (x == y);
//false

See also

!= (inequality), === (strict equality), !== (strict inequality)
260 Chapter 12:  ActionScript Dictionary



=== (strict equality)

Availability

Flash Player 6.

Usage

expression1 === expression2

Returns

A Boolean value.

Description

Operator; tests two expressions for equality; the strict equality operator performs just like the 
equality operator except that data types are not converted. The result is true if both expressions, 
including their data types, are equal.

The definition of equal depends on the data type of the parameter:

• Numbers and Boolean values are compared by value, and are considered equal if they have the 
same value.

• String expressions are equal if they have the same number of characters and the characters 
are identical.

• Variables, objects, arrays, and functions are compared by reference. Two variables are equal if 
they refer to the same object, array, or function. Two separate arrays are never considered equal, 
even if they have the same number of elements.

Example

The following code displays the returned value of operations that use the equality, strict equality, 
and strict inequality operators.
s1 = new String("5");
s2 = new String("5");
s3 = new String("Hello");
n  = new Number(5);
b = new Boolean(true);

s1 == s2; // true
s1 == s3; // false
s1 == n; // true
s1 == b; // false

s1 === s2;  // true
s1 === s3; // false
s1 === n; // false
s1 === b; // false

s1 !== s2; // false
s1 !== s3; // true
s1 !== n; // true
s1 !== b; // true

See also

== (equality), != (inequality), === (strict equality)
=== (strict equality) 261



> (greater than)

Availability

Flash Player 4. 

Flash 4 file:
x > y 

Converted Flash 5 or later file:
Number(x) > Number(y)

Usage

expression1 >expression2

Parameters

expression1,expression2 A number or string.

Returns

A Boolean value.

Description

Operator (comparison); compares two expressions and determines whether expression1 is 
greater than expression2 ; if it is, the operator returns true. If expression1 is less than or equal 
to expression2, the operator returns false. String expressions are evaluated using alphabetical 
order; all capital letters come before lowercase letters.

In Flash 5 or later, the less than or equal to (<=) operator is a comparison operator capable of 
handling various data types. In Flash 4, <= is a numeric operator. Flash 4 files brought into the 
Flash 5 or later authoring environment undergo a conversion process to maintain data 
type integrity.

>= (greater than or equal to)

Availability

Flash Player 4.

Flash 4 file:
x > y

Converted Flash 5 or later file:
Number(x) > Number(y)

Usage

expression1 >= expression2

Parameters

expression1, expression2 A string, integer, or floating-point number.

Returns

A Boolean value.
262 Chapter 12:  ActionScript Dictionary



Description

Operator (comparison); compares two expressions and determines whether expression1 is 
greater than or equal to expression2 (true), or whether expression1 is less than expression2 
(false).

In Flash 5 or later, greater than or equal to (>) is a comparison operator capable of handling 
various data types. In Flash 4, > is an numeric operator. Flash 4 files brought into the Flash 5 or 
later authoring environment undergo a conversion process to maintain data type integrity. 

>> (bitwise right shift)

Availability

Flash Player 5.

Usage

expression1 >> expression2

Parameters

expression1 A number or expression to be shifted right.

expression2 A number or expression that converts to an integer from 0 to 31.

Returns

Nothing.

Description

Operator (bitwise); converts expression1 and expression2 to 32-bit integers, and shifts all of 
the bits in expression1 to the right by the number of places specified by the integer resulting 
from the conversion of expression2. Bits that are shifted to the right are discarded. To preserve 
the sign of the original expression, the bits on the left are filled in with 0 if the most significant 
bit (the bit farthest to the left) of expression1 is 0, and filled in with 1 if the most significant 
bit is 1. Shifting a value right by one position is the equivalent of dividing by 2 and discarding 
the remainder.

Example

The following example converts 65535 to a 32-bit integer, and shifts it 8 bits to the right.
x = 65535 >> 8

The result of the above operation is as follows:
x = 255 

This is because 65535 decimal equals 1111111111111111 binary (sixteen 1’s), 
1111111111111111 binary shifted right by 8 bits is 11111111 binary, and 11111111 binary is 
255 decimal. The most significant bit is 0 because the integers are 32-bit, so the fill bit is 0.

The following example converts -1 to a 32-bit integer and shifts it 1 bit to the right.
x = -1 >> 1

The result of the above operation is as follows:
x = -1 
>> (bitwise right shift) 263



This is because -1 decimal equals 11111111111111111111111111111111 binary (thirty-two 
1’s), shifting right by one bit causes the least significant (bit farthest to the right) to be discarded 
and the most significant bit to be filled in with 1. The result is 
11111111111111111111111111111111 (thirty-two 1’s) binary, which represents the 32-bit 
integer -1.

See also

>>= (bitwise right shift and assignment)

>>= (bitwise right shift and assignment)

Availability

Flash Player 5.

Usage

expression1 =>>expression2

Parameters

expression1 A number or expression to be shifted left.

expression2 A number or expression that converts to an integer from 0 to 31.

Returns

Nothing.

Description

Operator (bitwise compound assignment); this operator performs a bitwise right-shift operation 
and stores the contents as a result in expression1. 

Example

The following two expressions are equivalent.
A >>= B 

A = (A >> B)

The following commented code uses the bitwise (>>=) operator. It is also an example of using all 
bitwise operators.
function convertToBinary(number){

var result = "";
for (var i=0; i<32; i++) {

// Extract least significant bit using bitwise AND
var lsb = number & 1;
// Add this bit to our result string
result = (lsb ? "1" : "0") + result;
// Shift number right by one bit, to see next bit
number >>= 1;}

return result;
}
trace(convertToBinary(479));
// Returns the string 00000000000000000000000111011111
// The above string is the binary representation of the decimal
// number 479
264 Chapter 12:  ActionScript Dictionary



See also

<< (bitwise left shift)

>>> (bitwise unsigned right shift)

Availability

Flash Player 5.

Usage

expression1 >>> expression2

Parameters

expression1 A number or expression to be shifted right.

expression2 A number or expression that converts to an integer between 0 and 31.

Returns

Nothing.

Description

Operator (bitwise); the same as the bitwise right shift (>>) operator except that it does not 
preserve the sign of the original expression because the bits on the left are always filled with 0.

Example

The following example converts -1 to a 32-bit integer and shifts it 1 bit to the right.
x = -1 >>> 1

The result of the above operation is as follows:
x = 2147483647 

This is because -1 decimal is 11111111111111111111111111111111 binary (thirty-two 1’s), 
and when you shift right (unsigned) by 1 bit, the least significant (rightmost) bit is discarded, and 
the most significant (leftmost) bit is filled with a 0. The result is 
01111111111111111111111111111111 binary, which represents the 32-bit integer 
2147483647.

See also

>>= (bitwise right shift and assignment)
>>> (bitwise unsigned right shift) 265



>>>= (bitwise unsigned right shift and assignment)

Availability

Flash Player 5.

Usage

expression1 >>>= expression2

Parameters

expression1 A number or expression to be shifted left.

expression2 A number or expression that converts to an integer from 0 to 31.

Returns

Nothing.

Description

Operator (bitwise compound assignment); performs an unsigned bitwise right-shift operation 
and stores the contents as a result in expression1. The following two expressions are equivalent:
A >>>= B 
A = (A >>> B)

See also

>>> (bitwise unsigned right shift), >>= (bitwise right shift and assignment)

Accessibility class

Availability

Flash Player 6 version 65.

Description

The Accessibility class manages communication with screen readers. The methods of the 
Accessibility class are static—that is, you don’t have to create an instance of the class to use 
its methods.

To get and set accessible properties for a specific object, such as a button, movie clip, or text field, 
use the _accProps property. To determine whether the player is running in an environment that 
supports accessibility aids, use System.capabilities.hasAccessibility.

Method summary for the Accessibility class

Method Description

Accessibility.isActive() Indicates whether a screen reader program is active.

Accessibility.updateProperties() Updates the description of objects on the screen for screen 
readers.
266 Chapter 12:  ActionScript Dictionary



Accessibility.isActive()

Availability

Flash Player 6 version 65.

Usage

Accessibility.isActive()

Parameters

None.

Returns

A Boolean value of true if there are active Microsoft Active Accessibility (MSAA) clients and the 
player is running in an environment that supports communication between Flash Player and 
accessibility aids, false otherwise.

Description

Method; indicates whether an MSAA screen reader program is currently active and the player is 
running in an environment that supports communication between Flash Player and accessibility 
aids. Use this method when you want your application to behave differently in the presence of a 
screen reader.

To determine whether the player is running in an environment that supports accessibility aids, use 
System.capabilities.hasAccessibility.
Note: If you call this method within about one or two seconds of the first appearance of the Flash 
window in which your document is playing, you might get a return value of false even if there is an 
active MSAA client. This is because of an asynchronous communication mechanism between Flash 
and MSAA clients. You can work around this limitation by ensuring a delay of one to two seconds 
after loading your document before calling this method.

See also

Accessibility.updateProperties(), _accProps, System.capabilities.hasAccessibility

Accessibility.updateProperties()

Availability

Flash Player 6 version 65.

Usage

Accessibility.updateProperties()

Parameters

None.

Returns

Nothing.
Accessibility.updateProperties() 267



Description

Method; causes Flash Player to reexamine all accessibility properties, update its description of 
objects for screen readers, and, if necessary, send events to screen readers to indicate that changes 
have occurred. For information on setting accessibility properties, see _accProps. 

To determine whether the player is running in an environment that supports accessibility aids, use 
System.capabilities.hasAccessibility.

If you modify the accessibility properties for multiple objects, only one call to 
Accessibility.updateProperties() is necessary; multiple calls can result in reduced 
performance and unintelligible screen reader results.

Example

The following ActionScript code takes advantage of dynamic accessibility properties. This 
example is from a nontextual button that can change which icon it displays.
function setIcon( newIconNum, newTextEquivalent )
{
   this.iconImage = this.iconImages[ newIconNum ];
   if ( newTextEquivalent != undefined )
   {
      if ( this._accProps == undefined )
         this._accProps = new Object();
      this._accProps.name = newTextEquivalent;
      Accessibility.updateProperties();
   }
}

See also

Accessibility.isActive(), _accProps, System.capabilities.hasAccessibility

_accProps

Availability

Flash Player 6 version 65.

Usage

_accProps.propertyName

instanceName._accProps.propertyName

Parameters

propertyName An accessibility property name (see the following description for valid names).

instanceName The instance name assigned to an instance of a movie clip, button, dynamic text 
field, or input text field. 

Description

Property; lets you control screen reader accessibility options for SWF files, movie clips, buttons, 
dynamic text fields, and input text fields at runtime. These properties override the corresponding 
settings available in the Accessibility panel during authoring. For changes to these properties to 
take effect, you must call Accessibility.updateProperties(). For information on the 
Accessibility panel, see “Introducing the Flash Accessibility panel” in Using Flash Help. 
268 Chapter 12:  ActionScript Dictionary



To determine whether the player is running in an environment that supports accessibility aids, use 
System.capabilities.hasAccessibility.

The following table lists the name and data type of each _accProps property, its equivalent 
setting in the Accessibility panel, and the kinds of objects to which the property can be applied. 
The term inverse logic means that the property setting is the inverse of the corresponding setting 
in the Accessibility panel. For example, setting the silent property to true is equivalent to 
deselecting the Make Movie Accessible or Make Object Accessible option.

To specify settings that correspond to the Tab index setting in the Accessibility panel, use the 
Button.tabIndex, MovieClip.tabIndex, or TextField.tabIndex property.

There is no way to specify an Auto Label setting at runtime.

When used without the instanceName parameter, changes made to _accProps properties apply 
to the whole movie. For example, the following code sets the Accessibility name property for the 
whole movie to the string "Pet Store", and then calls Accessibility.updateProperties() 
to effect that change.
_accprops.name = "Pet Store";
Accessbility.updateProperties();

In contrast, the following code sets the name property for a movie clip with the instance name 
price_mc to the string "Price":
price_mc._accProps.name = "Price";
Accessbility.updateProperties();

Property Data type Equivalent in Accessibility panel Applies to

silent Boolean Make Movie Accessible/
Make Object Accessible
(inverse logic)

Whole movies
Movie clips
Buttons
Dynamic text
Input text

forceSimple Boolean Make Child Objects Accessible 
(inverse logic)

Whole movies
Movie clips

name String Name Whole movies
Movie clips
Buttons
Input text

description String Description Whole movies
Movie clips
Buttons
Dynamic text
Input text

shortcut String Shortcut*

* For information on assigning a keyboard shortcut to an accessible object, see Key.addListener().

Movie clips
Buttons
Input text
_accProps 269



If you are specifying several accessibility properties, make as many changes as you can 
before calling Accessibility.updateProperties(), instead of calling it after each 
property statement:
_accprops.name = "Pet Store";
animal_mc._accProps.name = "Animal";
animal_mc._accProps.description = "Cat, dog, fish, etc.";
price_mc._accProps.name = "Price";
price_mc._accProps.description = "Cost of a single item";
Accessbility.updateProperties();

If you don’t specify an accessibility property for a movie or an object, any values set in the 
Accessibility panel are implemented. 

After you specify an accessibility property, you can’t revert its value to a value set in the 
Accessibility panel. However, you can set the property to its default value (false for Boolean 
values, empty strings for string values) by deleting the _accProps object:
my_mc._accProps.silent = true; // set a property
// other code here
delete my_mc._accProps.silent; // revert to default value

To revert all accessibility values for an object to default values, you can delete the 
instanceName._accProps object:
delete my_btn._accProps; 

To revert accessibility values for all objects to default values, you can delete the global 
_accProps object:
delete _accProps;

If you specify a property for an object type that doesn’t support that property, the property 
assignment is ignored and no error is thrown. For example, the forceSimple property isn’t 
supported for buttons, so a line like the following is ignored:
my_btn._accProps.forceSimple = false; //ignored

Example

Here is some example ActionScript code that takes advantage of dynamic accessibility properties. 
You would assign this code to a nontextual icon button component that can change which icon 
it displays.
function setIcon( newIconNum, newTextEquivalent )
{
   this.iconImage = this.iconImages[ newIconNum ];
   if ( newTextEquivalent != undefined )
   {
      if ( this._accProps == undefined )
         this._accProps = new Object();
      this._accProps.name = newTextEquivalent;
      Accessibility.updateProperties();
   }
}

See also

Accessibility.isActive(), Accessibility.updateProperties(), 
System.capabilities.hasAccessibility
270 Chapter 12:  ActionScript Dictionary



add

Availability

Flash Player 4. 

Usage

string1 add string2

Parameters

string1, string2 A string.

Returns

Nothing.

Description

Operator; concatenates (combines) two or more strings. The add operator replaces the Flash 4 
add (&) operator; Flash Player 4 files that use the & operator are automatically converted to use the 
add operator for string concatenation when brought into the Flash 5 or later authoring 
environment. However, the add operator was deprecated in Flash Player 5, and Macromedia 
recommends that you use the + operator when creating content for Flash Player 5 or later. Use the 
add operator to concatenate strings if you are creating content for Flash Player 4 or earlier 
versions of the player.

See also

+ (addition)

and

Availability

Flash Player 4. 

Usage

condition1 and condition2

Parameters

condition1,condition2 Conditions or expressions that evaluate to true or false. 

Returns

Nothing.

Description

Operator; performs a logical AND operation in Flash Player 4. If both expressions evaluate to 
true, then the entire expression is true. This operator was deprecated in Flash 5, and 
Macromedia recommends that you use the && operator.

See also

&& (logical AND)
and 271



Arguments class

Availability

Flash Player 5; property added in Flash Player 6.

Description

The Arguments class is an array that contains the values that were passed as parameters to any 
function. Each time a function is called in ActionScript, an Arguments object is automatically 
created for that function. A local variable, arguments, is also created and lets you refer to the 
Arguments object.

Property summary for the Arguments class

arguments.callee

Availability

Flash Player 5.

Usage

arguments.callee

Description

Property; refers to the function that is currently being called.

Example

You can use the arguments.callee property to make an anonymous function that is recursive, as 
in the following:
factorial = function (x) {
  if (x <= 1) {
    return 1;
  } else {
    return x * arguments.callee(x-1);
  }
};

The following is a named recursive function:
function factorial (x) {
  if (x <= 1) {
    return 1;
  } else {
    return x * factorial(x-1);
  }
}

Property Description

arguments.callee Refers to the function being called.

arguments.caller Refers to the calling function.

arguments.length The number of parameters passed to a function.
272 Chapter 12:  ActionScript Dictionary



arguments.caller

Availability

Flash Player 6.

Usage

arguments.caller

Description

Property; refers to the calling function. 

arguments.length

Availability

Flash Player 5. 

Usage

arguments.length

Description

Property; the number of parameters actually passed to a function. 

Array class

Availability

Flash Player 5 (became a native object in Flash Player 6, which improved 
performance significantly).

Description

The Array class lets you access and manipulate arrays. An array is an object whose properties are 
identified by a number representing their position in the array. This number is referred to as the 
index. All arrays are zero-based, which means that the first element in the array is [0], the second 
element is [1], and so on. In the following example, my_array contains the months of the year.
my_array[0] = "January"
my_array[1] = "February"
my_array[2] = "March"
my_array[3] = "April"

To create an Array object, use the constructor new Array() or the array access operator ([]). To 
access the elements of an array, use the array access operator ([]). 
Array class 273



Method summary for the Array class

Property summary for the Array class

Constructor for the Array class

Availability

Flash Player 5.

Usage

new Array()

new Array(length)

new Array(element0, element1, element2,...elementN)

Parameters

length An integer specifying the number of elements in the array. In the case of noncontiguous 
elements, the length parameter specifies the index number of the last element in the array plus 1. 

element0...elementN A list of two or more arbitrary values. The values can be numbers, 
strings, objects, or other arrays. The first element in an array always has an index or position of 0.

Returns

Nothing.

Method Description

Array.concat() Concatenates the parameters and returns them as a new array.

Array.join() Joins all elements of an array into a string.

Array.pop() Removes the last element of an array and returns its value.

Array.push() Adds one or more elements to the end of an array and returns the array’s new 
length.

Array.reverse() Reverses the direction of an array.

Array.shift() Removes the first element from an array and returns its value.

Array.slice() Extracts a section of an array and returns it as a new array.

Array.sort() Sorts an array in place. 

Array.sortOn() Sorts an array based on a field in the array.

Array.splice() Adds and removes elements from an array.

Array.toString() Returns a string value representing the elements in the Array object.

Array.unshift() Adds one or more elements to the beginning of an array and returns the array’s 
new length.

Property Description

Array.length A nonzero-based integer specifying the number of elements in the array.
274 Chapter 12:  ActionScript Dictionary



Description

Constructor; lets you create an array. You can use the constructor to create different types of 
arrays: an empty array, an array with a specific length but whose elements have no values, or an 
array whose elements have specific values.

Usage 1: If you don’t specify any parameters, an array with a length of 0 is created. 

Usage 2: If you specify only a length, an array is created with length number of elements with 
no values. 

Usage 3: If you use the element parameters to specify values, an array is created with 
specific values.

Example

Usage 1: The following example creates a new Array object with an initial length of 0.
my_array = new Array();
trace(my_array.length); // returns 0

Usage 2: The following example creates a new Array object with an initial length of 4.
my_array = new Array(4);
trace(my_array.length); // returns 4

Usage 3: The following example creates the new Array object go_gos_array, with an initial 
length of 5.
go_gos_array = new Array("Belinda", "Gina", "Kathy", "Charlotte", "Jane");
trace(my_array.length); // returns 5
trace(go_gos_array.join(", ")); // displays elements

The initial elements of the go_gos array are identified as follows:
go_gos_array[0] = "Belinda";
go_gos_array[1] = "Gina";
go_gos_array[2] = "Kathy";
go_gos_array[3] = "Charlotte";
go_gos_array[4] = "Jane";

The following code adds a sixth element to the go_gos_array array and changes the second 
element:
go_gos_array[5] = "Donna";
go_gos_array[1] = "Nina"
trace(go_gos_array.join(" + "));

See also

Array.length, [] (array access)
Array class 275



Array.concat()

Availability

Flash Player 5.

Usage

my_array.concat( [ value0, value1,...valueN ])

Parameters

value0,...valueN Numbers, elements, or strings to be concatenated in a new array. If you 
don’t pass any values, a duplicate of my_array is created.

Returns

Nothing.

Description

Method; concatenates the elements specified in the parameters with the elements in my_array, 
and creates a new array. If the value parameters specify an array, the elements of that array are 
concatenated, rather than the array itself. The array my_array is left unchanged. 

Example

The following code concatenates two arrays.
alpha_array = new Array("a","b","c");
numeric_array = new Array(1,2,3);
alphaNumeric_array=alpha_array.concat(numeric_array); 
trace(alphaNumeric_array);
// creates array ["a","b","c",1,2,3]

The following code concatenates three arrays.
num1_array = [1,3,5];
num2_array = [2,4,6];
num3_array = [7,8,9];
nums_array=num1_array.concat(num2_array,num3_array) 
trace(nums_array);
// creates array [1,3,5,2,4,6,7,8,9]

Nested arrays are not flattened in the same way normal arrays are. The elements in a nested array 
are not broken into separate elements in array x_array, as in the following example.
a_array = new Array ("a","b","c");

// 2 and 3 are elements in a nested array
n_array = new Array(1, [2, 3], 4); 

x_array = a_array.concat(n_array);
trace(x_array[0]); // "a"
trace(x_array[1]); // "b"
trace(x_array[2]); // "c"
trace(x_array[3]); // 1
trace(x_array[4]); // 2, 3 
trace(x_array[5]); // 4
276 Chapter 12:  ActionScript Dictionary



Array.join()

Availability

Flash Player 5.

Usage

my_array.join([separator])

Parameters

separator A character or string that separates array elements in the returned string. If you omit 
this parameter, a comma is used as the default separator. 

Returns

String.

Description

Method; converts the elements in an array to strings, inserts the specified separator between the 
elements, concatenates them, and returns the resulting string. A nested array is always separated 
by a comma, not by the separator passed to the join() method.

Example

The following example creates an array with three elements: Earth, Moon, and Sun. It then joins 
the array three times—first using the default separator (a comma and a space), then using a dash, 
and then using a plus sign (+)—and displays them in the Output panel:
a_array = new Array("Earth","Moon","Sun")
trace(a_array.join()); 
// returns Earth, Moon, Sun
trace(a_array.join(" - ")); 
// returns Earth - Moon - Sun
trace(a_array.join(" + ")); 
// returns Earth + Moon + Sun
Array.join() 277



Array.length

Availability

Flash Player 5.

Usage

my_array.length

Description

Property; a nonzero-based integer specifying the number of elements in the array. This property is 
automatically updated when new elements are added to the array. When you assign a value to an 
array element (for example, my_array[index] = value), if index is a number, and index+1 is 
greater than the length property, the length property is updated to index+1.

Example

The following code explains how the length property is updated.
my_array = new Array();
trace(my_array.length); // initial length is 0
my_array[0] = 'a';
trace(my_array.length); // my_array.length is updated to 1
my_array[1] = 'b';
trace(my_array.length); // my_array.length is updated to 2
my_array[9] = 'c';
trace(my_array.length); // my_array.length is updated to 10

Array.pop()

Availability

Flash Player 5.

Usage

my_array.pop()

Parameters

None.

Returns

The value of the last element in the specified array.

Description

Method; removes the last element from an array and returns the value of that element.

Example

The following code creates the myPets array containing four elements, then removes its 
last element.
myPets = ["cat", "dog", "bird", "fish"];
popped = myPets.pop();
trace(popped);
// returns fish
278 Chapter 12:  ActionScript Dictionary



Array.push()

Availability

Flash Player 5.

Usage

my_array.push(value,...)

Parameters

value One or more values to append to the array.

Returns

The length of the new array.

Description

Method; adds one or more elements to the end of an array and returns the array’s new length.

Example

The following example creates the array myPets with two elements, cat and dog. The second line 
adds two elements to the array. After the push() method is called, the variable pushed contains 
four elements. Because the push() method returns the new length of the array, the trace() 
action in the last line sends the new length of myPets (4) to the Output panel:
myPets = ["cat", "dog"];
pushed = myPets.push("bird", "fish");
trace(pushed);

Array.reverse()

Availability

Flash Player 5.

Usage

my_array.reverse()

Parameters

None.

Returns

Nothing.

Description

Method; reverses the array in place.

Example

The following is an example of using this method.
var numbers_array = [1, 2, 3, 4, 5, 6];
trace(numbers_array.join()); //1,2,3,4,5,6
numbers_array.reverse();
trace(numbers_array.join()); // 6,5,4,3,2,1
Array.reverse() 279



Array.shift()

Availability

Flash Player 5.

Usage

my_array.shift()

Parameters

None.

Returns

The first element in an array.

Description

Method; removes the first element from an array and returns that element.

Example

The following code creates the array myPets and then removes the first element from the array 
and assigns it to the variable shifted.
var myPets_array = ["cat", "dog", "bird", "fish"];
shifted = myPets_array.shift();
trace(shifted); // returns "cat"

See also

Array.pop()

Array.slice()

Availability

Flash Player 5.

Usage

my_array.slice( [ start [ , end ] ] )

Parameters

start A number specifying the index of the starting point for the slice. If start is a negative 
number, the starting point begins at the end of the array, where -1 is the last element.

end A number specifying the index of the ending point for the slice. If you omit this parameter, 
the slice includes all elements from the start to the end of the array. If end is a negative number, 
the ending point is specified from the end of the array, where -1 is the last element.

Returns

An array.
280 Chapter 12:  ActionScript Dictionary



Description

Method; extracts a slice or a substring of the array and returns it as a new array without modifying 
the original array. The returned array includes the start element and all elements up to, but not 
including, the end element. 

If you don’t pass any parameters, a duplicate of my_array is created.

Array.sort()

Availability

Flash Player 5; additional capabilities added in Flash Player 7.

Usage

my_array.sort()

my_array.sort(compareFunction)

my_array.sort(option | option |... )

my_array.sort(compareFunction, option | option |... )

Parameters

compareFunction An optional comparison function used to determine the sorting order of 
elements in an array. Given the elements A and B, the result of compareFunction can have one of 
the following three values:

• -1 if A should appear before B in the sorted sequence
• 0 if A = B
• 1 if A should appear after B in the sorted sequence

option One or more numbers or strings, separated by the | (bitwise OR) operator, that 
change the behavior of the sort from the default. The following values are acceptable for option:

• 1 or Array.CASEINSENSITIVE
• 2 or Array.DESCENDING
• 4 or Array.UNIQUE
• 8 or Array.RETURNINDEXEDARRAY 
• 16 or Array.NUMERIC

For information on this parameter, see Array.sortOn().

Returns

The return value depends on whether you pass any parameters:

• If you specify a value of 4 or Array.UNIQUE for option and two or more elements being 
sorted have identical sort fields, Flash returns a value of 0 and does not modify the array. 

• If you specify a value of 8 or Array.RETURNINDEXEDARRAY for option, Flash returns an 
array that reflects the results of the sort and does not modify the array. 

• Otherwise, Flash returns nothing and modifies the array to reflect the sort order.
Array.sort() 281



Description

Method; sorts the elements in an array. Flash sorts according to ASCII (Unicode) values. If either 
of the elements being compared does not contain the field specified in the fieldName parameter, 
the field is assumed to be undefined, and the elements are placed consecutively in the sorted 
array in no particular order.

By default, Array.sort() works as follows:

• Sorting is case sensitive (Z precedes a).
• Sorting is ascending (a precedes b). 
• The array is modified to reflect the sort order; multiple elements that have identical sort fields 

are placed consecutively in the sorted array in no particular order.
• Numeric fields are sorted as if they were strings, so 100 precedes 99, because “1” is a lower 

string value than “9”.
• Nothing is returned.

If you want to sort in another way, create a function to do the sorting and pass its name as the 
compareFunction parameter. You might do this, for example, if you want to sort alphabetically 
by last name, ascending, and then by ZIP code, descending. 

If you want to specify one or more fields on which to sort, using either the default sort or the 
options parameter, use Array.sortOn().

Example

Usage 1: The following example shows the use of Array.sort() with and without a value passed 
for option:
var fruits_array = ["oranges", "apples", "strawberries", "pineapples", 

"cherries"];
trace(fruits_array.join());
fruits_array.sort();
trace(fruits_array.join());
fruits_array.sort(Array.DESCENDING);
trace(fruits_array.join());

The Output panel displays the following results:
oranges,apples,strawberries,pineapples,cherries// original array
apples,cherries,oranges,pineapples,strawberries// default sort
strawberries,pineapples,oranges,cherries,apples// descending sort

Usage 2: The following example uses Array.sort() with a compare function.
var passwords = ["mom:glam","ana:ring","jay:mag","anne:home","regina:silly"];
function order (a,b){

//Entries to be sorted are in form name:password
//Sort using only the name part of the entry as a key.
var name1 =a.split(":")[0 ];
var name2 =b.split(":")[0 ];
if (name1 <name2){

return -1;
}
else if (name1 >name2){

return 1;
}
else {

return 0;
282 Chapter 12:  ActionScript Dictionary



}
}
trace ("Unsorted:");
trace (passwords.join());

passwords.sort(order);
trace ("Sorted:");
trace (passwords.join());

The Output panel displays the following results:
Unsorted:
mom:glam,ana:ring,jay:mag,anne:home,regina:silly
Sorted:
ana:ring,anne:home,jay:mag,mom:glam,regina:silly

See also

| (bitwise OR), Array.sortOn()

Array.sortOn()

Availability

Flash Player 6; additional capabilities added in Flash Player 7.

Usage

my_array.sortOn("fieldName" )

my_array.sortOn("fieldName", option | option |... )

my_array.sortOn( [ "fieldName" , "fieldName" , ... ] )

my_array.sortOn( [ "fieldName" , "fieldName" , ... ] , option | option |... )

Note: Where brackets ([]) are shown, you must include them in the code; that is, the brackets don’t 
represent optional parameters.

Parameters

fieldName A string that identifies a field (in an element of the Array) to be used as the 
sort value. 

option One or more numbers or strings, separated by the | (bitwise OR) operator, that 
change the behavior of the sort from the default. The following values are acceptable for option:

• 1 or Array.CASEINSENSITIVE 
• 2 or Array.DESCENDING
• 4 or Array.UNIQUE
• 8 or Array.RETURNINDEXEDARRAY 
• 16 or Array.NUMERIC

Each of these options in discussed in more detail in “Description,” below.
Array.sortOn() 283



Returns

The return value depends on whether you pass any parameters:

• If you specify a value of 4 or Array.UNIQUE for option, and two or more elements being 
sorted have identical sort fields, Flash returns a value of 0 and does not modify the array. 

• If you specify a value of 8 or Array.RETURNINDEXEDARRAY for option, Flash returns an 
array that reflects the results of the sort and does not modify the array. 

• Otherwise, Flash returns nothing and modifies the array to reflect the sort order.

Description

Method; sorts the elements in an array according to one or more fields in the array. If you pass 
multiple fieldName parameters, the first field represents the primary sort field, the second 
represents the next sort field, and so on. Flash sorts according to ASCII (Unicode) values. If either 
of the elements being compared does not contain the field specified in the fieldName parameter, 
the field is assumed to be undefined, and the elements are placed consecutively in the sorted 
array in no particular order.

By default, Array.sortOn() works as follows:

• Sorting is case sensitive (Z precedes a).
• Sorting is ascending (a precedes b). 
• The array is modified to reflect the sort order; multiple elements that have identical sort fields 

are placed consecutively in the sorted array in no particular order.
• Numeric fields are sorted as if they were strings, so 100 precedes 99, because “1” is a lower 

string value than “9”.
• Nothing is returned.

You can use the option flags to override these defaults. The following examples use different 
forms of the option flag for illustration purposes. If you want to sort a simple array (for example, 
an array with only one field), or if you want to specify a sort order that the options parameter 
doesn’t support, use Array.sort().

To pass multiple flags in numeric format, separate them with the | (bitwise OR) operator or 
add the values of the flags together. The following code shows three different ways to specify a 
numeric descending sort:
my_Array.sortOn(someFieldName, 2 | 16);
my_Array.sortOn(someFieldName, 18);
my_Array.sortOn(someFieldName, Array.DESCENDING | Array.NUMERIC);

Code hinting (see “Using code hints” on page 63) is enabled if you use the string form of the flag 
(for example, DESCENDING) rather than the numeric form (2).

Consider the following array:
var my_array:Array = new Array();
my_array.push({password: "Bob", age:29});
my_array.push({password: "abcd", age:3});
my_array.push({password: "barb", age:35});
my_array.push({password: "catchy", age:4});
284 Chapter 12:  ActionScript Dictionary



Performing a default sort on the password field produces the following results:
my_array.sortOn("password")
// Bob
// abcd
// barb
// catchy

Performing a case-insensitive sort on the password field produces the following results:
my_array.sortOn("password", Array.CASEINSENSITIVE)
// abcd
// barb
// Bob
// catchy

Performing a case-insensitive, descending sort on the password field produces the following 
results:
my_array.sortOn("password", 1|2)
// catchy
// Bob
// barb
// abcd

Performing a default sort on the age field produces the following results:
my_array.sortOn("age")
// 29
// 3
// 35
// 4

Performing a numeric sort on the age field produces the following results:
my_array.sortOn("age", 16)
// 3
// 4
// 29
// 35

Performing a descending numeric sort on the age field produces the following results:
my_array.sortOn("age", 18)
// 35
// 29
// 4
// 3

Performing a sort changes the elements in the array as follows:
// Before sorting
// my_array[0].age = 29;
// my_array[1].age = 3;
// my_array[2].age = 35;
// my_array[3].age = 4;

// After any sort that doesn’t pass a value of 8 for option
my_array.sortOn("age", Array.NUMERIC);
// my_array[0].age = 3;
// my_array[1].age = 4;
// my_array[2].age = 29;
// my_array[3].age = 35;
Array.sortOn() 285



Performing a sort that returns an index array doesn’t change the elements in the array:
// Before sorting
// my_array[0].age = 29;
// my_array[1].age = 3;
// my_array[2].age = 35;
// my_array[3].age = 4;

// After a sort that returns an array containing index values
// Note that the original array is unchanged.
// You can then use the returned array to display sorted information
// without modifying the original array.
var indexArray:Array = my_array.sortOn("age", Array.RETURNINDEXEDARRAY);
// my_array[0].age = 29;
// my_array[1].age = 3;
// my_array[2].age = 35;
// my_array[3].age = 4;

Example

This example creates a new array and sorts it according to the fields name and city: The first sort 
uses name as the first sort value and city as the second. The second sort uses city as the first sort 
value and name as the second.
var rec_array = new Array();
rec_array.push( { name: "john", city: "omaha", zip: 68144 } );
rec_array.push( { name: "john", city: "kansas city", zip: 72345 } );
rec_array.push( { name: "bob", city: "omaha", zip: 94010 } );
for(i=0; i<rec_array.length; i++) {
 trace(rec_array[i].name + ", " + rec_array[i].city);
}
// results in 
// john, omaha
// john, kansas city
// bob, omaha

rec_array.sortOn( [ "name", "city" ]);
for(i=0; i<rec_array.length; i++) {
 trace(rec_array[i].name + ", " + rec_array[i].city);
}
// results in 
// bob, omaha
// john, kansas city
// john, omaha

rec_array.sortOn( ["city", "name" ]);
for(i=0; i<rec_array.length; i++) {
 trace(rec_array[i].name + ", " + rec_array[i].city);
}
// results in 
// john, kansas city
// bob, omaha
// john, omaha

See also

| (bitwise OR), Array.sort()
286 Chapter 12:  ActionScript Dictionary



Array.splice()

Availability

Flash Player 5.

Usage

my_array.splice(start, deleteCount [, value0, value1...valueN])

Parameters

start The index of the element in the array where the insertion or deletion begins.

deleteCount The number of elements to be deleted. This number includes the element 
specified in the start parameter. If no value is specified for deleteCount, the method deletes all 
of the values from the start element to the last element in the array. If the value is 0, no elements 
are deleted.

value An optional parameter specifying the values to insert into the array at the insertion point 
specified in the start parameter. 

Returns

Nothing.

Description

Method; adds and removes elements from an array. This method modifies the array without 
making a copy.

Array.toString()

Availability

Flash Player 5.

Usage

my_array.toString()

Parameters

None. 

Returns

A string.

Description

Method; returns a string value representing the elements in the specified Array object. Every 
element in the array, starting with index 0 and ending with index my_array.length-1, is 
converted to a concatenated string and separated by commas.
Array.toString() 287



Example

The following example creates my_array, converts it to a string, and displays 1,2,3,4,5 in the 
Output panel.
my_array = new Array();
my_array[0] = 1;
my_array[1] = 2;
my_array[2] = 3;
my_array[3] = 4;
my_array[4] = 5;
trace(my_array.toString());

Array.unshift()

Availability

Flash Player 5.

Usage

my_array.unshift(value1,value2,...valueN)

Parameters

value1,...valueN One or more numbers, elements, or variables to be inserted at the 
beginning of the array. 

Returns

The new length of the array.

Description

Method; adds one or more elements to the beginning of an array and returns the array’s 
new length.

Array()

Availability

Flash Player 6 .

Usage

Array()

Array( [element0 [, element1 , element2,...elementN ] ])

Parameters

element One or more elements to place in the array.

Returns

An array.

Description

Conversion function; creates a new, empty array or converts specified elements to an array. Using 
this function is similar to creating an array using the Array constructor (see “Constructor for the 
Array class” on page 274).
288 Chapter 12:  ActionScript Dictionary



asfunction

Availability

Flash Player 5.

Usage

asfunction:function,"parameter"

Parameters

function An identifier for a function.

parameter A string that is passed to the function named in the function parameter.

Returns

Nothing.

Description

Protocol; a special protocol for URLs in HTML text fields. In HTML text fields, text may be 
hyperlinked using the HTML A tag. The HREF attribute of the A tag contains a URL that may be 
for a standard protocol like HTTP, HTTPS, or FTP. The asfunction protocol is an additional 
protocol specific to Flash, which causes the link to invoke an ActionScript function.

Example

In this example, the MyFunc() function is defined in the first three lines of code. The TextField 
object myTextField is associated with an HTML text field. The text "Click Me!" is a hyperlink 
inside the text field. The MyFunc() function is called when the user clicks on the hyperlink:
function MyFunc(arg){

trace ("You clicked me! Argument was "+arg);
}
myTextField.htmlText ="<A HREF=\"asfunction:MyFunc,Foo \">Click Me!</A>";

When the hyperlink is clicked, the following results are displayed in the Output panel:
You clicked me!  Parameter was Foo

Boolean class

Availability

Flash Player 5 (became a native object in Flash Player 6, which improved 
performance significantly).

Description

The Boolean class is a wrapper object with the same functionality as the standard JavaScript 
Boolean object. Use the Boolean class to retrieve the primitive data type or string representation 
of a Boolean object. 

You must use the constructor new Boolean() to create a Boolean object before calling 
its methods.
Boolean class 289



Method summary for the Boolean class

Constructor for the Boolean class

Availability

Flash Player 5.

Usage

new Boolean([x])

Parameters

x Any expression. This parameter is optional.

Returns

Nothing.

Description

Constructor; creates a Boolean object. If you omit the x parameter, the Boolean object is 
initialized with a value of false. If you specify a value for the x parameter, the method evaluates 
it and returns the result as a Boolean value according to the rules in the Boolean() function.

Example

The following code creates a new empty Boolean object called myBoolean.
myBoolean = new Boolean();

Boolean.toString()

Availability

Flash Player 5.

Usage

myBoolean.toString()

Parameters

None.

Returns

A Boolean value.

Description

Method; returns the string representation ("true” or "false”) of the Boolean object.

Method Description

Boolean.toString() Returns the string representation ("true" or "false") of the Boolean object. 

Boolean.valueOf() Returns the primitive value type of the specified Boolean object.
290 Chapter 12:  ActionScript Dictionary



Boolean.valueOf()

Availability

Flash Player 5.

Usage

myBoolean.valueOf()

Parameters

None.

Returns

A Boolean value.

Description

Method; returns true if the primitive value type of the specified Boolean object is true, false if 
it is false. 

Example

var x:Boolean = new Boolean();
trace(x.valueOf()); // false
x = (6==3+3);
trace(x.valueOf()); // true

Boolean()

Availability

Flash Player 5; behavior changed in Flash Player 7.

Usage

Boolean(expression)

Parameters

expression An expression to convert to a Boolean value.

Returns

A Boolean value or the value expression, as described below.

Description

Function; converts the parameter expression to a Boolean value and returns a value as follows:

If expression is a Boolean value, the return value is expression.

If expression is a number, the return value is true if the number is not zero, otherwise the 
return value is false.

If expression is a string, the return value is as follows:

• In files published for Flash Player 6 or earlier, the string is first converted to a number; the 
value is true if the number is nonzero, false otherwise. 

• In files published for Flash Player 7 or later, the result is true if the string has a length greater 
than zero; the value is false for an empty string.
Boolean() 291



If expression is undefined, the return value is false.

If expression is a movie clip or an object, the return value is true.

See also

Boolean class

break

Availability

Flash Player 4.

Usage

break

Parameters

None.

Returns

Nothing.

Description

Statement; appears within a loop (for, for..in, do while or while) or within a block of 
statements associated with a particular case within a switch action. The break action instructs 
Flash to skip the rest of the loop body, stop the looping action, and execute the statement 
following the loop statement. When using the break action, the Flash interpreter skips the rest of 
the statements in that case block and jumps to the first statement following the enclosing switch 
action. Use the break action to break out of a series of nested loops.

Example

The following example uses the break action to exit an otherwise infinite loop.
i = 0;
while (true) {

if (i >= 100) {
break;

}
i++;

}

See also

break, for, for..in, do while, while, switch, case
292 Chapter 12:  ActionScript Dictionary



Button class

Availability

Flash Player 6.

Description

All button symbols in a SWF file are instances of the Button object. You can give a button an 
instance name in the Property inspector, and use the methods and properties of the Button class 
to manipulate buttons with ActionScript. Button instance names are displayed in the Movie 
Explorer and in the Insert Target Path dialog box in the Actions panel.

The Button class inherits from the Object class. 

Method summary for the Button class

Property summary for the Button class

Method Description

Button.getDepth() Returns the depth of a button instance.

Property Description

Button._alpha The transparency value of a button instance.

Button.enabled Indicates whether a button is active.

Button._focusrect Indicates whether a button with focus has a yellow rectangle around it.

Button._height The height of a button instance, in pixels.

Button._highquality The level of anti-aliasing applied to the current SWF file.

Button.menu Associates a ContextMenu object with the button object.

Button._name The instance name of a button instance.

Button._parent A reference to the movie clip or object that contains the current movie clip 
or object.

Button._quality Indicates the rendering quality of the SWF file.

Button._rotation The degree of rotation of a button instance.

Button._soundbuftime Number of seconds for a sound to preload.

Button.tabEnabled Indicates whether a button is included in automatic tab ordering.

Button.tabIndex Indicates the tab order of an object. 

Button._target The target path of a button instance.

Button.trackAsMenu Indicates whether other buttons can receive mouse release events.

Button._url The URL of the SWF file that created the button instance.

Button.useHandCursor Indicates whether the pointing hand is displayed when the mouse passes 
over a button.
Button class 293



Event handler summary for the Button class

Button._visible A Boolean value that indicates whether a button instance is hidden or 
visible.

Button._width The width of a button instance, in pixels.

Button._x The x coordinate of a button instance.

Button._xmouse The x coordinate of the mouse pointer relative to a button instance.

Button._xscale The value specifying the percentage for horizontally scaling a button 
instance.

Button._y The y coordinate of a button instance.

Button._ymouse The y coordinate of the mouse pointer relative to a button instance.

Button._yscale The value specifying the percentage for vertically scaling a button 
instance.

Event handler Description

Button.onDragOut Invoked when the mouse button is pressed over the button and the 
pointer then rolls outside the button.

Button.onDragOver Invoked when the user presses and drags the mouse button outside 
and then over the button.

Button.onKeyUp Invoked when a key is released.

Button.onKillFocus Invoked when focus is removed from a button.

Button.onPress Invoked when the mouse is pressed while the pointer is over a button. 

Button.onRelease Invoked when the mouse is released while the pointer is over a button.

Button.onReleaseOutside Invoked when the mouse is released while the pointer is outside the 
button after the button is pressed while the pointer is inside the button. 

Button.onRollOut Invoked when the pointer rolls outside of a button area.

Button.onRollOver Invoked when the mouse pointer rolls over a button.

Button.onSetFocus Invoked when a button has input focus and a key is released.

Property Description
294 Chapter 12:  ActionScript Dictionary



Button._alpha

Availability

Flash Player 6.

Usage

my_btn._alpha

Description

Property; the alpha transparency value of the button specified by my_btn. Valid values are 0 (fully 
transparent) to 100 (fully opaque). The default value is 100. Objects in a button with _alpha set 
to 0 are active, even though they are invisible.

Example

The following code sets the _alpha property of a button named star_btn to 30% when the 
button is clicked:
on(release) {

star_btn._alpha = 30;
}

See also

MovieClip._alpha, TextField._alpha

Button.enabled

Availability

Flash Player 6.

Usage

my_btn.enabled

Description

Property; a Boolean value that specifies whether a button is enabled. The default value is true.

Button._focusrect

Availability

Flash Player 6.

Usage

my_btn._focusrect

Description

Property; a Boolean value that specifies whether a button has a yellow rectangle around it when it 
has keyboard focus. This property can override the global _focusrect property.
Button._focusrect 295



Button.getDepth()

Availability

Flash Player 6.

Usage

my_btn.getDepth()

Returns

An integer.

Description

Method; returns the depth of a button instance.

Button._height

Availability

Flash Player 6.

Usage

my_btn._height

Description

Property; the height of the button, in pixels.

Example

The following code example sets the height and width of a button when the user clicks the mouse:
my_btn._width = 200;
my_btn._height = 200;

Button._highquality

Availability

Flash Player 6.

Usage

my_btn._highquality

Description

Property (global); specifies the level of anti-aliasing applied to the current SWF file. Specify 2 
(best quality) to apply high quality with bitmap smoothing always on. Specify 1 (high quality) to 
apply anti-aliasing; this will smooth bitmaps if the SWF file does not contain animation. 
Specify 0 (low quality) to prevent anti-aliasing.

See also

_quality
296 Chapter 12:  ActionScript Dictionary



Button.menu

Availability

Flash Player 7.

Usage

my_button.menu = contextMenu

Parameters

contextMenu A ContextMenu object.

Description

Property; associates the ContextMenu object contextMenu with the button object my_button. 
The ContextMenu class lets you modify the context menu that appears when the user right-clicks 
(Windows) or Control-clicks (Macintosh) in Flash Player.

Example

The following example assigns a ContextMenu object to a Button object named save_btn. The 
ContextMenu object contains a single menu item (labeled “Save...”) with an associated callback 
handler function named doSave (not shown).
var menu_cm = new ContextMenu();
menu_cm.customItems.push(new ContextMenuItem("Save...", doSave));
function doSave(menu, obj) {

// "Save" code here
}
save_btn.menu = menu_cm;

See also

ContextMenu class, ContextMenuItem class, MovieClip.menu, TextField.menu

Button._name

Availability

Flash Player 6.

Usage

my_btn._name

Description

Property; instance name of the button specified by my_btn.
Button._name 297



Button.onDragOut

Availability

Flash Player 6.

Usage

my_btn.onDragOut = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the mouse button is pressed over the button and the pointer then 
rolls outside the button.

You must define a function that executes when the event handler is invoked.

Button.onDragOver

Availability

Flash Player 6.

Usage

my_btn.onDragOver = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the user presses and drags the mouse button outside and then over 
the button.

You must define a function that executes when the event handler is invoked.

Example

The following example defines a function for the onKeyDown handler that sends a trace() action 
to the Output panel:
my_btn.onDragOver = function () {

trace ("onDragOver called");
};
298 Chapter 12:  ActionScript Dictionary



See also

Button.onKeyUp

Button.onKeyDown

Availability

Flash Player 6.

Usage

my_btn.onKeyDown = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when a button has keyboard focus and a key is pressed. The onKeyDown 
event handler is invoked with no parameters. You can use Key.getAscii() and Key.getCode() 
to determine which key was pressed. 

You must define a function that executes when the event handler is invoked.

Example

In the following example, a function that sends a trace() action to the Output panel is defined 
for the onKeyDown handler.
my_btn.onKeyDown = function () {

trace ("onKeyDown called");
};

See also

Button.onKeyUp

Button.onKeyUp

Availability

Flash Player 6.

Usage

my_btn.onKeyUp = function() {
// your statements here

}

Parameters

None.
Button.onKeyUp 299



Returns

Nothing.

Description

Event handler; invoked when a button has input focus and a key is released. The onKeyUp event 
handler is invoked with no parameters. You can use Key.getAscii() and Key.getCode() to 
determine which key was pressed. 

You must define a function that executes when the event handler is invoked.

Example

In the following example, a function that sends a trace() action to the Output panel is defined 
for the onKeyPress handler.
my_btn.onKeyUp = function () {

trace ("onKeyUp called");
};

Button.onKillFocus

Availability

Flash Player 6.

Usage

my_btn.onKillFocus = function (newFocus) {
// your statements here

}

Parameters

newFocus The object that is receiving the focus.

Returns

Nothing.

Description

Event handler; invoked when a button loses keyboard focus. The onKillFocus method receives 
one parameter, newFocus, which is an object representing the new object receiving the focus. If 
no object receives the focus, newFocus contains the value null.

Button.onPress

Availability

Flash Player 6.

Usage

my_btn.onPress = function() {
// your statements here

}

Parameters

None.
300 Chapter 12:  ActionScript Dictionary



Returns

Nothing.

Description

Event handler; invoked when a button is pressed. You must define a function that executes when 
the event handler is invoked.

Example

In the following example, a function that sends a trace() action to the Output panel is defined 
for the onPress handler.
my_btn.onPress = function () {

trace ("onPress called");
};

Button.onRelease

Availability

Flash Player 6.

Usage

my_btn.onRelease = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when a button is released. You must define a function that executes when 
the event handler is invoked.

Example

In the following example, a function that sends a trace() action to the Output panel is defined 
for the onRelease handler.
my_btn.onRelease = function () {

trace ("onRelease called");
};
Button.onRelease 301



Button.onReleaseOutside

Availability

Flash Player 6.

Usage

my_btn.onReleaseOutside = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the mouse is released while the pointer is outside the button after 
the button is pressed while the pointer is inside the button.

You must define a function that executes when the event handler is invoked.

Example

In the following example, a function that sends a trace() action to the Output panel is defined 
for the onReleaseOutside handler.
my_btn.onReleaseOutside = function () {

trace ("onReleaseOutside called");
};

Button.onRollOut

Availability

Flash Player 6.

Usage

my_btn.onRollOut = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the pointer moves outside a button area. You must define a 
function that executes when the event handler is invoked.
302 Chapter 12:  ActionScript Dictionary



Example

In the following example, a function that sends a trace() action to the Output panel is defined 
for the onRollOut handler.
my_btn.onRollOut = function () {

trace ("onRollOut called");
};

Button.onRollOver

Availability

Flash Player 6.

Usage

my_btn.onRollOver = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the pointer moves over a button area. You must define a function 
that executes when the event handler is invoked.

Example

In the following example, a function that sends a trace() action to the Output panel is defined 
for the onRollOver handler.
my_btn.onRollOver = function () {

trace ("onRollOver called");
};

Button.onSetFocus

Availability

Flash Player 6.

Usage

my_btn.onSetFocus = function(oldFocus){
// your statements here

}

Parameters

oldFocus The object to lose keyboard focus.

Returns

Nothing.
Button.onSetFocus 303



Description

Event handler; invoked when a button receives keyboard focus. The oldFocus parameter is the 
object that loses the focus. For example, if the user presses the Tab key to move the input focus 
from a text field to a button, oldFocus contains the text field instance.

If there is no previously focused object, oldFocus contains a null value.

Button._parent

Availability

Flash Player 6.

Usage

my_btn._parent.property

_parent.property

Description

Property; a reference to the movie clip or object that contains the current movie clip or object. 
The current object is the one containing the ActionScript code that references _parent. 

Use _parent to specify a relative path to movie clips or objects that are above the current movie 
clip or object. You can use _parent to climb up multiple levels in the display list as in the 
following:
_parent._parent._alpha = 20;

See also

MovieClip._parent, _root, targetPath

Button._quality

Availability

Flash Player 6.

Usage

my_btn._quality

Description

Property (global); sets or retrieves the rendering quality used for a SWF file. Device fonts are 
always aliased and therefore are unaffected by the _quality property.
Note: Although you can specify this property for a Button object, it is actually a global property, and 
you can specify its value simply as _quality. For more information, see _quality.
304 Chapter 12:  ActionScript Dictionary



Button._rotation

Availability

Flash Player 6.

Usage

my_btn._rotation

Description

Property; the rotation of the button, in degrees, from its original orientation. Values from 
0 to 180 represent clockwise rotation; values from 0 to -180 represent counterclockwise rotation. 
Values outside this range are added to or subtracted from 360 to obtain a value within the range. 
For example, the statement my_btn._rotation = 450 is the same as my_btn._rotation = 90.

See also

MovieClip._rotation, TextField._rotation

Button._soundbuftime

Availability

Flash Player 6.

Usage

myButton._soundbuftime

Description

Property (global); an integer that specifies the number of seconds a sound prebuffers before it 
starts to stream. 
Note: Although you can specify this property for a Button object, it is actually a global property, and 
you can specify its value simply as _soundbuftime. For more information, see _soundbuftime.

Button.tabEnabled

Availability

Flash Player 6.

Usage

my_btn.tabEnabled

Description

Property; specifies whether my_btn is included in automatic tab ordering. It is undefined by 
default.

If the tabEnabled property is undefined or true, the object is included in automatic tab 
ordering. If the tabIndex property is also set to a value, the object is included in custom tab 
ordering as well. If tabEnabled is false, the object is not included in automatic or custom tab 
ordering, even if the tabIndex property is set.

See also

Button.tabIndex, MovieClip.tabEnabled, TextField.tabEnabled
Button.tabEnabled 305



Button.tabIndex

Availability

Flash Player 6.

Usage

my_btn.tabIndex

Description

Property; lets you customize the tab ordering of objects in a SWF file. You can set the tabIndex 
property on a button, movie clip, or text field instance; it is undefined by default. 

If any currently displayed object in the SWF file contains a tabIndex property, automatic tab 
ordering is disabled, and the tab ordering is calculated from the tabIndex properties of objects in 
the SWF file. The custom tab ordering only includes objects that have tabIndex properties.

The tabIndex property may be an non-negative integer. The objects are ordered according to 
their tabIndex properties, in ascending order. An object with a tabIndex value of 1 precedes an 
object with a tabIndex value of 2. If two objects have the same tabIndex value, the one that 
precedes the other in the tab ordering is undefined.

The custom tab ordering defined by the tabIndex property is flat. This means that no attention 
is paid to the hierarchical relationships of objects in the SWF file. All objects in the SWF file with 
tabIndex properties are placed in the tab order, and the tab order is determined by the order of 
the tabIndex values. If two objects have the same tabIndex value, the one that goes first is 
undefined. You shouldn’t use the same tabIndex value for multiple objects.

See also

Button.tabEnabled, MovieClip.tabChildren, MovieClip.tabEnabled, 
MovieClip.tabIndex, TextField.tabIndex

Button._target

Availability

Flash Player 6.

Usage

myButton._target

Description

Property (read-only); returns the target path of the button instance specified by my_btn.

See also

targetPath
306 Chapter 12:  ActionScript Dictionary



Button.trackAsMenu

Availability

Flash Player 6.

Usage

my_btn.trackAsMenu

Description

Property; a Boolean value that indicates whether other buttons or movie clips can receive mouse 
release events. This allows you to create menus. You can set the trackAsMenu property on any 
button or movie clip object. If the trackAsMenu property has not been defined, the default 
behavior is false.

You can change the trackAsMenu property at any time; the modified button immediately takes 
on the new behavior. 

See also

MovieClip.trackAsMenu

Button._url

Availability

Flash Player 6.

Usage

my_btn._url

Description

Property (read only); retrieves the URL of the SWF file that created the button. 

Button.useHandCursor

Availability

Flash Player 6.

Usage

my_btn.useHandCursor

Description

Property; a Boolean value that, when set to true (the default), indicates whether a hand cursor 
(pointing hand) is displayed when the mouse rolls over a button. If this property is set to false, 
the arrow cursor is used instead.

You can change the useHandCursor property at any time; the modified button immediately takes 
on the new cursor behavior. The useHandCursor property can be read out of a prototype object. 
Button.useHandCursor 307



Button._visible

Availability

Flash Player 6.

Usage

my_btn._visible

Description

Property; a Boolean value that indicates whether the button specified by my_btn is visible. 
Buttons that are not visible (_visible property set to false) are disabled.

See also

MovieClip._visible, TextField._visible

Button._width

Availability

Flash Player 6.

Usage

my_btn._width

Description

Property; the width of the button, in pixels.

Example

The following example sets the height and width properties of a button.
my_btn._width=200;
my_btn._height=200;

See also

MovieClip._width
308 Chapter 12:  ActionScript Dictionary



Button._x

Availability

Flash Player 6.

Usage

my_btn._x

Description

Property; an integer that sets the x coordinate of a button relative to the local coordinates of the 
parent movie clip. If a button is on the main Timeline, then its coordinate system refers to the 
upper left corner of the Stage as (0, 0). If the button is inside a movie clip that has 
transformations, the button is in the local coordinate system of the enclosing movie clip. Thus, 
for a movie clip rotated 90 degrees counterclockwise, the enclosed button inherits a coordinate 
system that is rotated 90 degrees counterclockwise. The button’s coordinates refer to the 
registration point position.

See also

Button._xscale, Button._y, Button._yscale

Button._xmouse

Availability

Flash Player 6.

Usage

my_btn._xmouse

Description

Property (read-only); returns the x coordinate of the mouse position relative to the button.

See also

Button._ymouse
Button._xmouse 309



Button._xscale

Availability

Flash Player 6.

Usage

my_btn._xscale

Description

Property; the horizontal scale of the button as applied from the registration point of the button, 
expressed as a percentage. The default registration point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined in 
pixels. For example, if the parent movie clip is scaled to 50%, setting the _x property moves an 
object in the button by half the number of pixels as it would if the SWF file were at 100%.

See also

Button._x, Button._y, Button._yscale

Button._y

Availability

Flash Player 6.

Usage

my_btn._y

Description

Property; the y coordinate of the button relative to the local coordinates of the parent movie clip. 
If a button is in the main Timeline, its coordinate system refers to the upper left corner of the 
Stage as (0, 0). If the button is inside another movie clip that has transformations, the button is in 
the local coordinate system of the enclosing movie clip. Thus, for a movie clip rotated 90 degrees 
counterclockwise, the enclosed button inherits a coordinate system that is rotated 90 degrees 
counterclockwise. The button’s coordinates refer to the registration point position.

See also

Button._x, Button._xscale, Button._yscale
310 Chapter 12:  ActionScript Dictionary



Button._ymouse

Availability

Flash Player 6.

Usage

my_btn._ymouse

Description

Property (read-only); indicates the y coordinate of the mouse position relative to the button.

See also

Button._xmouse

Button._yscale

Availability

Flash Player 6.

Usage

my_btn._yscale

Description

Property; the vertical scale of the button as applied from the registration point of the button, 
expressed as a percentage. The default registration point is (0,0).

See also

Button._y, Button._x, Button._xscale

call()

Availability

Flash Player 4. This action was deprecated in Flash 5, and Macromedia recommends that you use 
the function action instead.

Usage

call(frame)

Parameters

frame The label or number of a frame in the Timeline.

Returns

Nothing.

Description

Deprecated action; executes the script in the called frame without moving the playhead to that 
frame. Local variables do not exist after the script executes. 
call() 311



See also

function, Function.call()

Camera class

Availability

Flash Player 6.

Description

The Camera class is primarily for use with Macromedia Flash Communication Server, but can be 
used in a limited fashion without the server.

The Camera class lets you capture video from a video camera attached to the computer that is 
running the Macromedia Flash Player—for example, to monitor a video feed from a web camera 
attached to your local system. (Flash provides similar audio capabilities; for more information, see 
the Microphone class entry.)

To create or reference a Camera object, use Camera.get().

Method summary for the Camera class

Property summary for the Camera class

Method Description

Camera.get() Returns a default or specified Camera object, or null if the camera is 
not available.

Camera.setMode() Sets aspects of the camera capture mode, including height, width, and 
frames per second.

Camera.setMotionLevel() Specifies how much motion is required to invoke 
Camera.onActivity(true) and how much time should elapse without 
motion before Camera.onActivity(false) is invoked.

Camera.setQuality() An integer that specifies the maximum amount of bandwidth that the 
current outgoing video feed can use, in bytes per second. 

Property (read-only) Description

Camera.activityLevel The amount of motion the camera is detecting. 

Camera.bandwidth The maximum amount of bandwidth the current outgoing video feed 
can use, in bytes. 

Camera.currentFps The rate at which the camera is capturing data, in frames per second.

Camera.fps The rate at which you would like the camera to capture data, in frames 
per second. 

Camera.height The current capture height, in pixels. 

Camera.index The index of the camera, as reflected in the array returned by 
Camera.names.

Camera.motionLevel The amount of motion required to invoke Camera.onActivity(true).
312 Chapter 12:  ActionScript Dictionary



Event handler summary for the Camera class

Constructor for the Camera class

See Camera.get().

Camera.activityLevel

Availability

Flash Player 6.

Usage

active_cam.activityLevel

Description

Read-only property; a numeric value that specifies the amount of motion the camera is detecting. 
Values range from 0 (no motion is being detected) to 100 (a large amount of motion is being 
detected). The value of this property can help you determine if you need to pass a setting to 
Camera.setMotionLevel().

If the camera is available but is not yet being used because Video.attachVideo() has not been 
called, this property is set to -1.

If you are streaming only uncompressed local video, this property is set only if you have assigned 
a function to the Camera.onActivity event handler. Otherwise, it is undefined.

See also

Camera.motionLevel, Camera.setMotionLevel()

Camera.motionTimeOut The number of milliseconds between the time when the camera stops 
detecting motion and the time Camera.onActivity(false) is invoked.

Camera.muted A Boolean value that specifies whether the user has allowed or denied 
access to the camera. 

Camera.name The name of the camera as specified by the camera hardware. 

Camera.names Class property; an array of strings reflecting the names of all available 
video capture devices, including video cards and cameras.

Camera.quality An integer specifying the required level of picture quality, as determined 
by the amount of compression being applied to each video frame.

Camera.width The current capture width, in pixels. 

Event handler Description

Camera.onActivity Invoked when the camera starts or stops detecting motion. 

Camera.onStatus Invoked when the user allows or denies access to the camera. 

Property (read-only) Description
Camera.activityLevel 313



Camera.bandwidth

Availability

Flash Player 6.

Usage

active_cam.bandwidth

Description

Read-only property; an integer that specifies the maximum amount of bandwidth the current 
outgoing video feed can use, in bytes. A value of 0 means that Flash video can use as much 
bandwidth as needed to maintain the desired frame quality.

To set this property, use Camera.setQuality().

Example

The following example loads another SWF file if the camera’s bandwidth is 32 kilobytes or 
greater.
if(myCam.bandwidth >= 32768){

loadMovie("splat.swf",_root.hiddenvar);
}

See also

Camera.setQuality()

Camera.currentFps

Availability

Flash Player 6.

Usage

active_cam.currentFps

Description

Read-only property; the rate at which the camera is capturing data, in frames per second. This 
property cannot be set; however, you can use the Camera.setMode() method to set a related 
property—Camera.fps—which specifies the maximum frame rate at which you would like the 
camera to capture data. 

See also

Camera.fps, Camera.setMode()
314 Chapter 12:  ActionScript Dictionary



Camera.fps

Availability

Flash Player 6.

Usage

active_cam.fps

Description

Read-only property; the maximum rate at which you want the camera to capture data, in frames 
per second. The maximum rate possible depends on the capabilities of the camera; that is, if the 
camera doesn’t support the value you set here, this frame rate will not be achieved.

• To set a desired value for this property, use Camera.setMode().
• To determine the rate at which the camera is currently capturing data, use the 

Camera.currentFps property.

Example

The following example sets the fps rate of the active camera, myCam.fps, to the value provided by 
the user’s text box, this.config.txt_fps.
if (this.config.txt_fps != undefined) {

myCam.setMode(myCam.width, myCam.height, this.config.txt_fps, false);
}

Note: The setMode function does not guarantee the requested fps setting; it sets the fps you 
requested or the fastest fps available.

See also

Camera.currentFps, Camera.setMode() 

Camera.get()

Availability

Flash Player 6.

Usage

Camera.get([index])

Note: The correct syntax is Camera.get(). To assign the Camera object to a variable, use syntax like 
active_cam = Camera.get().

Parameters

index An optional zero-based integer that specifies which camera to get, as determined from 
the array returned by the Camera.names property. To get the default camera (which is 
recommended for most applications), omit this parameter. 
Camera.get() 315



Returns

• If index is not specified, this method returns a reference to the default camera or, if it is in use 
by another application, to the first available camera. (If there is more than one camera 
installed, the user may specify the default camera in the Flash Player Camera Settings panel.) If 
no cameras are available or installed, the method returns null.

• If index is specified, this method returns a reference to the requested camera, or null if it is 
not available. 

Description

Method; returns a reference to a Camera object for capturing video. To actually begin capturing 
the video, you must attach the Camera object to a Video object (see Video.attachVideo()).

Unlike objects that you create using the new constructor, multiple calls to Camera.get() 
reference the same camera. Thus, if your script contains the lines first_cam = Camera.get() 
and second_cam = Camera.get(), both first_cam and second_cam reference the same 
(default) camera.

In general, you shouldn’t pass a value for index; simply use Camera.get() to return a reference 
to the default camera. By means of the Camera settings panel (discussed later in this section), the 
user can specify the default camera Flash should use. If you pass a value for index, you might be 
trying to reference a camera other than the one the user prefers. You might use index in rare 
cases—for example, if your application is capturing video from two cameras at the same time.

When a SWF file tries to access the camera returned by Camera.get(), Flash Player displays a 
Privacy dialog box that lets the user choose whether to allow or deny access to the camera. (Make 
sure your Stage size is at least 215 x 138 pixels; this is the minimum size Flash requires to display 
the dialog box.)

When the user responds to this dialog box, the Camera.onStatus event handler returns an 
information object that indicates the user’s response. To determine whether the user has 
denied or allowed access to the camera without processing this event handler, use the 
Camera.muted property.

The user can also specify permanent privacy settings for a particular domain by right-clicking 
(Windows) or Control-clicking (Macintosh) while a SWF file is playing, choosing Settings, 
opening the Privacy panel, and selecting Remember.
316 Chapter 12:  ActionScript Dictionary



You can’t use ActionScript to set the Allow or Deny value for a user, but you can display the 
Privacy panel for the user by using System.showSettings(0). If the user selects Remember, 
Flash Player no longer displays the Privacy dialog box for movies from this domain.

If Camera.get returns null, either the camera is in use by another application, or there are no 
cameras installed on the system. To determine whether any cameras are installed, use 
Camera.names.length. To display the Flash Player Camera Settings panel, which lets the user 
choose the camera to be referenced by Camera.get(), use System.showSettings(3).

Scanning the hardware for cameras takes time. When Flash finds at least one camera, the 
hardware is not scanned again for the lifetime of the player instance. However, if Flash doesn’t 
find any cameras, it will scan each time Camera.get is called. This is helpful if a user has 
forgotten to connect the camera; if your SWF file provides a Try Again button that calls 
Camera.get, Flash can find the camera without the user having to restart the SWF file.

Example

The following example captures and displays video locally within a Video object named 
my_video on the Stage.
var my_cam = Camera.get();
my_video.attachVideo(myCam);

See also

Camera.index, Camera.muted, Camera.names, Camera.onStatus, Camera.setMode(), 
System.showSettings(), Video.attachVideo()
Camera.get() 317



Camera.height

Availability

Flash Player 6.

Usage

active_cam.height

Description

Read-only property; the current capture height, in pixels. To set a value for this property, use 
Camera.setMode(). 

Example

The following line of code updates a text box in the user interface with the current height value.
my_txt._height = myCam.height;

See also the example for Camera.setMode().

See also

Camera.setMode(), Camera.width

Camera.index

Availability

Flash Player 6.

Usage

active_cam.index

Description

Read-only property; a zero-based integer that specifies the index of the camera, as reflected in the 
array returned by Camera.names.

Example

The following example gets the camera that has the value of index.
my_cam = Camera.get(index);

See also

Camera.get(), Camera.names
318 Chapter 12:  ActionScript Dictionary



Camera.motionLevel

Availability

Flash Player 6.

Usage

active_cam.motionLevel

Description

Read-only property; a numeric value that specifies the amount of motion required to invoke 
Camera.onActivity(true). Acceptable values range from 0 to 100. The default value is 50.

Video can be displayed regardless of the value of the motionLevel property. For more 
information, see Camera.setMotionLevel().

See also

Camera.activityLevel, Camera.onActivity, Camera.onStatus, Camera.setMotionLevel()

Camera.motionTimeOut

Availability

Flash Player 6.

Usage

active_cam.motionTimeOut

Description

Read-only property; the number of milliseconds between the time the camera stops detecting 
motion and the time Camera.onActivity(false) is invoked. The default value is 2000 
(2 seconds). 

To set this value, use Camera.setMotionLevel(). 

Example

The following example sets the number of milliseconds between the time the camera stops 
detecting motion and the time Camera.onActivity(false) is invoked to 1000 milliseconds, 
or one second.
if(my_cam.motionTimeOut >= 1000){

my_cam.setMotionLevel(myCam.motionLevel, 1000);
}

See also

Camera.onActivity, Camera.setMotionLevel()
Camera.motionTimeOut 319



Camera.muted

Availability

Flash Player 6.

Usage

active_cam.muted

Description

Read-only property; a Boolean value that specifies whether the user has denied access to the 
camera (true) or allowed access (false) in the Flash Player Privacy Settings panel. When this 
value changes, Camera.onStatus is invoked. For more information, see Camera.get().

See also

Camera.get(), Camera.onStatus

Camera.name

Availability

Flash Player 6.

Usage

active_cam.name

Description

Read-only property; a string that specifies the name of the current camera, as returned by the 
camera hardware.

Example

The following example displays the name of the default camera in the Output panel. In 
Windows, this name is the same as the device name listed in the Scanners and Cameras 
properties sheet.
my_cam = Camera.get();
trace("The camera name is: " + my_cam.name);

See also

Camera.get(), Camera.names
320 Chapter 12:  ActionScript Dictionary



Camera.names

Availability

Flash Player 6.

Usage

Camera.names

Note: The correct syntax is Camera.names. To assign the return value to a variable, use syntax like 
cam_array = Camera.names. To determine the name of the current camera, use active_cam.name.

Description

Read-only class property; retrieves an array of strings reflecting the names of all available cameras 
without displaying the Flash Player Privacy Settings panel. This array behaves the same as any 
other ActionScript array, implicitly providing the zero-based index of each camera and the 
number of cameras on the system (by means of Camera.names.length). For more information, 
see the Array class entry.

Calling the Camera.names property requires an extensive examination of the hardware, and it 
may take several seconds to build the array. In most cases, you can just use the default camera.

Example

The following example uses the default camera unless more than one camera is available, in which 
case the user can choose which camera to set as the default camera.
cam_array = Camera.names;
if (cam_array.length == 1){

my_cam = Camera.get();
}
else {

System.showSettings(3);
my_cam = Camera.get();

}

See also

Camera.get(), Camera.index, Camera.name

Camera.onActivity

Availability

Flash Player 6.

Usage

active_cam.onActivity = function(activity) {
// your statements here

}

Parameters

activity A Boolean value set to true when the camera starts detecting motion, false when 
it stops.

Returns

Nothing.
Camera.onActivity 321



Description

Event handler; invoked when the camera starts or stops detecting motion. If you want to respond 
to this event handler, you must create a function to process its activity value. 

To specify the amount of motion required to invoke Camera.onActivity(true) and the 
amount of time that must elapse without activity before invoking Camera.onActivity(false), 
use Camera.setMotionLevel().

Example

The following example displays true or false in the Output panel when the camera starts or 
stops detecting motion.
// Assumes a Video object named "myVideoObject" is on the Stage
my_cam = Camera.get();
myVideoObject.attachVideo(my_cam);
my_cam.setMotionLevel(10, 500);
my_cam.onActivity = function(mode)
{

trace(mode);
}

See also

Camera.onActivity, Camera.setMotionLevel()

Camera.onStatus

Availability

Flash Player 6.

Usage

active_cam.onStatus = function(infoObject) {
// your statements here

}

Parameters

infoObject A parameter defined according to the status message. 

Returns

Nothing.

Description

Event handler; invoked when the user allows or denies access to the camera. If you want to 
respond to this event handler, you must create a function to process the information object 
generated by the camera. 

When a SWF file tries to access the camera, Flash Player displays a Privacy dialog box that lets the 
user choose whether to allow or deny access.
322 Chapter 12:  ActionScript Dictionary



• If the user allows access, the Camera.muted property is set to false, and this handler is 
invoked with an information object whose code property is "Camera.Unmuted" and whose 
level property is "Status".

• If the user denies access, the Camera.muted property is set to true, and this handler is invoked 
with an information object whose code property is "Camera.Muted" and whose level 
property is "Status".

To determine whether the user has denied or allowed access to the camera without processing this 
event handler, use the Camera.muted property.
Note: If the user chooses to permanently allow or deny access for all SWF files from a specified 
domain, this handler is not invoked for SWF files from that domain unless the user later changes the 
privacy setting. For more information, see Camera.get().

Example

The following event handler displays a message whenever the user allows or denies access to the 
camera.
myCam = Camera.get();
myVideoObject.attachVideo(myCam);
myCam.onStatus = function(infoMsg) {

if(infoMsg.code == "Camera.Muted"){
trace("User denies access to the camera");

}
else

trace("User allows access to the camera");
}
// Change the Allow or Deny value to invoke the function
System.showSettings(0);

See also

Camera.get(), Camera.muted

Camera.quality

Availability

Flash Player 6.

Usage

active_cam.quality

Description

Read-only property; an integer specifying the required level of picture quality, as determined by 
the amount of compression being applied to each video frame. Acceptable quality values range 
from 1 (lowest quality, maximum compression) to 100 (highest quality, no compression). The 
default value is 0, which means that picture quality can vary as needed to avoid exceeding 
available bandwidth.

See also

Camera.setQuality()
Camera.quality 323



Camera.setMode()

Availability

Flash Player 6.

Usage

active_cam.setMode(width, height, fps [,favorSize])

Parameters

width The requested capture width, in pixels. The default value is 160.

height The requested capture height, in pixels. The default value is 120.

fps The requested rate at which the camera should capture data, in frames per second. The 
default value is 15.

favorSize Optional: a Boolean value that specifies how to manipulate the width, height, and 
frame rate if the camera does not have a native mode that meets the specified requirements. The 
default value is true, which means that maintaining capture size is favored; using this parameter 
selects the mode that most closely matches width and height values, even if doing so adversely 
affects performance by reducing the frame rate. To maximize frame rate at the expense of camera 
height and width, pass false for the favorSize parameter.

Returns

Nothing.

Description

Method; sets the camera capture mode to the native mode that best meets the specified 
requirements. If the camera does not have a native mode that matches all the parameters you pass, 
Flash selects a capture mode that most closely synthesizes the requested mode. This manipulation 
may involve cropping the image and dropping frames. 

By default, Flash drops frames as needed to maintain image size. To minimize the number of 
dropped frames, even if this means reducing the size of the image, pass false for the 
favorSize parameter.

When choosing a native mode, Flash tries to maintain the requested aspect ratio whenever 
possible. For example, if you issue the command active_cam.setMode(400, 400, 30), and the 
maximum width and height values available on the camera are 320 and 288, Flash sets both the 
width and height at 288; by setting these properties to the same value, Flash maintains the 1:1 
aspect ratio you requested.

To determine the values assigned to these properties after Flash selects the mode that most closely 
matches your requested values, use Camera.width, Camera.height, and Camera.fps.

Example

The following example sets the width, height, and fps based on the user’s input if the user clicks 
the button. The optional parameter, favorSize is not included, because the default value, true, 
will provide the settings closest to the user’s preference without sacrificing the picture quality, 
although the fps may then be sacrificed. The user interface is then updated with the new settings.
324 Chapter 12:  ActionScript Dictionary



on (press) 
{

// Sets width, height, and fps to user's input.
_root.myCam.setMode(txt_width, my_txt._height, txt_fps);

// Update the user’s text fields with the new settings.
_root.txt_width = myCam.width;
_root.txt_height = myCam.height;
_root.txt_fps = myCam.fps;

}

See also

Camera.currentFps, Camera.fps, Camera.height, Camera.width

Camera.setMotionLevel()

Availability

Flash Player 6.

Usage

active_cam.setMotionLevel(sensitivity [, timeout])

Parameters

sensitivity A numeric value that specifies the amount of motion required to invoke 
Camera.onActivity(true). Acceptable values range from 0 to 100. The default value is 50.

timeout An optional numeric parameter that specifies how many milliseconds must elapse 
without activity before Flash considers activity to have stopped and invokes the 
Camera.onActivity(false) event handler. The default value is 2000 (2 seconds).

Returns

Nothing. 

Description

Method; specifies how much motion is required to invoke Camera.onActivity(true). 
Optionally sets the number of milliseconds that must elapse without activity before Flash 
considers motion to have stopped and invokes Camera.onActivity(false). 
Note: Video can be displayed regardless of the value of the sensitivity parameter. This parameter 
only determines when and under what circumstances Camera.onActivity is invoked, not whether 
video is actually being captured or displayed.

• To prevent the camera from detecting motion at all, pass a value of 100 for sensitivity; 
Camera.onActivity is never invoked. (You would probably use this value only for testing 
purposes—for example, to temporarily disable any actions set to occur when 
Camera.onActivity is invoked.)

• To determine the amount of motion the camera is currently detecting, use the 
Camera.activityLevel property.

Motion sensitivity values correspond directly to activity values. Complete lack of motion is an 
activity value of 0. Constant motion is an activity value of 100. Your activity value is less than 
your motion sensitivity value when you’re not moving; when you are moving, activity values 
frequently exceed your motion sensitivity value.
Camera.setMotionLevel() 325



This method is similar in purpose to Microphone.setSilenceLevel(); both methods are used 
to specify when the onActivity event handler should be invoked. However, these methods have 
a significantly different impact on publishing streams:

• Microphone.setSilenceLevel() is designed to optimize bandwidth. When an audio stream 
is considered silent, no audio data is sent. Instead, a single message is sent, indicating that 
silence has started. 

• Camera.setMotionLevel() is designed to detect motion and does not affect bandwidth 
usage. Even if a video stream does not detect motion, video is still sent.

Example

The following example sends messages to the Output panel when video activity starts or stops. 
Change the motion sensitivity value of 30 to a higher or lower number to see how different values 
affect motion detection.
// Assumes a Video object named "myVideoObject" is on the Stage
c = Camera.get();
x = 0;
function motion(mode)
{

trace(x + ": " + mode);
x++;

}
c.onActivity = function(mode) {motion(mode);};
c.setMotionLevel(30, 500);
myVideoObject.attachVideo(c);

See also

Camera.activityLevel, Camera.motionLevel, Camera.motionTimeOut, Camera.onActivity

Camera.setQuality()

Availability

Flash Player 6.

Usage

active_cam.setQuality(bandwidth, frameQuality)

Parameters

bandwidth An integer that specifies the maximum amount of bandwidth that the current 
outgoing video feed can use, in bytes per second. To specify that Flash video can use as much 
bandwidth as needed to maintain the value of frameQuality, pass 0 for bandwidth. The default 
value is 16384.

frameQuality An integer that specifies the required level of picture quality, as determined by 
the amount of compression being applied to each video frame. Acceptable values range from 1 
(lowest quality, maximum compression) to 100 (highest quality, no compression). To specify that 
picture quality can vary as needed to avoid exceeding bandwidth, pass 0 for frameQuality. The 
default value is 0.

Returns

Nothing.
326 Chapter 12:  ActionScript Dictionary



Description

Method; sets the maximum amount of bandwidth per second or the required picture quality of 
the current outgoing video feed. This method is generally applicable only if you are transmitting 
video using Flash Communication Server.

Use this method to specify which element of the outgoing video feed is more important to your 
application—bandwidth use or picture quality.

• To indicate that bandwidth use takes precedence, pass a value for bandwidth and 0 for 
frameQuality. Flash will transmit video at the highest quality possible within the specified 
bandwidth. If necessary, Flash will reduce picture quality to avoid exceeding the specified 
bandwidth. In general, as motion increases, quality decreases.

• To indicate that quality takes precedence, pass 0 for bandwidth and a numeric value for 
frameQuality. Flash will use as much bandwidth as required to maintain the specified quality. 
If necessary, Flash will reduce the frame rate to maintain picture quality. In general, as motion 
increases, bandwidth use also increases.

• To specify that both bandwidth and quality are equally important, pass numeric values for 
both parameters. Flash will transmit video that achieves the specified quality and that doesn’t 
exceed the specified bandwidth. If necessary, Flash will reduce the frame rate to maintain 
picture quality without exceeding the specified bandwidth.

Example

The following examples illustrate how to use this method to control bandwidth use and 
picture quality.
// Ensure that no more than 8192 (8K/second) is used to send video
active_cam.setQuality(8192,0);

// Ensure that no more than 8192 (8K/second) is used to send video
// with a minimum quality of 50
active_cam.setQuality(8192,50);

// Ensure a minimum quality of 50, no matter how much bandwidth it takes
active_cam.setQuality(0,50);

See also

Camera.bandwidth, Camera.quality
Camera.setQuality() 327



Camera.width

Availability

Flash Player 6.

Usage

active_cam.width

Description

Read-only property; the current capture width, in pixels. To set a desired value for this property, 
use Camera.setMode().

Example

The following line of code updates a text box in the user interface with the current width value.
myTextField.text=myCam.width;

See also the example for Camera.setMode().

See also

Camera.height

case

Availability

Flash Player 4.

Usage

case expression: statements

Parameters

expression Any expression.

statements Any statements. 

Returns

Nothing.

Description

Statement; defines a condition for the switch action. The statements in the statements 
parameter execute if the expression parameter that follows the case keyword equals the 
expression parameter of the switch action using strict equality (===)

If you use the case action outside of a switch statement, it produces an error and the script 
doesn’t compile.

See also

break, default, === (strict equality), switch
328 Chapter 12:  ActionScript Dictionary



chr

Availability

Flash Player 4. This function was deprecated in Flash 5 in favor of String.fromCharCode().

Usage

chr(number)

Parameters

number An ASCII code number.

Returns

Nothing.

Description

String function; converts ASCII code numbers to characters.

Example

The following example converts the number 65 to the letter A and assigns it to the variable myVar.
myVar = chr(65);

See also

String.fromCharCode()

class

Availability

Flash Player 6.

Usage

[dynamic] class className [ extends superClass ] 
[ implements interfaceName [, interfaceName... ] ]

{
// class definition here

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Parameters

className The fully qualified name of the class.

superClass Optional; the name of the class that className extends (inherits from).

interfaceName Optional; the name of the interface whose methods className 
must implement.
class 329



Description

Statement; defines a custom class, which lets you instantiate objects that share methods and 
properties that you define. For example, if you are developing an invoice-tracking system, you 
could create an invoice class that defines all the methods and properties that each invoice should 
have. You would then use the new invoice() command to create invoice objects. 

The name of the class must be the same as the name of the external file that contains the class. For 
example, if you name a class Student, the file that defines the class must be named Student.as.

The class name must be fully qualified within the file in which it is declared; that is, it must reflect 
the directory in which it is stored. For example, to create a class named RequiredClass that is 
stored in the myClasses/education/curriculum directory, you must declare the class in the 
RequiredClass.as file like this: 
class myClasses.education.curriculum.RequiredClass {
}

For this reason, it’s good practice to plan your directory structure before you begin creating 
classes. Otherwise, if you decide to move class files after you create them, you will have to modify 
the class declaration statements to reflect their new location.

You cannot nest class definitions; that is, you cannot define additional classes within a 
class definition.

To indicate that objects can add and access dynamic properties at runtime, precede the class 
statement with the dynamic keyword. To create classes based on interfaces, use the implements 
keyword. To create subclasses of a class, use the extends keyword. (A class can extend only one 
class, but can implement several interfaces.) You can use implements and extends in a 
single statement.
class C implements Interface_i, Interface_j // OK
class C extends Class_d implements Interface_i, Interface_j // OK
class C extends Class_d, Class_e // not OK 

For more information, see “Creating and using classes” on page 161.

Example

The following example creates a class called Plant. Its constructor takes two parameters. 
// Filename Plant.as
class Plant {

// Define property names and types
var leafType:String;
var bloomSeason:String;
// Following line is constructor
// because it has the same name as the class
function Plant (param_leafType:String, param_bloomSeason:String) {

  // Assign passed values to properties when new Plant object is created
leafType = param_leafType;
bloomSeason = param_bloomSeason;

}
// Create methods to return property values, because best practice
// recommends against directly referencing a property of a class
function getLeafType():String {return leafType};
function getBloomSeason():String {return bloomSeason};

}

330 Chapter 12:  ActionScript Dictionary



In an external script file or in the Actions panel, use the new operator to create a Plant object. 
var pineTree:Plant = new Plant("Evergreen","N/A");
// Confirm parameters were passed correctly
trace(pineTree.getLeafType());
trace(pineTree.getBloomSeason());

See also

dynamic, extends, implements, interface, new

clearInterval()

Availability

Flash Player 6.

Usage

clearInterval( intervalID )

Parameters

intervalID An object returned from a call to setInterval().

Returns

Nothing.

Description

Function; clears a call to setInterval().

Example

The following example first sets and then clears an interval call:
function callback() { 
        trace("interval called"); 
}
var intervalID; 
intervalID = setInterval( callback, 1000 ); 

// sometime later 
clearInterval( intervalID );

See also

setInterval()

Color class

Availability

Flash Player 5.

Description

The Color class lets you set the RGB color value and color transform of movie clips and retrieve 
those values once they have been set.

You must use the constructor new Color() to create a Color object before calling its methods.
Color class 331



Method summary for the Color class

Constructor for the Color class

Availability

Flash Player 5.

Usage

new Color(target)

Parameters

target The instance name of a movie clip.

Returns

Nothing.

Description

Constructor; creates a Color object for the movie clip specified by the target parameter. You can 
then use the methods of that Color object to change the color of the entire target movie clip. 

Example

The following example creates a Color object called my_color for the movie clip my_mc and sets 
its RGB value:
my_color = new Color(my_mc);
my_color.setRGB(0xff9933);

Color.getRGB()

Availability

Flash Player 5.

Usage

my_color.getRGB()

Parameters

None.

Returns

A number that represents the RGB numeric value for the color specified.

Method Description

Color.getRGB() Returns the numeric RGB value set by the last setRGB() call.

Color.getTransform() Returns the transform information set by the last setTransform() call.

Color.setRGB() Sets the hexadecimal representation of the RGB value for a Color object.

Color.setTransform() Sets the color transform for a Color object. 
332 Chapter 12:  ActionScript Dictionary



Description

Method; returns the numeric values set by the last setRGB() call.

Example

The following code retrieves the RGB value for the Color object my_color, converts it to a 
hexadecimal string, and assigns it to the value variable.
value = my_color.getRGB().toString(16);

See also

Color.setRGB()

Color.getTransform()

Availability

Flash Player 5.

Usage

my_color.getTransform()

Parameters

None.

Returns

An object whose properties contain the current offset and percentage values for the 
specified color.

Description

Method; returns the transform value set by the last Color.setTransform() call.

See also

Color.setTransform()

Color.setRGB()

Availability

Flash Player 5.

Usage

my_color.setRGB(0xRRGGBB)

Parameters

0xRRGGBB The hexadecimal or RGB color to be set. RR, GG, and BB each consist of two 
hexadecimal digits specifying the offset of each color component. The 0x tells the ActionScript 
compiler that the number is a hexadecimal value.

Description

Method; specifies an RGB color for a Color object. Calling this method overrides any previous 
Color.setTransform() settings.
Color.setRGB() 333



Returns

Nothing.

Example

This example sets the RGB color value for the movie clip my_mc. To see this code work, place a 
movie clip on the Stage with the instance name my_mc. Then place the following code on Frame 1 
in the main Timeline and choose Control > Test Movie.
my_color = new Color(my_mc);
my_color.setRGB(0x993366);

See also

Color.setTransform()

Color.setTransform()

Availability

Flash Player 5.

Usage

my_color.setTransform(colorTransformObject)

Parameters

colorTransformObject An object created with the new Object constructor. This instance of 
the Object class must have the following properties that specify color transform values: ra, rb, 
ga, gb, ba, bb, aa, ab. These properties are explained below.

Returns

Nothing.

Description

Method; sets color transform information for a Color object. The colorTransformObject 
parameter is a generic object that you create from the new Object constructor. It has parameters 
specifying the percentage and offset values for the red, green, blue, and alpha (transparency) 
components of a color, entered in the format 0xRRGGBBAA.

The parameters for a color transform object correspond to the settings in the Advanced Effect 
dialog box and are defined as follows:

• ra is the percentage for the red component (-100 to 100).
• rb is the offset for the red component (-255 to 255).
• ga is the percentage for the green component (-100 to 100).
• gb is the offset for the green component (-255 to 255).
• ba is the percentage for the blue component (-100 to 100).
• bb is the offset for the blue component (-255 to 255).
• aa is the percentage for alpha (-100 to 100).
• ab is the offset for alpha (-255 to 255).
334 Chapter 12:  ActionScript Dictionary



You create a colorTransformObject parameter as follows:
myColorTransform = new Object();
myColorTransform.ra = 50;
myColorTransform.rb = 244;
myColorTransform.ga = 40;
myColorTransform.gb = 112;
myColorTransform.ba = 12;
myColorTransform.bb = 90;
myColorTransform.aa = 40;
myColorTransform.ab = 70;

You can also use the following syntax to create a colorTransformObject parameter:
myColorTransform = { ra: ‘50’, rb: ‘244’, ga: ‘40’, gb: ‘112’, ba: ‘12’, bb: 

‘90’, aa: ‘40’, ab: ‘70’}

Example

This example creates a new Color object for a target SWF file, creates a generic object called 
myColorTransform with the properties defined above, and uses the setTransform() method to 
pass the colorTransformObject to a Color object. To use this code in a Flash (FLA) document, 
place it on Frame 1 on the main Timeline and place a movie clip on the Stage with the instance 
name my_mc, as in the following code:
// Create a color object called my_color for the target my_mc
my_color = new Color(my_mc);
// Create a color transform object called myColorTransform using
// the generic Object object
myColorTransform = new Object();
// Set the values for myColorTransform
myColorTransform = { ra: '50', rb: '244', ga: '40', gb: '112', ba: '12', bb: 

'90', aa: '40', ab: '70'};
// Associate the color transform object with the Color object
// created for my_mc
my_color.setTransform(myColorTransform);

ContextMenu class

Availability

Flash Player 7.

Description

The ContextMenu class provides runtime control over the items in the Flash Player context 
menu, which appears when a user right-clicks (Windows) or Control-clicks (Macintosh) on Flash 
Player. You can use the methods and properties of the ContextMenu class to add custom menu 
items, control the display of the built-in context menu items (for example, Zoom In and Print), 
or create copies of menus.

You can attach a ContextMenu object to a specific button, movie clip, or text field object, or to an 
entire movie level. You use the menu property of the Button, MovieClip, or TextField classes to do 
this. For more information about the menu property, see Button.menu, MovieClip.menu, and 
TextField.menu. 

To add new items to a ContextMenu object, you create a ContextMenuItem object, and then add 
that object to the ContextMenu.customItems array. For more information about creating 
context menu items, see the ContextMenuItem class entry.
ContextMenu class 335



Flash Player has three types of context menus: the standard menu (which appears when you right-
click in Flash Player), the edit menu (which appears when you right-click over a selectable or 
editable text field), and an error menu (which appears when a SWF file has failed to load into 
Flash Player.) Only the standard and edit menus can be modified with the ContextMenu class.

Custom menu items always appear at the top of the Flash Player context menu, above any visible 
built-in menu items; a separator bar distinguishes built-in and custom menu items. A context 
menu can contain no more than 15 custom menu items.

You must use the constructor new ContextMenu() to create a ContextMenu object before calling 
its methods.

Method summary for the ContextMenu class

Property summary for the ContextMenu class

Event handler summary for the ContextMenu class

Constructor for the ContextMenu class

Availability

Flash Player 7.

Usage

new ContextMenu ([callBackFunction])

Parameters

callBackFunction A reference to a function that is called when the user right-clicks or 
Control-clicks, before the menu is displayed. This parameter is optional.

Returns

Nothing.

Method Description

ContextMenu.copy() Returns a copy of the specified ContextMenu object.

ContextMenu.hideBuiltInItems() Hides most built-in items in the Flash Player context menu.

Property Description

ContextMenu.builtInItems An object whose members correspond to built-in context 
menu items.

ContextMenu.customItems An array, undefined by default, that contains 
ContextMenuItem objects.

Property Description

ContextMenu.onSelect Invoked before the menu is displayed.
336 Chapter 12:  ActionScript Dictionary



Description

Constructor; creates a new ContextMenu object. You can optionally specify an identifier for an 
event handler when you create the object. The specified function is called when the user invokes 
the context menu, but before the menu is actually displayed. This is useful for customizing menu 
contents based on application state or based on the type of object (movie clip, text field, or 
button) that the user right-clicks or Control-clicks. (For an example of creating an event handler, 
see ContextMenu.onSelect.)

Example

The following example hides all the built-in objects in the Context menu. (However, the Settings 
and About items still appear, because they cannot be disabled.)
var newMenu = new ContextMenu();
newMenu.hideBuiltInItems();
_root.menu = newMenu;

In this example, the specified event handler, menuHandler, enables or disables a custom menu 
item (using the ContextMenu.customItems array) based on the value of a Boolean variable 
named showItem. If false, the custom menu item is disabled; otherwise, it’s enabled. 
var showItem = false; // Change this to true to see its effect
my_cm = new ContextMenu(menuHandler);
my_cm.customItems.push(new ContextMenuItem("Hello", itemHandler));
function menuHandler(obj, menuObj) {

if (showItem == false) {
menuObj.customItems[0].enabled = false;

} else {
menuObj.customItems[0].enabled = true;

}
}
function itemHandler(obj, item) {
}
_root.menu = my_cm;

See also

Button.menu, ContextMenu.onSelect, ContextMenu.customItems, 
ContextMenu.hideBuiltInItems(), MovieClip.menu, TextField.menu

ContextMenu.builtInItems

Availability

Flash Player 7.

Usage

my_cm.builtInItems

Description

Property; an object that has the following Boolean properties: save, zoom, quality, play, loop, 
rewind, forward_back, and print. Setting these variables to false removes the corresponding 
menu items from the specified ContextMenu object. These properties are enumerable and are set 
to true by default.
ContextMenu.builtInItems 337



Example

In this example, the built-in Quality and Print menu items are disabled for the ContextMenu 
object my_cm, which is attached to the root Timeline of the SWF file.
var my_cm = new ContextMenu ();
my_cm.builtInItems.quality=false;
my_cm.builtInItems.print=false;
_root.menu = my_cm;

In the next example, a for..in loop enumerates through all names and values of the built-in 
menu items of the ContextMenu object, my_cm.
my_cm = new ContextMenu();
for(eachProp in my_cm.builtInItems) {

var propName = eachProp;
var propValue = my_cm.builtInItems[propName];
trace(propName + ": " + propValue;

}

ContextMenu.copy()

Availability

Flash Player 7.

Usage

my_cm.copy()

Parameters

None.

Returns

A ContextMenu object.

Description

Method; creates a copy of the specified ContextMenu object. The copy inherits all the properties 
of the original menu object.

Example

This example creates a copy of the ContextMenu object named my_cm whose built-in menu items 
are hidden, and adds a menu item with the text “Save...”. It then creates a copy of my_cm and 
assigns it to the variable clone_cm, which inherits all the properties of the original menu.
my_cm = new ContextMenu();
my_cm.hideBuiltInItems();
my_cm.customItems.push(new ContextMenuItem("Save...", saveHandler);
function saveHandler (obj, menuItem) {

saveDocument(); // custom function (not shown)
}
clone_cm = my_cm.copy();
338 Chapter 12:  ActionScript Dictionary



ContextMenu.customItems

Availability

Flash Player 7.

Usage

my_cm.customItems

Description

Property; an array of ContextMenuItem objects. Each object in the array represents a context 
menu item that you have defined. Use this property to add, remove, or modify these custom 
menu items. 

To add new menu items, you first create a new ContextMenuItem object, and then add it to the 
menu_mc.customItems array (using Array.push(), for example). For more information about 
creating new menu items, see the ContextMenuItem class entry.

Example

The following example creates a new custom menu item called menuItem_cm with a caption of 
“Send e-mail” and a callback handler named emailHandler (not shown). The new menu item is 
then added to the ContextMenu object, my_cm, using the customItems array. Lastly, the new 
menu is attached to a movie clip named email_mc.
var my_cm = new ContextMenu();
var menuItem_cm = new ContextMenuItem("Send e-mail", emailHandler);
my_cm.customItems.push(menuItem_cm);
email_mc.menu = my_cm;

See also

Button.menu, ContextMenu class, MovieClip.menu, TextField.menu

ContextMenu.hideBuiltInItems()

Availability

Flash Player 7.

Usage

my_cm.hideBuiltInItems()

Parameters

None.

Returns

Nothing.

Description

Method; hides all built-in menu items (except Settings) in the specified ContextMenu object. If 
the Flash Debug Player is running, the Debugging menu item shows, although it is dimmed for 
SWF files that don’t have remote debugging enabled. 
ContextMenu.hideBuiltInItems() 339



This method hides only menu items that appear in the standard context menu; it does not affect 
items that appear in the edit or error menus. For more information about the different menu 
types, see the ContextMenu class entry.

This method works by setting all the Boolean members of my_cm.builtInItems to false. You 
can selectively make a built-in item visible by setting its corresponding member in 
my_cm.builtInItems to true (as demonstrated in the following example).

Example

The following example creates a new ContextMenu object named my_cm whose built-in menu 
items are hidden, except for Print. The menu object is attached to the root Timeline.
my_cm = new ContextMenu();
my_cm.hideBuiltInItems();
my_cm.builtInItems.print = true;
_root.menu = my_cm;

ContextMenu.onSelect

Availability

Flash Player 7.

Usage

my_cm.onSelect = function (item:Object, item_menu:ContextMenu) {
// your code here

}

Parameters

item A reference to the object (movie clip, button, or selectable text field) that was under the 
mouse pointer when the Flash Player context menu was invoked and whose menu property is set 
to a valid ContextMenu object.

item_menu A reference to the ContextMenu object assigned to the menu property of object.

Returns

Nothing.

Description

Event handler; called when a user invokes the Flash Player context menu, but before the menu is 
actually displayed. This lets you customize the contents of the context menu based on the current 
application state.

You can also specify the callback handler for a ContextMenu object when you construct a new 
ContextMenu object. For more information, see the ContextMenu class entry.
340 Chapter 12:  ActionScript Dictionary



Example

The following example determines over what type of object the context menu was invoked.
my_cm = new ContextMenu();
menuHandler = function (obj:Object, menu:ContextMenu) {

if(obj instanceof MovieClip) {
trace("Movie clip: " + obj);

}
if(obj instanceof TextField) {

trace("Text field: " + obj);
}
if(obj instanceof Button) {

trace("Button: " + obj);
}

}
my_cm.onSelect = menuHandler;

ContextMenuItem class

Availability

Flash Player 7.

Description

You use the ContextMenuItem class to create custom menu items to display in the Flash Player 
context menu. Each ContextMenuItem object has a caption (text) that’s displayed in the context 
menu and a callback handler (a function) that’s invoked when the menu item is selected. To add a 
new context menu item to a context menu, you add it to the customItems array of a 
ContextMenu object.

You can enable or disable specific menu items, make items visible or invisible, or change the 
caption or callback handler associated with a menu item.

Custom menu items appear at the top of the context menu, above any built-in items. A separator 
bar always divides custom menu items from built-in items. You can add no more than 15 custom 
items to the Flash Player context menu. Each item must contain at least one visible character— 
control characters, newlines, and other white space characters are ignored. No item can be more 
than 100 characters long. Items that are identical to any built-in menu item, or to another custom 
item, are ignored, whether the matching item is visible or not. Menu items are compared without 
regard to case, punctuation, or white space. 

None of the following words can appear in a custom item: Macromedia, Flash Player, or Settings.

Method summary for the ContextMenuItem class

Method Description

ContextMenuItem.copy() Returns a copy of the specified ContextMenuItem object.
ContextMenuItem class 341



Property summary for the ContextMenuItem class

Event handler summary for the ContextMenuItem class

Constructor for the ContextMenuItem class

Availability

Flash Player 7.

Usage

new ContextMenuItem(caption, callbackFunction, [ separatorBefore, [ enabled, 
[ visible ] ] ] )

Parameters

caption A string that specifies the text associated with the menu item. 

callbackFunction A function that you define, which is called when the menu item is selected. 

separatorBefore A Boolean value that indicates whether a separator bar should appear above 
the menu item in the context menu. This parameter is optional; its default value is false.

enabled A Boolean value that indicates whether the menu item is enabled or disabled in the 
context menu. This parameter is optional; its default value is true.

visible A Boolean value that indicates whether the menu item is visible or invisible. This 
parameter is optional; its default value is true.

Returns

Nothing.

Description

Constructor; creates a new ContextMenuItem object that can be added to the 
ContextMenu.customItems array.

Example

This example adds Start and Stop menu items, separated by a bar, to the ContextMenu object 
my_cm. The startHandler() function is called when Start is selected from the context menu; 
stopHandler() is called when Stop is selected. The ContextMenu object is applied to the 
root Timeline.

Property Description

ContextMenuItem.caption Specifies the text displayed in the menu item.

ContextMenuItem.enabled Specifies whether the menu item is enabled or disabled.

ContextMenuItem.separatorBefore Specifies whether a separator bar should appear above the 
menu item.

ContextMenuItem.visible Specifies whether the menu item is visible or not.

Event handler Description

ContextMenuItem.onSelect Invoked when the menu item is selected.
342 Chapter 12:  ActionScript Dictionary



my_cm = new ContextMenu();
my_cm.customItems.push(new ContextMenuItem("Start", startHandler));
my_cm.customItems.push(new ContextMenuItem("Stop", stopHandler, true));
function stopHandler(obj, item) {

trace("Stopping...");
}
function startHandler(obj, item) {

trace("Starting...");
}
_root.menu = my_cm;

ContextMenuItem.caption

Availability

Flash Player 7.

Usage

menuItem_cmi.caption

Description

Property; a string that specifies the menu item caption (text) displayed in the context menu. 

Example

This example displays the caption for the selected menu item (Pause Game) in the Output panel. 
my_cm = new ContextMenu();
menuItem_cmi = new ContextMenuItem("Pause Game", onPause);
my_cm.customItems.
function onPause(obj, menuItem) {

trace("You chose: " + menuItem.caption);
}

ContextMenuItem.copy()

Availability

Flash Player 7.

Usage

menuItem_cmi.copy();

Returns

A ContextMenuItem object.

Description

Method; creates and returns a copy of the specified ContextMenuItem object. The copy includes 
all properties of the original object.
ContextMenuItem.copy() 343



Example

This example creates a new ContextMenuItem object named original_cmi with the caption text 
Pause and a callback handler set to the function onPause. The example then creates a copy of the 
ContextMenuItem object and assigns it to the variable copy_cmi.
original_cmi = new ContextMenuItem("Pause", onPause);
function onPause(obj, menu) {

_root.stop();
}
original_cmi.visible = false;
copy_cmi = orig_cmi.copy();

ContextMenuItem.enabled

Availability

Flash Player 7.

Usage

menuItem_cmi.enabled

Description

Property; a Boolean value that indicates whether the specified menu item is enabled or disabled. 
By default, this property is true.

Example

The following example creates a new context menu item and then disables that menu item. 
var saveMenuItem = new ContextMenuItem("Save...", doSave);
saveMenuItem.enabled = false;

ContextMenuItem.onSelect

Availability

Flash Player 7.

Usage

menuItem_cmi.onSelect = function (obj, menuItem) {
// your statements here

}

Parameters

obj A reference to the movie clip (or Timeline), button, or selectable (editable) text field that 
the user right-clicked or Control-clicked.

menuItem A reference to the selected ContextMenuItem object.

Returns

Nothing.
344 Chapter 12:  ActionScript Dictionary



Description

Event handler; invoked when the specified menu item is selected from the Flash Player context 
menu. The specified callback handler receives two parameters: obj, a reference to the object 
under the mouse when the user invoked the Flash Player context menu, and menuItem, a 
reference to the ContextMenuItem object that represents the selected menu item.

Example

The following example assigns a function to the onSelect handler for a ContextMenuItem 
object named start_cmi. The function displays the caption of the selected menu item.
start_cmi.onSelect = function (obj, item) {

trace("You choose: " + item.caption);
}

See also

ContextMenu.onSelect

ContextMenuItem.separatorBefore

Availability

Flash Player 7.

Usage

menuItem_cmi.separatorBefore

Description

Property; a Boolean value that indicates whether a separator bar should appear above the specified 
menu item. By default, this property is false.
Note: A separator bar always appears between any custom menu items and the built-in menu items.

Example

This example creates three menu items labeled Open, Save, and Print. A separator bar divides the 
Save and Print items. The menu items are then added to the ContextMenu object’s customItems 
array. Lastly, the menu is attached to the root Timeline of the SWF file.
my_cm = new ContextMenu();
open_cmi = new ContextMenuItem("Open", itemHandler);
save_cmi = new ContextMenuItem("Save", itemHandler);
print_cmi = new ContextMenuItem("Print", itemHandler);
print_cmi.separatorBefore = true;
my_cm.customItems.push(open_cmi, save_cmi, print_cmi);
function itemHandler(obj, menuItem) {

trace("You chose: " + menuItem.caption);
};
_root.menu = my_cm;

See also

ContextMenu.onSelect
ContextMenuItem.separatorBefore 345



ContextMenuItem.visible

Availability

Flash Player 7.

Usage

menuItem_cmi.visible

Description

Property; a Boolean value that indicates whether the specified menu item is visible when the Flash 
Player context menu is displayed. By default, this property is true.

continue

Availability

Flash Player 4.

Usage

continue

Parameters

None.

Returns

Nothing.

Description

Statement; appears within several types of loop statements; it behaves differently in each type 
of loop.

In a while loop, continue causes the Flash interpreter to skip the rest of the loop body and jump 
to the top of the loop, where the condition is tested.

In a do while loop, continue causes the Flash interpreter to skip the rest of the loop body and 
jump to the bottom of the loop, where the condition is tested.

In a for loop, continue causes the Flash interpreter to skip the rest of the loop body and jump to 
the evaluation of the for loop’s post-expression.

In a for..in loop, continue causes the Flash interpreter to skip the rest of the loop body 
and jump back to the top of the loop, where the next value in the enumeration is processed.

See also

do while, for, for..in, while
346 Chapter 12:  ActionScript Dictionary



CustomActions class

Availability

Flash Player 6.

Description

The methods of the CustomActions class allow a SWF file playing in the Flash authoring tool to 
manage any custom actions that are registered with the authoring tool. A SWF file can install and 
uninstall custom actions, retrieve the XML definition of a custom action, and retrieve the list of 
registered custom actions.

You can use these methods to build SWF files that are extensions of the Flash authoring tool. 
Such an extension could, for example, use the Flash Application Protocol to navigate a UDDI 
repository and download web services into the Actions toolbox.

Method summary for the CustomActions class

CustomActions.get()

Availability

Flash Player 6.

Usage

CustomActions.get(customActionsName)

Parameters

customActionsName The name of the custom action definition to retrieve.

Returns

If the custom action XML definition is located, returns a string; otherwise, returns undefined.

Description

Method; reads the contents of the custom action XML definition file named 
customActionsName.

The name of the definition file must be a simple filename, without the .xml file extension, and 
without any directory separators (':', '/' or '\'). 

If the definition file specified by the customActionsName cannot be found, a value of undefined 
is returned. If the custom action XML definition specified by the customActionsName parameter 
is located, it is read in its entirety and returned as a string.

Method Description

CustomActions.get() Reads the contents of a custom action XML definition file.

CustomActions.install() Installs a new custom action XML definition file.

CustomActions.list() Returns a list of all registered custom actions.

CustomActions.uninstall() Removes a custom action XML definition file.
CustomActions.get() 347



CustomActions.install()

Availability

Flash Player 6.

Usage

CustomActions.install(customActionsName, customXMLDefinition)

Parameters

customActionsName The name of the custom action definition to install.

customXMLDefinition The text of the XML definition to install.

Returns

A Boolean value of false if an error occurs during installation; otherwise, a value of true is 
returned to indicate that the custom action has been successfully installed.

Description

Method; installs a new custom action XML definition file indicated by the customActionsName 
parameter. The contents of the file is specified by the string customXMLDefinition.

The name of the definition file must be a simple filename, without the .xml file extension, and 
without any directory separators (':', '/' or '\'). 

If a custom actions file already exists with the name customActionsName, it is overwritten.

If the Configuration/ActionsPanel/CustomActions directory does not exist when this method is 
invoked, the directory is created.

CustomActions.list()

Availability

Flash Player 6.

Usage

CustomActions.list()

Parameters

None.

Returns

An array.

Description

Method; returns an Array object containing the names of all the custom actions that are registered 
with the Flash authoring tool. The elements of the array are simple names, without the .xml file 
extension, and without any directory separators (for example, “:”, “/”, or “\”). If there are no 
registered custom actions, list() returns a zero-length array. If an error occurs, list() returns 
the value undefined.
348 Chapter 12:  ActionScript Dictionary



CustomActions.uninstall()

Availability

Flash Player 6.

Usage

CustomActions.uninstall(customActionsName)

Parameters

customActionsName The name of the custom action definition to uninstall.

Returns

A Boolean value of false if no custom actions are found with the name customActionsName. If 
the custom actions were successfully removed, a value of true is returned. 

Description

Method; removes the Custom Actions XML definition file named customActionsName.

The name of the definition file must be a simple filename, without the .xml file extension, and 
without any directory separators (':', '/' or '\'). 

Date class

Availability

Flash Player 5.

Description

The Date class lets you retrieve date and time values relative to universal time (Greenwich Mean 
Time, now called universal time or UTC) or relative to the operating system on which Flash 
Player is running. The methods of the Date class are not static, but apply only to the individual 
Date object specified when the method is called. The Date.UTC() method is an exception; it is a 
static method. 

The Date class handles daylight saving time differently depending on the operating system and 
Flash Player version. Flash Player 6 and later versions handle daylight saving time on the 
following operating systems in these ways:

• Windows—the Date object automatically adjusts its output for daylight saving time. The Date 
object detects whether daylight saving time is employed in the current locale, and if so, it 
detects what the standard-to-daylight-saving-time transition date and times are. However, the 
transition dates currently in effect are applied to dates in the past and the future, so the 
daylight saving time bias may be calculated incorrectly for dates in the past when the locale had 
different transition dates.

• Mac OS X—the Date object automatically adjusts its output for daylight saving time. The 
time zone information database in Mac OS X is used to determine whether any date or time in 
the present or past should have a daylight-saving-time bias applied.
Date class 349



Flash Player 5 handles daylight saving time on the following operating systems as follows:

• Windows—the U.S. rules for daylight saving time are always applied, which leads to incorrect 
transitions in Europe and other areas that employ daylight saving time but have different 
transition times than the U.S. Flash correctly detects whether DST is employed in the 
current locale.

To call the methods of the Date class, you must first create a Date object using the constructor for 
the Date class, described later in this section.

Method summary for the Date class

Method Description

Date.getDate() Returns the day of the month according to local time.

Date.getDay() Returns the day of the week according to local time.

Date.getFullYear() Returns the four-digit year according to local time.

Date.getHours() Returns the hour according to local time.

Date.getMilliseconds() Returns the milliseconds according to local time.

Date.getMinutes() Returns the minutes according to local time.

Date.getMonth() Returns the month according to local time.

Date.getSeconds() Returns the seconds according to local time.

Date.getTime() Returns the number of milliseconds since midnight January 1, 1970, 
universal time.

Date.getTimezoneOffset() Returns the difference, in minutes, between the computer’s local time 
and the universal time.

Date.getUTCDate() Returns the day (date) of the month according to universal time.

Date.getUTCDay() Returns the day of the week according to universal time.

Date.getUTCFullYear() Returns the four-digit year according to universal time.

Date.getUTCHours() Returns the hour according to universal time.

Date.getUTCMilliseconds() Returns the milliseconds according to universal time.

Date.getUTCMinutes() Returns the minutes according to universal time.

Date.getUTCMonth() Returns the month according to universal time.

Date.getUTCSeconds() Returns the seconds according to universal time.

Date.getYear() Returns the year according to local time.

Date.setDate() Sets the day of the month according to local time. Returns the new 
time in milliseconds.

Date.setFullYear() Sets the full year according to local time. Returns the new time 
in milliseconds.

Date.setHours() Sets the hour according to local time. Returns the new time 
in milliseconds.
350 Chapter 12:  ActionScript Dictionary



Constructor for the Date class

Availability

Flash Player 5.

Usage

new Date()

new Date(year, month [, date [, hour [, minute [, second [, millisecond ]]]]])

Parameters

year A value of 0 to 99 indicates 1900 though 1999; otherwise all four digits of the year must 
be specified.

month An integer from 0 (January) to 11 (December).

Date.setMilliseconds() Sets the milliseconds according to local time. Returns the new time 
in milliseconds.

Date.setMinutes() Sets the minutes according to local time. Returns the new time 
in milliseconds.

Date.setMonth() Sets the month according to local time. Returns the new time 
in milliseconds.

Date.setSeconds() Sets the seconds according to local time. Returns the new time 
in milliseconds.

Date.setTime() Sets the date in milliseconds. Returns the new time in milliseconds.

Date.setUTCDate() Sets the date according to universal time. Returns the new time 
in milliseconds.

Date.setUTCFullYear() Sets the year according to universal time. Returns the new time 
in milliseconds.

Date.setUTCHours() Sets the hour according to universal time. Returns the new time 
in milliseconds.

Date.setUTCMilliseconds() Sets the milliseconds according to universal time. Returns the new 
time in milliseconds.

Date.setUTCMinutes() Sets the minutes according to universal time. Returns the new time 
in milliseconds.

Date.setUTCMonth() Sets the month according to universal time. Returns the new time 
in milliseconds.

Date.setUTCSeconds() Sets the seconds according to universal time. Returns the new time 
in milliseconds.

Date.setYear() Sets the year according to local time.

Date.toString() Returns a string value representing the date and time stored in the 
specified Date object.

Date.UTC() Returns the number of milliseconds between midnight on January 1, 
1970, universal time, and the specified time. 

Method Description
Date class 351



date An integer from 1 to 31. This parameter is optional.

hour An integer from 0 (midnight) to 23 (11 p.m.).

minute An integer from 0 to 59. This parameter is optional.

second An integer from 0 to 59. This parameter is optional.

millisecond An integer from 0 to 999. This parameter is optional.

Returns

Nothing.

Description

Object; constructs a new Date object that holds the current date and time, or the date specified. 

Example

The following example retrieves the current date and time.
now_date = new Date();

The following example creates a new Date object for Gary’s birthday, August 12, 1974. (Because 
the month parameter is zero-based, the example uses 7 for the month, not 8.)
garyBirthday_date = new Date (74, 7, 12); 

The following example creates a new Date object, concatenates the returned values of 
Date.getMonth(), Date.getDate(), and Date.getFullYear(), and displays them in the text 
field specified by the variable date_str.
today_date = new Date();
date_str = ((today_date.getMonth() + 1) + "/" + today_date.getDate() + "/" + 

today_date.getFullYear());

Date.getDate()

Availability

Flash Player 5.

Usage

my_date.getDate()

Parameters

None.

Returns

An integer.

Description

Method; returns the day of the month (an integer from 1 to 31) of the specified Date object 
according to local time. Local time is determined by the operating system on which Flash Player 
is running. 
352 Chapter 12:  ActionScript Dictionary



Date.getDay()

Availability

Flash Player 5.

Usage

my_date.getDay()

Parameters

None.

Returns

An integer.

Description

Method; returns the day of the week (0 for Sunday, 1 for Monday, and so on) of the specified 
Date object according to local time. Local time is determined by the operating system on which 
Flash Player is running.

Date.getFullYear()

Availability

Flash Player 5.

Usage

my_date.getFullYear()

Parameters

None.

Returns

An integer.

Description

Method; returns the full year (a four-digit number, for example, 2000) of the specified Date 
object, according to local time. Local time is determined by the operating system on which Flash 
Player is running. 

Example

The following example uses the constructor to create a new Date object and send the value 
returned by the getFullYear() method to the Output panel:
my_date = new Date();
trace(my_date.getFullYear());
Date.getFullYear() 353



Date.getHours()

Availability

Flash Player 5.

Usage

my_date.getHours()

Parameters

None.

Returns

An integer.

Description

Method; returns the hour (an integer from 0 to 23) of the specified Date object, according 
to local time. Local time is determined by the operating system on which Flash Player is running. 

Date.getMilliseconds()

Availability

Flash Player 5.

Usage

my_date.getMilliseconds()

Parameters

None.

Returns

An integer.

Description

Method; returns the milliseconds (an integer from 0 to 999) of the specified Date object, 
according to local time. Local time is determined by the operating system on which Flash Player is 
running. 

Date.getMinutes()

Availability

Flash Player 5.

Usage

my_date.getMinutes()

Parameters

None.
354 Chapter 12:  ActionScript Dictionary



Returns

An integer.

Description

Method; returns the minutes (an integer from 0 to 59) of the specified Date object, according 
to local time. Local time is determined by the operating system on which Flash Player is running. 

Date.getMonth()

Availability

Flash Player 5.

Usage

my_date.getMonth()

Parameters

None.

Returns

An integer.

Description

Method; returns the month (0 for January, 1 for February, and so on) of the specified Date object, 
according to local time. Local time is determined by the operating system on which Flash Player is 
running.

Date.getSeconds()

Availability

Flash Player 5.

Usage

my_date.getSeconds()

Parameters

None.

Returns

An integer.

Description

Method; returns the seconds (an integer from 0 to 59) of the specified Date object, according 
to local time. Local time is determined by the operating system on which Flash Player is running.
Date.getSeconds() 355



Date.getTime()

Availability

Flash Player 5.

Usage

my_date.getTime()

Parameters

None.

Returns

An integer.

Description

Method; returns the number of milliseconds since midnight January 1, 1970, universal time, for 
the specified Date object. Use this method to represent a specific instant in time when comparing 
two or more Date objects. 

Date.getTimezoneOffset()

Availability

Flash Player 5.

Usage

my_date.getTimezoneOffset()

Parameters

None.

Returns

An integer.

Description

Method; returns the difference, in minutes, between the computer’s local time and universal time.

Example

The following example returns the difference between the local daylight saving time for San 
Francisco and universal time. Daylight saving time is factored into the returned result only if the 
date defined in the Date object occurs during daylight saving time.
trace(new Date().getTimezoneOffset());

// 420 is displayed in the Output panel 
// (7 hours * 60 minutes/hour = 420 minutes)
// This example is Pacific Daylight Time (PDT, GMT-0700).
// Result will vary depending on locale and time of year.
356 Chapter 12:  ActionScript Dictionary



Date.getUTCDate()

Availability

Flash Player 5.

Usage

my_date.getUTCDate()

Parameters

None.

Returns

An integer.

Description

Method; returns the day of the month (an integer from 1 to 31) in the specified Date object, 
according to universal time.

Date.getUTCDay()

Availability

Flash Player 5.

Usage

my_date.getUTCDay()

Parameters

None.

Returns

An integer.

Description

Method; returns the day of the week (0 for Sunday, 1 for Monday, and so on) of the specified 
Date object, according to universal time. 
Date.getUTCDay() 357



Date.getUTCFullYear()

Availability

Flash Player 5.

Usage

my_date.getUTCFullYear()

Parameters

None.

Returns

An integer.

Description

Method; returns the four-digit year of the specified Date object, according to universal time.

Date.getUTCHours()

Availability

Flash Player 5.

Usage

my_date.getUTCHours()

Parameters

None.

Returns

An integer.

Description

Method; returns the hours of the specified Date object, according to universal time.
358 Chapter 12:  ActionScript Dictionary



Date.getUTCMilliseconds()

Availability

Flash Player 5.

Usage

my_date.getUTCMilliseconds()

Parameters

None.

Returns

An integer.

Description

Method; returns the milliseconds of the specified Date object, according to universal time.

Date.getUTCMinutes()

Availability

Flash Player 5.

Usage

my_date.getUTCMinutes()

Parameters

None.

Returns

An integer.

Description

Method; returns the minutes of the specified Date object, according to universal time.
Date.getUTCMinutes() 359



Date.getUTCMonth()

Availability

Flash Player 5.

Usage

my_date.getUTCMonth()

Parameters

None.

Returns

An integer.

Description

Method; returns the month (0 for January, 1 for February, and so on) of the specified Date object, 
according to universal time.

Date.getUTCSeconds()

Availability

Flash Player 5.

Usage

my_date.getUTCSeconds()

Parameters

None.

Returns

An integer.

Description

Method; returns the seconds in the specified Date object, according to universal time.

Date.getYear()

Availability

Flash Player 5.

Usage

my_date.getYear()

Parameters

None.

Returns

An integer.
360 Chapter 12:  ActionScript Dictionary



Description

Method; returns the year of the specified Date object, according to local time. Local time is 
determined by the operating system on which Flash Player is running. The year is the full year 
minus 1900. For example, the year 2000 is represented as 100.

See also

Date.getFullYear()

Date.setDate()

Availability

Flash Player 5.

Usage

my_date.setDate(date)

Parameters

date An integer from 1 to 31.

Returns

An integer.

Description

Method; sets the day of the month for the specified Date object, according to local time, and 
returns the new time in milliseconds. Local time is determined by the operating system on which 
Flash Player is running.

Date.setFullYear()

Availability

Flash Player 5.

Usage

my_date.setFullYear(year [, month [, date]] )

Parameters

year A four-digit number specifying a year. Two-digit numbers do not represent years; for 
example, 99 is not the year 1999, but the year 99.

month An integer from 0 (January) to 11 (December). This parameter is optional.

date A number from 1 to 31. This parameter is optional.

Returns

An integer.
Date.setFullYear() 361



Description

Method; sets the year of the specified Date object, according to local time, and returns the new 
time in milliseconds. If the month and date parameters are specified, they are also set to local 
time. Local time is determined by the operating system on which Flash Player is running.

Calling this method does not modify the other fields of the specified Date object but 
Date.getUTCDay() and Date.getDay() may report a new value if the day of the week changes 
as a result of calling this method.

Date.setHours()

Availability

Flash Player 5.

Usage

my_date.setHours(hour)

Parameters

hour An integer from 0 (midnight) to 23 (11 p.m.).

Returns

An integer.

Description

Method; sets the hours for the specified Date object according to local time, and returns the new 
time in milliseconds. Local time is determined by the operating system on which Flash Player 
is running.

Date.setMilliseconds()

Availability

Flash Player 5.

Usage

my_date.setMilliseconds(millisecond)

Parameters

millisecond An integer from 0 to 999.

Returns

An integer.

Description

Method; sets the milliseconds for the specified Date object according to local time, and returns 
the new time in milliseconds. Local time is determined by the operating system on which Flash 
Player is running.
362 Chapter 12:  ActionScript Dictionary



Date.setMinutes()

Availability

Flash Player 5.

Usage

my_date.setMinutes(minute)

Parameters

minute An integer from 0 to 59.

Returns

An integer.

Description

Method; sets the minutes for a specified Date object according to local time, and returns the new 
time in milliseconds. Local time is determined by the operating system on which Flash Player is 
running.

Date.setMonth()

Availability

Flash Player 5.

Usage

my_date.setMonth(month [, date ])

Parameters

month An integer from 0 (January) to 11 (December).

date An integer from 1 to 31. This parameter is optional.

Returns

An integer.

Description

Method; sets the month for the specified Date object in local time, and returns the new time 
in milliseconds. Local time is determined by the operating system on which Flash Player 
is running.
Date.setMonth() 363



Date.setSeconds()

Availability

Flash Player 5.

Usage

my_date.setSeconds(second)

Parameters

second An integer from 0 to 59.

Returns

An integer.

Description

Method; sets the seconds for the specified Date object in local time, and returns the new time 
in milliseconds. Local time is determined by the operating system on which Flash Player 
is running.

Date.setTime()

Availability

Flash Player 5.

Usage

my_date.setTime(milliseconds)

Parameters

milliseconds An integer value where 0 is 0:00 GMT 1970 Jan 1.

Returns

An integer.

Description

Method; sets the date for the specified Date object in milliseconds since midnight on January 1, 
1970, and returns the new time in milliseconds. 
364 Chapter 12:  ActionScript Dictionary



Date.setUTCDate()

Availability

Flash Player 5.

Usage

my_date.setUTCDate(date)

Parameters

date An integer from 1 to 31. 

Returns

An integer.

Description

Method; sets the date for the specified Date object in universal time, and returns the new time in 
milliseconds. Calling this method does not modify the other fields of the specified Date object, 
but Date.getUTCDay() and Date.getDay() may report a new value if the day of the week 
changes as a result of calling this method.

Date.setUTCFullYear()

Availability

Flash Player 5.

Usage

my_date.setUTCFullYear(year [, month [, date]])

Parameters

year The year specified as a full four-digit year, for example, 2000.

month An integer from 0 (January) to 11 (December). This parameter is optional.

date An integer from 1 to 31. This parameter is optional.

Returns

An integer.

Description

Method; sets the year for the specified Date object (my_date) in universal time, and returns the 
new time in milliseconds. 

Optionally, this method can also set the month and date represented by the specified Date object. 
Calling this method does not modify the other fields of the specified Date object, but 
Date.getUTCDay() and Date.getDay() may report a new value if the day of the week changes 
as a result of calling this method. 
Date.setUTCFullYear() 365



Date.setUTCHours()

Availability

Flash Player 5.

Usage

my_date.setUTCHours(hour [, minute [, second [, millisecond]]])

Parameters

hour An integer from 0 (midnight) to 23 (11 p.m.).

minute An integer from 0 to 59. This parameter is optional.

second An integer from 0 to 59. This parameter is optional.

millisecond An integer from 0 to 999. This parameter is optional.

Returns

An integer.

Description

Method; sets the hour for the specified Date object in universal time, and returns the new time 
in milliseconds.

Date.setUTCMilliseconds()

Availability

Flash Player 5.

Usage

my_date.setUTCMilliseconds(millisecond)

Parameters

millisecond An integer from 0 to 999.

Returns

An integer.

Description

Method; sets the milliseconds for the specified Date object in universal time, and returns the new 
time in milliseconds.
366 Chapter 12:  ActionScript Dictionary



Date.setUTCMinutes()

Availability

Flash Player 5.

Usage

my_date.setUTCMinutes(minute [, second [, millisecond]])

Parameters

minute An integer from 0 to 59. 

second An integer from 0 to 59. This parameter is optional.

millisecond An integer from 0 to 999. This parameter is optional.

Returns

An integer.

Description

Method; sets the minute for the specified Date object in universal time, and returns the new time 
in milliseconds.

Date.setUTCMonth()

Availability

Flash Player 5.

Usage

my_date.setUTCMonth(month [, date])

Parameters

month An integer from 0 (January) to 11 (December).

date An integer from 1 to 31. This parameter is optional.

Returns

An integer.

Description

Method; sets the month, and optionally the day (date), for the specified Date object in universal 
time, and returns the new time in milliseconds. Calling this method does not modify the other 
fields of the specified Date object, but Date.getUTCDay() and Date.getDay() may report a new 
value if the day of the week changes as a result of specifying a value for the date parameter.
Date.setUTCMonth() 367



Date.setUTCSeconds()

Availability

Flash Player 5.

Usage

my_date.setUTCSeconds(second [, millisecond]))

Parameters

second An integer from 0 to 59. 

millisecond An integer from 0 to 999. This parameter is optional.

Returns

An integer.

Description

Method; sets the seconds for the specified Date object in universal time, and returns the new time 
in milliseconds.

Date.setYear()

Availability

Flash Player 5.

Usage

my_date.setYear(year)

Parameters

year If year is an integer between 0–99, setYear sets the year at 1900 + year; otherwise, the 
year is the value of the year parameter. 

Returns

An integer.

Description

Method; sets the year for the specified Date object in local time, and returns the new time 
in milliseconds. Local time is determined by the operating system on which Flash Player 
is running.
368 Chapter 12:  ActionScript Dictionary



Date.toString()

Availability

Flash Player 5.

Usage

my_date.toString()

Parameters

None. 

Returns

A string.

Description

Method; returns a string value for the specified date object in a readable format, and returns the 
new time in milliseconds.

Example

The following example returns the information in the dateOfBirth_date Date object as a string.
var dateOfBirth_date = new Date(74, 7, 12, 18, 15);
trace (dateOfBirth_date.toString());

Output (for Pacific Standard Time):
Mon Aug 12 18:15:00 GMT-0700 1974

Date.UTC()

Availability

Flash Player 5.

Usage

Date.UTC(year, month [, date [, hour [, minute [, second [, millisecond ]]]]])

Parameters

year A four-digit number, for example, 2000. 

month An integer from 0 (January) to 11 (December).

date An integer from 1 to 31. This parameter is optional.

hour An integer from 0 (midnight) to 23 (11 p.m.).

minute An integer from 0 to 59. This parameter is optional.

second An integer from 0 to 59. This parameter is optional. 

millisecond An integer from 0 to 999. This parameter is optional.

Returns

An integer.
Date.UTC() 369



Description

Method; returns the number of milliseconds between midnight on January 1, 1970, universal 
time, and the time specified in the parameters. This is a static method that is invoked through the 
Date object constructor, not through a specific Date object. This method lets you create a Date 
object that assumes universal time, whereas the Date constructor assumes local time. 

Example

The following example creates a new garyBirthday_date Date object defined in universal time. 
This is the universal time variation of the example used for the new Date constructor method:
garyBirthday_date = new Date(Date.UTC(1974, 7, 12));

default

Availability

Flash Player 6.

Usage

default: statements

Parameters

statements Any statements. 

Returns

Nothing.

Description

Statement; defines the default case for a switch action. The statements execute if the expression 
parameter of the switch action doesn’t equal (using strict equality) any of the expression 
parameters that follow the case keywords for a given switch action.

A switch is not required to have a default case. A default case does not have to be last in the 
list. Using a default action outside a switch action is an error and the script doesn’t compile.

Example

In the following example, the expression A does not equal the expressions B or D so the statement 
following the default keyword is run and the trace() action is sent to the Output panel.
switch ( A ) {

case B:
C;
break;

case D:
E;
break;

default:
trace ("no specific case was encountered");

}

See also

switch, case, break
370 Chapter 12:  ActionScript Dictionary



delete

Availability

Flash Player 5.

Usage

delete reference

Parameters

reference The name of the variable or object to eliminate.

Returns

A Boolean value.

Description

Operator; destroys the object or variable specified by the reference parameter, and returns true 
if the object was successfully deleted; otherwise returns a value of false. This operator is useful 
for freeing up memory used by scripts. Although delete is an operator, it is typically used as a 
statement, as in the following:
delete x;

The delete operator may fail and return false if the reference parameter does not exist, or 
may not be deleted. Predefined objects and properties, and variables declared with var, may not 
be deleted. You cannot use the delete operator to remove movie clips.

Example

Usage 1: The following example creates an object, uses it, and then deletes it after it is no longer 
needed.
account = new Object();
account.name = 'Jon';
account.balance = 10000;

delete account;

Usage 2: The following example deletes a property of an object.
// create the new object "account"
account = new Object();
// assign property name to the account 
account.name = 'Jon'; 
// delete the property
delete account.name; 

Usage 3: The following is another example of deleting an object property.
// create an Array object with length 0
my_array = new Array(); 
// add an element to the array. Array.length is now 1
my_array[0] = "abc";
// add another element to the array. Array.length is now 2
my_array[1] = "def"; 
// add another element to the array. Array.length is now 3
my_array[2] = "ghi";
// my_array[2] is deleted, but Array.length is not changed
delete 371



delete array[2]; 
trace(my_array.length);

Usage 4: The following example illustrates the behavior of delete on object references.
// create a new object, and assign the variable ref1
// to refer to the object
ref1 = new Object();
ref1.name = "Jody";
// copy the reference variable into a new variable
// and delete ref1
ref2 = ref1;
delete ref1;

If ref1 had not been copied into ref2, the object would have been deleted when ref1 was 
deleted, because there would be no references to it. If you delete ref2, there will no longer be any 
references to the object; it will be destroyed, and the memory it was using will be made available.

See also

var

do while

Availability

Flash Player 4.

Usage

do {
statement(s)

} while (condition)

Parameters

condition The condition to evaluate.

statement(s) The statement(s) to execute as long as the condition parameter evaluates 
to true.

Returns

Nothing.

Description 

Statement; executes the statements, and then evaluates the condition in a loop for as long as the 
condition is true.

See also

break, continue
372 Chapter 12:  ActionScript Dictionary



duplicateMovieClip()

Availability

Flash Player 4.

Usage

duplicateMovieClip(target, newname, depth)

Parameters

target The target path of the movie clip to duplicate.

newname A unique identifier for the duplicated movie clip.

depth A unique depth level for the duplicated movie clip. The depth level is a stacking order for 
duplicated movie clips. This stacking order is much like the stacking order of layers in the 
Timeline; movie clips with a lower depth level are hidden under clips with a higher stacking order. 
You must assign each duplicated movie clip a unique depth level to prevent it from replacing 
SWF files on occupied depths.

Returns

A reference to the duplicated movie clip.

Description

Function; creates an instance of a movie clip while the SWF file is playing. The playhead in 
duplicate movie clips always starts at Frame 1, regardless of where the playhead is in the original 
(or “parent”) movie clip. Variables in the parent movie clip are not copied into the duplicate 
movie clip. If the parent movie clip is deleted the duplicate movie clip is also deleted. Use the 
removeMovieClip() action or method to delete a movie clip instance created with 
duplicateMovieClip().

See also

MovieClip.duplicateMovieClip(), removeMovieClip(), MovieClip.removeMovieClip()

dynamic

Availability

Flash Player 6.

Usage

dynamic class className [ extends superClass ] 
[ implements interfaceName [, interfaceName... ] ]

{
// class definition here

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.
dynamic 373



Description

Keyword; specifies that objects based on the specified class can add and access dynamic properties 
at runtime. 

Type checking on dynamic classes is less strict than type-checking on nondynamic classes, because 
members accessed inside the class definition and on class instances are not compared to those 
defined in the class scope. Class member functions, however, can still be type checked for return 
type and parameter types. This behavior is especially useful when you work with MovieClip 
objects, because there are many different ways of adding properties and objects to a movie clip 
dynamically, such as MovieClip.createEmptyMovieClip() and 
MovieClip.createTextField(). 

Subclasses of dynamic classes are also dynamic.

For more information, see “Creating dynamic classes” on page 173.

Example

In the following example, class B has been marked as dynamic, so calling an undeclared function 
on it will not throw an error at compile time.
// in B.as
dynamic class B extends class_A {
  function B() {

/*this is the constructor*/
}

  function m():Number {return 25;}
  function o(s:String):Void {trace(s);}
}

// in C.as
class C extends class_A {
  function C() {

/*this is the constructor*/
}

  function m():Number {return 25;}
  function o(s:String):Void {trace(s);}
}
// in another script
var var1 = B.n(); // no error
var var2 = C.n() // error, as there is no function n in C.as

See also

class, extends
374 Chapter 12:  ActionScript Dictionary



else

Availability

Flash Player 4.

Usage

if (condition){
statement(s);

} else (condition){
statement(s);

}

Parameters

condition An expression that evaluates to true or false.

statement(s) An alternative series of statements to run if the condition specified in the if 
statement is false. 

Returns

Nothing.

Description

Statement; specifies the statements to run if the condition in the if statement returns false. 

See also

if

else if

Availability

Flash Player 4.

Usage

if (condition){
statement(s);

} else if (condition){
statement(s);

}

Parameters

condition An expression that evaluates to true or false.

statement(s) An alternative series of statements to run if the condition specified in the if 
statement is false. 

Returns

Nothing.
else if 375



Description

Statement; evaluates a condition and specifies the statements to run if the condition in the initial 
if statement returns false. If the else if condition returns true, the Flash interpreter runs the 
statements that follow the condition inside curly braces ({}). If the else if condition is false, 
Flash skips the statements inside the curly braces and runs the statements following the curly 
braces. Use the else if action to create branching logic in your scripts.

Example

The following example uses else if actions to check whether each side of an object is within a 
specific boundary:
// if the object goes off bounds, 
// send it back and reverse its travel speed

if (this._x>rightBound) {
this._x = rightBound;
xInc = -xInc;

} else if (this._x<leftBound) {
this._x = leftBound;
xInc = -xInc;

} else if (this._y>bottomBound) {
this._y = bottomBound;
yInc = -yInc;

} else if (this._y<topBound) {
this._y = topBound;
yInc = -yInc;

}

See also

if

#endinitclip

Availability

Flash Player 6.

Usage

#endinitclip

Parameters

None.

Returns

Nothing.

Description

Compiler directive; indicates the end of a block of initialization actions. 

Example

#initclip
...initialization actions go here...
#endinitclip
376 Chapter 12:  ActionScript Dictionary



See also

#initclip

eq (equal — string specific)

Availability

Flash Player 4. This operator was deprecated in Flash 5 in favor of the == (equality) operator. 

Usage

expression1 eq expression2

Parameters

expression1, expression2 Numbers, strings, or variables.

Returns

Nothing.

Description

Comparison operator; compares two expressions for equality and returns a value of true if the 
string representation of expression1 is equal to the string representation of expression2; 
otherwise, the operation returns a value of false. 

See also

== (equality)

Error class

Availability

Flash Player 7.

Description

Contains information about an error that occurred in a script. You create an Error object using 
the Error constructor function. Typically, you “throw” a new Error object from within a try 
code block that is then “caught” by a catch or finally code block.

You can also create a subclass of the Error class and throw instances of that subclass.

Method summary for the Error class

Property summary for the Error class

Method Description

Error.toString() Returns the string representation of an Error object.

Property Description

Error.message A string that contains an error message associated with an error.

Error.name A string that contains the name of the Error object.
Error class 377



Constructor for the Error class

Availability

Flash Player 7.

Usage

new Error([message])

Parameters

message A string associated with the Error object; this parameter is optional.

Returns

Nothing.

Description

Constructor; creates a new Error object. If message is specified, its value is assigned to the object’s 
Error.message property.

Example

In the following example, a function throws an error (with a specified message) if the two strings 
that are passed to it are not identical.
function compareStrings(string_1, string_2) {

if(string_1 != string_2) {
throw new Error("Strings do not match.");

}
}
try {

compareStrings("Dog","dog");
} catch (e) {

trace(e.toString());
}

See also

throw, try..catch..finally

Error.message

Availability

Flash Player 7.

Usage

myError.message

Description

Property; contains the message associated with the Error object. By default, the value of this 
property is "Error". You can specify a message property when you create a new Error object by 
passing the error string to the Error constructor function.

See also

throw, try..catch..finally
378 Chapter 12:  ActionScript Dictionary



Error.name

Availability

Flash Player 7.

Usage

myError.name

Description

Property; contains the name of the Error object. By default, the value of this property is "Error".

See also

throw, try..catch..finally

Error.toString()

Availability

Flash Player 7.

Usage

my_err.toString()

Returns

A string. 

Description

Method; returns the string "Error" by default, or the value contained in Error.message, 
if defined.

See also

Error.message, throw, try..catch..finally

escape

Availability

Flash Player 5.

Usage

escape(expression)

Parameters

expression The expression to convert into a string and encode in a URL-encoded format.

Returns

Nothing.

Description

Function; converts the parameter to a string and encodes it in a URL-encoded format, where all 
nonalphanumeric characters are escaped with % hexadecimal sequences.
escape 379



Example

Running the following code gives the result, Hello%7B%5BWorld%5D%7D.

escape("Hello{[World]}");

See also

unescape

eval()

Availability

Flash Player 5 or later for full functionality. You can use the eval() function when exporting to 
Flash Player 4, but you must use slash notation, and can only access variables, not properties 
or objects.

Usage

eval(expression)

Parameters

expression A string containing the name of a variable, property, object, or movie clip 
to retrieve.

Returns

A value, reference to an object or movie clip, or undefined.

Description

Function; accesses variables, properties, objects, or movie clips by name. If expression is a 
variable or a property, the value of the variable or property is returned. If expression is an object 
or movie clip, a reference to the object or movie clip is returned. If the element named in 
expression cannot be found, undefined is returned.

In Flash 4, eval() was used to simulate arrays; in Flash 5 or later, it is recommended that you use 
the Array class to simulate arrays.

In Flash 4, you can also use eval() to dynamically set and retrieve the value of a variable or 
instance name. However, you can also do this with the array access operator ([]).

In Flash 5 or later, you cannot use eval() to dynamically set and retrieve the value of a variable or 
instance name, because you cannot use eval() on the left side of an equation. For example, 
replace the code
eval ("var" + i) = "first";

with this:
this["var"+i] = "first"

or this:
set ("var" + i, "first");
380 Chapter 12:  ActionScript Dictionary



Example

The following example uses eval() to determine the value of the expression "piece" + x. 
Because the result is a variable name, piece3, eval() returns the value of the variable and assigns 
it to y:
piece3 = "dangerous";
x = 3; 

y = eval("piece" + x);
trace(y);

// Output: dangerous

See also

Array class

extends

Availability

Flash Player 6.

Usage

class className extends otherClassName {}

interface interfaceName extends otherInterfaceName {}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Parameters

className The name of the class you are defining.

otherClassName The name of the class on which className is based.

interfaceName The name of the interface you are defining.

otherInterfaceName The name of the interface on which interfaceName is based.

Description

Keyword; defines a class or interface that is a subclass of another class or interface; the latter is the 
superclass. The subclass inherits all the methods, properties, functions, and so on that are defined 
in the superclass.

For more information, see “Creating subclasses” on page 162.
extends 381



Example

In class B as defined below, a call to class A’s constructor will automatically be inserted as the first 
statement of B’s constructor function, because a call does not already exist there. (That is, it is 
commented out in the example.)
class B extends class A
{
  function B() { // this is the constructor
// super(); // optional; inserted during compilation if omitted

}
  function m():Number {return 25;}
  function o(s:String):Void {trace(s);}
} 

See also

class, implements, interface

false

Availability

Flash Player 5.

Usage

false

Description

Constant; a unique Boolean value that represents the opposite of true.

See also

true

_focusrect

Availability

Flash Player 4.

Usage

_focusrect = Boolean;

Description

Property (global); specifies whether a yellow rectangle appears around the button or movie clip 
that has keyboard focus. The default value, true, displays a yellow rectangle around the currently 
focused button or movie clip as the user presses the Tab key to navigate through objects in a SWF 
file. Specify false if you do not want to display the yellow rectangle. This is a global property 
that can be overridden for specific instances.

See also

Button._focusrect, MovieClip._focusrect
382 Chapter 12:  ActionScript Dictionary



for

Availability

Flash Player 5.

Usage

for(init; condition; next) {
statement(s); 

}

Parameters

init An expression to evaluate before beginning the looping sequence, typically an assignment 
expression. A var statement is also permitted for this parameter.

condition An expression that evaluates to true or false. The condition is evaluated before 
each loop iteration; the loop exits when the condition evaluates to false.

next An expression to evaluate after each loop iteration; usually an assignment expression using 
the ++ (increment) or -- (decrement) operators.

statement(s) An instruction or instructions to execute within the body of the loop.

Description

Statement; a loop construct that evaluates the init (initialize) expression once, and then begins a 
looping sequence by which, as long as the condition evaluates to true, statement is executed 
and the next expression is evaluated. 

Some properties cannot be enumerated by the for or for..in actions. For example, the built-in 
methods of the Array class (such as Array.sort() and Array.reverse()) are not included in 
the enumeration of an Array object, and movie clip properties, such as _x and _y, are not 
enumerated. In external class files, instance members are not enumerable; only dynamic and static 
members are enumerable.

Example

The following example uses for to add the elements in an array:
my_array=new Array();
for(i=0; i<10; i++) {

my_array [i] = (i + 5)*10;
trace(my_array[i]);

}

The following results are displayed in the Output panel:
50
60
70
80
90
100
110
120
130
140
for 383



The following is an example of using for to perform the same action repeatedly. In the following 
code, the for loop adds the numbers from 1 to 100:
var sum = 0;

for (var i=1; i<=100; i++) {
sum = sum + i;

}

See also

++ (increment), –– (decrement), for..in, var

for..in

Availability

Flash Player 5.

Usage

for(variableIterant in object){
statement(s); 

}

Parameters

variableIterant The name of a variable to act as the iterant, referencing each property of an 
object or element in an array.

object The name of an object to be repeated.

statement(s) An instruction to execute for each iteration.

Returns

Nothing.

Description

Statement; loops through the properties of an object or element in an array, and executes the 
statement for each property of an object.

Some properties cannot be enumerated by the for or for..in actions. For example, the built-in 
methods of the Array class (such as Array.sort() and Array.reverse()) are not included in 
the enumeration of an Array object, and movie clip properties, such as _x and _y, are not 
enumerated. In external class files, instance members are not enumerable; only dynamic and static 
members are enumerable.

The for..in statement iterates over properties of objects in the iterated object’s prototype chain. 
If the child’s prototype is parent, iterating over the properties of the child with for..in, will also 
iterate over the properties of parent.

The for..in action enumerates all objects in the prototype chain of an object. Properties of the 
object are enumerated first, then properties of its immediate prototype, then properties of the 
prototype’s prototype, and so on. The for..in action does not enumerate the same property 
name twice. If the object child has prototype parent and both contain the property prop, the 
for..in action called on child enumerates prop from child but ignores the one in parent.
384 Chapter 12:  ActionScript Dictionary



Example

The following is an example of using for..in to iterate over the properties of an object: 
myObject = { name:'Tara', age:27, city:'San Francisco' };
for (name in myObject) {

trace ("myObject." + name + " = " + myObject[name]);
}

The output of this example is as follows:
myObject.name = Tara
myObject.age = 27
myObject.city = San Francisco

The following is an example of using the typeof operator with for..in to iterate over a 
particular type of child: 
for (name in my_mc) {

if (typeof (my_mc[name]) = "movieclip") {
trace ("I have a movie clip child named " + name);

}
}

The following example enumerates the children of a movie clip and sends each to Frame 2 in their 
respective Timelines. The RadioButtonGroup movie clip is a parent with several children, 
_RedRadioButton_, _GreenRadioButton_ and _BlueRadioButton.
for (var name in RadioButtonGroup) {

RadioButtonGroup[name].gotoAndStop(2);
}

fscommand()

Availability

Flash Player 3.

Usage

fscommand("command", "parameters")

Parameters

command A string passed to the host application for any use or a command passed to 
Flash Player.

parameters A string passed to the host application for any use or a value passed to Flash Player. 

Returns

Nothing.

Description

Function; allows the SWF file to communicate with either Flash Player or the program hosting 
Flash Player, such as a web browser. You can also use the fscommand action to pass messages to 
Macromedia Director, or to Visual Basic, Visual C++, and other programs that can host 
ActiveX controls.
fscommand() 385



Usage 1: To send a message to Flash Player, you must use predefined commands and parameters. 
The following table shows the values you can specify for the command and parameters 
parameters of the fscommand action to control a SWF file playing in Flash Player 
(including projectors): 

The exec command can contain only the characters A–Z, a–z, 0–9, period ()., and underscore 
(_). The exec command runs in the subdirectory fscommand only. In other words, if you use the 
fscommand exec command to call an application, the application must reside in a subdirectory 
named fscommand.

Usage 2: To use the fscommand action to send a message to a scripting language such as JavaScript 
in a web browser, you can pass any two parameters in the command and parameters parameters. 
These parameters can be strings or expressions and are used in a JavaScript function that 
“catches,” or handles, the fscommand action. 

In a web browser, the fscommand action calls the JavaScript function moviename_DoFScommand 
in the HTML page containing the SWF file. The moviename is the name of the Flash Player as 
assigned by the NAME attribute of the EMBED tag or the ID property of the OBJECT tag. If you 
assign the Flash Player the name myDocument, the JavaScript function called is 
myDocument_DoFScommand. 

Usage 3: The fscommand action can send messages to Macromedia Director that are interpreted 
by Lingo as strings, events, or executable Lingo code. If the message is a string or an event, you 
must write the Lingo code to receive the message from the fscommand action and carry out an 
action in Director. For more information, see the Director Support Center at 
www.macromedia.com/support/director. 

Usage 4: In Visual Basic, Visual C++, and other programs that can host ActiveX 
controls, fscommand sends a VB event with two strings that can be handled in the environment’s 
programming language. For more information, use the keywords Flash method to search the Flash 
Support Center at www.macromedia.com/support/flash.

Command Parameters Purpose

quit None Closes the projector.

fullscreen true or false Specifying true sets Flash Player to full-screen mode. 
Specifying false returns the player to normal menu view.

allowscale true or false Specifying false sets the player so that the SWF file is always 
drawn at its original size and never scaled. Specifying true 
forces the SWF file to scale to 100% of the player.

showmenu true or false Specifying true enables the full set of context menu items. 
Specifying false dims all the context menu items except About 
Flash Player.

exec Path to 
application

Executes an application from within the projector.

trapallkeys true or false Specifying true sends all key events, including accelerator keys, 
to the onClipEvent(keyDown/keyUp) handler in Flash Player. 
386 Chapter 12:  ActionScript Dictionary

http://www.macromedia.com/support/director
http://www.macromedia.com/support/flash


Example

Usage 1: In the following example, the fscommand action sets the Flash Player to scale the SWF 
file to the full monitor screen size when the button is released.
on(release){

fscommand("fullscreen", true);
}

Usage 2: The following example uses the fscommand action applied to a button in Flash to open a 
JavaScript message box in an HTML page. The message itself is sent to JavaScript as the 
fscommand parameter. 

You must add a function to the HTML page that contains the SWF file. This function, 
myDocument_DoFSCommand sits in the HTML page and waits for an fscommand action in Flash. 
When an fscommand is triggered in Flash (for example, when a user presses the button), the 
command and parameter strings are passed to the myDocument_DoFSCommand function. You can 
use the passed strings in your JavaScript or VBScript code in any way you like. In this example, 
the function contains a conditional if statement that checks to see if the command string is 
"messagebox". If it is, a JavaScript alert box (or “message box”) opens and displays the contents 
of the parameters string. 
function myDocument_DoFSCommand(command, args) {

if (command == "messagebox") {
alert(args);

}
}

In the Flash document, add the fscommand action to a button:
fscommand("messagebox", "This is a message box called from within Flash.")

You can also use expressions for the fscommand action and parameters, as in the following 
example:
fscommand("messagebox", "Hello, " + name + ", welcome to our website!")

To test the movie, choose File > Publish Preview > HTML.
Note: If you publish your SWF file using the Flash with FSCommand template in the HTML Publish 
Settings, the myDocument_DoFSCommand function is inserted automatically. The SWF file’s NAME and ID 
attributes will be the filename. For example, for the file myDocument.fla, the attributes would be set to 
myDocument.
fscommand() 387



function

Availability

Flash Player 5.

Usage

function functionname ([parameter0, parameter1,...parameterN]){
statement(s)

}
function ([parameter0, parameter1,...parameterN]){

statement(s)
}

Parameters

functionname The name of the new function.

parameter An identifier that represents a parameter to pass to the function. These parameters 
are optional.

statement(s) Any ActionScript instruction you have defined for the body of the function.

Returns

Nothing.

Description

Statement; comprises a set of statements that you define to perform a certain task. You can 
declare, or define, a function in one location and call, or invoke, it from different scripts in a SWF 
file. When you define a function, you can also specify parameters for the function. Parameters are 
placeholders for values on which the function operates. You can pass different parameters to a 
function each time you call it. This lets you reuse one function in many different situations.

Use the return action in a function’s statement(s) to cause a function to return, or generate, 
a value.

Usage 1: Declares a function with the specified functionname, parameters, and 
statement(s). When a function is called, the function declaration is invoked. Forward 
referencing is permitted; within the same Action list, a function may be declared after it is called. 
A function declaration replaces any prior declaration of the same function. You can use this syntax 
wherever a statement is permitted. 

Usage 2: Creates an anonymous function and returns it. This syntax is used in expressions, and is 
particularly useful for installing methods in objects.

Example

Usage 1: The following example defines the function sqr, which accepts one parameter and 
returns the square(x*x) of the parameter. If the function is declared and used in the same script, 
the function declaration may appear after using the function.
y=sqr(3);

function sqr(x) {
return x*x;

}

388 Chapter 12:  ActionScript Dictionary



Usage 2: The following function defines a Circle object:
function Circle(radius) {
this.radius = radius;

}

The following statement defines an anonymous function that calculates the area of a circle and 
attaches it to the object Circle as a method:
Circle.prototype.area = function () {return Math.PI * this.radius * 

this.radius}

Function class

Availability

Flash Player 6.

Method summary for the Function class

Property summary for the Function class

Function.apply()

Availability

Flash Player 6.

Usage

myFunction.apply(thisObject, argumentsObject)

Parameters

thisObject The object that myFunction is applied to.

argumentsObject An array whose elements are passed to myFunction as parameters.

Returns

Any value that the called function specifies.

Description

Method; specifies the value of this to be used within any function that ActionScript calls. This 
method also specifies the parameters to be passed to any called function. Because apply() is a 
method of the Function class, it is also a method of every function object in ActionScript. 

The parameters are specified as an Array object. This is often useful when the number of 
parameters to be passed is not known until the script actually executes.

Method Description

Function.apply() Enables ActionScript code to call a function.

Function.call() Invokes the function represented by a Function object. 

Property Description

Function.prototype Refers to an object that is the prototype for a class.
Function.apply() 389



Example

The following function invocations are equivalent:
Math.atan2(1, 0)
Math.atan2.apply(null, [1, 0])

You could construct a SWF file that contains input entry fields that permit the user to enter the 
name of a function to invoke, and zero or more parameters to pass to the function. Pressing a 
“Call” button would then use the apply method to call the function, specifying the parameters.

In this example, the user specifies a function name in an input text field called functionName. 
The number of parameters is specified in an input text field called numParameters. Up to 10 
parameters are specified in text fields called parameter1, parameter2, up to parameter10.
on (release) {
  callTheFunction();
}
...
function callTheFunction()
{
   var theFunction = eval(functionName.text);
   var n = Number(numParameters);
   var parameters = [];
   for (var i = 0; i < n; i++) {
      parameters.push(eval("parameter" + i));
   }
   theFunction.apply(null, parameters);
}

Function.call()

Availability

Flash Player 6.

Usage

myFunction.call(thisObject, parameter1, ..., parameterN)

Parameters

thisObject Specifies the value of this within the function body. 

parameter1 A parameter to be passed to the myFunction. You can specify zero or more 
parameters.

parameterN

Returns

Nothing.

Description

Method; invokes the function represented by a Function object. Every function in ActionScript is 
represented by a Function object, so all functions support this method. 
390 Chapter 12:  ActionScript Dictionary



In almost all cases, the function call operator (()) can be used instead of this method. The 
function call operator produces code that is concise and readable. This method is primarily useful 
when the this parameter of the function invocation needs to be explicitly controlled. Normally, 
if a function is invoked as a method of an object, within the body of the function, this is set to 
myObject as in the following:
myObject.myMethod(1, 2, 3);

In some situations, you may want this to point somewhere else; for example, if a function must 
be invoked as a method of an object, but is not actually stored as a method of that object.
myObject.myMethod.call(myOtherObject, 1, 2, 3); 

You can pass the value null for the thisObject parameter to invoke a function as a regular 
function and not as a method of an object. For example, the following function invocations 
are equivalent:
Math.sin(Math.PI / 4)
Math.sin.call(null, Math.PI / 4)

Example

This example uses Function.call() to make a function behave as a method of another object, 
without storing the function in the object.
function MyObject() {
}
function MyMethod(obj) {
  trace("this == obj? " + (this == obj));
}
var obj = new MyObject();
MyMethod.call(obj, obj);

The trace() action sends the following code to the Output panel:
this == obj? true

Function.prototype

Availability

Flash Player 5. If you are using ActionScript 2.0, you don’t need to use this property; it reflects the 
implementation of inheritance in ActionScript 1.

Usage

myFunction.prototype

Description

Property; in an ActionScript 1 constructor function, the prototype property refers to an object 
that is the prototype of the constructed class. Each instance of the class that is created by the 
constructor function inherits all the properties and methods of the prototype object.
Function.prototype 391



ge (greater than or equal to — string specific)

Availability

Flash Player 4. This operator was deprecated in Flash 5 in favor of the >= (greater than or equal 
to) operator. 

Usage

expression1 ge expression2

Parameters

expression1, expression2 Numbers, strings, or variables.

Returns

Nothing.

Description

Operator (comparison); compares the string representation of expression1 to the string 
representation of expression2 and returns true if expression1 is greater than or equal to 
expression2; otherwise, returns false.

See also

>= (greater than or equal to)

get

Availability

Flash Player 6.

Usage

function get property() {
// your statements here

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Parameters

property The word you want to use to refer to the property that get accesses; this value must 
be the same as the value used in the corresponding set command.

Returns

The value of the property specified by propertyName.

Description

Keyword; permits implicit “getting” of properties associated with objects based on classes you 
have defined in external class files. Using implicit get methods lets you access properties of objects 
without accessing them directly. Implicit get/set methods are syntactic shorthand for the 
Object.addProperty() method in ActionScript 1.

For more information, see “Implicit get/set methods” on page 172.
392 Chapter 12:  ActionScript Dictionary



See also

Object.addProperty(), set

getProperty

Availability

Flash Player 4.

Usage

getProperty(my_mc, property)

Parameters

my_mc The instance name of a movie clip for which the property is being retrieved.

property A property of a movie clip.

Returns

The value of the specified property.

Description

Function; returns the value of the specified property for the movie clip my_mc.

Example

The following example retrieves the horizontal axis coordinate (_x) for the movie clip my_mc and 
assigns it to the variable my_mc_x:
my_mc_x = getProperty(_root.my_mc, _x);

getTimer

Availability

Flash Player 4. 

Usage

getTimer()

Parameters

None.

Returns

The number of milliseconds that have elapsed since the SWF file started playing.

Description

Function; returns the number of milliseconds that have elapsed since the SWF file started playing. 
getTimer 393



getURL()

Availability

Flash 2. The GET and POST options are only available to Flash Player 4 and later versions of 
the player.

Usage

getURL(url [, window [, "variables"]])

Parameters

url The URL from which to obtain the document.

window An optional parameter specifying the window or HTML frame that the document 
should load into. You can enter the name of a specific window or choose from the following 
reserved target names:

• _self specifies the current frame in the current window.
• _blank specifies a new window.
• _parent specifies the parent of the current frame.
• _top specifies the top-level frame in the current window.

variables A GET or POST method for sending variables. If there are no variables, omit this 
parameter. The GET method appends the variables to the end of the URL, and is used for small 
numbers of variables. The POST method sends the variables in a separate HTTP header and is 
used for sending long strings of variables. 

Returns

Nothing.

Description

Function; loads a document from a specific URL into a window or passes variables to another 
application at a defined URL. To test this action, make sure the file to be loaded is at the specified 
location. To use an absolute URL (for example, http://www.myserver.com), you need a 
network connection.

Example

This example loads a new URL into a blank browser window. The getURL() action targets the 
variable incomingAd as the url parameter so that you can change the loaded URL without 
having to edit the SWF file. The incomingAd variable’s value is passed into Flash earlier in the 
SWF file using a loadVariables() action. 
on(release) {

getURL(incomingAd, "_blank");
}

See also

loadVariables(), XML.send(), XML.sendAndLoad(), XMLSocket.send()
394 Chapter 12:  ActionScript Dictionary



getVersion

Availability

Flash Player 5.

Usage

getVersion()

Parameters

None.

Returns

A string containing Flash Player version and platform information.

Description

Function; returns a string containing Flash Player version and platform information. 

The getVersion function only returns information for Flash Player 5 or later versions of 
the Player. 

Example

The following is an example of a string returned by the getVersion function.
WIN 5,0,17,0

This indicates that the platform is Microsoft Windows, and the version number of Flash Player is 
major version 5, minor version 17 (5.0r17).

See also

System.capabilities.os, System.capabilities.version

_global object

Availability

Flash Player 6.

Usage

_global.identifier

Parameters

None.

Returns

A reference to the global object that holds the core ActionScript classes, such as String, Object, 
Math, and Array.
_global object 395



Description

Identifier; creates global variables, objects, or classes. For example, you could create a library that 
is exposed as a global ActionScript object, much like the Math or Date object. Unlike Timeline-
declared or locally declared variables and functions, global variables and functions are visible to 
every Timeline and scope in the SWF file, provided they are not obscured by identifiers with the 
same names in inner scopes.

Example

The following example creates a top-level function factorial() that is available to every 
Timeline and scope in a SWF file:
_global.factorial = function (n) {
  if (n <= 1) {
    return 1;
  } else {
    return n * factorial(n-1);
  }
}

See also

var, set variable

gotoAndPlay()

Availability

Flash 2.

Usage

gotoAndPlay([scene,] frame)

Parameters

scene An optional string specifying the name of the scene to which the playhead is sent.

frame A number representing the frame number, or a string representing the label of the frame, 
to which the playhead is sent.

Returns

Nothing.

Description

Function; sends the playhead to the specified frame in a scene and plays from that frame. If no 
scene is specified, the playhead goes to the specified frame in the current scene.

Example

When the user clicks a button to which gotoAndPlay() is assigned, the playhead is sent to 
Frame 16 in the current scene and starts to play.
on(release) {

gotoAndPlay(16);
}

See also

MovieClip.gotoAndPlay()
396 Chapter 12:  ActionScript Dictionary



gotoAndStop()

Availability

Flash 2.

Usage

gotoAndStop([scene,] frame)

Parameters

scene An optional string specifying the name of the scene to which the playhead is sent.

frame A number representing the frame number, or a string representing the label of the frame, 
to which the playhead is sent.

Returns

Nothing.

Description

Function; sends the playhead to the specified frame in a scene and stops it. If no scene is specified, 
the playhead is sent to the frame in the current scene.

Example

When the user clicks a button that gotoAndStop() is assigned to, the playhead is sent to Frame 5 
in the current scene and the SWF file stops playing.
on(release) {

gotoAndStop(5);
}

See also

stop()

gt (greater than — string specific)

Availability

Flash Player 4. This operator was deprecated in Flash 5 in favor of the new > (greater 
than) operator.

Usage

expression1 gt expression2

Parameters

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares the string representation of expression1 to the string 
representation of expression2 and returns true if expression1 is greater than expression2; 
otherwise, returns false.

See also

> (greater than)
gt (greater than — string specific) 397



_highquality

Availability

Flash Player 4; deprecated in favor of _quality.

Usage

_highquality

Description

Deprecated property (global); specifies the level of anti-aliasing applied to the current SWF file. 
Specify 2 (best quality) to apply high quality with bitmap smoothing always on. Specify 1 (high 
quality) to apply anti-aliasing; this will smooth bitmaps if the SWF file does not contain 
animation. Specify 0 (low quality) to prevent anti-aliasing.

Example

_highquality = 1;

See also

_quality, toggleHighQuality()

if

Availability

Flash Player 4.

Usage

if(condition) {
statement(s);

}

Parameters

condition An expression that evaluates to true or false.

statement(s) The instructions to execute if or when the condition evaluates to true.

Returns

Nothing.

Description

Statement; evaluates a condition to determine the next action in a SWF file. If the condition is 
true, Flash runs the statements that follow the condition inside curly braces ({}). If the condition 
is false, Flash skips the statements inside the curly braces and runs the statements following the 
curly braces. Use the if action to create branching logic in your scripts.

Example

In the following example, the condition inside the parentheses evaluates the variable name to see if 
it has the literal value “Erica”. If it does, the play() action inside the curly braces runs.
if(name == "Erica"){

play();
}

398 Chapter 12:  ActionScript Dictionary



The following example uses an if action to evaluate when a draggable object in the SWF file is 
released by the user. If the object was released less than 300 milliseconds after dragging it, the 
condition evaluates to true and the statements inside the curly braces run. Those statements set 
variables to store the new location of the object, how hard it was thrown, and the speed at which 
it was thrown. The timePressed variable is also reset. If the object was released more than 300 
milliseconds after it was dragged, the condition evaluates to false and none of the 
statements run.
if (getTimer()<timePressed+300) {

// if the condition is true, 
// the object was thrown.
// what is the new location of this object?
xNewLoc = this._x;
yNewLoc = this._y;
// how hard did they throw it?
xTravel = xNewLoc-xLoc;
yTravel = yNewLoc-yLoc;
// setting the speed of the object depending on 
// how far they travelled with it
xInc = xTravel/2;
yInc = yTravel/2;
timePressed = 0;

} 

See also

else

ifFrameLoaded

Availability

Flash Player 3. The ifFrameLoaded action was deprecated in Flash 5; Macromedia recommends 
using the MovieClip._framesloaded property.

Usage

ifFrameLoaded([scene,] frame) {
statement(s);

}

Parameters

scene An optional string specifying the name of the scene that must be loaded.

frame The frame number or frame label that must be loaded before the next statement 
is executed.

statement(s) The instructions to execute if the specified scene, or scene and frame, 
are loaded.

Returns

Nothing.
ifFrameLoaded 399



Description

Deprecated action; checks whether the contents of a specific frame are available locally. Use 
ifFrameLoaded to start playing a simple animation while the rest of the SWF file downloads to 
the local computer. The difference between using _framesloaded and ifFrameLoaded is that 
_framesloaded allows you to add your own if or else statements. 

See also

MovieClip._framesloaded

implements

Availability

Flash Player 6.

Usage

myClass implements interface01 [, interface02, ...]

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Description

Keyword; defines a class that must supply implementations for all the methods defined in the 
interface (or interfaces) being implemented. For more information, see “Interfaces as data types” 
on page 168.

Example

See interface.

See also

class, extends, interface

import

Availability

Flash Player 6.

Usage

import className

import packageName.*

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This statement is supported in the Actions panel as 
well as in external class files.

Parameters

className The fully qualified name of a class you have defined in an external class file. 

packageName A directory in which you have stored related class files. 
400 Chapter 12:  ActionScript Dictionary



Description

Keyword; lets you access classes without specifying their fully qualified names. For example, if you 
want to use the class macr.util.users.UserClass.as in a script, you must either refer to it by its fully 
qualified name or import it; if you import it, you can then refer to it by the class name:
// before importing
var myUser:UserClass = new macr.util.users.UserClass();
// after importing
import macr.util.users.UserClass;
var myUser:UserClass = new UserClass();

If there are several class files in the directory that you want to access, you can import them all in a 
single statement:
import macr.util.users.*;

You must issue the import statement before you try to access the imported class without fully 
specifying its name.

If you import a class but then don’t use it in your script, the class isn’t exported as part of the SWF 
file. This means you can import large packages without worrying about the size of your SWF file; 
the bytecode associated with a class is included in a SWF file only if that class is actually used.

The import statement applies only to the current script (frame or object) in which it’s called. For 
example, suppose on Frame 1 of a Flash document you import all the classes in the macr.util 
package. On that frame, you can reference classes in that package by their simple names.
// On Frame 1 of a FLA:
import macr.util.*;

var myFoo:foo = new foo();

On another frame script, however, you would need to reference classes in that package by their 
fully qualified names (var myFoo:foo = new macr.util.foo();) or add an import statement 
to the other frame, as well, that imports the classes in that package.

For more information on importing, see “Importing classes” on page 171 and “Using packages” 
on page 171.

#include

Availability

Flash Player 4.

Usage

#include "[path] filename.as"

Note: Do not place a semicolon (;) at the end of the line that contains the #include statement.

Parameters

[path] filename.as The filename and optional path for the script to add to the Actions 
panel; .as is the recommended file extension. 

Returns

Nothing.
#include 401



Description

Compiler directive: includes the contents of the specified file, as if the commands in the file were 
part of the calling script itself. The #include directive is invoked at compile time. Therefore, if 
you make any changes to an external file, you must save the file and recompile any FLA files that 
use it. 

If you use the Check Syntax button for a script that contains #include statements, the syntax of 
the included files is also checked. 

You can use #include in FLA files and in external script files, but not in ActionScript 2.0 
class files. 

You can specify no path, a relative path, or an absolute path for the file to be included. 

• If you don’t specify a path, the AS file must be in the same directory as the FLA file or the 
script containing the #include statement.

• To specify a path for the AS file relative to the FLA file or script, use a single dot (.) to indicate 
the current directory, two dots (..) to indicate a parent directory, and forward slashes (/). See 
the following examples.

• To specify an absolute path for the AS file, use the format supported by your platform 
(Macintosh or Windows). See the following examples. However, this usage is not 
recommended, because it requires that the directory structure be the same on any machine you 
use to compile the script.

Example

The following examples show various ways of specifying a path for a file to be included in 
your script.
// Note that #include statements do not end with a semicolon (;)
// AS file is in same directory as FLA file or script
#include "init_script.as" 

// AS file is in a subdirectory of the directory 
// containing the FLA file or script
// The subdirectory is named "FLA_includes"
#include "FLA_includes/init_script.as"

// AS file is in a directory at the same level as the FLA file or script
// The directory is named "ALL_includes"
#include "../ALL_includes/init_script.as"

// AS file is specified by an absolute path in Windows
// Note use of forward slashes, not backslashes
#include "C:/Flash_scripts/init_script.as"

// AS file is specified by an absolute path on Macintosh
#include "Mac HD:Flash_scripts:init_script.as"

See also

import
402 Chapter 12:  ActionScript Dictionary



Infinity

Availability

Flash Player 5.

Usage

Infinity

Description

Constant; specifies the IEEE-754 value representing positive infinity. The value of this constant is 
the same as Number.POSITIVE_INFINITY.

-Infinity

Availability

Flash Player 5.

Usage

-Infinity

Description

Constant; specifies the IEEE-754 value representing negative infinity. The value of this constant 
is the same as Number.NEGATIVE_INFINITY.

#initclip

Availability

Flash Player 6.

Usage

#initclip order

Parameters

order An integer that specifies the execution order of blocks of #initclip code. This is an 
optional parameter.

Description

Compiler directive; indicates the beginning of a block of initialization actions. When multiple 
clips are initialized at the same time, you can use the order parameter to specify which 
initialization occurs first. Initialization actions execute when a movie clip symbol is defined. If the 
movie clip is an exported symbol, the initialization actions execute before the actions on Frame 1 
of the SWF file. Otherwise, they execute immediately before the frame actions of the frame that 
contains the first instance of the associated movie clip symbol. 

Initialization actions execute only once during the playback of a SWF file; use them for one-time 
initializations, such as class definition and registration. 

See also

#endinitclip
#initclip 403



instanceof

Availability

Flash Player 6.

Usage

object instanceof class

Parameters

object An ActionScript object.

class A reference to an ActionScript constructor function, such as String or Date. 

Returns

If object is an instance of class, instanceof returns true; otherwise, instanceof returns 
false. Also, _global instanceof Object returns false.

Description

Operator; determines whether an object belongs to a specified class. Tests whether object is an 
instance of class.

The instanceof operator does not convert primitive types to wrapper objects. For example, the 
following code returns true: 
new String("Hello") instanceof String;

Whereas the following code returns false:
"Hello" instanceof String;

See also

typeof

int

Availability

Flash Player 4. This function was deprecated in Flash 5 in favor of Math.round().

Usage

int(value)

Parameters

value A number to be rounded to an integer.

Returns

Nothing.

Description

Function; converts a decimal number to the closest integer value.
404 Chapter 12:  ActionScript Dictionary



See also

Math.floor()

interface

Availability

Flash Player 6.

Usage

interface InterfaceName {}

interface InterfaceName [extends InterfaceName [, InterfaceName ...] {}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Description

Keyword; defines an interface. An interface is similar to a class, with the following 
important differences:

• Interfaces contain only declarations of methods, not their implementation. That is, every class 
that implements an interface must provide an implementation for each method declared in 
the interface.

• Only public members are allowed in an interface definition. In addition, instance and class 
members are not permitted.

• The get and set statements are not allowed in interface definitions.

For more information, see “Creating and using interfaces” on page 167.

Example

The following example shows several ways to define and implement interfaces.
(in top-level package .as files Ia, B, C, Ib, D, Ic, E)

// filename Ia.as
interface Ia
{
  function k():Number; // method declaration only
  function n(x:Number):Number; // without implementation 
}
// filename B.as
class B implements Ia
{
  function k():Number {return 25;}
  function n(x:Number):Number {return x+5;}
} 
// external script or Actions panel
mvar = new B();
trace(B.k()); // 25
trace(B.n(7)); // 12

// filename c.as
class C implements Ia 
{
  function k():Number {return 25;}
interface 405



} // error: class must implement all interface methods

// filename Ib.as
interface Ib
{
  function o():Void;
} 
class D implements Ia, Ib
{
  function k():Number {return 15;}
  function n(x:Number):Number {return x*x;}
  function o():Void {trace("o");} 
} 

// external script or Actions panel
mvar = new D();
trace(D.k()); // 15
trace(D.n(7)); // 49
trace(D.o()); // "o"

interface Ic extends Ia
{
  function p():Void;
} 
class E implements Ib, Ic
{
  function k():Number {return 25;}
  function n(x:Number):Number {return x+5;}
  function o():Void {trace("o");} 
  function p():Void {trace("p");} 
} 

See also

class, extends, implements

isFinite

Availability

Flash Player 5.

Usage

isFinite(expression)

Parameters

expression A Boolean value, variable, or other expression to be evaluated.

Returns

A Boolean value.

Description

Function; evaluates expression and returns true if it is a finite number or false if it is infinity 
or negative infinity. The presence of infinity or negative infinity indicates a mathematical error 
condition such as division by 0.
406 Chapter 12:  ActionScript Dictionary



Example

The following are examples of return values for isFinite:
isFinite(56)
// returns true

isFinite(Number.POSITIVE_INFINITY)
// returns false 

isNaN()

Availability

Flash Player 5.

Usage

isNaN(expression)

Parameters

expression A Boolean, variable, or other expression to be evaluated.

Returns

A Boolean value.

Description

Function; evaluates the parameter and returns true if the value is not a number (NaN), indicating 
the presence of mathematical errors.

Example

The following code illustrates return values for the isNaN function.
isNaN("Tree")
// returns true

isNaN(56)
// returns false

isNaN(Number.POSITIVE_INFINITY)
// returns false

See also

NaN, Number.NaN
isNaN() 407



Key class

Availability

Flash Player 6.

Description

The Key class is a top-level class whose methods and properties you can use without using a 
constructor. Use the methods of the Key class to build an interface that can be controlled by a 
user with a standard keyboard. The properties of the Key class are constants representing the keys 
most commonly used to control games. For a complete list of key code values, see Appendix C, 
“Keyboard Keys and Key Code Values,” on page 789.

Method summary for the Key class

Property summary for the Key class

All of the properties for the Key class are constants.

Method Description

Key.addListener() Registers an object to receive notification when the onKeyDown and onKeyUp 
methods are invoked.

Key.getAscii() Returns the ASCII value of the last key pressed.

Key.getCode() Returns the virtual key code of the last key pressed.

Key.isDown() Returns true if the key specified in the parameter is pressed.

Key.isToggled() Returns true if the Num Lock or Caps Lock key is activated.

Key.removeListener() Removes an object that was previously registered with Key.addListener().

Property Description

Key.BACKSPACE Constant associated with the key code value for the Backspace key (8).

Key.CAPSLOCK Constant associated with the key code value for the Caps Lock key (20).

Key.CONTROL Constant associated with the key code value for the Control key (17).

Key.DELETEKEY Constant associated with the key code value for the Delete key (46).

Key.DOWN Constant associated with the key code value for the Down Arrow key (40).

Key.END Constant associated with the key code value for the End key (35).

Key.ENTER Constant associated with the key code value for the Enter key (13).

Key.ESCAPE Constant associated with the key code value for the Escape key (27).

Key.HOME Constant associated with the key code value for the Home key (36).

Key.INSERT Constant associated with the key code value for the Insert key (45).

Key.LEFT Constant associated with the key code value for the Left Arrow key (37).

Key.PGDN Constant associated with the key code value for the Page Down key (34).

Key.PGUP Constant associated with the key code value for the Page Up key (33).
408 Chapter 12:  ActionScript Dictionary



Listener summary for the Key class

Key.addListener()

Availability

Flash Player 6.

Usage

Key.addListener (newListener)

Parameters

newListener An object with methods onKeyDown and onKeyUp.

Returns

Nothing.

Description

Method; registers an object to receive onKeyDown and onKeyUp notification. When a key is 
pressed or released, regardless of the input focus, all listening objects registered with 
addListener() have either their onKeyDown method or onKeyUp method invoked. Multiple 
objects can listen for keyboard notifications. If the listener newListener is already registered, no 
change occurs.

Example

The following example creates a new listener object and defines a function for onKeyDown and 
onKeyUp. The last line uses addListener() to register the listener with the Key object so that it 
can receive notification from the key down and key up events. 
myListener = new Object();
myListener.onKeyDown = function () {
  trace ("You pressed a key.");
}
myListener.onKeyUp = function () {
  trace ("You released a key.");
}
Key.addListener(myListener);

Key.RIGHT Constant associated with the key code value for the Right Arrow key (39).

Key.SHIFT Constant associated with the key code value for the Shift key (16).

Key.SPACE Constant associated with the key code value for the Spacebar (32).

Key.TAB Constant associated with the key code value for the Tab key (9).

Key.UP Constant associated with the key code value for the Up Arrow key (38).

Method Description

Key.onKeyDown Notified when a key is pressed.

Key.onKeyUp Notified when a key is released.

Property Description
Key.addListener() 409



The following example assigns the keyboard shortcut Control+7 to a button with an instance 
name of myButton, and makes information about the shortcut available to screen readers (see 
_accProps). In this example, when you press Control+7 the myOnPress function displays the text 
"hello" in the Output panel; in your file, you would create a function that does something more 
meaningful. 
function myOnPress() {

trace( "hello" );
}

function myOnKeyDown() {
if (Key.isDown(Key.CONTROL) && Key.getCode() == 55) // 55 is key code for 7
{

Selection.setFocus( myButton );
myButton.onPress();

}
}

var myListener = new Object();
myListener.onKeyDown = myOnKeyDown;
Key.addListener( myListener );

myButton.onPress = myOnPress;
myButton._accProps.shortcut = "Ctrl+F"
Accessibility.updateProperties();

See also

Key.getCode(), Key.isDown(), Key.onKeyDown, Key.onKeyUp, Key.removeListener()

Key.BACKSPACE

Availability

Flash Player 5.

Usage

Key.BACKSPACE

Description

Property; constant associated with the key code value for the Backspace key (8).

Key.CAPSLOCK

Availability

Flash Player 5.

Usage

Key.CAPSLOCK

Description

Property; constant associated with the key code value for the Caps Lock key (20).
410 Chapter 12:  ActionScript Dictionary



Key.CONTROL

Availability

Flash Player 5.

Usage

Key.CONTROL

Description

Property; constant associated with the key code value for the Control key (17).

Key.DELETEKEY

Availability

Flash Player 5.

Usage

Key.DELETEKEY

Description

Property; constant associated with the key code value for the Delete key (46).

Key.DOWN

Availability

Flash Player 5.

Usage

Key.DOWN

Description

Property; constant associated with the key code value for the Down Arrow key (40).

Key.END

Availability

Flash Player 5.

Usage

Key.END

Description

Property; constant associated with the key code value for the End key (35).
Key.END 411



Key.ENTER

Availability

Flash Player 5.

Usage

Key.ENTER

Description

Property; constant associated with the key code value for the Enter key (13).

Key.ESCAPE

Availability

Flash Player 5.

Usage

Key.ESCAPE

Description

Property; constant associated with the key code value for the Escape key (27).

Key.getAscii()

Availability

Flash Player 5.

Usage

Key.getAscii();

Parameters

None.

Returns

An integer that represents the ASCII value of the last key pressed.

Description

Method; returns the ASCII code of the last key pressed or released. The ASCII values returned are 
English keyboard values. For example, if you press Shift+2, Key.getAscii() returns @ on a 
Japanese keyboard, just as it does on an English keyboard.
412 Chapter 12:  ActionScript Dictionary



Key.getCode()

Availability

Flash Player 5.

Usage

Key.getCode();

Parameters

None.

Returns

An integer that represents the key code of the last key pressed.

Description

Method; returns the key code value of the last key pressed. To match the returned key code value 
with the key on a standard keyboard, see Appendix C, “Keyboard Keys and Key Code Values,” 
on page 789.

Key.HOME

Availability

Flash Player 5.

Usage

Key.HOME

Description

Property; constant associated with the key code value for the Home key (36).

Key.INSERT

Availability

Flash Player 5.

Usage

Key.INSERT

Description

Property; constant associated with the key code value for the Insert key (45).
Key.INSERT 413



Key.isDown()

Availability

Flash Player 5.

Usage

Key.isDown(keycode)

Parameters

keycode The key code value assigned to a specific key, or a Key class property associated with a 
specific key. To match the returned key code value with the key on a standard keyboard, see 
Appendix C, “Keyboard Keys and Key Code Values,” on page 789.

Returns

A Boolean value.

Description

Method; returns true if the key specified in keycode is pressed, false if it is not. On the 
Macintosh, the key code values for the Caps Lock and Num Lock keys are identical.

Example

The following script lets the user control a movie clip’s location.
onClipEvent (enterFrame) {

if(Key.isDown(Key.RIGHT)) {
this._x=_x+10;

} else if (Key.isDown(Key.DOWN)) {
this._y=_y+10;

}
}

Key.isToggled()

Availability

Flash Player 5.

Usage

Key.isToggled(keycode)

Parameters

keycode The key code for Caps Lock (20) or Num Lock (144).

Returns

A Boolean value.

Description

Method; returns true if the Caps Lock or Num Lock key is activated (toggled), false if it is not. 
On the Macintosh, the key code values for the Caps Lock and Num Lock keys are identical.
414 Chapter 12:  ActionScript Dictionary



Key.LEFT

Availability

Flash Player 5.

Usage

Key.LEFT

Description

Property; constant associated with the key code value for the Left Arrow key (37).

Key.onKeyDown

Availability

Flash Player 6.

Usage

someListener.onKeyDown

Description

Listener; notified when a key is pressed. To use onKeyDown you must create a listener object. You 
can then define a function for onKeyDown and use addListener() to register the listener with the 
Key object, as in the following:
someListener = new Object();
someListener.onKeyDown = function () { ... };
Key.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive 
notification about a single event. 

See also

Key.addListener()

Key.onKeyUp

Availability

Flash Player 6.

Usage

someListener.onKeyUp

Description

Listener; notified when a key is released. To use onKeyUp you must create a listener object. You 
can then define a function for onKeyUp and use addListener() to register the listener with the 
Key object, as in the following:
someListener = new Object();
someListener.onKeyUp = function () { ... };
Key.addListener(someListener);
Key.onKeyUp 415



Listeners enable different pieces of code to cooperate because multiple listeners can receive 
notification about a single event. 

See also

Key.addListener()

Key.PGDN

Availability

Flash Player 5.

Usage

Key.PGDN

Description

Property; constant associated with the key code value for the Page Down key (34).

Key.PGUP

Availability

Flash Player 5.

Usage

Key.PGUP

Description

Property; constant associated with the key code value for the Page Up key (33).

Key.removeListener()

Availability

Flash Player 6.

Usage

Key.removeListener (listener)

Parameters

listener An object.

Returns

If the listener was successfully removed, the method returns true. If the listener was not 
successfully removed, for example if the listener was not on the Key object’s listener list, the 
method returns false.

Description

Method; removes an object previously registered with Key.addListener().
416 Chapter 12:  ActionScript Dictionary



Key.RIGHT

Availability

Flash Player 5.

Usage

Key.RIGHT

Description

Property; constant associated with the key code value for the Right Arrow key (39).

Key.SHIFT

Availability

Flash Player 5.

Usage

Key.SHIFT

Description

Property; constant associated with the key code value for the Shift key (16).

Key.SPACE

Availability

Flash Player 5.

Usage

Key.SPACE

Description

Property; constant associated with the key code value for the Spacebar (32).

Key.TAB

Availability

Flash Player 5.

Usage

Key.TAB

Description

Property; constant associated with the key code value for the Tab key (9).
Key.TAB 417



Key.UP

Availability

Flash Player 5.

Usage

Key.UP

Description

Property; constant associated with the key code value for the Up Arrow key (38).

le (less than or equal to — string specific)

Availability

Flash Player 4. This operator was deprecated in Flash 5 in favor of the <= (less than or equal 
to) operator.

Usage

expression1 le expression2

Parameters

expression1,expression2 Numbers, strings, or variables.

Returns

Nothing.

Description

Operator (comparison); compares expression1 to expression2 and returns a value of true if 
expression1 is less than or equal to expression2; otherwise, it returns a false value.

See also

<= (less than or equal to)

length

Availability

Flash Player 4. This function, along with all of the string functions, was deprecated in Flash 5. 
Macromedia recommends using the methods of the String class and the String.length property 
to perform the same operations.

Usage

length(expression)

length(variable)

Parameters

expression A string.

variable The name of a variable.
418 Chapter 12:  ActionScript Dictionary



Returns

The length of the specified string or variable name.

Description

String function; returns the length of the specified string or variable name.

Example

The following example returns the value of the string "Hello".
length("Hello");

The result is 5.

See also

" " (string delimiter), String class, String.length

_level

Availability

Flash Player 4.

Usage

_levelN

Description

Identifier; a reference to the root Timeline of _levelN. You must use loadMovieNum() to load 
SWF files into the Flash Player before you use the _level property to target them. You can also 
use _levelN to target a loaded SWF file at the level assigned by N. 

The initial SWF file loaded into an instance of the Flash Player is automatically loaded into 
_level0. The SWF file in _level0 sets the frame rate, background color, and frame size for all 
subsequently loaded SWF files. SWF files are then stacked in higher-numbered levels above the 
SWF file in _level0. 

You must assign a level to each SWF file that you load into the Flash Player using 
loadMovieNum(). You can assign levels in any order. If you assign a level that already contains a 
SWF file (including _level0), the SWF file at that level is unloaded and replaced by the new 
SWF file. 

Example

The following example stops the playhead in the main Timeline of the SWF file in _level9.
_level9.stop();

The following example sends the playhead in the main Timeline of the SWF file in _level4 to 
Frame 5. The SWF file in _level4 must have previously been loaded with a loadMovieNum() 
action.
_level4.gotoAndStop(5);

See also

loadMovie(), MovieClip.swapDepths()
_level 419



loadMovie()

Availability

Flash Player 3.

Usage

loadMovie("url",target [, method])

Parameters

url The absolute or relative URL of the SWF file or JPEG file to be loaded. A relative path 
must be relative to the SWF file at level 0. Absolute URLs must include the protocol reference, 
such as http:// or file:///.

target A path to a target movie clip. The target movie clip will be replaced by the loaded SWF 
file or image. 

method An optional parameter specifying an HTTP method for sending variables. The 
parameter must be the string GET or POST. If there are no variables to be sent, omit this parameter. 
The GET method appends the variables to the end of the URL, and is used for small numbers of 
variables. The POST method sends the variables in a separate HTTP header and is used for long 
strings of variables.

Returns

Nothing.

Description

Function; loads a SWF or JPEG file into Flash Player while the original SWF file is playing.
Tip: If you want to monitor the progress of the download, use MovieClipLoader.loadClip() instead of 
this function. 

The loadMovie() function lets you display several SWF files at once and switch between SWF 
files without loading another HTML document. Without the loadMovie() function, Flash 
Player displays a single SWF file and then closes.

If you want to load a SWF or JPEG file into a specific level, use loadMovieNum() instead of 
loadMovie().

When a SWF file is loaded into a target movie clip, you can use the target path of that movie clip 
to target the loaded SWF file. A SWF file or image loaded into a target inherits the position, 
rotation, and scale properties of the targeted movie clip. The upper left corner of the loaded image 
or SWF file aligns with the registration point of the targeted movie clip. Alternatively, if the target 
is the _root Timeline, the upper left corner of the image or SWF file aligns with the upper left 
corner of the Stage.

Use unloadMovie() to remove SWF files that were loaded with loadMovie(). 
420 Chapter 12:  ActionScript Dictionary



Example

The following loadMovie() statement is attached to a navigation button labeled Products. There 
is an invisible movie clip on the Stage with the instance name dropZone. The loadMovie() 
function uses this movie clip as the target parameter to load the products in the SWF file into the 
correct position on the Stage.
on(release) {

loadMovie("products.swf",_root.dropZone);
}

The following example loads a JPEG image from the same directory as the SWF file that calls the 
loadMovie() function:
loadMovie("image45.jpeg", "ourMovieClip");

See also

_level, loadMovieNum(), MovieClipLoader.loadClip(), unloadMovie()

loadMovieNum()

Availability

Flash Player 4. Flash 4 files opened in Flash 5 or later are converted to use the correct syntax.

Usage

loadMovieNum("url",level [, variables])

Parameters

url The absolute or relative URL of the SWF or JPEG file to be loaded. A relative path must be 
relative to the SWF file at level 0. For use in the stand-alone Flash Player or for testing in 
test-movie mode in the Flash authoring application, all SWF files must be stored in the same 
folder; and the filenames cannot include folder or disk drive specifications.

level An integer specifying the level in Flash Player into which the SWF file will be loaded. 

variables An optional parameter specifying an HTTP method for sending variables. The 
parameter must be the string GET or POST. If there are no variables to be sent, omit this parameter. 
The GET method appends the variables to the end of the URL and is used for small numbers of 
variables. The POST method sends the variables in a separate HTTP header and is used for long 
strings of variables.

Returns

Nothing.

Description

Function; loads a SWF or JPEG file into a level in Flash Player while the originally loaded SWF 
file is playing. 
Tip: If you want to monitor the progress of the download, use MovieClipLoader.loadClip() instead of 
this function. 

Normally, Flash Player displays a single SWF file and then closes. The loadMovieNum() action 
lets you display several SWF files at once and switch between SWF files without loading another 
HTML document.
loadMovieNum() 421



If you want to specify a target instead of a level, use loadMovie() instead of loadMovieNum().

Flash Player has a stacking order of levels starting with level 0. These levels are like layers of 
acetate; they are transparent except for the objects on each level. When you use loadMovieNum(), 
you must specify a level in Flash Player into which the SWF file will load. When a SWF file is 
loaded into a level, you can use the syntax, _levelN, where N is the level number, to target the 
SWF file.

When you load a SWF file, you can specify any level number and you can load SWF files into a 
level that already has a SWF file loaded into it. If you do, the new SWF file will replace the 
existing SWF file. If you load a SWF file into level 0, every level in Flash Player is unloaded, and 
level 0 is replaced with the new file. The SWF file in level 0 sets the frame rate, background color, 
and frame size for all other loaded SWF files. 

The loadMovieNum() action also allows you to load JPEG files into a SWF file while it plays. For 
both images and SWF files, the upper left corner of the image aligns with the upper left corner of 
the Stage when the file loads. Also in both cases, the loaded file inherits rotation and scaling, and 
the original content is overwritten. 

Use unloadMovieNum() to remove SWF files or images that were loaded with loadMovieNum().

Example

This example loads the JPEG image image45.jpg into level 2 of Flash Player. 
loadMovieNum("http://www.blag.com/image45.jpg", 2); 

See also

loadMovie(), unloadMovieNum(), _level

loadVariables()

Availability

Flash Player 4; behavior changed in Flash Player 7.

Usage

loadVariables ("url" , target [, variables])

Parameters

url An absolute or relative URL where the variables are located. If the SWF file issuing this call 
is running in a web browser, url must be in the same domain as the SWF file; for details, see 
“Description,” below.

target The target path to a movie clip that receives the loaded variables. 

variables An optional parameter specifying an HTTP method for sending variables. The 
parameter must be the string GET or POST. If there are no variables to be sent, omit this parameter. 
The GET method appends the variables to the end of the URL and is used for small numbers of 
variables. The POST method sends the variables in a separate HTTP header and is used for long 
strings of variables.

Returns

Nothing.
422 Chapter 12:  ActionScript Dictionary



Description

Function; reads data from an external file, such as a text file or text generated by a CGI script, 
Active Server Pages (ASP), or PHP, or Perl script, and sets the values for variables in a target movie 
clip. This action can also be used to update variables in the active SWF file with new values. 

The text at the specified URL must be in the standard MIME format application/x-www-form-
urlencoded (a standard format used by CGI scripts). Any number of variables can be specified. For 
example, the following phrase defines several variables:
company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94103

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed. For more 
information, see “About allowing cross-domain data loading” on page 190.

If you want to load variables into a specific level, use loadVariablesNum() instead of 
loadVariables().

Example

This example loads information from a text file into text fields into the varTarget movie clip on 
the main Timeline. The variable names of the text fields must match the variable names in the 
data.txt file.
on(release) {

loadVariables("data.txt", "_root.varTarget");
}

See also

loadVariablesNum(), loadMovie(), loadMovieNum(), getURL(), MovieClip.loadMovie(), 
MovieClip.loadVariables()

loadVariablesNum()

Availability

Flash Player 4. Flash 4 files opened in Flash 5 or later will be converted to use the correct syntax. 
Behavior changed in Flash Player 7.

Usage

loadVariablesNum ("url" ,level [, variables])

Parameters

url An absolute or relative URL where the variables are located. If the SWF file issuing this call 
is running in a web browser, url must be in the same domain as the SWF file; for details, see 
“Description,” below.
loadVariablesNum() 423



level An integer specifying the level in Flash Player to receive the variables. 

variables An optional parameter specifying an HTTP method for sending variables. The 
parameter must be the string GET or POST. If there are no variables to be sent, omit this parameter. 
The GET method appends the variables to the end of the URL, and is used for small numbers of 
variables. The POST method sends the variables in a separate HTTP header and is used for long 
strings of variables.

Returns

Nothing.

Description

Function; reads data from an external file, such as a text file or text generated by a CGI script, 
Active Server Pages (ASP), PHP, or Perl script, and sets the values for variables in a Flash Player 
level. You can also use this function to update variables in the active SWF file with new values. 

The text at the specified URL must be in the standard MIME format application/x-www-form-
urlencoded (a standard format used by CGI scripts). Any number of variables can be specified. For 
example, the following phrase defines several variables:
company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94103

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed. For more 
information, see “About allowing cross-domain data loading” on page 190.

If you want to load variables into a target MovieClip, use loadVariables() instead of 
loadVariablesNum().

Example

This example loads information from a text file into text fields in the main Timeline of the SWF 
at level 0 in Flash Player. The variable names of the text fields must match the variable names in 
the data.txt file.
on(release) {

loadVariablesNum("data.txt", 0);
}

See also

getURL(), loadMovie(), loadMovieNum(), loadVariables(), MovieClip.loadMovie(), 
MovieClip.loadVariables()
424 Chapter 12:  ActionScript Dictionary



LoadVars class

Availability

Flash Player 6.

Description

The LoadVars class is an alternative to the loadVariables() function for transferring variables 
between a Flash application and a server.

You can use the LoadVars class to obtain verification of successful data loading, progress 
indications, and stream data while it downloads. The LoadVars class works much like the XML 
class; it uses the methods load(), send(), and sendAndLoad() to communicate with a server. 
The main difference between the LoadVars class and the XML class is that LoadVars transfers 
ActionScript name and value pairs, rather than an XML DOM tree stored in the XML object.

The LoadVars class follows the same security restrictions as the XML class.

Method summary for the LoadVars class

Property summary for the LoadVars class

Event handler summary for the LoadVars class

Method Description

LoadVars.addRequestHeader() Adds or changes HTTP headers for POST operations.

LoadVars.getBytesLoaded() Returns the number of bytes downloaded by LoadVars.load() or 
LoadVars.sendAndLoad().

LoadVars.getBytesTotal() Returns the total number of bytes that will be downloaded by a load 
or sendAndLoad method.

LoadVars.load() Downloads variables from a specified URL.

LoadVars.send() Posts variables from a LoadVars object to a URL.

LoadVars.sendAndLoad() Posts variables from a LoadVars object to a URL and downloads 
the server’s response to a target object. 

LoadVars.toString() Returns a URL-encoded string that contains all the enumerable 
variables in the LoadVars object.

Property Description

LoadVars.contentType Indicates the MIME type of the data. 

LoadVars.loaded A Boolean value that indicates whether a load or sendAndLoad 
operation has completed.

Event handler Description

LoadVars.onData Invoked when data has been completely downloaded from the server, 
or when an error occurs while data is downloading from a server.

LoadVars.onLoad Invoked when a load or sendAndLoad operation has completed.
LoadVars class 425



Constructor for the LoadVars class

Availability

Flash Player 6.

Usage

new LoadVars()

Parameters

None.

Returns

Nothing.

Description

Constructor; creates a LoadVars object. You can then use the methods of that LoadVars object to 
send and load data. 

Example

The following example creates a LoadVars object called my_lv:
var my_lv = new LoadVars();

LoadVars.addRequestHeader()

Availability

Flash Player 6. 

Usage

my_lv.addRequestHeader(headerName, headerValue)

my_lv.addRequestHeader(["headerName_1", "headerValue_1" ... "headerName_n", 
"headerValue_n"])

Parameters

headerName An HTTP request header name.

headerValue The value associated with headerName.

Returns

Nothing.

Description

Method; adds or changes HTTP request headers (such as Content-Type or SOAPAction) sent 
with POST actions. In the first usage, you pass two strings to the method: headerName and 
headerValue. In the second usage, you pass an array of strings, alternating header names and 
header values.

If multiple calls are made to set the same header name, each successive value will replace the value 
set in the previous call.
426 Chapter 12:  ActionScript Dictionary



The following standard HTTP headers cannot be added or changed with this method: Accept-
Ranges, Age, Allow, Allowed, Connection, Content-Length, Content-Location, Content-
Range, ETag, Host, Last-Modified, Locations, Max-Forwards, Proxy-Authenticate, Proxy-
Authorization, Public, Range, Retry-After, Server, TE, Trailer, Transfer-Encoding, 
Upgrade, URI, Vary, Via, Warning, and WWW-Authenticate.

Example

This example adds a custom HTTP header named SOAPAction with a value of Foo to the 
my_lv object.
my_lv.addRequestHeader("SOAPAction", "'Foo'");

This next example creates an array named headers that contains two alternating HTTP headers 
and their associated values. The array is passed as an argument to addRequestHeader().
var headers = ["Content-Type", "text/plain", "X-ClientAppVersion", "2.0"];
my_lv.addRequestHeader(headers);

See also

XML.addRequestHeader()

LoadVars.contentType

Availability

Flash Player 6.

Usage

my_lv.contentType

Description

Property; the MIME type that is sent to the server when you call LoadVars.send() or 
LoadVars.sendAndLoad(). The default is application/x-www-form-urlencoded.

See also

LoadVars.send(), LoadVars.sendAndLoad()
LoadVars.contentType 427



LoadVars.getBytesLoaded()

Availability

Flash Player 6.

Usage

my_lv.getBytesLoaded()

Parameters

None. 

Returns

An integer.

Description

Method; returns the number of bytes downloaded by LoadVars.load() or 
LoadVars.sendAndLoad(). This method returns undefined if no load operation is in progress, 
or if a load operation has not yet begun.

LoadVars.getBytesTotal()

Availability

Flash Player 6.

Usage 

my_lv.getBytesTotal()

Parameters

None.

Returns

An integer.

Description

Method; returns the total number of bytes downloaded by LoadVars.load() or 
LoadVars.sendAndLoad(). This method returns undefined if no load operation is in progress 
or if a load operation has not yet begun. This method also returns undefined if the number of 
total bytes can’t be determined; for example, if the download was initiated but the server did not 
transmit an HTTP content-length.
428 Chapter 12:  ActionScript Dictionary



LoadVars.load()

Availability

Flash Player 6; behavior changed in Flash Player 7.

Usage

my_lv.load(url)

Parameters

url The URL from which to download the variables. If the SWF file issuing this call is 
running in a web browser, url must be in the same domain as the SWF file; for details, see 
“Description,” below.

Returns

A string. 

Description

Method; downloads variables from the specified URL, parses the variable data, and places the 
resulting variables into my_lv. Any properties in my_lv with the same names as downloaded 
variables are overwritten. Any properties in my_lv with different names than downloaded 
variables are not deleted. This is an asynchronous action. 

The downloaded data must be in the MIME content type application/x-www-form-urlencoded. 
This is the same format used by loadVariables().

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed. For more 
information, see “About allowing cross-domain data loading” on page 190.

Also, in files published for Flash Player 7, case sensitivity (see “Case sensitivity” on page 29) is 
supported for external variables loaded with LoadVars.load().

This method is similar to XML.load().
LoadVars.load() 429



LoadVars.loaded

Availability

Flash Player 6.

Usage

my_lv.loaded

Description 

Property; undefined by default. When a LoadVars.load() or LoadVars.sendAndLoad() 
operation is started, the loaded property is set to false; when the operation completes, the 
loaded property is set to true. If the operation has not yet completed or has failed with an error, 
the loaded property remains set to false. 

This property is similar to the XML.loaded property.

LoadVars.onData

Availability

Flash Player 6.

Usage

my_lv.onData = function(src) {
// your statements here

}

Parameters

src The raw (unparsed) data from a LoadVars.load() or LoadVars.sendAndLoad() 
method call.

Returns

Nothing.

Description

Event handler; invoked when data has been completely downloaded from the server, or when an 
error occurs while data is downloading from a server. This handler is invoked before the data is 
parsed and therefore can be used to call a custom parsing routine instead of the one built in to 
Flash Player. The value of the src parameter passed to the function assigned to 
LoadVars.onData can either be undefined, or a string that contains the URL-encoded name-
value pairs downloaded from the server. If the returned value is undefined, an error occurred 
while downloading the data from the server.

The default implementation of LoadVars.onData invokes LoadVars.onLoad. You can override 
this default implementation by assigning a custom function to LoadVars.onData, but 
LoadVars.onLoad will no longer be called unless you call it in your implementation of 
LoadVars.onData.
430 Chapter 12:  ActionScript Dictionary



LoadVars.onLoad

Availability

Flash Player 6.

Usage

my_lv.onLoad = function(success) {
// your statements here

}

Parameters

success The parameter indicates whether the load operation ended in success (true) or 
failure (false).

Returns

A Boolean value.

Description

Event handler; invoked when a LoadVars.load() or LoadVars.sendAndLoad() operation has 
ended. If the operation was successful, my_lv is populated with variables downloaded by the 
operation, and these variables are available when this handler is invoked.

This handler is undefined by default.

This method is similar to XML.onLoad(). 
LoadVars.onLoad 431



LoadVars.send()

Availability

Flash Player 6.

Usage

my_lv.send(url [,target, method])

Parameters

url The URL to upload variables to.

target The browser frame window in which any response will be displayed.

method The GET or POST method of the HTTP protocol.

Returns

A string.

Description

Method; sends the variables in the my_lv object to the specified URL. All enumerable variables in 
my_lv are concatenated into a string in the application/x-www-form-urlencoded format by default, 
and the string is posted to the URL using the HTTP POST method. This is the same format used 
by the loadVariables() action. The MIME content type sent in the HTTP request headers is 
the value of my_lv.contentType, or the default application/x-www-form-urlencoded. The POST 
method is used unless GET is specified.

If the target parameter is specified, the server’s response is displayed in the browser frame 
window named target. If the target parameter is omitted, the server’s response is discarded.

This method is similar to XML.send().

LoadVars.sendAndLoad()

Availability

Flash Player 6; behavior changed in Flash Player 7.

Usage

my_lv.sendAndLoad(url, targetObject[, method])

Parameters

url The URL to upload variables to. If the SWF file issuing this call is running in a web 
browser, url must be in the same domain as the SWF file; for details, see “Description,” below.

targetObject The LoadVars object that receives the downloaded variables.

method The GET or POST method of the HTTP protocol.

Returns

A string. 
432 Chapter 12:  ActionScript Dictionary



Description

Method; posts variables in the my_lv object to the specified URL. The server response 
is downloaded, parsed as variable data, and the resulting variables are placed in the 
targetObject object.

Variables are posted in the same manner as LoadVars.send(). Variables are downloaded into 
targetObject in the same manner as LoadVars.load().

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed. For more 
information, see “About allowing cross-domain data loading” on page 190.

This method is similar to XML.sendAndLoad().

LoadVars.toString()

Availability

Flash Player 6.

Usage

my_lv.toString()

Parameters

None.

Returns

A string. 

Description

Method; returns a string containing all enumerable variables in my_lv, in the MIME content 
encoding application/x-www-form-urlencoded.

Example

var myVars = new LoadVars();
myVars.name = “Gary”;
myVars.age = 26;
trace (myVars.toString());
//would output
//name=Gary&age=26
LoadVars.toString() 433



LocalConnection class

Availability

Flash Player 6.

Description

The LocalConnection class lets you develop SWF files that can send instructions to each other 
without the use of fscommand() or JavaScript. LocalConnection objects can communicate only 
between SWF files that are running on the same client machine, but they can be running in two 
different applications—for example, a SWF file running in a browser and a SWF file running in a 
projector. You can use LocalConnection objects to send and receive data within a single SWF file, 
but this is not a standard implementation; all the examples in this section illustrate 
communication between different SWF files.

The primary methods used to send and receive data are LocalConnection.send() and 
LocalConnection.connect(). At its most basic, your code will implement the following 
commands; notice that both the LocalConnection.send() and LocalConnection.connect() 
commands specify the same connection name, lc_name:
// Code in the receiving movie
receiving_lc = new LocalConnection();
receiving_lc.methodToExecute = function(param1, param2) 
{ 

// Code to be executed
}
receiving_lc.connect("lc_name");
// Code in the sending movie
sending_lc = new LocalConnection();
sending_lc.send("lc_name", "methodToExecute", dataItem1, dataItem2)

The simplest way to use a LocalConnection object is to allow communication only between 
LocalConnection objects located in the same domain, since you won’t have to address issues 
related to security. However, if you need to allow communication between domains, you have a 
number of ways to implement security measures. For more information, see the discussion of the 
connectionName parameter in LocalConnection.send(), and also the 
LocalConnection.allowDomain and LocalConnection.domain() entries. 

Method summary for the LocalConnection class

Method Description

LocalConnection.close() Closes (disconnects) the LocalConnection object.

LocalConnection.connect() Prepares the LocalConnection object to receive 
commands from a LocalConnection.send() command.

LocalConnection.domain() Returns a string representing the superdomain of the 
location of the current SWF file.

LocalConnection.send() Invokes a method on a specified LocalConnection object.
434 Chapter 12:  ActionScript Dictionary



Event handler summary for the LocalConnection class

Constructor for the LocalConnection class

Availability

Flash Player 6.

Usage

new LocalConnection()

Parameters

None.

Returns

Nothing.

Description

Constructor; creates a LocalConnection object.

Example

The following example shows how receiving and sending SWF files create LocalConnnection 
objects. Notice that the two SWF files can use the same name or different names for their 
respective LocalConnection objects. In this example, they use the same name—my_lc.
// Code in the receiving SWF 
my_lc = new LocalConnection();
my_lc.someMethod = function() {

// Your statements here
}
my_lc.connect("connectionName");

// Code in the sending SWF 
my_lc = new LocalConnection();
my_lc.send("connectionName", "someMethod");

See also

LocalConnection.connect(), LocalConnection.send()

Event handler Description

LocalConnection.allowDomain Invoked whenever the current (receiving) 
LocalConnection object receives a request to invoke a 
method from a sending LocalConnection object.

LocalConnection.allowInsecureDomain Invoked whenever the current (receiving) 
LocalConnection object, which is in a SWF file hosted at 
a domain using a secure protocol (HTTPS), receives a 
request to invoke a method from a sending 
LocalConnection object that is in a SWF file that is 
hosted at a nonsecure protocol. 

LocalConnection.onStatus Invoked after a sending LocalConnection object tries to 
send a command to a receiving LocalConnection object.
LocalConnection class 435



LocalConnection.allowDomain

Availability

Flash Player 6; behavior changed in Flash Player 7.

Usage

receiving_lc.allowDomain = function([sendingDomain]) {
// Your statements here return true or false

}

Parameters

sendingDomain An optional parameter specifying the domain of the SWF file containing the 
sending LocalConnection object.

Returns

Nothing.

Description

Event handler; invoked whenever receiving_lc receives a request to invoke a method from a 
sending LocalConnection object. Flash expects the code you implement in this handler to return 
a Boolean value of true or false. If the handler doesn’t return true, the request from the 
sending object is ignored, and the method is not invoked.

Use this command to explicitly permit LocalConnection objects from specified domains, or from 
any domain, to execute methods of the receiving LocalConnection object. If you don’t declare the 
sendingDomain parameter, you probably want to accept commands from any domain, and the 
code in your handler would be simply return true. If you do declare sendingDomain, you 
probably want to compare the value of sendingDomain with domains from which you want to 
accept commands. The following examples illustrate both of these implementations.

In files running in Flash Player 6, the sendingDomain parameter contains the superdomain of the 
caller. In files running in Flash Player 7 or later, the sendingDomain parameter contains the exact 
domain of the caller. In the latter case, to allow access by SWF files hosted at either 
www.domain.com or store.domain.com, you must explicitly allow access from both domains.
// For Flash Player 6
receiving_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="domain.com");
}
// Corresponding commands to allow access by SWF files
// that are running in Flash Player 7 or later
receiving_lc.allowDomain = function(sendingDomain) {

return(sendingDomain=="www.domain.com" ||
sendingDomain=="store.domain.com");

}

Also, for files running in Flash Player 7 or later, you can’t use this method to allow SWF files 
hosted using a secure protocol (HTTPS) to permit access from SWF files hosted in nonsecure 
protocols; you must use the LocalConnection.allowInsecureDomain event handler instead.
436 Chapter 12:  ActionScript Dictionary



Example

The following example shows how a LocalConnection object in a receiving SWF file can permit 
SWF files from any domain to invoke its methods. Compare this to the example in 
LocalConnection.connect(), in which only SWF files from the same domain can invoke the 
Trace method in the receiving SWF file. For a discussion of the use of the underscore (_) in the 
connection name, see LocalConnection.send().
var aLocalConnection = new LocalConnection();
aLocalConnection.Trace = function(aString)
{

aTextField = aTextField + aString + newline;
}

aLocalConnection.allowDomain = function() {
// Any domain can invoke methods on this LocalConnection object
return true;

}

aLocalConnection.connect("_trace");

In the following example, the receiving SWF file accepts commands only from SWF files located 
in thisDomain.com or thatDomain.com.
var aLocalConnection = new LocalConnection();
aLocalConnection.Trace = function(aString)
{

aTextField = aTextField + aString + newline;
}

aLocalConnection.allowDomain = function(sendingDomain)
{

return(sendingDomain=="thisDomain.com" || sendingDomain=="thatDomain.com");
}

aLocalConnection.connect("_trace");

See also

LocalConnection.connect(), LocalConnection.domain(), LocalConnection.send()

LocalConnection.allowInsecureDomain

Availability

Flash Player 7.

Usage

receiving_lc.allowInsecureDomain = function([sendingDomain]) {
// Your statements here return true or false

}

Parameters

sendingDomain An optional parameter specifying the domain of the SWF file containing the 
sending LocalConnection object.

Returns

Nothing.
LocalConnection.allowInsecureDomain 437



Description

Event handler; invoked whenever receiving_lc, which is in a SWF file hosted at a domain 
using a secure protocol (HTTPS), receives a request to invoke a method from a sending 
LocalConnection object that is in a SWF file that is hosted at a nonsecure protocol. Flash expects 
the code you implement in this handler to return a Boolean value of true or false. If the 
handler doesn’t return true, the request from the sending object is ignored, and the method is 
not invoked.

By default, SWF files hosted using the HTTPS protocol can be accessed only by other SWF files 
hosted using the HTTPS protocol. This implementation maintains the integrity provided by the 
HTTPS protocol.

Using this method to override the default behavior is not recommended, as it compromises 
HTTPS security. However, you may need to do so, for example, if you need to permit access to 
HTTPS files published for Flash Player 7 or later from HTTP files published for Flash Player 6. 

A SWF file published for Flash Player 6 can use the LocalConnection.allowDomain event 
handler to permit HTTP to HTTPS access. However, because security is implemented differently 
in Flash Player 7, you must use the LocalConnection.allowInsecureDomain() method to 
permit such access in SWF files published for Flash Player 7 or later. 

See also

LocalConnection.allowDomain, LocalConnection.connect()

LocalConnection.close()

Availability

Flash Player 6.

Usage

receiving_lc.close

Parameters

None.

Returns

Nothing.

Description

Method; closes (disconnects) a LocalConnection object. Issue this command when you no 
longer want the object to accept commands—for example, when you want to issue a 
LocalConnection.connect() command using the same connectionName parameter in 
another SWF file.

See also

LocalConnection.connect()
438 Chapter 12:  ActionScript Dictionary



LocalConnection.connect()

Availability

Flash Player 6.

Usage

receiving_lc.connect(connectionName)

Parameters

connectionName A string that corresponds to the connection name specified in the 
LocalConnection.send() command that wants to communicate with receiving_lc. 

Returns

A Boolean value of true if no other process running on the same client machine has already 
issued this command using the same value for the connectionName parameter, false otherwise.

Description

Method; prepares a LocalConnection object to receive commands from a 
LocalConnection.send() command (called the “sending LocalConnection object”). The object 
used with this command is called the “receiving LocalConnection object.” The receiving and 
sending objects must be running on the same client machine.

Be sure to define the methods attached to receiving_lc before calling this method, as shown in 
all the examples in this section. 

By default, the Flash Player resolves connectionName into a value of 
"superdomain:connectionName", where superdomain is the superdomain of the SWF file 
containing the LocalConnection.connect() command. For example, if the SWF file 
containing the receiving LocalConnection object is located at www.someDomain.com, 
connectionName resolves to "someDomain.com:connectionName". (If a SWF file is located on 
the client machine, the value assigned to superdomain is "localhost".)

Also by default, the Flash Player lets the receiving LocalConnection object accept commands only 
from sending LocalConnection objects whose connection name also resolves into a value of 
"superdomain:connectionName". In this way, Flash makes it very simple for SWF files located 
in the same domain to communicate with each other.

If you are implementing communication only between SWF files in the same domain, specify a 
string for connectionName that does not begin with an underscore (_) and that does not specify a 
domain name (for example, "myDomain:connectionName"). Use the same string in the 
LocalConnection.connect(connectionName) command.

If you are implementing communication between SWF files located in different domains, 
see the discussion of connectionName in LocalConnection.send(), and also the 
LocalConnection.allowDomain and LocalConnection.domain() entries.
LocalConnection.connect() 439



Example

The following example shows how a SWF file in a particular domain can invoke a method named 
Trace in a receiving SWF file in the same domain. The receiving SWF file functions as a trace 
window for the sending SWF file; it contains two methods that other SWF files can call—
Trace and Clear. Buttons pressed in the sending SWF files call these methods with 
specified parameters.
// Receiving SWF
var aLocalConnection = new LocalConnection();
aLocalConnection.Trace = function(aString)
{

aTextField = aTextField + aString + newline;
}
aLocalConnection.Clear = function()
{

aTextField = "";
}
aLocalConnection.connect("trace");
stop();

SWF 1 contains the following code attached to a button labeled PushMe. When you push the 
button, you see the sentence “The button was pushed.” in the receiving SWF file.
on (press)
{

var lc = new LocalConnection();
lc.send("trace", "Trace", "The button was pushed.");
delete lc;

}

SWF 2 contains an input text box with a var name of myText, and the following code attached to 
a button labeled Copy. When you type some text and then push the button, you see the text you 
typed in the receiving SWF file.
on (press)
{

_parent.lc.send("trace", "Trace", _parent.myText);
_parent.myText = "";

}

SWF 3 contains the following code attached to a button labeled Clear. When you push the 
button, the contents of the trace window in the receiving SWF file are cleared (erased).
on (press)
{

var lc = new LocalConnection();
lc.send("trace", "Clear");
delete lc;

}

See also

LocalConnection.send()
440 Chapter 12:  ActionScript Dictionary



LocalConnection.domain()

Availability

Flash Player 6; behavior changed in Flash Player 7.

Usage

my_lc.domain()

Parameters

None.

Returns

A string representing the domain of the location of the current SWF file; for details, see 
“Description,” below.

Description

Method; returns a string representing the domain of the location of the current SWF file. 

In SWF files published for Flash Player 6, the returned string is the superdomain of the current 
SWF file. For example, if the SWF file is located at www.macromedia.com, this command returns 
"macromedia.com". 

In SWF files published for Flash Player 7 or later, the returned string is the exact domain of the 
current SWF file. For example, if the SWF file is located at www.macromedia.com, this 
command returns "www.macromedia.com". 

If the current SWF file is a local file residing on the client machine, this command returns 
"localhost".

The most common way to use this command is to include the domain name of the sending 
LocalConnection object as a parameter to the method you plan to invoke in the receiving 
LocalConnection object, or in conjunction with LocalConnection.allowDomain to accept 
commands from a specified domain. If you are enabling communication only between 
LocalConnection objects that are located in the same domain, you probably don’t need to 
use this command.

Example

In the following example, a receiving SWF file accepts commands only from SWF files located in 
the same domain or at macromedia.com.
my_lc = new LocalConnection();
my_lc.allowDomain = function(sendingDomain) 
{

return (sendingDomain==this.domain() || sendingDomain=="macromedia.com");
}

In the following example, a sending SWF file located at yourdomain.com invokes a method in a 
receiving SWF file located at mydomain.com. The sending SWF file includes its domain name as 
a parameter to the method it invokes, so the receiving SWF file can return a reply value to a 
LocalConnection object in the correct domain. The sending SWF file also specifies that it will 
accept commands only from SWF files at mydomain.com. 
LocalConnection.domain() 441



Line numbers are included for reference purposes. The sequence of events is as follows:

• The receiving SWF file prepares to receive commands on a connection named "sum" (line 11). 
The Flash Player resolves the name of this connection to "mydomain.com:sum" (see 
LocalConnection.connect()).

• The sending SWF file prepares to receive a reply on the LocalConnection object named 
"result" (line 58). It also specifies that it will accept commands only from SWF files at 
mydomain.com (lines 51 to 53). 

• The sending SWF file invokes the aSum method of a connection named "mydomain.com:sum" 
(line 59), and passes the following parameters: its domain (lc.domain()), the name of the 
connection to receive the reply ("result"), and the values to be used by aSum (123 and 456).

• The aSum method (line 6) is invoked with the following values: 
sender = "mydomain.com:result", replyMethod = "aResult", n1 = 123, and n2 = 456. It 
therefore executes the following line of code:
this.send("mydomain.com:result", "aResult", (123 + 456));

• The aResult method (line 54) displays the value returned by aSum (579). 
// The receiving SWF at http://www.mydomain.com/folder/movie.swf
// contains the following code

1 var aLocalConnection = new LocalConnection();
2 aLocalConnection.allowDomain = function() 
3 { 

// Allow connections from any domain
4 return true; 
5 }
6 aLocalConnection.aSum = function(sender, replyMethod, n1, n2) 
7 { 
8 this.send(sender, replyMethod, (n1 + n2));
9 }
10
11 aLocalConnection.connect("sum");

// The sending SWF at http://www.yourdomain.com/folder/movie.swf
// contains the following code 

50 var lc = new LocalConnection();
51 lc.allowDomain = function(aDomain) { 

// Allow connections only from mydomain.com
52 return (aDomain == "mydomain.com"); 
53 }
54 lc.aResult = function(aParam) { 
55 trace("The sum is " + aParam);
56 }
57
58 lc.connect("result");
59 lc.send("mydomain.com:sum", "aSum", lc.domain() + ':' + "result",

"aResult", 123, 456);

See also

LocalConnection.allowDomain
442 Chapter 12:  ActionScript Dictionary



LocalConnection.onStatus

Availability

Flash Player 6.

Usage

sending_lc.onStatus = function(infoObject) {
// your statements here

}

Parameters

infoObject A parameter defined according to the status message. For details about this 
parameter, see “Description,” below.

Returns

Nothing.

Description

Event handler; invoked after a sending LocalConnection object tries to send a command to a 
receiving LocalConnection object. If you want to respond to this event handler, you must create a 
function to process the information object sent by the LocalConnection object. 

If the information object returned by this event handler contains a level value of "Status", 
Flash successfully sent the command to a receiving LocalConnection object. This does not mean 
that Flash successfully invoked the specified method of the receiving LocalConnection object, 
only that Flash was able to send the command. For example, the method is not invoked if the 
receiving LocalConnection object doesn’t allow connections from the sending domain, or if the 
method does not exist. The only way to know for sure if the method was invoked is to have the 
receiving object send a reply to the sending object.

If the information object returned by this event handler contains a level value of "Error", Flash 
was unable to send the command to a receiving LocalConnection object, most likely because 
there is no receiving LocalConnection object connected whose name corresponds to the name 
specified in the sending_lc.send() command that invoked this handler.

In addition to this onStatus handler, Flash also provides a “super” function called 
System.onStatus. If onStatus is invoked for a particular object and there is no function assigned 
to respond to it, Flash processes a function assigned to System.onStatus if it exists.

In most cases, you will implement this handler only to respond to error conditions, as shown in 
the following example. 

Example

The following example displays information about a failed connection in the Output panel:
sending_lc = new LocalConnection();
sending_lc.onStatus = function(infoObject)
{

if (infoObject.level == "Error")
{

trace("Connection failed.");
}

}
sending_lc.send("receiving_lc", "methodName");
LocalConnection.onStatus 443



See also

LocalConnection.send(), System.onStatus

LocalConnection.send()

Availability

Flash Player 6.

Usage

sending_lc.send (connectionName, method [, p1,...,pN])

Parameters

connectionName A string that corresponds to the connection name specified in the 
LocalConnection.connect() command that wants to communicate with sending_lc.

method A string specifying the name of the method to be invoked in the receiving 
LocalConnection object. The following method names cause the command to fail: send, 
connect, close, domain, onStatus, and allowDomain.

p1,...pN Optional parameters to be passed to the specified method. 

Returns

A Boolean value of true if Flash can carry out the request, false otherwise. 
Note: A return value of true does not necessarily mean that Flash successfully connected to a 
receiving LocalConnection object, only that the command is syntactically correct. To determine 
whether the connection succeeded, see LocalConnection.onStatus.

Description

Method; invokes the method named method on a connection opened with the 
LocalConnection.connect(connectionName) command (called the “receiving 
LocalConnection object”). The object used with this command is called the “sending 
LocalConnection object”. The SWF files that contain the sending and receiving objects must be 
running on the same client machine.

There is a limit to the amount of data you can pass as parameters to this command. If the 
command returns false but your syntax is correct, try breaking up the 
LocalConnection.send() requests into multiple commands.

As discussed in the entry LocalConnection.connect(), Flash adds the current superdomain to 
connectionName by default. If you are implementing communication between different 
domains, you need to define connectionName in both the sending and receiving 
LocalConnection objects in such a way that Flash does not add the current superdomain to 
connectionName. There are two ways you can do so:

• Use an underscore (_) at the beginning of connectionName in both the sending and 
receiving LocalConnection objects. In the SWF file containing the receiving object, use 
LocalConnection.allowDomain to specify that connections from any domain will be 
accepted. This implementation lets you store your sending and receiving SWF files in 
any domain.
444 Chapter 12:  ActionScript Dictionary



• Include the superdomain in connectionName in the sending LocalConnection object—for 
example, myDomain.com:myConnectionName. In the receiving object, use 
LocalConnection.allowDomain to specify that connections from the specified superdomain 
will be accepted (in this case, myDomain.com), or that connections from any domain will 
be accepted.

Note: You cannot specify a superdomain in connectionName in the receiving LocalConnection object, 
only in the sending LocalConnection object.

Example

For an example of communicating between LocalConnection objects located in the same domain, 
see LocalConnection.connect(). For an example of communicating between LocalConnection 
objects located in any domain, see LocalConnection.allowDomain. For an example of 
communicating between LocalConnection objects located in specified domains, see 
LocalConnection.allowDomain and LocalConnection.domain().

See also

LocalConnection.allowDomain, LocalConnection.connect(), 
LocalConnection.domain(), LocalConnection.onStatus

lt (less than — string specific)

Availability

Flash Player 4. This operator was deprecated in Flash 5 in favor of the new < (less than) operator.

Usage

expression1 lt expression2

Parameters

expression1, expression2 Numbers, strings, or variables.

Description

Operator (comparison); compares expression1 to expression2 and returns true if 
expression1 is less than expression2; otherwise, it returns false.

See also

< (less than)

Math class

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Description

The Math class is a top-level class whose methods and properties you can use without using 
a constructor. 
Math class 445



Use the methods and properties of this class to access and manipulate mathematical constants and 
functions. All of the properties and methods of the Math class are static, and must be called using 
the syntax Math.method(parameter) or Math.constant. In ActionScript, constants are defined 
with the maximum precision of double-precision IEEE-754 floating-point numbers.

Several of the Math class methods take the radian of an angle as an parameter. You can use the 
equation below to calculate radian values, or simply pass the equation (entering a value for 
degrees) for the radian parameter.

To calculate a radian value, use this formula:
radian = Math.PI/180 * degree

The following is an example of passing the equation as an parameter to calculate the sine of a 45-
degree angle:

Math.SIN(Math.PI/180 * 45) is the same as Math.SIN(.7854)

The Math class is fully supported in Flash Player 5. In Flash Player 4, you can use methods of the 
Math class, but they are emulated using approximations and may not be as accurate as the non-
emulated math functions supported by Flash Player 5. 

Method summary for the Math class 

Method Description

Math.abs() Computes an absolute value.

Math.acos() Computes an arc cosine.

Math.asin() Computes an arc sine.

Math.atan() Computes an arc tangent.

Math.atan2() Computes an angle from the x-axis to the point.

Math.ceil() Rounds a number up to the nearest integer.

Math.cos() Computes a cosine.

Math.exp() Computes an exponential value.

Math.floor() Rounds a number down to the nearest integer.

Math.log() Computes a natural logarithm.

Math.max() Returns the larger of the two integers.

Math.min() Returns the smaller of the two integers.

Math.pow() Computes x raised to the power of the y.

Math.random() Returns a pseudo-random number between 0.0 and 1.0.

Math.round() Rounds to the nearest integer.

Math.sin() Computes a sine.

Math.sqrt() Computes a square root.

Math.tan() Computes a tangent.
446 Chapter 12:  ActionScript Dictionary



Property summary for the Math class

All of the properties for the Math class are constants.

Math.abs()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.abs(x)

Parameters

x A number.

Returns

A number.

Description

Method; computes and returns an absolute value for the number specified by the parameter x.

Math.acos()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.acos(x)

Parameters

x A number from -1.0 to 1.0.

Property Description

Math.E Euler's constant and the base of natural logarithms (approximately 2.718).

Math.LN2 The natural logarithm of 2 (approximately 0.693).

Math.LOG2E The base 2 logarithm of e (approximately 1.442).

Math.LN2 The natural logarithm of 10 (approximately 2.302).

Math.LOG10E The base 10 logarithm of e (approximately 0.434).

Math.PI The ratio of the circumference of a circle to its diameter (approximately 3.14159).

Math.SQRT1_2 The reciprocal of the square root of 1/2 (approximately 0.707).

Math.SQRT2 The square root of 2 (approximately 1.414).
Math.acos() 447



Returns

Nothing.

Description

Method; computes and returns the arc cosine of the number specified in the parameter x, 
in radians.

Math.asin()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.asin(x);

Parameters

x A number from -1.0 to 1.0.

Returns

A number.

Description

Method; computes and returns the arc sine for the number specified in the parameter x, 
in radians.

Math.atan()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.atan(x)

Parameters

x A number.

Returns

A number.

Description

Method; computes and returns the arc tangent for the number specified in the parameter x. The 
return value is between negative pi divided by 2, and positive pi divided by 2.
448 Chapter 12:  ActionScript Dictionary



Math.atan2()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.atan2(y, x)

Parameters

x A number specifying the x coordinate of the point.

y A number specifying the y coordinate of the point.

Returns

A number.

Description

Method; computes and returns the arc tangent of y/x in radians. The return value represents the 
angle opposite the opposite angle of a right triangle, where x is the adjacent side length and y is 
the opposite side length. 

Math.ceil()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.ceil(x)

Parameters

x A number or expression.

Returns

A number.

Description

Method; returns the ceiling of the specified number or expression. The ceiling of a number is the 
closest integer that is greater than or equal to the number.
Math.ceil() 449



Math.cos()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.cos(x)

Parameters

x An angle measured in radians.

Returns

A number.

Description

Method; returns the cosine (a value from -1.0 to 1.0) of the angle specified by the parameter x. 
The angle x must be specified in radians. Use the information outlined in the Math class entry to 
calculate a radian.

Math.E

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.E

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the base of natural logarithms, expressed as e. The 
approximate value of e is 2.71828.
450 Chapter 12:  ActionScript Dictionary



Math.exp()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.exp(x)

Parameters

x The exponent; a number or expression.

Returns

A number.

Description

Method; returns the value of the base of the natural logarithm (e), to the power of the exponent 
specified in the parameter x. The constant Math.E can provide the value of e.

Math.floor()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.floor(x)

Parameters

x A number or expression.

Returns

A number.

Description

Method; returns the floor of the number or expression specified in the parameter x. The floor is 
the closest integer that is less than or equal to the specified number or expression.

Example

The following code returns a value of 12:
Math.floor(12.5);
Math.floor() 451



Math.log()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.log(x)

Parameters

x A number or expression with a value greater than 0.

Returns

A number.

Description

Method; returns the logarithm of parameter x.

Math.LN2

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.LN2

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the natural logarithm of 2, expressed as loge2, with an 
approximate value of 0.69314718055994528623. 
452 Chapter 12:  ActionScript Dictionary



Math.LN10

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.LN10

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the natural logarithm of 10, expressed as loge10, with an 
approximate value of 2.3025850929940459011.

Math.LOG2E

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.LOG2E

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the base-2 logarithm of the constant e (Math.E), expressed 
as log2e, with an approximate value of 1.442695040888963387.
Math.LOG2E 453



Math.LOG10E

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.LOG10E

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the base-10 logarithm of the constant e (Math.E), 
expressed as log10e, with an approximate value of 0.43429448190325181667.

Math.max()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.max(x , y)

Parameters

x A number or expression.

y A number or expression.

Returns

A number.

Description

Method; evaluates x and y and returns the larger value.
454 Chapter 12:  ActionScript Dictionary



Math.min()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.min(x , y)

Parameters

x A number or expression.

y A number or expression.

Returns

A number.

Description

Method; evaluates x and y and returns the smaller value.

Math.PI

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.PI

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the ratio of the circumference of a circle to its diameter, 
expressed as pi, with a value of 3.14159265358979.
Math.PI 455



Math.pow()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.pow(x , y)

Parameters

x A number to be raised to a power.

y A number specifying a power the parameter x is raised to.

Returns

A number.

Description

Method; computes and returns x to the power of y: xy.

Math.random()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.random()

Parameters

None.

Returns

A number.

Description

Method; returns n, where 0 <= n < 1. 

See also

random
456 Chapter 12:  ActionScript Dictionary



Math.round()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.round(x)

Parameters

x A number.

Returns

A number.

Description

Method; rounds the value of the parameter x up or down to the nearest integer and returns the 
value.

Math.sin()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.sin(x)

Parameters

x An angle measured in radians.

Returns

Number; the sine of the specified angle (between -1.0 and 1.0).

Description

Method; computes and returns the sine of the specified angle in radians. Use the information 
outlined in the Math class entry to calculate a radian.

Math.sqrt()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.sqrt(x)
Math.sqrt() 457



Parameters

x A number or expression greater than or equal to 0.

Returns

A number.

Description

Method; computes and returns the square root of the specified number.

Math.SQRT1_2

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.SQRT1_2

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the square root of one-half.

Math.SQRT2

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.SQRT2

Parameters

None.

Returns

Nothing.

Description

Constant; a mathematical constant for the square root of 2, with an approximate value of 
1.414213562373.
458 Chapter 12:  ActionScript Dictionary



Math.tan()

Availability

Flash Player 5. In Flash Player 4, the methods and properties of the Math class are emulated using 
approximations and may not be as accurate as the non-emulated math functions supported by 
Flash Player 5. 

Usage

Math.tan(x)

Parameters

x An angle measured in radians.

Returns

A number.

Description

Method; computes and returns the tangent of the specified angle. To calculate a radian, use the 
information outlined in the introduction to the Math class.

maxscroll

Availability

Flash Player 4. This function has been deprecated in favor of the TextField.maxscroll 
property.

Usage

variable_name.maxscroll

Description

Property (read-only); a deprecated property that indicates the line number of the topmost visible 
line of text in a text field when the bottommost line in the field is also visible. The maxscroll 
property works with the scroll property to control the display of information in a text field. 
This property can be retrieved, but not modified.

See also

TextField.maxscroll, TextField.scroll 

mbchr

Availability

Flash Player 4. This function has been deprecated in favor of the String.fromCharCode() 
method.

Usage

mbchr(number)

Parameters

number The number to convert to a multibyte character.
mbchr 459



Returns

A string.

Description

String function; converts an ASCII code number to a multibyte character.

See also

String.fromCharCode()

mblength

Availability

Flash Player 4. This function has been deprecated in favor of the String class.

Usage

mblength(string)

Parameters

string A string. 

Returns

A number.

Description

String function; returns the length of the multibyte character string.

mbord

Availability

Flash Player 4. This function was deprecated in Flash 5 in favor of String.charCodeAt().

Usage

mbord(character)

Parameters

character The character to convert to a multibyte number.

Returns

A number.

Description

String function; converts the specified character to a multibyte number.

See also

String.fromCharCode()
460 Chapter 12:  ActionScript Dictionary



mbsubstring

Availability

Flash Player 4. This function was deprecated in Flash 5 in favor of String.substr().

Usage

mbsubstring(value, index, count)

Parameters

value The multibyte string from which to extract a new multibyte string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not including the 
index character.

Returns

A string. 

Description

String function; extracts a new multibyte character string from a multibyte character string. 

See also

String.substr()

Microphone class

Availability

Flash Player 6.

Description

The Microphone class lets you capture audio from a microphone attached to the computer that is 
running Flash Player. 

The Microphone class is primarily for use with Flash Communication Server, but can be used in a 
limited fashion without the server—for example, to transmit sound from your microphone 
through the speakers on your local system.

To create or reference a Microphone object, use the Microphone.get() method.

Method summary for the Microphone class

Method Description

Microphone.get() Returns a default or specified Microphone object, or null if 
the microphone is not available.

Microphone.setGain() Specifies the amount by which the microphone should 
boost the signal.

Microphone.setRate() Specifies the rate at which the microphone should capture 
sound, in kHz.
Microphone class 461



Property summary for the Microphone class

Event handler summary for the Microphone class

Constructor for the Microphone class

See Microphone.get(). 

Microphone.setSilenceLevel() Specifies the amount of sound required to activate 
the microphone.

Microphone.setUseEchoSuppression() Specifies whether to use the echo suppression feature of 
the audio codec.

Property (read-only) Description

Microphone.activityLevel The amount of sound the microphone is detecting.

Microphone.gain The amount by which the microphone boosts the signal 
before transmitting it.

Microphone.index The index of the current microphone.

Microphone.muted A Boolean value that specifies whether the user has 
allowed or denied access to the microphone. 

Microphone.name The name of the current sound capture device, as returned 
by the sound capture hardware.

Microphone.names Class property: an array of strings reflecting the names of all 
available sound capture devices, including sound cards 
and microphones.

Microphone.rate The sound capture rate, in kHz.

Microphone.silenceLevel() The amount of sound required to activate the microphone.

Microphone.silenceTimeout() The number of milliseconds between the time the 
microphone stops detecting sound and the time 
Microphone.onActivity(false) is called. 

Microphone.useEchoSuppression() A Boolean value that specifies whether echo suppression is 
being used.

Event handler Description

Microphone.onActivity Invoked when the microphone starts or stops detecting 
sound.

Microphone.onStatus Invoked when the user allows or denies access to the 
microphone. 

Method Description
462 Chapter 12:  ActionScript Dictionary



Microphone.activityLevel

Availability

Flash Player 6.

Usage

activeMicrophone.activityLevel

Description

Read-only property; a numeric value that specifies the amount of sound the microphone is 
detecting. Values range from 0 (no sound is being detected) to 100 (very loud sound is being 
detected). The value of this property can help you determine a good value to pass to 
Microphone.setSilenceLevel() method.

If the microphone is available but is not yet being used because Microphone.get() has not been 
called, this property is set to -1.

Example

The following example sets the variable level to the activity level of the current microphone, 
myMic.activityLevel.
var level = myMic.activityLevel;

See also

Microphone.setGain()

Microphone.gain

Availability

Flash Player 6.

Usage

activeMicrophone.gain

Description

Read-only property; the amount by which the microphone boosts the signal. Valid values are 0 
to 100. The default value is 50.

Example

The following example is attached to the nib of a slide bar. When this clip is loaded, Flash checks 
for the value myMic.gain and provides a default value if this value is undefined. The _x position 
is then used to set the gain on the microphone to the user’s preference.
onClipEvent (load) {

if (_root.myMic.gain == undefined) {
_root.myMic.setGain = 75;

}

this._x = _root.myMic.gain;
_root.txt_micgain = this._x;

left = this._x;
right = left+50;
Microphone.gain 463



top = this._y;
bottom = top;

}

on (press) {
startDrag(this, false, left, top, right, bottom);
this._xscale = 100;
this._yscale = 100;

}

on (release, releaseOutside) {
stopDrag();
g = (this._x-50)*2;
_root.myMic.setGain(g);
_root.txt_micgain = g;
this._xscale = 100;
this._yscale = 100;

}

See also

Microphone.setGain()

Microphone.get()

Availability

Flash Player 6.

Usage

Microphone.get([index])

Note: The correct syntax is Microphone.get(). To assign the Microphone object to a variable, use 
syntax like active_mic = Microphone.get().

Parameters

index An optional zero-based integer that specifies which microphone to get, as determined 
from the array that Microphone.names contains. To get the default microphone (which is 
recommended for most applications), omit this parameter. 

Returns

• If index is not specified, this method returns a reference to the default microphone or, if it is 
not available, to the first available microphone. If no microphones are available or installed, the 
method returns null.

• If index is specified, this method returns a reference to the requested microphone, or null if it 
is not available. 

Description

Method; returns a reference to a Microphone object for capturing audio. To actually begin 
capturing the audio, you must attach the Microphone object to a MovieClip object (see 
MovieClip.attachAudio()).

Unlike objects that you create using the new constructor, multiple calls to Microphone.get() 
reference the same microphone. Thus, if your script contains the lines 
mic1 = Microphone.get() and mic2 = Microphone.get(), both mic1 and mic2 reference the 
same (default) microphone.
464 Chapter 12:  ActionScript Dictionary



In general, you shouldn’t pass a value for index; simply use the Microphone.get() method to 
return a reference to the default microphone. By means of the Microphone settings panel 
(discussed later in this section), the user can specify the default microphone Flash should use. If 
you pass a value for index, you might be trying to reference a microphone other than the one the 
user prefers. You might use index in rare cases—for example, if your application is capturing 
audio from two microphones at the same time.

When a SWF file tries to access the microphone returned by the Microphone.get() method—
for example, when you issue MovieClip.attachAudio()— Flash Player displays a Privacy dialog 
box that lets the user choose whether to allow or deny access to the microphone. (Make sure your 
Stage size is at least 215 x 138 pixels; this is the minimum size Flash requires to display the 
dialog box.)

When the user responds to this dialog box, the Microphone.onStatus event handler returns an 
information object that indicates the user’s response. To determine whether the user has denied or 
allowed access to the camera without processing this event handler, use Microphone.muted. 

The user can also specify permanent privacy settings for a particular domain by right-clicking 
(Windows) or Control-clicking (Macintosh) while a SWF file is playing, choosing Settings, 
opening the Privacy panel, and selecting Remember.

If Microphone.get() returns null, either the microphone is in use by another application, or 
there are no microphones installed on the system. To determine whether any microphones are 
installed, use Microphones.names.length. To display the Flash Player Microphone Settings 
panel, which lets the user choose the microphone to be referenced by Microphone.get(), use 
System.showSettings(2).
Microphone.get() 465



Example

The following example lets the user specify the default microphone, then captures audio and plays 
it back locally. To avoid feedback, you may want to test this code while wearing headphones.
System.showSettings(2);
myMic = Microphone.get();
_root.attachAudio(myMic);

See also

Microphone.index, Microphone.muted, Microphone.names, Microphone.onStatus, 
MovieClip.attachAudio()

Microphone.index

Availability

Flash Player 6.

Usage

activeMicrophone.index

Description

Read-only property; a zero-based integer that specifies the index of the microphone, as reflected 
in the array returned by Microphone.names.

See also

Microphone.get(), Microphone.names

Microphone.muted

Availability

Flash Player 6.

Usage

activeMicrophone.muted

Description

Read-only property; a Boolean value that specifies whether the user has denied access to the 
microphone (true) or allowed access (false). When this value changes, Microphone.onStatus 
is invoked. For more information, see Microphone.get().

Example

In the following example, when the user clicks the button, Flash publishes and plays a live stream 
if the microphone is not muted.
on (press) 
{

// If the user mutes microphone, display offline notice.
// Else, publish and play live stream from microphone.
if(myMic.muted) {

_root.debugWindow+="Microphone offline." + newline;
} else {
466 Chapter 12:  ActionScript Dictionary



// Publish the microphone data by calling
// the root function pubLive().
_root.pubLive();

// Play what is being published by calling
// the root function playLive().
_root.playLive();

}
}

See also

Microphone.get(), Microphone.onStatus

Microphone.name

Availability

Flash Player 6.

Usage

activeMicrophone.name

Description

Read-only property; a string that specifies the name of the current sound capture device, as 
returned by the sound capture hardware.

Example

The following example displays the name of the default microphone in the Output panel.
myMic = Microphone.get();
trace("The microphone name is: " + myMic.name);

See also

Microphone.get(), Microphone.names

Microphone.names

Availability

Flash Player 6.

Usage

Microphone.names

Note: The correct syntax is Microphone.names. To assign the return value to a variable, use syntax like 
mic_array = Microphone.names. To determine the name of the current microphone, use 
activeMicrophone.name.

Description

Read-only class property; retrieves an array of strings reflecting the names of all available sound 
capture devices without displaying the Flash Player Privacy Settings panel. This array behaves the 
same as any other ActionScript array, implicitly providing the zero-based index of each sound 
capture device and the number of sound capture devices on the system (by means of 
Microphone.names.length). For more information, see the Array class entry.
Microphone.names 467



Calling Microphone.names requires an extensive examination of the hardware, and it may take 
several seconds to build the array. In most cases, you can just use the default microphone.

Example

The following code returns information on the array of audio devices.
allMicNames_array = Microphone.names;
_root.debugWindow += "Microphone.names located these device(s):" + newline;
for(i=0; i < allMicNames_array.length; i++){

debugWindow += "[" + i + "]: " + allMicNames[i] + newline;
}

For example, the following information could be displayed.
Microphone.names located these device(s):
[0]: Crystal SoundFusion(tm)
[1]: USB Audio Device

See also

Array class, Microphone.name

Microphone.onActivity

Availability

Flash Player 6.

Usage

activeMicrophone.onActivity = function(activity) {
// your statements here

}

Parameters

activity A Boolean value set to true when the microphone starts detecting sound, false 
when it stops.

Returns

Nothing.

Description

Event handler; invoked when the microphone starts or stops detecting sound. If you want to 
respond to this event handler, you must create a function to process its activity value. 

To specify the amount of sound required to invoke Microphone.onActivity(true), and the 
amount of time that must elapse without sound before Microphone.onActivity(false) is 
invoked, use Microphone.setSilenceLevel().

Example

The following example displays true or false in the Output panel when the microphone starts 
or stops detecting sound.
m = Microphone.get();
_root.attachAudio(m);
m.onActivity = function(mode)
{

468 Chapter 12:  ActionScript Dictionary



trace(mode);
};

See also

Microphone.onActivity, Microphone.setSilenceLevel()

Microphone.onStatus

Availability

Flash Player 6.

Usage

activeMicrophone.onStatus = function(infoObject) {
// your statements here

}

Parameters

infoObject A parameter defined according to the status message. 

Returns

Nothing.

Description

Event handler; invoked when the user allows or denies access to the microphone. If you want to 
respond to this event handler, you must create a function to process the information object 
generated by the microphone. 

When a SWF file tries to access the microphone, Flash Player displays a Privacy dialog box that 
lets the user choose whether to allow or deny access.

• If the user allows access, the Microphone.muted property is set to false, and this event 
handler is invoked with an information object whose code property is 
"Microphone.Unmuted" and whose level property is "Status".

• If the user denies access, the Microphone.muted property is set to true, and this event handler 
is invoked with an information object whose code property is "Microphone.Muted" and 
whose level property is "Status".

To determine whether the user has denied or allowed access to the microphone without 
processing this event handler, use Microphone.muted.
Note: If the user chooses to permanently allow or deny access for all SWF files from a specified 
domain, this method is not invoked for SWF files from that domain unless the user later changes the 
privacy setting. For more information, see Microphone.get().

Example

See the example for Camera.onStatus.

See also

Microphone.get(), Microphone.muted
Microphone.onStatus 469



Microphone.rate

Availability

Flash Player 6.

Usage

activeMicrophone.rate

Description

Read-only property; the rate at which the microphone is capturing sound, in kHz. The default 
value is 8 kHz if your sound capture device supports this value. Otherwise, the default value is the 
next available capture level above 8 kHz that your sound capture device supports, usually 11 kHz.

To set this value, use Microphone.setRate().

Example

The following example saves the current rate to the variable original.
original = myMic.rate;

See also

Microphone.setRate()

Microphone.setGain()

Availability

Flash Player 6.

Usage

activeMicrophone.setGain(gain)

Parameters

gain An integer that specifies the amount by which the microphone should boost the signal. 
Valid values are 0 to 100. The default value is 50; however, the user may change this value in the 
Flash Player Microphone Settings panel.

Returns

Nothing.

Description

Method; sets the microphone gain—that is, the amount by which the microphone should 
multiply the signal before transmitting it. A value of 0 tells Flash to multiply by 0; that is, the 
microphone transmits no sound.

You can think of this setting like a volume knob on a stereo: 0 is no volume and 50 is normal 
volume; numbers below 50 specify lower than normal volume, while numbers above 50 specify 
higher than normal volume.

Example

The following example ensures that the microphone gain setting is less than or equal to 55.
470 Chapter 12:  ActionScript Dictionary



var myMic = Microphone.get();
if (myMic.gain > 55){

myMic.setGain(55);
}

See also

Microphone.gain, Microphone.setUseEchoSuppression()

Microphone.setRate()

Availability

Flash Player 6.

Usage

activeMicrophone.setRate(kHz)

Parameters

kHz The rate at which the microphone should capture sound, in kHz. Acceptable values are 5, 
8, 11, 22, and 44. The default value is 8 kHz if your sound capture device supports this value. 
Otherwise, the default value is the next available capture level above 8 kHz that your sound 
capture device supports, usually 11 kHz.

Returns

Nothing.

Description

Method; sets the rate, in kHz, at which the microphone should capture sound.

Example

The following example sets the microphone rate to the user’s preference (which you have assigned 
to the userRate variable) if it is one of the following values: 5, 8, 11, 22, or 44. If it is not, the 
value is rounded to the nearest acceptable value that the sound capture device supports.
myMic.setRate(userRate);

See also

Microphone.rate
Microphone.setRate() 471



Microphone.setSilenceLevel()

Availability

Flash Player 6.

Usage

activeMicrophone.setSilenceLevel(level [, timeout])

Parameters

level An integer that specifies the amount of sound required to activate the microphone and 
invoke Microphone.onActivity(true). Acceptable values range from 0 to 100. The default 
value is 10.

timeout An optional integer parameter that specifies how many milliseconds must elapse 
without activity before Flash considers sound to have stopped and invokes 
Microphone.onActivity(false). The default value is 2000 (2 seconds).

Returns

Nothing.

Description

Method; sets the minimum input level that should be considered sound and (optionally) the 
amount of silent time signifying that silence has actually begun. 

• To prevent the microphone from detecting sound at all, pass a value of 100 for level; 
Microphone.onActivity is never invoked. 

• To determine the amount of sound the microphone is currently detecting, use 
Microphone.activityLevel. 

Activity detection is the ability to detect when audio levels suggest that a person is talking. When 
someone is not talking, bandwidth can be saved because there is no need to send the associated 
audio stream. This information can also be used for visual feedback so that users know they (or 
others) are silent.

Silence values correspond directly to activity values. Complete silence is an activity value of 0. 
Constant loud noise (as loud as can be registered based on the current gain setting) is an activity 
value of 100. After gain is appropriately adjusted, your activity value is less than your silence value 
when you’re not talking; when you are talking, the activity value exceeds your silence value.

This method is similar in purpose to Camera.setMotionLevel(); both methods are used to 
specify when the onActivity event handler should be invoked. However, these methods have a 
significantly different impact on publishing streams:

• Camera.setMotionLevel() is designed to detect motion and does not affect bandwidth 
usage. Even if a video stream does not detect motion, video is still sent.

• Microphone.setSilenceLevel() is designed to optimize bandwidth. When an audio stream 
is considered silent, no audio data is sent. Instead, a single message is sent, indicating that 
silence has started. 
472 Chapter 12:  ActionScript Dictionary



Example

The following example changes the silence level based on the user’s input. The button has the 
following code attached:
on (press) 
{

this.makeSilenceLevel(this.silenceLevel);
}

The makeSilenceLevel() function called by the button continues:
function makeSilenceLevel(s)
{

this.obj.setSilenceLevel(s);
this.SyncMode();
this.silenceLevel= s;

}

For more information, see the example for Camera.setMotionLevel().

See also

Microphone.activityLevel, Microphone.onActivity, Microphone.setGain(), 
Microphone.silenceLevel(), Microphone.silenceTimeout()

Microphone.setUseEchoSuppression()

Availability

Flash Player 6.

Usage

activeMicrophone.setUseEchoSuppression(suppress)

Parameters

suppress A Boolean value indicating whether echo suppression should be used (true) or 
not (false). 

Returns

Nothing.

Description

Method; specifies whether to use the echo suppression feature of the audio codec. The default 
value is false unless the user has selected Reduce Echo in the Flash Player Microphone 
Settings panel.

Echo suppression is an effort to reduce the effects of audio feedback, which is caused when sound 
going out the speaker is picked up by the microphone on the same computer. (This is different 
from echo cancellation, which completely removes the feedback.)

Generally, echo suppression is advisable when the sound being captured is played through 
speakers—instead of a headset—on the same computer. If your SWF file allows users to specify 
the sound output device, you may want to call Microphone.setUseEchoSuppression(true) if 
they indicate they are using speakers and will be using the microphone as well. 

Users can also adjust these settings in the Flash Player Microphone Settings panel.
Microphone.setUseEchoSuppression() 473



Example

The following example turns on echo suppression.
my_mic.setUseEchoSuppression(true);

See also

Microphone.setGain(), Microphone.useEchoSuppression()

Microphone.silenceLevel()

Availability

Flash Player 6.

Usage

activeMicrophone.silenceLevel

Description

Read-only property; an integer that specifies the amount of sound required to activate the 
microphone and invoke Microphone.onActivity(true). The default value is 10.

Example

See the example for Microphone.silenceTimeout().

See also

Microphone.gain, Microphone.setSilenceLevel()

Microphone.silenceTimeout()

Availability

Flash Player 6.

Usage

activeMicrophone.silenceTimeout

Description

Read-only property; a numeric value representing the number of milliseconds between the time 
the microphone stops detecting sound and the time Microphone.onActivity(false) is 
invoked. The default value is 2000 (2 seconds). 

To set this value, use Microphone.setSilenceLevel().

Example

The following example sets the timeout to two times its current value.
myMic.setSilenceLevel(myMic.silenceLevel, myMic.silenceTimeOut * 2);

See also

Microphone.setSilenceLevel()
474 Chapter 12:  ActionScript Dictionary



Microphone.useEchoSuppression()

Availability

Flash Player 6.

Usage

activeMicrophone.useEchoSuppression

Description

Read-only property; a Boolean value of true if echo suppression is enabled, false otherwise. The 
default value is false unless the user has selected Reduce Echo in the Flash Player Microphone 
Settings panel.

Example

The following example checks for echo suppression and turns it on if it is off.
_root.myMic.onActivity = function(active) {

if (active == true) {
if (_root.myMic.useEchoSuppression == false) {

_root.myMic.setUseEchoSuppression(true);
}

}
}

See also

Microphone.setUseEchoSuppression()

MMExecute()

Availability

Flash Player 7.

Usage

MMExecute("Flash JavaScript API command;")

Parameters

Flash JavaScript API command Any command that you can use in a Flash JavaScript 
(JSFL) file.

Returns

The result, if any, sent by the JavaScript statement.

Description

Function; lets you issue Flash JavaScript API commands from ActionScript.

The Flash JavaScript API (JSAPI) provides several objects, methods, and properties to duplicate 
or emulate commands that a user can enter in the authoring environment. Using the JSAPI, you 
can write scripts that extend Flash in several ways: adding commands to menus, manipulating 
objects on the Stage, repeating sequences of commands, and so on.
MMExecute() 475



In general, a user runs a JSAPI script by selecting Commands > Run Command. However, you 
can use this function in an ActionScript script to call a JSAPI command directly. If you use 
MMExecute() in a script on Frame 1 of your file, the command executes when the SWF file 
is loaded.

For more information on the JSAPI, see www.macromedia.com/go/jsapi_info_en.

Example

The following command returns an array of objects in the library:
var libe:Array = MMExecute("fl.getDocumentDOM().library.items;");
trace(libe.length + " items in library");

Mouse class

Availability

Flash Player 5.

Description

The Mouse class is a top-level class whose properties and methods you can access without using a 
constructor. You can use the methods of the Mouse class to hide and show the mouse pointer 
(cursor) in the SWF file. The mouse pointer is visible by default, but you can hide it and 
implement a custom pointer that you create using a movie clip (see “Creating a custom mouse 
pointer” on page 94).

Method summary for the Mouse class

Listener summary for the Mouse class

Method Description

Mouse.addListener() Registers an object to receive onMouseDown, onMouseMove, and 
onMouseUp notification.

Mouse.hide() Hides the mouse pointer in the SWF file.

Mouse.removeListener() Removes an object that was registered with addListener().

Mouse.show() Displays the mouse pointer in the SWF file.

Method Description

Mouse.onMouseDown Notified when the mouse button is pressed down.

Mouse.onMouseMove Notified when the mouse button is moved.

Mouse.onMouseUp Notified when the mouse button is released.

Mouse.onMouseWheel Notified when the user rolls the mouse wheel.
476 Chapter 12:  ActionScript Dictionary

http://www.macromedia.com/go/jsapi_info_en


Mouse.addListener()

Availability

Flash Player 6.

Usage

Mouse.addListener (newListener)

Parameters

newListener An object.

Returns

Nothing.

Description

Method; registers an object to receive notifications of the onMouseDown, onMouseMove, and 
onMouseUp listeners.

The newListener parameter should contain an object with defined methods for the 
onMouseDown, onMouseMove, and onMouseUp listeners.

When the mouse is pressed, moved, or released, regardless of the input focus, all listening objects 
that are registered with this method have their onMouseDown, onMouseMove, or onMouseUp 
method invoked. Multiple objects can listen for mouse notifications. If the listener newListener 
is already registered, no change occurs.

See also

Mouse.onMouseDown, Mouse.onMouseMove, Mouse.onMouseUp

Mouse.hide()

Availability

Flash Player 5.

Usage

Mouse.hide()

Parameters

None.

Returns

A Boolean value: true if the pointer is visible, and false if the pointer is invisible.

Description

Method; hides the pointer in a SWF file. The pointer is visible by default.
Mouse.hide() 477



Example

The following code, attached to a movie clip on the main Timeline, hides the standard pointer, 
and sets the x and y positions of the customPointer_mc movie clip instance to the x and y mouse 
positions in the main Timeline.
onClipEvent(enterFrame){

Mouse.hide();
customPointer_mc._x = _root._xmouse;
customPointer_mc._y = _root._ymouse;

}

See also

Mouse.show(), MovieClip._xmouse, MovieClip._ymouse 

Mouse.onMouseDown

Availability

Flash Player 6.

Usage

someListener.onMouseDown

Parameters

None.

Returns

Nothing.

Description

Listener; notified when the mouse is pressed. To use the onMouseDown listener, you must create a 
listener object. You can then define a function for onMouseDown and use addListener() to 
register the listener with the Mouse object, as in the following code:
someListener = new Object();
someListener.onMouseDown = function () { ... };
Mouse.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive 
notification about a single event. 

See also

Mouse.addListener()
478 Chapter 12:  ActionScript Dictionary



Mouse.onMouseMove

Availability

Flash Player 6.

Usage

someListener.onMouseMove

Parameters

None.

Returns

Nothing.

Description

Listener; notified when the mouse moves. To use the onMouseMove listener, you must create a 
listener object. You can then define a function for onMouseMove and use addListener() to 
register the listener with the Mouse object, as in the following code:
someListener = new Object();
someListener.onMouseMove = function () { ... };
Mouse.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive 
notification about a single event. 

See also

Mouse.addListener()

Mouse.onMouseUp

Availability

Flash Player 6.

Usage

someListener.onMouseUp

Parameters

None.

Returns

Nothing.

Description

Listener; notified when the mouse is released. To use the onMouseUp listener, you must create a 
listener object. You can then define a function for onMouseUp and use addListener() to register 
the listener with the Mouse object, as in the following code:
someListener = new Object();
someListener.onMouseUp = function () { ... };
Mouse.addListener(someListener);
Mouse.onMouseUp 479



Listeners enable different pieces of code to cooperate because multiple listeners can receive 
notification about a single event. 

See also

Mouse.addListener()

Mouse.onMouseWheel

Availability

Flash Player 7 (Windows only).

Usage

someListener.onMouseWheel = function ( [ delta , scrollTarget ]) {
// your statements here

}

Parameters

delta An optional number indicating how many lines should be scrolled for each notch the 
user rolls the mouse wheel. A positive delta value indicates an upward scroll; a negative value 
indicates a downward scroll. Typical values are from 1 to 3, whereas faster scrolling may produce 
larger values. 

If you don’t want to specify a value for delta but want to specify a value for scrollTarget, pass 
null for delta.

scrollTarget The topmost movie clip instance under the mouse when the mouse wheel 
was scrolled. 

Returns

Nothing.

Description

Listener; notified when the user rolls the mouse wheel. To use the onMouseWheel listener, you 
must create a listener object. You can then define a function for onMouseWheel and use 
addListener() to register the listener with the Mouse object.
Note: Mouse wheel event listeners are available only on Windows versions of Flash Player.

Example

The following example shows how to create a listener object that responds to mouse wheel events. 
In this example, the x coordinate of a movie clip object named clip_mc (not shown) is changed 
each time the user rolls the mouse wheel. 
mouseListener = new Object();
mouseListener.onMouseWheel = function(delta) {

clip_mc._x += delta;
}
Mouse.addListener(mouseListener);

See also

Mouse.addListener(), TextField.mouseWheelEnabled
480 Chapter 12:  ActionScript Dictionary



Mouse.removeListener()

Availability

Flash Player 6.

Usage

Mouse.removeListener (listener)

Parameters

listener An object.

Returns

If the listener object was successfully removed, the method returns true; if the listener was 
not successfully removed (for example, if the listener was not on the Mouse object’s listener 
list), the method returns false.

Description

Method; removes an object that was previously registered with addListener().

Mouse.show()

Availability

Flash Player 5.

Usage

Mouse.show()

Parameters

None.

Returns

Nothing.

Description

Method; displays the mouse pointer in a SWF file. The pointer is visible by default.

See also

Mouse.show(), MovieClip._xmouse, MovieClip._ymouse
Mouse.show() 481



MovieClip class 

Availability

Flash Player 3.

Description

The methods for the MovieClip class provide the same functionality as actions that target movie 
clips. There are also additional methods that do not have equivalent actions in the Actions 
toolbox in the Actions panel. 

You do not need to use a constructor method to call the methods of the MovieClip class; instead, 
you reference movie clip instances by name, using the following syntax:
my_mc.play();
my_mc.gotoAndPlay(3);

Method summary for the MovieClip class

Method Description

MovieClip.attachAudio() Captures and plays local audio from the 
microphone hardware.

MovieClip.attachMovie() Attaches a SWF file in the library.

MovieClip.createEmptyMovieClip() Creates an empty movie clip.

MovieClip.createTextField() Creates an empty text field.

MovieClip.duplicateMovieClip() Duplicates the specified movie clip.

MovieClip.getBounds() Returns the minimum and maximum x and y coordinates of a 
SWF file in a specified coordinate space.

MovieClip.getBytesLoaded() Returns the number of bytes loaded for the specified 
movie clip.

MovieClip.getBytesTotal() Returns the size of the movie clip, in bytes.

MovieClip.getDepth() Returns the depth of a movie clip.

MovieClip.getInstanceAtDepth() Specifies whether a particular depth is already occupied by a 
movie clip.

MovieClip.getNextHighestDepth() Specifies a depth value that you can pass to other methods to 
to ensure that Flash renders the movie clip in front of all other 
objects in the current movie clip. 

MovieClip.getSWFVersion() Returns an integer that indicates the Flash Player version for 
which the movie clip was published

MovieClip.getTextSnapshot() Returns a TextSnapshot object that contains the text in the 
static text fields in the specified movie clip. 

MovieClip.getURL() Retrieves a document from a URL.

MovieClip.globalToLocal() Converts the point object from Stage coordinates to the local 
coordinates of the specified movie clip. 
482 Chapter 12:  ActionScript Dictionary



MovieClip.gotoAndPlay() Sends the playhead to a specific frame in the movie clip and 
plays the SWF file.

MovieClip.gotoAndStop() Sends the playhead to a specific frame in the movie clip and 
stops the SWF file.

MovieClip.hitTest() Returns true if bounding box of the specified movie clip 
intersects the bounding box of the target movie clip.

MovieClip.loadMovie() Loads the specified SWF file into the movie clip.

MovieClip.loadVariables() Loads variables from a URL or other location into the 
movie clip.

MovieClip.localToGlobal() Converts a point object from the local coordinates of the 
movie clip to the global Stage coordinates.

MovieClip.nextFrame() Sends the playhead to the next frame of the movie clip.

MovieClip.play() Plays the specified movie clip.

MovieClip.prevFrame() Sends the playhead to the previous frame of the movie clip. 

MovieClip.removeMovieClip() Removes the movie clip from the Timeline if it was created 
with duplicateMovieClip(), 
MovieClip.duplicateMovieClip(), or 
MovieClip.attachMovie().

MovieClip.setMask() Specifies a movie clip as a mask for another movie clip.

MovieClip.startDrag() Specifies a movie clip as draggable and begins dragging the 
movie clip.

MovieClip.stop() Stops the currently playing SWF file.

MovieClip.stopDrag() Stops the dragging of any movie clip that is being dragged.

MovieClip.swapDepths() Swaps the depth level of two SWF files.

MovieClip.unloadMovie() Removes a SWF file that was loaded with loadMovie().

Method Description
MovieClip class 483



Drawing method summary for the MovieClip class

Property summary for the MovieClip class

Method Description

MovieClip.beginFill() Begins drawing a fill on the Stage.

MovieClip.beginGradientFill() Begins drawing a gradient fill on the Stage.

MovieClip.clear() Removes all the drawing commands associated with a movie 
clip instance.

MovieClip.curveTo() Draws a curve using the latest line style.

MovieClip.endFill() Ends the fill specified by beginFill() or beginGradientFill().

MovieClip.lineStyle() Defines the stroke of lines created with the lineTo() and 
curveTo() methods.

MovieClip.lineTo() Draws a line using the current line style.

MovieClip.moveTo() Moves the current drawing position to specified coordinates.

Property Description

MovieClip._alpha The transparency value of a movie clip instance.

MovieClip._currentframe The frame number in which the playhead is currently located.

MovieClip._droptarget The absolute path in slash syntax notation of the movie clip 
instance on which a draggable movie clip was dropped.

MovieClip.enabled Indicates whether a button movie clip is enabled.

MovieClip.focusEnabled Enables a movie clip to receive focus.

MovieClip._focusrect Indicates whether a focused movie clip has a yellow rectangle 
around it.

MovieClip._framesloaded The number of frames that have been loaded from a streaming 
SWF file.

MovieClip._height The height of a movie clip instance, in pixels.

MovieClip.hitArea Designates another movie clip to serve as the hit area for a 
button movie clip.

MovieClip._highquality Sets the rendering quality of a SWF file.

MovieClip.menu Associates a ContextMenu object with a movie clip.

MovieClip._name The instance name of a movie clip instance.

MovieClip._parent A reference to the movie clip that encloses the movie clip.

MovieClip._rotation The degree of rotation of a movie clip instance.

MovieClip._soundbuftime The number of seconds before a sound starts to stream.

MovieClip.tabChildren Indicates whether the children of a movie clip are included in 
automatic tab ordering. 
484 Chapter 12:  ActionScript Dictionary



MovieClip.tabEnabled Indicates whether a movie clip is included in tab ordering.

MovieClip.tabIndex Indicates the tab order of an object. 

MovieClip._target The target path of a movie clip instance.

MovieClip._totalframes The total number of frames in a movie clip instance.

MovieClip.trackAsMenu Indicates whether other buttons can receive mouse 
release events.

MovieClip._url The URL of the SWF file from which a movie clip 
was downloaded.

MovieClip.useHandCursor Determines whether the hand is displayed when a user rolls 
over a button movie clip.

MovieClip._visible A Boolean value that determines whether a movie clip 
instance is hidden or visible.

MovieClip._width The width of a movie clip instance, in pixels.

MovieClip._x The x coordinate of a movie clip instance

MovieClip._xmouse The x coordinate of the mouse pointer within a movie 
clip instance.

MovieClip._xscale The value specifying the percentage for horizontally scaling a 
movie clip.

MovieClip._y The y coordinate of a movie clip instance.

MovieClip._ymouse The y coordinate of the mouse pointer within a movie 
clip instance.

MovieClip._yscale The value specifying the percentage for vertically scaling a 
movie clip.

Property Description
MovieClip class 485



Event handler summary for the MovieClip class

Event handler Description

MovieClip.onData Invoked when all the data is loaded into a movie clip.

MovieClip.onDragOut Invoked while the pointer is outside the button; the mouse 
button is pressed inside, and then rolls outside the button area.

MovieClip.onDragOver Invoked while the pointer is over the button; the mouse button 
has been pressed then rolled outside the button, and then 
rolled back over the button.

MovieClip.onEnterFrame Invoked continually at the frame rate of the SWF file. The 
actions associated with the enterFrame clip event are 
processed before any frame actions that are attached to the 
affected frames.

MovieClip.onKeyDown Invoked when a key is pressed. Use the Key.getCode() and 
Key.getAscii() methods to retrieve information about the last 
key pressed.

MovieClip.onKeyUp Invoked when a key is released. 

MovieClip.onKillFocus Invoked when focus is removed from a button.

MovieClip.onLoad Invoked when the movie clip is instantiated and appears in 
the Timeline.

MovieClip.onMouseDown Invoked when the left mouse button is pressed.

MovieClip.onMouseMove Invoked every time the mouse is moved.

MovieClip.onMouseUp Invoked when the left mouse button is released.

MovieClip.onPress Invoked when the mouse is pressed while the pointer is over 
a button. 

MovieClip.onRelease Invoked when the mouse is released while the pointer is over 
a button.

MovieClip.onReleaseOutside Invoked when the mouse is released while the pointer is 
outside the button after the button is pressed while the pointer 
is inside the button. 

MovieClip.onRollOut Invoked when the pointer rolls outside of a button area.

MovieClip.onRollOver Invoked when the mouse pointer rolls over a button.

MovieClip.onSetFocus Invoked when a button has input focus and a key is released.

MovieClip.onUnload Invokes in the first frame after the movie clip is removed from 
the Timeline. The actions associated with the Unload movie 
clip event are processed before any actions are attached to 
the affected frame.
486 Chapter 12:  ActionScript Dictionary



MovieClip._alpha

Availability

Flash Player 4.

Usage

my_mc._alpha

Description

Property; the alpha transparency value of the movie clip specified by my_mc. Valid values are 0 
(fully transparent) to 100 (fully opaque). The default value is 100. Objects in a movie clip with 
_alpha set to 0 are active, even though they are invisible. For example, you can still click a button 
in a movie clip whose _alpha property is set to 0.

Example

The following code sets the _alpha property of a movie clip named star_mc to 30% when the 
button is clicked:
on(release) {

star_mc._alpha = 30;
}

See also

Button._alpha, TextField._alpha

MovieClip.attachAudio()

Availability

Flash Player 6; the ability to attach audio from Flash Video (FLV) files was added in Flash 
Player 7.

Usage

my_mc.attachAudio(source)

Parameters

source The object containing the audio to play. Valid values are a Microphone object, a 
NetStream object that is playing an FLV file, and false (stops playing the audio).

Returns

Nothing.

Description

Method; specifies the audio source to be played. To stop playing the audio source, pass false 
for source.
MovieClip.attachAudio() 487



Example

The following code attaches a microphone to a movie clip.
my_mic = Microphone.get();
this.attachAudio(my_mic);

The following example shows how you can use a Sound object to control the sound associated 
with an FLV file.
// Clip is the instance name of the movie clip 
// that contains the video object "my_video".
_root.Clip.my_video.attachVideo(_root.myNetStream);
_root.Clip.attachAudio(_root.myNetStream);
var snd = new Sound("_root.Clip");
//To adjust the audio:
_root.snd.setVolume(100);

See also

Microphone class, NetStream.play(), Sound class, Video.attachVideo()

MovieClip.attachMovie()

Availability

Flash Player 5.

Usage

my_mc.attachMovie(idName, newName, depth [, initObject]) 

Parameters

idName The linkage name of the movie clip symbol in the library to attach to a movie clip 
on the Stage. This is the name entered in the Identifier field in the Linkage Properties dialog box. 

newname A unique instance name for the movie clip being attached to the movie clip. 

depth An integer specifying the depth level where the SWF file is placed.

initObject (Supported for Flash Player 6 and later) An object containing properties with 
which to populate the newly attached movie clip. This parameter allows dynamically created 
movie clips to receive clip parameters. If initObject is not an object, it is ignored. All properties 
of initObject are copied into the new instance. The properties specified with initObject are 
available to the constructor function. This parameter is optional.

Returns

A reference to the newly created instance.

Description

Method; takes a symbol from the library and attaches it to the SWF file on the Stage specified by 
my_mc. Use removeMovieClip() or unloadMovie() to remove a SWF file attached with 
attachMovie().
488 Chapter 12:  ActionScript Dictionary



Example

The following example attaches the symbol with the linkage identifier “circle” to the movie clip 
instance, which is on the Stage in the SWF file.
on (release) {
    thing.attachMovie( "circle", "circle1", 2 );
}

See also

MovieClip.removeMovieClip(), MovieClip.unloadMovie(), Object.registerClass(), 
removeMovieClip()

MovieClip.beginFill()

Availability

Flash Player 6.

Usage

my_mc.beginFill([rgb[, alpha]])

Parameter

rgb A hex color value (for example, red is 0xFF0000, blue is 0x0000FF, and so on). If this value 
is not provided or is undefined, a fill is not created.

alpha An integer between 0–100 that specifies the alpha value of the fill. If this value is not 
provided, 100 (solid) is used. If the value is less than 0, Flash uses 0. If the value is greater than 
100, Flash uses 100. 

Returns

Nothing.

Description

Method; indicates the beginning of a new drawing path. If an open path exists (that is, if the 
current drawing position does not equal the previous position specified in a moveTo() method) 
and it has a fill associated with it, that path is closed with a line and then filled. This is similar to 
what happens when endFill() is called. If no fill is currently associated with the path, 
endFill() must be called in order to apply the fill.

See also

MovieClip.beginGradientFill(), MovieClip.endFill()
MovieClip.beginFill() 489



MovieClip.beginGradientFill()

Availability

Flash Player 6.

Usage

my_mc.beginGradientFill(fillType, colors, alphas, ratios, matrix)

Parameter

fillType Either the string "linear" or the string "radial".

colors An array of RGB hex color values to be used in the gradient (for example, red is 
0xFF0000, blue is 0x0000FF, and so on).

alphas An array of alpha values for the corresponding colors in the colors array; valid values 
are 0–100. If the value is less than 0, Flash uses 0. If the value is greater than 100, Flash uses 100.

ratios An array of color distribution ratios; valid values are 0–255. This value defines the 
percentage of the width where the color is sampled at 100 percent.

matrix A transformation matrix that is an object with either of the following two sets of 
properties.

• a, b, c, d, e, f, g, h, i, which can be used to describe a 3 x 3 matrix of the following form:
a b c
d e f
g h i

The following example uses a beginGradientFill() method with a matrix parameter that is 
an object with these properties.
_root.createEmptyMovieClip( "grad", 1 );

with ( _root.grad )

{

colors = [ 0xFF0000, 0x0000FF ];
alphas = [ 100, 100 ];
ratios = [ 0, 0xFF ];
matrix = { a:200, b:0, c:0, d:0, e:200, f:0, g:200, h:200, i:1 };
beginGradientFill( "linear", colors, alphas, ratios, matrix );
moveto(100,100);
lineto(100,300);
lineto(300,300);
lineto(300,100);
lineto(100,100);
endFill();

}

490 Chapter 12:  ActionScript Dictionary



If a matrixType property does not exist then the remaining parameters are all required; the 
function fails if any of them are missing. This matrix scales, translates, rotates, and skews the 
unit gradient, which is defined at (-1,-1) and (1,1).

• matrixType, x, y, w, h, r. 
The properties indicate the following: matrixType is the string "box", x is the horizontal 
position relative to the registration point of the parent clip for the upper left corner of the 
gradient, y is the vertical position relative to the registration point of the parent clip for the 
upper left corner of the gradient, w is the width of the gradient, h is the height of the gradient, 
and r is the rotation in radians of the gradient.
The following example uses a beginGradientFill() method with a matrix parameter that is 
an object with these properties.
_root.createEmptyMovieClip( "grad", 1 );
              with ( _root.grad )

              {

              colors = [ 0xFF0000, 0x0000FF ];
              alphas = [ 100, 100 ];
              ratios = [ 0, 0xFF ];
              matrix = { matrixType:"box", x:100, y:100, w:200, h:200, r:(45/

180)*Math.PI }; 
              beginGradientFill( "linear", colors, alphas, ratios, matrix );
              moveto(100,100);
              lineto(100,300);
              lineto(300,300);
              lineto(300,100);
              lineto(100,100);
              endFill();
              }

If a matrixType property exists then it must equal "box" and the remaining parameters are all 
required. The function fails if any of these conditions are not met.
MovieClip.beginGradientFill() 491



Returns

Nothing.

Description

Method; indicates the beginning of a new drawing path. If the first parameter is undefined, or if 
no parameters are passed, the path has no fill. If an open path exists (that is if the current drawing 
position does not equal the previous position specified in a moveTo() method), and it has a fill 
associated with it, that path is closed with a line and then filled. This is similar to what happens 
when you call endFill().

This method fails if any of the following conditions exist:

• The number of items in the colors, alphas, and ratios parameters are not equal.
• The fillType parameter is not “linear” or “radial”.
• Any of the fields in the object for the matrix parameter are missing or invalid.

Example

The following code uses both methods to draw two stacked rectangles with a red-blue gradient fill 
and a 5-pt. solid green stroke. 
_root.createEmptyMovieClip("goober",1);
with ( _root.goober )
{

colors = [ 0xFF0000, 0x0000FF ];
alphas = [ 100, 100 ];
ratios = [ 0, 0xFF ];
lineStyle( 5, 0x00ff00 );
matrix = { a:500,b:0,c:0,d:0,e:200,f:0,g:350,h:200,i:1};
beginGradientFill( "linear", colors, alphas, ratios, matrix );
moveto(100,100);
lineto(100,300);
lineto(600,300);
lineto(600,100);
lineto(100,100);
endFill();
matrix = { matrixType:"box", x:100, y:310, w:500, h:200, r:(0/180)*Math.PI 
}; 
beginGradientFill( "linear", colors, alphas, ratios, matrix );
moveto(100,310);
lineto(100,510);
lineto(600,510);
lineto(600,310);
lineto(100,310);
endFill();

}

492 Chapter 12:  ActionScript Dictionary



See also

MovieClip.beginFill(), MovieClip.endFill(), MovieClip.lineStyle(), 
MovieClip.lineTo(), MovieClip.moveTo()

MovieClip.clear()

Availability

Flash Player 6.

Usage

my_mc.clear()

Parameters

None.

Returns

Nothing.

Description

Method; removes all the graphics created during runtime using the movie clip draw methods, 
including line styles specified with MovieClip.lineStyle(). Shapes and lines that are manually 
drawn during authoring time (with the Flash drawing tools) are unaffected.

See also

MovieClip.lineStyle()
MovieClip.clear() 493



MovieClip.createEmptyMovieClip()

Availability

Flash Player 6.

Usage

my_mc.createEmptyMovieClip(instanceName, depth)

Parameters

instanceName A string that identifies the instance name of the new movie clip.

depth An integer that specifies the depth of the new movie clip.

Returns

A reference to the newly created movie clip.

Description

Method; creates an empty movie clip as a child of an existing movie clip. This method behaves 
similarly to the attachMovie() method, but you don’t need to provide an external linkage name 
for the new movie clip. The registration point for a newly created empty movie clip is the upper 
left corner. This method fails if any of the parameters are missing.

See also

MovieClip.attachMovie()

MovieClip.createTextField()

Availability

Flash Player 6.

Usage

my_mc.createTextField(instanceName, depth, x, y, width, height)

Parameters

instanceName A string that identifies the instance name of the new text field.

depth A positive integer that specifies the depth of the new text field.

x An integer that specifies the x coordinate of the new text field.

y An integer that specifies the y coordinate of the new text field.

width A positive integer that specifies the width of the new text field.

height A positive integer that specifies the height of the new text field.

Returns

Nothing.
494 Chapter 12:  ActionScript Dictionary



Description

Method; creates a new, empty text field as a child of the movie clip specified by my_mc. You can 
use createTextField() to create text fields while a SWF file plays. The text field is positioned at 
(x, y) with dimensions width by height. The x and y parameters are relative to the container 
movie clip; these parameters correspond to the _x and _y properties of the text field. The width 
and height parameters correspond to the _width and _height properties of the text field.

The default properties of a text field are as follows:
type = "dynamic"
border = false
background = false
password = false
multiline = false
html = false
embedFonts = false
variable = null
maxChars = null

A text field created with createTextField() receives the following default TextFormat object:
font = "Times New Roman"
size = 12
textColor = 0x000000
bold = false
italic = false
underline = false
url = ""
target = ""
align = "left"
leftMargin = 0
rightMargin = 0
indent = 0
leading = 0
bullet = false
tabStops = [] (empty array)

Example

The following example creates a text field with a width of 300, a height of 100, an x coordinate of 
100, a y coordinate of 100, no border, red, and underlined text.
_root.createTextField("mytext",1,100,100,300,100);
mytext.multiline = true;
mytext.wordWrap = true;
mytext.border = false;

myformat = new TextFormat();
myformat.color = 0xff0000;
myformat.bullet = false;
myformat.underline = true;

mytext.text = "this is my first test field object text";
mytext.setTextFormat(myformat);

See also

TextFormat class
MovieClip.createTextField() 495



MovieClip._currentframe

Availability

Flash Player 4.

Usage

my_mc._currentframe

Description

Property (read-only); returns the number of the frame in which the playhead is located in the 
Timeline specified by my_mc.

Example

The following example uses the _currentframe property to direct the playhead of the movie clip 
actionClip_mc to advance five frames ahead of its current location.
actionClip_mc.gotoAndStop(_currentframe + 5);

MovieClip.curveTo()

Availability 

Flash Player 6.

Usage

my_mc.curveTo(controlX, controlY, anchorX, anchorY)

Parameters

controlX An integer that specifies a horizontal position relative to the registration point of the 
parent movie clip of the control point.

controlY An integer that specifies a vertical position relative to the registration point of the 
parent movie clip of the control point.

anchorX An integer that specifies a horizontal position relative to the registration point of the 
parent movie clip of the next anchor point.

anchorY An integer that specifies a vertical position relative to the registration point of the 
parent movie clip of the next anchor point.

Returns

Nothing.

Description

Method; draws a curve using the current line style from the current drawing position to 
(anchorX, anchorY) using the control point specified by (controlX, controlY). The current 
drawing position is then set to (anchorX, anchorY). If the movie clip you are drawing in contains 
content created with the Flash drawing tools, calls to curveTo() are drawn underneath this 
content. If you call curveTo() before any calls to moveTo(), the current drawing position 
defaults to (0, 0). If any of the parameters are missing, this method fails and the current drawing 
position is not changed.
496 Chapter 12:  ActionScript Dictionary



Example

The following example draws a circle with a hairline point, solid blue line, and a solid red fill.
_root.createEmptyMovieClip( "circle", 1 );
with ( _root.circle )
{

lineStyle( 0, 0x0000FF, 100 );
beginFill( 0xFF0000 );
moveTo( 500, 500 );
curveTo( 600, 500, 600, 400 );
curveTo( 600, 300, 500, 300 );
curveTo( 400, 300, 400, 400 );
curveTo( 400, 500, 500, 500 );
endFill();

}

See also

MovieClip.beginFill(), MovieClip.createEmptyMovieClip(), MovieClip.endFill(), 
MovieClip.lineStyle(), MovieClip.lineTo(), MovieClip.moveTo() 

MovieClip._droptarget

Availability

Flash Player 4.

Usage

my_mc._droptarget

Description

Property (read-only); returns the absolute path in slash syntax notation of the movie clip instance 
on which my_mc was dropped. The _droptarget property always returns a path that starts with a 
slash (/). To compare the _droptarget property of an instance to a reference, use the eval() 
function to convert the returned value from slash syntax to a dot syntax reference. 
Note: You must perform this conversion if you are using ActionScript 2.0, which does not support 
slash syntax. 

Example

The following example evaluates the _droptarget property of the garbage movie clip instance 
and uses eval() to convert it from slash syntax to a dot syntax reference. The garbage reference 
is then compared to the reference to the trash movie clip instance. If the two references are 
equivalent, the visibility of garbage is set to false. If they are not equivalent, the garbage 
instance is reset to its original position.
if (eval(garbage._droptarget) == _root.trash) {

garbage._visible = false;
} else {

garbage._x = x_pos;
garbage._y = y_pos;

}

The variables x_pos and y_pos are set on Frame 1 of the SWF file with the following script:
x_pos = garbage._x;
y_pos = garbage._y;
MovieClip._droptarget 497



See also

startDrag()

MovieClip.duplicateMovieClip()

Availability 

Flash Player 5.

Usage

my_mc.duplicateMovieClip(newname, depth [,initObject])

Parameters

newname A unique identifier for the duplicate movie clip.

depth A unique number specifying the depth at which the SWF file specified is to be placed.

initObject (Supported for Flash Player 6 and later.) An object containing properties with 
which to populate the duplicated movie clip. This parameter allows dynamically created movie 
clips to receive clip parameters. If initObject is not an object, it is ignored. All properties of 
initObject are copied into the new instance. The properties specified with initObject are 
available to the constructor function. This parameter is optional.

Returns

A reference to the duplicated movie clip.

Description

Method; creates an instance of the specified movie clip while the SWF file is playing. Duplicated 
movie clips always start playing at Frame 1, no matter what frame the original movie clip is on 
when the duplicateMovieClip() method is called. Variables in the parent movie clip are not 
copied into the duplicate movie clip. Movie clips that have been created using 
duplicateMovieClip() are not duplicated if you call duplicateMovieClip() on their parent. 
If the parent movie clip is deleted, the duplicate movie clip is also deleted. .

See also

duplicateMovieClip(), MovieClip.removeMovieClip()
498 Chapter 12:  ActionScript Dictionary



MovieClip.enabled

Availability

Flash Player 6.

Usage

my_mc.enabled

Description

Property; a Boolean value that indicates whether a button movie clip is enabled. The default value 
of enabled is true. If enabled is set to false, the button movie clip’s callback methods and on 
action event handlers are no longer invoked, and the Over, Down, and Up frames are disabled. 
The enabled property does not affect the Timeline of the button movie clip; if a movie clip is 
playing, it continues to play. The movie clip continues to receive movie clip events (for example, 
mouseDown, mouseUp, keyDown, and keyUp).

The enabled property only governs the button-like properties of a button movie clip. You can 
change the enabled property at any time; the modified button movie clip is immediately enabled 
or disabled. The enabled property can be read out of a prototype object. If enabled is set to 
false, the object is not included in automatic tab ordering.

MovieClip.endFill()

Availability

Flash Player 6.

Usage

my_mc.endFill()

Parameters

None.

Returns

Nothing.

Description

Method; applies a fill to the lines and curves added since the last call to beginFill() or 
beginGradientFill(). Flash uses the fill that was specified in the previous call to beginFill() 
or beginGradientFill(). If the current drawing position does not equal the previous position 
specified in a moveTo() method and a fill is defined, the path is closed with a line and then filled.
MovieClip.endFill() 499



MovieClip.focusEnabled

Availability

Flash Player 6.

Usage

my_mc.focusEnabled

Description 

Property; if the value is undefined or false, a movie clip cannot receive input focus unless it is a 
button movie clip. If the focusEnabled property value is true, a movie clip can receive input 
focus even if it is not a button movie clip.

MovieClip._focusrect

Availability

Flash Player 6.

Usage

my_mc._focusrect

Description

Property; a Boolean value that specifies whether a movie clip has a yellow rectangle around it 
when it has keyboard focus. This property can override the global _focusrect property.

MovieClip._framesloaded

Availability

Flash Player 4.

Usage

my_mc._framesloaded

Description

Property (read-only); the number of frames that have been loaded from a streaming SWF file. 
This property is useful for determining whether the contents of a specific frame, and all the 
frames before it, have loaded and are available locally in the browser. This property is useful for 
monitoring the downloading of large SWF files. For example, you might want to display a 
message to users indicating that the SWF file is loading until a specified frame in the SWF file has 
finished loading.
500 Chapter 12:  ActionScript Dictionary



Example

The following example uses the _framesloaded property to start a SWF file when all the frames 
are loaded. If all the frames aren’t loaded, the _xscale property of the movie clip instance loader 
is increased proportionally to create a progress bar.
if (_framesloaded >= _totalframes) {

gotoAndPlay ("Scene 1", "start");
} else {

_root.loader._xscale = (_framesloaded/_totalframes)*100;
}

See also

MovieClipLoader class

MovieClip.getBounds()

Availability

Flash Player 5.

Usage

my_mc.getBounds(targetCoordinateSpace)

Parameters

targetCoordinateSpace The target path of the Timeline whose coordinate system you want 
to use as a reference point.

Returns

An object with the properties xMin, xMax, yMin, and yMax.

Description

Method; returns properties that are the minimum and maximum x and y coordinate values of the 
instance specified by my_mc for the targetCoordinateSpace parameter. 
Note: Use MovieClip.localToGlobal() and MovieClip.globalToLocal() to convert the movie clip’s 
local coordinates to Stage coordinates, or Stage coordinates to local coordinates, respectively.

Example

In the following example, the object that getBounds() returns is assigned to the identifier 
clipBounds. You can then access the values of each property and use them in a script. In this 
script, another movie clip instance, clip2, is placed alongside clip. 
clipBounds = clip.getBounds(_root);
clip2._x = clipBounds.xMax;

See also

MovieClip.globalToLocal(), MovieClip.localToGlobal()
MovieClip.getBounds() 501



MovieClip.getBytesLoaded()

Availability

Flash Player 5.

Usage

my_mc.getBytesLoaded()

Parameters

None.

Returns

An integer indicating the number of bytes loaded.

Description

Method; returns the number of bytes that have already loaded (streamed) for the movie clip 
specified by my_mc. You can compare this value with the value returned by 
MovieClip.getBytesTotal() to determine what percentage of a movie clip has loaded.

See also

MovieClip.getBytesTotal()

MovieClip.getBytesTotal()

Availability

Flash Player 5.

Usage

my_mc.getBytesTotal()

Parameters

None.

Returns

An integer indicating the total size, in bytes, of my_mc.

Description

Method; returns the size, in bytes, of the movie clip specified by my_mc. For movie clips that are 
external (the root SWF file or a movie clip that is being loaded into a target or a level), the return 
value is the size of the SWF file.

See also

MovieClip.getBytesLoaded()
502 Chapter 12:  ActionScript Dictionary



MovieClip.getDepth()

Availability

Flash Player 6.

Usage

my_mc.getDepth()

Parameters

None.

Returns

An integer.

Description

Method; returns the depth of a movie clip instance. For more information, see “Managing movie 
clip depths” on page 129.

See also

MovieClip.getInstanceAtDepth(), MovieClip.getNextHighestDepth(), 
MovieClip.swapDepths()

MovieClip.getInstanceAtDepth()

Availability

Flash Player 7.

Usage

my_mc.getInstanceAtDepth(depth)

Parameters

depth An integer that specifies the depth level to query.

Returns

A string representing the name of the movie clip located at the specified depth, or undefined if 
there is no movie clip at that depth.

Description

Method; lets you determine if a particular depth is already occupied by a movie clip. You can use 
this method before using MovieClip.attachMovie(), MovieClip.duplicateMovieClip(), or 
MovieClip.createEmptyMovieClip() to determine if the depth parameter you want to pass to 
any of these methods already contains a movie clip. For more information, see “Managing movie 
clip depths” on page 129.

See also

MovieClip.getDepth(), MovieClip.getNextHighestDepth(), MovieClip.swapDepths()
MovieClip.getInstanceAtDepth() 503



MovieClip.getNextHighestDepth()

Availability

Flash Player 7.

Usage

my_mc.getNextHighestDepth()

Parameters

None.

Returns

An integer that reflects the next available depth index that would render above all other objects on 
the same level and layer within my_mc.

Description

Method; lets you determine a depth value that you can pass to MovieClip.attachMovie(), 
MovieClip.duplicateMovieClip(), or MovieClip.createEmptyMovieClip() to ensure that 
Flash renders the movie clip in front of all other objects on the same level and layer in the current 
movie clip. The value returned is 0 or higher (that is, negative numbers are not returned).

For more information, see “Managing movie clip depths” on page 129.

See also

MovieClip.getDepth(), MovieClip.getInstanceAtDepth(), MovieClip.swapDepths()

MovieClip.getSWFVersion()

Availability

Flash Player 7.

Usage

my_mc.getSWFVersion()

Parameters

None.

Returns

An integer that specifies the Flash Player version that was targeted when the SWF file loaded into 
my_mc was published.

Description

Method; returns an integer that indicates the Flash Player version for which my_mc was published. 
If my_mc is a JPEG file, or if an error occurs and Flash can’t determine the SWF version of my_mc, 
-1 is returned.
504 Chapter 12:  ActionScript Dictionary



MovieClip.getTextSnapshot()

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Usage

my_mc.getTextSnapshot();

Parameters

None.

Returns

A TextSnapshot object that contains the static text from my_mc, or an empty string if my_mc 
contains no static text.

Description

Method; returns a TextSnapshot object that contains the text in all the static text fields in the 
specified movie clip; text in child movie clips is not included. 

Flash concatenates text and places it in the TextSnapshot object in an order that reflects the tab 
index order of the static text fields in the movie clip. Text fields that don’t have tab index values 
are placed in a random order in the object, and precede any text from fields that do have tab index 
values. No line breaks or formatting indicates where one field ends and the next begins.
Note: You can’t specify a tab index value for static text in Flash. However, other products may do so; 
for example, Macromedia FlashPaper.

The contents of the TextSnapshot object aren’t dynamic; that is, if the movie clip moves to a 
different frame, or is altered in some way (for example, objects in the movie clip are added or 
removed), the TextSnapshot object might not represent the current text in the movie clip. To 
ensure that the object’s contents are current, reissue this command as needed.

See also

TextSnapshot object
MovieClip.getTextSnapshot() 505



MovieClip.getURL()

Availability

Flash Player 5.

Usage

my_mc.getURL(URL [,window, variables])

Parameters

URL The URL from which to obtain the document.

window An optional parameter specifying the name, frame, or expression that specifies the 
window or HTML frame that the document is loaded into. You can also use one of the following 
reserved target names: _self specifies the current frame in the current window, _blank specifies a 
new window, _parent specifies the parent of the current frame, and _top specifies the top-level 
frame in the current window.

variables An optional parameter specifying a method for sending variables associated with the 
SWF file to load. If there are no variables, omit this parameter; otherwise, specify whether to load 
variables using a GET or POST method. GET appends the variables to the end of the URL and is 
used for a small numbers of variables. POST sends the variables in a separate HTTP header and is 
used for long strings of variables.

Returns

Nothing.

Description

Method; loads a document from the specified URL into the specified window. The getURL 
method can also be used to pass variables to another application defined at the URL using a GET 
or POST method.

See also

getURL()

MovieClip.globalToLocal()

Availability

Flash Player 5.

Usage

my_mc.globalToLocal(point)

Parameters

point The name or identifier of an object created with the generic Object class. The object 
specifies the x and y coordinates as properties. 

Returns

Nothing.
506 Chapter 12:  ActionScript Dictionary



Description

Method; converts the point object from Stage (global) coordinates to the movie clip’s 
(local) coordinates. 

Example

The following example converts the global x and y coordinates of the point object to the local 
coordinates of the movie clip. 
onClipEvent(mouseMove) {

point = new object();
point.x = _root._xmouse;
point.y = _root._ymouse;
globalToLocal(point);
trace(_root._xmouse + " " + _root._ymouse);
trace(point.x + " " + point.y);
updateAfterEvent();

}

See also

MovieClip.getBounds(), MovieClip.localToGlobal()

MovieClip.gotoAndPlay()

Availability

Flash Player 5.

Usage

my_mc.gotoAndPlay(frame)

Parameters

frame A number representing the frame number, or a string representing the label of the frame, 
to which the playhead is sent.

Returns

Nothing.

Description

Method; starts playing the SWF file at the specified frame. If you want to specify a scene as well as 
a frame, use gotoAndPlay().

MovieClip.gotoAndStop()

Availability

Flash Player 5.

Usage

my_mc.gotoAndStop(frame)

Parameters

frame The frame number to which the playhead is sent.
MovieClip.gotoAndStop() 507



Returns

Nothing.

Description

Method; brings the playhead to the specified frame of this movie clip and stops it there. 

See also

gotoAndStop()

MovieClip._height

Availability

Flash Player 4.

Usage

my_mc._height

Description

Property; the height of the movie clip, in pixels.

Example

The following code example sets the height and width of a movie clip when the user clicks the 
mouse button.
onClipEvent(mouseDown) {

_width=200;
_height=200;

}

MovieClip._highquality

Availability

Flash Player 6.

Usage

my_mc._highquality

Description

Property (global); specifies the level of anti-aliasing applied to the current SWF file. Specify 2 
(best quality) to apply high quality with bitmap smoothing always on. Specify 1 (high quality) to 
apply anti-aliasing; this will smooth bitmaps if the SWF file does not contain animation. 
Specify 0 (low quality) to prevent anti-aliasing. This property can overwrite the global 
_highquality property.

Example

my_mc._highquality = 2;

See also

_quality
508 Chapter 12:  ActionScript Dictionary



MovieClip.hitArea

Availability

Flash Player 6.

Usage

my_mc.hitArea

Returns

A reference to a movie clip.

Description

Property; designates another movie clip to serve as the hit area for a button movie clip. If the 
hitArea property does not exist or is null or undefined, the button movie clip itself is used as 
the hit area. The value of the hitArea property may be a reference to a movie clip object.

You can change the hitArea property at any time; the modified button movie clip immediately 
takes on the new hit area behavior. The movie clip designated as the hit area does not need to be 
visible; its graphical shape, although not visible, is hit-tested. The hitArea property can be read 
out of a prototype object.

MovieClip.hitTest()

Availability

Flash Player 5.

Usage

my_mc.hitTest(x, y, shapeFlag)

my_mc.hitTest(target)

Parameters

x The x coordinate of the hit area on the Stage.

y The y coordinate of the hit area on the Stage.

The x and y coordinates are defined in the global coordinate space.

target The target path of the hit area that may intersect or overlap with the instance specified 
by my_mc. The target parameter usually represents a button or text-entry field.

shapeFlag A Boolean value specifying whether to evaluate the entire shape of the specified 
instance (true), or just the bounding box (false). This parameter can be specified only if the hit 
area is identified using x and y coordinate parameters.

Returns

A Boolean value of true if my_mc overlaps with the specified hit area, false otherwise.

Description

Method; evaluates the instance specified by my_mc to see if it overlaps or intersects with the hit 
area identified by the target or x and y coordinate parameters.
MovieClip.hitTest() 509



Usage 1: Compares the x and y coordinates to the shape or bounding box of the specified 
instance, according to the shapeFlag setting. If shapeFlag is set to true, only the area actually 
occupied by the instance on the Stage is evaluated, and if x and y overlap at any point, a value of 
true is returned. This is useful for determining if the movie clip is within a specified hit or 
hotspot area. 

Usage 2: Evaluates the bounding boxes of the target and specified instance, and returns true if 
they overlap or intersect at any point.

Example

The following example uses hitTest() with the _xmouse and _ymouse properties to determine 
whether the mouse pointer is over the target’s bounding box:
if (hitTest( _root._xmouse, _root._ymouse, false));

The following example uses hitTest() to determine if the movie clip ball overlaps or intersects 
the movie clip square:
if(_root.ball.hitTest(_root.square)){

trace("ball intersects square");
}

See also

MovieClip.getBounds(), MovieClip.globalToLocal(), MovieClip.localToGlobal() 

MovieClip.lineStyle()

Availability

Flash Player 6.

Usage

my_mc.lineStyle([thickness[, rgb[, alpha]]])

Parameters

thickness An integer that indicates the thickness of the line in points; valid values are 0 to 
255. If a number is not specified, or if the parameter is undefined, a line is not drawn. If a value 
of less than 0 is passed, Flash uses 0. The value 0 indicates hairline thickness; the maximum 
thickness is 255. If a value greater than 255 is passed, the Flash interpreter uses 255.

rgb A hex color value (for example, red is 0xFF0000, blue is 0x0000FF, and so on) of the line. 
If a value isn’t indicated, Flash uses 0x000000 (black).

alpha An integer that indicates the alpha value of the line’s color; valid values are 0–100. If a 
value isn’t indicated, Flash uses 100 (solid). If the value is less than 0, Flash uses 0; if the value is 
greater than 100, Flash uses 100.

Returns

Nothing.
510 Chapter 12:  ActionScript Dictionary



Description

Method; specifies a line style that Flash uses for subsequent calls to lineTo() and curveTo() 
until you call lineStyle() with different parameters. You can call lineStyle() in the middle of 
drawing a path to specify different styles for different line segments within a path. 
Note: Calls to clear reset lineStyle() back to undefined.

Example

The following code draws a triangle with a 5-point, solid magenta line and no fill. 
_root.createEmptyMovieClip( "triangle", 1 );
with ( _root.triangle )
{
lineStyle( 5, 0xff00ff, 100 );
moveTo( 200, 200 );
lineTo( 300,300 ); 
lineTo( 100, 300 );
lineTo( 200, 200 );
}

See also

MovieClip.beginFill(), MovieClip.beginGradientFill(), MovieClip.clear(), 
MovieClip.curveTo(), MovieClip.lineTo(), MovieClip.moveTo() 

MovieClip.lineTo()

Availability

Flash Player 6.

Usage

my_mc.lineTo(x, y)

Parameters

x An integer indicating the horizontal position relative to the registration point of the parent 
movie clip.

y An integer indicating the vertical position relative to the registration point of the parent 
movie clip. 

Returns

Nothing.

Description

Method; draws a line using the current line style from the current drawing position to (x, y); the 
current drawing position is then set to (x, y). If the movie clip that you are drawing in contains 
content that was created with the Flash drawing tools, calls to lineTo() are drawn underneath 
the content. If you call lineTo() before any calls to the moveTo() method, the current drawing 
position defaults to (0, 0). If any of the parameters are missing, this method fails and the current 
drawing position is not changed.
MovieClip.lineTo() 511



Example

The following example draws a triangle with no lines and a partially transparent blue fill.
_root.createEmptyMovieClip ("triangle", 1);

with (_root.triangle){
beginFill (0x0000FF, 50);
lineStyle (5, 0xFF00FF, 100);
moveTo (200, 200);
lineTo (300, 300);
lineTo (100, 300);
lineTo (200, 200);
endFill();

}

See also

MovieClip.beginFill(), MovieClip.createEmptyMovieClip(), MovieClip.endFill(), 
MovieClip.lineStyle(), MovieClip.moveTo()

MovieClip.loadMovie()

Availability

Flash Player 5.

Usage

my_mc.loadMovie("url" [,variables])

Parameters

url The absolute or relative URL of the SWF file or JPEG file to be loaded. A relative path 
must be relative to the SWF file at level 0. Absolute URLs must include the protocol reference, 
such as http:// or file:///. 

variables An optional parameter specifying an HTTP method for sending or loading 
variables. The parameter must be the string GET or POST. If there are no variables to be sent, omit 
this parameter. The GET method appends the variables to the end of the URL and is used for small 
numbers of variables. The POST method sends the variables in a separate HTTP header and is 
used for long strings of variables.

Returns

Nothing.

Description

Method; loads SWF or JPEG files into a movie clip in Flash Player while the original SWF file 
is playing. 
Tip: If you want to monitor the progress of the download, use MovieClipLoader.loadClip() instead of 
this function. 

Without the loadMovie() method, Flash Player displays a single SWF file and then closes. The 
loadMovie() method lets you display several SWF files at once and switch between SWF files 
without loading another HTML document.

A SWF file or image loaded into a movie clip inherits the position, rotation, and scale properties 
of the movie clip. You can use the target path of the movie clip to target the loaded SWF file.
512 Chapter 12:  ActionScript Dictionary



Use the unloadMovie() method to remove SWF files or images loaded with the loadMovie() 
method. Use the loadVariables() method to keep the active SWF file, and update the variables 
with new values.

See also

loadMovie(), loadMovieNum(), MovieClip.loadVariables(), MovieClip.unloadMovie(), 
unloadMovie(), unloadMovieNum()

MovieClip.loadVariables()

Availability

Flash Player 5; behavior changed in Flash Player 7.

Usage

my_mc.loadVariables("url", variables)

Parameters

url The absolute or relative URL for the external file that contains the variables to be loaded. If 
the SWF file issuing this call is running in a web browser, url must be in the same domain as the 
SWF file; for details, see “Description,” below.

variables An optional parameter specifying an HTTP method for sending variables. The 
parameter must be the string GET or POST. If there are no variables to be sent, omit this parameter. 
The GET method appends the variables to the end of the URL and is used for small numbers of 
variables. The POST method sends the variables in a separate HTTP header and is used for long 
strings of variables.

Returns

Nothing.

Description

Method; reads data from an external file and sets the values for variables in my_mc. The external 
file can be a text file generated by a CGI script, Active Server Page (ASP), or PHP script and can 
contain any number of variables.

This method can also be used to update variables in the active movie clip with new values.

This method requires that the text of the URL be in the standard MIME format: application/x-
www-form-urlencoded (CGI script format).

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed. For more 
information, see “About allowing cross-domain data loading” on page 190.
MovieClip.loadVariables() 513



See also

loadMovie(), loadVariables(), loadVariablesNum(), MovieClip.unloadMovie()

MovieClip.localToGlobal()

Availability

Flash Player 5.

Usage

my_mc.localToGlobal(point)

Parameters

point The name or identifier of an object created with the Object class, specifying the x and y 
coordinates as properties.

Returns

Nothing.

Description

Method; converts the point object from the movie clip’s (local) coordinates to the Stage 
(global) coordinates.

Example

The following example converts x and y coordinates of the point object, from the movie clip’s 
(local) coordinates to the Stage (global) coordinates. The local x and y coordinates are specified 
using the _xmouse and _ymouse properties to retrieve the x and y coordinates of the mouse 
pointer position.
onClipEvent(mouseMove) {

point = new object();
point.x = _xmouse;
point.y = _ymouse;
_root.out3 = point.x + " === " + point.y;
_root.out = _root._xmouse + " === " + _root._ymouse;
localToGlobal(point);
_root.out2 = point.x + " === " + point.y;
updateAfterEvent();

}

See also

MovieClip.globalToLocal()
514 Chapter 12:  ActionScript Dictionary



MovieClip._lockroot

Availability

Flash Player 7.

Usage

my_mc._lockroot

Description

Property; specifies what _root refers to when a SWF file is loaded into a movie clip. The 
_lockroot property is undefined by default. You can set this property within the SWF file that 
is being loaded or in the handler that is loading the movie clip.

For example, suppose you have a document called Games.fla that lets a user choose a game to 
play, and loads the game (for example, Chess.swf ) into the game_mc movie clip. You want to make 
sure that, if _root is used in Chess.swf, it still refers to _root in Chess.swf after being loaded into 
Games.swf. If you have access to Chess.fla and publish it to Flash Player 7 or later, you can add 
this statement to it:
this._lockroot = true;

If you don’t have access to Chess.fla (for example, if you are loading Chess.swf from someone 
else’s site), you can set its _lockroot property when you load it, as shown below. In this case, 
Chess.swf can be published for any version of Flash Player, as long as Games.swf is published for 
Flash Player 7 or later.

onClipEvent (load)
{

this._lockroot = true;
}
game_mc.loadMovie ("Chess.swf");

If you didn’t use the this._lockroot = true statement in either of the SWF files, _root in 
Chess.swf would refer to _root in Games.swf after Chess.swf is loaded into Games.swf.

See also

_root, MovieClip.attachMovie(), MovieClip.loadMovie()
MovieClip._lockroot 515



MovieClip.menu

Availability

Flash Player 7.

Usage

my_mc.menu = contextMenu

Parameters

contextMenu A ContextMenu object.

Description

Property; associates the specified ContextMenu object with the movie clip my_mc. The 
ContextMenu class lets you modify the context menu that appears when the user right-clicks 
(Windows) or Control-clicks (Macintosh) in Flash Player.

Example

The following example assigns the ContextMenu object menu_cm to the movie clip content_mc. 
The ContextMenu object contains a custom menu item labeled “Print...” that has an associated 
callback handler named doPrint().
var menu_cm = new ContextMenu();
menu_cm.customItems.push(new ContextMenuItem("Print...", doPrint));
function doPrint(menu, obj) {

// "Print" code here
}
content_mc.menu = menu_cm;

See also

Button.menu, ContextMenu class, ContextMenuItem class, TextField.menu

MovieClip.moveTo()

Availability

Flash Player 6.

Usage

my_mc.moveTo(x, y)

Parameters

x An integer indicating the horizontal position relative to the registration point of the parent 
movie clip.

y An integer indicating the vertical position relative to the registration point of the parent 
movie clip.

Returns

Nothing.
516 Chapter 12:  ActionScript Dictionary



Description

Method; moves the current drawing position to (x, y). If any of the parameters are missing, this 
method fails and the current drawing position is not changed.

Example

This example draws a triangle with 5-point, solid magenta lines and no fill. The first line creates 
an empty movie clip to draw with. Inside the with statement, a line type is defined; then the 
starting drawing position is indicated by the moveTo() method. 
_root.createEmptyMovieClip( "triangle", 1 );
with ( _root.triangle )
{
lineStyle( 5, 0xff00ff, 100 );
moveTo( 200, 200 );
lineTo( 300,300 ); 
lineTo( 100, 300 );
lineTo( 200, 200 );
}

See also

MovieClip.createEmptyMovieClip(), MovieClip.lineStyle(), MovieClip.lineTo()

MovieClip._name

Availability

Flash Player 4.

Usage

my_mc._name

Description

Property; the instance name of the movie clip specified by my_mc.

MovieClip.nextFrame()

Availability

Flash Player 5.

Usage

my_mc.nextFrame()

Parameters

None.

Returns

Nothing.

Description

Method; sends the playhead to the next frame and stops it.
See also

nextFrame()
MovieClip.nextFrame() 517



MovieClip.onData

Availability

Flash Player 6.

Usage

my_mc.onData = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when a movie clip receives data from a loadVariables() or 
loadMovie() call. You must define a function that executes when the event handler is invoked.

This handler can be used only with movie clips for which you have a symbol in the library that is 
associated with a class. If you want an event handler to be invoked when a specific movie clip 
receives data, you must use onClipEvent(data) instead of this handler. The latter handler is 
invoked when any movie clip receives data.

Example

The following example illustrates the correct use of MovieClip.onData() and 
onClipEvent(data).
// symbol_mc is a movie clip symbol in the library.
// It is linked to the MovieClip class.
// The following function is triggered for each instance of symbol_mc
// when it receives data.
symbol_mc.onData = function() {
   trace("The movie clip has received data");
}

// dynamic_mc is a movie clip that is being loaded with MovieClip.loadMovie().
// This code attempts to call a function when the clip is loaded, 
// but it will not work, because the loaded SWF is not a symbol
// in the library associated with the MovieClip class.
function output()
{
    trace("Will never be called.");
}
dynamic_mc.onData = output;
dynamic_mc.loadMovie("replacement.swf");

// The following function is invoked for any movie clip that
// receives data, whether it is in the library or not.
// Therefore, this function is invoked when symbol_mc is instantiated 
// and also when replacement.swf is loaded.
OnClipEvent( data ) {
   trace("The movie clip has received data");
}

518 Chapter 12:  ActionScript Dictionary



See also

onClipEvent()

MovieClip.onDragOut

Availability

Flash Player 6.

Usage

my_mc.onDragOut = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the mouse button is pressed and the pointer rolls outside the object. 
You must define a function that executes when the event handler is invoked.

Example

The following example defines a function for the onDragOut method that sends a trace() action 
to the Output panel.
my_mc.onDragOut = function () {

trace ("onDragOut called");
};

See also

MovieClip.onDragOver

MovieClip.onDragOver

Availability

Flash Player 6.

Usage

my_mc.onDragOver = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.
MovieClip.onDragOver 519



Description

Event handler; invoked when the pointer is dragged outside and then over the movie clip. You 
must define a function that executes when the event handler is invoked.

Example

The following example defines a function for the onDragOver method that sends a trace() 
action to the Output panel.
my_mc.onDragOver = function () {

trace ("onDragOver called");
};

See also

MovieClip.onDragOut

MovieClip.onEnterFrame

Availability

Flash Player 6.

Usage

my_mc.onEnterFrame = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked continually at the frame rate of the SWF file. The actions associated with 
the enterFrame clip event are processed before any frame actions that are attached to the 
affected frames. 

You must define a function that executes when the event handler is invoked.

Example

The following example defines a function for the onEnterFrame method that sends a trace() 
action to the Output panel.
my_mc.onEnterFrame = function () {

trace ("onEnterFrame called");
};
520 Chapter 12:  ActionScript Dictionary



MovieClip.onKeyDown

Availability

Flash Player 6.

Usage

my_mc.onKeyDown = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when a movie clip has input focus and a key is pressed. The onKeyDown 
event handler is invoked with no parameters. You can use the Key.getAscii() and 
Key.getCode() methods to determine which key was pressed. You must define a function that 
executes when the event handler is invoked.

The onKeyDown event handler works only if the movie clip has input focus enabled and set. First, 
the focusEnabled property must be set to true for the movie clip. Then, the clip must be given 
focus. This can be done either by using Selection.setFocus() or by setting the tab key to 
navigate to the clip.

If Selection.setFocus() is used, the path for the movie clip must be passed to 
Selection.setFocus(). It is very easy for other elements to take the focus back once the mouse 
is moved. 

Example

The following example defines a function for the onKeyDown() method that sends a trace() 
action to the Output panel.
my_mc.onKeyDown = function () {

trace ("onKeyDown called");
};

The following example sets input focus.
MovieClip.focusEnabled = true;
Selection.setFocus(MovieClip);

See also

MovieClip.onKeyUp
MovieClip.onKeyDown 521



MovieClip.onKeyUp

Availability

Flash Player 6.

Usage

my_mc.onKeyUp = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when a key is released. The onKeyUp event handler is invoked with no 
parameters. You can use the Key.getAscii() and Key.getCode() methods to determine which 
key was pressed. You must define a function that executes when the event handler is invoked.

The onKeyUp event handler works only if the movie clip has input focus enabled and set. First, 
the focusEnabled property must be set to true for the movie clip. Then, the clip must be given 
focus. This can be done either by using Selection.setFocus() or by setting the tab key to 
navigate to the clip.

If Selection.setFocus() is used, the path for the movie clip must be passed to 
Selection.setFocus(). It is very easy for other elements to take the focus back once the mouse 
is moved. 

Example

The following example defines a function for the onKeyUp method that sends a trace() action to 
the Output panel.
my_mc.onKeyUp = function () {

trace ("onKeyUp called");
};

The following example sets input focus:
MovieClip.focusEnabled = true;
Selection.setFocus(MovieClip);
522 Chapter 12:  ActionScript Dictionary



MovieClip.onKillFocus

Availability

Flash Player 6.

Usage

my_mc.onKillFocus = function (newFocus) {
// your statements here

}

Parameters

newFocus The object that is receiving the keyboard focus.

Returns

Nothing.

Description

Event handler; invoked when a movie clip loses keyboard focus. The onKillFocus method 
receives one parameter, newFocus, which is an object representing the new object receiving the 
focus. If no object receives the focus, newFocus contains the value null.

MovieClip.onLoad

Availability

Flash Player 6.

Usage

my_mc.onLoad = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the movie clip is instantiated and appears in the Timeline. You 
must define a function that executes when the event handler is invoked.

This handler can be used only with movie clips for which you have a symbol in the library that is 
associated with a class. If you want an event handler to be invoked when a specific movie clip 
loads, for example when you use MovieClip.loadMovie() to load a SWF file dynamically, you 
must use onClipEvent(load) instead of this handler. The latter handler is invoked when any 
movie clip loads.
MovieClip.onLoad 523



Example

The following example illustrates the correct use of MovieClip.onLoad() and 
onClipEvent(load).
// symbol_mc is a movie clip symbol in the library.
// It is linked to the MovieClip class.
// The following function is triggered for each instance of symbol_mc
// as it is instantiated and appears on the Timeline.
symbol_mc.onLoad = function() {
   trace("The movie clip is loaded");
}

// dynamic_mc is a movie clip that is being loaded with MovieClip.loadMovie().
// This code attempts to call a function when the clip is loaded, 
// but it will not work, because the loaded SWF is not a symbol
// in the library associated with the MovieClip class.
function output()
{
    trace("Will never be called.");
}
dynamic_mc.onLoad = output;
dynamic_mc.loadMovie("replacement.swf");

// The following function is invoked for any movie clip that
// appears on the Timeline, whether it is in the library or not.
// Therefore, this function is invoked when symbol_mc is instantiated 
// and also when replacement.swf is loaded.
OnClipEvent( load ) {
   trace("The movie clip is loaded");
}

See also

onClipEvent()

MovieClip.onMouseDown

Availability

Flash Player 6.

Usage

my_mc.onMouseDown = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the mouse button is pressed. You must define a function that 
executes when the event handler is invoked.
524 Chapter 12:  ActionScript Dictionary



Example

The following example defines a function for the onMouseDown method that sends a trace() 
action to the Output panel.
my_mc.onMouseDown = function () {

trace ("onMouseDown called");
}

MovieClip.onMouseMove

Availability

Flash Player 6.

Usage

my_mc.onMouseMove = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the mouse moves. You must define a function that executes when 
the event handler is invoked.

Example

The following example defines a function for the onMouseMove method that sends a trace() 
action to the Output panel.
my_mc.onMouseMove = function () {
  trace ("onMouseMove called");
};
MovieClip.onMouseMove 525



MovieClip.onMouseUp

Availability

Flash Player 6.

Usage

my_mc.onMouseUp = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the mouse button is released. You must define a function that 
executes when the event handler is invoked.

Example

The following example defines a function for the onMouseUp method that sends a trace() action 
to the Output panel.
my_mc.onMouseUp = function () {

trace ("onMouseUp called");
};

MovieClip.onPress

Availability

Flash Player 6.

Usage

my_mc.onPress = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the user clicks the mouse while the pointer is over a movie clip. You 
must define a function that executes when the event handler is invoked.
526 Chapter 12:  ActionScript Dictionary



Example

The following example defines a function for the onPress method that sends a trace() action to 
the Output panel.
my_mc.onPress = function () {

trace ("onPress called");
};

MovieClip.onRelease

Availability

Flash Player 6.

Usage

my_mc.onRelease = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when a button movie clip is released. You must define a function that 
executes when the event handler is invoked.

Example

The following example defines a function for the onPress method that sends a trace() action to 
the Output panel.
my_mc.onRelease = function () {

trace ("onRelease called");
};

MovieClip.onReleaseOutside

Availability

Flash Player 6.

Usage

my_mc.onReleaseOutside = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.
MovieClip.onReleaseOutside 527



Description

Event handler; invoked when the mouse is released while the pointer is outside the movie clip 
after the mouse button is pressed inside the movie clip.

You must define a function that executes when the event handler is invoked.

Example

The following example defines a function for the onReleaseOutside method that sends a 
trace() action to the Output panel.
my_mc.onReleaseOutside = function () {

trace ("onReleaseOutside called");
};

MovieClip.onRollOut

Availability

Flash Player 6.

Usage

my_mc.onRollOut = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the pointer moves outside a movie clip area. You must define a 
function that executes when the event handler is invoked.

Example

The following example defines a function for the onRollOut method that sends a trace() action 
to the Output panel.
my_mc.onRollOut = function () {

trace ("onRollOut called");
};
528 Chapter 12:  ActionScript Dictionary



MovieClip.onRollOver

Availability

Flash Player 6.

Usage

my_mc.onRollOver = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked when the pointer moves over a movie clip area. You must define a 
function that executes when the event handler is invoked.

Example

The following example defines a function for the onRollOver method that sends a trace() to 
the Output panel.
my_mc.onRollOver = function () {

trace ("onRollOver called");
};

MovieClip.onSetFocus

Availability

Flash Player 6.

Usage

my_mc.onSetFocus = function(oldFocus){
// your statements here

}

Parameters

oldFocus The object to lose focus.

Returns

Nothing.

Description

Event handler; invoked when a movie clip receives keyboard focus. The oldFocus parameter is 
the object that loses the focus. For example, if the user presses the Tab key to move the input 
focus from a movie clip to a text field, oldFocus contains the movie clip instance.

If there is no previously focused object, oldFocus contains a null value.
MovieClip.onSetFocus 529



MovieClip.onUnload

Availability

Flash Player 6.

Usage

my_mc.onUnload = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked in the first frame after the movie clip is removed from the Timeline. Flash 
processes the actions associated with the onUnload event handler before attaching any actions to 
the affected frame. You must define a function that executes when the event handler is invoked.

Example

The following example defines a function for the MovieClip.onUnload method that sends a 
trace() action to the Output panel.
my_mc.onUnload = function () {

trace ("onUnload called");
};

MovieClip._parent

Availability

Flash Player 5.

Usage

my_mc._parent.property

_parent.property 

Description

Property; a reference to the movie clip or object that contains the current movie clip or object. 
The current object is the object containing the ActionScript code that references _parent. Use 
the _parent property to specify a relative path to movie clips or objects that are above the current 
movie clip or object.

You can use _parent to climb up multiple levels in the display list as in the following:
_parent._parent._alpha = 20;

See also

Button._parent, _root, targetPath, TextField._parent
530 Chapter 12:  ActionScript Dictionary



MovieClip.play()

Availability

Flash Player 5.

Usage

my_mc.play()

Parameters

None.

Returns

Nothing.

Description

Method; moves the playhead in the Timeline of the movie clip.

See also

play()

MovieClip.prevFrame()

Availability

Flash Player 5.

Usage

my_mc.prevFrame()

Parameters

None.

Returns

Nothing.

Description

Method; sends the playhead to the previous frame and stops it.

See also

prevFrame()
MovieClip.prevFrame() 531



MovieClip.removeMovieClip()

Availability

Flash Player 5.

Usage

my_mc.removeMovieClip()

Parameters

None.

Returns

Nothing.

Description

Method; removes a movie clip instance created with duplicateMovieClip(), 
MovieClip.duplicateMovieClip(), or MovieClip.attachMovie().

MovieClip._rotation

Availability

Flash Player 4.

Usage

my_mc._rotation

Description

Property; the rotation of the movie clip, in degrees, from its original orientation. Values from 
0 to 180 represent clockwise rotation; values from 0 to -180 represent counterclockwise rotation. 
Values outside this range are added to or subtracted from 360 to obtain a value within the range. 
For example, the statement my_mc._rotation = 450 is the same as my_mc._rotation = 90.

See also

Button._rotation, TextField._rotation
532 Chapter 12:  ActionScript Dictionary



MovieClip.setMask()

Availability

Flash Player 6.

Usage

my_mc.setMask(mask_mc)

Parameters

my_mc The instance name of a movie clip to be masked.

mask_mc The instance name of a movie clip to be a mask.

Returns

Nothing.

Description

Method; makes the movie clip in the parameter mask_mc a mask that reveals the movie clip 
specified by the my_mc parameter.

This method allows multiple-frame movie clips with complex, multilayered content to act as 
masks. You can shut masks on and off at runtime. However, you can’t use the same mask for 
multiple masks (which is possible by using mask layers). If you have device fonts in a masked 
movie clip, they are drawn but not masked. You can’t set a movie clip to be its own mask—for 
example, my_mc.setMask(my_mc).

If you create a mask layer that contains a movie clip, and then apply the setMask() method to it, 
the setMask() call takes priority and this is not reversible. For example, you could have a movie 
clip in a mask layer called UIMask that masks another layer containing another movie clip called 
UIMaskee. If, as the SWF file plays, you call UIMask.setMask(UIMaskee), from that point on, 
UIMask is masked by UIMaskee. 

To cancel a mask created with ActionScript, pass the value null to the setMask() method. The 
following code cancels the mask without affecting the mask layer in the Timeline.
UIMask.setMask(null);

Example

The following code uses the movie clip circleMask_mc to mask the movie clip theMaskee_mc.
theMaskee_mc.setMask(circleMask_mc);

MovieClip._soundbuftime

Availability

Flash Player 6.

Usage

my_mc._soundbuftime

Description

Property (global); an integer that specifies the number of seconds a sound prebuffers before it 
starts to stream. 
MovieClip._soundbuftime 533



MovieClip.startDrag()

Availability

Flash Player 5.

Usage

my_mc.startDrag([lock, [left, top, right, bottom]])

Parameters

lock A Boolean value specifying whether the draggable movie clip is locked to the center of the 
mouse position (true), or locked to the point where the user first clicked on the movie clip 
(false). This parameter is optional.

left, top, right, bottom Values relative to the coordinates of the movie clip’s parent that 
specify a constraint rectangle for the movie clip. These parameters are optional.

Returns

Nothing.

Description

Method; lets the user drag the specified movie clip. The movie clip remains draggable until 
explicitly stopped through a call to MovieClip.stopDrag(), or until another movie clip is made 
draggable. Only one movie clip is draggable at a time.

See also

MovieClip._droptarget, startDrag(), MovieClip.stopDrag() 

MovieClip.stop()

Availability

Flash Player 5.

Usage

my_mc.stop()

Parameters

None.

Returns

Nothing.

Description

Method; stops the movie clip currently playing.

See also

stop()
534 Chapter 12:  ActionScript Dictionary



MovieClip.stopDrag()

Availability

Flash Player 5.

Usage

my_mc.stopDrag()

Parameters

None.

Returns

Nothing.

Description

Method; ends a MovieClip.startDrag() method. A movie clip that was made draggable with 
that method remains draggable until a stopDrag() method is added, or until another movie clip 
becomes draggable. Only one movie clip is draggable at a time.

See also

MovieClip._droptarget, MovieClip.startDrag(), stopDrag()

MovieClip.swapDepths()

Availability

Flash Player 5.

Usage

my_mc.swapDepths(depth)

my_mc.swapDepths(target)

Parameters

depth A number specifying the depth level where my_mc is to be placed.

target A string specifying the movie clip instance whose depth is swapped by the instance 
specified by my_mc. Both instances must have the same parent movie clip.

Returns

Nothing.

Description

Method; swaps the stacking, or z-order (depth level), of the specified instance (my_mc) with the 
movie clip specified by the target parameter, or with the movie clip that currently occupies the 
depth level specified in the depth parameter. Both movie clips must have the same parent movie 
clip. Swapping the depth level of movie clips has the effect of moving one movie clip in front of or 
behind the other. If a movie clip is tweening when this method is called, the tweening is stopped. 
For more information, see “Managing movie clip depths” on page 129.
MovieClip.swapDepths() 535



See also

_level, MovieClip.getDepth(), MovieClip.getInstanceAtDepth(), 
MovieClip.getNextHighestDepth()

MovieClip.tabChildren

Availability

Flash Player 6.

Usage

my_mc.tabChildren

Description

Property; undefined by default. If tabChildren is undefined or true, the children of a movie 
clip are included in automatic tab ordering. If the value of tabChildren is false, the children of 
a movie clip are not included in automatic tab ordering.

Example

A list box UI widget built as a movie clip contains several items. The user can click each item to 
select it, so each item is a button. However, only the list box itself should be a tab stop. The items 
inside the list box should be excluded from tab ordering. To do this, the tabChildren property of 
the list box should be set to false.

The tabChildren property has no effect if the tabIndex property is used; the tabChildren 
property affects only automatic tab ordering.

See also

Button.tabIndex, MovieClip.tabEnabled, MovieClip.tabIndex, TextField.tabIndex 

MovieClip.tabEnabled

Availability

Flash Player 6.

Usage

my_mc.tabEnabled

Description

Property; specifies whether my_mc is included in automatic tab ordering. It is undefined 
by default.

If tabEnabled is undefined, the object is included in automatic tab ordering only if it defines at 
least one button handler, such as MovieClip.onRelease. If tabEnabled is true, the object is 
included in automatic tab ordering. If the tabIndex property is also set to a value, the object is 
included in custom tab ordering as well. 

If tabEnabled is false, the object is not included in automatic or custom tab ordering, even if 
the tabIndex property is set. However, if MovieClip.tabChildren is true, the movie clip’s 
children can still be included in automatic tab ordering, even if tabEnabled is false.
536 Chapter 12:  ActionScript Dictionary



See also

Button.tabEnabled, MovieClip.tabChildren, MovieClip.tabIndex, 
TextField.tabEnabled

MovieClip.tabIndex

Availability

Flash Player 6.

Usage

my_mc.tabIndex

Description

Property; lets you customize the tab ordering of objects in a movie. The tabIndex property is 
undefined by default. You can set tabIndex on a button, movie clip, or text field instance.

If an object in a SWF file contains a tabIndex property, automatic tab ordering is disabled, and 
the tab ordering is calculated from the tabIndex properties of objects in the SWF file. The 
custom tab ordering includes only objects that have tabIndex properties.

The tabIndex property must be a positive integer. The objects are ordered according to their 
tabIndex properties, in ascending order. An object with a tabIndex value of 1 precedes an object 
with a tabIndex value of 2. The custom tab ordering disregards the hierarchical relationships of 
objects in a SWF file. All objects in the SWF file with tabIndex properties are placed in the tab 
order. You shouldn’t use the same tabIndex value for multiple objects.

See also

Button.tabIndex, TextField.tabIndex

MovieClip._target

Availability

Flash Player 4.

Usage

my_mc._target

Description

Property (read-only); returns the target path of the movie clip instance specified by my_mc.
MovieClip._target 537



MovieClip._totalframes

Availability

Flash Player 4.

Usage

my_mc._totalframes

Description

Property (read-only); returns the total number of frames in the movie clip instance specified in 
the MovieClip parameter.

MovieClip.trackAsMenu

Availability

Flash Player 6.

Usage

my_mc.trackAsMenu

Description

Property; a Boolean property that indicates whether or not other buttons or movie clips can 
receive mouse release events. This allows you to create menus. You can set the trackAsMenu 
property on any button or movie clip object. If the trackAsMenu property does not exist, the 
default behavior is false. 

You can change the trackAsMenu property at any time; the modified button movie clip 
immediately takes on the new behavior. 

See also

Button.trackAsMenu

MovieClip.unloadMovie()

Availability

Flash Player 5.

Usage

my_mc.unloadMovie()

Parameters

None.

Returns

Nothing.
538 Chapter 12:  ActionScript Dictionary



Description

Method; removes the contents of a movie clip instance. The instance properties and clip 
handlers remain. 

To remove the instance, including its properties and clip handlers, use 
MovieClip.removeMovieClip().

See also

MovieClip.attachMovie(), MovieClip.loadMovie(), unloadMovie(), unloadMovieNum()

MovieClip._url

Availability

Flash Player 4.

Usage

my_mc._url

Description

Property (read only); retrieves the URL of the SWF file from which the movie clip was 
downloaded. 

MovieClip.useHandCursor

Availability

Flash Player 6.

Usage

my_mc.useHandCursor

Description

Property; a Boolean value that indicates whether the hand cursor (pointing hand) appears when 
the mouse rolls over a button movie clip. The default value of useHandCursor is true. If 
useHandCursor is set to true, the pointing hand used for buttons is displayed when the mouse 
rolls over a button movie clip. If useHandCursor is false, the arrow cursor is used instead. 

You can change the useHandCursor property at any time; the modified button movie clip 
immediately takes on the new cursor behavior. The useHandCursor property can be read out of a 
prototype object.
MovieClip.useHandCursor 539



MovieClip._visible

Availability

Flash Player 4.

Usage

my_mc._visible

Description

Property; a Boolean value that indicates whether the movie clip specified by my_mc is visible. 
Movie clips that are not visible (_visible property set to false) are disabled. For example, a 
button in a movie clip with _visible set to false cannot be clicked.

See also

Button._visible, TextField._visible

MovieClip._width

Availability

Flash Player 4 as a read-only property.

Usage

my_mc._width

Description

Property; the width of the movie clip, in pixels.

Example

The following example sets the height and width properties of a movie clip when the user clicks 
the mouse.
onclipEvent(mouseDown) {

_width=200;
_height=200;

}

See also

MovieClip._height
540 Chapter 12:  ActionScript Dictionary



MovieClip._x

Availability

Flash Player 3.

Usage

my_mc._x

Description

Property; an integer that sets the x coordinate of a movie clip relative to the local coordinates of 
the parent movie clip. If a movie clip is in the main Timeline, then its coordinate system refers to 
the upper left corner of the Stage as (0, 0). If the move clip is inside another movie clip that has 
transformations, the movie clip is in the local coordinate system of the enclosing movie clip. 
Thus, for a movie clip rotated 90 degrees counterclockwise, the movie clip’s children inherit a 
coordinate system that is rotated 90 degrees counterclockwise. The movie clip’s coordinates refer 
to the registration point position.

See also

MovieClip._xscale, MovieClip._y, MovieClip._yscale

MovieClip._xmouse

Availability

Flash Player 5.

Usage

my_mc._xmouse

Description

Property (read-only); returns the x coordinate of the mouse position.

See also

Mouse class, MovieClip._ymouse
MovieClip._xmouse 541



MovieClip._xscale

Availability

Flash Player 4.

Usage

my_mc._xscale

Description

Property; determines the horizontal scale (percentage) of the movie clip as applied from the 
registration point of the movie clip. The default registration point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined in 
whole pixels. For example, if the parent movie clip is scaled to 50%, setting the _x property moves 
an object in the movie clip by half the number of pixels as it would if the movie were set at 100%.

See also

MovieClip._x, MovieClip._y, MovieClip._yscale

MovieClip._y

Availability

Flash Player 3.

Usage

my_mc._y

Description

Property; sets the y coordinate of a movie clip relative to the local coordinates of the parent movie 
clip. If a movie clip is in the main Timeline, then its coordinate system refers to the upper left 
corner of the Stage as (0, 0). If the move clip is inside another movie clip that has transformations, 
the movie clip is in the local coordinate system of the enclosing movie clip. Thus, for a movie clip 
rotated 90 degrees counterclockwise, the movie clip’s children inherit a coordinate system that 
is rotated 90 degrees counterclockwise. The movie clip’s coordinates refer to the registration 
point position.

See also

MovieClip._x, MovieClip._xscale, MovieClip._yscale
542 Chapter 12:  ActionScript Dictionary



MovieClip._ymouse

Availability

Flash Player 5.

Usage

my_mc._ymouse

Description

Property (read-only); indicates the y coordinate of the mouse position.

See also

Mouse class, MovieClip._xmouse

MovieClip._yscale

Availability

Flash Player 4.

Usage

my_mc._yscale

Description

Property; sets the vertical scale (percentage) of the movie clip as applied from the registration 
point of the movie clip. The default registration point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined in 
whole pixels. For example, if the parent movie clip is scaled to 50%, setting the _x property moves 
an object in the movie clip by half the number of pixels as it would if the movie were at 100%.

See also

MovieClip._x, MovieClip._xscale, MovieClip._y
MovieClip._yscale 543



MovieClipLoader class 

Availability

Flash Player 7.

Description

This class lets you implement listener callbacks that provide status information while SWF or 
JPEG files are being loaded (downloaded) into movie clips. To use MovieClipLoader features, use 
MovieClipLoader.loadClip() instead of loadMovie() or MovieClip.loadMovie() to load 
SWF files. 

After you issue the MovieClipLoader.loadClip() command, the following events take place in 
the order listed:

• When the first bytes of the downloaded file have been written to disk, the 
MovieClipLoader.onLoadStart() listener is invoked.

• If you have implemented the MovieClipLoader.onLoadProgress() listener, it is invoked during 
the loading process.
Note: You can call MovieClipLoader.getProgress() at any time during the load process.

• When the entire downloaded file has been written to disk, the 
MovieClipLoader.onLoadComplete() listener is invoked.

• After the downloaded file’s first frame actions have been executed, the 
MovieClipLoader.onLoadInit() listener is invoked.

After MovieClipLoader.onLoadInit()has been invoked, you can set properties, use methods, 
and otherwise interact with the loaded movie.

If the file fails to load completely, the MovieClipLoader.onLoadError() listener is invoked.

Method summary for the MovieClipLoader class

Method Description

MovieClipLoader.addListener() Registers an object to receive notification when a 
MovieClipLoader event handler is invoked.

MovieClipLoader.getProgress() Returns the number of bytes loaded and total number of 
bytes for a file that is being loaded using 
MovieClipLoader.loadClip().

MovieClipLoader.loadClip() Loads a SWF or JPEG file into a movie clip in Flash 
Player while the original movie is playing. 

MovieClipLoader.removeListener() Deletes an object that was registered using 
MovieClipLoader.addListener().

MovieClipLoader.unloadClip() Removes a movie clip that was loaded by means of 
MovieClipLoader.loadClip().
544 Chapter 12:  ActionScript Dictionary



Listener summary for the MovieClipLoader class

Constructor for the MovieClipLoader class

Availability

Flash Player 7.

Usage

new MovieClipLoader()

Parameters

None.

Returns

Nothing.

Description

Constructor; creates a MovieClipLoader object that you can use to implement a number of 
listeners to respond to events while a SWF or JPEG file is downloading.

Example

See MovieClipLoader.loadClip().

See also

MovieClipLoader.addListener()

Listener Description

MovieClipLoader.onLoadComplete() Invoked when a file loaded with 
MovieClipLoader.loadClip() has completely 
downloaded.

MovieClipLoader.onLoadError() Invoked when a file loaded with 
MovieClipLoader.loadClip() has failed to load.

MovieClipLoader.onLoadInit() Invoked when the actions on the first frame of the loaded 
clip have been executed.

MovieClipLoader.onLoadProgress() Invoked every time the loading content is written to disk 
during the loading process.

MovieClipLoader.onLoadStart() Invoked when a call to MovieClipLoader.loadClip() has 
successfully begun to download a file.
MovieClipLoader class 545



MovieClipLoader.addListener()

Availability

Flash Player 7.

Usage

my_mcl.addListener(listenerObject)

Parameters

listenerObject An object that listens for a callback notification from the MovieClipLoader 
event handlers.

Returns

Nothing.

Description

Method; registers an object to receive notification when a MovieClipLoader event handler 
is invoked. 

Example

See MovieClipLoader.loadClip().

See also

MovieClipLoader.onLoadComplete(), MovieClipLoader.onLoadError(), 
MovieClipLoader.onLoadInit(), MovieClipLoader.onLoadProgress(), 
MovieClipLoader.onLoadStart(), MovieClipLoader.removeListener()

MovieClipLoader.getProgress()

Availability

Flash Player 7.

Usage

my_mcl.getProgress(target_mc)

Parameters

target_mc A SWF or JPEG file that is loaded using MovieClipLoader.loadClip().

Returns

An object that has two integer properties: bytesLoaded and bytesTotal.

Description

Method; returns the number of bytes loaded and total number of bytes for a file that is being 
loaded using MovieClipLoader.loadClip(); for compressed movies, it reflects the number of 
compressed bytes. This method lets you explicitly request this information, instead of (or in 
addition to) writing a MovieClipLoader.onLoadProgress() listener function.
546 Chapter 12:  ActionScript Dictionary



Example

See MovieClipLoader.loadClip().

See also

MovieClipLoader.onLoadProgress()

MovieClipLoader.loadClip()

Availability

Flash Player 7.

Usage

my_mcl.loadMovie("url", target )

Parameters

url The absolute or relative URL of the SWF file or JPEG file to be loaded. A relative path 
must be relative to the SWF file at level 0. Absolute URLs must include the protocol reference, 
such as http:// or file:///. Filenames cannot include disk drive specifications.

target The target path of a movie clip, or an integer specifying the level in Flash Player into 
which the movie will be loaded. The target movie clip will be replaced by the loaded movie 
or image. 

Returns

Nothing.

Description

Method; loads a SWF or JPEG file into a movie clip in Flash Player while the original movie is 
playing. Using this method lets you display several movies at once and switch between movies 
without loading another HTML document. 

Using this method instead of loadMovie() or MovieClip.loadMovie() has a number of 
advantages:

• The MovieClipLoader.onLoadStart() handler is invoked when loading begins.
• The MovieClipLoader.onLoadError() handler is invoked if the clip cannot be loaded.
• The MovieClipLoader.onLoadProgress() handler is invoked as the loading process progresses.
• The MovieClipLoader.onLoadInit() handler is invoked after the actions in the first frame of 

the clip have executed, so you can being manipulating the loaded clip.

A movie or image loaded into a movie clip inherits the position, rotation, and scale properties of 
the movie clip. You can use the target path of the movie clip to target the loaded movie.

You can use this method to load one or more files into a single movie clip or level; 
MovieClipLoader listener objects are passed the loading target movie clip instance as a parameter. 
Alternately, you can create a different MovieClipLoader object for each file you load.

Use MovieClipLoader.unloadClip() to remove movies or images loaded with this method or 
to cancel a load operation that is in progress.
MovieClipLoader.loadClip() 547



Example

The following example illustrates the use of many of the MovieClipLoader methods and listeners. 
// first set of listeners
var my_mcl = new MovieClipLoader();
myListener = new Object();
myListener.onLoadStart = function (target_mc) 
{
myTrace ("*********First my_mcl instance*********");
myTrace ("Your load has begun on movie clip . = " + target_mc);
var loadProgress = my_mcl.getProgress(target_mc);
myTrace(loadProgress.bytesLoaded + " = bytes loaded at start");
myTrace(loadProgress.bytesTotal + " = bytes total at start");
}
myListener.onLoadProgress = function (target_mc, loadedBytes, totalBytes) 
{
myTrace ("*********First my_mcl instance Progress*********");
myTrace ("onLoadProgress() called back on movie clip " + target_mc);
myTrace(loadedBytes + " = bytes loaded at progress callback " );
myTrace(totalBytes + " = bytes total at progress callback \n");
}
myListener.onLoadComplete = function (target_mc) 
{
myTrace ("*********First my_mcl instance*********");
myTrace ("Your load is done on movie clip = " + target_mc);
var loadProgress = my_mcl.getProgress(target_mc);
myTrace(loadProgress.bytesLoaded + " = bytes loaded at end" );
myTrace(loadProgress.bytesTotal + " = bytes total at end=");
}
myListener.onLoadInit = function (target_mc) 
{
myTrace ("*********First my_mcl instance*********");
myTrace ("Movie clip = " + target_mc + " is now initialized");
// you can now do any setup required, for example:
target_mc._width = 100;
target_mc._width = 100;
} 
myListener.onLoadError = function (target_mc, errorCode) 
{
myTrace ("*********First my_mcl instance*********");
myTrace ("ERROR CODE = " + errorCode);
myTrace ("Your load failed on movie clip = " + target_mc + "\n");
 } 
my_mcl.addListener(myListener);
//Now load the files into their targets.
// loads into movie clips - strings used as target
my_mcl.loadClip("http://www.somedomain.somewhere.com/

someFile.swf","_root.myMC");
my_mcl.loadClip("http://www.somedomain.somewhere.com/someOtherFile.swf", 

"_level0.myMC2");
//failed load
my_mcl.loadClip("http://www.somedomain.somewhere.com/someFile.jpg", 

_root.myMC5);

// loads into movie clips - movie clip instances used as target.
my_mcl.loadClip("http://www.somedomain.somewhere.com/someOtherFile.jpg", 

_level0.myMC3);

// loads into _level1 
my_mcl.loadClip("file:///C:/media/images/somePicture.jpg", 1); 
548 Chapter 12:  ActionScript Dictionary



 
//Second set of listeners
var another_mcl = new MovieClipLoader();
myListener2 = new Object();
myListener2.onLoadStart = function (target_mc) 
{
myTrace("*********Second my_mcl instance*********");
myTrace ("Your load has begun on movie clip22 . = " + target_mc);
var loadProgress = my_mcl.getProgress(target_mc);
myTrace(loadProgress.bytesLoaded + " = bytes loaded at start" );
myTrace(loadProgress.bytesTotal + " = bytes total at start");
}
myListener2.onLoadComplete = function (target_mc) 
{
myTrace ("*********Second my_mcl instance*********");
myTrace ("Your load is done on movie clip = " + target_mc);
var loadProgress = my_mcl.getProgress(target_mc);
myTrace(loadProgress.bytesLoaded + " = bytes loaded at end");
myTrace(loadProgress.bytesTotal + " = bytes total at end" );
} 
myListener2.onLoadError = function (target_mc, errorCode) 
{
myTrace ("*********Second my_mcl instance*********");
myTrace ("ERROR CODE = " + errorCode);
myTrace ("Your load failed on movie clip = " + target_mc + "\n");
 } 
another_mcl.addListener(myListener2);
//Now load the files into their targets (using the second instance of 

MovieClipLoader)
another_mcl.loadClip("http://www.somedomain.somewhere.com/yetAnotherFile.jpg", 

_root.myMC4);
// Issue the following statements after the download is complete, 
// and after my_mcl.onLoadInit has been called.
// my_mcl.removeListener(myListener)
// my_mcl.removeListener(myListener2)

See also

MovieClipLoader.unloadClip()
MovieClipLoader.loadClip() 549



MovieClipLoader.onLoadComplete()

Availability

Flash Player 7.

Usage

listenerObject.onLoadComplete() = function(target_mc) {
// your statements here

}

Parameters

listenerObject A listener object that was added using MovieClipLoader.addListener().

target_mc The movie clip loaded by a MovieClipLoader.loadClip() method.

Returns

Nothing.

Description

Listener; invoked when a file loaded with MovieClipLoader.loadClip() has 
completely downloaded.

Example

See MovieClipLoader.loadClip().

See also

MovieClipLoader.addListener(), MovieClipLoader.onLoadStart(), 
MovieClipLoader.onLoadError()

MovieClipLoader.onLoadError()

Availability

Flash Player 7.

Usage

listenerObject.onLoadError() = function(target_mc, errorCode) {
// your statements here

}

Parameters

listenerObject A listener object that was added using MovieClipLoader.addListener().

target_mc The movie clip loaded by a MovieClipLoader.loadClip() method.

errorCode A string that explains the reason for the failure.

Returns

One of two strings: “URLNotFound” or “LoadNeverCompleted”.

Description

Listener; invoked when a file loaded with MovieClipLoader.loadClip() has failed to load.
550 Chapter 12:  ActionScript Dictionary



The string “URLNotFound” is returned if neither the MovieClipLoader.onLoadStart() or 
MovieClipLoader.onLoadComplete() listener has been called. For example, if a server is down or 
the file is not found, these listeners are not called. 

The string “LoadNeverCompleted” is returned if MovieClipLoader.onLoadStart() was called 
but MovieClipLoader.onLoadComplete() was not called. For example, if 
MovieClipLoader.onLoadStart() is called but the download is interrupted due to server 
overload, server crash, and so on, MovieClipLoader.onLoadComplete() will not be called.

Example

See MovieClipLoader.loadClip().

MovieClipLoader.onLoadInit()

Availability

Flash Player 7.

Usage

listenerObject.onLoadInit() = function(target_mc) {
// your statements here

}

Parameters

listenerObject A listener object that was added using MovieClipLoader.addListener().

target_mc The movie clip loaded by a MovieClipLoader.loadClip() method.

Returns

Nothing.

Description

Listener; invoked when the actions on the first frame of the loaded clip have been executed. After 
this listener has been invoked, you can set properties, use methods, and otherwise interact with 
the loaded movie.

Example

See MovieClipLoader.loadClip().

See also

MovieClipLoader.onLoadStart()
MovieClipLoader.onLoadInit() 551



MovieClipLoader.onLoadProgress()

Availability

Flash Player 7.

Usage

listenerObject.onLoadProgress() = 
function(target_mc [, loadedBytes [, totalBytes ] ] ) {
// your statements here

}

Parameters

listenerObject A listener object that was added using MovieClipLoader.addListener().

target_mc The movie clip loaded by a MovieClipLoader.loadClip() method.

loadedBytes The number of bytes that had been loaded when the listener was invoked.

totalBytes The total number of bytes in the file being loaded. 

Returns

Nothing.

Description

Listener; invoked every time the loading content is written to disk during the loading process 
(that is, between MovieClipLoader.onLoadStart() and 
MovieClipLoader.onLoadComplete()). You can use this method to display information about 
the progress of the download, using the loadedBytes and totalBytes parameters.

Example

See MovieClipLoader.loadClip().

See also

MovieClipLoader.getProgress()

MovieClipLoader.onLoadStart()

Availability

Flash Player 7.

Usage

listenerObject.onLoadStart() = function(target_mc) {
// your statements here

}

Parameters

listenerObject A listener object that was added using MovieClipLoader.addListener().

target_mc The movie clip loaded by a MovieClipLoader.loadClip() method.

Returns

Nothing.
552 Chapter 12:  ActionScript Dictionary



Description

Listener; invoked when a call to MovieClipLoader.loadClip() has successfully begun to download 
a file.

Example

See MovieClipLoader.loadClip().

See also

MovieClipLoader.onLoadError(), MovieClipLoader.onLoadInit(), 
MovieClipLoader.onLoadComplete()

MovieClipLoader.removeListener()

Availability

Flash Player 7.

Usage

my_mcl.removeListener(listenerObject)

Parameters

listenerObject A listener object that was added using MovieClipLoader.addListener().

Returns

Nothing.

Description

Method; deletes an object that was used to receive notification when a MovieClipLoader event 
handler was invoked. 

Example

See MovieClipLoader.loadClip().

MovieClipLoader.unloadClip()

Availability

Flash Player 7.

Usage

my_mcl.unloadClip(target)

Parameters

target The string or integer passed to the corresponding call to my_mcl.loadClip().

Returns

Nothing.
MovieClipLoader.unloadClip() 553



Description

Method; removes a movie clip that was loaded by means of MovieClipLoader.loadClip(). If you 
issue this command while a movie is loading, MovieClipLoader.onLoadError() is invoked.

See also

MovieClipLoader.loadClip()

NaN

Availability

Flash Player 5.

Usage

NaN

Description

Variable; a predefined variable with the IEEE-754 value for NaN (Not a Number). To determine if 
a number is NaN, use isNaN().

See also

isNaN(), Number.NaN

ne (not equal — string specific)

Availability

Flash Player 4. This operator has been deprecated in favor of the != (inequality) operator.

Usage

expression1 ne expression2

Parameters

expression1, expression2 Numbers, strings, or variables.

Returns

A Boolean value.

Description

Operator (comparison); compares expression1 to expression2 and returns true if 
expression1 is not equal to expression2; otherwise, returns false.

See also

!= (inequality)
554 Chapter 12:  ActionScript Dictionary



NetConnection class

Availability

Flash Player 7.
Note: This class is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Description

The NetConnection class provides the means to play back streaming FLV files from a local drive 
or HTTP address. For more information on video playback, see “Playing back external FLV files 
dynamically” on page 197.

Method summary for the NetConnection class

Constructor for the NetConnection class

Availability

Flash Player 7.
Note: This class is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

new NetConnection()

Parameters

None.

Returns

Nothing.

Description

Constructor; creates a NetConnection object that you can use in conjunction with a NetStream 
object to play back local streaming video (FLV) files. After creating the NetConnection object, 
use NetConnection.connect() to make the actual connection. 

Playing external FLV files provides several advantages over embedding video in a Flash document, 
such as better performance and memory management, and independent video and Flash frame 
rates. For more information, see “Playing back external FLV files dynamically” on page 197.

See also

NetStream class, Video.attachVideo()

Method Description

NetConnection.connect() Opens a local connection through which you can play back video 
(FLV) files from an HTTP address or from the local file system.
NetConnection class 555



NetConnection.connect()

Flash Player 7.
Note: This method is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_nc.connect(null);

Parameters

None (you must pass null).

Returns

Nothing.

Description

Constructor; opens a local connection through which you can play back video (FLV) files from an 
HTTP address or from the local file system.

See also

NetStream class

NetStream class

Availability

Flash Player 7.
Note: This class is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Description

The NetStream class provides methods and properties for playing Flash Video (FLV) files from 
the local file system or an HTTP address. You use a NetStream object to stream video through a 
NetConnection object. Playing external FLV files provides several advantages over embedding 
video in a Flash document, such as better performance and memory management, and 
independent video and Flash frame rates. This class provides a number of methods and properties 
you can use to track the progress of the file as it loads and plays, and to give the user control over 
playback (stopping, pausing, and so on). 

For more information on video playback, see “Playing back external FLV files dynamically” 
on page 197.
556 Chapter 12:  ActionScript Dictionary



Method summary for the NetStream class

The following methods and properties of the NetConnection and NetStream classes are used to 
control FLV playback.

Property summary for the NetStream class

Event handler summary for the NetStream class

Method Purpose

NetStream.close() Closes the stream but does not clear the video object.

NetStream.pause() Pauses or resumes playback of a stream.

NetStream.play() Begins playback of an external video (FLV) file.

NetStream.seek() Seeks a specific position in the FLV file.

NetStream.setBufferTime() Specifies how long to buffer data before starting to display the stream.

Property Description

NetStream.bufferLength The number of seconds of data currently in the buffer.

NetStream.bufferTime Read-only: the number of seconds assigned to the buffer by 
NetStream.setBufferTime().

NetStream.bytesLoaded Read-only; the number of bytes of data that have been loaded into 
the player.

NetStream.bytesTotal Read-only; the total size in bytes of the file being loaded into 
the player.

NetStream.currentFps The number of frames per second being displayed.

NetStream.time Read-only; the position of the playhead, in seconds.

Event handler Description

NetStream.onStatus Invoked every time a status change or error is posted for the 
NetStream object.
NetStream class 557



Constructor for the NetStream class

Availability

Flash Player 7.
Note: This class is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

new NetStream(my_nc)

Parameters

my_nc A NetConnection object.

Returns

Nothing.

Description

Constructor; creates a stream that can be used for playing FLV files through the specified 
NetConnection object.

Example

The following code first constructs a new NetConnection object, my_nc, and uses it to construct 
a new NetStream object called videoStream_ns.
my_nc = new NetConnection();
my_nc.connect(null);
videoStream_ns = new NetStream(my_nc);

See also

NetConnection class, NetStream class, Video.attachVideo()

NetStream.bufferLength

Availability

Flash Player 7.
Note: This property is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.bufferLength

Description

Read-only property; the number of seconds of data currently in the buffer. You can use this 
property in conjunction with NetStream.bufferTime to estimate how close the buffer is to being 
full—for example, to display feedback to a user who is waiting for data to be loaded into 
the buffer. 

See also

NetStream.bytesLoaded
558 Chapter 12:  ActionScript Dictionary



NetStream.bufferTime

Availability

Flash Player 7.
Note: This property is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

myStream.bufferTime

Description

Read-only property; the number of seconds assigned to the buffer by 
NetStream.setBufferTime(). The default value is .1(one-tenth of a second). To determine 
the number of seconds currently in the buffer, use NetStream.bufferLength.

See also

NetStream.time

NetStream.bytesLoaded

Availability

Flash Player 7.

Usage

my_ns.bytesLoaded

Description

Read-only property; the number of bytes of data that have been loaded into the player. You can 
use this method in conjunction with NetStream.bytesTotal to estimate how close the buffer is to 
being full—for example, to display feedback to a user who is waiting for data to be loaded into 
the buffer

See also

NetStream.bufferLength

NetStream.bytesTotal

Availability

Flash Player 7.

Usage

my_ns.bytesLoaded

Description

Read-only property; the total size in bytes of the file being loaded into the player.

See also

NetStream.bytesLoaded, NetStream.bufferTime
NetStream.bytesTotal 559



NetStream.close()

Availability

Flash Player 7.
Note: This method is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.close()

Parameters

None.

Returns

Nothing.

Description

Method; stops playing all data on the stream, sets the NetStream.time property to 0, and makes the 
stream available for another use. This command also deletes the local copy of an FLV file that was 
downloaded using HTTP.

Example

The following onDisconnect() function closes a connection and deletes the temporary copy of 
someFile.flv that was stored on the local disk.
my_nc = new NetConnection();
my_nc.connect(null);
my_ns = new NetStream(my_nc);
my_ns.play("http://www.someDomain.com/videos/someFile.flv");

function onDisconnect() {
my_ns.close();

}

See also

NetStream.pause(), NetStream.play()

NetStream.currentFps

Availability

Flash Player 7.
Note: This property is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.currentFps

Description

Read-only property; the number of frames per second being displayed. If you are exporting FLV 
files to be played back on a number of systems, you can check this value during testing to help 
you determine how much compression to apply when exporting the file.
560 Chapter 12:  ActionScript Dictionary



NetStream.onStatus

Availability

Flash Player 7.
Note: This handler is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.onStatus = function(infoObject) {
// Your code here

}

Parameters

infoObject A parameter defined according to the status or error message. For more 
information about this parameter, see “Description,” below.

Returns

Nothing.

Description

Event handler; invoked every time a status change or error is posted for the NetStream object. 
If you want to respond to this event handler, you must create a function to process the 
information object. 

The information object has a code property containing a string that describes the result of the 
onStatus handler, and a level property containing a string that is either "Status" or "Error". 

In addition to this onStatus handler, Flash also provides a “super” function called 
System.onStatus. If onStatus is invoked for a particular object and there is no function assigned 
to respond to it, Flash processes a function assigned to System.onStatus if it exists.

The following events notify you when certain NetStream activities occur.

Code property Level property Meaning

NetStream.Buffer.Empty Status Data is not being received quickly enough 
to fill the buffer. Data flow will be 
interrupted until the buffer refills, at which 
time a NetStream.Buffer.Full message 
will be sent and the stream will begin 
playing again.

NetStream.Buffer.Full Status The buffer is full and the stream will begin 
playing. 

NetStream.Play.Start Status Playback has started.

NetStream.Play.Stop Status Playback has stopped.

NetStream.Play.StreamNotFound Error The FLV passed to the play() method 
can't be found.
NetStream.onStatus 561



Example

The following example writes data about the stream to a log file.
my_ns.onStatus = function(info)
{

_root.log_stream += "Stream status.\n";
_root.log_stream += "Event: " + info.code + "\n";
_root.log_stream += "Type: " + info.level + "\n";

}

See also

System.onStatus

NetStream.pause()

Availability

Flash Player 7.
Note: This method is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.pause( [ pauseResume ] )

Parameters

pauseResume Optional: a Boolean value specifying whether to pause play (true) or resume 
play (false). If you omit this parameter, NetStream.pause() acts as a toggle: the first time it is 
called on a specified stream, it pauses play, and the next time it is called, it resumes play. 

Returns

Nothing.

Description

Method; pauses or resumes playback of a stream.

The first time you call this method (without sending a parameter), it pauses play; the next time, it 
resumes play. You might want to attach this method to a button that the user presses to pause or 
resume playback.

Example

The following examples illustrate some uses of this method.
my_ns.pause(); // pauses play first time issued
my_ns.pause(); // resumes play
my_ns.pause(false); // no effect, play continues
my_ns.pause(); // pauses play

See also

NetStream.close(), NetStream.play()
562 Chapter 12:  ActionScript Dictionary



NetStream.play()

Availability

Flash Player 7.
Note: This method is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.play("fileName");

Parameters

fileName The name of an FLV file to play, in quotation marks. Both http:// and file:// formats 
are supported; the file:// location is always relative to the location of the SWF file.

Returns

Nothing.

Description

Method; begins playback of an external video (FLV) file. To view video data, you must call a 
Video.attachVideo() method; audio being streamed with the video, or an FLV file that 
contains only audio, is played automatically. 

If you want to control the audio associated with an FLV file, you can use 
MovieClip.attachAudio() to route the audio to a movie clip; you can then create a Sound 
object to control some aspects of the audio. For more information, see 
MovieClip.attachAudio().

If the FLV file can’t be found, the NetStream.onStatus event handler is invoked. If you want to 
stop a stream that is currently playing, use NetStream.close().

You can play local FLV files that are stored in the same directory as the SWF file or in a 
subdirectory; you can’t navigate to a higher-level directory. For example, if the SWF file is located 
in a directory named /training, and you want to play a video stored in the /training/videos 
directory, you would use the following syntax:
my_ns.play("file://videos/videoName.flv");

To play a video stored in the /training directory, you would use the following syntax:

my_ns.play("file://videoName.flv");

Example

The following example illustrates some ways to use the NetStream.play() command. 
// Play a file that is on the user’s computer
// The joe_user directory is a subdirectory of the directory
// in which the SWF is stored
my_ns.play("file://joe_user/flash/videos/lectureJune26.flv");

// Play a file on a server
my_ns.play("http://someServer.someDomain.com/flash/video/orientation.flv");

See also

MovieClip.attachAudio(), NetStream.close(), NetStream.pause(), Video.attachVideo()
NetStream.play() 563



NetStream.seek()

Availability

Flash Player 7.
Note: This method is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.seek(numberOfSeconds)

Parameters

numberOfSeconds The approximate time value, in seconds, to move to in an FLV file. The 
playhead moves to the keyframe closest to numberOfSeconds.

• To return to the beginning of the stream, pass 0 for numberOfSeconds.
• To seek forward from the beginning of the stream, pass the number of seconds you want to 

advance. For example, to position the playhead at 15 seconds from the beginning, use 
myStream.seek(15).

• To seek relative to the current position, pass mystream.time + n or mystream.time - n to 
seek n seconds forward or backward, respectively, from the current position. For example, to 
rewind 20 seconds from the current position, use my_ns.seek(my_ns.time - 20).

Returns

Nothing.

Description

Method; seeks the keyframe closest to the specified number of seconds from the beginning of the 
stream. The stream resumes playing when it reaches the specified location in the stream.

Example

The following example illustrates some ways to use the NetStream.seek() command.
// Return to the beginning of the stream
my_ns.seek(0);

// Move to a location 30 seconds from the beginning of the stream
my_ns.seek(30);

//Move backwards three minutes from current location
my_ns.seek(my_ns.time - 180);

See also

NetStream.play(), NetStream.time
564 Chapter 12:  ActionScript Dictionary



NetStream.setBufferTime()

Availability

Flash Player 7.
Note: This method is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.setBufferTime(numberOfSeconds)

Parameters

numberOfSeconds The number of seconds of data to be buffered before Flash begins displaying 
data. The default value is .1 (one-tenth of a second).

Description

Method; specifies how long to buffer messages before starting to display the stream. For example, 
if you want to make sure that the first 15 seconds of the stream play without interruption, 
set numberOfSeconds to 15; Flash begins playing the stream only after 15 seconds of data 
are buffered.

See also

NetStream.bufferTime

NetStream.time

Availability

Flash Player 7.
Note: This property is also supported in Flash Player 6 when used with Flash Communication Server. 
For more information, see your Flash Communication Server documentation.

Usage

my_ns.time

Description

Read-only property; the position of the playhead, in seconds.

See also

NetStream.bufferLength, NetStream.bytesLoaded
NetStream.time 565



new

Availability

Flash Player 5.

Usage

new constructor()

Parameters

constructor A function followed by any optional parameters in parentheses. The function is 
usually the name of the object type (for example, Array, Number, or Object) to be constructed.

Returns

Nothing.

Description

Operator; creates a new, initially anonymous, object and calls the function identified by the 
constructor parameter. The new operator passes to the function any optional parameters in 
parentheses, as well as the newly created object, which is referenced using the keyword this. The 
constructor function can then use this to set the variables of the object. 

Example

The following example creates the Book() function and then uses the new operator to create the 
objects book1 and book2.
function Book(name, price){

this.name = name;
this.price = price;

}

book1 = new Book("Confederacy of Dunces", 19.95);
book2 = new Book("The Floating Opera", 10.95);

Example

The following example uses the new operator to create an Array object with 18 elements:
golfCourse_array = new Array(18);

See also

[] (array access), {} (object initializer)
566 Chapter 12:  ActionScript Dictionary



newline

Availability

Flash Player 4.

Usage

newline

Parameters

None.

Returns

Nothing.

Description

Constant; inserts a carriage return character (\n) that generates a blank line in text output 
generated by your code. Use newline to make space for information that is retrieved by a 
function or action in your code.

Example

The following example shows how newline displays output from the trace() action on 
multiple lines.
var myName:String = "Lisa", myAge:Number = 30;
trace(myName + myAge);
trace(myName + newline + myAge);

nextFrame()

Availability

Flash 2.

Usage

nextFrame()

Parameters

None.

Returns

Nothing.

Description

Function; sends the playhead to the next frame and stops it.

Example

In this example, when the user clicks the button, the playhead goes to the next frame and stops.
on (release) {

nextFrame();
}

nextFrame() 567



nextScene()

Availability

Flash 2.

Usage

nextScene()

Parameters

None.

Returns

Nothing.

Description

Function; sends the playhead to Frame 1 of the next scene and stops it.

Example

In this example, when a user releases the button, the playhead is sent to Frame 1 of the next scene.
on(release) {

nextScene();
}

See also

prevScene()

not

Availability

Flash Player 4. This operator has been deprecated in favor of the ! (logical NOT) operator.

Usage

not expression

Parameters

expression A variable or other expression that converts to a Boolean value.

Description

Operator; performs a logical NOT operation in Flash Player 4. 

See also

! (logical NOT)
568 Chapter 12:  ActionScript Dictionary



null 

Availability

Flash Player 5.

Usage

null

Parameters

None.

Returns

Nothing.

Description

Constant; a special value that can be assigned to variables, or returned by a function if no data 
was provided. You can use null to represent values that are missing or do not have a defined 
data type.

Example

In a numeric context, null evaluates to 0. Equality tests can be performed with null. In this 
statement, a binary tree node has no left child, so the field for its left child could be set to null.
if (tree.left == null) {

tree.left = new TreeNode();
}

Number class

Availability

Flash Player 5 (became a native object in Flash Player 6, which improved 
performance significantly).

Description

The Number class is a simple wrapper object for the Number data type. You can manipulate 
primitive numeric values by using the methods and properties associated with the Number class. 
This class is identical to the JavaScript Number class.

You must use a constructor when calling the methods of a Number object, but you do not need to 
use the constructor when calling the properties of a Number object. The following examples 
specify the syntax for calling the methods and properties of a Number object.

The following example calls the toString() method of a Number object, which returns the 
string “1234”.
myNumber = new Number(1234);
myNumber.toString();

This example calls the MIN_VALUE property (also called a constant) of a Number object:
smallest = Number.MIN_VALUE
Number class 569



Method summary for the Number class

Property summary for the Number class

Constructor for the Number class

Availability

Flash Player 5.

Usage

new Number(value)

Parameters

value The numeric value of the Number object being created, or a value to be converted to 
a number.

Returns

Nothing.

Description

Constructor; creates a new Number object. You must use the Number constructor when using 
Number.toString() and Number.valueOf(). You do not use a constructor when using the 
properties of a Number object. The new Number constructor is primarily used as a placeholder. A 
Number object is not the same as the Number() function that converts a parameter to a 
primitive value.

Example

The following code constructs new Number objects.
n1 = new Number(3.4);
n2 = new Number(-10);

See also

Number()

Method Description

Number.toString() Returns the string representation of a Number object.

Number.valueOf() Returns the primitive value of a Number object.

Property Description

Number.MAX_VALUE Constant representing the largest representable number (double-
precision IEEE-754). This number is approximately 1.79E+308.

Number.MIN_VALUE Constant representing the smallest representable number (double-
precision IEEE-754). This number is approximately 5e-324.

Number.NaN Constant representing the value for Not a Number (NaN).

Number.NEGATIVE_INFINITY Constant representing the value for negative infinity.

Number.POSITIVE_INFINITY Constant representing the value for positive infinity. This value is the 
same as the global variable Infinity.
570 Chapter 12:  ActionScript Dictionary



Number.MAX_VALUE

Availability

Flash Player 5.

Usage

Number.MAX_VALUE

Description

Property; the largest representable number (double-precision IEEE-754). This number is 
approximately 1.79E+308.

Number.MIN_VALUE

Availability

Flash Player 5.

Usage

Number.MIN_VALUE

Description

Property; the smallest representable number (double-precision IEEE-754). This number is 
approximately 5e-324.

Number.NaN

Availability

Flash Player 5.

Usage

Number.NaN

Description

Property; the IEEE-754 value representing Not A Number (NaN).

See also

isNaN(), NaN
Number.NaN 571



Number.NEGATIVE_INFINITY

Availability

Flash Player 5.

Usage

Number.NEGATIVE_INFINITY

Description

Property; specifies the IEEE-754 value representing negative infinity. The value of this property is 
the same as that of the constant -Infinity.

Negative infinity is a special numeric value that is returned when a mathematical operation or 
function returns a negative value larger than can be represented.

Number.POSITIVE_INFINITY

Availability

Flash Player 5.

Usage

Number.POSITIVE_INFINITY

Description

Property; specifies the IEEE-754 value representing positive infinity. The value of this property is 
the same as that of the constant Infinity.

Positive infinity is a special numeric value that is returned when a mathematical operation or 
function returns a value larger than can be represented.

Number.toString()

Availability

Flash Player 5; behavior changed in Flash Player 7.

Usage

myNumber.toString(radix)

Parameters

radix Specifies the numeric base (from 2 to 36) to use for the number-to-string conversion. If 
you do not specify the radix parameter, the default value is 10.

Returns

A string.
572 Chapter 12:  ActionScript Dictionary



Description

Method; returns the string representation of the specified Number object (myNumber). 

If myNumber is undefined, the return value is as follows:

• In files published for Flash Player 6 or earlier, the result is 0.
• In files published for Flash Player 7 or later, the result is NaN.

Example

The following example uses 2 and 8 for the radix parameter and returns a string that contains 
the corresponding representation of the number 9.
myNumber = new Number (9);
trace(myNumber.toString(2)); / 1001
trace(myNumber.toString(8)); / 11

See also

NaN

Number.valueOf()

Availability

Flash Player 5.

Usage

myNumber.valueOf()

Parameters

None.

Returns

A number.

Description

Method; returns the primitive value type of the specified Number object.

Number()

Availability

Flash Player 4; behavior changed in Flash Player 7.

Usage

Number(expression)

Parameters

expression An expression to convert to a number.

Returns

A number or NaN.
Number() 573



Description

Function; converts the parameter expression to a number and returns a value as follows:

• If expression is a number, the return value is expression.
• If expression is a Boolean value, the return value is 1 if expression is true, 0 if expression 

is false.
• If expression is a string, the function attempts to parse expression as a decimal number 

with an optional trailing exponent, that is, 1.57505e-3.
• If expression is undefined, the return value is as follows:

■ In files published for Flash Player 6 or earlier, the result is 0.
■ In files published for Flash Player 7 or later, the result is NaN.

This function is used to convert Flash 4 files containing deprecated operators that are 
imported into the Flash 5 or later authoring environment. For more information, see & (bitwise 
AND operator). 

See also

NaN, Number class

Object class

Availability

Flash Player 5 (became a native object in Flash Player 6, which improved 
performance significantly).

Description

The Object class is at the root of the ActionScript class hierarchy. This class contains a small 
subset of the features provided by the JavaScript Object class.

Method summary for the Object class

Property summary for the Object class

Method Description

Object.addProperty() Creates a getter/setter property on an object.

Object.registerClass() Associates a movie clip symbol with an ActionScript object class.

Object.toString() Converts the specified object to a string and returns it.

Object.unwatch() Removes the watchpoint that Object.watch() created.

Object.valueOf() Returns the primitive value of an object.

Object.watch() Registers an event handler to be invoked when a specified property of an 
ActionScript object changes.

Property Description

Object.__proto__ A reference to the prototype property of the object’s constructor 
function.
574 Chapter 12:  ActionScript Dictionary



Constructor for the Object class

Availability

Flash Player 5.

Usage

new Object([value])

Parameters

value A number, Boolean value, or string to be converted to an object. This parameter 
is optional. If you do not specify value, the constructor creates a new object with no 
defined properties.

Returns

Nothing.

Description

Constructor; creates a new Object object.

Object.addProperty()

Availability

Flash Player 6. In external class files, you can use get or set instead of this method.

Usage

myObject.addProperty(prop, getFunc, setFunc)

Parameters

prop The name of the object property to create.

getFunc The function that is invoked to retrieve the value of the property; this parameter is a 
function object.

setFunc The function that is invoked to set the value of the property; this parameter is a 
function object. If you pass the value null for this parameter, the property is read-only.

Returns

Returns a value of true if the property is successfully created; otherwise, returns false.

Description

Method; creates a getter/setter property. When Flash reads a getter/setter property, it invokes the 
get function and the function’s return value becomes a value of prop. When Flash writes a getter/
setter property, it invokes the set function and passes it the new value as a parameter. If a property 
with the given name already exists, the new property overwrites it.

A “get” function is a function with no parameters. Its return value can be of any type. Its type can 
change between invocations. The return value is treated as the current value of the property.

A “set” function is a function that takes one parameter, which is the new value of the property. For 
example, if property x is assigned by the statement x = 1, the set function is passed the parameter 
1 of type number. The return value of the set function is ignored.
Object.addProperty() 575



You can add getter/setter properties to prototype objects. If you add a getter/setter property to a 
prototype object, all object instances that inherit the prototype object inherit the getter/setter 
property. This makes it possible to add a getter/setter property in one location, the prototype 
object, and have it propagate to all instances of a class (much like adding methods to prototype 
objects). If a get/set function is invoked for a getter/setter property in an inherited prototype 
object, the reference passed to the get/set function will be the originally referenced object, not the 
prototype object. 

If invoked incorrectly, Object.addProperty() may fail with an error. The following table 
describes errors that may occur:

Example

Usage 1: An object has two internal methods, setQuantity() and getQuantity(). A property, 
bookcount, can be used to invoke these methods when it is either set or retrieved. A third internal 
method, getTitle(), returns a read-only value that is associated with the property bookname:  
function Book() {  

this.setQuantity = function(numBooks) { 

this.books = numBooks;
}  

this.getQuantity = function() { 
return this.books;

}  
this.getTitle = function() {  

return "Catcher in the Rye"; 
}  
this.addProperty("bookcount", this.getQuantity, this.setQuantity);  
this.addProperty("bookname", this.getTitle, null); 

}  
myBook = new Book(); 
myBook.bookcount = 5; 
order = "You ordered " + myBook.bookcount + " copies of " + myBook.bookname;  

When a script retrieves the value of myBook.bookcount, the ActionScript interpreter 
automatically invokes myBook.getQuantity(). When a script modifies the value of 
myBook.bookcount, the interpreter invokes myObject.setQuantity(). The bookname property 
does not specify a set function, so attempts to modify bookname are ignored.

Error condition What happens

prop is not a valid property name; for instance, an 
empty string.

Returns false and the property is not added.

getFunc is not a valid function object. Returns false and the property is not added.

setFunc is not a valid function object. Returns false and the property is not added.
576 Chapter 12:  ActionScript Dictionary



Usage 2: The above example of bookcount and bookname works, but the properties bookcount 
and bookname are added to every instance of the Book object. That means that the cost of having 
the properties is two property slots for every instance of the object. If there are many properties 
like bookcount and bookname in a class, they could consume a great deal of memory. Instead, you 
can add the properties to Book.prototype:  
function Book () {}  
Book.prototype.setQuantity = function(numBooks) {  

this.books = numBooks; 
} 
Book.prototype.getQuantity = function() {  

return this.books; 
} 
Book.prototype.getTitle = function() {  

return "Catcher in the Rye"; 
}  
Book.prototype.addProperty("bookcount", Book.prototype.getQuantity, 

Book.prototype.setQuantity); 
Book.prototype.addProperty("bookname", Book.prototype.getTitle, null);
myBook = new Book(); 
myBook.bookcount = 5; 
order = "You ordered "+myBook.bookcount+" copies of "+myBook.bookname;  

Now, the bookcount and bookname properties exist only in one place: the Book.prototype 
object. The effect, however, is the same as that of the code in Usage 1, which added bookcount 
and bookname directly to every instance. If bookcount or bookname is accessed in a Book 
instance, the prototype chain is ascended and the getter/setter property in Book.prototype 
is found.

Usage 3: The built-in properties TextField.scroll and TextField.maxscroll are getter/setter 
properties. The TextField object has internal methods getScroll(), setScroll(), and 
getMaxScroll(). The TextField constructor creates the getter/setter properties and points them 
to the internal get/set methods, as in the following:
this.addProperty("scroll", this.getScroll, this.setScroll);
this.addProperty("maxscroll", this.getMaxScroll, null);

When a script retrieves the value of myTextField.scroll, the ActionScript interpreter 
automatically invokes myTextField.getScroll(). When a script modifies the value of 
myTextField.scroll, the interpreter invokes myTextField.setScroll(). The maxscroll 
property does not specify a set function, so attempts to modify maxscroll are ignored.

Usage 4: Although the built-in TextField.scroll and TextField.maxscroll properties work 
in the Usage 3 example, the properties scroll and maxscroll are added to every instance of the 
TextField object. That means the cost of having the properties is two property slots for every 
instance of the object. If there are many properties like scroll and maxscroll in a class, they 
could consume a great deal of memory. Instead, you can add the scroll and maxscroll 
properties to TextField.prototype:
TextField.prototype.addProperty("scroll", this.getScroll, this.setScroll);
TextField.prototype.addProperty("maxscroll", this.getMaxScroll, null);

Now, the scroll and maxscroll properties only exist in one place: the TextField.prototype 
object. The effect, however, is the same as the above code that added scroll and maxscroll 
directly to every instance. If scroll or maxscroll is accessed in a TextField instance, the 
prototype chain is ascended and the getter/setter property in TextField.prototype is found.
Object.addProperty() 577



Object.__proto__

Availability

Flash Player 5.

Usage

myObject.__proto__

Parameters

None.

Description

Property; refers to the prototype property of the constructor function that created myObject. 
The __proto__ property is automatically assigned to all objects when they are created. The 
ActionScript interpreter uses the __proto__ property to access the prototype property of 
the object’s constructor function to find out what properties and methods the object inherits 
from its class. 

Object.registerClass()

Availability 

Flash Player 6. If you are using external class files, you can use the ActionScript 2.0 Class field in 
the Linkage Properties or Symbol Properties dialog box to associate an object with a class instead 
of using this method.

Usage

Object.registerClass(symbolID, theClass)

Parameters

symbolID The linkage identifier of the movie clip symbol, or the string identifier for the 
ActionScript class.

theClass A reference to the constructor function of the ActionScript class, or null to 
unregister the symbol.

Returns

If the class registration succeeds, a value of true is returned; otherwise, false is returned. 

Description

Method; associates a movie clip symbol with an ActionScript object class. If a symbol doesn’t 
exist, Flash creates an association between a string identifier and an object class.

When an instance of the specified movie clip symbol is placed by the Timeline, it is registered to 
the class specified by the theClass parameter rather than to class MovieClip. 

When an instance of the specified movie clip symbol is created by means of 
MovieClip.attachMovie() or MovieClip.duplicateMovieClip(), it is registered to the class 
specified by theClass rather than to the MovieClip class. If theClass is null, this method 
removes any ActionScript class definition associated with the specified movie clip symbol or class 
identifier. For movie clip symbols, any existing instances of the movie clip remain unchanged, but 
new instances of the symbol are associated with the default class MovieClip.
578 Chapter 12:  ActionScript Dictionary



If a symbol is already registered to a class, this method replaces it with the new registration.

When a movie clip instance is placed by the Timeline or created using attachMovie() or 
duplicateMovieClip(), ActionScript invokes the constructor for the appropriate class with the 
keyword this pointing to the object. The constructor function is invoked with no parameters. 

If you use this method to register a movie clip with an ActionScript class other than MovieClip, 
the movie clip symbol doesn’t inherit the methods, properties, and events of the built-in 
MovieClip class unless you include the MovieClip class in the prototype chain of the new class. 
The following code creates a new ActionScript class called theClass that inherits the properties 
of the MovieClip class:
theClass.prototype = new MovieClip();

See also

MovieClip.attachMovie(), MovieClip.duplicateMovieClip()

Object.toString()

Availability

Flash Player 5.

Usage

myObject.toString()

Parameters

None.

Returns

A string.

Description

Method; converts the specified object to a string and returns it.
Object.toString() 579



Object.unwatch()

Availability 

Flash Player 6.

Usage

myObject.unwatch (prop)

Parameters

prop The name of the object property that should no longer be watched, as a string.

Returns

A Boolean value.

Description

Method; removes a watchpoint that Object.watch() created. This method returns a value of 
true if the watchpoint was successfully removed; otherwise, it returns a false value.

Object.valueOf()

Availability

Flash Player 5.

Usage

myObject.valueOf()

Parameters

None.

Returns

The primitive value of the specified object, or the object itself.

Description

Method; returns the primitive value of the specified object. If the object does not have a primitive 
value, the object itself is returned.
580 Chapter 12:  ActionScript Dictionary



Object.watch()

Availability

Flash Player 6.

Usage

myObject.watch( prop, callback [, userData] )

Parameters

prop A string indicating the name of the object property to watch.

callback The function to invoke when the watched property changes. This parameter is a 
function object, not a function name as a string. The form of callback is callback(prop, 
oldval, newval, userData).

userData An arbitrary piece of ActionScript data that is passed to the callback method. If 
the userData parameter is omitted, undefined is passed to the callback method. This parameter 
is optional.

Returns

A value of true if the watchpoint is created successfully; otherwise, returns a false value.

Description

Method; registers an event handler to be invoked when a specified property of an ActionScript 
object changes. When the property changes, the event handler is invoked with myObject as the 
containing object. You must return the new value from the Object.watch() method, or the 
watched object property is assigned a value of undefined.

A watchpoint can filter (or nullify) the value assignment, by returning a modified newval (or 
oldval). If you delete a property for which a watchpoint has been set, that watchpoint does not 
disappear. If you later recreate the property, the watchpoint is still in effect. To remove a 
watchpoint, use the Object.unwatch method. 

Only a single watchpoint may be registered on a property. Subsequent calls to Object.watch() 
on the same property replace the original watchpoint.

The Object.watch() method behaves similarly to the Object.watch() function in Netscape 
JavaScript 1.2 and later. The primary difference is the userData parameter, which is a Flash 
addition to Object.watch() that Netscape Navigator does not support. You can pass the 
userData parameter to the event handler and use it in the event handler.

The Object.watch() method cannot watch getter/setter properties. Getter/setter properties 
operate through “lazy evaluation”— the value of the property is not determined until the property 
is actually queried. “Lazy evaluation” is often efficient because the property is not constantly 
updated; it is, rather, evaluated when needed. However, Object.watch() needs to evaluate a 
property in order to fire watchpoints on it. To work with a getter/setter property, 
Object.watch() needs to evaluate the property constantly, which is inefficient.

Generally, ActionScript predefined properties, such as _x, _y, _width and _height, are getter/
setter properties, and thus cannot be watched with Object.watch(). 
Object.watch() 581



Example

This example shows a CheckBox component with methods that set the label or value of each 
check box instance:
myCheckBox1.setValue(true);
myCheckBox1.setLabel("new label");
...

It’s convenient to think of the value and label of a check box as properties. It’s possible to use 
Object.watch() to make accessing the value and label look like property access rather than 
method invocation, as in the following:
// Define constructor for (and thus define) CheckBox class
function CheckBox() {

...
this.watch('value', function (id, oldval, newval){

...
});
this.watch('label', function(id, oldval, newval){

...
});

}

When the value or label property is modified, the function specified by the component is invoked 
to perform any tasks needed to update the appearance and state of the component. The following 
example invokes an Object.watch() method to notify the component that the variable has 
changed, causing the component to update its graphical representation.
myCheckBox1.value = false;

This syntax is more concise than the former syntax:
myCheckBox1.setValue(false);

See also

Object.addProperty(), Object.unwatch()

Object()

Availability

Flash Player 5 .

Usage

Object( [ value ] )

Parameters

value A number, string, or Boolean value.

Returns

An object.

Description

Conversion function; creates a new, empty object or converts the specified number, string, or 
Boolean value to an object. This command is equivalent to creating an object using the Object 
constructor (see “Constructor for the Object class” on page 575). 
582 Chapter 12:  ActionScript Dictionary



on()

Availability

Flash 2. Not all events are supported in Flash 2.

Usage

on(mouseEvent) {
// your statements here

}

Parameters

statement(s) The instructions to execute when the mouseEvent takes place.

A mouseEvent is a trigger called an “event.” When the event takes place, the statements 
following it within curly braces execute. Any of the following values can be specified for the 
mouseEvent parameter:

• press The mouse button is pressed while the pointer is over the button.
• release The mouse button is released while the pointer is over the button.
• releaseOutside The mouse button is released while the pointer is outside the button after 

the button is pressed while the pointer is inside the button. 
• rollOut The pointer rolls outside of the button area.
• rollOver The mouse pointer rolls over the button.
• dragOut While the pointer is over the button, the mouse button is pressed and then rolls 

outside the button area.
• dragOver While the pointer is over the button, the mouse button has been pressed then 

rolled outside the button and then rolled back over the button.
• keyPress ("key") The specified key is pressed. For the key portion of the parameter, 

specify a key code or key constant. For a list of key codes associated with the keys on a standard 
keyboard, see Appendix C, “Keyboard Keys and Key Code Values,” on page 789; for a list of 
key constants, see “Property summary for the Key class” on page 408.

Description

Event handler; specifies the mouse event or keypress that triggers an action. 

Example

In the following script, the startDrag() action executes when the mouse is pressed and the 
conditional script is executed when the mouse is released and the object is dropped.
on(press) {

startDrag("rabbit");
}
on(release) {

trace(_root.rabbit._y);
trace(_root.rabbit._x);
stopDrag();

}

See also

onClipEvent()
on() 583



onClipEvent()

Availability

Flash Player 5.

Usage

onClipEvent(movieEvent){
// your statements here

}

Parameters

A movieEvent is a trigger called an event. When the event takes place, the statements following it 
within curly braces are executed. Any of the following values can be specified for the movieEvent 
parameter:

• load The action is initiated as soon as the movie clip is instantiated and appears in the 
Timeline.

• unload The action is initiated in the first frame after the movie clip is removed from the 
Timeline. The actions associated with the Unload movie clip event are processed before any 
actions are attached to the affected frame. 

• enterFrame The action is triggered continually at the frame rate of the movie clip. The 
actions associated with the enterFrame clip event are processed before any frame actions that 
are attached to the affected frames.

• mouseMove The action is initiated every time the mouse is moved. Use the _xmouse and 
_ymouse properties to determine the current mouse position.

• mouseDown The action is initiated when the left mouse button is pressed.
• mouseUp The action is initiated when the left mouse button is released.
• keyDown The action is initiated when a key is pressed. Use Key.getCode() to retrieve 

information about the last key pressed. 
• keyUp The action is initiated when a key is released. Use the Key.getCode() method to 

retrieve information about the last key pressed. 
• data The action is initiated when data is received in a loadVariables() or loadMovie() 

action. When specified with a loadVariables() action, the data event occurs only once, 
when the last variable is loaded. When specified with a loadMovie() action, the data event 
occurs repeatedly, as each section of data is retrieved.

Description

Event handler; triggers actions defined for a specific instance of a movie clip.

Example

The following statement includes the script from an external file when the SWF file is exported; 
the actions in the included script are run when the movie clip they are attached to loads:
onClipEvent(load) {

#include "myScript.as"
}

584 Chapter 12:  ActionScript Dictionary



The following example uses onClipEvent() with the keyDown movie event. The keyDown movie 
event is usually used in conjunction with one or more methods and properties of the Key object. 
The following script uses Key.getCode() to find out which key the user has pressed; if the 
pressed key matches the Key.RIGHT property, the movie is sent to the next frame; if the pressed 
key matches the Key.LEFT property, the movie is sent to the previous frame.
onClipEvent(keyDown) {

if (Key.getCode() == Key.RIGHT) {
_parent.nextFrame();

} else if (Key.getCode() == Key.LEFT){
_parent.prevFrame();

}
}

The following example uses onClipEvent() with the mouseMove movie event. The _xmouse and 
_ymouse properties track the position of the mouse each time the mouse moves.
onClipEvent(mouseMove) {

stageX=_root._xmouse;
stageY=_root._ymouse;

}

See also

Key class, MovieClip._xmouse, MovieClip._ymouse, on(), updateAfterEvent()

onUpdate

Availability

Flash Player 6.

Usage

function onUpdate() {
   ...statements...;
}

Parameters

None.

Returns

Nothing.

Description

Event handler; onUpdate is defined for a Live Preview movie used with a component. When an 
instance of a component on the Stage has a Live Preview movie, the authoring tool invokes the 
Live Preview movie’s onUpdate function whenever the component parameters of the component 
instance change. The onUpdate function is invoked by the authoring tool with no parameters, 
and its return value is ignored. The onUpdate function should be declared on the main Timeline 
of the Live Preview movie.

Defining an onUpdate function in a Live Preview movie is optional.

For more information on Live Preview movies, see Using Components.
onUpdate 585



Example

The onUpdate function gives the Live Preview movie an opportunity to update its visual 
appearance to match the new values of the component parameters. When the user changes a 
parameter value in the components Property inspector or Component Parameters panel, 
onUpdate is invoked. The onUpdate function will do something to update itself. For instance, if 
the component includes a color parameter, the onUpdate function might alter the color of a 
movie clip inside the Live Preview to reflect the new parameter value. In addition, it might store 
the new color in an internal variable.

Here is an example of using the onUpdate function to pass parameter values through an empty 
movie clip in the Live Preview movie. Suppose you have a labeled button component with a 
variable labelColor, which specifies the color of the text label color. The following code is in the 
first frame of the main Timeline of the component movie:
//Define the textColor parameter variable to specify the color of the button 

label text.
buttonLabel.textColor = labelColor;

In the Live Preview movie, place an empty movie clip named “xch” in the Live Preview movie. 
Then place the following code in the first frame of the Live Preview movie. Add “xch” to the 
labelColor variable path, to pass the variable through the my_mc movie clip:
//Write an onUpdate function, adding "my_mc." to the parameter variable names:
function onUpdate (){

buttonLabel.textColor = my_mc.labelColor;
}

or

Availability

Flash 4. This operator has been deprecated in favor of the || (logical OR) operator.

Usage

condition1 or condition2

Parameters

condition1,2 An expression that evaluates to true or false.

Returns

Nothing.

Description

Operator; evaluates condition1 and condition2, and if either expression is true, then the 
whole expression is true.

See also

|| (logical OR), | (bitwise OR)
586 Chapter 12:  ActionScript Dictionary



ord

Availability

Flash Player 4. This function has been deprecated in favor of the methods and properties of the 
String class.

Usage

ord(character)

Parameters

character The character to convert to an ASCII code number.

Returns

Nothing.

Description

String function; converts characters to ASCII code numbers.

See also

String class

_parent

Availability

Flash Player 5.

Usage

_parent.property
_parent._parent.property

Description

Identifier; specifies or returns a reference to the movie clip or object that contains the current 
movie clip or object. The current object is the object containing the ActionScript code that 
references _parent. Use _parent to specify a relative path to movie clips or objects that are above 
the current movie clip or object.

Example

In the following example, the movie clip desk is a child of the movie clip classroom. When the 
following script executes inside the movie clip desk, the playhead will jump to Frame 10 in the 
Timeline of the movie clip classroom.
_parent.gotoAndStop(10);

See also

_root, targetPath
_parent 587



parseFloat()

Availability

Flash Player 5. 

Usage

parseFloat(string)

Parameters

string The string to read and convert to a floating-point number.

Returns

A number or Nan.

Description

Function; converts a string to a floating-point number. The function reads, or “parses,” and 
returns the numbers in a string until it reaches a character that is not a part of the initial number. 
If the string does not begin with a number that can be parsed, parseFloat returns NaN. White 
space preceding valid integers is ignored, as are trailing nonnumeric characters.

Example

The following examples use the parseFloat function to evaluate various types of numbers. 

parseFloat("-2") returns -2

parseFloat("2.5") returns 2.5

parseFloat("3.5e6") returns 3.5e6, or 3500000

parseFloat("foobar") returns NaN

parseFloat(" 5.1") returns 5.1

parseFloat("3.75math") returns 3.75

parseFloat("0garbage") returns 0

See also

NaN
588 Chapter 12:  ActionScript Dictionary



parseInt

Availability

Flash Player 5.

Usage

parseInt(expression [, radix])

Parameters

expression A string to convert to a integer. 

radix Optional; an integer representing the radix (base) of the number to parse. Legal values 
are from 2 to 36. 

Returns

A number or NaN.

Description

Function; converts a string to an integer. If the specified string in the parameters cannot be 
converted to a number, the function returns NaN. Strings beginning with 0x are interpreted as 
hexadecimal numbers. Integers beginning with 0 or specifying a radix of 8 are interpreted as octal 
numbers. White space preceding valid integers is ignored, as are trailing nonnumeric characters.

Example

The following examples use the parseInt function to evaluate various types of numbers.
parseInt("3.5")
// returns 3

parseInt("bar")
// returns NaN

parseInt("4foo")
// returns 4

The following are examples of hexadecimal conversions:
parseInt("0x3F8")
// returns 1016

parseInt("3E8", 16)
// returns 1000

The following is an example of a binary conversion:
parseInt("1010", 2)
// returns 10 (the decimal representation of the binary 1010)

The following are examples of octal number parsing:
parseInt("0777")
parseInt("777", 8)
// returns 511 (the decimal representation of the octal 777)
parseInt 589



play()

Availability

Flash 2.

Usage

play()

Parameters

None.

Returns

Nothing.

Description

Function; moves the playhead forward in the Timeline.

Example

The following code uses an if statement to check the value of a name the user enters. If the user 
enters Steve, the play() action is called and the playhead moves forward in the Timeline. If the 
user enters anything other than Steve, the SWF file does not play and a text field with the 
variable name alert is displayed.
stop();
if (name == "Steve") {

play();
} else {

alert="You are not Steve!";
}

prevFrame()

Availability

Flash 2.

Usage

prevFrame()

Parameters

None.

Returns

Nothing.

Description

Function; sends the playhead to the previous frame and stops it. If the current frame is Frame 1, 
the playhead does not move.
590 Chapter 12:  ActionScript Dictionary



Example

When the user clicks a button that has the following handler attached to it, the playhead is sent to 
the previous frame. 
on(release) {

prevFrame();
}

See also

MovieClip.prevFrame()

prevScene()

Availability

Flash 2.

Usage

prevScene()

Parameters

None.

Returns

Nothing.

Description

Function; sends the playhead to Frame 1 of the previous scene and stops it.

See also

nextScene()

print()

Availability

Flash Player 4.20.
Note: If you are authoring for Flash Player 7 or later, you can create a PrintJob object, which gives 
you (and the user) more control over the printing process. For more information, see the PrintJob 
class entry.

Usage

print(target, "Bounding box")

Parameters

target The instance name of a movie clip to print. By default, all of the frames in the target 
instance print. If you want to print specific frames in the movie clip, assign a #p frame label to 
those frames.

Bounding box A modifier that sets the print area of the movie clip. Enclose this parameter in 
quotation marks, and specify one of the following values:
print() 591



• bmovie Designates the bounding box of a specific frame in a movie as the print area for all 
printable frames in the movie. Assign a #b frame label to the frame whose bounding box you 
want to use as the print area. 

• bmax Designates a composite of all of the bounding boxes of all the printable frames as the 
print area. Specify bmax when the printable frames in your movie vary in size. 

• bframe Indicates that the bounding box of each printable frame should be used as the print 
area for that frame. This changes the print area for each frame and scales the objects to fit the 
print area. Use bframe if you have objects of different sizes in each frame and want each object 
to fill the printed page.

Returns

None.

Description

Function; prints the target movie clip according to the boundaries specified in the parameter 
(bmovie, bmax, or bframe). If you want to print specific frames in the target movie clip, attach a 
#p frame label to those frames. Although print() results in higher quality prints than 
printAsBitmap(), it cannot be used to print movie clips that use alpha transparencies or special 
color effects. 

If you use bmovie for the Bounding box parameter but do not assign a #b label to a frame, the 
print area is determined by the Stage size of the loaded movie. (The loaded movie does not inherit 
the main movie’s Stage size.)

All of the printable elements in a movie must be fully loaded before printing can begin. 

The Flash Player printing feature supports PostScript and non-PostScript printers. Non-
PostScript printers convert vectors to bitmaps.

Example

The following example prints all of the printable frames in the movie clip my_mc with the print 
area defined by the bounding box of the frame with the #b frame label attached:
print(my_mc,"bmovie");

The following example prints all of the printable frames in my_mc with a print area defined by the 
bounding box of each frame:
print(my_mc,"bframe");

See also

printAsBitmap(), printAsBitmapNum(), PrintJob class, printNum()
592 Chapter 12:  ActionScript Dictionary



printAsBitmap()

Availability

Flash Player 4.20.
Note: If you are authoring for Flash Player 7 or later, you can create a PrintJob object, which gives 
you (and the user) more control over the printing process. For more information, see the PrintJob 
class entry.

Usage

printAsBitmap(target, "Bounding box")

Parameters

target The instance name of movie clip to print. By default, all of the frames in the movie are 
printed. If you want to print specific frames in the movie, attach a #p frame label to those frames.

Bounding box A modifier that sets the print area of the movie. Enclose this parameter in 
quotation marks, and specify one of the following values:

• bmovie Designates the bounding box of a specific frame in a movie as the print area for all 
printable frames in the movie. Assign a #b frame label to the frame whose bounding box you 
want to use as the print area. 

• bmax Designates a composite of all of the bounding boxes of all the printable frames as the 
print area. Specify the bmax parameter when the printable frames in your movie vary in size. 

• bframe Indicates that the bounding box of each printable frame should be used as the print 
area for that frame. This changes the print area for each frame and scales the objects to fit the 
print area. Use bframe if you have objects of different sizes in each frame and want each object 
to fill the printed page.

Returns

Nothing.

Description

Function; prints the target movie clip as a bitmap according to the boundaries specified in the 
parameter (bmovie, bmax, or bframe). Use printAsBitmap() to print movies that contain frames 
with objects that use transparency or color effects. The printAsBitmap() action prints at the 
highest available resolution of the printer in order to maintain as much definition and quality 
as possible.

If your movie does not contain alpha transparencies or color effects, Macromedia recommends 
that you use print() for better quality results. 

If you use bmovie for the Bounding box parameter but do not assign a #b label to a frame, the 
print area is determined by the Stage size of the loaded movie. (The loaded movie does not inherit 
the main movie’s Stage size.)

All of the printable elements in a movie must be fully loaded before printing can begin. 

The Flash Player printing feature supports PostScript and non-PostScript printers. Non-
PostScript printers convert vectors to bitmaps.

See also

print(), printAsBitmapNum(), PrintJob class, printNum()
printAsBitmap() 593



printAsBitmapNum()

Availability

Flash Player 5.
Note: If you are authoring for Flash Player 7 or later, you can create a PrintJob object, which gives 
you (and the user) more control over the printing process. For more information, see the PrintJob 
class entry.

Usage

printAsBitmapNum(level, "Bounding box")

Parameters

level The level in Flash Player to print. By default, all of the frames in the level print. If you 
want to print specific frames in the level, assign a #p frame label to those frames.

Bounding box A modifier that sets the print area of the movie. Enclose this parameter in 
quotation marks, and specify one of the following values:

• bmovie Designates the bounding box of a specific frame in a movie as the print area for all 
printable frames in the movie. Assign a #b frame label to the frame whose bounding box you 
want to use as the print area.

• bmax Designates a composite of all of the bounding boxes of all the printable frames as the 
print area. Specify the bmax parameter when the printable frames in your movie vary in size.

• bframe Indicates that the bounding box of each printable frame should be used as the print 
area for that frame. This changes the print area for each frame and scales the objects to fit the 
print area. Use bframe if you have objects of different sizes in each frame and want each object 
to fill the printed page.

Returns

None.
Description

Function; prints a level in Flash Player as a bitmap according to the boundaries specified in the 
parameter (bmovie, bmax, or bframe). Use printAsBitmapNum() to print movies that contain 
frames with objects that use transparency or color effects. The printAsBitmapNum() action 
prints at the highest available resolution of the printer in order to maintain the highest possible 
definition and quality. To calculate the printable file size of a frame designated to print as a 
bitmap, multiply pixel width by pixel height by printer resolution.

If your movie does not contain alpha transparencies or color effects, it is recommended that you 
use printNum() for better quality results. 

If you use bmovie for the Bounding box parameter but do not assign a #b label to a frame, the 
print area is determined by the Stage size of the loaded movie. (The loaded movie does not inherit 
the main movie’s Stage size.)

All of the printable elements in a movie must be fully loaded before printing can begin. 

The Flash Player printing feature supports PostScript and non-PostScript printers. Non-
PostScript printers convert vectors to bitmaps.

See also

print(), printAsBitmap(), PrintJob class, printNum()
594 Chapter 12:  ActionScript Dictionary



PrintJob class

Availability

Flash Player 7.

Description

The PrintJob class lets you create content and print it to one or more pages. This class, in addition 
to offering improvements to print functionality provided by the print() method, lets you render 
dynamic content offscreen, prompt users with a single print dialog box, and print an unscaled 
document with proportions that map to the proportions of the content. This capability is 
especially useful for rendering and printing external dynamic content, such as database content 
and dynamic text. 

Additionally, with properties populated by PrintJob.start(), your document can access your 
user’s printer settings, such as page height, width, and orientation, and you can configure your 
document to dynamically format Flash content that’s appropriate for the printer settings.

Method summary for the PrintJob class

You must use the methods for PrintJob class in the order listed in the following table. 

Constructor for the PrintJob class

Availability

Flash Player 7.

Usage

my_pj = new PrintJob()

Parameters

None.

Returns

Nothing.

Method Description

PrintJob.start() Displays the operating system’s print dialog boxes and starts spooling.

PrintJob.addPage() Adds one page to the print spooler.

PrintJob.send() Sends spooled pages to the printer.
PrintJob class 595



Description

Constructor; creates a PrintJob object that you can use to print one or more pages.

To implement a print job, use these methods in the sequence shown: 
// create PrintJob object
my_pj = new PrintJob(); // instantiate object

// display print dialog box
my_pj.start(); // initiate print job

// add specified area to print job
// repeat once for each page to be printed
my_pj.addPage([params]); // send page(s) to spooler
my_pj.addPage([params]); 
my_pj.addPage([params]); 
my_pj.addPage([params]); 

// send pages from the spooler to the printer
my_pj.send(); // print page(s)

// clean up
delete my_pj; // delete object

In your own implementation of PrintJob objects, you should check for return values from 
PrintJob.start() and PrintJob.addPage() before continuing to print. See the examples for 
PrintJob.addPage().

You cannot create a PrintJob object until any PrintJob object that you already created is no longer 
active (that is, it either completed successfully or failed). If you try to create a second PrintJob 
object (by calling new PrintJob()) while the first PrintJob object is still active, the second 
PrintJob object will not be created. 

Example

See PrintJob.addPage().

See also

PrintJob.addPage(), PrintJob.send(), PrintJob.start()

PrintJob.addPage()

Availability

Flash Player 7.

Usage

my_pj.addPage(target [, printArea] [, options ] [, frameNumber])

Parameters

target The level or instance name of the movie clip to print. Pass a number to specify a level 
(for example, 0 is the _root movie), or a string (in quotation marks) to specify the instance name 
of a movie clip.

printArea  An optional object that specifies the area to print, in the following format:
{xMin:topLeft, xMax:topRight, yMin:bottomLeft, yMax:bottomRight}
596 Chapter 12:  ActionScript Dictionary



The coordinates you specify for printArea represent screen pixels relative to the registration 
point of the _root movie (if target = 0) or of the level or movie clip specified by target. You 
must provide all four coordinates. The width (xMax-xMin) and height (yMax-yMin) must each be 
greater than 0.

Points are print units of measurement, and pixels are screen units of measurement; one point is 
equal in size to one pixel. You can use the following equivalencies to convert inches or centimeters 
to twips, pixels or points (a twip is 1/20 of a pixel):

• 1 pixel = 1 point = 1/72 inch = 20 twips
• 1 inch = 72 pixels = 72 points = 1440 twips
• 1 cm = 567 twips
Note: If you have previously used print(), printAsBitmap(), printAsBitmapNum(), or printNum() to 
print from Flash, you used a #b frame label to specify the area to print. When using the addPage() 
method, you must use the printArea parameter to specify the print area; #b frame labels are ignored.

If you omit the printArea parameter, or if it is passed incorrectly, the full Stage area of target is 
printed. If you don’t want to specify a value for printArea but want to specify a value for 
options or frameNumber, pass null for printArea.

options An optional parameter that specifies whether to print as vector or bitmap, in the 
following format:
{printAsBitmap:Boolean}

By default, pages are printed in vector format. To print target as a bitmap, pass true for 
printAsBitmap. The default value is false, which represents a request for vector printing. Keep 
in mind the following suggestions when determining which value to use:

• If the content that you’re printing includes a bitmap image, use {printAsBitmap:true} to 
include any transparency and color effects.

• If the content does not include bitmap images, omit this parameter or use 
{printAsBitmap:false} to print the content in higher quality vector format.

If options is omitted or passed incorrectly, vector printing is implemented. If you don’t want to 
specify a value for options but want to specify a value for frameNumber, pass null for options.

frameNumber An optional number that lets you specify which frame to print; notice that any 
ActionScript on the frame is not invoked. If you omit this parameter, the current frame in target 
is printed.
Note: If you previously used print(), printAsBitmap(), printAsBitmapNum(), or printNum() to print 
from Flash, you may have used a #p frame label on multiple frames to specify which pages to print. To 
use PrintJob.addPage() to print multiple frames, you must issue a PrintJob.addPage() command for 
each frame; #p frame labels are ignored. For one way to do this programmatically, see the example 
later in this entry.

Returns

A Boolean value of true if the page was successfully sent to the print spooler, false otherwise.

Description

Method; sends the specified level or movie clip as a single page to the print spooler. Before using 
this method, you must use PrintJob.start(); after calling PrintJob.addPage() one or more 
times for a print job, you must use PrintJob.send() to send the spooled pages to the printer.
PrintJob.addPage() 597



If this method returns false (for example, if you haven’t called PrintJob.start() or the user 
canceled the print job), any subsequent calls to PrintJob.addPage() will fail. However, if prior 
calls to PrintJob.addPage() were successful, the concluding PrintJob.send() command 
sends the successfully spooled pages to the printer.

If you passed a value for printArea, the xMin and yMin coordinates map to the upper left corner 
(0,0 coordinates) of the printable area on the page; the printable area is determined by the 
pageHeight and pageWidth properties set by PrintJob.start(). Because the printout aligns 
with the upper left corner of the printable area on the page, the printout is clipped to the right 
and/or bottom if the area defined in printArea is bigger than the printable area on the page. If 
you haven’t passed a value for printArea and the Stage is larger than the printable area, the same 
type of clipping takes place.

If you want to scale a movie clip before you print it, set its MovieClip._xscale and 
MovieClip._yscale properties before calling this method, then set them back to their original 
values afterward. The scale of a movie clip has no relation to printArea. That is, if you specify 
that you print an area that is 50 x 50 pixels in size, 2500 pixels are printed. If you have scaled the 
movie clip, the same 2500 pixels are printed, but at the scaled size.

The Flash Player printing feature supports PostScript and non-PostScript printers. Non-
PostScript printers convert vectors to bitmaps.

Example

The following example illustrates several ways to issue the addPage() command.
my_btn.onRelease = function()
{

var pageCount = 0;

var my_pj = new PrintJob();

if (my_pj.start())
{

// Print entire current frame of the _root movie in vector format
if (my_pj.addPage(0))
{

pageCount++;

// Starting at 0,0, print an area 400 pixels wide and 500 pixels high
// of the current frame of the _root movie in vector format
if (my_pj.addPage(0, {xMin:0,xMax:400,yMin:0,yMax:500}))
{

pageCount++;

// Starting at 0,0, print an area 400 pixels wide and 500 pixels high
// of frame 1 of the _root movie in bitmap format
if (my_pj.addPage(0, {xMin:0,xMax:400,yMin:0,yMax:500},

{printAsBitmap:true}, 1))
{

pageCount++;

// Starting 50 pixels to the right of 0,0 and 70 pixels down,
// print an area 500 pixels wide and 600 pixels high
// of frame 4 of level 5 in vector format
if (my_pj.addPage(5, {xMin:50,xMax:550,yMin:70,yMax:670},null, 4))
{

pageCount++;
598 Chapter 12:  ActionScript Dictionary



// Starting at 0,0, print an area 400 pixels wide 
// and 400 pixels high of frame 3 of the "dance_mc" movie clip 
// in bitmap format
if (my_pj.addPage("dance_mc",

{xMin:0,xMax:400,yMin:0,yMax:400},{printAsBitmap:true}, 3))
{

pageCount++;

// Starting at 0,0, print an area 400 pixels wide
// and 600 pixels high of frame 3 of the "dance_mc" movie clip
// in vector format at 50% of its actual size
var x = dance_mc._xscale;
var y = dance_mc._yscale;
dance_mc._xscale = 50;
dance_mc._yscale = 50;

if (my_pj.addPage("dance_mc",
{xMin:0,xMax:400,yMin:0,yMax:600},null, 3))

{
pageCount++;

}

dance_mc._xscale = x;
dance_mc._yscale = y;

}
}

}
}

}
}

if (pageCount)
{

my_pj.send();
}
delete my_pj;

}

See also

PrintJob.send(), PrintJob.start()

PrintJob.send()

Availability

Flash Player 7.

Usage

my_pj.send()

Parameters

None.

Returns

Nothing.
PrintJob.send() 599



Description

Method; is used following PrintJob.start() and PrintJob.addPage() to send spooled pages 
to the printer. 

Example

See PrintJob.addPage().

See also

PrintJob.addPage(), PrintJob.start()

PrintJob.start()

Availability

Flash Player 7.

Usage

my_pj.start()

Parameters

None.

Returns

A Boolean value of true if the user clicks OK when the print dialog boxes appear, or false if the 
user clicks Cancel or if an error occurs.

Description

Method; displays the operating system’s print dialog boxes and starts spooling. The print dialog 
boxes give the user an opportunity to change print settings, and then populate the following read-
only properties (notice that 1 point equals 1 onscreen pixel):

After the user clicks OK in the print dialog box, the player begins spooling a print job to the 
operating system. You should issue any ActionScript commands that affect the printout, and then 
you can begin using PrintJob.addPage() commands to begin sending pages to the spooler. If 
you wish, use the height, width, and orientation properties this method returns to determine how 
to format the printout.

Because the user sees information such as “Printing page 1” immediately after clicking OK, you 
should call the PrintJob.addPage() and PrintJob.send() commands as soon as possible. 

Property Type Units Notes 

PrintJob.paperHeight Number Points Overall paper height

PrintJob.paperWidth Number Points Overall paper width

PrintJob.pageHeight Number Points Height of actual printable area on the 
page; any user-set margins are ignored

PrintJob.pageWidth Number Points Width of actual printable area on the 
page; any user-set margins are ignored

PrintJob.orientation String  n/a “Portrait” or “landscape” 
600 Chapter 12:  ActionScript Dictionary



If this method returns false (for example, if the user clicks Cancel instead of OK), any 
subsequent calls to PrintJob.addPage() and PrintJob.send() will fail. However, if you test 
for this return value and don’t send PrintJob.addPage() commands as a result, you should still 
delete the PrintJob object to make sure the print spooler is cleared, as shown below. 
var my_pj = new PrintJob();
var myResult = my_pj.start();

if(myResult) {
// addPage() and send() statements here

}
delete my_pj;

Example

See PrintJob.addPage().

See also

PrintJob.addPage(), PrintJob.send()

printNum()

Availability

Flash Player 5.
Note: If you are authoring for Flash Player 7 or later, you can create a PrintJob object, which gives you 
(and the user) more control over the printing process. For more information, see the PrintJob class 
entry.

Usage

printNum (level, "Bounding box")

Parameters

level The level in Flash Player to print. By default, all of the frames in the level print. If you 
want to print specific frames in the level, assign a #p frame label to those frames.

Bounding box A modifier that sets the print area of the movie. Enclose this parameter in 
quotation marks, and specify one of the following values:

• bmovie Designates the bounding box of a specific frame in a movie as the print area for all 
printable frames in the movie. Assign a #b frame label to the frame whose bounding box you 
want to use as the print area. 

• bmax Designates a composite of all of the bounding boxes of all the printable frames as the 
print area. Specify the bmax parameter when the printable frames in your movie vary in size. 

• bframe Indicates that the bounding box of each printable frame should be used as the print 
area for that frame. This changes the print area for each frame and scales the objects to fit the 
print area. Use bframe if you have objects of different sizes in each frame and want each object 
to fill the printed page.

Returns

Nothing.
printNum() 601



Description

Function; prints the level in Flash Player according to the boundaries specified in the Bounding 
box parameter ("bmovie", "bmax", "bframe"). If you want to print specific frames in the target 
movie, attach a #p frame label to those frames. Although using printNum() results in higher 
quality prints than using printAsBitmapNum(), you cannot use printNum() to print movies 
with alpha transparencies or special color effects. 

If you use bmovie for the Bounding box parameter but do not assign a #b label to a frame, the 
print area is determined by the Stage size of the loaded movie. (The loaded movie does not inherit 
the main movie's Stage size.)

All of the printable elements in a movie must be fully loaded before printing can begin. 

The Flash Player printing feature supports PostScript and non-PostScript printers. Non-
PostScript printers convert vectors to bitmaps.

See also

print(), printAsBitmap(), printAsBitmapNum(), PrintJob class

private

Availability

Flash Player 6.

Usage

class someClassName{
private var name;
private function name() {

// your statements here
}

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Parameters

name The name of the variable or function that you want to specify as private.

Description

Keyword; specifies that a variable or function is available only to the class that declares or defines 
it, or to subclasses of that class. By default, a variable or function is available to any class that calls 
it. Use this keyword if you want to restrict access to a variable or function. For more information, 
see “Controlling member access” on page 164.

You can use this keyword only in class definitions, not in interface definitions.

See also

public, static
602 Chapter 12:  ActionScript Dictionary



public

Flash Player 6.

Usage

class someClassName{
public var name;
public function name() {

// your statements here
}

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Parameters

name The name of the variable or function that you want to specify as public.

Description

Keyword; specifies that a variable or function is available to any class that calls it. Because 
variables and functions are public by default, this keyword is used primarily for stylistic reasons. 
For example, you might want to use it for reasons of consistency in a block of code that also 
contains private or static variables. 

Example

The following two blocks of code are functionally identical.
private var age:Number;
public var name:String;
static var birth:Date;

private var age:Number;
var name:String;
static var birth:Date;

For more information, see “Controlling member access” on page 164.

See also

private, static

_quality

Availability

Flash Player 5.

Usage

_quality

Description

Property (global); sets or retrieves the rendering quality used for a movie. Device fonts are always 
aliased and therefore are unaffected by the _quality property. 
_quality 603



The _quality property can be set to the following values:

• "LOW" Low rendering quality. Graphics are not anti-aliased, bitmaps are not smoothed.
• "MEDIUM" Medium rendering quality. Graphics are anti-aliased using a 2 x 2 grid, in pixels, 

but bitmaps are not smoothed. Suitable for movies that do not contain text.
• "HIGH" High rendering quality. Graphics are anti-aliased using a 4 x 4 grid, in pixels, and 

bitmaps are smoothed if the movie is static. This is the default rendering quality setting used 
by Flash.

• "BEST" Very high rendering quality. Graphics are anti-aliased using a 4 x 4 grid, in pixels, and 
bitmaps are always smoothed.

Example

The following example sets the rendering quality to LOW:
_quality = "LOW";

See also

_highquality, toggleHighQuality()

random

Availability

Flash Player 4. This function was deprecated in Flash 5 in favor of Math.random(). 

Usage

random(value)

Parameters

value An integer. 

Returns

An integer.

Description

Function; returns a random integer between 0 and one less than the integer specified in the 
value parameter.

Example

The following use of random() returns a value of 0, 1, 2, 3, or 4:
random(5);

See also

Math.random()
604 Chapter 12:  ActionScript Dictionary



removeMovieClip()

Availability

Flash Player 4.

Usage

removeMovieClip(target)

Parameters

target The target path of a movie clip instance created with duplicateMovieClip(), or the 
instance name of a movie clip created with MovieClip.attachMovie() or 
MovieClip.duplicateMovieClip().

Returns

None.

Description

Function; deletes the specified movie clip. 

See also

duplicateMovieClip(), MovieClip.duplicateMovieClip(), MovieClip.attachMovie(), 
MovieClip.removeMovieClip()

return

Availability

Flash Player 5.

Usage

return[expression]

Parameters

expression A string, number, array, or object to evaluate and return as a value of the function. 
This parameter is optional.

Returns

The evaluated expression parameter, if provided.

Description

Statement; specifies the value returned by a function. The return action evaluates expression 
and returns the result as a value of the function in which it executes. The return action causes the 
function to stop running and replaces the function with the returned value. If the return 
statement is used alone, it returns null.

You can’t return multiple values. If you try to do so, only the last value is returned. In the 
following example, c is returned:
return a, b, c ;
return 605



Example

The following example uses the return action inside the body of the sum() function to return 
the added value of the three parameters. The next line of code calls sum() and assigns the 
returned value to the variable newValue.
function sum(a, b, c){

return a + b + c;
}
newValue = sum(4, 32, 78);
trace(newValue);
// sends 114 to the Output panel

See also

function

_root

Availability

Flash Player 5.

Usage

_root.movieClip
_root.action
_root.property

Parameters

movieClip The instance name of a movie clip. 

action An action or method.

property A property of the MovieClip object.

Description

Property; specifies or returns a reference to the root movie Timeline. If a movie has multiple 
levels, the root movie Timeline is on the level containing the currently executing script. For 
example, if a script in level 1 evaluates _root, _level1 is returned. 

Specifying _root is the same as using the slash notation (/) to specify an absolute path within the 
current level. 
Note: If a movie that contains _root is loaded into another movie, _root refers to the Timeline of the 
loading movie, not to the Timeline that contains _root. If you want to ensure that _root refers to the 
Timeline of the loaded movie even if it is loaded into another movie, use MovieClip._lockroot.

Example

The following example stops the Timeline of the level containing the currently executing script:
_root.stop();

The following example sends the Timeline in the current level to Frame 3:
_root.gotoAndStop(3);

See also

MovieClip._lockroot, _parent, targetPath
606 Chapter 12:  ActionScript Dictionary



scroll

Availability

Flash Player 4.

Usage

textFieldVariableName.scroll = x

Description

Property; a deprecated property that controls the display of information in a text field associated 
with a variable. The scroll property defines where the text field begins displaying content; after 
you set it, Flash Player updates it as the user scrolls through the text field. The scroll property is 
useful for directing users to a specific paragraph in a long passage, or creating scrolling text fields. 
This property can be retrieved and modified.

Example

The following code is attached to an Up button that scrolls the text field myText:
on (release) {

myText.scroll = myText.scroll + 1;
}

See also

TextField.maxscroll, TextField.scroll

Selection class

Availability

Flash Player 5.

Description

The Selection class lets you set and control the text field in which the insertion point is located; 
that is, the field that has focus. Selection-span indexes are zero-based (for example, the first 
position is 0, the second position is 1, and so on).

There is no constructor function for the Selection class, because there can only be one currently 
focused field at a time.
Selection class 607



Method summary for the Selection class

Listener summary for the Selection class

Selection.addListener()

Availability

Flash Player 6.

Usage

Selection.addListener(newListener)

Parameters

newListener An object with an onSetFocus method.

Returns

None.

Description

Method; registers an object to receive keyboard focus change notifications. When the focus 
changes (for example, whenever Selection.setFocus() is invoked), all listening objects 
registered with addListener() have their onSetFocus method invoked. Multiple objects may 
listen for focus change notifications. If the listener newListener is already registered, no 
change occurs.

Method Description

Selection.addListener() Registers an object to receive notification when onSetFocus is 
invoked. 

Selection.getBeginIndex() Returns the index at the beginning of the selection span. Returns -1 if 
there is no index or currently selected field.

Selection.getCaretIndex() Returns the current caret (insertion point) position in the currently 
focused selection span. Returns -1 if there is no caret position or 
currently focused selection span.

Selection.getEndIndex() Returns the index at the end of the selection span. Returns -1 if there 
is no index or currently selected field.

Selection.getFocus() Returns the name of the variable for the currently focused text field. 
Returns null if there is no currently focused text field.

Selection.removeListener() Removes an object that was registered with addListener().

Selection.setFocus() Focuses the text field associated with the specified variable.

Selection.setSelection() Sets the beginning and ending indexes of the selection span.

Listener Description

Selection.onSetFocus Notified when the input focus changes.
608 Chapter 12:  ActionScript Dictionary



Selection.getBeginIndex()

Availability

Flash Player 5.

Usage

Selection.getBeginIndex()

Parameters

None.

Returns

An integer.

Description

Method; returns the index at the beginning of the selection span. If no index exists or no text field 
currently has focus, the method returns -1. Selection span indexes are zero-based (for example, the 
first position is 0, the second position is 1, and so on).

Selection.getCaretIndex()

Availability

Flash Player 5.

Usage

Selection.getCaretIndex()

Parameters

None.

Returns

An integer.

Description

Method; returns the index of the blinking insertion point (caret) position. If there is no blinking 
insertion point displayed, the method returns -1. Selection span indexes are zero-based (for 
example, the first position is 0, the second position is 1, and so on).
Selection.getCaretIndex() 609



Selection.getEndIndex()

Availability

Flash Player 5.

Usage

Selection.getEndIndex()

Parameters

None.

Returns

An integer.

Description

Method; returns the ending index of the currently focused selection span. If no index exists, or if 
there is no currently focused selection span, the method returns -1. Selection span indexes are 
zero-based (for example, the first position is 0, the second position is 1, and so on).

Selection.getFocus()

Availability

Flash Player 5. Instance names for buttons and text fields work in Flash Player 6 and later. 

Usage

Selection.getFocus()

Parameters

None.

Returns

A string or null.

Description

Method; returns the variable name of the text field that has focus. If no text field has focus, the 
method returns null. If the current focus is a button, and the button is a Button object, 
getFocus() returns the target path as a string. If the current focus is a text field, and the text field 
is a TextField object, getFocus() returns the target path as a string.

If a button movie clip is the currently focused button, Selection.getFocus() returns the target 
path of the button movie clip. If a Text Field with an instance name is currently focused, 
Selection.getFocus() returns the target path of the TextField object. Otherwise, it returns the 
Text Field's variable name.
610 Chapter 12:  ActionScript Dictionary



Selection.onSetFocus

Availability

Flash Player 6.

Usage

someListener.onSetFocus = function(oldFocus, newFocus){
statements;
}

Description

Listener; notified when the input focus changes. To use onSetFocus, you must create a listener 
object. You can then define a function for onSetFocus and use addListener() to register the 
listener with the Selection object, as in the following:
someListener = new Object();
someListener.onSetFocus = function () { ... };
Selection.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive 
notification about a single event. 

See also

Selection.addListener()

Selection.removeListener()

Availability

Flash Player 6.

Usage

Selection.removeListener(listener)

Parameters

listener The object that will no longer receive focus notifications.

Returns

If the listener was successfully removed, the method returns a true value. If the listener was 
not successfully removed, for example if the listener was not on the Selection object’s listener 
list, the method returns a value of false.

Description

Method; removes an object previously registered with addListener().
Selection.removeListener() 611



Selection.setFocus()

Availability

Flash Player 5. Instance names for buttons and movie clips work only in Flash Player 6 and later. 

Usage

Selection.setFocus("instanceName")

Parameters

instanceName A string specifying the path to the instance name of a button, movie clip, or 
text field. 

Returns

An event.

Description

Method; gives focus to the selectable (editable) text field, button, or movie clip specified by 
instanceName. The instanceName parameter must be a string literal of the path to the instance. 
You can use dot or slash notation to specify the path. You can also use a relative or absolute path. 
If you are using ActionScript 2.0, you must use dot notation.

If null is passed, the current focus is removed. 

Example

The following example gives focus to a text field associated with myVar, on the main Timeline. 
Because the instanceName parameter is an absolute path, you can call the action from 
any Timeline.
Selection.setFocus("_root.myVar");

In the following example, the text field associated with myVar is in a movie clip called myClip on 
the main Timeline. You can use either of the following two paths to set focus; the first is relative 
and the second is absolute.
Selection.setFocus("myClip.myVar");
Selection.setFocus("_root.myClip.myVar");

Selection.setSelection()

Availability

Flash Player 5.

Usage

Selection.setSelection(start, end)

Parameters

start The beginning index of the selection span.

end The ending index of the selection span.
612 Chapter 12:  ActionScript Dictionary



Returns

Nothing.

Description

Method; sets the selection span of the currently focused text field. The new selection span will 
begin at the index specified in the start parameter, and end at the index specified in the end 
parameter. Selection span indexes are zero-based (for example, the first position is 0, the second 
position is 1, and so on). This method has no effect if there is no currently focused text field.

set

Availability

Flash Player 6.

Usage

function set property(varName) {
// your statements here

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Parameters

property Word you want to use to refer to the property that set will access; this value must be 
the same as the value used in the corresponding get command.

varName The local variable that sets the value you’re assigning.

Returns

Nothing.

Description

Keyword; permits implicit “setting” of properties associated with objects based on classes you have 
defined in external class files. Using implicit set methods lets you access properties of objects 
without accessing them directly. Implicit get/set methods are syntactic shorthand for the 
Object.addProperty() method in ActionScript 1.

For more information, see “Implicit get/set methods” on page 172.

See also

get, Object.addProperty()
set 613



set variable

Availability

Flash Player 4.

Usage

set(variable, expression)

Parameters

variable An identifier to hold the value of the expression parameter.

expression A value assigned to the variable.

Returns

Nothing.

Description

Statement; assigns a value to a variable. A variable is a container that holds data. The container 
itself is always the same, but the contents can change. By changing the value of a variable as the 
SWF file plays, you can record and save information about what the user has done, record values 
that change as the SWF file plays, or evaluate whether a condition is true or false. 

Variables can hold any data type (for example, String, Number, Boolean, Object, or MovieClip). 
The Timeline of each SWF file and movie clip has its own set of variables, and each variable has 
its own value independent of variables on other Timelines.

Strict data typing is not supported inside a set statement. If you use this statement to set a 
variable to a value whose data type is different from the data type associated with the variable in a 
class file, no compiler error is thrown.

Example

This example sets a variable called orig_x_pos, which stores the original x axis position of the 
ship movie clip in order to reset the ship to its starting location later in the SWF file.
on(release) {

set("orig_x_pos", getProperty ("ship", _x ));
}

The previous code gives the same result as the following code:
on(release) {

orig_x_pos = ship._x;
}

See also

var, call()
614 Chapter 12:  ActionScript Dictionary



setInterval()

Availability

Flash Player 6.

Usage

setInterval(functionName, interval [, param1, param2, ..., paramN])

Parameters

functionName A function name or a reference to an anonymous function.

interval The time in milliseconds between calls to the functionName parameter.

param1, param2, ..., paramN Optional parameters passed to the function or 
methodName parameter.

Returns

An interval identifier that you can pass to clearInterval() to cancel the interval.

Description

Function; calls a function or a method or an object at periodic intervals while a SWF file plays. 
You can use an interval function to update variables from a database or update a time display.

If interval is less than the SWF file’s frame rate (for example, 10 frames per second [fps] is equal 
to 100 milliseconds), the interval function is called as close to interval as possible. You must use 
the updateAfterEvent() function to make sure that the screen refreshes often enough. If 
interval is greater than the SWF file’s frame rate, the interval function is only called each time 
the playhead enters a frame; this minimizes the impact each time the screen is refreshed.

Example

Usage 1:The following example calls an anonymous function every 1000 milliseconds (every 
1 second).
setInterval( function(){ trace("interval called"); }, 1000 );

Usage 2: The following example defines two event handlers and calls each of them. Both calls to 
setInterval() send the string "interval called" to the Output panel every 1000 
milliseconds. The first call to setInterval() calls the callback1() function, which contains a 
trace() action. The second call to setInterval() passes the "interval called" string to the 
function callback2() as a parameter.
function callback1() {

trace("interval called"); 
}

function callback2(arg) { 
trace(arg);

}

setInterval( callback1, 1000 ); 
setInterval( callback2, 1000, "interval called" );
setInterval() 615



Usage 3: This example uses a method of an object. You must use this syntax when you want to 
call a method that is defined for an object. 
obj = new Object();
obj.interval = function() { 

trace("interval function called"); 
}

setInterval( obj, "interval", 1000 ); 

obj2 = new Object();
obj2.interval = function(s) { 

trace(s); 
}
setInterval( obj2, "interval", 1000, "interval function called" ); 

You must use the second form of the setInterval() syntax to call a method of an object, 
as follows:
setInterval( obj2, "interval", 1000, "interval function called" ); 

See also

clearInterval(), updateAfterEvent()

setProperty()

Availability

Flash Player 4.

Usage

setProperty(target, property, value/expression)

Parameters

target The path to the instance name of the movie clip whose property is to be set.

property The property to be set.

value The new literal value of the property.

expression An equation that evaluates to the new value of the property.

Returns

Nothing.

Description

Function; changes a property value of a movie clip as the movie plays. 

Example

This statement sets the _alpha property of a movie clip named star to 30% when the button 
is clicked:
on(release) {

setProperty("star", _alpha, "30");
}

See also

getProperty 
616 Chapter 12:  ActionScript Dictionary



SharedObject class

Availability

Flash Player 6.

Description

Shared objects are quite powerful: they offer real-time data sharing between objects that are 
persistent on the user’s computer. You can think of local shared objects as “cookies.” 

You can use local shared objects to maintain local persistence. This is the simplest way to use a 
shared object. For example, you can call SharedObject.getLocal() to create a shared object, 
such as a calculator with memory, in the player. Because the shared object is locally persistent, 
Flash saves its data attributes on the user’s machine when the SWF file ends. The next time the 
SWF file runs, the calculator contains the values it had when the SWF file ended. Alternatively, if 
you set the shared object’s properties to null before the SWF ends, the calculator opens without 
any prior values the next time the SWF file runs.

To create a local shared object, use the following syntax:
// Create a local shared object 
so = SharedObject.getLocal("foo");

Local disk space considerations

Local shared objects are always persistent on the client, up to available memory and disk space.

By default, Flash can save locally persistent remote shared objects up to 100K in size. When you 
try to save a larger object, Flash Player displays the Local Storage dialog box, which lets the user 
allow or deny local storage for the domain that is requesting access. Make sure your Stage size is at 
least 215 x 138 pixels; this is the minimum size Flash requires to display the dialog box.

If the user clicks Allow, the object is saved and SharedObject.onStatus is invoked with a code 
property of SharedObject.Flush.Success; if the user clicks Deny, the object is not saved and 
SharedObject.onStatus is invoked with a code property of SharedObject.Flush.Failed.

The user can also specify permanent local storage settings for a particular domain by right-
clicking (Windows) or Control-clicking (Macintosh) while a SWF file is playing, choosing 
Settings, and then opening the Local Storage panel.
SharedObject class 617



The following list summarizes how the user’s disk space choices interact with shared objects:

• If the user selects Never, objects are never saved locally, and all SharedObject.flush() 
commands issued for the object return false.

• If the user selects Unlimited (moves the slider all the way to the right), objects are saved locally 
up to available disk space.

• If the user selects None (moves the slider all the way to the left), all SharedObject.flush() 
commands issued for the object return "pending" and cause the player to ask the user if 
additional disk space can be allotted to make room for the object, as explained above.

• If the user selects 10 KB, 100 KB, 1 MB, or 10 MB, objects are saved locally and 
SharedObject.flush() returns true if the object fits within the specified amount of space. If 
more space is needed, SharedObject.flush() returns "pending", and the player asks the 
user if additional disk space can be allotted to make room for the object, as explained above.

Additionally, if the user selects a value that is less than the amount of disk space currently being 
used for locally persistent data, the player warns the user that any locally saved shared objects will 
be deleted.

Note: There is no size limit in Flash Player that runs from the authoring environment.

Method summary for the SharedObject class

Property summary for the SharedObject class

Event handler summary for the SharedObject class

Method Description

SharedObject.clear() Purges all of the data from the shared object and deletes the 
shared object from the disk.

SharedObject.flush() Immediately writes a locally persistent shared object to a local file.

SharedObject.getLocal() Returns a reference to a locally persistent shared object that is 
available only to the current client.

SharedObject.getSize() Gets the current size of the shared object, in bytes.

Property (read-only) Description

SharedObject.data The collection of attributes assigned to the data property of the 
object; these attributes can be shared and/or stored.

Event handler Description

SharedObject.onStatus Invoked every time an error, warning, or informational note is 
posted for a shared object.
618 Chapter 12:  ActionScript Dictionary



Constructor for the SharedObject class

For information on creating local shared objects, see SharedObject.getLocal().

SharedObject.clear()

Availability

Flash Player 7.

Usage

my_so.clear()

Parameters

None.

Returns

Nothing.

Description

Method; purges all of the data from the shared object and deletes the shared object from the disk. 
The reference to my_so is still active, and my_so is now empty.

SharedObject.data

Availability

Flash Player 6.

Usage

myLocalSharedObject.data

Description

Read-only property; the collection of attributes assigned to the data property of the object; these 
attributes can be shared and/or stored. Each attribute can be an object of any of the basic 
ActionScript or JavaScript types—Array, Number, Boolean, and so on. For example, the 
following lines assign values to various aspects of a shared object: 
itemsArray = new Array(101,346,483);
currentUserIsAdmin = true;
currentUserName = "Ramona";
so.data.itemNumbers = itemsArray;
so.data.adminPrivileges = currentUserIsAdmin;
so.data.userName = currentUserName;

All attributes of a shared object’s data property are saved if the object is persistent.
Note: Do not assign values directly to the data property of a shared object, as in 
so.data = someValue; Flash ignores these assignments.

To delete attributes for local shared objects, use code like delete so.data.attributeName; 
setting an attribute to null or undefined for a local shared object does not delete the attribute.
SharedObject.data 619



To create “private” values for a shared object—values that are available only to the client instance 
while the object is in use and are not stored with the object when it is closed—create properties 
that are not named data to store them, as shown in the following example.
so.favoriteColor = "blue";
so.favoriteNightClub = "The Bluenote Tavern";
so.favoriteSong = "My World is Blue";

Example

The following example sets the current stream to the user’s selection.
curStream = _root.so.data.msgList[selected].streamName;

See also

Sound class

SharedObject.flush()

Availability

Flash Player 6.

Usage

myLocalSharedObject.flush([minimumDiskSpace])

Parameters

minimumDiskSpace An optional integer specifying the number of bytes that must be allotted 
for this object. The default value is 0.

Returns

A Boolean value of true or false, or a string value of "pending".

• If the user has permitted local information storage for objects from this domain, and the 
amount of space allotted is sufficient to store the object, this method returns true. (If you have 
passed a value for minimumDiskSpace, the amount of space allotted must be at least equal to 
that value for true to be returned).

• If the user has permitted local information storage for objects from this domain, but the 
amount of space allotted is not sufficient to store the object, this method returns "pending". 

• If the user has permanently denied local information storage for objects from this domain, or if 
Flash is unable to save the object for any reason, this method returns false.

Description

Method; immediately writes a locally persistent shared object to a local file. If you don’t use this 
method, Flash writes the shared object to a file when the shared object session ends—that is, 
when the SWF file is closed, when the shared object is garbage-collected because it no longer has 
any references to it, or when you call SharedObject.data.
620 Chapter 12:  ActionScript Dictionary



If this method returns "pending", the Flash Player displays a dialog box asking the user to 
increase the amount of disk space available to objects from this domain. To allow space for the 
shared object to “grow” when it is saved in the future, thus avoiding return values of "pending", 
pass a value for minimumDiskSpace. When Flash tries to write the file, it looks for the number of 
bytes passed to minimumDiskSpace, instead of looking for just enough space to save the shared 
object at its current size. 

For example, if you expect a shared object to grow to a maximum size of 500 bytes, even though 
it may start out much smaller, pass 500 for minimumDiskSpace. If Flash asks the user to allot disk 
space for the shared object, it will ask for 500 bytes. After the user allots the requested amount of 
space, Flash won’t have to ask for more space on future attempts to flush the object (as long as its 
size doesn’t exceed 500 bytes).

After the user responds to the dialog box, this method is called again and returns either true or 
false; also, SharedObject.onStatus is invoked with a code property of 
SharedObject.Flush.Success or SharedObject.Flush.Failed.

For more information, see “Local disk space considerations” on page 617.

Example

The following function gets a shared object, SO, and fills writable properties with user-provided 
settings. Finally, flush() is called to save the settings and allot a minimum of 1000 bytes of 
disk space.
this.SyncSettingsCore=function(soname, override, settings)
{

var SO=SharedObject.getLocal(soname, "http://www.mydomain.com/app/sys");

// settings list index
var i;

// For each specified value in settings:
// If override is true, set the persistent setting to the provided value.
// If override is false, fetch the persistent setting, unless there
// isn't one, in which case, set it to the provided value.
for (i in settings) {

if (override || (SO.data[i] == null)) {
SO.data[i]= settings[i];

} else {
settings[i]= SO.data[i];

}
}
SO.flush(1000);

}

SharedObject.flush() 621



SharedObject.getLocal()

Availability

Flash Player 6.

Usage

SharedObject.getLocal(objectName [, localPath])

Note: The correct syntax is SharedObject.getLocal. To assign the object to a variable, use syntax like 
myLocalSO = SharedObject.getLocal.

Parameters

objectName The name of the object. The name can include forward slashes (/); for example, 
work/addresses is a legal name. Spaces are not allowed in a shared object name, nor are the 
following characters: 
~ % & \ ; : " ' , < > ? # 

localPath An optional string parameter that specifies the full or partial path to the SWF file 
that created the shared object, and that determines where the shared object will be stored locally. 
The default value is the full path. 

Returns

A reference to a shared object that is persistent locally and is available only to the current client. If 
Flash can’t create or find the shared object (for example, if localPath was specified but no such 
directory exists), this method returns null.

Description

Method; returns a reference to a locally persistent shared object that is available only to the 
current client.

To avoid name collisions, Flash looks at the location of the SWF file that is creating the shared 
object. For example, if a SWF file at www.myCompany.com/apps/stockwatcher.swf creates a 
shared object named portfolio, that shared object will not conflict with another object named 
portfolio that was created by a SWF file at www.yourCompany.com/photoshoot.swf, because 
the SWF files originate from two different directories. 

Example

The following example saves the last frame a user entered to a local shared object kookie. 
// Get the kookie
so = sharedobject.getlocal("kookie");

// Get the user of the kookie and go to the frame number saved for this user.
if (so.data.user != undefined) {

this.user = so.data.user;
this.gotoAndStop(so.data.frame);

}

The following code block is placed on each SWF frame.
// On each frame, call the rememberme function to save the frame number.
function rememberme() {

so.data.frame=this._currentFrame;
so.data.user="John";

}

622 Chapter 12:  ActionScript Dictionary



SharedObject.getSize()

Availability

Flash Player 6.

Usage

myLocalSharedObject.getSize()

Parameters

None.

Returns

A numeric value specifying the size of the shared object, in bytes.

Description

Method; gets the current size of the shared object, in bytes. 

Flash calculates the size of a shared object by stepping through each of its data properties; the 
more data properties the object has, the longer it takes to estimate its size. For this reason, 
estimating object size can have significant processing cost. Therefore, you may want to avoid 
using this method unless you have a specific need for it.

Example

The following example gets the size of the shared object so.
var soSize= this.so.getSize();

SharedObject.onStatus

Availability

Flash Player 6.

Usage

myLocalSharedObject.onStatus = function(infoObject) {
// your statements here

}

Parameters

infoObject A parameter defined according to the status message. 

Returns

Nothing.

Description

Event handler; invoked every time an error, warning, or informational note is posted for a shared 
object. If you want to respond to this event handler, you must create a function to process the 
information object generated by the shared object. 

The information object has a code property containing a string that describes the result of the 
onStatus handler, and a level property containing a string that is either "Status" or "Error". 
SharedObject.onStatus 623



In addition to this onStatus handler, Flash also provides a “super” function called 
System.onStatus. If onStatus is invoked for a particular object and there is no function assigned 
to respond to it, Flash processes a function assigned to System.onStatus if it exists.

The following events notify you when certain SharedObject activities occur.

See also

SharedObject.getLocal(), System.onStatus

Sound class

Availability

Flash Player 5.

Description

The Sound class lets you control sound in a movie. You can add sounds to a movie clip from the 
library while the movie is playing and control those sounds. If you do not specify a target when 
you create a new Sound object, you can use the methods to control sound for the whole movie.

You must use the constructor new Sound to create a Sound object before calling the methods of 
the Sound class.

Method summary for the Sound class

Code property Level property Meaning

SharedObject.Flush.Failed Error A SharedObject.flush() command that returned 
"pending" has failed (the user did not allot 
additional disk space for the shared object when 
Flash Player displayed the Local Storage Settings 
dialog box).

SharedObject.Flush.Success Status A SharedObject.flush() command that returned 
"pending" has been successfully completed 
(the user allotted additional disk space for the 
shared object).

Method Description

Sound.attachSound() Attaches the sound specified in the parameter.

Sound.getBytesLoaded() Returns the number of bytes loaded for the specified sound.

Sound.getBytesTotal() Returns the size of the sound in bytes.

Sound.getPan() Returns the value of the previous setPan() call.

Sound.getTransform() Returns the value of the previous setTransform() call.

Sound.getVolume() Returns the value of the previous setVolume() call.

Sound.loadSound() Loads an MP3 file into Flash Player.

Sound.setPan() Sets the left/right balance of the sound.
624 Chapter 12:  ActionScript Dictionary



Property summary for the Sound class

Event handler summary for the Sound class

Constructor for the Sound class

Availability

Flash Player 5.

Usage

new Sound([target])

Parameters

target The movie clip instance on which the Sound object operates. This parameter 
is optional.

Returns

Nothing.

Description

Constructor; creates a new Sound object for a specified movie clip. If you do not specify a target 
instance, the Sound object controls all of the sounds in the movie.

Sound.setTransform() Sets the amount of each channel, left and right, to be played in 
each speaker.

Sound.setVolume() Sets the volume level for a sound.

Sound.start() Starts playing a sound from the beginning or, optionally, from an offset 
point set in the parameter. 

Sound.stop() Stops the specified sound or all sounds currently playing.

Property Description

Sound.duration Length of a sound, in milliseconds.

Sound.ID3 Provides access to the metadata that is part of an MP3 file.

Sound.position Number of milliseconds a sound has been playing.

Event handler Description

Sound.onID3 Invoked each time new ID3 data is available.

Sound.onLoad Invoked when a sound loads.

Sound.onSoundComplete Invoked when a sound stops playing.

Method Description
Sound class 625



Example

The following example creates a new Sound object called global_sound. The second line calls 
setVolume() and adjusts the volume on all sounds in the movie to 50%.
global_sound = new Sound();
global_sound.setVolume(50);

The following example creates a new Sound object, passes it the target movie clip my_mc, and calls 
the start method, which starts any sound in my_mc.
movie_sound = new Sound(my_mc);
movie_sound.start();

Sound.attachSound()

Availability

Flash Player 5.

Usage

my_sound.attachSound("idName")

Parameters

idName The identifier of an exported sound in the library. The identifier is located in the 
Linkage Properties dialog box. 

Returns

Nothing.

Description

Method; attaches the sound specified in the idName parameter to the specified Sound object. The 
sound must be in the library of the current SWF file and specified for export in the Linkage 
Properties dialog box. You must call Sound.start() to start playing the sound.

To make sure that the sound can be controlled from any scene in the SWF file, place the sound on 
the main Timeline of the SWF file. 

Sound.duration

Availability

Flash Player 6.

Usage

my_sound.duration

Description

Property (read-only); the duration of a sound, in milliseconds.
626 Chapter 12:  ActionScript Dictionary



Sound.getBytesLoaded()

Availability

Flash Player 6.

Usage

my_sound.getBytesLoaded()

Parameters

None.

Returns

An integer indicating the number of bytes loaded.

Description

Method; returns the number of bytes loaded (streamed) for the specified Sound object. You can 
compare the value of getBytesLoaded() with the value of getBytesTotal() to determine what 
percentage of a sound has loaded.

See also

Sound.getBytesTotal()

Sound.getBytesTotal()

Availability

Flash Player 6.

Usage

my_sound.getBytesTotal()

Parameters

None.

Returns

An integer indicating the total size, in bytes, of the specified Sound object.

Description

Method; returns the size, in bytes, of the specified Sound object.

See also

Sound.getBytesLoaded()
Sound.getBytesTotal() 627



Sound.getPan()

Availability

Flash Player 5.

Usage

my_sound.getPan();

Parameters

None.

Returns

An integer.

Description

Method; returns the pan level set in the last setPan() call as an integer from -100 (left) to 100 
(right). (0 sets the left and right channels equally.) The pan setting controls the left-right balance 
of the current and future sounds in a SWF file.

This method is cumulative with setVolume() or setTransform().

See also

Sound.setPan()

Sound.getTransform()

Availability

Flash Player 5.

Usage

my_sound.getTransform();

Parameters

None.

Returns

An object with properties that contain the channel percentage values for the specified 
sound object.

Description

Method; returns the sound transform information for the specified Sound object set with the last 
Sound.setTransform() call. 
628 Chapter 12:  ActionScript Dictionary



Sound.getVolume()

Availability

Flash Player 5.

Usage

my_sound.getVolume()

Parameters

None.

Returns

An integer.

Description

Method; returns the sound volume level as an integer from 0 to 100, where 0 is off and 100 is full 
volume. The default setting is 100.

See also

Sound.setVolume()

Sound.ID3

Availability

Flash Player 6; behavior updated in Flash Player 7.

Usage

my_sound.ID3

Description

Property (read-only); provides access to the metadata that is part of an MP3 file.

MP3 sound files can contain ID3 tags, which provide metadata about the file. If an MP3 sound 
that you load using Sound.attachSound() or Sound.loadSound() contains ID3 tags, you can 
query these properties. Only ID3 tags that use the UTF-8 character set are supported.

Flash Player 6 release 40 and later use the Sound.id3 property to support ID3 1.0 and ID3 1.1 
tags. Flash Player 7 adds support for ID3 2.0 tags, specifically 2.3 and 2.4. For backward 
compatibility, both Sound.id3 and Sound.ID3 are supported. Code hints are supported only for 
the lowercase use of id3 (see “Using code hints” on page 63).

The following table lists the standard ID3 2.0 tags and the type of content the tags represent; you 
query them in the format my_sound.ID3.COMM, my_sound.ID3.TIME, and so on. MP3 files can 
contain tags other than those in this table; Sound.ID3 provides access to those tags as well.

Property Description

COMM Comment

TALB Album/movie/show title

TBPM Beats per minute 
Sound.ID3 629



TCOM Composer

TCON Content type

TCOP Copyright message

TDAT Date

TDLY Playlist delay

TENC Encoded by

TEXT Lyricist/text writer

TFLT File type

TIME Time

TIT1 Content group description

TIT2 Title/song name/content description

TIT3 Subtitle/description refinement

TKEY Initial key

TLAN Languages

TLEN Length

TMED Media type

TOAL Original album/movie/show title

TOFN Original filename

TOLY Original lyricists/text writers

TOPE Original artists/performers

TORY Original release year

TOWN File owner/licensee

TPE1 Lead performers/soloists

TPE2 Band/orchestra/accompaniment

TPE3 Conductor/performer refinement

TPE4 Interpreted, remixed, or otherwise modified by

TPOS Part of a set

TPUB Publisher

TRCK Track number/position in set

TRDA Recording dates

TRSN Internet radio station name

TRSO Internet radio station owner

TSIZ Size

Property Description
630 Chapter 12:  ActionScript Dictionary



Flash Player 6 supported several ID31.0 tags. If these tags are in not in the MP3 file, but 
corresponding ID3 2.0 tags are, the ID3 2.0 tags are copied into the ID3 1.0 properties, as shown 
in the following table. This process provides backward compatibility with scripts that you may 
have written already that read ID3 1.0 properties.

Example

See Sound.onID3 for an example of the use of this property.

See also

Sound.attachSound(), Sound.loadSound()

Sound.loadSound()

Availability

Flash Player 6.

Usage

my_sound.loadSound("url", isStreaming)

Parameters

url The location on a server of an MP3 sound file.

isStreaming A Boolean value that indicates whether the sound is a streaming sound (true) or 
an event sound (false).

Returns

Nothing.

TSRC ISRC (international standard recording code)

TSSE Software/hardware and settings used for encoding

TYER Year

WXXX URL link frame

ID3 2.0 tag Corresponding ID3 1.0 property

COMM Sound.id3.comment

TALB Sound.id3.album 

TCON Sound.id3.genre

TIT2 Sound.id3.songname 

TPE1 Sound.id3.artist

TRCK Sound.id3.track 

TYER Sound.id3.year 

Property Description
Sound.loadSound() 631



Description

Method; loads an MP3 file into a Sound object. You can use the isStreaming parameter to 
indicate whether the sound is an event or a streaming sound.

Event sounds are completely loaded before they play. They are managed by the ActionScript 
Sound class and respond to all methods and properties of this class.

Streaming sounds play while they are downloading. Playback begins when sufficient data has been 
received to start the decompressor. 

All MP3s (event or streaming) loaded with this method are saved in the browser’s file cache on the 
user’s system.

Example

The following example loads an event sound:
my_sound.loadSound( "http://serverpath:port/mp3filename", false);

The following example loads a streaming sound:
my_sound.loadSound( "http://serverpath:port/mp3filename", true);

See also

Sound.onLoad

Sound.onID3

Availability

Flash Player 7.

Usage

my_sound.onID3 = function(){
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked each time new ID3 data is available for an MP3 file that you load using 
Sound.attachSound() or Sound.loadSound(). This handler provides access to ID3 data 
without polling. If both ID3 1.0 and ID3 2.0 tags are present in a file, this handler is called twice. 
632 Chapter 12:  ActionScript Dictionary



Example

The following example traces the ID3 properties of song.mp3 to the Output panel.
my_sound = new Sound();
my_sound.onID3 = function(){

for( var prop in my_sound.ID3 ){
trace( prop + " : "+ my_sound.ID3[prop] );

}
}
my_sound.loadSound("song.mp3", false);

See also

Sound.attachSound(), Sound.ID3, Sound.loadSound()

Sound.onLoad

Availability

Flash Player 6.

Usage

my_sound.onLoad = function(success){
// your statements here

}

Parameters

success A Boolean value of true if my_sound has been loaded successfully, false otherwise.

Returns

Nothing.

Description

Event handler; invoked automatically when a sound loads. You must create a function that 
executes when the this handler is invoked. You can use either an anonymous function or a named 
function (for an example of each, see Sound.onSoundComplete). You should define this handler 
before you call my_sound.loadSound().

See also

Sound.loadSound()
Sound.onLoad 633



Sound.onSoundComplete

Availability

Flash Player 6.

Usage

my_sound.onSoundComplete = function(){
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked automatically when a sound finishes playing. You can use this handler to 
trigger events in a SWF file when a sound finishes playing.

You must create a function that executes when this handler is invoked. You can use either an 
anonymous function or a named function.

Example

Usage 1: The following example uses an anonymous function:
my_sound = new Sound();
my_sound.attachSound("mySoundID");
my_sound.onSoundComplete = function() {

trace("mySoundID completed"); 
}
my_sound.start();

Usage 2: The following example uses a named function:
function callback1() {

trace("mySoundID completed");
}

my_sound = new Sound();
my_sound.attachSound("mySoundID");
my_sound.onSoundComplete = callback1;
my_sound.start();

See also

Sound.onLoad
634 Chapter 12:  ActionScript Dictionary



Sound.position

Availability

Flash Player 6.

Usage

my_sound.position

Description

Property (read-only); the number of milliseconds a sound has been playing. If the sound is 
looped, the position will be reset to 0 at the beginning of each loop.

Sound.setPan()

Availability

Flash Player 5.

Usage

my_sound.setPan(pan);

Parameters

pan An integer specifying the left-right balance for a sound. The range of valid values is -100 to 
100, where -100 uses only the left channel, 100 uses only the right channel, and 0 balances the 
sound evenly between the two channels.

Returns

An integer.

Description

Method; determines how the sound is played in the left and right channels (speakers). For mono 
sounds, pan determines which speaker (left or right) the sound plays through.

Example

The following example creates a Sound object called my_sound and attaches a sound with the 
identifier L7 from the library. It also calls setVolume() and setPan() to control the L7 sound.
onClipEvent(mouseDown) {
// create a sound object

my_sound = new Sound(this);
// attach a sound from the library

my_sound.attachSound("L7");
//set volume to 50%

my_sound.setVolume(50);
//turn off the sound in the right channel

my_sound.setPan(-100);
//start 30 seconds into the sound and play it 5 times

my_sound.start(30, 5);

See also

Sound.attachSound(), Sound.setPan(), Sound.setTransform(), Sound.setVolume(), 
Sound.start()
Sound.setPan() 635



Sound.setTransform()

Availability

Flash Player 5.

Usage

my_sound.setTransform(soundTransformObject) 

Parameters

soundTransformObject An object created with the constructor for the generic Object class.

Returns

Nothing.

Description

Method; sets the sound transform (or balance) information, for a Sound object.

The soundTransformObject parameter is an object that you create using the constructor 
method of the generic Object class with parameters specifying how the sound is distributed to the 
left and right channels (speakers). 

Sounds use a considerable amount of disk space and memory. Because stereo sounds use twice as 
much data as mono sounds, it is generally best to use 22-KHz 6-bit mono sounds. You can use 
setTransform() to play mono sounds as stereo, play stereo sounds as mono, and to add 
interesting effects to sounds.

The properties for the soundTransformObject are as follows:

11  A percentage value specifying how much of the left input to play in the left speaker (0-100).

1r  A percentage value specifying how much of the right input to play in the left speaker 
(0-100).

rr A percentage value specifying how much of the right input to play in the right speaker 
(0-100).

rl A percentage value specifying how much of the left input to play in the right speaker 
(0-100).

The net result of the parameters is represented by the following formula:
leftOutput = left_input * ll + right_input * lr
rightOutput = right_input * rr + left_input * rl

The values for left_input or right_input are determined by the type (stereo or mono) of 
sound in your SWF file. 

Stereo sounds divide the sound input evenly between the left and right speakers and have the 
following transform settings by default:
ll = 100
lr = 0
rr = 100
rl = 0
636 Chapter 12:  ActionScript Dictionary



Mono sounds play all sound input in the left speaker and have the following transform settings 
by default:
ll = 100
lr = 100
rr = 0
rl = 0

Example

The following example illustrates a setting that can be achieved by using setTransform(), but 
cannot be achieved by using setVolume() or setPan(), even if they are combined.

The following code creates a new soundTransformObject object and sets its properties so that 
sound from both channels will play only in the left channel.
mySoundTransformObject = new Object;
mySoundTransformObject.ll = 100;
mySoundTransformObject.lr = 100;
mySoundTransformObject.rr = 0;
mySoundTransformObject.rl = 0;

To apply the soundTransformObject object to a Sound object, you then need to pass the object 
to the Sound object using setTransform() as follows:
my_sound.setTransform(mySoundTransformObject);

The following example plays a stereo sound as mono; the soundTransformObjectMono object 
has the following parameters:
mySoundTransformObjectMono = new Object;
mySoundTransformObjectMono.ll = 50;
mySoundTransformObjectMono.lr = 50;
mySoundTransformObjectMono.rr = 50;
mySoundTransformObjectMono.rl = 50;
my_sound.setTransform(soundTransformObjectMono);

This example plays the left channel at half capacity and adds the rest of the left channel to the 
right channel; the soundTransformObjectHalf object has the following parameters:
mySoundTransformObjectHalf = new Object;
mySoundTransformObjectHalf.ll = 50;
mySoundTransformObjectHalf.lr = 0;
mySoundTransformObjectHalf.rr = 100;
mySoundTransformObjectHalf.rl = 50;
my_sound.setTransform(soundTransformObjectHalf);

See also

Object class
Sound.setTransform() 637



Sound.setVolume()

Availability

Flash Player 5.

Usage

my_sound.setVolume(volume)

Parameters

volume A number from 0 to 100 representing a volume level. 100 is full volume and 0 is no 
volume. The default setting is 100.

Returns

Nothing.

Description

Method; sets the volume for the Sound object.

Example

The following example sets volume to 50% and transfers the sound over time from the left 
speaker to the right speaker:
onClipEvent (load) {

i = -100;
my_sound = new Sound();
my_sound.setVolume(50);

}
onClipEvent (enterFrame) {

if (i <= 100) {
my_sound.setPan(i++);

}
}

See also

Sound.setPan(), Sound.setTransform()

Sound.start()

Availability

Flash Player 5.

Usage

my_sound.start([secondOffset, loop])

Parameters

secondOffset An optional parameter that lets you start playing the sound at a specific point. 
For example, if you have a 30-second sound and want the sound to start playing in the middle, 
specify 15 for the secondOffset parameter. The sound is not delayed 15 seconds, but rather 
starts playing at the 15-second mark.

loop An optional parameter allowing you to specify the number of times the sound should 
play consecutively. 
638 Chapter 12:  ActionScript Dictionary



Returns

Nothing.

Description

Method; starts playing the last attached sound from the beginning if no parameter is specified, or 
starting at the point in the sound specified by the secondOffset parameter.

See also

Sound.stop()

Sound.stop()

Availability

Flash Player 5.

Usage

my_sound.stop(["idName"])

Parameters

idName An optional parameter specifying a specific sound to stop playing. The idName 
parameter must be enclosed in quotation marks (" ").

Returns

Nothing.

Description

Method; stops all sounds currently playing if no parameter is specified, or just the sound specified 
in the idName parameter.

See also

Sound.start()

_soundbuftime

Availability

Flash Player 4.

Usage

_soundbuftime = integer

Parameters

integer The number of seconds before the SWF file starts to stream.

Description

Property (global); establishes the number of seconds of streaming sound to prebuffer. The default 
value is 5 seconds.
_soundbuftime 639



Stage class

Availability

Flash Player 6.

Description

The Stage class is a top-level class whose methods, properties, and handlers you can access without 
using a constructor. 

Use the methods and properties of this class to access and manipulate information about the 
boundaries of a SWF file.

Method summary for the Stage class

Property summary for the Stage class

Event handler summary for the Stage class

Method Description

Stage.addListener() Adds a listener object that detects when a SWF file is resized.

Stage.removeListener() Removes a listener object from the Stage object.

Property Description

Stage.align Alignment of the SWF file in the player or browser. 

Stage.height Height of the Stage, in pixels.

Stage.scaleMode The current scaling of the SWF file.

Stage.showMenu Shows or hides the default items in the Flash Player context menu.

Stage.width Width of the Stage, in pixels.

Event handler Description

Stage.onResize Invoked when Stage.scaleMode is set to "noScale" and the SWF file is 
resized.
640 Chapter 12:  ActionScript Dictionary



Stage.addListener()

Availability

Flash Player 6.

Usage

Stage.addListener(myListener)

Parameters

myListener An object that listens for a callback notification from the Stage.onResize event.

Returns

Nothing.

Description

Method; detects when a SWF file is resized (but only if Stage.scaleMode = "noScale"). The 
addListener() method doesn’t work with the default movie scaling setting ("showAll") or 
other scaling settings ("exactFit" and "noBorder").

To use addListener(), you must first create a listener object. Stage listener objects receive 
notification from Stage.onResize.

Example

This example creates a new listener object called myListener. It then uses myListener to call 
onResize and define a function that will be called when onResize is triggered. Finally, the code 
adds the myListener object to the callback list of the Stage object. Listener objects allow multiple 
objects to listen for resize notifications.
myListener = new Object();
myListener.onResize = function () { ... }
Stage.scaleMode = "noScale"
Stage.addListener(myListener);

See also

Stage.onResize, Stage.removeListener()

Stage.align

Availability

Flash Player 6.

Usage

Stage.align

Description

Property; indicates the current alignment of the SWF file in the player or browser.
Stage.align 641



The following table lists the values for the align property. Any value not listed here centers the 
SWF file in the player or browser area.

Stage.height

Availability

Flash Player 6.

Usage

Stage.height

Description

Property (read-only); indicates the current height, in pixels, of the Stage. When the value of 
Stage.scaleMode is "noScale", the height property represents the height of the player. When 
the value of Stage.scaleMode is not "noScale", height represents the height of the SWF file.

See also

Stage.align, Stage.scaleMode, Stage.width

Stage.onResize

Availability

Flash Player 6.

Usage

myListener.onResize = function(){
// your statements here

}

Parameters

None.

Parameters

None.

Value Vertical Horizontal

"T" top center

"B" bottom center

"L" center left

"R" center right

"TL" top left

"TR" top right

"BL" bottom left

"BR" bottom right
642 Chapter 12:  ActionScript Dictionary



Returns

Nothing.

Description

Event handler; invoked when Stage.scaleMode is set to "noScale" and the SWF file is resized. 
You can use this event handler to write a function that lays out the objects on the Stage when a 
SWF file is resized.

Example

The following example displays a message in the Output panel when the Stage is resized.
Stage.scaleMode = "noScale"
myListener = new Object();
myListener.onResize = function () {

trace("Stage size is now " + Stage.width + " by " + Stage.height);
}
Stage.addListener(myListener);
// later, call Stage.removeListener(myListener)

See also

Stage.addListener(), Stage.removeListener()

Stage.removeListener()

Availability

Flash Player 6.

Usage

Stage.removeListener(myListener)

Parameters

myListener An object added to an object’s callback list with addListener().

Returns

A Boolean value.

Description

Method; removes a listener object created with addListener().

See also

Stage.addListener()
Stage.removeListener() 643



Stage.scaleMode

Availability

Flash Player 6.

Usage

Stage.scaleMode = "value"

Description

Property; indicates the current scaling of the SWF file within the Stage. The scaleMode property 
forces the SWF file into a specific scaling mode. By default, the SWF file uses the HTML 
parameters set in the Publish Settings dialog box.

The scaleMode property can use the values "exactFit", "showAll", "noBorder", and 
"noScale". Any other value sets the scaleMode property to the default "showAll".

Stage.showMenu

Availability

Flash Player 6.

Usage

Stage.showMenu

Description

Property (read-write); specifies whether to show or hide the default items in the Flash Player 
context menu. If showMenu is set to true (the default), all context menu items appear. If 
showMenu is set to false, only the Settings item appears.

See also

ContextMenu class, ContextMenuItem class

Stage.width

Availability

Flash Player 6.

Usage

Stage.width

Description

Property (read-only); indicates the current width, in pixels, of the Stage. When the value of 
Stage.scaleMode is "noScale", the width property represents the width of the player. When 
the value of Stage.scaleMode is not "noScale", width represents the width of the SWF file.

See also

Stage.align, Stage.height, Stage.scaleMode
644 Chapter 12:  ActionScript Dictionary



startDrag()

Availability

Flash Player 4.

Usage

startDrag(target,[lock, left, top, right, bottom])

Parameters

target The target path of the movie clip to drag. 

lock A Boolean value specifying whether the draggable movie clip is locked to the center of the 
mouse position (true), or locked to the point where the user first clicked on the movie clip 
(false). This parameter is optional.

left, top, right, bottom Values relative to the coordinates of the movie clip’s parent that 
specify a constraint rectangle for the movie clip. These parameters are optional.

Returns

Nothing.

Description

Function; makes the target movie clip draggable while the movie is playing. Only one movie 
clip can be dragged at a time. Once a startDrag() operation is executed, the movie clip remains 
draggable until explicitly stopped by stopDrag(), or until a startDrag() action for another 
movie clip is called.

Example

To create a movie clip that users can position in any location, attach the startDrag() and 
stopDrag() actions to a button inside the movie clip.
on(press) {

startDrag(this,true);
}
on(release) {

stopDrag();
}

See also

MovieClip._droptarget, MovieClip.startDrag(), stopDrag()
startDrag() 645



static

Availability

Flash Player 6.

Usage

class someClassName{
static var name;
static function name() {

// your statements here
}

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash 
tab of your FLA file’s Publish Settings dialog box. This keyword is supported only when used in 
external script files, not in scripts written in the Actions panel.

Parameters

name The name of the variable or function that you want to specify as static.

Description

Keyword; specifies that a variable or function is created only once per class rather than being 
created in every object based on that class. For more information, see “Instance and class 
members” on page 165.

You can use this keyword in class definitions only, not in interface definitions.

See also

private, public

stop()

Availability

Flash 2.

Usage

stop()

Parameters

None.

Returns

Nothing.

Description

Function; stops the SWF file that is currently playing. The most common use of this action is to 
control movie clips with buttons.
646 Chapter 12:  ActionScript Dictionary



stopAllSounds()

Availability

Flash Player 3.

Usage

stopAllSounds()

Parameters

None.

Returns

Nothing.

Description

Function; stops all sounds currently playing in a SWF file without stopping the playhead. Sounds 
set to stream will resume playing as the playhead moves over the frames they are in.

Example

The following code could be applied to a button that, when clicked, stops all sounds in the 
SWF file.
on(release) {

stopAllSounds();
}

See also

Sound class

stopDrag()

Availability

Flash Player 4.

Usage

stopDrag()

Parameters

None.

Returns

Nothing.

Description

Function; stops the current drag operation.
stopDrag() 647



Example

This code stops the drag action on the instance my_mc when the user releases the mouse button:
on(press) {

startDrag("my_mc");
}
on(release) {

stopdrag();
}

See also

MovieClip._droptarget, MovieClip.stopDrag(), startDrag()

" " (string delimiter)

Availability

Flash Player 4.

Usage

"text" 

Parameters

text A character. 

Returns

Nothing.

Description

String delimiter; when used before and after characters, quotation marks indicate that the 
characters have a literal value and are considered a string—not a variable, numerical value, or 
other ActionScript element. 

Example

This example uses quotation marks to indicate that the value of the variable yourGuess is the 
literal string “Prince Edward Island” and not the name of a variable. The value of province is a 
variable, not a literal; to determine the value of province, the value of yourGuess must 
be located.
yourGuess = "Prince Edward Island";

on(release){
province = yourGuess;
trace(province);

}

// displays Prince Edward Island in the Output panel

See also

String class, String()
648 Chapter 12:  ActionScript Dictionary



String class

Availability

Flash Player 5 (became a native object in Flash Player 6, which improved 
performance significantly).

Description

The String class is a wrapper for the string primitive data type, and provides methods and 
properties that let you manipulate primitive string value types. You can convert the value of any 
object into a string using the String() function. 

All of the methods of the String class, except for concat(), fromCharCode(), slice(), and 
substr(), are generic. This means the methods themselves call this.toString() before 
performing their operations, and you can use these methods with other non-String objects.

Because all string indexes are zero-based, the index of the last character for any string x is 
x.length - 1.

You can call any of the methods of the String class using the constructor method new String or 
using a string literal value. If you specify a string literal, the ActionScript interpreter automatically 
converts it to a temporary String object, calls the method, and then discards the temporary String 
object. You can also use the String.length property with a string literal.

Do not confuse a string literal with a String object. In the following example, the first line of code 
creates the string literal s1, and the second line of code creates the String object s2.
s1 = "foo" 
s2 = new String("foo") 

Use string literals unless you specifically need to use a String object.

Method summary for the String class

Method Description

String.charAt() Returns the character at a specific location in a string.

String.charCodeAt() Returns the value of the character at the specified index as a 16-bit integer 
between 0 and 65535.

String.concat() Combines the text of two strings and returns a new string.

String.fromCharCode() Returns a string made up of the characters specified in the parameters. 

String.indexOf() Returns the position of the first occurrence of a specified substring.

String.lastIndexOf() Returns the position of the last occurrence of a specified substring.

String.slice() Extracts a section of a string and returns a new string.

String.split() Splits a String object into an array of strings by separating the string 
into substrings.

String.substr() Returns a specified number of characters in a string, beginning at a 
specified location. 

String.substring() Returns the characters between two indexes in a string.
String class 649



Property summary for the String class

Constructor for the String class

Availability

Flash Player 5.

Usage

new String(value)

Parameters

value The initial value of the new String object.

Returns

Nothing.

Description

Constructor; creates a new String object.

See also

String(), " " (string delimiter)

String.charAt()

Availability

Flash Player 5.

Usage

my_str.charAt(index)

Parameters

index An integer that specifies the position of a character in the string. The first character is 
indicated by 0, and the last character is indicated by my_str.length-1. 

Returns

A character.

String.toLowerCase() Converts the string to lowercase and returns the result; does not change 
the contents of the original object.

String.toUpperCase() Converts the string to uppercase and returns the result; does not change 
the contents of the original object.

Property Description

String.length A nonzero-based integer specifying the number of characters in the 
specified String object.

Method Description
650 Chapter 12:  ActionScript Dictionary



Description

Method; returns the character in the position specified by the parameter index. If index is not a 
number from 0 to string.length - 1, an empty string is returned. 

This method is similar to String.charCodeAt() except that the returned value is a character, not 
a 16-bit integer character code.

Example

In the following example, this method is called on the first letter of the string "Chris".
my_str = new String("Chris");
i = my_str.charCodeAt(0); // i = "C"

String.charCodeAt()

Availability

Flash Player 5.

Usage

my_str.charCodeAt(index)

Parameters

index An integer that specifies the position of a character in the string. The first character is 
indicated by 0, and the last character is indicated by my_str.length - 1.

Returns

An integer.

Description

Method; returns a 16-bit integer from 0 to 65535 that represents the character specified by 
index. If index is not a number from 0 to string.length - 1, NaN is returned.

This method is similar to String.charAt() except that the returned value is a 16-bit integer 
character code, not a character.

Example

In the following example, this method is called on the first letter of the string "Chris".
my_str = new String("Chris");
i = my_str.charCodeAt(0); // i = 67
String.charCodeAt() 651



String.concat()

Availability

Flash Player 5.

Usage

my_str.concat(value1,...valueN)

Parameters

value1,...valueN Zero or more values to be concatenated. 

Returns

A string.

Description

Method; combines the value of the String object with the parameters and returns the newly 
formed string; the original value, my_str, is unchanged.

String.fromCharCode()

Availability

Flash Player 5.

Usage

String.fromCharCode(c1,c2,...cN)

Parameters

c1,c2,...cN Decimal integers that represent ASCII values.

Returns

A string.

Description

Method; returns a string made up of the characters represented by the ASCII values in 
the parameters. 

Example

This example uses fromCharCode() to insert an @ character in the e-mail address.
address_str = "dog" + String.fromCharCode(64) + "house.net";
trace(address_str); // dog@house.net
652 Chapter 12:  ActionScript Dictionary



String.indexOf()

Availability

Flash Player 5.

Usage

my_str.indexOf(substring, [startIndex])

Parameters

substring An integer or string specifying the substring to be searched for within my_str.

startIndex An optional integer specifying the starting point in my_str to search for 
the substring. 

Returns

The position of the first occurrence of the specified substring, or -1.

Description

Method; searches the string and returns the position of the first occurrence of substring 
found at or after startIndex within the calling string. If substring is not found, the method 
returns -1. 

See also

String.lastIndexOf()

String.lastIndexOf()

Availability

Flash Player 5.

Usage

my_str.lastIndexOf(substring, [startIndex])

Parameters

substring An integer or string specifying the string to be searched for.

startIndex An optional integer specifying the starting point to search for substring. 

Returns

The position of the last occurrence of the specified substring, or -1.

Description

Method; searches the string from right to left and returns the index of the last occurrence of 
substring found before startIndex within the calling string. If substring is not found, the 
method returns -1.

See also

String.indexOf()
String.lastIndexOf() 653



String.length

Availability

Flash Player 5.

Usage

my_str.length

Description

Property; a nonzero-based integer specifying the number of characters in the specified String 
object. 

Because all string indexes are zero-based, the index of the last character for any string x is 
x.length - 1.

String.slice()

Availability

Flash Player 5.

Usage

my_str.slice(start, [end])

Parameters

start A number specifying the index of the starting point for the slice. If start is a negative 
number, the starting point is determined from the end of the string, where -1 is the last character.

end An integer that is 1+ the index of the ending point for the slice. The character indexed by 
the end parameter is not included in the extracted string. If this parameter is omitted, 
String.length is used. If end is a negative number, the ending point is determined by counting 
back from the end of the string, where -1 is the last character.

Returns

A substring of the specified string.

Description

Method; returns a string that includes the start character and all characters up to (but not 
including) the end character. The original String object is not modified. If the end parameter is 
not specified, the end of the substring is the end of the string. If the value of start is greater than 
or equal to the value of end, the method returns an empty string.

Example

The following example sets a variable, text, creates a String object, my_str, and passes it the 
text variable. The slice() method extracts a section of the string contained in the variable, and 
trace() sends it to the Output panel. The example shows using both a positive and negative 
value for the end parameter.
text = "Lexington";
my_str = new String( text );
trace(my_str.slice( 1, 3 )); // "ex"
trace(my_str.slice( 1, -6 )); // "ex"
654 Chapter 12:  ActionScript Dictionary



See also

String.substr(), String.substring()

String.split()

Availability

Flash Player 5.

Usage

my_str.split("delimiter", [limit])

Parameters

delimiter The character or string at which my_str splits. 

limit The number of items to place into the array. This parameter is optional.

Returns

An array containing the substrings of my_str.

Description

Method; splits a String object into substrings by breaking it wherever the specified delimiter 
parameter occurs, and returns the substrings in an array. If you use an empty string ("") as a 
delimiter, each character in the string is placed as an element in the array, as in the following code.
my_str = "Joe";
i = my_str.split("");
trace (i);

The Output panel displays the following:
J,o,e

If the delimiter parameter is undefined, the entire string is placed into the first element of the 
returned array.

Example

The following example returns an array with five elements.
my_str = "P, A, T, S, Y";
my_str.split(",");

This example returns an array with two elements, "P" and "A".
my_str.split(",", 2);
String.split() 655



String.substr()

Availability

Flash Player 5.

Usage

my_str.substr(start, [length])

Parameters

start An integer that indicates the position of the first character in my_str to be used to create 
the substring. If start is a negative number, the starting position is determined from the end of 
the string, where the -1 is the last character.

length The number of characters in the substring being created. If length is not specified, the 
substring includes all of the characters from the start to the end of the string.

Returns

A substring of the specified string.

Description

Method; returns the characters in a string from the index specified in the start parameter 
through the number of characters specified in the length parameter. The substr method does 
not change the string specified by my_str; it returns a new string.

String.substring()

Availability

Flash Player 5.

Usage

my_str.substring(start, [end])

Parameters

start An integer that indicates the position of the first character of my_str used to create the 
substring. Valid values for start are 0 through String.length - 1. If start is a negative value, 
0 is used.

end An integer that is 1+ the index of the last character in my_str to be extracted. Valid values 
for end are 1 through String.length. The character indexed by the end parameter is not 
included in the extracted string. If this parameter is omitted, String.length is used. If this 
parameter is a negative value, 0 is used.

Returns

A string.
Description

Method; returns a string consisting of the characters between the points specified by the start 
and end parameters. If the end parameter is not specified, the end of the substring is the end of 
the string. If the value of start equals the value of end, the method returns an empty string. If 
the value of start is greater than the value of end, the parameters are automatically swapped 
before the function executes and the original value is unchanged.
656 Chapter 12:  ActionScript Dictionary



String.toLowerCase()

Availability

Flash Player 5.

Usage

my_str.toLowerCase()

Parameters

None.

Returns

A string.

Description

Method; returns a copy of the String object, with all of the uppercase characters converted to 
lowercase. The original value is unchanged.

String.toUpperCase()

Availability

Flash Player 5.

Usage

my_str.toUpperCase()

Parameters

None.

Returns

A string.

Description

Method; returns a copy of the String object, with all of the lowercase characters converted to 
uppercase. The original value is unchanged.

String()

Availability

Flash Player 4; behavior changed in Flash Player 7.

Usage

String(expression)

Parameters

expression An expression to convert to a string.

Returns

A string.
String() 657



Description

Function; returns a string representation of the specified parameter as follows:

If expression is a number, the return string is a text representation of the number.

If expression is a string, the return string is expression.

If expression is an object, the return value is a string representation of the object generated 
by calling the string property for the object, or by calling Object.toString() if no such 
property exists.

If expression is undefined, the return values are as follows:

• In files published for Flash Player 6 or earlier, the result is an empty string (""). 
• In files published for Flash Player 7 or later, the result is undefined.

If expression is a Boolean value, the return string is "true" or "false".

If expression is a movie clip, the return value is the target path of the movie clip in slash (/) 
notation.
Note: Slash notation is not supported by ActionScript 2.0.

See also

Number.toString(), Object.toString(), String class, " " (string delimiter)

substring

Availability

Flash Player 4. This function has been deprecated in favor of String.substr().

Usage

substring("string", index, count)

Parameters

string The string from which to extract the new string.

index The number of the first character to extract.

count The number of characters to include in the extracted string, not including the 
index character.

Returns

Nothing.

Description

String function; extracts part of a string. This function is one-based, whereas the String object 
methods are zero-based.

See also

String.substr()
658 Chapter 12:  ActionScript Dictionary



super

Availability

Flash Player 6.

Usage

super.method([arg1, ..., argN])

super([arg1, ..., argN])

Parameters

method The method to invoke in the superclass.

arg1 Optional parameters that are passed to the superclass version of the method (syntax 1) or 
to the constructor function of the superclass (syntax 2).

Returns

Both forms invoke a function. The function may return any value.

Description 

Operator: the first syntax style may be used within the body of an object method to invoke the 
superclass version of a method, and can optionally pass parameters (arg1 ... argN) to the 
superclass method. This is useful for creating subclass methods that add additional behavior to 
superclass methods, but also invoke the superclass methods to perform their original behavior.

The second syntax style may be used within the body of a constructor function to invoke the 
superclass version of the constructor function and may optionally pass it parameters. This is 
useful for creating a subclass that performs additional initialization, but also invokes the 
superclass constructor to perform superclass initialization. 

switch

Availability

Flash Player 4.

Usage

switch (expression){
caseClause:
[defaultClause:]

}

Parameters

expression Any expression.

caseClause A case keyword followed by an expression, a colon, and a group of statements to 
execute if the expression matches the switch expression parameter using strict equality (===). 

defaultClause A default keyword followed by statements to execute if none of the case 
expressions match the switch expression parameter strict equality (===). 

Returns

Nothing.
switch 659



Description

Statement; creates a branching structure for ActionScript statements. Like the if action, the 
switch action tests a condition and executes statements if the condition returns a value of true. 

Example

In the following example, if the number parameter evaluates to 1, the trace() action that follows 
case 1 executes, if the number parameter evaluates to 2, the trace() action that follows case 2 
executes, and so on. If no case expression matches the number parameter, the trace() action 
that follows the default keyword executes.
switch (number) {

case 1:
trace ("case 1 tested true");
break;

case 2:
trace ("case 2 tested true");
break;

case 3:
trace ("case 3 tested true");
break;

default:
trace ("no case tested true")

}

In the following example, there isn’t a break in the first case group so if the number is 1, both A 
and B are sent to the Output panel:
switch (number) {

case 1:
trace ("A");

case 2:
trace ("B");
break;

default:
trace ("D")

}

See also

=== (strict equality), break, case, default, if
660 Chapter 12:  ActionScript Dictionary



System class

Availability

Flash Player 6.

Description

This is a top-level class that contains the capabilities object (see System.capabilities object), the 
security object (see System.security object), and the methods, properties, and event handlers 
listed below.

Method summary for the System class

Property summary for the System class

Event handler summary for the System class

Method Description

System.setClipboard() Replaces the contents of the system clipboard with a text string.

System.showSettings() Displays a Flash Player Settings panel.

Method Description

System.exactSettings Specifies whether to use superdomain or exact-domain matching rules 
when accessing local settings.

System.useCodepage Tells Flash Player whether to use Unicode or the traditional code page of 
the operating system running the player to interpret external text files.

Method Description

System.onStatus Provides a super event handler for certain objects
System class 661



System.exactSettings

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later. 

Usage

System.exactSettings

Description

Property; specifies whether to use superdomain or exact-domain matching rules when accessing 
local settings (such as camera or microphone access permissions) or locally persistent data (shared 
objects). The default value is true for files published for Flash Player 7 or later, and false for 
files published for Flash Player 6.

If this value is true, the settings and data for a SWF file hosted at here.xyz.com are stored at 
here.xyz.com, the settings and data for a SWF file hosted at there.xyz.com are stored at 
there.xyz.com, and so on. If this value is false, the settings and data for SWF files hosted at 
here.xyz.com, there.xyz.com, and xyz.com are shared, and are all stored at xyz.com. 

If some of your files set this property to false and others set it to true, you might find that Swf 
files in different subdomains share settings and data. For example, if this property is false in a 
SWF file hosted at here.xyz.com and true in a SWF file hosted at xyz.com, both files will use the 
same settings and data—namely, those at xyz.com. If this isn’t the behavior you want, make sure 
that you set this property in each file to correctly represent where you want to store settings 
and data. 

If you want to change this property from its default value, issue the 
System.exactSettings = false command in the first frame of your document. The property 
can’t be changed after any activity that requires access to local settings, such as 
System.ShowSettings() or SharedObject.getLocal().

If you use loadMovie(), MovieClip.loadMovie(), or MovieClipLoader.loadClip() to load one 
SWF file into another, all of the files published for Flash Player 7 share a single value for 
System.exactSettings, and all of the files published for Flash Player 6 share a single value for 
System.exactSettings. Therefore, if you specify a value for this property in one file published 
for a particular Player version, you should do so in all files that you plan to load. If you load 
multiple files, the setting specified in the last file loaded overwrites any previously 
specified setting.

For more information on how domain matching is implemented in Flash, see “Flash Player 
security features” on page 188.

See also

SharedObject.getLocal(), System.showSettings()
662 Chapter 12:  ActionScript Dictionary



System.onStatus

Availability

Flash Player 6.

Description

Event handler: provides a “super” event handler for certain objects.

The LocalConnection, NetStream, and SharedObject objects provide an onStatus event handler 
that uses an information object for providing information, status, or error messages. To respond 
to this event handler, you must create a function to process the information object, and you must 
know the format and contents of the information object returned.

In addition to the specific onStatus methods provided for the objects listed above, Flash also 
provides a “super” function called System.onStatus. If onStatus is invoked for a particular 
object with a level property of "error" and there is no function assigned to respond to it, Flash 
processes a function assigned to System.onStatus if it exists. 
Note: The Camera and Microphone classes also have onStatus handlers, but do not pass information 
objects with a level property of "error". Therefore, System.onStatus is not called if you don’t specify a 
function for these handlers.

The following example illustrates how you can create generic and specific functions to process 
information objects sent by the onStatus method.
// Create generic function
System.onStatus = function(genericError)
{

// Your script would do something more meaningful here
trace("An error has occurred. Please try again.");

}

// Create function for NetStream object
// If the NetStream object returns a different information object
// from the one listed below, with a level property of "error",
// System.onStatus will be invoked

videoStream_ns.onStatus = function(infoObject) {
if (infoObject.code == "NetStream.Play.StreamNotFound") {

trace("Could not find video file.");
}

}

See also

Camera.onStatus, LocalConnection.onStatus, Microphone.onStatus, NetStream.onStatus, 
SharedObject.onStatus
System.onStatus 663



System.setClipboard()

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later. 

Usage

System.setClipboard(string)

Parameters

string A plain-text string of characters to place on the system clipboard, replacing its current 
contents (if any). If you pass a string literal, as opposed to a variable of type string, enclose the 
literal in quotation marks.

Returns

A Boolean value of true if the text was successfully placed on the clipboard, false otherwise.

Description

Method; replaces the contents of the system clipboard with a specified text string.

System.showSettings()

Availability

Flash Player 6.

Usage

System.showSettings([panel])

Parameters

panel An optional number that specifies which Flash Player Settings panel to display, as shown 
in the following table:

Returns

Nothing.

Value passed for panel Settings panel displayed

None (parameter is omitted) 
or an unsupported value

Whichever panel was open the last time the user closed the Player 
Settings panel

0 Privacy

1 Local Storage

2 Microphone 

3 Camera
664 Chapter 12:  ActionScript Dictionary



Description

Method; displays the specified Flash Player Settings panel, which lets users do any of the 
following:

• Allow or deny access to the camera and microphone
• Specify the local disk space available for shared objects
• Select a default camera and microphone
• Specify microphone gain and echo suppression settings

For example, if your application requires the use of a camera, you can tell the user to select Allow 
in the Privacy Settings panel, and then issue a System.showSettings(0) command. (Make sure 
your Stage size is at least 215 x 138 pixels; this is the minimum size Flash requires to display 
the panel.)

See also

Camera.get(), Microphone.get(), SharedObject.getLocal()

System.useCodepage 

Availability

Flash Player 6.

Usage

System.useCodepage

Description

Property; a Boolean value that tells Flash Player whether to use Unicode or the traditional code 
page of the operating system running the player to interpret external text files. The default value 
of system.useCodepage is false. 

• When the property is set to false, Flash Player interprets external text files as Unicode. (These 
files must be encoded as Unicode when you save them.)

• When the property is set to true, Flash Player interprets external text files using the traditional 
code page of the operating system running the player.

Text that you include or load as an external file (using the #include command, the 
loadVariables() or getURL actions, or the LoadVars or XML objects) must be encoded as 
Unicode when you save the text file, in order for Flash Player to recognize it as Unicode. To 
encode external files as Unicode, save the files in an application that supports Unicode, such as 
Notepad on Windows 2000.

If you include or load external text files that are not Unicode-encoded, you should set 
system.useCodepage to true. Add the following code as the first line of code in the first frame 
of the SWF file that is loading the data:
system.useCodepage = true;

When this code is present, Flash Player interprets external text using the traditional code page of 
the operating system running Flash Player. This is generally CP1252 for an English Windows 
operating system and Shift-JIS for a Japanese operating system. If you set system.useCodepage 
to true, Flash Player 6 and later treat text as Flash Player 5 does. (Flash Player 5 treated all text as 
if it were in the traditional code page of the operating system running the player.)
System.useCodepage 665



If you set system.useCodepage to true, keep in mind that the traditional code page of the 
operating system running the player must include the characters used in your external text file in 
order for the text to display. For example, if you load an external text file that contains Chinese 
characters, those characters will not display on a system that uses the CP1252 code page, because 
that code page does not include Chinese characters. 

To ensure that users on all platforms can view external text files used in your SWF files, you 
should encode all external text files as Unicode and leave System.useCodepage set to false by 
default. This way Flash Player 6 and later will interpret the text as Unicode.

System.capabilities object

Availability

Flash Player 6.

Description

You can use the System.capabilities object to determine the abilities of the system and player 
hosting a SWF file. This allows you to tailor content for different formats. For example, the 
screen of a cell phone (black and white, 100 square pixels) is different than the 1000-square-pixel 
color PC screen. To provide appropriate content to as many users as possible, you can use the 
System.capabilities object to determine the type of device a user has. You can then either specify 
to the server to send different SWF files based on the device capabilities, or tell the SWF file to 
alter its presentation based on the capabilities of the device.

You can send capabilities information using a GET or POST HTTP method. The following is an 
example of a server string for a device that does not have MP3 support and has a 400 x 200 pixel, 
8 x 4 centimeter screen: 
"A=t&SA=t&SV=t&EV=t&MP3=t&AE=t&VE=t&ACC=f&PR=t&SP=t&SB=f&DEB=t&V=WIN%207%2C0%2

C0%2C226&M=Macromedia%20Windows&R=1152x864&DP=72&COL=color&AR=1.0&OS=Window
s%20XP&L=en&PT=External&AVD=f&LFD=f"

Property summary for the System.capabilities object

Property Description Server 
string

System.capabilities.avHardwareDisable Read-only; specifies whether the user’s 
camera and microphone are enabled or 
disabled.

AVD

System.capabilities.hasAccessibility Indicates whether the player is running on a 
system that supports communication 
between Flash Player and accessibility aids.

ACC

System.capabilities.hasAudio Indicates whether the player is running on a 
system that has audio capabilities.

A

System.capabilities.hasAudioEncoder Indicates whether the player is running on a 
system that can encode an audio stream, 
such as that coming from a microphone.

AE

System.capabilities.hasEmbeddedVideo Indicates whether the player is running on a 
system that supports embedded video.

EV
666 Chapter 12:  ActionScript Dictionary



System.capabilities.hasMP3 Indicates whether the player is running on a 
system that has an MP3 decoder.

MP3

System.capabilities.hasPrinting Indicates whether the player is running on a 
system that supports printing.

PR

System.capabilities.hasScreenBroadcast Indicates whether the player supports the 
development of screen broadcast 
applications to be run through the Flash 
Communication Server. 

SB

System.capabilities.hasScreenPlayback Indicates whether the player supports the 
playback of screen broadcast applications 
that are being run through the Flash 
Communication Server.

SP

System.capabilities.hasStreamingAudio Indicates whether the player can play 
streaming audio.

SA

System.capabilities.hasStreamingVideo Indicates whether the player can play 
streaming video.

SV

System.capabilities.hasVideoEncoder Indicates whether the player can encode a 
video stream, such as that coming from a 
web camera.

VE

System.capabilities.isDebugger Indicates whether the player is an officially 
released version or a special debugging 
version.

DEB

System.capabilities.language Indicates the language of the system on 
which the player is running.

L

System.capabilities.localFileReadDisable Read-only; specifies whether the player will 
attempt to read anything (including the first 
SWF file the player launches with) from the 
user's hard disk.

LFD

System.capabilities.manufacturer Indicates the manufacturer of Flash Player. M

System.capabilities.os Indicates the operating system hosting 
Flash Player.

OS

System.capabilities.pixelAspectRatio Indicates the pixel aspect ratio of the screen. AR

System.capabilities.playerType Indicates the type of player: stand-alone, 
external, plug-in, or ActiveX.

PT

System.capabilities.screenColor Indicates whether the screen is color, 
grayscale, or black and white.

COL

System.capabilities.screenDPI Indicates the dots-per-inch screen 
resolution, in pixels.

DP

System.capabilities.screenResolutionX Indicates the horizontal size of the screen. R

System.capabilities.screenResolutionY Indicates the vertical size of the screen. R

Property Description Server 
string
System.capabilities object 667



System.capabilities.avHardwareDisable 

Availability

Flash Player 7.

Usage

System.capabilities.avHardwareDisable

Description

Read-only property; a Boolean value that specifies whether the user’s camera and microphone are 
enabled or disabled.

See also

Camera.get(), Microphone.get(), System.showSettings()

System.capabilities.hasAccessibility

Availability

Flash Player 6 version 65.

Usage

System.capabilities.hasAccessibility

Description

Property; a Boolean value that indicates whether the player is running in an environment that 
supports communication between Flash Player and accessibility aids. The server string is ACC.

See also

Accessibility.isActive(), Accessibility.updateProperties(), _accProps

System.capabilities.hasAudio

Availability

Flash Player 6.

Usage

System.capabilities.hasAudio

Description

Property; a Boolean value that indicates whether the player is running on a system that has audio 
capabilities. The server string is A.

System.capabilities.serverString A URL-encoded string that specifies values 
for each System.capabilities property.

n/a

System.capabilities.version  A string containing Flash Player version and 
platform information.

V

Property Description Server 
string
668 Chapter 12:  ActionScript Dictionary



System.capabilities.hasAudioEncoder

Availability

Flash Player 6.

Usage

System.capabilities.hasAudioEncoder

Description

Property; a Boolean value that indicates whether the player can encode an audio stream, such as 
that coming from a microphone. The server string is AE.

System.capabilities.hasEmbeddedVideo

Availability

Flash Player 6.

Usage

System.capabilities.hasEmbeddedVideo

Description

Property; a Boolean value that indicates whether the player is running on a system that supports 
embedded video. The server string is EV.

System.capabilities.hasMP3

Availability

Flash Player 6.

Usage

System.capabilities.hasMP3

Description

Property; a Boolean value that indicates whether the player is running on a system that has an 
MP3 decoder. The server string is MP3.

System.capabilities.hasPrinting

Availability

Flash Player 6.

Usage

System.capabilities.hasPrinting

Description

Property; a Boolean value that indicates whether the player is running on a system that supports 
printing. The server string is PR.
System.capabilities.hasPrinting 669



System.capabilities.hasScreenBroadcast

Availability

Flash Player 6.

Usage

System.capabilities.hasScreenBroadcast

Description

Property; a Boolean value that indicates whether the player supports the development of screen 
broadcast applications to be run through the Flash Communication Server. The server string 
is SB.

System.capabilities.hasScreenPlayback

Availability

Flash Player 6.

Usage

System.capabilities.hasScreenPlayback

Description

Property; a Boolean value that indicates whether the player supports the playback of screen 
broadcast applications that are being run through the Flash Communication Server. The server 
string is SP.

System.capabilities.hasStreamingAudio

Availability

Flash Player 6.

Usage

System.capabilities.hasStreamingAudio

Description

Property; a Boolean value that indicates whether the player can play streaming audio. The server 
string is SA.

System.capabilities.hasStreamingVideo

Availability

Flash Player 6.

Usage

System.capabilities.hasStreamingVideo

Description

Property; a Boolean value that indicates whether the player can play streaming video. The server 
string is SV.
670 Chapter 12:  ActionScript Dictionary



System.capabilities.hasVideoEncoder

Availability

Flash Player 6.

Usage

System.capabilities.hasVideoEncoder

Description

Property; a Boolean value that indicates whether the player can encode a video stream, such as 
that coming from a web camera. The server string is VE.

System.capabilities.isDebugger

Availability

Flash Player 6.

Usage

System.capabilities.isDebugger

Description

Property; a Boolean value that indicates whether the player is an officially released version (false) 
or a special debugging version (true). The server string is DEB.

System.capabilities.language

Availability

Flash Player 6.

Usage

System.capabilities.language

Description

Property; indicates the language of the system on which the player is running. This property is 
specified as a lowercase two-letter language code from ISO 639-1 and an optional uppercase two-
letter country code subtag from ISO 3166. The codes represent the language of the system on 
which the player is running. The languages themselves are named with the English tags. For 
example, “fr” specifies French. 

Language Tag Supported countries and tags

Czech cs

Danish da

Dutch nl

English en

Finnish fi

French fr
System.capabilities.language 671



System.capabilities.localFileReadDisable

Availability

Flash Player 7.

Usage

System.capabilities.localFileReadDisable

Description

Read-only property; a Boolean value that specifies whether Flash Player attempts to read anything 
(including the first SWF file that Flash Player launches with) from the user’s hard disk.

System.capabilities.manufacturer

Availability

Flash Player 6.

Usage

System.capabilities.manufacturer

Description

Property; a string that indicates the manufacturer of Flash Player, in the format 
"Macromedia OSName" (OSName could be "Windows", "Macintosh", "Linux", or "Other OS 
Name"). The server string is M.

German de

Hungarian hu

Italian it

Japanese ja

Korean ko

Norwegian no

Other/unknown xu

Polish pl

Portuguese pt

Russian ru

Simplified Chinese zh People’s Republic of China (Simplified Chinese): zh-CN

Spanish es

Swedish sv

Traditional Chinese zh Taiwan (Traditional Chinese) : zh-TW

Turkish tr

Language Tag Supported countries and tags
672 Chapter 12:  ActionScript Dictionary



System.capabilities.os

Availability

Flash Player 6.

Usage

System.capabilities.os

Description

Property; a string that indicates the current operating system. The os property can return the 
following strings: "Windows XP", "Windows 2000", "Windows NT", "Windows 98/ME", "Windows 
95", "Windows CE" (available only in Flash Player SDK, not in the desktop version), "Linux", and 
"MacOS". The server string is OS. 

System.capabilities.pixelAspectRatio

Availability

Flash Player 6.

Usage

System.capabilities.pixelAspectRatio

Description

Property; an integer that indicates the pixel aspect ratio of the screen. The server string is AR.

System.capabilities.playerType

Availability

Flash Player 7.

Usage

System.capabilities.playerType

Description

Property; a string that indicates the type of player. This property can have the value 
"StandAlone", "External", "PlugIn", or "ActiveX". The server string is PT.

System.capabilities.screenColor

Availability

Flash Player 6.

Usage

System.capabilities.screenColor

Description

Property; indicates whether the screen is color (color), grayscale (gray), or black and white (bw). 
The server string is COL.
System.capabilities.screenColor 673



System.capabilities.screenDPI

Availability

Flash Player 6.

Usage

System.capabilities.screenDPI

Description

Property; indicates the dots-per-inch (dpi) resolution of the screen, in pixels. The server string 
is DP.

System.capabilities.screenResolutionX

Availability

Flash Player 6.

Usage

System.capabilities.screenResolutionX

Description

Property; an integer that indicates the maximum horizontal resolution of the screen. The server 
string is R (which returns both the width and height of the screen).

System.capabilities.screenResolutionY

Availability

Flash Player 6.

Usage

System.capabilities.screenResolutionY

Description

Property; an integer that indicates the maximum vertical resolution of the screen. The server 
string is R (which returns both the width and height of the screen).
674 Chapter 12:  ActionScript Dictionary



System.capabilities.serverString

Availability

Flash Player 6.

Usage

System.capabilities.serverString

Description

Property; a URL-encoded string that specifies values for each System.capabilities property, as 
in this example:
A=t&SA=t&SV=t&EV=t&MP3=t&AE=t&VE=t&ACC=f&PR=t&SP=t&SB=f&DEB=t&V=WIN%207%2C0%2C
0%2C226&M=Macromedia%20Windows&R=1152x864&DP=72&COL=color&AR=1.0&OS=Windows%20
XP&L=en&PT=External&AVD=f&LFD=f

System.capabilities.version

Availability

Flash Player 6.

Usage

System.capabilities.version

Description

Property; a string containing the Flash Player platform and version information, for example, 
"WIN 7,0,0,231". The server string is V. 

System.security object

Availability

Flash Player 6.

Description

This object contains methods that specify how SWF files in different domains can communicate 
with each other.

Method summary for the System.security object

Method Description

System.security.allowDomain() Allows SWF files in the identified domains to access 
objects and variables in the calling SWF file, or in any 
other SWF file from the same domain as the calling 
SWF file.

System.security.allowInsecureDomain() Allows SWF files in the identified domains to access 
objects and variables in the calling SWF file, which is 
hosted using the HTTPS protocol.
System.security object 675



System.security.allowDomain()

Availability

Flash Player 6; behavior changed in Flash Player 7.

Usage

System.security.allowDomain("domain1", "domain2, ... domainN")

Parameters

domain1, domain2, ... domainN Strings that specify domains that can access objects and 
variables in the file containing the System.Security.allowDomain() call. The domains can be 
formatted in the following ways: 

• "domain.com" 
• "http://domain.com" 
• "http://IPaddress" 

Description

Method; allows SWF files in the identified domains to access objects and variables in the calling 
SWF file, or in any other SWF file from the same domain as the calling SWF file.

In files playing back in Flash Player 7 or later, the parameter(s) passed must follow exact-domain 
naming rules. For example, to allow access by SWF files hosted at either www.domain.com or 
store.domain.com, both domain names must be passed:
// For Flash Player 6
System.security.allowDomain("domain.com");
// Corresponding commands to allow access by SWF files
// that are running in Flash Player 7 or later
System.security.allowDomain("www.domain.com". "store.domain.com");

Also, for files running in Flash Player 7 or later, you can’t use this method to allow SWF files 
hosted using a secure protocol (HTTPS) to permit access from SWF files hosted in nonsecure 
protocols; you must use System.security.allowInsecureDomain() instead.

Example

The SWF file located at www.macromedia.com/MovieA.swf contains the following lines.
System.security.allowDomain("www.shockwave.com");
loadMovie("http://www.shockwave.com/MovieB.swf", _root.my_mc);

Because MovieA contains the allowDomain() command, MovieB can access the objects and 
variables in MovieA. If MovieA didn’t contain this command, the Flash security implementation 
would prevent MovieA from accessing MovieB’s objects and variables.
676 Chapter 12:  ActionScript Dictionary



System.security.allowInsecureDomain()

Availability

Flash Player 7.

Usage

System.Security.allowInsecureDomain("domain")

Parameters

domain An exact domain name, such as “www.myDomainName.com” or 
“store.myDomainName.com”.

Returns

Nothing.

Description

Method; allows SWF files in the identified domains to access objects and variables in the calling 
SWF file, which is hosted using the HTTPS protocol.

By default, SWF files hosted using the HTTPS protocol can be accessed only by other SWF files 
hosted using the HTTPS protocol. This implementation maintains the integrity provided by the 
HTTPS protocol.

Macromedia does not recommend using this method to override the default behavior because it 
compromises HTTPS security. However, you may need to do so, for example, if you must permit 
access to HTTPS files published for Flash Player 7 or later from HTTP files published for Flash 
Player 6.

A SWF file published for Flash Player 6 can use System.security.allowDomain() to permit 
HTTP to HTTPS access. However, because security is implemented differently in Flash Player 7, 
you must use System.Security.allowInsecureDomain() to permit such access in SWF files 
published for Flash Player 7 or later. 

Example

In this example, you host a math test on a secure domain so that only registered students can 
access it. You have also developed a number of SWF files that illustrate certain concepts, which 
you host on an insecure domain. You want students to be able to access the test from the SWF file 
that contains information about a concept.
// This SWF file is at https://myEducationSite.somewhere.com/mathTest.swf
// Concept files are at http://myEducationSite.somewhere.com
System.Security.allowInsecureDomain("myEducationSite.somewhere.com")

See also

System.security.allowDomain(), System.exactSettings
System.security.allowInsecureDomain() 677



targetPath

Availability

Flash Player 5.

Usage

targetpath(movieClipObject)

Parameters

movieClipObject Reference (for example, _root or _parent) to the movie clip for which the 
target path is being retrieved.

Returns

A string containing the target path of the specified movie clip.

Description

Function; returns a string containing the target path of movieClipObject. The target path is 
returned in dot notation. To retrieve the target path in slash notation, use the _target property.

Example

This example displays the target path of a movie clip as soon as it loads.
onClipEvent(load){

trace(targetPath(this));
}

See also

eval()

tellTarget

Availability

Flash Player 3. (Deprecated in Flash 5; use of dot notation and the with action is recommended.) 

Usage

tellTarget("target") {
statement(s);

}

Parameters

target A string that specifies the target path of the Timeline to be controlled.

statement(s) The instructions to execute if the condition evaluates to true.

Returns

Nothing.
678 Chapter 12:  ActionScript Dictionary



Description

Deprecated action; applies the instructions specified in the statements parameter to the 
Timeline specified in the target parameter. The tellTarget action is useful for navigation 
controls. Assign tellTarget to buttons that stop or start movie clips elsewhere on the Stage. You 
can also make movie clips go to a particular frame in that clip. For example, you might assign 
tellTarget to buttons that stop or start movie clips on the Stage or prompt movie clips to jump 
to a particular frame. 

In Flash 5 or later, you can use dot notation instead of the tellTarget action. You can use the 
with action to issue multiple actions to the same Timeline. You can use the with action to target 
any object, whereas the tellTarget action can only target movie clips.

Example

This tellTarget statement controls the movie clip instance ball on the main Timeline. Frame 1 
of the ball instance is blank and has a stop() action so that it isn’t visible on the Stage. When 
the button with the following action is clicked, tellTarget tells the playhead in ball to go to 
Frame 2 where the animation starts.
on(release) {

tellTarget("ball") {
gotoAndPlay(2);

}
}

The following example uses dot notation to achieve the same results.
on(release) {

ball.gotoAndPlay(2);
}

If you need to issue multiple commands to the ball instance, you can use the with action, as in 
the following statement.
on(release) {

with(ball) {
gotoAndPlay(2);
_alpha = 15;
_xscale = 50;
_yscale = 50;

}
}

See also

with
tellTarget 679



TextField class

Availability

Flash Player 6.

Description

All dynamic and input text fields in a SWF file are instances of the TextField class. You can give a 
text field an instance name in the Property inspector and use the methods and properties of the 
TextField class to manipulate it with ActionScript. TextField instance names are displayed in the 
Movie Explorer and in the Insert Target Path dialog box in the Actions panel.

The TextField class inherits from the Object class. 

To create a text field dynamically, you can use MovieClip.createTextField().

Method summary for the TextField class

Property summary for the TextField class

Method Description

TextField.addListener() Registers an object to receive notification when the onChanged and 
onScroller event handlers are invoked.

TextField.getFontList() Returns names of fonts on the player’s host system as an array.

TextField.getDepth() Returns the depth of a text field.

TextField.getNewTextFormat() Gets the default text format assigned to newly inserted text.

TextField.getTextFormat() Returns a TextFormat object containing formatting information for 
some or all text in a text field.

TextField.removeListener() Removes a listener object.

TextField.removeTextField() Removes a text field that was created with 
MovieClip.createTextField().

TextField.replaceSel() Replaces the current selection.

TextField.setNewTextFormat() Sets a TextFormat object for text that is inserted by a user or by a 
method.

TextField.setTextFormat() Sets a TextFormat object for a specified range of text in a text 
field.

Property Description

TextField._alpha The transparency value of a text field instance.

TextField.autoSize Controls automatic alignment and sizing of a text field.

TextField.background Indicates if the text field has a background fill.

TextField.backgroundColor Indicates the color of the background fill.

TextField.border Indicates if the text field has a border.

TextField.borderColor Indicates the color of the border.
680 Chapter 12:  ActionScript Dictionary



TextField.bottomScroll The bottommost visible line in a text field. Read-only.

TextField.embedFonts Indicates whether the text field uses embedded font outlines or 
device fonts.

TextField._height The height of a text field instance in pixels. This only affects the 
bounding box of the text field, it does not affect the border 
thickness or text font size. 

TextField._highquality Indicates the rendering quality of the SWF file.

TextField.hscroll Indicates the horizontal scroll value of a text field.

TextField.html Indicates the current maximum scrolling position of a text field.

TextField.htmlText Contains the HTML representation of a text field’s contents.

TextField.length The number of characters in a text field. Read-only.

TextField.maxChars The maximum number of characters that a text field can contain.

TextField.maxhscroll The maximum value of TextField.hscroll. Read-only.

TextField.maxscroll The maximum value of TextField.scroll. Read-only.

TextField.menu Associates a ContextMenu object with a text field.

TextField.mouseWheelEnabled Indicates whether Flash Player should automatically scroll multiline 
text fields when the mouse pointer is positioned over a text field 
and the user rolls the mouse wheel.

TextField.multiline Indicates if the text field contains multiple lines.

TextField._name The instance name of a text field instance.

TextField._parent A reference to the instance that is the parent of this instance; either 
of type Button or MovieClip.

TextField.password Indicates if a text field hides the input characters.

TextField._quality Indicates the rendering quality of a SWF file.

TextField.restrict The set of characters that a user can enter into a text field.

TextField._rotation The degree of rotation of a text field instance.

TextField.scroll Indicates the current scrolling position of a text field.

TextField.selectable Indicates whether a text field is selectable.

TextField._soundbuftime The amount of time a sound must prebuffer before it streams.

TextField.tabEnabled Indicates whether a movie clip is included in automatic 
tab ordering.

TextField.tabIndex Indicates the tab order of an object. 

TextField._target The target path of the specified text field instance. Read-only.

TextField.text The current text in the text field.

TextField.textColor The color of the current text in the text field. 

Property Description
TextField class 681



Event handler summary for the TextField class

Listener summary for the TextField class

TextField.textHeight The height of the text field’s bounding box. 

TextField.textWidth The width of the text field’s bounding box.

TextField.type Indicates whether a text field is an input text field or dynamic 
text field. 

TextField._url The URL of the SWF file that created the text field instance. 
Read-only.

TextField.variable The variable name associated with the text field.

TextField._visible A Boolean value that determines whether a text field instance is 
hidden or visible.

TextField._width The width of a text field instance in pixels. This only affects the 
bounding box of the text field, it does not affect the border 
thickness or text font size. 

TextField.wordWrap Indicates whether the text field word-wraps.

TextField._x The x coordinate of a text field instance

TextField._xmouse The x coordinate of the pointer relative to a text field instance. 
Read-only.

TextField._xscale The value specifying the percentage for horizontally scaling a text 
field instance.

TextField._y The y coordinate of a text field instance.

TextField._ymouse The y coordinate of the pointer relative to a text field instance. 
Read-only.

TextField._yscale The value specifying the percentage for vertically scaling a text 
field instance.

Event handler Description

TextField.onChanged Invoked when the text field is changed.

TextField.onKillFocus Invoked when the text field loses focus.

TextField.onScroller Invoked when one of the text field scroll properties changes.

TextField.onSetFocus Invoked when the text field receives focus.

Method Description

TextField.onChanged Notified when the text field is changed.

TextField.onScroller Notified when the scroll or maxscroll property of a text 
field changes.

Property Description
682 Chapter 12:  ActionScript Dictionary



TextField.addListener()

Availability

Flash Player 6.

Usage

my_txt.addListener(listener)

Parameters

listener An object with an onChanged or onScroller event handler.

Returns

Nothing.

Description

Method; registers an object to receive notification when the onChanged and onScroller event 
handlers have been invoked. When a text field changes or is scrolled, the TextField.onChanged 
and TextField.onScroller event handlers are invoked, followed by the onChanged and 
onScroller event handlers of any objects registered as listeners. Multiple objects can be 
registered as listeners.

To remove a listener object from a text field, call TextField.removeListener().

A reference to the text field instance is passed as a parameter to the onScroller and onChanged 
handlers by the event source. You can capture this data by putting a parameter in the event 
handler method. For example, the following code uses txt as the parameter that is passed to the 
onScroller event handler. The parameter is then used in a trace statement to send the instance 
name of the text field to the Output panel.
myTextField.onScroller = function (txt) {

trace (txt._name + " changed");
};

Example

The following example defines an onChange handler for the input text field myText. It then 
defines a new listener object, myListener, and defines an onChanged handler for that object. 
This handler will be invoked when the text field myText is changed. The final line of code calls 
TextField.addListener to register the listener object myListener with the text field myText so 
that it will be notified when myText changes.
myText.onChanged = function (txt) {

trace(txt._name + " changed");
};
myListener = new Object();
myListener.onChanged = function (txt) {

trace(txt._name + " changed and notified myListener");
};

myText.addListener(myListener);

See also

TextField.onChanged, TextField.onScroller, TextField.removeListener()
TextField.addListener() 683



TextField._alpha

Availability

Flash Player 6.

Usage

my_txt._alpha

Description

Property; sets or retrieves the alpha transparency value of the text field specified by my_txt. Valid 
values are 0 (fully transparent) to 100 (fully opaque). The default value is 100.

Example

The following code sets the _alpha property of a text field named text1_txt to 30% when the 
button is clicked:
on(release) {

text1_txt._alpha = 30;
}

See also

Button._alpha, MovieClip._alpha

TextField.autoSize

Availability

Flash Player 6.

Usage

my_txt.autoSize

Description

Property; controls automatic sizing and alignment of text fields. Acceptable values for autoSize are 
"none" (the default), "left", "right", and "center". When you set the autoSize property, 
true is a synonym for "left" and false is a synonym for "none".

The values of autoSize, multiline, and wordWrap determine whether a text field expands or 
contracts to the left side, right side, or bottom side. You can use the following code and enter 
different values for autoSize, multiline, and wordWrap to see how the field resizes when these 
values change.
createTextField("my_txt", 1, 0, 0, 200, 20);
with (my_txt) {

border = true;
borderColor = 0x000000;
multiline = false;
wordWrap = false;
autoSize = "none";
text = "Here is a whole bunch of text that won't fit in the field ";

}

684 Chapter 12:  ActionScript Dictionary



Example

The following sets the autosize property of the text field my_txt to "center".
my_txt.autosize = "center";

TextField.background

Availability

Flash Player 6.

Usage

my_txt.background

Description

Property; if true, the text field has a background fill. If false, the text field has no 
background fill.

TextField.backgroundColor

Availability

Flash Player 6.

Usage

my_txt.backgroundColor

Description

Property; the color of the text field background. Default is 0xFFFFFF (white). This property may 
be retrieved or set, even if there currently is no background but the color is only visible if the text 
field has a border.

See also

TextField.background

TextField.border

Availability

Flash Player 6.

Usage

my_txt.border

Description

Property; if true, the text field has a border. If false, the text field has no border.
TextField.border 685



TextField.borderColor

Availability

Flash Player 6.

Usage

my_txt.borderColor

Description

Property; the color of the text field border, the Default is 0x000000 (black). This property may be 
retrieved or set, even if there is currently no border.

See also

TextField.border

TextField.bottomScroll

Availability

Flash Player 6.

Usage

my_txt.bottomScroll

Description

Property (read-only); an integer (one-based index) that indicates the bottommost line that is 
currently visible in my_txt. Think of the text field as a “window” onto a block of text. The 
property TextField.scroll is the one-based index of the topmost visible line in the window.

All the text between lines TextField.scroll and TextField.bottomScroll is currently visible 
in the text field.

TextField.condenseWhite

Availability

Flash Player 6. 

Usage

my_txt.condenseWhite

Description

Property; a Boolean value that specifies whether extra white space (spaces, line breaks, and so on) 
in an HTML text field should be removed when the field is rendered in a browser. The default 
value is false.

If you set this value to true, you must use standard HTML commands such as <BR> and <P> to 
place line breaks in the text field.

If my_txt.html is false, this property is ignored.

See also

TextField.html
686 Chapter 12:  ActionScript Dictionary



TextField.embedFonts

Availability

Flash Player 6.

Usage

my_txt.embedFonts

Description

Property; a Boolean value that, when true, renders the text field using embedded font outlines. If 
false, it renders the text field using device fonts.

TextField.getDepth()

Availability

Flash Player 6.

Usage

my_txt.getDepth()

Parameters

None.

Returns

An integer.

Description

Method; returns the depth of a text field.

TextField.getFontList()

Availability

Flash Player 6.

Usage

TextField.getFontList()

Parameters

None.

Returns

An array.

Description

Method; a static method of the global TextField class. You don’t specify a specific text field (such 
as my_txt) when you call this method. This method returns names of fonts on the player’s host 
system as an array. (It does not return names of all fonts in currently loaded SWF files.) The 
names are of type string.
TextField.getFontList() 687



Example

The following code displays a font list returned by getFontList().
font_array = TextField.getFontList();
for( i in font_array){

trace(font_array[i]);

}

TextField.getNewTextFormat()

Availability

Flash Player 6.

Usage

my_txt.getNewTextFormat()

Parameters

None.

Returns

A TextFormat object.

Description

Method; returns a TextFormat object containing a copy of the text field’s text format object. The 
text format object is the format that newly inserted text, such as text inserted with the 
replaceSel() method or text entered by a user, receives. When getNewTextFormat() is 
invoked, the TextFormat object returned has all of its properties defined. No property is null.

TextField.getTextFormat()

Availability

Flash Player 6.

Usage

my_txt.getTextFormat()

my_txt.getTextFormat(index)

my_txt.getTextFormat(beginIndex, endIndex)

Parameters

index An integer that specifies a character in a string.

beginIndex, endIndex Integers that specify the starting and ending locations of a span of text 
within my_txt.

Returns

An object.
688 Chapter 12:  ActionScript Dictionary



Description

Method; Usage 1: returns a TextFormat object containing formatting information for all text in a 
text field. Only properties that are common to all text in the text field are set in the resulting 
TextFormat object. Any property which is mixed, meaning that it has different values at different 
points in the text, has its value set to null.

Usage 2: Returns a TextFormat object containing a copy of the text field’s text format at index.

Usage 3: Returns a TextFormat object containing formatting information for the span of text 
from beginIndex to endIndex.

See also

TextField.getNewTextFormat(), TextField.setNewTextFormat(), 
TextField.setTextFormat() 

TextField._height

Availability

Flash Player 6.

Usage

my_txt._height

Description

Property; the height of the text field, in pixels.

Example

The following code example sets the height and width of a text field.
my_txt._width = 200;
my_txt._height = 200;

TextField._highquality

Availability

Flash Player 6.

Usage

my_txt._highquality

Description

Property (global); specifies the level of anti-aliasing applied to the current SWF file. Specify 2 
(best quality) to apply high quality with bitmap smoothing always on. Specify 1 (high quality) to 
apply anti-aliasing; this will smooth bitmaps if the SWF file does not contain animation. 
Specify 0 (low quality) to prevent anti-aliasing.

See also

_quality
TextField._highquality 689



TextField.hscroll

Availability

Flash Player 6.

Usage

my_txt.hscroll

Returns

An integer.

Description

Property; indicates the current horizontal scrolling position. If the hscroll property is 0, the text 
is not horizontally scrolled.

For more information on scrolling text, see “Creating scrolling text” on page 153.

Example

The following example scrolls the text horizontally.
on (release) {

my_txt.hscroll += 1;
}

See also

TextField.maxhscroll, TextField.scroll

TextField.html

Availability

Flash Player 6.

Usage

my_txt.html

Description

Property; a flag that indicates whether the text field contains an HTML representation. If the 
html property is true, the text field is an HTML text field. If html is false, the text field is a 
non-HTML text field.

See also

TextField.htmlText
690 Chapter 12:  ActionScript Dictionary



TextField.htmlText

Availability

Flash Player 6.

Usage

my_txt.htmlText

Description

Property; if the text field is an HTML text field, this property contains the HTML representation 
of the text field’s contents. If the text field is not an HTML text field, it behaves identically to the 
text property. You can indicate that a text field is an HTML text field in the Property inspector, 
or by setting the text field’s html property to true.

Example

In the following example, the text in the text field text2 is rendered bold.
text2.html = true;
text2.htmlText = "<b> this is bold text </b>";

See also

TextField.html

TextField.length

Availability

Flash Player 6.

Usage

my_txt.length

Returns

A number.

Description

Property (read-only); indicates the number of characters in a text field. This property returns the 
same value as text.length, but is faster. A character such as tab (“\t”) counts as one character.
TextField.length 691



TextField.maxChars

Availability

Flash Player 6.

Usage

my_txt.maxChars

Description

Property; indicates the maximum number of characters that the text field can contain. A script 
may insert more text than maxChars allows; the maxChars property only indicates how much text 
a user can enter. If the value of this property is null, there is no limit on the amount of text a user 
can enter.

TextField.maxhscroll

Availability

Flash Player 6.

Usage

my_txt.maxhscroll

Description

Property (read-only); indicates the maximum value of TextField.hscroll.

TextField.maxscroll

Availability

Flash Player 6.

Usage

TextField.maxscroll

Description

Property (read-only); indicates the maximum value of TextField.scroll.

For more information on scrolling text, see “Creating scrolling text” on page 153.

TextField.menu

Availability

Flash Player 7.

Usage

my_txt.menu = contextMenu

Parameters

contextMenu A ContextMenu object.
692 Chapter 12:  ActionScript Dictionary



Description

Property; associates the ContextMenu object contextMenu with the text field my_txt. The 
ContextMenu class lets you modify the context menu that appears when the user right-clicks 
(Windows) or Control-clicks (Macintosh) in Flash Player.

This property works only with selectable (editable) text fields; it has no affect on nonselectable 
text fields.

Example

The following example assigns the ContextMenu object menu_cm to the text field news_txt. The 
ContextMenu object contains a custom menu item labeled “Print” with an associated callback 
handler named doPrint(), which performs printing operations (not shown):
var menu_cm = new ContextMenu();
menu_cm.customItems.push(new ContextMenuItem("Print...", doPrint));
function doPrint(menu, obj) {

// "Print" code here
}
news_txt.menu = menu_cm;

See also

Button.menu, ContextMenu class, ContextMenuItem class, MovieClip.menu

TextField.mouseWheelEnabled 

Availability

Flash Player 7.

Usage

my_txt.mouseWheelEnabled

Description

Property; a Boolean value that indicates whether Flash Player should automatically scroll 
multiline text fields when the mouse pointer is positioned over a text field and the user rolls the 
mouse wheel. By default, this value is true. This property is useful if you want to prevent mouse 
wheel scrolling of text fields, or implement your own text field scrolling.

See also

Mouse.onMouseWheel

TextField.multiline 

Availability

Flash Player 6.

Usage

my_txt.multiline

Description

Property; indicates whether the text field is a multiline text field. If the value is true, the text field 
is multiline; if the value is false, the text field is a single-line text field.
TextField.multiline 693



TextField._name

Availability

Flash Player 6.

Usage

my_txt._name

Description

Property; the instance name of the text field specified by my_txt.

TextField.onChanged

Availability

Flash Player 6.

Usage

my_txt.onChanged = function(){
// your statements here

}

Parameters

None.

Returns

The instance name of the text field.

Description

Event handler; invoked when the content of a text field changes. By default, it is undefined; you 
can define it in a script.

A reference to the text field instance is passed as a parameter to the onChanged handler. You can 
capture this data by putting a parameter in the event handler method. For example, the following 
code uses txt as the parameter that is passed to the onChanged event handler. The parameter is 
then used in a trace() statement to send the instance name of the text field to the Output panel.
myTextField.onChanged = function (txt) {

trace (txt._name + " changed");
};
694 Chapter 12:  ActionScript Dictionary



TextField.onKillFocus

Availability

Flash Player 6.

Usage

my_txt.onKillFocus = function(newFocus){
// your statements here

}

Parameters

newFocus The object that is receiving the focus.

Returns

Nothing.

Description

Event handler; invoked when a text field loses keyboard focus. The onKillFocus method receives 
one parameter, newFocus, which is an object representing the new object receiving the focus. If 
no object receives the focus, newFocus contains the value null.

TextField.onScroller

Availability

Flash Player 6.

Usage

my_txt.onScroller = function(textFieldInstance){
// your statements here

}

Parameters

textFieldInstance A reference to the TextField object whose scroll position was changed.

Returns

Nothing.

Description

Event handler; invoked when one of the text field scroll properties changes. 

A reference to the text field instance is passed as a parameter to the onScroller handler. You can 
capture this data by putting a parameter in the event handler method. For example, the following 
code uses txt as the parameter that is passed to the onScroller event handler. The parameter is 
then used in a trace() statement to send the instance name of the text field to the Output panel.
myTextField.onScroller = function (txt) {

trace (txt._name + " scrolled");
};

See also

TextField.hscroll, TextField.maxhscroll, TextField.maxscroll, TextField.scroll
TextField.onScroller 695



TextField.onSetFocus

Availability

Flash Player 6.

Usage

my_txt.onSetFocus = function(oldFocus){
// your statements here

}

Parameters

oldFocus The object to lose focus.

Returns

Nothing.

Description

Event handler; invoked when a text field receives keyboard focus. The oldFocus parameter is the 
object that loses the focus. For example, if the user presses the Tab key to move the input focus 
from a button to a text field, oldFocus contains the text field instance.

If there is no previously focused object, oldFocus contains a null value.

TextField._parent

Availability

Flash Player 6.

Usage

my_txt._parent.property
_parent.property

Description

Property; a reference to the movie clip or object that contains the current text field or object. The 
current object is the one containing the ActionScript code that references _parent. 

Use _parent to specify a relative path to movie clips or objects that are above the current text 
field. You can use _parent to climb up multiple levels in the display list as in the following:
_parent._parent._alpha = 20;

See also

Button._parent, MovieClip._parent, _root, targetPath
696 Chapter 12:  ActionScript Dictionary



TextField.password 

Availability

Flash Player 6.

Usage

my_txt.password

Description

Property; if the value of password is true, the text field is a password text field and hides the 
input characters. If false, the text field is not a password text field.

TextField._quality

Availability

Flash Player 6.

Usage

my_txt._quality

Description

Property (global); sets or retrieves the rendering quality used for a SWF file. Device fonts are 
always aliased and, therefore, are unaffected by the _quality property. 
Note: Although you can specify this property for a TextField object, it is actually a global property, 
and you can specify its value simply as _quality. For more information, see _quality.

TextField.removeListener()

Availability

Flash Player 6.

Usage

my_txt.removeListener(listener)

Parameters

listener The object that will no longer receive notifications from TextField.onChanged or 
TextField.onScroller.

Returns

If listener was successfully removed, the method returns a true value. If listener was not 
successfully removed (for example, if listener was not on the TextField object’s listener list), the 
method returns a value of false.

Description

Method; removes a listener object previously registered to a text field instance with 
TextField.addListener().
TextField.removeListener() 697



TextField.removeTextField()

Availability

Flash Player 6.

Usage

my_txt.removeTextField()

Description

Method; removes the text field specified by my_txt. This operation can only be performed on a 
text field that was created with MovieClip.createTextField(). When you call this method, the 
text field is removed. This method is similar to MovieClip.removeMovieClip(). 

TextField.replaceSel()

Availability

Flash Player 6.

Usage

my_txt.replaceSel(text)

Parameters

text A string.

Returns

Nothing.

Description

Method; replaces the current selection with the contents of the text parameter. The text is 
inserted at the position of the current selection, using the current default character format and 
default paragraph format. The text is not treated as HTML, even if the text field is an HTML 
text field. 

You can use the replaceSel() method to insert and delete text without disrupting the character 
and paragraph formatting of the rest of the text.

You must use Selection.setFocus() to focus the field before issuing this command. 

See also

Selection.setFocus()
698 Chapter 12:  ActionScript Dictionary



TextField.replaceText()

Availability

Flash Player 7.

Usage

my_txt.replaceText(beginIndex, endIndex, text)

Description

Method; replaces a range of characters, specified by the beginIndex and endIndex parameters, in 
the specified text field with the contents of the text parameter.

TextField.restrict

Availability

Flash Player 6.

Usage

my_txt.restrict

Description

Property; indicates the set of characters that a user may enter into the text field. If the value of the 
restrict property is null, you can enter any character. If the value of the restrict property is 
an empty string, you can’t enter any character. If the value of the restrict property is a string of 
characters, you can enter only characters in the string into the text field. The string is scanned 
from left to right. A range may be specified using the dash (-). This only restricts user interaction; 
a script may put any text into the text field. This property does not synchronize with the Embed 
Font Outlines check boxes in the Property inspector.

If the string begins with ^, all characters are initially accepted and succeeding characters in the 
string are excluded from the set of accepted characters. If the string does not begin with ^, no 
characters are initially accepted and succeeding characters in the string are included in the set of 
accepted characters.

Example

The following example allows only uppercase characters, spaces, and numbers to be entered into 
a text field:
my_txt.restrict = "A-Z 0-9";

The following example includes all characters, but excludes lowercase letters:
my_txt.restrict = "^a-z"; 

You can use a backslash to enter a ^ or - verbatim. The accepted backslash sequences are \-, \^ or 
\\. The backslash must be an actual character in the string, so when specified in ActionScript, a 
double backslash must be used. For example, the following code includes only the dash (-) and 
caret (^):
my_txt.restrict = "\\-\\^";
TextField.restrict 699



The ^ may be used anywhere in the string to toggle between including characters and excluding 
characters. The following code includes only uppercase letters, but excludes the uppercase 
letter Q:
my_txt.restrict = "A-Z^Q"; 

You can use the \u escape sequence to construct restrict strings. The following code includes 
only the characters from ASCII 32 (space) to ASCII 126 (tilde).
my_txt.restrict = "\u0020-\u007E"; 

TextField._rotation

Availability

Flash Player 6.

Usage

my_txt._rotation

Description

Property; the rotation of the text field, in degrees, from its original orientation. Values from 
0 to 180 represent clockwise rotation; values from 0 to -180 represent counterclockwise rotation. 
Values outside this range are added to or subtracted from 360 to obtain a value within the range. 
For example, the statement my_txt._rotation = 450 is the same as my_txt._rotation = 90.

See also

Button._rotation, MovieClip._rotation

TextField.scroll 

Availability

Flash Player 6.

Usage

my_txt.scroll

Description

Property; defines the vertical position of text in a text field. The scroll property is useful for 
directing users to a specific paragraph in a long passage, or creating scrolling text fields. This 
property can be retrieved and modified.

For more information on scrolling text, see “Creating scrolling text” on page 153.

Example

The following code is attached to an Up button that scrolls the my_txt text field.
on (release) {

my_txt.scroll = myText.scroll + 1;
}

See also

TextField.hscroll, TextField.maxscroll
700 Chapter 12:  ActionScript Dictionary



TextField.selectable

Availability

Flash Player 6.

Usage

my_txt.selectable

Description

Property; a Boolean value that indicates whether the text field is selectable (editable). The value 
true indicates that the text is selectable.

TextField.setNewTextFormat()

Availability

Flash Player 6.

Usage

my_txt.setNewTextFormat(textFormat)

Parameters

textFormat A TextFormat object.

Returns

Nothing.

Description

Method; sets a TextFormat object for newly inserted text, such as text inserted with the 
replaceSel() method or text entered by a user in a text field. Each text field has a new text 
format. When text is inserted, the new text is assigned the new text format. 

The text format is set in a new TextFormat object. It contains both character and paragraph 
formatting information. Character formatting information describes the appearance of individual 
characters; for example, font name, point size, color, and associated URL. Paragraph formatting 
information describes the appearance of a paragraph; for example, left margin, right margin, 
indentation of the first line, and left, right, and center alignment.

See also

TextField.getNewTextFormat(), TextField.getTextFormat(), 
TextField.setTextFormat()
TextField.setNewTextFormat() 701



TextField.setTextFormat()

Availability

Flash Player 6.

Usage

my_txt.setTextFormat (textFormat)
my_txt.setTextFormat (index, textFormat)
my_txt.setTextFormat (beginIndex, endIndex, textFormat)

Parameters

textFormat A TextFormat object, which contains character and paragraph formatting 
information.

index An integer that specifies a character within my_txt.

beginIndex An integer.

endIndex An integer that specifies the first character after the desired text span.

Returns

Nothing.

Description

Method; sets a TextFormat object for a specified range of text in a text field. You can assign each 
character in a text field a text format. The text format of the first character of a paragraph is 
examined to perform paragraph formatting for the entire paragraph. The setTextFormat() 
method changes the text format applied to individual characters, to groups of characters, or to the 
entire body of text in a text field.

The text format is set in a new TextFormat object. It contains both character and paragraph 
formatting information. Character formatting information describes the appearance of individual 
characters, for example, font name, point size, color, and associated URL. Paragraph formatting 
information describes the appearance of a paragraph, for example, left margin, right margin, 
indentation of the first line, and left, right, and center alignment.

Usage 1: Applies the properties of textFormat to all text in the text field.

Usage 2: Applies the properties of textFormat to the character at position index.

Usage 3: Applies the properties of the textFormat parameter to the span of text from the 
beginIndex parameter to the endIndex parameter.

Notice that any text inserted manually by the user, or replaced by means of 
TextField.replaceSel(), does not assume the formatting specified in a call to 
setTextFormat(). To set the default formatting for a TextField object, use 
TextField.setNewTextFormat(). 

Example

This example creates a new TextFormat object called myTextFormat and sets its bold property to 
true. It then calls setTextFormat() and applies the new text format to the my_txt text field.
myTextFormat = new TextFormat();
myTextFormat.bold = true;
my_txt.setTextFormat(myTextFormat);
702 Chapter 12:  ActionScript Dictionary



See also

TextField.setNewTextFormat(), TextFormat class

TextField._soundbuftime

Availability

Flash Player 6.

Usage

my_txt._soundbuftime

Description

Property (global); an integer that specifies the number of seconds a sound prebuffers before it 
starts to stream. 

TextField.StyleSheet class

Availability

Flash Player 7.

Description

The TextField.StyleSheet class lets you create a style sheet object that contains text formatting 
rules such as font size, color, and other formatting styles. You can then apply styles defined by a 
style sheet to a TextField object that contains HTML- or XML-formatted text. The text 
contained by the TextField object is then automatically formatted according to the tag styles 
defined by the style sheet object. You can use text styles to define new formatting tags, redefine 
built-in HTML tags, or create style classes that can be applied to certain HTML tags. 

To apply styles to a TextField object, assign the style sheet object to a TextField object’s 
styleSheet property.

For more information, see “Formatting text with Cascading Style Sheets” on page 139.

Method summary for the TextField.StyleSheet class

Method Description

TextField.StyleSheet.getStyle() Returns a copy of the style sheet object associated with a 
specified style name.

TextField.StyleSheet.getStyleNames() Returns an array that contains the names of all of the 
styles registered in the style sheet object.

TextField.StyleSheet.load() Begins loading a CSS file into the style sheet object. 

TextField.StyleSheet.parseCSS() Parses a string of CSS text and creates the 
specified style.

TextField.StyleSheet.setStyle() Adds a new style to the style sheet object.
TextField.StyleSheet class 703



Event handler summary for the TextField.StyleSheet class
L

Constructor for the TextField.StyleSheet class

Availability

Flash Player 7.

Usage

new TextField.StyleSheet()

Returns

Nothing.

Description

Constructor; creates a TextField.StyleSheet object.

TextField.StyleSheet.getStyle()

Availability

Flash Player 7.

Usage

styleSheet.getStyle(styleName)

Parameters

styleName A string that specifies the name of the style to retrieve.

Returns

An object.

Description

Method; returns a copy of the style object associated with the style named styleName. If there is 
no style object associated with styleName, null is returned.

Example

Suppose a style sheet object named textStyles loads an external style sheet file named styles.css 
that contains a single style named heading, which defines font-family, font-size, and font-
weight properties, as shown below.
// In styles.css
heading {
  font-family: Arial;
  font-size: 24px;
  font-weight: bold;
}

Method Description

TextField.StyleSheet.onLoad Callback handler invoked when a 
TextField.StyleSheet.load() operation has completed.
704 Chapter 12:  ActionScript Dictionary



The following code loads the styles from the CSS file, and then displays each property name and 
its value in the Output panel.
var styleSheet = new TextField.styleSheet();
styleSheet.load("styles.css");
var sectionStyle = styleSheet.getStyle("heading");
for(property in sectionStyle) {

var propName = property;
var propValue = sectionStyle[property];
trace(propName + " : " + propValue);

}

This would display the following in the Output panel:
fontfamily : Arial
fontsize : 24px
fontweight : bold

See also

TextField.StyleSheet.setStyle()

TextField.StyleSheet.getStyleNames()

Availability

Flash Player 7.

Usage

styleSheet.getStyleNames()

Parameters

None.

Returns

An array.

Description

Method; returns an array that contains the names (as strings) of all of the styles registered in this 
style sheet.

Example

This example creates a style sheet object named styleSheet that contains two styles, heading 
and bodyText. It then invokes the style sheet object’s getStyleNames() method, assigns the 
results to the array names_array, and displays the contents of the array in the Output panel.
var styleSheet= new TextField.StyleSheet();
styleSheet.setStyle("heading", {

fontsize: '24px’
});
styleSheet.setStyle("bodyText", {

fontsize: '12px'
});
var names_array = styleSheet.getStyleNames();
trace(names.join("\n"));
TextField.StyleSheet.getStyleNames() 705



The following is displayed in the Output panel:
bodyText
heading

See also

TextField.StyleSheet.getStyle()

TextField.StyleSheet.load()

Availability

Flash Player 7.

Usage

styleSheet.load(url)

Parameters

url The URL of a CSS file to load. The URL must be in the same domain as the URL where 
the SWF file currently resides.

Returns

Nothing.

Description

Method; starts loading the CSS file into styleSheet. The load operation is asynchronous; use 
the TextField.StyleSheet.onLoad callback handler to determine when the file has finished loading.

The CSS file must reside in exactly the same domain as the SWF file that is loading it. For more 
information about restrictions on loading data across domains, see “Flash Player security features” 
on page 188.

Example

The following example loads the CSS file named styles.css (not shown) into the style sheet object 
styleObj. When the file has finished loading successfully, the style sheet object is applied to a 
TextField object named news_txt.
var styleObj = new TextField.StyleSheet();
styleObj.load("styles.css");
styleObj.onLoad = function (success) {

if(success) {
news_txt.styleSheet = styleObj;

}
}

See also

TextField.StyleSheet.onLoad
706 Chapter 12:  ActionScript Dictionary



TextField.StyleSheet.onLoad

Availability

Flash Player 7.

Usage

styleSheet.onLoad = function (success) {}

Parameters

success A Boolean value indicating whether the CSS file was successfully loaded.

Returns

Nothing.

Description

Callback handler; invoked when a TextField.StyleSheet.load() operation has completed. If the 
style sheet loaded successfully, the success parameter is true. If the document was not received, 
or if an error occurred in receiving the response from the server, the success parameter is false. 

Example

The following example loads the CSS file named styles.css (not shown) into the style sheet object 
styleObj. When the file has finished loading successfully, the style sheet object is applied to a 
TextField object named news_txt.
var styleObj = new TextField.StyleSheet();
styleObj.load("styles.css");
styleObj.onLoad = function (success) {

if(success) {
news_txt.styleSheet = styleObj;

}
}

See also

TextField.StyleSheet.load()

TextField.StyleSheet.parseCSS()

Availability

Flash Player 7.

Usage

styleSheet.parseCSS(cssText)

Parameters

cssText The CSS text to parse (a string).

Returns

A Boolean value indicating if the text was parsed successfully (true) or not (false).
TextField.StyleSheet.parseCSS() 707



Description

Method; parses the CSS in cssText and loads the style sheet with it. If a style in cssText is 
already in styleSheet, the properties in styleSheet are retained, and only the ones in cssText 
are added or changed in styleSheet.

To extend the native CSS parsing capability, you can override this method by creating a subclass 
of the TextField.StyleSheet class. For more information, see “Creating subclasses” on page 162.

TextField.StyleSheet.setStyle()

Availability

Flash Player 7.

Usage

styleSheet.setStyle(name, style)

Parameters

name A string that specifies the name of the style to add to the style sheet.

style An object that describes the style, or null.

Returns

Nothing.

Description

Method; adds a new style with the specified name to the style sheet object. If the named style does 
not already exist in the style sheet, it is added. If the named style already exists in the style sheet, it 
is replaced. If the style parameter is null, the named style is removed.

Flash Player creates a copy of the style object that you pass to this method.

Example

The following code adds a style named emphasized to the style sheet myStyleSheet. The style 
includes two style properties: color and fontWeight. The style object is defined with the 
{} operator.
myStyleSheet.setStyle("emphasized", {color:'#000000',fontWeight:'bold'});

You could also create a style object using an instance of the Object class, and then pass that object 
as the style parameter, as the next example shows.
var styleObj = new Object();
styleObj.color = '#000000';
styleObj.fontWeight = 'bold';
myStyleSheet.setStyle("emphasized", styleObj);
delete styleObj;

Note: The last line of code (delete styleObj) deletes the original style object passed to setStyle() 
While not necessary, this step reduces memory usage, because Flash Player creates a copy of the 
style object you pass to setStyle().

See also

{} (object initializer)
708 Chapter 12:  ActionScript Dictionary



TextField.styleSheet

Availability

Flash Player 7.

Usage

my_txt.styleSheet = TextField StyleSheet

Description

Property; attaches a style sheet to the text field specified by my_txt. For information on creating 
style sheets, see the TextField.StyleSheet class entry and “Formatting text with Cascading Style 
Sheets” on page 139.

TextField.tabEnabled

Availability

Flash Player 6.

Usage

my_txt.tabEnabled

Description

Property; specifies whether my_txt is included in automatic tab ordering. It is undefined 
by default.

If the tabEnabled property is undefined or true, the object is included in automatic tab 
ordering. If the tabIndex property is also set to a value, the object is included in custom tab 
ordering as well. If tabEnabled is false, the object is not included in automatic or custom tab 
ordering, even if the tabIndex property is set.

See also

Button.tabEnabled, MovieClip.tabEnabled

TextField.tabIndex

Availability

Flash Player 6.

Usage

my_txt.tabIndex

Parameters

None.

Returns

Nothing.
TextField.tabIndex 709



Description

Property; lets you customize the tab ordering of objects in a SWF file. You can set the tabIndex 
property on a button, movie clip, or text field instance; it is undefined by default. 

If any currently displayed object in the SWF file contains a tabIndex property, automatic tab 
ordering is disabled, and the tab ordering is calculated from the tabIndex properties of objects in 
the SWF file. The custom tab ordering only includes objects that have tabIndex properties.

The tabIndex property must be a positive integer. The objects are ordered according to their 
tabIndex properties, in ascending order. An object with a tabIndex value of 1 precedes an object 
with a tabIndex value of 2. If two objects have the same tabIndex value, the one that precedes 
the other in the tab ordering is undefined.

The custom tab ordering defined by the tabIndex property is flat. This means that no attention 
is paid to the hierarchical relationships of objects in the SWF file. All objects in the SWF file with 
tabIndex properties are placed in the tab order, and the tab order is determined by the order of 
the tabIndex values. If two objects have the same tabIndex value, the one that goes first is 
undefined. You shouldn’t use the same tabIndex value for multiple objects.

See also

Button.tabIndex, MovieClip.tabIndex

TextField._target

Availability

Flash Player 6.

Usage

my_txt._target

Description

Property (read-only); the target path of the text field instance specified by my_txt.

TextField.text

Availability

Flash Player 6.

Usage

my_txt.text

Description

Property; indicates the current text in the text field. Lines are separated by the carriage return 
character ('\r', ASCII 13). This property contains the normal, unformatted text in the text field, 
without HTML tags, even if the text field is HTML.

See also

TextField.htmlText
710 Chapter 12:  ActionScript Dictionary



TextField.textColor

Availability

Flash Player 6.

Usage

my_txt.textColor

Description

Property; indicates the color of the text in a text field.

TextField.textHeight

Availability

Flash Player 6.

Usage

my_txt.textHeight

Description

Property; indicates the height of the text.

TextField.textWidth

Availability

Flash Player 6.

Usage

my_txt.textWidth

Description

Property; indicates the width of the text.

TextField.type 

Availability

Flash Player 6.

Usage

my_txt.type

Description

Property; Specifies the type of text field. There are two values: "dynamic", which specifies a 
dynamic text field that cannot be edited by the user, and "input", which specifies an input 
text field.

Example

my_txt.type = "dynamic";
TextField.type 711



TextField._url

Availability

Flash Player 6.

Usage

my_txt._url

Description

Property (read only); retrieves the URL of the SWF file that created the text field. 

TextField.variable

Availability

Flash Player 6.

Usage

my_txt.variable

Description

Property; The name of the variable that the text field is associated with. The type of this 
property is String.

TextField._visible

Availability

Flash Player 6.

Usage

my_txt._visible

Description

Property; a Boolean value that indicates whether the text field my_txt is visible. Text fields that 
are not visible (_visible property set to false) are disabled.

See also

Button._visible, MovieClip._visible

TextField._width

Availability

Flash Player 6.

Usage

my_txt._width

Description

Property; the width of the text field, in pixels.
712 Chapter 12:  ActionScript Dictionary



Example

The following example sets the height and width properties of a text field:
my_txt._width=200;
my_txt._height=200;

See also

MovieClip._height

TextField.wordWrap

Availability

Flash Player 6.

Usage

my_txt.wordWrap

Description

Property; a Boolean value that indicates if the text field has word wrap. If the value of wordWrap is 
true, the text field has word wrap; if the value is false, the text field does not have word wrap.

TextField._x

Availability

Flash Player 6.

Usage

my_txt._x

Description

Property; an integer that sets the x coordinate of a text field relative to the local coordinates of the 
parent movie clip. If a text field is on the main Timeline, then its coordinate system refers to the 
upper left corner of the Stage as (0, 0). If the text field is inside a movie clip that has 
transformations, the text field is in the local coordinate system of the enclosing movie clip. Thus, 
for a movie clip rotated 90 degrees counterclockwise, the enclosed text field inherits a coordinate 
system that is rotated 90 degrees counterclockwise. The text field’s coordinates refer to the 
registration point position.

See also

TextField._xscale, TextField._y, TextField._yscale
TextField._x 713



TextField._xmouse

Availability

Flash Player 6.

Usage

my_txt._xmouse

Description

Property (read-only); returns the x coordinate of the mouse position relative to the text field.

See also

TextField._ymouse

TextField._xscale

Availability

Flash Player 6.

Usage

my_txt._xscale

Description

Property; determines the horizontal scale of the text field as applied from the registration point of 
the text field, expressed as a percentage. The default registration point is (0,0).

See also

TextField._x, TextField._y, TextField._yscale

TextField._y

Availability

Flash Player 6.

Usage

my_txt._y

Description

Property; the y coordinate of a text field relative to the local coordinates of the parent movie clip. 
If a text field is in the main Timeline, then its coordinate system refers to the upper left corner of 
the Stage as (0, 0). If the text field is inside another movie clip that has transformations, the text 
field is in the local coordinate system of the enclosing movie clip. Thus, for a movie clip rotated 
90 degrees counterclockwise, the enclosed text field inherits a coordinate system that is rotated 90 
degrees counterclockwise. The text field’s coordinates refer to the registration point position.

See also

TextField._x, TextField._xscale, TextField._yscale
714 Chapter 12:  ActionScript Dictionary



TextField._ymouse

Availability

Flash Player 6.

Usage

my_txt._ymouse

Description

Property (read-only); indicates the y coordinate of the mouse position relative to the text field.

See also

TextField._xmouse

TextField._yscale

Availability

Flash Player 6.

Usage

my_txt._yscale

Description

Property; the vertical scale of the text field as applied from the registration point of the text field, 
expressed as a percentage. The default registration point is (0,0).

See also

TextField._x, TextField._xscale, TextField._y

TextFormat class

Availability

Flash Player 6.

Description

The TextFormat class represents character formatting information.

You must use the constructor new TextFormat() to create a TextFormat object before calling 
its methods.

You can set TextFormat parameters to null to indicate that they are undefined. When you apply 
a TextFormat object to a text field using TextField.setTextFormat(), only its defined 
properties are applied, as in the following example:
my_fmt = new TextFormat();
my_fmt.bold = true;
my_txt.setTextFormat(my_fmt);

This code first creates an empty TextFormat object with all of its properties undefined, then sets 
the bold property to a defined value.
TextFormat class 715



The code my_txt.setTextFormat(my_fmt) only changes the bold property of the text field’s 
default text format, because the bold property is the only one defined in my_fmt. All other aspects 
of the text field’s default text format remain unchanged.

When TextField.getTextFormat() is invoked, a TextFormat object is returned with all of its 
properties defined; no property is null.

Method summary for the TextFormat class

Property summary for the TextFormat class

Method Description

TextFormat.getTextExtent() Returns text measurement information for a text string.

Property Description

TextFormat.align Indicates the alignment of a paragraph.

TextFormat.blockIndent Indicates the block indentation, in points.

TextFormat.bold Indicates whether text is boldface. 

TextFormat.bullet Indicates whether text is in a bulleted list.

TextFormat.color Indicates the color of text.

TextFormat.font Indicates the font name of the text with a text format.

TextFormat.indent Indicates the indentation from the left margin to the first character in 
the paragraph.

TextFormat.italic Indicates whether text is italicized.

TextFormat.leading Indicates the amount of vertical space (called leading) between lines.

TextFormat.leftMargin Indicates the left margin of the paragraph, in points.

TextFormat.rightMargin Indicates the right margin of the paragraph, in points.

TextFormat.size Indicates the point size of text.

TextFormat.tabStops Specifies custom tab stops.

TextFormat.target Indicates the window in a browser where a hyperlink is displayed.

TextFormat.underline Indicates whether text is underlined.

TextFormat.url Indicates the URL to which the text links.
716 Chapter 12:  ActionScript Dictionary



Constructor for the TextFormat class

Availability

Flash Player 6.

Usage

new TextFormat([font, [size, [color, [bold, [italic, [underline, [url, 
[target, [align, [leftMargin, [rightMargin, [indent, [leading]]]]]]]]]]]]])

Parameters

font The name of a font for text as a string.

size An integer that indicates the point size.

color The color of text using this text format. A number containing three 8-bit RGB 
components; for example, 0xFF0000 is red, 0x00FF00 is green.

bold A Boolean value that indicates whether the text is boldface.

italic A Boolean value that indicates whether the text is italicized.

underline A Boolean value that indicates whether the text is underlined.

url The URL to which the text in this text format hyperlinks. If url is an empty string, the text 
does not have a hyperlink.

target The target window where the hyperlink is displayed. If the target window is an empty 
string, the text is displayed in the default target window _self. If the url parameter is set to an 
empty string or to the value null, you can get or set this property, but the property will have 
no effect. 

align The alignment of the paragraph, represented as a string. If "left", the paragraph is left-
aligned. If "center", the paragraph is centered. If "right", the paragraph is right-aligned.

leftMargin Indicates the left margin of the paragraph, in points.

rightMargin Indicates the right margin of the paragraph, in points.

indent An integer that indicates the indentation from the left margin to the first character in 
the paragraph.

leading A number that indicates the amount of leading vertical space between lines.

Returns

Nothing.

Description

Constructor; creates a TextFormat object with the specified properties. You can then change the 
properties of the TextFormat object to change the formatting of text fields. 

Any parameter may be set to null to indicate that it is not defined. All of the parameters are 
optional; any omitted parameters are treated as null.
TextFormat class 717



TextFormat.align

Availability

Flash Player 6.

Usage

my_fmt.align

Description

Property; indicates the alignment of the paragraph, represented as a string. The alignment of the 
paragraph, represented as a string. If "left", the paragraph is left-aligned. If "center", the 
paragraph is centered. If "right", the paragraph is right-aligned. The default value is null which 
indicates that the property is undefined.

TextFormat.blockIndent

Availability

Flash Player 6.

Usage

my_fmt.blockIndent

Description

Property; a number that indicates the block indentation in points. Block indentation is applied to 
an entire block of text; that is, to all lines of the text. In contrast, normal indentation 
(TextFormat.indent) only affects the first line of each paragraph. If this property is null, the 
TextFormat object does not specify block indentation.

TextFormat.bold

Availability

Flash Player 6.

Usage

my_fmt.bold

Description

Property; a Boolean value that indicates if the text is boldface. The default value is null, which 
indicates that the property is undefined.
718 Chapter 12:  ActionScript Dictionary



TextFormat.bullet

Availability

Flash Player 6.

Usage

my_fmt.bullet

Description

Property; a Boolean value that indicates that the text is part of a bulleted list. In a bulleted list, 
each paragraph of text is indented. To the left of the first line of each paragraph, a bullet symbol is 
displayed. The default value is null.

TextFormat.color

Availability

Flash Player 6.

Usage

my_fmt.color

Description

Property; indicates the color of text. A number containing three 8-bit RGB components; for 
example, 0xFF0000 is red, 0x00FF00 is green.

TextFormat.font

Availability

Flash Player 6.

Usage

my_fmt.font

Description

Property; the name of the font for text in this text format, as a string. The default value is null, 
which indicates that the property is undefined.

TextFormat.getTextExtent()

Availability

Flash Player 6. The optional width parameter is supported in Flash Player 7.

Usage

my_fmt.getTextExtent(text, [width])
TextFormat.getTextExtent() 719



Parameters

text A string.

width An optional number that represents the width, in pixels, at which the specified text 
should wrap.

Returns

An object with the properties width, height, ascent, descent, textFieldHeight, 
textFieldWidth.

Description

Method; returns text measurement information for the text string text in the format specified by 
my_fmt. The text string is treated as plain text (not HTML).

The method returns an object with six properties: ascent, descent, width, height, 
textFieldHeight, and textFieldWidth. All measurements are in pixels.

If a width parameter is specified, word wrapping is applied to the specified text. This lets you 
determine the height at which a text box shows all of the specified text.

The ascent and descent measurements provide, respectively, the distance above and below the 
baseline for a line of text. The baseline for the first line of text is positioned at the text field’s 
origin plus its ascent measurement.

The width and height measurements provide the width and height of the text string. The 
textFieldHeight and textFieldWidth measurements provide the height and width required 
for a text field object to display the entire text string. Text fields have a 2-pixel-wide “gutter” 
around them, so the value of textFieldHeight is equal the value of height + 4; likewise, the 
value of textFieldWidth is always equal to the value of width + 4. 

If you are creating a text field based on the text metrics, use textFieldHeight rather than 
height and textFieldWidth rather than width.

The following figure illustrates these measurements.
720 Chapter 12:  ActionScript Dictionary



When setting up your TextFormat object, set all the attributes exactly as they will be set for the 
creation of the text field, including font name, font size, and leading. The default value for 
leading is 2.

Example

This example creates a single-line text field that’s just big enough to display a text string using the 
specified formatting.
var text = "Small string";

// Create a TextFormat object,
// and apply its properties.
var txt_fmt = new TextFormat();
with(txt_fmt) {

font = "Arial";
bold = true;

}

// Obtain metrics information for the text string
// with the specified formatting.
var metrics = txt_fmt.getTextExtent(text);

// Create a text field just large enough to display the text.
this.createTextField ("textField", 0, 100, 100, metrics.textFieldWidth, 

metrics.textFieldHeight);
textField.border = true;
textField.wordWrap = true;
// Assign the same text string and
// TextFormat object to the TextField object.
textField.text = text;
textField.setTextFormat(txt_fmt);

The following example creates a multiline, 100-pixel-wide text field that’s high enough to display 
a string with the specified formatting. 
// Create a TextFormat object.
var txt_fmt:TextFormat= new TextFormat();

// Specify formatting properties for the TextFormat object:
txt_fmt.font = "Arial";
txt_fmt.bold = true;
txt_fmt.leading = 4;

// The string of text to be displayed
var textToDisplay:String = "Macromedia Flash 7, now with improved text 

metrics.";

// Obtain text measurement information for the string,
// wrapped at 100 pixels.
var metrics:Object = txt_fmt.getTextExtent(textToDisplay, 100);

// Create a new TextField object using the metric
// information just obtained.
this.createTextField ("textField", 0, 50, 50-metrics.ascent, 100, 

metrics.textFieldHeight)
textField.wordWrap = true;
textField.border = true;
// Assign the text and the TextFormat object to the TextObject:
textField.text = textToDisplay;
textField.setTextFormat(aformat);
TextFormat.getTextExtent() 721



TextFormat.indent

Availability

Flash Player 6.

Usage

my_fmt.indent

Description

Property; an integer that indicates the indentation from the left margin to the first character in 
the paragraph. The default value is null, which indicates that the property is undefined.

See also

TextFormat.blockIndent

TextFormat.italic

Availability

Flash Player 6.

Usage

my_fmt.italic

Description

Property; a Boolean value that indicates whether text in this text format is italicized. The default 
value is null, which indicates that the property is undefined.

TextFormat.leading

Availability

Flash Player 6.

Usage

my_fmt.leading

Description

Property; the amount of vertical space (called leading) between lines. The default value is null, 
which indicates that the property is undefined.
722 Chapter 12:  ActionScript Dictionary



TextFormat.leftMargin

Availability

Flash Player 6.

Usage

my_fmt.leftMargin

Description

Property; the left margin of the paragraph, in points. The default value is null, which indicates 
that the property is undefined.

TextFormat.rightMargin

Availability

Flash Player 6.

Usage

my_fmt.rightMargin

Description

Property; the right margin of the paragraph, in points. The default value is null, which indicates 
that the property is undefined.

TextFormat.size

Availability

Flash Player 6.

Usage

my_fmt.size

Description

Property; the point size of text in this text format. The default value is null, which indicates that 
the property is undefined.

TextFormat.tabStops

Availability

Flash Player 6.

Usage

my_fmt.tabStops

Description

Property; specifies custom tab stops as an array of non-negative integers. Each tab stop is 
specified in points. If custom tab stops are not specified (null), the default tab stop is 4 
(average character width). 
TextFormat.tabStops 723



TextFormat.target

Availability

Flash Player 6.

Usage

my_fmt.target

Description

Property; indicates the target window where the hyperlink is displayed. If the target window is 
an empty string, the text is displayed in the default target window _self. If the TextFormat.url 
property is an empty string or null, you can get or set this property, but the property will have 
no effect.

TextFormat.underline

Availability

Flash Player 6.

Usage

my_fmt.underline

Description

Property; a Boolean value that indicates whether the text that uses this text format is underlined 
(true) or not (false). This underlining is similar to that produced by the <U> tag, but the latter 
is not “true” underlining, because it does not skip descenders correctly. The default value is null, 
which indicates that the property is undefined.

TextFormat.url

Availability

Flash Player 6.

Usage

my_fmt.url

Description

Property; indicates the URL that text in this text format hyperlinks to. If the url property is an 
empty string, the text does not have a hyperlink. The default value is null, which indicates that 
the property is undefined.
724 Chapter 12:  ActionScript Dictionary



TextSnapshot object

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Description

TextSnapshot objects let you work with static text in a movie clip. You can use them, for example, 
to lay out text with greater precision than that allowed by dynamic text, but still access the text in 
a read-only way.

You don’t use a constructor to create a TextSnapshot object; it is returned by 
MovieClip.getTextSnapshot().

Method summary for the TextSnapshot object

Method Description

TextSnapshot.findText() Returns the position of the first occurrence of specified text.

TextSnapshot.getCount() Returns the number of characters.

TextSnapshot.getSelected() Specifies whether any of the text in the specified range has 
been selected by TextSnapshot.setSelected().

TextSnapshot.getSelectedText() Returns a string that contains all the characters specified by 
TextSnapshot.setSelected().

TextSnapshot.getText() Returns a string containing the characters in the specified 
range.

TextSnapshot.hitTestTextNearPos() Lets you determine which character within the object is on or 
near specified coordinates.

TextSnapshot.setSelectColor() Specifies the color to use when highlighting characters that 
have been selected with the TextSnapshot.setSelected() 
command.

TextSnapshot.setSelected() Specifies a range of characters to be selected or deselected.
TextSnapshot object 725



TextSnapshot.findText() 

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later. 

Usage

my_snap.findText( startIndex, textToFind, caseSensitive )

Parameters

startIndex An integer specifying the starting point in my_snap to search for the specified text.

textToFind A string specifying the text to search for. If you specify a string literal instead of a 
variable of type String, enclose the string in quotation marks.

caseSensitive A Boolean value specifying whether the text in my_snap must match the case 
of the string in textToFind. 

Returns

The zero-based index position of the first occurrence of the specified text, or -1.

Description

Method; searches the specified TextSnapshot object and returns the position of the first 
occurrence of textToFind found at or after startIndex. If textToFind is not found, the 
method returns -1. 

See also

TextSnapshot.getText()

TextSnapshot.getCount() 

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Usage

my_snap.getCount()

Parameters

None.

Returns

An integer representing the number of characters in the specified TextSnapshot object.

Description

Method; returns the number of characters in a TextSnapshot object.

See also

TextSnapshot.getText()
726 Chapter 12:  ActionScript Dictionary



TextSnapshot.getSelected() 

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Usage

my_snap.getSelected(from, to)

Parameters

from An integer that indicates the position of the first character of my_snap to be examined. 
Valid values for from are 0 through TextSnapshot.getCount() - 1. If from is a negative value, 
0 is used.

to An integer that is 1+ the index of the last character in my_snap to be examined. Valid values 
for to are 0 through TextSnapshot.getCount(). The character indexed by the to parameter is 
not included in the extracted string. If this parameter is omitted, TextSnapshot.getCount() is 
used. If this value is less than or equal to the value of from, from+1 is used.

Returns

A Boolean value of true, if at least one character in the given range has been selected by the 
corresponding TextSnapshot.setSelected() command, false otherwise.

Description

Method; returns a Boolean value that specifies whether a TextSnapshot object contains selected 
text in the specified range. 

To search all characters, pass a value of 0 for from and TextSnapshot.getCount() (or any very 
large number) for to. To search a single character, pass a value of from+1 for to. 

See also

TextSnapshot.getSelectedText(), TextSnapshot.getText()

TextSnapshot.getSelectedText()

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Usage

mySnapshot.getSelectedText( [ includeLineEndings ] )

Parameters

includeLineEndings An optional Boolean value that specifies whether newline characters are 
inserted into the returned string where appropriate. The default value is false.

Returns

A string that contains all the characters specified by the corresponding TextSnapshot.setSelected() 
command.
TextSnapshot.getSelectedText() 727



Description

Method; returns a string that contains all the characters specified by the corresponding 
TextSnapshot.setSelected() command. If no characters are selected, an empty string is returned. 

If you pass a value of true for includeLineEndings, newline characters are inserted in the string 
returned where deemed appropriate. In this case, the return string might be longer than the input 
range. If includeLineEndings is false or omitted, the selected text is returned without any 
characters added.

See also

TextSnapshot.getSelected()

TextSnapshot.getText()

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later. 

Usage

mySnapshot.getText(from, to [, includeLineEndings ] )

Parameters

from An integer that indicates the position of the first character of my_snap to be included in 
the returned string. Valid values for from are 0 through TextSnapshot.getCount() - 1. If from 
is a negative value, 0 is used.

to An integer that is 1+ the index of the last character in my_snap to be examined. Valid values 
for to are 0 through TextSnapshot.getCount(). The character indexed by the to parameter is 
not included in the extracted string. If this parameter is omitted, TextSnapshot.getCount() is 
used. If this value is less than or equal to the value of from, from+1 is used.

includeLineEndings An optional Boolean value that specifies whether newline characters are 
inserted into the returned string where appropriate. The default value is false.

Returns

A string containing the characters in the specified range, or an empty string if no characters are 
found in the specified range.

Description

Method; returns a string that contains all the characters specified by the from and to parameters. 
If no characters are selected, an empty string is returned. 

To return all characters, pass a value of 0 for from and TextSnapshot.getCount() (or any very 
large number) for to. To return a single character, pass a value of from+1 for to. 

If you pass a value of true for includeLineEndings, newline characters are inserted in the string 
returned where deemed appropriate. In this case, the return string might be longer than the input 
range. If includeLineEndings is false or omitted, the selected text is returned without any 
characters added.

See also

TextSnapshot.getSelectedText()
728 Chapter 12:  ActionScript Dictionary



TextSnapshot.hitTestTextNearPos()

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Usage

my_snap.hitTestTextNearPos(x, y [, maxDistance] )

Parameters

x A number that represents the x coordinate of the movie clip containing the text in my_snap.

y A number that represents the x coordinate of the movie clip containing the text in my_snap.

maxDistance An optional number that represents the maximum distance from x, y that can be 
searched for text. The distance is measured from the centerpoint of each character. The default 
value is 0.

Returns

An integer representing the index value of the character in my_snap that is nearest to the specified 
x, y coordinates, or -1 if no character is found.

Description

Method; lets you determine which character within a TextSnapshot object is on or near specified 
x, y coordinates of the movie clip containing the text in my_snap.

If you omit or pass a value of 0 for maxDistance, the location specified by the x, y coordinates 
must lie inside the bounding box of my_snap. 

See also

MovieClip.getTextSnapshot(), MovieClip._x, MovieClip._y

TextSnapshot.setSelectColor()

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Usage

mySnapshot.setSelectColor(hexColor);

Parameters

hexColor The color used for the border placed around characters that have been selected by the 
corresponding TextSnapshot.setSelected() command, expressed in 0xRRGGBB format.

Returns

Nothing.
TextSnapshot.setSelectColor() 729



Description

Method; specifies the color to use when highlighting characters that have been selected with the 
TextSnapshot.setSelected() command. The color is always opaque; you can’t specify a 
transparency value.

TextSnapshot.setSelected()

Availability

Authoring: Flash MX 2004.

Playback: SWF files published for Flash Player 6 or later, playing in Flash Player 7 or later.

Usage

mySnapshot.setSelected(from, to, select)

Parameters

from An integer that indicates the position of the first character of my_snap to select. Valid 
values for from are 0 through TextSnapshot.getCount() - 1. If from is a negative value, 
0 is used.

to An integer that is 1+ the index of the last character in my_snap to be examined. Valid values 
for to are 0 through TextSnapshot.getCount(). The character indexed by the to parameter is 
not included in the extracted string. If this parameter is omitted, TextSnapshot.getCount() is 
used. If this value is less than or equal to the value of from, from+1 is used.

select A Boolean value that specifies whether the text should be selected (true) or 
deselected (false).

Returns

Nothing.

Description

Method; specifies a range of characters in a TextSnapshot object to be selected or deselected. 
Characters that are selected are drawn with a colored rectangle behind them, matching the 
bounding box of the character. The color of the bounding box is defined by 
TextSnapshot.setSelectColor().

To select or deselect all characters, pass a value of 0 for from and TextSnapshot.getCount() (or 
any very large number) for to. To specify a single character, pass a value of from+1 for to. 

Because characters are individually marked as selected, you can issue this command multiple 
times to select multiple characters; that is, using this command does not deselect other characters 
that have been set by this command.
730 Chapter 12:  ActionScript Dictionary



this

Availability

Flash Player 5.

Usage

this

Description

Identifier; references an object or movie clip instance. When a script executes, this references the 
movie clip instance that contains the script. When a method is called, this contains a reference 
to the object that contains the called method. 

Inside an on event handler action attached to a button, this refers to the Timeline that contains 
the button. Inside an onClipEvent() event handler action attached to a movie clip, this refers 
to the Timeline of the movie clip itself. 

Because this is evaluated in the context of the script that contains it, you can’t use this in a 
script to refer to a variable defined in a class file:
// in file applyThis.as
class applyThis{

var str:String = "Defined in applyThis.as";
function conctStr(x:String):String{

return x+x;
}

function addStr():String{
return str;

}
}

// Use following code in FLA to test movie
import applyThis;

var obj:applyThis = new applyThis();
var abj:applyThis = new applyThis();
abj.str = "defined in FLA";

trace(obj.addStr.call(abj,null)); // defined in FLA
trace(obj.addStr.call(this,null)); // undefined
trace(obj.addStr.call(obj,null)); // Defined in applyThis.as

Similarly, to call a function defined in a dynamic class, you must use this to scope the function:
// incorrect version of simple.as
dynamic class simple{

function callfunc(){
trace(func());

}

}

// correct version of simple.as
dynamic class simple{

function callfunc(){
trace(this.func());

}
}

this 731



// statements in FLA file
import simple;
var obj:simple = new simple();
obj.num = 0;
obj.func = function():Boolean{

return true;
}
obj.callfunc(); // syntax error with incorrect version of simple.as

Example

In the following example, the keyword this references the Circle object.
function Circle(radius) {

this.radius = radius;
this.area = Math.PI * radius * radius;

}

In the following statement assigned to a frame, the keyword this references the current 
movie clip.
// sets the alpha property of the current movie clip to 20
this._alpha = 20;

In the following statement inside an onClipEvent() handler, the keyword this references the 
current movie clip.
// when the movie clip loads, a startDrag() operation
// is initiated for the current movie clip.

onClipEvent (load) {
startDrag (this, true);

}

See also

on(), onClipEvent()

throw

Availability

Flash Player 7.

Usage

throw expression

Description

Statement; generates (“throws”) an error that can be handled (“caught”) by a catch{} or 
finally{} code block. If an exception is not caught by a catch or finally block, the string 
representation of the thrown value is sent to the Output panel.

Typically, you throw instances of the Error class or its subclasses (see the following examples).

Parameters

expression An ActionScript expression or object.
732 Chapter 12:  ActionScript Dictionary



Example

In this example, a function named checkEmail() checks whether the string that is passed to it is 
a properly formatted e-mail address. If the string does not contain an @ symbol, the function 
throws an error.
function checkEmail(email:String) {

if (email.indexOf("@") == -1) {
throw new Error("Invalid email address");

}
}

The following code then calls the checkEmail() function within a try code block, passing the 
text in a text field (email_txt) as a parameter. If the string parameter does not contain a valid e-
mail address, the error message is displayed in a text field (error_txt).
try {

checkEmail("Joe Smith”);
} catch (e) {

error_txt.text = e.toString();
}

In this example, a subclass of the Error class is thrown. The checkEmail() function is modified 
to throw an instance of that subclass. (For more information, see “Creating subclasses” 
on page 162.)
// Define Error subclass InvalidEmailError
// In InvalidEmailError.as:
class InvalidEmailAddress extends Error {

var message = "Invalid email address.";
}

function checkEmail(email:String) {
if (email.indexOf("@") == -1) {

throw new InvalidEmailAddress();
}

}

See also

Error class, try..catch..finally 
throw 733



toggleHighQuality()

Availability

Flash 2; deprecated in favor of _quality.

Usage

toggleHighQuality()

Parameters

None.

Returns

Nothing.

Description

Deprecated function; turns anti-aliasing on and off in Flash Player. Anti-aliasing smooths the 
edges of objects and slows down SWF playback. This action affects all SWF files in Flash Player.

Example

The following code could be applied to a button that, when clicked, would toggle anti-aliasing 
on and off: 
on(release) {

toggleHighQuality();
}

See also

_highquality, _quality

trace()

Availability

Flash Player 4.

Usage

trace(expression)

Parameters

expression An expression to evaluate. When a SWF file is opened in the Flash authoring 
tool (via the Test Movie command), the value of the expression parameter is displayed in the 
Output panel. 

Returns

Nothing.
734 Chapter 12:  ActionScript Dictionary



Description

Statement; evaluates the expression and displays the result in the Output panel in test mode.

Use this action to record programming notes or to display messages in the Output panel while 
testing a movie. Use the expression parameter to check if a condition exists, or to display values 
in the Output panel. The trace() action is similar to the alert function in JavaScript.

You can use the Omit Trace Actions command in Publish Settings to remove trace() actions 
from the exported SWF file. 

Example

This example is from a game in which a draggable movie clip instance named my_mc must be 
released on a specific target. A conditional statement evaluates the _droptarget property and 
executes different actions depending on where my_mc is released. The trace() action is used at 
the end of the script to evaluate the location of the my_mc movie clip and to display the result in 
the Output panel. If my_mc doesn’t behave as expected (for example, if it snaps to the wrong 
target), the values sent to the Output panel by the trace() action will help you determine the 
problem in the script.
on(press) {

my_mc.startDrag();
}

on(release) {
if(eval(_droptarget) != target) {
  my_mc._x = my_mc_xValue;
  my_mc._y = my_mc_yValue;
} else {

var my_mc_xValue = my_mc._x;
var my_mc_yValue = my_mc._y;
target = "_root.pasture";

}
trace("my_mc_xValue = " + my_mc_xValue);
trace("my_mc_xValue = " + my_mc_xValue);
stopDrag();

}

true

Availability

Flash Player 5.

Usage

true

Description

Constant; a unique Boolean value that represents the opposite of false.

See also

false
true 735



try..catch..finally

Availability

Flash Player 7.

Usage

try {
// ... try block ...

} finally {
// ... finally block ...

}
try {

// ... try block ...
} catch(error[:ErrorType1]) {

// ... catch block ...
} [catch(error[:ErrorTypeN]) {

// ... catch block ...
}] [finally {

// ... finally block ...
}]

Parameters

error The expression thrown from a throw statement, typically an instance of the Error class 
or a subclass thereof.

ErrorType An optional type specifier for the error identifier. The catch clause only catches 
errors of the specified type. 

Description

Keywords; enclose a block of code in which an error can occur, and then respond to the error. If 
any code within the try code block throws an error (using the throw action), control passes to 
the catch block, if one exists, then to the finally code block, if one exists. The finally block 
always executes, regardless of whether an error was thrown. If code within the try block doesn’t 
throw an error (that is, if the try block completes normally), then the code in the finally 
block is still executed. The finally block executes even if the try block exits using a 
return statement. 

A try block must be followed by a catch block, a finally block, or both. A single try block can 
have multiple catch blocks but only one finally block. You can nest try blocks as many levels 
deep as desired.

The error parameter specified in a catch handler must be a simple identifier such as e or 
theException or x. The variable in a catch handler can also be typed. When used with multiple 
catch blocks, typed errors let you catch multiple types of errors thrown from a single try block.

If the exception thrown is an object, the type will match if the thrown object is a subclass of the 
specified type. If an error of a specific type is thrown, the catch block that handles the 
corresponding error is executed. If an exception that is not of the specified type is thrown, the 
catch block does not execute and the exception is automatically thrown out of the try block to a 
catch handler that matches it. 

If an error is thrown within a function, and the function does not include a catch handler, then 
the ActionScript interpreter exits that function, as well as any caller functions, until a catch block 
is found. During this process, finally handlers are called at all levels.
736 Chapter 12:  ActionScript Dictionary



Example

The following example shows how to create a try..finally statement. Because code in the 
finally block is guaranteed to execute, it is typically used to perform any necessary “clean-up” 
code after a try block executes. In this example, the finally block is used to delete an 
ActionScript object, regardless of whether an error occurred.
var account = new Account()
try {

var returnVal = account.getAccountInfo();
if(returnVal != 0) {

throw new Error("Error getting account information.");
}

}
finally {

// Delete the 'account' object no matter what.
if(account != null) {

delete account;
}

}

The following example demonstrates a try..catch statement. The code within the try block is 
executed. If an exception is thrown by any code within the try block, control passes to the catch 
block, which displays the error message in a text field using the Error.toString() method. 
var account = new Account()
try {

var returnVal = account.getAccountInfo();
if(returnVal != 0) {

throw new Error("Error getting account information.");
}

} catch (e) {
status_txt.text = e.toString();

}

The following example shows a try code block with multiple, typed catch code blocks. 
Depending on the type of error that occurred, the try code block throws a different type of 
object. In this case, myRecordSet is an instance of a (hypothetical) class named RecordSet whose 
sortRows() method can throw two different types of errors: RecordSetException and 
MalformedRecord.

In this example, the RecordSetException and MalformedRecord objects are subclasses of the 
Error class. Each is defined in its own AS class file. (For more information, see Chapter 9, 
“Creating Classes with ActionScript 2.0,” on page 155.)
// In RecordSetException.as:
class RecordSetException extends Error {

var message = "Record set exception occurred."
}
// In MalformedRecord.as:
class MalformedRecord extends Error {

var message = "Malformed record exception occurred.";
}

try..catch..finally 737



Within the RecordSet class’s sortRows() method, one of these previously defined error objects 
are thrown depending on the type of exception that occurred. The following code snippet shows 
how this code might look.
// Within RecordSet.as class file...
function sortRows() {

...
if(recordSetErrorCondition) {

throw new RecordSetException();
}
if(malFormedRecordCondition) {

throw new MalformedRecord();
}
...

}

Finally, in another AS file or FLA script, the following code invokes the sortRows() method on 
an instance of the RecordSet class. It defines catch blocks for each type of error that is thrown by 
sortRows().
try {

myRecordSet.sortRows();
} catch (e:RecordSetException) {

trace("Caught a recordset exception");
} catch (e:MalformedRecord) {

trace("Caught a malformed record exception");
}

See also

Error class, throw, class, extends
738 Chapter 12:  ActionScript Dictionary



typeof

Availability

Flash Player 5.

Usage

typeof(expression)

Parameters

expression A string, movie clip, button, object, or function.

Description

Operator; a unary operator placed before a single parameter. The typeof operator causes the 
Flash interpreter to evaluate expression; the result is a string specifying whether the expression is 
a string, movie clip, object, function, number, or Boolean value. The following table shows the 
results of the typeof operator on each type of expression.

Parameter Output

String string

Movie clip movieclip

Button object

Text field object

Number number

Boolean boolean

Object object

Function function
typeof 739



undefined

Availability

Flash Player 5.

Usage

undefined

Parameters

None.

Returns

Nothing.

Description

A special value, usually used to indicate that a variable has not yet been assigned a value. A 
reference to an undefined value returns the special value undefined. The ActionScript code 
typeof(undefined) returns the string "undefined". The only value of type undefined 
is undefined.

In files published for Flash Player 6 or earlier, the value of undefined.toString() is 
"" (an empty string). In files published for Flash Player 7 or later, the value of 
undefined.toString() is undefined.

The value undefined is similar to the special value null. When null and undefined are 
compared with the equality operator, they compare as equal.

Example

In this example, the variable x has not been declared and therefore has the value undefined. In 
the first section of code, the equality operator (==) compares the value of x to the value 
undefined and the appropriate result is sent to the Output panel. In the second section of code, 
the equality operator compares the values null and undefined.
// x has not been declared
trace ("The value of x is " + x);
if (x == undefined) {
  trace ("x is undefined");
} else {
  trace ("x is not undefined");
}

trace ("typeof (x) is " + typeof (x));
if (null == undefined) {
  trace ("null and undefined are equal");
} else {
  trace ("null and undefined are not equal");
}

The following result is displayed in the Output panel.
The value of x is undefined
x is undefined
typeof (x) is undefined
null and undefined are equal
740 Chapter 12:  ActionScript Dictionary



unescape

Availability

Flash Player 5.

Usage

unescape(x)

Parameters

x A string with hexadecimal sequences to escape.

Returns

A string decoded from a URL-encoded parameter.

Description

Function; evaluates the parameter x as a string, decodes the string from URL-encoded format 
(converting all hexadecimal sequences to ASCII characters), and returns the string. 

Example

The following example illustrates the escape-to-unescape conversion process.
escape("Hello{[World]}");

The escaped result is as follows:
("Hello%7B%5BWorld%5D%7D’);

Use unescape to return to the original format:
unescape("Hello%7B%5BWorld%5D%7D");

The result is as follows:
Hello{[World]}

unloadMovie()

Availability

Flash Player 3.

Usage

unloadMovie(target)

Parameters

target The target path of a movie clip.

Returns

None.

Description

Function; removes a movie clip that was loaded by means of loadMovie() from Flash Player. To 
unload a movie that was loaded by means of loadMovieNum(), use unloadMovieNum() instead 
of unloadMovie().
unloadMovie() 741



Example

The following example unloads the movie clip draggable_mc on the main Timeline, and loads 
movie.swf into level 4.
on (press) {
    unloadMovie ("_root.draggable_mc");
    loadMovieNum ("movie.swf", 4);
}

The following example unloads the movie loaded into level 4.
on (press) {
    unloadMovieNum (4);
}

See also

loadMovie(), MovieClipLoader.unloadClip()

unloadMovieNum()

Availability

Flash Player 3.

Usage

unloadMovieNum(level)

Parameters

level The level (_levelN) of a loaded movie.

Returns

Nothing.

Description

Function; removes a movie that was loaded by means of loadMovieNum() from Flash Player. 
To unload a movie that was loaded by means of loadMovie(), use unloadMovie() instead 
of unloadMovieNum().

See also

loadMovie(), loadMovieNum(), unloadMovie()
742 Chapter 12:  ActionScript Dictionary



updateAfterEvent()

Availability

Flash Player 5.

Usage

updateAfterEvent()

Parameters

None.

Returns

Nothing.

Description

Function; updates the display (independent of the frames per second set for the movie) when you 
call it within an onClipEvent() handler or as part of a function or method that you pass to 
setInterval(). Flash ignores calls to updateAfterEvent that are not within an 
onClipEvent() handler or part of a function or method passed to setInterval().

See also

onClipEvent(), setInterval()

var

Availability

Flash Player 5.

Usage

var variableName [= value1] [...,variableNameN [=valueN]]

Parameters

variableName An identifier.

value The value assigned to the variable.

Returns

Nothing.

Description

Statement; used to declare local or Timeline variables. 

• If you declare variables inside a function, the variables are local. They are defined for the 
function and expire at the end of the function call. 

• If variables are not declared inside a block ({}) but the action list was executed with a call() 
action, the variables are local and expire at the end of the current list. 

• If variables are not declared inside a block and the current action list was not executed with the 
call() action, the variables are interpreted as Timeline variables. However, you don’t have to use 
var to declare Timeline variables.
var 743



You cannot declare a variable scoped to another object as a local variable:
my_array.length = 25; // ok
var my_array.length = 25; // syntax error

When you use var, you can strictly type the variable; see “Strict data typing” on page 38
Note: Classes defined in external scripts also support public, private, and static variable scopes. See 
Chapter 9, “Creating Classes with ActionScript 2.0,” on page 155 and private, public, and static.

Video class

Availability

Flash Player 6; the ability to play Flash Video (FLV) files was added in Flash Player 7.

Description

The Video class lets you display live streaming video on the Stage without embedding it in your 
SWF file. You capture the video by using Camera.get(). In files published for Flash Player 7 and 
later, you can also use the Video class to play back Flash Video (FLV) files over HTTP or from the 
local file system. For more information, see “Playing back external FLV files dynamically” 
on page 197, NetConnection class, and NetStream class.

A Video object can be used like a movie clip. As with other objects you place on the stage, you can 
control various properties of Video objects. For example, you can move the Video object around 
on the stage by using its _x and _y properties; you can change its size using its _height and 
_width properties, and so on.

To display the video stream, first place a Video object on the Stage. Then use 
Video.attachVideo() to attach the video stream to the Video object. 

To place a Video object on the Stage:

1 If the Library panel isn’t visible, select Window > Library to display it.
2 Add an embedded Video object to the library by clicking the Options menu on the right side 

of the Library panel title bar and selecting New Video.
3 Drag the Video object to the Stage and use the Property inspector to give it a unique instance 

name, such as my_video. (Do not name it Video.)

Method summary for the Video class

Property summary for the Video class

Method Description

Video.attachVideo() Specifies a video stream to be displayed within the boundaries of the Video 
object on the Stage. 

Video.clear() Clears the image currently displayed in the Video object.

Property Description

Video.deblocking Specifies the behavior for the deblocking filter that the video compressor 
applies as needed when streaming the video. 

Video.height Read-only; the height of the video stream, in pixels.
744 Chapter 12:  ActionScript Dictionary



Video.attachVideo()

Availability

Flash Player 6; the ability to work with Flash Video (FLV) files was added in Flash Player 7.

Usage

my_video.attachVideo(source)

Parameters

source A Camera object that is capturing video data or a NetStream object. To drop the 
connection to the Video object, pass null for source. 

Returns

Nothing.

Description

Method; specifies a video stream (source) to be displayed within the boundaries of the Video 
object on the Stage. The video stream is either an FLV file being displayed by means of the 
NetStream.play() command, a Camera object, or null. If source is null, video is no longer played 
within the Video object.

You don’t have to use this method if the FLV file contains only audio; the audio portion of an 
FLV files is played automatically when the NetStream.play() command is issued. 

If you want to control the audio associated with an FLV file, you can use 
MovieClip.attachAudio() to route the audio to a movie clip; you can then create a Sound 
object to control some aspects of the audio. For more information, see 
MovieClip.attachAudio().

Example

The following example plays live video locally.
my_cam = Camera.get();
my_video.attachVideo(my_cam); // my_video is a Video object on the Stage

The following example plays a previously recorded file named myVideo.flv that is stored in the 
same directory as the SWF file.
var nc:NetConnection = new NetConnection();
nc.connect(null);
var ns:NetStream = new NetStream(my_nc);
my_video.attachVideo(ns); // my_video is a Video object on the Stage
ns.play("myVideo.flv");

See also

Camera class, NetStream class

Video.smoothing Specifies whether the video should be smoothed (interpolated) when it 
is scaled.

Video.width Read-only; the width of the video stream, in pixels.

Property Description
Video.attachVideo() 745



Video.clear()

Availability

Flash Player 6.

Usage

my_video.clear()

Parameters

None.

Returns

Nothing.

Description

Method; clears the image currently displayed in the Video object. This is useful when, for 
example, you want to display standby information without having to hide the Video object.

See also

Video.attachVideo()

Video.deblocking

Availability

Flash Player 6.

Usage

my_video.deblocking

my_video.deblocking = setting

Description

Property; specifies the behavior for the deblocking filter that the video compressor applies as 
needed when streaming the video. The following are acceptable values for setting:

• 0 (the default): Let the video compressor apply the deblocking filter as needed.
• 1: Never use the deblocking filter.
• 2: Always use the deblocking filter.

The deblocking filter has an effect on overall playback performance, and it is usually not necessary 
for high-bandwidth video. If your system is not powerful enough, you might experience 
difficulties playing back video with this filter enabled.
746 Chapter 12:  ActionScript Dictionary



Video.height

Availability

Flash Player 6.

Usage

my_video.height

Description

Read-only property; an integer specifying the height of the video stream, in pixels. For live 
streams, this value is the same as the Camera.height property of the Camera object that is 
capturing the video stream. For FLV files, this value is the height of the file that was exported 
as FLV.

You may want to use this property, for example, to ensure that the user is seeing the video at the 
same size at which it was captured, regardless of the actual size of the Video object on the Stage.

Example

Usage 1: The following example sets the height and width values of the Video object to match the 
values of an FLV file. You should call this code after NetStream.onStatus is invoked with a code 
property of NetStream.Buffer.Full. If you call it when the code property is 
NetStream.Play.Start, the height and width values will be 0, because the Video object doesn’t 
yet have the height and width of the loaded FLV file.
// Clip is the instance name of the movie clip 
// that contains the video object "my_video".
_root.Clip._width = _root.Clip.my_video.width;
_root.Clip._height = _root.Clip.my_video.height;

Usage 2: The following example lets the user press a button to set the height and width of a video 
stream being displayed in the Flash Player to be the same as the height and width at which the 
video stream was captured. 
on (release) {

_root.my_video._width = _root.my_video.width
_root.my_video._height = _root.my_video.height

}

See also

MovieClip._height, Video.width

Video.smoothing

Availability

Flash Player 6.

Usage

my_video.smoothing

Description

Property; a Boolean value that specifies whether the video should be smoothed (interpolated) 
when it is scaled. For smoothing to work, the player must be in high-quality mode. The default 
value is false (no smoothing).
Video.smoothing 747



Video.width

Availability

Flash Player 6.

Usage

my_video.width

Description

Read-only property; an integer specifying the width of the video stream, in pixels. For live 
streams, this value is the same as the Camera.width property of the Camera object that is 
capturing the video stream. For FLV files, this value is the width of the file that was exported as an 
FLV file.

You may want to use this property, for example, to ensure that the user is seeing the video at the 
same size at which it was captured, regardless of the actual size of the Video object on the Stage.

Example

See the examples for Video.height.

void

Availability

Flash Player 5.

Usage

void (expression)

Description

Operator; a unary operator that discards the expression value and returns an undefined 
value. The void operator is often used in comparisons using the == operator to test for 
undefined values.

while

Availability

Flash Player 4.

Usage

while(condition) {
statement(s);

}

Parameters

condition The expression that is reevaluated each time the while action is executed. 

statement(s) The instructions to execute while the condition evaluates to true.

Returns

Nothing.
748 Chapter 12:  ActionScript Dictionary



Description

Statement; tests an expression and runs a statement or series of statements repeatedly in a loop as 
long as the expression is true. 

Before the statement block is run, the condition is tested; if the test returns true, the statement 
block is run. If the condition is false, the statement block is skipped and the first statement after 
the while action’s statement block is executed.

Looping is commonly used to perform an action while a counter variable is less than a specified 
value. At the end of each loop, the counter is incremented until the specified value is reached. At 
that point, the condition is no longer true, and the loop ends.

The while statement performs the following series of steps. Each repetition of steps 1–4 is called 
an iteration of the loop. The condition is retested at the beginning of each iteration, as in the 
following steps:

1 The expression condition is evaluated.
2 If condition evaluates to true or a value that converts to the Boolean value true, such as a 

nonzero number, go to step 3.
Otherwise, the while statement is completed and execution resumes at the next statement 
after the while loop.

3 Run the statement block statement(s).
4 Go to step 1.

See also

do while, continue, for, for..in

with

Availability

Flash Player 5.

Usage

with (object) {
statement(s);

}

Parameters

object An instance of an ActionScript object or movie clip. 

statement(s) An action or group of actions enclosed in curly braces. 

Returns

Nothing.

Description

Statement; lets you specify an object (such as a movie clip) with the object parameter and 
evaluate expressions and actions inside that object with the statement(s) parameter. This 
prevents you from having to repeatedly write the object’s name or the path to the object.
with 749



The object parameter becomes the context in which the properties, variables, and functions in 
the statement(s) parameter are read. For example, if object is my_array, and two of the 
properties specified are length and concat, those properties are automatically read as 
my_array.length and my_array.concat. In another example, if object is state.california, 
any actions or statements inside the with action are called from inside the california instance.

To find the value of an identifier in the statement(s) parameter, ActionScript starts at the 
beginning of the scope chain specified by the object and searches for the identifier at each level 
of the scope chain, in a specific order. 

The scope chain used by the with action to resolve identifiers starts with the first item in the 
following list and continues to the last item:

• The object specified in the object parameter in the innermost with action.
• The object specified in the object parameter in the outermost with action.
• The Activation object. (A temporary object that is automatically created when a function is 

called that holds the local variables called in the function.)
• The movie clip containing the currently executing script.
• The Global object (built-in objects such as Math and String).

To set a variable inside a with action, the variable must have been declared outside the with 
action or you must enter the full path to the Timeline on which you want the variable to live. If 
you set a variable in a with action without declaring it, the with action will look for the value 
according to the scope chain. If the variable doesn’t already exist, the new value will be set on the 
Timeline from which the with action was called.

In Flash 5 or later, the with action replaces the deprecated tellTarget action. You 
are encouraged to use with instead of tellTarget because it is a standard ActionScript extension 
to the ECMA-262 standard. The principal difference between the with and tellTarget actions 
is that with takes a reference to a movie clip or other object as its parameter, while tellTarget 
takes a target path string that identifies a movie clip as its parameter, and cannot be used to 
target objects.

Example

The following example sets the _x and _y properties of the someOther_mc instance, and then 
instructs someOther_mc to go to Frame 3 and stop.
with (someOther_mc) {

_x = 50;
_y = 100;
gotoAndStop(3);

}

The following code snippet shows how to write the preceding code without using a with action. 
someOther_mc._x = 50;
someOther_mc._y = 100;
someOther_mc.gotoAndStop(3);
750 Chapter 12:  ActionScript Dictionary



You could also write this code using the tellTarget action. However, if someOther_mc were not 
a movie clip, but an object, you could not use the with action.
tellTarget ("someOther_mc") {

_x = 50;
_y = 100;
gotoAndStop(3);

}

The with action is useful for accessing multiple items in a scope chain list simultaneously. In the 
following example, the built-in Math object is placed at the front of the scope chain. Setting Math 
as a default object resolves the identifiers cos, sin, and PI to Math.cos, Math.sin, and Math.PI, 
respectively. The identifiers a, x, y, and r are not methods or properties of the Math object, but 
since they exist in the object activation scope of the function polar(), they resolve to the 
corresponding local variables.
function polar(r) {

var a, x, y;
with (Math) {

a = PI * r * r;
x = r * cos(PI); 
y = r * sin(PI/2);

}
trace("area = " +a);
trace("x = " + x);
trace("y = " + y);
}

You can use nested with actions to access information in multiple scopes. In the following 
example, the instance fresno and the instance salinas are children of the instance california. 
The statement sets the _alpha values of fresno and salinas without changing the _alpha value 
of california.
with (california){

with (fresno){
_alpha = 20;

}
with (salinas){

_alpha = 40;
}

}

See also

tellTarget

XML class 

Availability

Flash Player 5 (became a native object in Flash Player 6, which improved 
performance significantly).

Description

Use the methods and properties of the XML class to load, parse, send, build, and manipulate 
XML document trees. 

You must use the constructor new XML() to create an XML object before calling any of the 
methods of the XML class. 
XML class 751



Method summary for the XML class

Property summary for the XML class

Method Description

XML.addRequestHeader() Adds or changes HTTP headers for POST operations.

XML.appendChild() Appends a node to the end of the specified object’s child list.

XML.cloneNode() Clones the specified node and, optionally, recursively clones all children.

XML.createElement() Creates a new XML element.

XML.createTextNode() Creates a new XML text node.

XML.getBytesLoaded() Returns the number of bytes loaded for the specified XML document.

XML.getBytesTotal() Returns the size of the XML document, in bytes.

XML.hasChildNodes() Returns true if the specified node has child nodes; otherwise, 
returns false.

XML.insertBefore() Inserts a node in front of an existing node in the specified node's child list.

XML.load() Loads a document (specified by the XML object) from a URL.

XML.parseXML() Parses an XML document into the specified XML object tree.

XML.removeNode() Removes the specified node from its parent.

XML.send() Sends the specified XML object to a URL.

XML.sendAndLoad() Sends the specified XML object to a URL and loads the server response 
into another XML object.

XML.toString() Converts the specified node and any children to XML text.

Property Description

XML.contentType Indicates the MIME type transmitted to the server.

XML.docTypeDecl Sets and returns information about an XML document’s 
DOCTYPE declaration.

XML.firstChild Read-only; references the first child in the list for the specified node.

XML.ignoreWhite When set to true, text nodes that contain only white space are discarded 
during the parsing process.

XML.lastChild References the last child in the list for the specified node.

XML.loaded Read-only; checks if the specified XML object has loaded.

XML.nextSibling Read-only; references the next sibling in the parent node’s child list.

XML.nodeName The node name of an XML object. 

XML.nodeType The type of the specified node (XML element or text node).

XML.nodeValue The text of the specified node if the node is a text node.

XML.parentNode Read-only; references the parent node of the specified node.
752 Chapter 12:  ActionScript Dictionary



Collections summary for the XML class

Event handler summary for the XML class

Constructor for the XML class

Availability

Flash Player 5.

Usage

new XML([source])

Parameters

source The XML text parsed to create the new XML object.

Returns

Nothing.

Description

Constructor; creates a new XML object. You must use the constructor to create an XML object 
before calling any of the methods of the XML class. 
Note: The createElement() and createTextNode() methods are the “constructor” methods for 
creating the elements and text nodes in an XML document tree. 

XML.previousSibling Read-only; references the previous sibling in the parent node’s child list.

XML.status A numeric status code indicating the success or failure of an XML 
document parsing operation.

XML.xmlDecl Specifies information about a document’s XML declaration.

Method Description

XML.attributes Returns an associative array containing all of the attributes of the 
specified node.

XML.childNodes Read-only; returns an array containing references to the child nodes of the 
specified node.

Event handler Description

XML.onData An event handler that is invoked when XML text has been completely 
downloaded from the server, or when an error occurs downloading XML 
text from a server.

XML.onLoad() An event handler that returns a Boolean value indicating whether the XML 
object was successfully loaded with XML.load() or XML.sendAndLoad().

Property Description
XML class 753



Example

Usage 1: The following example creates an new, empty XML object.
my_xml = new XML();

Usage 2: The following example creates an XML object by parsing the XML text specified in the 
source parameter, and populates the newly created XML object with the resulting XML 
document tree.
anyOtherXML = new XML("<state>California<city>san francisco</city></state>");

See also

XML.createElement(), XML.createTextNode()

XML.addRequestHeader()

Availability

Flash Player 6.

Usage

xml.addRequestHeader(headerName, headerValue)

xml.addRequestHeader(["headerName_1", "headerValue_1" ... "headerName_n", 
"headerValue_n"])

Parameters

headerName An HTTP request header name.

headerValue The value associated with headerName.

Returns

Nothing.

Description

Method; adds or changes HTTP request headers (such as Content-Type or SOAPAction) sent 
with POST actions. In the first usage, you pass two strings to the method: headerName and 
headerValue. In the second usage, you pass an array of strings, alternating header names and 
header values.

If multiple calls are made to set the same header name, each successive value replaces the value set 
in the previous call.

You cannot add or change the following standard HTTP headers using this method: Accept-
Ranges, Age, Allow, Allowed, Connection, Content-Length, Content-Location, Content-
Range, ETag, Host, Last-Modified, Locations, Max-Forwards, Proxy-Authenticate, Proxy-
Authorization, Public, Range, Retry-After, Server, TE, Trailer, Transfer-Encoding, 
Upgrade, URI, Vary, Via, Warning, and WWW-Authenticate.
754 Chapter 12:  ActionScript Dictionary



Example

This example adds a custom HTTP header named SOAPAction with a value of Foo to an XML 
object named my_xml.
my_xml.addRequestHeader("SOAPAction", "'Foo'");

This next example creates an array named headers that contains two alternating HTTP headers 
and their associated values. The array is passed as a parameter to the addRequestHeader() 
method.
var headers = ["Content-Type", "text/plain", "X-ClientAppVersion", "2.0"];
my_xml.addRequestHeader(headers);

See also

LoadVars.addRequestHeader()

XML.appendChild()

Availability

Flash Player 5.

Usage

my_xml.appendChild(childNode)

Parameters

childNode The child node to be added to the specified XML object’s child list.

Returns

Nothing.

Description

Method; appends the specified child node to the XML object’s child list. The appended child 
node is placed in the tree structure once removed from its existing parent node, if any. 

Example

The following example clones the last node from doc1 and appends it to doc2.
doc1 = new XML(src1);
doc2 = new XML();
node = doc1.lastChild.cloneNode(true);
doc2.appendChild(node);
XML.appendChild() 755



XML.attributes

Availability

Flash Player 5.

Usage

my_xml.attributes

Parameters

None.

Returns

An array.

Description

Property; an associative array containing all attributes of the specified XML object. 

Example

The following example writes the names of the XML attributes to the Output window.
str = "<mytag name=\"Val\"> intem </mytag>";
doc = new XML(str);
y = doc.firstChild.attributes.name;

trace (y);
doc.firstChild.attributes.order = "first";
z = doc.firstChild.attributes.order

trace(z);

The following is written to the Output panel:
Val
first
756 Chapter 12:  ActionScript Dictionary



XML.childNodes

Availability

Flash Player 5.

Usage

my_xml.childNodes

Parameters

None.

Returns

An array.

Description

Property (read-only); an array of the specified XML object’s children. Each element in the array is 
a reference to an XML object that represents a child node. This is a read-only property and 
cannot be used to manipulate child nodes. Use XML.appendChild(), XML.insertBefore(), and 
XML.removeNode() to manipulate child nodes. 

This property is undefined for text nodes (nodeType == 3).

See also

XML.nodeType

XML.cloneNode()

Availability

Flash Player 5.

Usage

my_xml.cloneNode(deep)

Parameters

deep Boolean value specifying whether the children of the specified XML object are 
recursively cloned. 

Returns

An XML node.

Description

Method; constructs and returns a new XML node of the same type, name, value, and attributes as 
the specified XML object. If deep is set to true, all child nodes are recursively cloned, resulting in 
an exact copy of the original object’s document tree. 

The clone of the node that is returned is no longer associated with the tree of the cloned item. 
Consequently, nextSibling, parentNode, and previousSibling all have a value of null. If a 
clip copy is not performed, firstChild and lastChild are also null.
XML.cloneNode() 757



XML.contentType

Availability

Flash Player 6.

Usage

my_xml.contentType

Description

Property; the MIME type that is sent to the server when you call the XML.send() or 
XML.sendAndLoad() method. The default is application/x-www-form-urlencoded.

See also

XML.send(), XML.sendAndLoad()

XML.createElement()

Availability

Flash Player 5.

Usage

my_xml.createElement(name)

Parameters

name The tag name of the XML element being created.

Returns

An XML element.

Description

Method; creates a new XML element with the name specified in the parameter. The new element 
initially has no parent, no children, and no siblings. The method returns a reference to the newly 
created XML object representing the element. This method and createTextNode() are the 
constructor methods for creating nodes for an XML object.
758 Chapter 12:  ActionScript Dictionary



XML.createTextNode()

Availability

Flash Player 5.

Usage

my_xml.createTextNode(text)

Parameters

text The text used to create the new text node.

Returns

Nothing.

Description

Method; creates a new XML text node with the specified text. The new node initially has no 
parent, and text nodes cannot have children or siblings. This method returns a reference to the 
XML object representing the new text node. This method and createElement() are the 
constructor methods for creating nodes for an XML object.

XML.docTypeDecl

Availability

Flash Player 5.

Usage

my_xml.XMLdocTypeDecl

Description

Property; specifies information about the XML document’s DOCTYPE declaration. After the XML 
text has been parsed into an XML object, the XML.docTypeDecl property of the XML object is 
set to the text of the XML document’s DOCTYPE declaration. For example, <!DOCTYPE greeting 
SYSTEM "hello.dtd">. This property is set using a string representation of the DOCTYPE 
declaration, not an XML node object.

The ActionScript XML parser is not a validating parser. The DOCTYPE declaration is read by the 
parser and stored in the docTypeDecl property, but no DTD validation is performed.

If no DOCTYPE declaration was encountered during a parse operation, XML.docTypeDecl is set to 
undefined. XML.toString() outputs the contents of XML.docTypeDecl immediately after the 
XML declaration stored in XML.xmlDecl, and before any other text in the XML object. If 
XML.docTypeDecl is undefined, no DOCTYPE declaration is output.

Example

The following example uses XML.docTypeDecl to set the DOCTYPE declaration for an XML object:
my_xml.docTypeDecl = "<!DOCTYPE greeting SYSTEM \"hello.dtd\">";

See also

XML.toString(), XML.xmlDecl
XML.docTypeDecl 759



XML.firstChild

Availability

Flash Player 5.

Usage

my_xml.firstChild

Description

Property (read-only); evaluates the specified XML object and references the first child in the 
parent node’s children list. This property is null if the node does not have children. This 
property is undefined if the node is a text node. This is a read-only property and cannot be used 
to manipulate child nodes; use appendChild(), insertBefore(), and removeNode() to 
manipulate child nodes.

See also

XML.appendChild(), XML.insertBefore(), XML.removeNode()

XML.getBytesLoaded()

Availability

Flash Player 6.

Usage

XML.getBytesLoaded()

Parameters

None.

Returns

An integer indicating the number of bytes loaded.

Description

Method; returns the number of bytes loaded (streamed) for the XML document. You can 
compare the value of getBytesLoaded() with the value of getBytesTotal() to determine what 
percentage of an XML document has loaded.

See also

XML.getBytesTotal()
760 Chapter 12:  ActionScript Dictionary



XML.getBytesTotal()

Availability

Flash Player 6.

Usage

XML.getBytesTotal()

Parameters

None.

Returns

An integer.

Description

Method; returns the size, in bytes, of the XML document.

See also

XML.getBytesLoaded()

XML.hasChildNodes()

Availability

Flash Player 5.

Usage

my_xml.hasChildNodes()

Parameters

None.

Returns

A Boolean value.

Description

Method; returns true if the specified XML object has child nodes; otherwise, returns false. 

Example

The following example uses the information from the XML object in a user-defined function.
if (rootNode.hasChildNodes()) {

myfunc (rootNode.firstChild);
}

XML.hasChildNodes() 761



XML.ignoreWhite

Availability

Flash Player 5.

Usage

my_xml.ignoreWhite = boolean

XML.prototype.ignoreWhite = boolean

Parameters

boolean A Boolean (true or false) value.

Description

Property; default setting is false. When set to true, text nodes that contain only white space are 
discarded during the parsing process. Text nodes with leading or trailing white space are 
unaffected.

Usage 1: You can set the ignoreWhite property for individual XML objects, as in the 
following code:
my_xml.ignoreWhite = true

Usage 2: You can set the default ignoreWhite property for XML objects, as in the 
following code:
XML.prototype.ignoreWhite = true

XML.insertBefore()

Availability

Flash Player 5.

Usage

my_xml.insertBefore(childNode, beforeNode)

Parameters

childNode The node to be inserted.

beforeNode The node before the insertion point for the childNode.

Returns

Nothing.

Description

Method; inserts a new child node into the XML object’s child list, before the beforeNode node. 
If the beforeNode parameter is undefined or null, the node is added using appendChild(). If 
beforeNode is not a child of my_xml, the insertion fails.
762 Chapter 12:  ActionScript Dictionary



XML.lastChild

Availability

Flash Player 5.

Usage

my_xml.lastChild

Description

Property (read-only); evaluates the XML object and references the last child in the parent node’s 
child list. This method returns null if the node does not have children. This is a read-only 
property and cannot be used to manipulate child nodes; use appendChild(), insertBefore(), 
and removeNode() to manipulate child nodes. 

See also

XML.appendChild(), XML.insertBefore(), XML.removeNode()

XML.load()

Availability

Flash Player 5; behavior changed in Flash Player 7.

Usage

my_xml.load(url)

Parameters

url The URL where the XML document to be loaded is located. If the SWF file issuing this 
call is running in a web browser, url must be in the same domain as the SWF file; for details, see 
“Description,” below.

Returns

Nothing.

Description

Method; loads an XML document from the specified URL, and replaces the contents of the 
specified XML object with the downloaded XML data. The URL is relative, and is called via 
HTTP. The load process is asynchronous; it does not finish immediately after the load() method 
is executed. 

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed. For more 
information, see “About allowing cross-domain data loading” on page 190.
XML.load() 763



When load() is executed, the XML object property loaded is set to false. When the XML data 
finishes downloading, the loaded property is set to true, and the onLoad() method is invoked. 
The XML data is not parsed until it is completely downloaded. If the XML object previously 
contained any XML trees, they are discarded.

You can specify your own event handler in place of the onLoad() method. 

Example

The following is a simple example using XML.load():
doc = new XML();
doc.load ("theFile.xml");

See also

XML.loaded, XML.onLoad() 

XML.loaded

Availability

Flash Player 5.

Usage

my_xml.loaded

Description

Property (read-only); determines whether the document-loading process initiated by the 
XML.load() call has completed. If the process completes successfully, the method returns true; 
otherwise, it returns false. 

Example

The following example uses XML.loaded in a simple script.
if (doc.loaded) {

gotoAndPlay(4);
}

XML.nextSibling

Availability

Flash Player 5.

Usage

my_xml.nextSibling

Description

Property (read-only); evaluates the XML object and references the next sibling in the parent 
node’s child list. This method returns null if the node does not have a next sibling node. This is 
a read-only property and cannot be used to manipulate child nodes. Use appendChild(), 
insertBefore(), and removeNode() to manipulate child nodes. 

See also

XML.appendChild(), XML.insertBefore(), XML.removeNode()
764 Chapter 12:  ActionScript Dictionary



XML.nodeName

Availability

Flash Player 5.

Usage

my_xml.nodeName

Description

Property; the node name of the XML object. If the XML object is an XML element 
(nodeType == 1), nodeName is the name of the tag representing the node in the XML file. For 
example, TITLE is the nodeName of an HTML TITLE tag. If the XML object is a text node 
(nodeType == 3), the nodeName is null. 

See also

XML.nodeType

XML.nodeType

Availability

Flash Player 5.

Usage

my_xml.nodeType

Description

Property (read-only); takes or returns a nodeType value, where 1 is an XML element and 3 is a 
text node. 

See also

XML.nodeValue

XML.nodeValue

Availability

Flash Player 5.

Usage

my_xml.nodeValue

Description

Property; the node value of the XML object. If the XML object is a text node, the nodeType is 3, 
and the nodeValue is the text of the node. If the XML object is an XML element (node type 
is 1), it has a null nodeValue and is read-only. 

See also

XML.nodeType
XML.nodeValue 765



XML.onData

Availability

Flash Player 5

Usage

my_xml.onData = function(src) {
// your statements here

}

Parameters

src The raw data, usually in XML format, that is sent by the server.

Returns

Nothing.

Description

Event handler; invoked when XML text has been completely downloaded from the server, or 
when an error occurs downloading XML text from a server. This handler is invoked before the 
XML is parsed and therefore can be used to call a custom parsing routine instead of using the 
Flash XML parser. The XML.onData method returns either the value undefined, or a string that 
contains XML text downloaded from the server. If the returned value is undefined, an error 
occurred while downloading the XML from the server.

By default, the XML.onData method invokes XML.onLoad(). You can override the XML.onData 
method with your own behavior, but XML.onLoad() will no longer be called unless you call it in 
your implementation of XML.onData.

Example

The following example shows what the onData method looks like by default:
XML.prototype.onData = function (src) {
  if (src == undefined) {
    this.onLoad(false);
  } else {
    this.parseXML(src);
    this.loaded = true;
    this.onLoad(true);
  }
}

The XML.onData method can be overridden to intercept the XML text without parsing it.
766 Chapter 12:  ActionScript Dictionary



XML.onLoad()

Availability

Flash Player 5.

Usage

my_xml.onLoad = function (success) {
//your statements here

}

Parameters

success A Boolean value indicating whether the XML object was successfully loaded with a 
XML.load() or XML.sendAndLoad() operation. 

Returns

Nothing.

Description

Event handler; invoked by Flash Player when an XML document is received from the server. If the 
XML document is received successfully, the success parameter is true. If the document was not 
received, or if an error occurred in receiving the response from the server, the success parameter 
is false. The default implementation of this method is not active. To override the default 
implementation, you must assign a function containing your own actions. 

Example

The following example creates a simple SWF file for a simple e-commerce storefront application. 
The sendAndLoad() method transmits an XML element containing the user’s name and 
password, and installs an onLoad handler to handle the reply from the server.
function myOnLoad(success) {

if (success) {
if (e.firstChild.nodeName == "LOGINREPLY_xml" &&

e.firstChild.attributes.status == "OK") {
gotoAndPlay("loggedIn")

} else {
gotoAndStop("loginFailed")

}
} else {

gotoAndStop("connectionFailed")
}

}
var myLoginReply_xml = new XML();
myLoginReply_xml.onLoad = myOnLoad;
my_xml.sendAndLoad("http://www.samplestore.com/login.cgi",

myLoginReply_xml);

See also

function, XML.load(), XML.sendAndLoad()
XML.onLoad() 767



XML.parentNode

Availability

Flash Player 5.

Usage

my_xml.parentNode

Description

Property (read-only); references the parent node of the specified XML object, or returns null if 
the node has no parent. This is a read-only property and cannot be used to manipulate child 
nodes; use appendChild(), insertBefore(), and removeNode() to manipulate children. 

XML.parseXML()

Availability

Flash Player 5.

Usage

my_xml.parseXML(source)

Parameters

source The XML text to be parsed and passed to the specified XML object.

Returns

Nothing.

Description

Method; parses the XML text specified in the source parameter, and populates the specified 
XML object with the resulting XML tree. Any existing trees in the XML object are discarded.

XML.previousSibling

Availability

Flash Player 5.

Usage

my_xml.previousSibling

Description

Property (read-only); returns a reference to the previous sibling in the parent node’s child list. The 
property has a value of null if the node does not have a previous sibling node. This is a read-only 
property and cannot be used to manipulate child nodes; use XML.appendChild(), 
XML.insertBefore(), and XML.removeNode() to manipulate child nodes. 
768 Chapter 12:  ActionScript Dictionary



XML.removeNode()

Availability

Flash Player 5.

Usage

my_xml.removeNode()

Parameters

None.

Returns

Nothing.

Description

Method; removes the specified XML object from its parent. All descendants of the node are 
also deleted.

XML.send()

Availability

Flash Player 5.

Usage

my_xml.send(url, [window])

Parameters

url The destination URL for the specified XML object.

window The browser window to display data returned by the server: _self specifies the current 
frame in the current window, _blank specifies a new window, _parent specifies the parent of the 
current frame, and _top specifies the top-level frame in the current window. This parameter is 
optional; if no window parameter is specified, it is the same as specifying _self.

Returns

Nothing.

Description

Method; encodes the specified XML object into an XML document and sends it to the specified 
URL using the POST method. 
XML.send() 769



XML.sendAndLoad()

Availability

Flash Player 5; behavior changed in Flash Player 7.

Usage

my_xml.sendAndLoad(url, targetXMLobject)

Parameters

url The destination URL for the specified XML object. If the SWF file issuing this call is 
running in a web browser, url must be in the same domain as the SWF file; for details, see 
“Description,” below.

targetXMLobject An XML object created with the XML constructor method that will receive 
the return information from the server.

Returns

Nothing.

Description

Method; encodes the specified XML object into a XML document, sends it to the specified URL 
using the POST method, downloads the server’s response and then loads it into the 
targetXMLobject specified in the parameters. The server response is loaded in the same manner 
used by the load() method.

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed. For more 
information, see “About allowing cross-domain data loading” on page 190.

When load() is executed, the XML object property loaded is set to false. When the XML data 
finishes downloading, the loaded property is set to true, and the onLoad() method is invoked. 
The XML data is not parsed until it is completely downloaded. If the XML object previously 
contained any XML trees, they are discarded.

See also

XML.load()
770 Chapter 12:  ActionScript Dictionary



XML.status

Availability

Flash Player 5.

Usage

my_xml.status

Description

Property; automatically sets and returns a numeric value indicating whether an XML document 
was successfully parsed into an XML object. The numeric status codes and a description of each 
are listed as follows:

• 0   No error; parse was completed successfully.
• -2   A CDATA section was not properly terminated.
• -3   The XML declaration was not properly terminated.
• -4   The DOCTYPE declaration was not properly terminated.
• -5   A comment was not properly terminated.
• -6   An XML element was malformed.
• -7   Out of memory.
• -8   An attribute value was not properly terminated.
• -9   A start-tag was not matched with an end-tag.
• -10   An end-tag was encountered without a matching start-tag.

XML.toString()

Availability

Flash Player 5.

Usage

my_xml.toString()

Parameters

None.

Returns

A string.

Description

Method; evaluates the specified XML object, constructs a textual representation of the XML 
structure including the node, children, and attributes, and returns the result as a string. 

For top-level XML objects (those created with the constructor), XML.toString() outputs the 
document’s XML declaration (stored in XML.xmlDecl), followed by the document’s DOCTYPE 
declaration (stored in XML.docTypeDecl), followed by the text representation of all XML nodes 
in the object. The XML declaration is not output if XML.xmlDecl is undefined. The DOCTYPE 
declaration is not output if XML.docTypeDecl is undefined.
XML.toString() 771



Example

The following code is an example of XML.toString() that sends <h1>test</h1> to the 
Output panel.
node = new XML("<h1>test</h1>");
trace(node.toString());

See also

XML.docTypeDecl, XML.xmlDecl

XML.xmlDecl

Availability

Flash Player 5.

Usage

my_xml.xmlDecl

Description

Property; specifies information about a document’s XML declaration. After the XML document 
is parsed into an XML object, this property is set to the text of the document’s XML declaration. 
This property is set using a string representation of the XML declaration, not an XML node 
object. If no XML declaration was encountered during a parse operation, the property is set to 
undefined.XML. The toString() method outputs the contents of XML.xmlDecl before any 
other text in the XML object. If XML.xmlDecl contains the undefined type, no XML declaration 
is output.

Example

The following example uses XML.xmlDecl to set the XML document declaration for an 
XML object.
my_xml.xmlDecl = "<?xml version=\"1.0\" ?>";

The following is an example of XML Declaration:
<?xml version="1.0" ?>

See also

XML.docTypeDecl, XML.toString()
772 Chapter 12:  ActionScript Dictionary



XMLNode class

Availability

Flash Player 5.

Description

The XMLnode class supports the following properties, methods, and collections; for information 
on their usage, see the corresponding XML class entries.

See also

XML class

Property, method, or collection Corresponding XML class entry

appendChild() XML.appendChild()

attributes XML.attributes

childNodes XML.childNodes

cloneNode() XML.cloneNode()

firstChild XML.firstChild

hasChildNodes() XML.hasChildNodes()

insertBefore() XML.insertBefore()

lastChild XML.lastChild

nextSibling XML.nextSibling

nodeName XML.nodeName

nodeType XML.nodeType

nodeValue XML.nodeValue

parentNode XML.parentNode

previousSibling XML.previousSibling

removeNode() XML.removeNode()

toString() XML.toString()
XMLNode class 773



XMLSocket class

Availability

Flash Player 5.

Description

The XMLSocket class implements client sockets that allow the computer running Flash Player to 
communicate with a server computer identified by an IP address or domain name. The 
XMLSocket class is useful for client-server applications that require low latency, such as real-time 
chat systems. A traditional HTTP-based chat solution frequently polls the server and downloads 
new messages using an HTTP request. In contrast, an XMLSocket chat solution maintains an 
open connection to the server, which allows the server to immediately send incoming messages 
without a request from the client.

To use the XMLSocket class, the server computer must run a daemon that understands the 
protocol used by the XMLSocket class. The protocol is as follows: 

• XML messages are sent over a full-duplex TCP/IP stream socket connection.
• Each XML message is a complete XML document, terminated by a zero byte.
• An unlimited number of XML messages can be sent and received over a single 

XMLSocket connection.

The following restrictions apply to how and where an XMLSocket object can connect to 
the server: 

• The XMLSocket.connect() method can connect only to TCP port numbers greater than or 
equal to 1024. One consequence of this restriction is that the server daemons that 
communicate with the XMLSocket object must also be assigned to port numbers greater than 
or equal to 1024. Port numbers below 1024 are often used by system services such as FTP, 
Telnet, and HTTP, thus XMLSocket objects are barred from these ports for security reasons. 
The port number restriction limits the possibility that these resources will be inappropriately 
accessed and abused.

• The XMLSocket.connect() method can connect only to computers in the same domain 
where the SWF file resides. This restriction does not apply to SWF files running off a local 
disk. (This restriction is identical to the security rules for loadVariables(), 
XML.sendAndLoad(), and XML.load().) To connect to a server daemon running in a domain 
other than then one where the SWF resides, you can create a security policy file on the server 
that allows access from specific domains. For more information on creating policy files for 
XMLSocket connections, see “About allowing cross-domain data loading” on page 190.

Setting up a server to communicate with the XMLSocket object can be challenging. If your 
application does not require real-time interactivity, use the loadVariables() action, or Flash 
HTTP-based XML server connectivity (XML.load(), XML.sendAndLoad(), XML.send()), 
instead of the XMLSocket class. 

To use the methods of the XMLSocket class, you must first use the constructor, new XMLSocket, 
to create a new XMLSocket object.
774 Chapter 12:  ActionScript Dictionary



Method summary for the XMLSocket class

Event handler summary for the XMLSocket class

Constructor for the XMLSocket class

Availability

Flash Player 5.

Usage

new XMLSocket()

Parameters

None.

Returns

Nothing.

Description

Constructor; creates a new XMLSocket object. The XMLSocket object is not initially connected 
to any server. You must call XMLSocket.connect() to connect the object to a server. 

Method Description

XMLSocket.close() Closes an open socket connection.

XMLSocket.connect() Establishes a connection to the specified server.

XMLSocket.send() Sends an XML object to the server.

Event handler Description

XMLSocket.onClose() An event handler that is invoked when an XMLSocket connection 
is closed. 

XMLSocket.onConnect() An event handler that is invoked by Flash Player when a connection 
request initiated through XMLSocket.connect() has succeeded or failed.

XMLSocket.onData() An event handler that is invoked when an XML message has been 
downloaded from the server.

XMLSocket.onXML() An event handler that is invoked when an XML object arrives from 
the server. 
XMLSocket class 775



XMLSocket.close()

Availability

Flash Player 5.

Usage

myXMLSocket.close()

Parameters

None.

Returns

Nothing.

Description

Method; closes the connection specified by XMLSocket object.

See also

XMLSocket.connect()

XMLSocket.connect()

Availability

Flash Player 5; behavior changed in Flash Player 7.

Usage

myXMLSocket.connect(host, port)

Parameters

host A fully qualified DNS domain name, or an IP address in the form aaa.bbb.ccc.ddd. You 
can also specify null to connect to the host server on which the SWF file resides. If the SWF file 
issuing this call is running in a web browser, url must be in the same domain as the SWF file; for 
details, see “Description,” below.

port The TCP port number on the host used to establish a connection. The port number must 
be 1024 or higher.

Returns

A Boolean value.

Description

Method; establishes a connection to the specified Internet host using the specified TCP port 
(must be 1024 or higher), and returns true or false depending on whether a connection is 
successfully established. If you don’t know the port number of your Internet host machine, 
contact your network administrator. 

If you specify null for the host parameter, the host contacted will be the host where the SWF file 
calling XMLSocket.connect() resides. For example, if the SWF file was downloaded from http:/
/www.yoursite.com,specifying null for the host parameter is the same as entering the IP address 
for www.yoursite.com.
776 Chapter 12:  ActionScript Dictionary



In SWF files running in a version of the player earlier than Flash Player 7, url must be in the 
same superdomain as the SWF file that is issuing this call. For example, a SWF file at 
www.someDomain.com can load variables from a SWF file at store.someDomain.com, because 
both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same 
domain (see “Flash Player security features” on page 188). For example, a SWF file at 
www.someDomain.com can load variables only from SWF files that are also at 
www.someDomain.com. If you want to load variables from a different domain, you can place a 
cross-domain policy file on the server hosting the SWF file that is being accessed (it must be placed 
on the HTTP server running on port 80 in the same domain as the socket server). For more 
information, see “About allowing cross-domain data loading” on page 190.

When load() is executed, the XML object property loaded is set to false. When the XML data 
finishes downloading, the loaded property is set to true, and the onLoad() method is invoked. 
The XML data is not parsed until it is completely downloaded. If the XML object previously 
contained any XML trees, they are discarded.

If XMLSocket.connect() returns a value of true, the initial stage of the connection process is 
successful; later, the XMLSocket.onConnect method is invoked to determine whether the final 
connection succeeded or failed. If XMLSocket.connect() returns false, a connection could not 
be established. 

Example

The following example uses XMLSocket.connect() to connect to the host where the SWF 
file resides, and uses trace to display the return value indicating the success or failure of 
the connection.
function myOnConnect(success) {

if (success) {
trace ("Connection succeeded!")

  } else {
trace ("Connection failed!")

}
}
socket = new XMLSocket()
socket.onConnect = myOnConnect
if (!socket.connect(null, 2000)) {

trace ("Connection failed!")
}

See also

function, XMLSocket.onConnect()
XMLSocket.connect() 777



XMLSocket.onClose()

Availability

Flash Player 5.

Usage

myXMLSocket.onClose() = function() {
// your statements here

}

Parameters

None.

Returns

Nothing.

Description

Event handler; invoked only when an open connection is closed by the server. The default 
implementation of this method performs no actions. To override the default implementation, you 
must assign a function containing your own actions. 

See also

function, XMLSocket.onConnect()

XMLSocket.onConnect()

Availability

Flash Player 5.

Usage

myXMLSocket.onConnect(success)
// your statements here

}

Parameters

success A Boolean value indicating whether a socket connection was successfully established 
(true or false).

Returns

Nothing.

Description

Event handler; invoked by Flash Player when a connection request initiated through 
XMLSocket.connect() has succeeded or failed. If the connection succeeded, the success 
parameter is true; otherwise the success parameter is false. 

The default implementation of this method performs no actions. To override the default 
implementation, you must assign a function containing your own actions. 
778 Chapter 12:  ActionScript Dictionary



Example

The following example illustrates the process of specifying a replacement function for the 
onConnect method in a simple chat application. 

The function controls which screen users are taken to, depending on whether a connection is 
successfully established. If the connection is successfully made, users are taken to the main chat 
screen on the frame labeled startChat. If the connection is not successful, users go to a screen 
with troubleshooting information on the frame labeled connectionFailed. 
function myOnConnect(success) {

if (success) {
gotoAndPlay("startChat")

} else {
gotoAndStop("connectionFailed")

}
}

After creating the XMLSocket object using the constructor method, the script installs the 
onConnect method using the assignment operator:
socket = new XMLSocket();
socket.onConnect = myOnConnect;

Finally, the connection is initiated. If connect() returns false, the SWF file is sent directly to 
the frame labeled connectionFailed, and onConnect is never invoked. If connect() returns 
true, the SWF file jumps to a frame labeled waitForConnection, which is the “Please wait” 
screen. The SWF file remains on the waitForConnection frame until the onConnect handler is 
invoked, which happens at some point in the future depending on network latency. 
if (!socket.connect(null, 2000)) {

gotoAndStop("connectionFailed")
} else {

gotoAndStop("waitForConnection")
}

See also

function, XMLSocket.connect()

XMLSocket.onData()

Availability

Flash Player 5.

Usage

XMLSocket.onData = function(src) {
// your statements here

}

Parameters

src A string containing the data sent by the server.

Returns

Nothing.
XMLSocket.onData() 779



Description

Event handler; invoked when a message has been downloaded from the server, terminated by a 
zero byte. You can override XMLSocket.onData to intercept the data sent by the server without 
parsing it as XML. This is a useful if you’re transmitting arbitrarily formatted data packets, and 
you’d prefer to manipulate the data directly when it arrives, rather than have Flash Player parse the 
data as XML.

By default, the XMLSocket.onData method invokes the XMLSocket.onXML method. If you 
override XMLSocket.onData with your own behavior, XMLSocket.onXML will no longer be called 
unless you call it in your implementation of XMLSocket.onData.
XMLSocket.prototype.onData = function (src) {
  this.onXML(new XML(src));
}

In the above example, the src parameter is a string containing XML text downloaded from the 
server. The zero byte terminator is not included in the string.

XMLSocket.onXML()

Availability

Flash Player 5.

Usage

myXMLSocket.onXML(object) = function() {
// your statements here

}

Parameter

object An XML object that contains a parsed XML document received from a server.

Returns

Nothing.

Description

Event handler; invoked by Flash Player when the specified XML object containing an XML 
document arrives over an open XMLSocket connection. An XMLSocket connection may be used 
to transfer an unlimited number of XML documents between the client and the server. Each 
document is terminated with a 0 (zero) byte. When Flash Player receives the 0 byte, it parses all of 
the XML received since the previous 0 byte, or since the connection was established if this is the 
first message received. Each batch of parsed XML is treated as a single XML document and passed 
to the onXML method.

The default implementation of this method performs no actions. To override the default 
implementation, you must assign a function containing actions that you define.

Example

The following function overrides the default implementation of the onXML method in a simple 
chat application. The function myOnXML instructs the chat application to recognize a single XML 
element, MESSAGE, in the following format.
<MESSAGE USER="John" TEXT="Hello, my name is John!" />. 
780 Chapter 12:  ActionScript Dictionary



The onXML handler must first be installed in the XMLSocket object as follows:
socket.onXML = myOnXML;

The function displayMessage() is assumed to be a user-defined function that displays the 
message received by the user.
function myOnXML(doc) {

var e = doc.firstChild;
if (e != null && e.nodeName == "MESSAGE") {

displayMessage(e.attributes.user, e.attributes.text);
}

}

See also

function

XMLSocket.send()

Availability

Flash Player 5.

Usage

myXMLSocket.send(object)

Parameters

object An XML object or other data to transmit to the server.

Returns

Nothing.

Description

Method; converts the XML object or data specified in the object parameter to a string and 
transmits it to the server, followed by a zero byte. If object is an XML object, the string is the 
XML textual representation of the XML object. The send operation is asynchronous; it returns 
immediately, but the data may be transmitted at a later time. The XMLSocket.send() method 
does not return a value indicating whether the data was successfully transmitted. 

If the myXMLSocket object is not connected to the server (using XMLSocket.connect()), the 
XMLSocket.send() operation will fail. 

Example

The following example illustrates how you could specify a user name and password to send the 
XML object my_xml to the server:
var my_xml = new XML();
var myLogin = my_xml.createElement("login");
myLogin.attributes.username = usernameTextField;
myLogin.attributes.password = passwordTextField;
my_xml.appendChild(myLogin);
myXMLSocket.send(my_xml);

See also

XMLSocket.connect()
XMLSocket.send() 781



782 Chapter 12:  ActionScript Dictionary



APPENDIX A
Error Messages
Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 provide enhanced 
compile-time error reporting if you specify ActionScript 2.0 (the default) when you publish a file. 
The following table contains a list of error messages that the Flash compiler can generate.     

Error number Message text

1093 A class name was expected.

1094 A base class name is expected after the ‘extends’ keyword.

1095 A member attribute was used incorrectly.

1096 The same member name may not be repeated more than once.

1097 All member functions need to have names.

1099 This statement is not permitted in a class definition.

1100 A class or interface has already been defined with this name.

1101 Type mismatch.

1102 There is no class with the name ‘<ClassName>’.

1103 There is no property with the name ‘<propertyName>’.  

1104 A function call on a non-function was attempted.

1105 Type mismatch in assignment statement: found [lhs-type] where [rhs-type] 
is required.

1106 The member is private and cannot be accessed.

1107 Variable declarations are not permitted in interfaces.

1108 Event declarations are not permitted in interfaces.

1109 Getter/setter declarations are not permitted in interfaces.

1110 Private members are not permitted in interfaces.

1111 Function bodies are not permitted in interfaces.

1112 A class may not extend itself.

1113 An interface may not extend itself.
783



1114 There is no interface defined with this name.

1115 A class may not extend an interface.

1116 An interface may not extend a class.

1117 An interface name is expected after the ‘implements’ keyword.

1118 A class may not implement a class, only interfaces.

1119 The class must implement method ‘methodName’ from interface ‘interfaceName’.

1120 The implementation of an interface method must be a method, not a property.

1121 A class may not extend the same interface more than once.

1122 The implementation of the interface method doesn’t match its definition.

1123 This construct is only available in ActionScript 1.0.

1124 This construct is only available in ActionScript 2.0.

1125 Static members are not permitted in interfaces.

1126 The expression returned must match the function’s return type.

1127 A return statement is required in this function.

1128 Attribute used outside class.

1129 A function with return type Void may not return a value.

1130 The ‘extends’ clause must appear before the ‘implements’ clause.

1131 A type identifier is expected after the ‘:’.

1132 Interfaces must use the ‘extends’ keyword, not ‘implements’.

1133 A class may not extend more than one class.

1134 An interface may not extend more than one interface.

1135 There is no method with the name ‘<methodName>’.

1136 This statement is not permitted in an interface definition.

1137 A set function requires exactly one parameter.

1138 A get function requires no parameters.

1139 Classes may only be defined in external ActionScript 2.0 class scripts.

1140 ActionScript 2.0 class scripts may only define class or interface constructs.

1141 The name of this class, ‘<A.B.C>’, conflicts with the name of another class that was 
loaded, ‘<A.B>’.

1142 The class ‘<ClassName>’ could not be loaded.

1143 Interfaces may only be defined in external ActionScript 2.0 class scripts.

1144 Instance variables cannot be accessed in static functions.

1145 Class and interface definitions cannot be nested.

Error number Message text
784 Appendix A:  Error Messages



1146 The property being referenced does not have the static attribute.

1147 This call to super does not match the superconstructor.

1148 Only the public attribute is allowed for interface methods.

1149 The import keyword cannot be used as a directive.

1150 You must export your movie as Flash 7 to use this action.

1151 You must export your movie as Flash 7 to use this expression.

1152 This exception clause is placed improperly.

1153 A class must have only one constructor.

1154 A constructor may not return a value.

1155 A constructor may not specify a return type.

1156 A variable may not be of type Void.

1157 A function parameter may not be of type Void.

1158 Static members can only be accessed directly through classes.

1159 Multiple implemented interfaces contain same method with different types.

1160 There is already a class or interface defined with this name.

1161 Classes, interfaces, and built-in types may not be deleted.

1162 There is no class with this name.

1163 The keyword ‘<keyword>’ is reserved for ActionScript 2.0 and cannot be used here.

1164 Custom attribute definition was not terminated.

1165 Only one class or interface can be defined per ActionScript 2.0 .as file.

1166 The class being compiled, ‘<A.b>’, does not match the class that was imported, 
‘<A.B>’.

1167 You must enter a class name.

1168 The class name you have entered contains a syntax error.

1169 The interface name you have entered contains a syntax error.

1170 The base class name you have entered contains a syntax error.

1171 The base interface name you have entered contains a syntax error.

1172 You must enter an interface name.

1173 You must enter a class or interface name.

1174 The class or interface name you have entered contains a syntax error.

1175 ‘variable’ is not accessible from this scope.

1176 Multiple occurrences of the ‘get/set/private/public/static’ attribute were found.

1177 A class attribute was used incorrectly.

Error number Message text
785



1178 Instance variables and functions may not be used to initialize static variables.

1179 Runtime circularities were discovered between the following classes:%1

1180 The currently targeted Flash Player does not support Debugging.

1181 The currently targeted Flash Player does not support the releaseOutside event.

1182 The currently targeted Flash Player does not support the dragOver event.

1183 The currently targeted Flash Player does not support the dragOut event.

1184 The currently targeted Flash Player does not support dragging actions.

1185 The currently targeted Flash Player does not support the loadMovie action.

1186 The currently targeted Flash Player does not support the getURL action.

1187 The currently targeted Flash Player does not support the FSCommand action.

1188 Import statements are not allowed inside class or interface definitions.

1189 The class ‘<A.B>’ cannot be imported because its leaf name is already being resolved 
to the class that is being defined, ‘<C.B>’.

1190 The class ‘<A.B>’ cannot be imported because its leaf name is already being resolved 
to imported class ‘<C.B>’.

1191 A class’s instance variables may only be initialized to compile-time 
constant expressions.

1192 Class member functions cannot have the same name as a superclass’s 
constructor function.

1193 The name of this class, ‘<ClassName>’, conflicts with the name of another class that 
was loaded.

1194 The superconstructor must be called first in the constructor body.

1195 The identifier ‘<className>’ will not resolve to built-in object ‘<ClassName>’ 
at runtime.

1196 The class ‘<A.B.ClassName>’ needs to be defined in a file whose relative path is 
<‘A.B>’.

1197 The wildcard character ‘*’ is misused in the ClassName ‘<ClassName>’.

1198 The member function ‘<classname>’ has a different case from the name of the class 
being defined, ‘<ClassName>’, and will not be treated as the class constructor 
at runtime.

1199 The only type allowed for a for-in loop iterator is String.

1200 A setter function may not return a value.

1201 The only attributes allowed for constructor functions are public and private.

Error number Message text
786 Appendix A:  Error Messages



APPENDIX B
Operator Precedence and Associativity
This table lists all of the ActionScript operators and their associativity, from highest to 
lowest precedence.        

Operator Description Associativity

Highest precedence 

+ Unary plus Right to left

- Unary minus Right to left

~ Bitwise NOT Right to left

! Logical NOT Right to left

not Logical NOT (Flash 4 style) Right to left

++ Post-increment Left to right

-- Post-decrement Left to right

( ) Function call Left to right

[ ] Array element Left to right

. Structure member Left to right

++ Pre-increment Right to left

-- Pre-decrement Right to left

new Allocate object Right to left

delete Deallocate object Right to left

typeof Type of object Right to left

void Returns undefined value Right to left

* Multiply Left to right

/ Divide Left to right

% Modulo Left to right

+ Add Left to right
787



add String concatenation (formerly &) Left to right

- Subtract Left to right

<< Bitwise left shift Left to right

>> Bitwise right shift Left to right

>>> Bitwise right shift (unsigned) Left to right

< Less than Left to right

<= Less than or equal to Left to right

> Greater than Left to right

>= Greater than or equal to Left to right

instanceof Instance of Left to right

lt Less than (string version) Left to right

le Less than or equal to (string version) Left to right

gt Greater than (string version) Left to right

ge Greater than or equal to (string version) Left to right

== Equal Left to right

!= Not equal Left to right

eq Equal (string version) Left to right

ne Not equal (string version) Left to right

& Bitwise AND Left to right

^ Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

and Logical AND (Flash 4) Left to right

|| Logical OR Left to right

or Logical OR (Flash 4) Left to right

?: Conditional Right to left

= Assignment Right to left

*=, /=, %=, +=, -=, &=, 
|=, ^=, <<=, >>=, >>>=

Compound assignment Right to left

, Comma Left to right

Lowest precedence

Operator Description Associativity
788 Appendix B:  Operator Precedence and Associativity



APPENDIX C
Keyboard Keys and Key Code Values
The following tables list all of the keys on a standard keyboard and the corresponding ASCII key 
code values that are used to identify the keys in ActionScript. For more information, see the Key 
class entry in Chapter 12, “ActionScript Dictionary,” on page 205. 

Letters A to Z and standard numbers 0 to 9

The following table lists the keys on a standard keyboard for the letters A to Z and the numbers 
0 to 9, with the corresponding ASCII key code values that are used to identify the keys 
in ActionScript.    

Letter or number key Key code

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81
789



Keys on the numeric keypad

The following table lists the keys on a numeric keypad, with the corresponding ASCII key code 
values that are used to identify the keys in ActionScript.    

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

Numeric keypad key Key code

Numbpad 0 96

Numbpad 1 97

Numbpad 2 98

Numbpad 3 99

Numbpad 4 100

Numbpad 5 101

Numbpad 6 102

Numbpad 7 103

Numbpad 8 104

Letter or number key Key code
790 Appendix C:  Keyboard Keys and Key Code Values



Function keys

The following table lists the function keys on a standard keyboard, with the corresponding ASCII 
key code values that are used to identify the keys in ActionScript.    

Numbpad 9 105

Multiply 106

Add 107

Enter 108

Subtract 109

Decimal 110

Divide 111

Function key Key code

F1 112

F2 113

F3 114

F4 115

F5 116

F6 117

F7 118

F8 119

F9 120

F10 121

F11 122

F12 123

F13 124

F14 125

F15 126

Numeric keypad key Key code
Function keys 791



Other keys

The following table lists keys on a standard keyboard other than letters, numbers, numeric 
keypad keys, or function keys, with the corresponding ASCII key code values that are used to 
identify the keys in ActionScript. 

Key Key code

Backspace 8

Tab 9

Clear 12

Enter 13

Shift 16

Control 17

Alt 18

Caps Lock 20

Esc 27

Spacebar 32

Page Up 33

Page Down 34

End 35

Home 36

Left Arrow 37

Up Arrow 38

Right Arrow 39

Down Arrow 40

Insert 45

Delete 46

Help 47

Num Lock 144

; : 186

= + 187

- _ 189

/ ? 191

` ~ 192

[ { 219

\ | 220
792 Appendix C:  Keyboard Keys and Key Code Values



] } 221

" ' 222

Key Key code
Other keys 793



794 Appendix C:  Keyboard Keys and Key Code Values



APPENDIX D
Writing Scripts for Earlier Versions of Flash Player
ActionScript has changed considerably with the release of Macromedia Flash MX 2004 and 
Macromedia Flash MX Professional 2004. When you create content for Flash Player 7, you’ll take 
advantage of the full power of ActionScript. You can still use Flash MX 2004 to create content for 
earlier versions of Flash Player, but you won’t be able to use every ActionScript element. 

This chapter provides guidelines to help you write scripts that are syntactically correct for the 
player version you are targeting.

About targeting older versions of Flash Player

While writing your scripts, use the Availability information for each element in the ActionScript 
dictionary (see Chapter 12, “ActionScript Dictionary,” on page 205) to determine if an element 
you want to use is supported by the Flash Player version you are targeting. You can also determine 
which elements you can use by displaying the Actions toolbox; elements that are not supported 
for your target version are highlighted in yellow.

If you are creating content for Flash Player 6 or Flash Player 7, you should use ActionScript 2.0, 
which provides a number of important features that aren’t available in ActionScript 1, such as 
improved compiler errors and more robust object-oriented programming capabilities.

For a review of differences in how certain features are implemented when publishing files for 
Flash Player 7 versus how the features are implemented in files published for earlier versions of the 
player, see “Porting existing scripts to Flash Player 7” on page 15.

To specify the player and ActionScript version you want to use when publishing a document, 
select File > Publish Settings and then make your selections in the Flash tab. If you need to target 
Flash Player 4, see the next section.
795



Using Flash MX 2004 to create content for Flash Player 4

To use Flash MX 2004 to create content for Flash Player 4, specify Flash Player 4 in the Flash tab 
of the Publish Settings dialog box (File > Publish Settings). 

Flash Player 4 ActionScript has only one basic primitive data type, which is used for both numeric 
and string manipulation. When you author an application for Flash Player 4, you must use the 
deprecated string operators located in the Deprecated > Operators category in the 
Actions toolbox.

You can use the following Flash MX 2004 features when you publish for Flash Player 4: 

• The array and object access operator ([])
• The dot operator (.)
• Logical operators, assignment operators, and pre-increment and post-increment/

decrement operators
• The modulo operator (%), and all methods and properties of the Math class 

The following language elements are not supported natively by Flash Player 4. Flash MX 2004 
exports them as series approximations, which creates results that are less numerically accurate. In 
addition, because of the inclusion of series approximations in the SWF file, these language 
elements take up more room in Flash Player 4 SWF files than they do in Flash Player 5 or later 
SWF files. 

• The for, while, do..while, break, and continue actions
• The print() and printAsBitmap() actions
• The switch action

For additional information, see “About targeting older versions of Flash Player” on page 795.

Using Flash MX 2004 to open Flash 4 files

Flash 4 ActionScript had only one true data type: string. It used different types of operators in 
expressions to indicate whether the value should be treated as a string or as a number. In 
subsequent releases of Flash, you can use one set of operators on all data types.

When you use Flash 5 or later to open a file that was created in Flash 4, Flash automatically 
converts ActionScript expressions to make them compatible with the new syntax. You’ll see the 
following data type and operator conversions in your ActionScript code:

• The = operator in Flash 4 was used for numeric equality. In Flash 5 and later, == is the equality 
operator and = is the assignment operator. Any = operators in Flash 4 files are automatically 
converted to ==. 

• Flash automatically performs type conversions to ensure that operators behave as expected. 
Because of the introduction of multiple data types, the following operators have new 
meanings: 
+, ==, !=, <>, <, >, >=, <=
In Flash 4 ActionScript, these operators were always numeric operators. In Flash 5 and later, 
they behave differently depending on the data types of the operands. To prevent any semantic 
differences in imported files, the Number() function is inserted around all operands to these 
operators. (Constant numbers are already obvious numbers, so they are not enclosed 
in Number()).
796 Appendix D:  Writing Scripts for Earlier Versions of Flash Player



• In Flash 4, the escape sequence \n generated a carriage return character (ASCII 13). In Flash 5 
and later, to comply with the ECMA-262 standard, \n generates a line-feed character (ASCII 
10). An \n sequence in Flash 4 FLA files is automatically converted to \r. 

• The & operator in Flash 4 was used for string addition. In Flash 5 and later, & is the bitwise 
AND operator. The string addition operator is now called add. Any & operators in Flash 4 files 
are automatically converted to add operators. 

• Many functions in Flash 4 did not require closing parentheses, for example, Get Timer, Set 
Variable, Stop, and Play. To create consistent syntax, the getTimer function and all actions 
now require closing parentheses. These parentheses are automatically added during 
the conversion. 

• In Flash 5 and later, when the getProperty function is executed on a movie clip that doesn’t 
exist, it returns the value undefined, not 0. The statement undefined == 0 is false in 
ActionScript after Flash 4 (in Flash 4, undefined == 1). In Flash 5 and later, solve this 
problem when converting Flash 4 files by introducing Number() functions in equality 
comparisons. In the following example, Number() forces undefined to be converted to 0 so 
the comparison will succeed:
getProperty("clip", _width) == 0 
Number(getProperty("clip", _width)) == Number(0)

Note: If you used any Flash 5 or later keywords as variable names in your Flash 4 ActionScript, the 
syntax returns an error when you compile it in Flash MX 2004. To solve this problem, rename your 
variables in all locations. See “Keywords” on page 33 and “Naming a variable” on page 41.

Using slash syntax

Slash syntax was used in Flash 3 and 4 to indicate the target path of a movie clip or variable. In 
slash syntax, slashes are used instead of dots; also, to indicate a variable, you precede it 
with a colon:
myMovieClip/childMovieClip:myVariable

To write the same target path in dot syntax (see “Dot syntax” on page 30), which is supported by 
Flash Player 5 and later, you would use the following code:
myMovieClip.childMovieClip.myVariable

Slash syntax was most commonly used with the tellTarget action, whose use is also no longer 
recommended. The with action is now preferred over tellTarget because it is more compatible 
with dot syntax. For more information, see tellTarget and with in Chapter 12, “ActionScript 
Dictionary,” on page 205.
Using Flash MX 2004 to create content for Flash Player 4 797



798 Appendix D:  Writing Scripts for Earlier Versions of Flash Player



APPENDIX E
Object-Oriented Programming with ActionScript 1
The information in this appendix was excerpted from the Macromedia Flash MX documentation 
and provides information on using the ActionScript 1 object model to write scripts. It is included 
here for the following reasons:

• If you want to write object-oriented scripts that support Flash Player 5, you must 
use ActionScript 1.

• If you already use ActionScript 1 to write object-oriented scripts and aren’t ready to switch to 
ActionScript 2.0, you can use this appendix to find or review information you need while 
writing your ActionScript 1 scripts.

If you have never used ActionScript to write object-oriented scripts and don’t need to target 
Flash Player 5, you should not use the information in this appendix, because writing object-
oriented scripts using ActionScript 1 is deprecated; instead, see Chapter 9, “Creating Classes with 
ActionScript 2.0,” on page 155 for information on using ActionScript 2.0.
Note: Some of the examples in this appendix use the Object.RegisterClass() method. This method 
is supported only in Flash Player 6 and later; don’t use this method if you are targeting Flash Player 5.

About ActionScript 1

ActionScript is an object-oriented programming language. Object-oriented programming uses 
objects, or data structures, to group together properties and methods that control the object’s 
behavior or appearance. Objects let you organize and reuse code. After you define an object, you 
can refer to the object by name without having to redefine it each time you use it.

A class is a generic category of objects. A class defines a series of objects that have common 
properties and can be controlled in the same ways. Properties are attributes that define an object, 
such as its size, position, color, transparency, and so on. Properties are defined for a class, and 
values for the properties are set for individual objects in the class. Methods are functions that can 
set or retrieve properties of an object. For example, you can define a method to calculate the size 
of an object. Like properties, methods are defined for an object class, and then invoked for 
individual objects in the class.

ActionScript includes several built-in classes, including the MovieClip class and others. You can 
also create classes to define categories of objects for your applications. 
799



Objects in ActionScript can be pure containers for data, or they can be graphically represented on 
the Stage as movie clips, buttons, or text fields. All movie clips are instances of the built-in class 
MovieClip, and all buttons are instances of the built-in class Button. Each movie clip instance 
contains all the properties (for example, _height, _rotation, _totalframes) and all the 
methods (for example, gotoAndPlay(), loadMovie(), startDrag()) of the MovieClip class. 

To define a class, you create a special function called a constructor function. (Built-in classes have 
built-in constructor functions.) For example, if you want information about a bicycle rider in 
your application, you could create a constructor function, Biker(), with the properties time and 
distance and the method getSpeed(), which tells you how fast the biker is traveling: 
function Biker(t, d) {

this.time = t;
this.distance = d;
this.getSpeed = function() {return this.time / this.distance;};

}

In this example, you create a function that needs two pieces of information, or parameters, to do 
its job: t and d. When you call the function to create new instances of the object, you pass it the 
parameters. The following code creates instances of the object Biker called emma and hamish. 
emma = new Biker(30, 5);
hamish = new Biker(40, 5);

In object-oriented scripting, classes can receive properties and methods from each other according 
to a specific order; this is called inheritance. You can use inheritance to extend or redefine the 
properties and methods of a class. A class that inherits from another class is called a subclass. A 
class that passes properties and methods to another class is called a superclass. A class can be both a 
subclass and a superclass. 

An object is a complex data type containing zero or more properties and methods. Each property, 
like a variable, has a name and a value. Properties are attached to the object and contain values 
that can be changed and retrieved. These values can be of any data type: String, Number, 
Boolean, Object, MovieClip, or undefined. The following properties are of various data types:
customer.name = "Jane Doe";
customer.age = 30;
customer.member = true;
customer.account.currentRecord = 000609;
customer.mcInstanceName._visible = true;

The property of an object can also be an object. In line 4 of the previous example, account is a 
property of the object customer and currentRecord is a property of the object account. The 
data type of the currentRecord property is Number.

Creating a custom object in ActionScript 1

To create a custom object, you define a constructor function. A constructor function is always 
given the same name as the type of object it creates. You can use the keyword this inside the 
body of the constructor function to refer to the object that the constructor creates; when you call 
a constructor function, Flash passes it this as a hidden parameter. For example, the following is a 
constructor function that creates a circle with the property radius:
function Circle(radius) {

this.radius = radius;
}

800 Appendix E:  Object-Oriented Programming with ActionScript 1



After you define the constructor function you must create an instance of the object. Use the new 
operator before the name of the constructor function and assign the new instance a variable name. 
For example, the following code uses the new operator to create a Circle object with a radius of 5, 
and assigns it to the variable myCircle: 
myCircle = new Circle(5);

Note: An object has the same scope as the variable to which it is assigned. 

Assigning methods to a custom object in ActionScript 1

You can define the methods of an object inside the object’s constructor function. However, this 
technique is not recommended because it defines the method every time you use the constructor 
function, as in the following example, which creates the methods area() and diameter():
function Circle(radius) {

this.radius = radius;
this.area = Math.PI * radius * radius;
this.diameter = function() {return 2 * this.radius;}

}

Each constructor function has a prototype property that is created automatically when you 
define the function. The prototype property indicates the default property values for objects 
created with that function. Each new instance of an object has a __proto__ property that refers 
to the prototype property of the constructor function that created it. Therefore, if you assign 
methods to an object’s prototype property, they are available to any newly created instance of 
that object. It’s best to assign a method to the prototype property of the constructor function 
because it exists in one place and is referenced by new instances of the object (or class). You can 
use the prototype and __proto__ properties to extend objects so that you can reuse code in an 
object-oriented manner. (For more information, see “Creating inheritance in ActionScript 1” 
on page 803.)

The following procedure shows how to assign an area() method to a custom Circle object.

To assign a method to a custom object:

1 Define the constructor function Circle(), as follows. 
function Circle(radius) {

this.radius = radius;
}

2 Define the area() method of the Circle object. The area() method calculates the area of the 
circle. You can use a function literal to define the area() method and assign the area property 
to the circle’s prototype object, as follows:
Circle.prototype.area = function () {

return Math.PI * this.radius * this.radius;
};

3 Create an instance of the Circle object, as follows:
var myCircle = new Circle(4);

4 Call the area() method of the new myCircle object, as follows:
var myCircleArea = myCircle.area();

ActionScript searches the myCircle object for the area() method. Since the object doesn’t 
have an area() method, its prototype object Circle.prototype is searched for area(). 
ActionScript finds it and calls it. 
About ActionScript 1 801



Defining event handler methods in ActionScript 1

You can create an ActionScript class for movie clips and define the event handler methods in the 
prototype object of that new class. Defining the methods in the prototype object makes all the 
instances of this symbol respond the same way to these events. 

You can also add an onClipEvent() or on() event handler action to an individual instance to 
provide unique instructions that run only when that instance’s event occurs. The onClipEvent() 
and on() actions don’t override the event handler method; both events cause their scripts to run. 
However, if you define the event handler methods in the prototype object and also define 
an event handler method for a specific instance, the instance definition overrides the 
prototype definition. 

To define an event handler method in an object’s prototype object:

1 Place a movie clip symbol with the linkage ID theID in the library. 
2 In the Actions panel (Window > Development Panels > Actions), use the function action to 

define a new class, as shown here:
// define a class
function myClipClass() {}

This new class will be assigned to all instances of the movie clip that are added to the 
application by the Timeline, or that are added to the application with the attachMovie() or 
duplicateMovieClip() method. If you want these movie clips to have access to the methods 
and properties of the built-in MovieClip object, you’ll need to make the new class inherit from 
the MovieClip class.

3 Enter code like the following:
// inherit from MovieClip class
myClipClass.prototype = new MovieClip();

Now the class myClipClass inherits all the properties and methods of the MovieClip class.
4 Enter code like the following to define the event handler methods for the new class:

// define event handler methods for myClipClass class
myClipClass.prototype.onLoad = function() {trace ("movie clip loaded");}
myClipClass.prototype.onEnterFrame = function() {trace ("movie clip entered 

frame");}

5 Select Window > Library to open the Library panel if it isn’t already open.
6 Select the symbols that you want to associate with your new class, and select Linkage from the 

pop-up menu in the upper right of the Library panel.
7 In the Linkage Properties dialog box, select Export for ActionScript.
8 Enter an identifier in the Identifier box.

The identifier must be the same for all symbols that you want to associate with the new class. 
In the myClipClass example, the identifier is theID.

9 Enter code like the following in the Script pane:
// register class
Object.registerClass("theID", myClipClass);
_root.attachMovie("theID","myName",1);

This registers the symbol whose linkage identifier is theID with the class myClipClass. All 
instances of myClipClass have event handler methods that behave as you defined them in step 4. 
They also behave like all instances of the class MovieClip, because you told the new class to 
inherit from the class MovieClip in step 3.
802 Appendix E:  Object-Oriented Programming with ActionScript 1



function myClipClass(){}

myClipClass.prototype = new MovieClip();
myClipClass.prototype.onLoad = function(){

trace("movie clip loaded");
}
myClipClass.prototype.onPress = function(){

trace("pressed");
}

myClipClass.prototype.onEnterFrame = function(){
trace("movie clip entered frame");

}

myClipClass.prototype.myfunction = function(){
trace("myfunction called");

}

Object.registerClass("myclipID",myClipClass);
_root.attachMovie("myclipID","ablue2",3); 

Creating inheritance in ActionScript 1

Inheritance is a means of organizing, extending, and reusing functionality. Subclasses inherit 
properties and methods from superclasses and add their own specialized properties and methods. 
For example, reflecting the real world, Bike would be a superclass and MountainBike and Tricycle 
would be subclasses of the superclass. Both subclasses contain, or inherit, the methods and 
properties of the superclass (for example, wheels). Each subclass also has its own properties and 
methods that extend the superclass (for example, the MountainBike subclass would have a gears 
property). You can use the elements prototype and __proto__ to create inheritance in 
ActionScript.

All constructor functions have a prototype property that is created automatically when the 
function is defined. The prototype property indicates the default property values for objects 
created with that function. You can use the prototype property to assign properties and methods 
to a class. (For more information, see “Assigning methods to a custom object in ActionScript 1” 
on page 801.) 

All instances of a class have a __proto__ property that tells you what object they inherit from. 
When you use a constructor function to create an object, the __proto__ property is set to refer to 
the prototype property of its constructor function.

Inheritance proceeds according to a definite hierarchy. When you call an object’s property or 
method, ActionScript looks at the object to see if such an element exists. If it doesn’t exist, 
ActionScript looks at the object’s __proto__ property for the information 
(myObject.__proto__). If the property is not a property of the object’s __proto__ object, 
ActionScript looks at myObject.__proto__.__proto__, and so on. 

The following example defines the constructor function Bike():
function Bike (length, color) {

this.length = length;
this.color = color;

}

The following code adds the roll() method to the Bike class:
Bike.prototype.roll = function() {this._x = _x + 20;};
About ActionScript 1 803



Instead of adding roll() to the MountainBike class and the Tricycle class, you can create the 
MountainBike class with Bike as its superclass:
MountainBike.prototype = new Bike();

Now you can call the roll() method of MountainBike, as shown in the following:
MountainBike.roll();

Movie clips do not inherit from each other. To create inheritance with movie clips, you can use 
Object.registerClass() to assign a class other than the MovieClip class to movie clips. See 
Object.registerClass() in Chapter 12, “ActionScript Dictionary,” on page 205.

For more information on inheritance, see the Object.__proto__, #initclip, #endinitclip, 
and super entries in Chapter 12, “ActionScript Dictionary,” on page 205.

Adding getter/setter properties to objects in ActionScript 1

You can create getter/setter properties for an object using the Object.addProperty() method. 

A getter function is a function with no parameters. Its return value can be of any type. Its type can 
change between invocations. The return value is treated as the current value of the property. A 
setter function is a function that takes one parameter, which is the new value of the property. For 
instance, if property x is assigned by the statement x = 1, the setter function is passed the 
parameter 1 of type Number. The return value of the setter function is ignored. 

When Flash reads a getter/setter property, it invokes the getter function, and the function’s return 
value becomes a value of prop. When Flash writes a getter/setter property, it invokes the setter 
function and passes it the new value as a parameter. If a property with the given name already 
exists, the new property overwrites it.

You can add getter/setter properties to prototype objects. If you add a getter/setter property to a 
prototype object, all object instances that inherit the prototype object inherit the getter/setter 
property. This makes it possible to add a getter/setter property in one location, the prototype 
object, and have it propagate to all instances of a class (much like adding methods to prototype 
objects). If a getter/setter function is invoked for a getter/setter property in an inherited prototype 
object, the reference passed to the getter/setter function will be the originally referenced object, 
not the prototype object.

For more information, see Object.addProperty() in Chapter 12, “ActionScript Dictionary,” 
on page 205.

The Debug > List Variables command in test mode supports getter/setter properties that you add 
to objects using Object.addProperty(). Properties that you add to an object in this way are 
displayed alongside other properties of the object in the Output panel. Getter/setter properties are 
identified in the Output panel with the prefix [getter/setter]. For more information on the 
List Variables command, see “Using the Output panel” on page 77.

Using Function object properties in ActionScript 1

You can specify the object that a function is applied to and the parameter values that are passed to 
the function, using the call() and apply() methods of the Function object. Every function in 
ActionScript is represented by a Function object, so all functions support call() and apply(). 
When you create a custom class using a constructor function, or when you define methods for a 
custom class using a function, you can invoke call() and apply() for the function.
804 Appendix E:  Object-Oriented Programming with ActionScript 1



Invoking a function using the Function.call() method in ActionScript 1

The Function.call() method invokes the function represented by a Function object.

In almost all cases, the function call operator (()) can be used instead of the call() method. The 
function call operator creates code that is concise and readable. The call() method is primarily 
useful when the this parameter of the function invocation needs to be explicitly controlled. 
Normally, if a function is invoked as a method of an object, within the body of the function, this 
is set to myObject, as in the following:
myObject.myMethod(1, 2, 3);

In some situations, you may want this to point somewhere else, for example, if a function must 
be invoked as a method of an object but is not actually stored as a method of that object.
myObject.myMethod.call(myOtherObject, 1, 2, 3); 

You can pass the value null for the thisObject parameter to invoke a function as a regular 
function and not as a method of an object. For example, the following function invocations 
are equivalent:
Math.sin(Math.PI / 4)
Math.sin.call(null, Math.PI / 4)

For more information, see Function.call() in Chapter 12, “ActionScript Dictionary,” 
on page 205.

To invoke a function using the Function.call method:

• Use the following syntax.
myFunction.call(thisObject, parameter1, ..., parameterN)

The method takes the following parameters:
■ The parameter thisObject specifies the value of this within the function body. 
■ The parameters parameter1..., parameterN specify parameters to be passed to 

myFunction. You can specify zero or more parameters.

Specifying the object to which a function is applied using Function.apply() 
in ActionScript 1

The Function.apply() method specifies the value of this to be used within any function that 
ActionScript calls. This method also specifies the parameters to be passed to any called function. 

The parameters are specified as an Array object. This is often useful when the number of 
parameters to be passed is not known until the script actually executes.

For more information, see Function.apply() in Chapter 12, “ActionScript Dictionary,” 
on page 205.

To specify the object to which a function is applied using Function.apply():

• Use the following syntax.
myFunction.apply(thisObject, argumentsObject)

The method takes the following parameters:
■ The parameter thisObject specifies the object that myFunction is applied to.
■ The parameter argumentsObject defines an array whose elements are passed to 

myFunction as parameters.
About ActionScript 1 805



806 Appendix E:  Object-Oriented Programming with ActionScript 1



INDEX
A
accessing object properties  49
actions

defined  26
repeating  56

Actions panel  58
Actions toolbox  58

yellow items in  61
ActionScript

ActionScript 2.0 compiler error messages  783
assigning ActionScript 2.0 class to movie clips  133
overview of ActionScript 2.0  22,  155
strict data typing not supported in ActionScript 1  

38
ActionScript editor  58,  61
ActiveX controls  188
adding notes to scripts  32
animation, symbols and  36
arguments. See parameters
array access operators  49

checking for matching pairs  67
arrays, multidimensional  50
ASCII values  96

function keys  791
keyboard keys  789
numeric keypad keys  790
other keys  792

assignment operators
about  48
compound  48
different from equality operators  47

associativity, of operators  45,  787
asynchronous actions  178
attaching, sounds  102

B
balance (sound), controlling  104
bitwise operators  47
Boolean values  35

comparing  47
defined  26

braces. See curly braces
brackets. See array access operators
breakpoints

about  74
and external files  75
setting in Debugger  75

broadcaster object  85
built-in functions  51

C
calling methods  36
capturing keypresses  96
cascading style sheets

and TextField.StyleSheet class  140
applying style classes  143
applying to text fields  142
assigning styles to built-in HTML tags  143
combining styles  142
defining styles in ActionScript  142
example of using with HTML tags  144
example of using with XML tags  146
formatting text  139
loading  141
properties supported  140
using to define new tags  145

casting data types  39
character sequences. See strings
checking

for loaded data  178
syntax and punctuation  66

child movie clips, defined  121
807



child node  181
class files, creating  157
class members  114

and subclasses  167
created once per class  165
creating  165
example of using  166

classes
about compiling and exporting  174
and object-oriented programming  156
assigning to movie clips  133
classpaths  169
creating and using  161
creating external class files  157
creating properties and methods  161
creating subclasses  162
defined  26,  114
defined only in external files  157,  161
dynamic  173
example of creating  157
extending  162
extending at runtime  173
get/set methods  172
importing  171,  172
initializing properties at runtime  134
initializing properties inline  162
instance members and class members  165
interfaces  167–168
naming  161
organizing in packages  171
overloading not supported  164
public and private member attributes  164
resolving class references  169
specifying export frame  174
See also classes, built-in

classes, built-in  113–119
extending  162

classpaths
defined  169
global and document-level  169
modifying  170
search order of  169

code
displaying line numbers  67
formatting  67
selecting a line  75
stepping through lines  75
word wrapping  67

code hints  61
manually displaying  65
not being displayed  65
specifying settings for  64
triggering  62,  63
using  63

collisions, detecting  105
between movie clip and Stage point  106
between movie clips  106

colors
in Actions toolbox  61
in Script pane  61
values, setting  100

combining operations  48
comments  32
communicating with the Flash Player  185
comparison operators  46
compile time, defined  10
component-based architecture, defined  121
concatenating strings  34
conditions, checking for  56
constants  27,  33
constructor functions, sample  800
constructors

defined  27
overview  163

conversion functions  34
converting data types  34
counters, repeating action with  56,  57
creating objects  114
CSS. See cascading style sheets
curly braces  31

checking for matching pairs  67
cursors, creating custom  94
custom functions  51

D
data types  34

assigning to elements  37
automatically assigning  37
Boolean  35
casting  39
converting  34
declaring  38
defined  27
determining  37
MovieClip  36
null  36
Number  35
Object  36
808 Index



strictly typing  38
String  34
undefined  36

data, external  177
access between cross-domain SWFs  189
and LoadVars object  180
and messages  185
and server-side scripts  179
and XML  181
and XMLSocket object  184
checking if loaded  178
security features  188
sending and loading  177

Debug Player  68
Debugger

buttons in  76
Flash Debug Player  68
Properties tab  74
selecting from Context menu  71
setting breakpoints  75
using  68
variables  72
Watch list  73

debugging  68
compiler error messages  783
Debug Player  68
exception handling  13
from a remote location  69
listing objects  77
listing variables  78
text field properties  78
using the Output panel  77
with trace statement  79

Default Encoding  26
depth

defined  129
determining for movie clips  130
determining instance at  130
determining next available  130
managing  129

detecting collisions  105
device fonts, masking  132
document-level classpaths  169
DOM (Document Object Model), XML  181
domain names and security  188
dot operators  49
dot syntax  30
dragging movie clips  125

drawing
lines and fills  107
shapes  131

duplicating, movie clips  126
dynamic classes  173

E
ECMA-262

compliance  15
specification  25

encoding text  26
equality operators  47

different from assignment operators  47
strict  48

errors
list of error messages  783
name conflict  42
syntax  61

escape sequences  35
Escape shortcut keys  65
event handler methods  83
event handlers

and on() and onClipEvent()  87
assigning functions to  84
attaching to buttons or movie clips  87
checking for XML data  178
defined  27,  83
defined by ActionScript classes  84
scope  88

event listeners  85
defined by ActionScript classes  86
scope  88

event model
for event handler methods  83
for event listeners  85
for on() and onClipEvent() handlers  87

events, defined  27,  83
exception handling  13
execution order

operator associativity  45
operator precedence  45
scripts  56

exporting scripts and language encoding  26
expressions

assigning multiple variables  48
comparing values  46
defined  27
manipulating values in  45

Extensible Markup Language. See XML
Index 809



external class files
creating  157
using classpaths to locate  169

external media  193–201
loading MP3 files  195
loading SWF files and JPEG files  194
overview of loading  193
playing FLV files  197
preloading  198,  199,  201
reasons for using  193

external sources, connecting Flash with  177

F
Flash Player

communicating with  185
debugging version  68
dimming context menu  186
displaying context menu  186
displaying full screen  186
getting latest version  79
methods  187
normal menu view  186
scaling SWF files to  186

Flash Player 7
and ECMA-262 compliance  15
new and changed language elements  13
new security model  15,  17,  19,  20
porting existing scripts  15,  191

FLV (external video) files  197
preloading  201

for loops and instance members  165
formatting code  67
fscommand() function

commands and arguments  186
communicating with Director  187
using  186

function keys, ASCII key code values  791
functions  27

and methods  28
asynchronous  178
built-in  51
calling  53
constructor  800
conversion  34
custom  51
defining  51
for controlling movie clips  122
local variables in  52

passing parameters to  52
returning values  53
sample  28

G
get/set methods of classes  172
getAscii() method  96
getting information from remote files  177
getting mouse pointer position  95
getURL() method  93
global classpaths  169
global variables  43

and strict data typing  38
grouping statements  31

H
handlers. See event handlers
highlighting syntax  61
hitTest() method  105
HTML

example of using with styles  144
styling built-in tags  143
supported tags  148
tags enclosed in quotation marks  147
using <img> tag to flow text  147,  149,  152
using cascading style sheets to define tags  145
using in text fields  147

HTTP protocol  178
communicating with server-side scripts  179

HTTPS protocol  178

I
icons

above Script pane  59
in Debugger  76

ID3 tags  196
identifiers, defined  27
images

embedding in text fields  152
loading into movie clips  124
See also external media

importing
classes  171
scripts, and language encoding  26

importing classes  172
indentation in code, enabling  67
information, passing between SWF files  178
810 Index



inheritance  156
allowed from only one class  163
and subclasses  162

initializing movie clip properties  134
instance members  165
instance names

assigning  50
compared with variable names  136
defined  28,  121
setting dynamically  49

instances
defined  27,  114
example of creating  160

instantiating objects  114
interactivity, in SWF files

creating  91
techniques for  94

interfaces  157
creating and using  167–168

IP addresses
and policy files  191
and security  188

J
JavaScript

alert statement  79
and ActionScript  25
and Netscape  188
international standard  25
Netscape Navigator documentation  25
sending messages to  186

JPEG files
embedding in text fields  152
loading into movie clips  124,  194
preloading  199

jumping to a URL  93

K
key codes, ASCII

function keys  791
getting  96
letter and number keys  789
numeric keypad  790
other keys  792

keyboard controls
and Test Movie  68
to activate movie clips  98

keyboard shortcuts
for pinned scripts  60

keyboard, ASCII key code values  789
keypresses, capturing  96
keywords  28

listed  33

L
languages, using multiple in scripts  26
levels  50

loading  123
line numbers in code, displaying  67
linkage identifier  127,  133
Linkage Properties dialog box  127,  133
linking, movie clips  127
List Objects command  77
List Variables command  78
listener objects  85

unregistering  86
loaded data, checking for  178
loaded SWF files

identifying  50
removing  123

loadMovie() function  178
loadVariables() function  178
LoadVars object  180
local variables  42

and strict data typing  42
in functions  52
sample  42

logical operators  47
looping  56,  57

actions  57

M
Macromedia Director, communicating with  187
manipulating numbers  35
masks  132

and device fonts  132
strokes ignored  131,  132

message box, displaying  187
methods

asynchronous  178
declaring  161
defined  28
for controlling movie clips  122
of objects, calling  114

MIME format, standard  179
mouse pointer. See cursors
mouse position, getting  95
Index 811



movie clips
activating with keyboard  98
adding parameters  128
adjusting color  100
and _root property  123
and with statement  122
assigning button states to  88
attaching on() and onClipEvent() handlers  87
attaching to symbol on Stage  127
calling multiple methods  122
changing properties in Debugger  74
changing properties while playing  125
child, defined  121
controlling  121
creating at runtime  126
creating empty instance  126
creating subclasses  133
data type  36
deleting  126
detecting collisions  105
determining depth of  130
determining next available depth  130
dragging  125
duplicating  126
embedding in text fields  152
functions  122
giving instance name  50
initializing properties at runtime  134
instance name, defined  121
invoking methods  122
listing objects  77
listing variables  78
loading MP3 files into  195
loading SWF files and JPEG files into  194
looping through children  57
managing depth  129
methods  122
methods and functions compared  121
methods, using to draw shapes  131
nested, defined  121
parent, defined  121
properties  125
properties, initializing at runtime  134
removing  126
sharing  127
starting and stopping  92
using as masks  132
See also SWF files

moviename_DoFSCommand function  186

MP3 files
and ID3 tags  196
loading into movie clips  195
preloading  201

multidimensional arrays  50
multiple inheritance, not allowed  163
multiple languages, using in scripts  26

N
name conflicts  42
naming conventions

for classes  161
for packages  171

naming variables  41,  62
navigation

controlling  91
jumping to frame or scene  92

nested movie clips, defined  121
Netscape DevEdge Online  25
Netscape, JavaScript methods supported  188
nodes  181
null data type  36
numbers

converting to 32-bit integers  47
manipulating  35

numeric keypad, ASCII key code values  790
numeric operators  45

O
object properties

accessing  49
assigning values to  114

object-oriented programming  156
See also classes

objects
accessing properties  114
and object-oriented programming  156
calling methods  114
creating  114
data type  36
defined  28
looping through children of  57

on() and onClipEvent() handlers  87
attaching to movie clips  87
scope  88

onClipEvent() handlers  109
operators  28

array access  49
assignment  48
812 Index



associativity  45,  787
bitwise  47
combining with values  45
comparison  46
dot  49
equality  47
logical  47
numeric  45
precedence  787
string  46

Options pop-up menu
in the Actions panel  60,  61
in the Debugger  70
in the Output panel  77

Output panel  77
and trace statement  79
List Objects command  77
List Variables command  78
options  77

P
packages  171

naming  171
parameters

defined  28
in parentheses  32
passing to functions  52

parent movie clips, defined  121
parentheses  32

checking for matching pairs  67
passing values

by content  43
by reference  44

passwords and remote debugging  69
pausing (stepping through) code  75
pinning scripts in place  60
playing movie clips  92
pointer. See cursors
policy files  190

must be named crossdomain.xml  190
See also security

precedence, of operators  787
primitive data types  34
private attribute for class members  164
projectors, executing applications from  186
properties

accessing  49
constant  33
declaring  161
defined  28

initializing at runtime  134
of movie clips  125
of objects, accessing  114

Properties tab, Debugger  74
public attribute for class members  164
punctuation balance, checking for  67

Q
quotation marks, including in strings  35

R
reference data types  34
referencing variables  41
registration point, and loaded images  124
remote debugging  69
remote files, communicating with  177
remote sites, continuous connection  184
removing

loaded SWF files  123
movie clips  126

repeating actions  56
reserved words. See keywords
resources, additional  10
_root property and loaded movie clips  123
runtime, defined  10

S
sample script  108
Script navigator  59
Script pane

about  58
buttons above  59
working with scripts in  59

Script window (Flash Professional only)  58
scripts

about writing and debugging  55
commenting  32
controlling execution  56
controlling flow  56
correcting text display problems  26
debugging  68
declaring variables  43
importing and exporting  26
keyboard shortcuts for pinned scripts  60
pinning in place  60
porting to Flash Player 7  15,  191
sample  108
testing  68

scrolling text  153
Index 813



security  188–191
and policy files  190
and porting scripts to Flash Player 7  17,  19,  20
data access across domains  189,  190

semicolon  31
sending information

in XML format  178
to remote files  177
URL-encoded format  178
via TCP/IP  178

server-side scripts
languages  177
XML format  182

servers, opening continuous connection  184
setRGB method  100
slash syntax  30

not supported in ActionScript 2.0  30
socket connections

about  184
sample script  185

sounds
attaching to Timeline  102
balance control  104
controlling  101
See also external media

special characters  35
Stage, attaching symbols to movie clips  127
statements

grouping  31
terminating  31
trace statements  79

static members. See class members
stepping through lines of code  75
stopping movie clips  92
strict data typing  38

and global variables  38
and local variables  42
not supported in ActionScript 1  38

strict equality operators  48
string operators  46
strings  34
style sheets. See cascading style sheets
subclasses

and class members  167
creating  162
creating for movie clips  133

suffixes  62
SWD file, defined  69

SWF files
controlling in Flash Player  187
creating sound controls  101
embedding in text fields  152
jumping to frame or scene  92
loading and unloading  123
loading into movie clips  194
maintaining original size  186
passing information between  178
placing on Web page  93
preloading  199
scaling to Flash Player  186
See also movie clips

syntax
case sensitivity  29–30
checking  66
curly braces  31
dot  30
highlighting  61
parentheses  32
rules  29
semicolon  31
slash  30

system event, defined  83
system requirements  9

T
Tab key, and Test Movie  68
target paths

defined  29
entering  50
specifying  50

TCP/IP connection
sending information  178
with XMLSocket object  185

terminating statements  31
terminology  26
Test Movie

and keyboard controls  68
and Unicode  68

testing. See debugging
text

assigning to text field at runtime  136
determining required size of TextField object  139
encoding  26
getting metric information  139
scrolling  153
using <img> tag to flow around images  149
See also text fields
814 Index



text fields  135
and HTML text  143
applying cascading style sheets  142
avoiding variable name conflicts  136
creating and removing at runtime  137
default properties  138
determining required size  139
displaying properties for debugging  78
flowing text around embedded images  147,  149
formatting  137
formatting with cascading style sheets  139
instance and variable names compared  136
See also TextField class, TextFormat class, 

TextField.StyleSheet class
TextField class  135

creating scrolling text  153
TextField.StyleSheet class  139

and cascading style sheets  140
and TextField.styleSheet property  139,  142
creating text styles  142

TextFormat class  137
this keyword  108
Timeline variables  42
tooltips. See code hints
transferring variables between movie and server  180
troubleshooting. See debugging
typing variables  37
typographical conventions  10

U
undefined data type  36
Unicode

and Test Movie command  26,  68
support  26

URL-encoded format, sending information  178
user event, defined  83
UTF-8 (Unicode)  26

V
values, manipulating in expressions  45
variables

about  40
and Debugger Variables tab  72
and Debugger Watch list  73
assigning multiple  48
avoiding name conflicts  136
checking and setting values  41
converting to XML  182
defined  29

determining data type  37
modifying in Debugger  72
naming  62
naming rules  41
passing content  43
referencing value  44
scoping  41
sending to URL  93
setting dynamically  49
suffixes  62
testing  41
transferring between movie and server  180
using in scripts  43

Variables tab, Debugger  72
video, alternative to importing  197
View Options pop-up menu  66,  67
volume, creating sliding control  103

W
Watch tab, Debugger  73
web applications, continuous connection  184
word wrapping in code, enabling  67

X
XML  181

DOM  181
example of using with styles  146
hierarchy  181
in server-side scripts  182
sample variable conversion  181
sending information via TCP/IP socket  178
sending information with XML methods  178

XML class, methods of  181
XMLSocket object

checking for data  178
methods of  185
using  184
Index 815



816 Index


	Contents
	Introduction
	Getting Started with ActionScript
	Intended audience
	System requirements
	Using the documentation
	Typographical conventions
	Terms used in this document
	Additional resources

	Welcome to ActionScript
	What’s New in Flash MX 2004 ActionScript
	New and changed language elements
	New security model and legacy SWF files
	Porting existing scripts to Flash Player 7
	ECMA-262 Edition 4 compliance
	Domain-name rules for settings and local data
	Cross-domain and subdomain access between SWF files
	HTTP to HTTPS protocol access between SWF files
	Server-side policy files for permitting access to data

	ActionScript editor changes
	Debugging changes
	New object-oriented programming model

	ActionScript Basics
	Differences between ActionScript and JavaScript
	Unicode support for ActionScript
	Terminology
	Syntax
	Case sensitivity
	Dot syntax
	Slash syntax
	Curly braces
	Semicolons
	Parentheses
	Comments
	Keywords
	Constants

	About data types
	String
	Number
	Boolean
	Object
	MovieClip
	Null
	Undefined
	Determining an item’s data type

	Assigning data types to elements
	Automatic data typing
	Strict data typing
	Casting objects

	About variables
	Naming a variable
	Scoping and declaring variables
	Local variables
	Timeline variables
	Global variables

	Using variables in a program

	Using operators to manipulate values in expressions
	Operator precedence and associativity
	Numeric operators
	Comparison operators
	String operators
	Logical operators
	Bitwise operators
	Equality operators
	Assignment operators
	Dot and array access operators

	Specifying an object’s path
	Using built-in functions
	Creating functions
	Defining a function
	Passing parameters to a function
	Using variables in a function
	Returning values from a function
	Calling a user-defined function


	Writing and Debugging Scripts
	Controlling when ActionScript runs
	Checking a condition
	Repeating an action

	Using the Actions panel and Script window
	About the ActionScript editor environment
	Managing scripts in a FLA file

	Using the ActionScript editor
	Syntax highlighting
	Writing code that triggers code hints
	Strictly typing objects to trigger code hints
	Using suffixes to trigger code hints
	Using comments to trigger code hints

	Using code hints
	Using Escape shortcut keys
	Checking syntax and punctuation
	Formatting code

	Debugging your scripts
	Debugging a SWF file from a remote location
	Displaying and modifying variables
	Using the Watch list
	Displaying movie clip properties and changing editable properties
	Setting and removing breakpoints
	Stepping through lines of code

	Using the Output panel
	Listing a SWF file’s objects
	Listing a SWF file’s variables
	Displaying text field properties for debugging
	Using the trace statement

	Updating Flash Player for testing

	Handling Events and Creating Interaction
	Handling Events
	Using event handler methods
	Using event listeners
	Using button and movie clip event handlers
	Creating movie clips with button states
	Event handler scope
	Scope of the “this” keyword

	Creating Interaction with ActionScript
	About events and interaction
	Controlling SWF file playback
	Jumping to a frame or scene
	Playing and stopping movie clips
	Jumping to a different URL

	Creating interactivity and visual effects
	Creating a custom mouse pointer
	Getting the mouse position
	Capturing keypresses
	Setting color values
	Creating sound controls
	Detecting collisions
	Creating a simple line drawing tool

	Deconstructing a sample script

	Working with Objects and Classes
	Using the Built-In Classes
	About classes and instances
	Creating a new object
	Accessing object properties
	Calling object methods
	About class (static) members

	Overview of built-in classes
	Core classes
	Classes specific to Flash Player
	Movie classes
	Media classes
	Client-server classes
	Authoring classes



	Working with Movie Clips
	About controlling movie clips with ActionScript
	Calling multiple methods on a single movie clip
	Loading and unloading additional SWF files
	Specifying a root Timeline for loaded SWF files
	Loading JPEG files into movie clips
	Changing movie clip position and appearance
	Dragging movie clips
	Creating movie clips at runtime
	Creating an empty movie clip
	Duplicating or removing a movie clip
	Attaching a movie clip symbol to the Stage

	Adding parameters to dynamically created movie clips
	Managing movie clip depths
	Determining the next highest available depth
	Determining the instance at a particular depth
	Determining the depth of an instance
	Swapping movie clip depths

	Drawing shapes with ActionScript
	Using movie clips as masks
	About masking device fonts

	Handling movie clip events
	Assigning a class to a movie clip symbol
	Initializing class properties

	Working with Text
	Using the TextField class
	Assigning text to a text field at runtime
	About text field instance and variable names

	Creating text fields at runtime
	Using the TextFormat class
	Default properties of new text fields
	Getting text metric information

	Formatting text with Cascading Style Sheets
	Supported CSS properties
	Creating a style sheet object
	Loading external CSS files
	Creating new styles with ActionScript
	Applying styles to a TextField object
	Combining styles
	Using style classes
	Styling built-in HTML tags
	An example of using styles with HTML
	Using styles to define new tags
	An example of using styles with XML

	Using HTML-formatted text
	Overview of using HTML-formatted text
	Supported HTML tags
	Anchor tag (<a>)
	Bold tag (<b>)
	Break tag (<br>)
	Font tag (<font>)
	Image tag (<img>)
	Italic tag (<i>)
	List item tag (<li>)
	Paragraph tag (<p>)
	Span tag (<span>)
	Text format tag (<textformat>)
	Underline tag (<u>)

	Embedding images, SWF files, and movie clips in text fields
	Embedding SWF and JPEG files
	Embedding movie clip symbols
	Specifying height and width values
	Controlling embedded media with ActionScript
	Making hyperlinks out of embedded media


	Creating scrolling text

	Creating Classes with ActionScript 2.0
	Principles of object-oriented programming
	Objects
	Classes and class members
	Inheritance
	Interfaces

	Using classes: a simple example
	Creating a class file
	Creating an instance of the Person class

	Creating and using classes
	Creating properties and methods
	Initializing properties inline
	Creating subclasses
	Constructor functions
	Controlling member access

	Instance and class members
	Creating class members
	Using class members: a simple example
	Class members and subclasses

	Creating and using interfaces
	Creating an interface
	Interfaces as data types

	Understanding the classpath
	Global and document-level classpaths
	How the compiler resolves class references
	Modifying the classpath

	Using packages
	Importing classes
	Implicit get/set methods
	Creating dynamic classes
	How classes are compiled and exported

	Working with External Data and Media
	Working with External Data
	Sending and loading variables to and from a remote source
	Checking for loaded data
	Using HTTP to connect to server-side scripts
	Using the LoadVars class
	About XML
	Using the XML class
	Using the XMLSocket class

	Sending messages to and from Flash Player
	Using fscommand()
	About Flash Player methods
	About using Flash JavaScript methods with Flash Player

	Flash Player security features
	About allowing data access between cross-domain SWF files
	About allowing HTTP to HTTPS protocol access between SWF files
	About allowing cross-domain data loading
	About compatibility with previous Flash Player security models


	Working with External Media
	Overview of loading external media
	Loading external SWF and JPEG files
	About loaded SWF files and the root Timeline
	About accessing data in loaded SWF files

	Loading external MP3 files
	Reading ID3 tags in MP3 files
	Playing back external FLV files dynamically
	Preloading external media
	Preloading SWF and JPEG files
	Preloading MP3 and FLV files


	Reference
	ActionScript Dictionary
	Sample entry for most ActionScript elements
	Entry title

	Sample entry for classes
	Entry title
	Method and property summary tables
	Constructor
	Method and property listings

	Contents of the dictionary
	Accessibility class
	Method summary for the Accessibility class

	Arguments class
	Property summary for the Arguments class

	Array class
	Method summary for the Array class
	Property summary for the Array class
	Constructor for the Array class

	Boolean class
	Method summary for the Boolean class
	Constructor for the Boolean class

	Button class
	Method summary for the Button class
	Property summary for the Button class
	Event handler summary for the Button class

	Camera class
	Method summary for the Camera class
	Property summary for the Camera class
	Event handler summary for the Camera class
	Constructor for the Camera class

	Color class
	Method summary for the Color class
	Constructor for the Color class

	ContextMenu class
	Method summary for the ContextMenu class
	Property summary for the ContextMenu class
	Event handler summary for the ContextMenu class
	Constructor for the ContextMenu class

	ContextMenuItem class
	Method summary for the ContextMenuItem class
	Property summary for the ContextMenuItem class
	Event handler summary for the ContextMenuItem class
	Constructor for the ContextMenuItem class

	CustomActions class
	Method summary for the CustomActions class

	Date class
	Method summary for the Date class
	Constructor for the Date class

	Error class
	Method summary for the Error class
	Property summary for the Error class
	Constructor for the Error class

	Function class
	Method summary for the Function class
	Property summary for the Function class

	Key class
	Method summary for the Key class
	Property summary for the Key class
	Listener summary for the Key class

	LoadVars class
	Method summary for the LoadVars class
	Property summary for the LoadVars class
	Event handler summary for the LoadVars class
	Constructor for the LoadVars class

	LocalConnection class
	Method summary for the LocalConnection class
	Event handler summary for the LocalConnection class
	Constructor for the LocalConnection class

	Math class
	Method summary for the Math class
	Property summary for the Math class

	Microphone class
	Method summary for the Microphone class
	Property summary for the Microphone class
	Event handler summary for the Microphone class
	Constructor for the Microphone class

	Mouse class
	Method summary for the Mouse class
	Listener summary for the Mouse class

	MovieClip class
	Method summary for the MovieClip class
	Drawing method summary for the MovieClip class
	Property summary for the MovieClip class
	Event handler summary for the MovieClip class

	MovieClipLoader class
	Method summary for the MovieClipLoader class
	Listener summary for the MovieClipLoader class
	Constructor for the MovieClipLoader class

	NetConnection class
	Method summary for the NetConnection class
	Constructor for the NetConnection class

	NetStream class
	Method summary for the NetStream class
	Property summary for the NetStream class
	Event handler summary for the NetStream class
	Constructor for the NetStream class

	Number class
	Method summary for the Number class
	Property summary for the Number class
	Constructor for the Number class

	Object class
	Method summary for the Object class
	Property summary for the Object class
	Constructor for the Object class

	PrintJob class
	Method summary for the PrintJob class
	Constructor for the PrintJob class

	Selection class
	Method summary for the Selection class
	Listener summary for the Selection class

	SharedObject class
	Local disk space considerations
	Method summary for the SharedObject class
	Property summary for the SharedObject class
	Event handler summary for the SharedObject class
	Constructor for the SharedObject class

	Sound class
	Method summary for the Sound class
	Property summary for the Sound class
	Event handler summary for the Sound class
	Constructor for the Sound class

	Stage class
	Method summary for the Stage class
	Property summary for the Stage class
	Event handler summary for the Stage class

	String class
	Method summary for the String class
	Property summary for the String class
	Constructor for the String class

	System class
	Method summary for the System class
	Property summary for the System class
	Event handler summary for the System class

	System.capabilities object
	Property summary for the System.capabilities object

	System.security object
	Method summary for the System.security object

	TextField class
	Method summary for the TextField class
	Property summary for the TextField class
	Event handler summary for the TextField class
	Listener summary for the TextField class

	TextField.StyleSheet class
	Method summary for the TextField.StyleSheet class
	Event handler summary for the TextField.StyleSheet class
	Constructor for the TextField.StyleSheet class

	TextFormat class
	Method summary for the TextFormat class
	Property summary for the TextFormat class
	Constructor for the TextFormat class

	TextSnapshot object
	Method summary for the TextSnapshot object

	Video class
	Method summary for the Video class
	Property summary for the Video class

	XML class
	Method summary for the XML class
	Property summary for the XML class
	Collections summary for the XML class
	Event handler summary for the XML class
	Constructor for the XML class

	XMLNode class
	XMLSocket class
	Method summary for the XMLSocket class
	Event handler summary for the XMLSocket class
	Constructor for the XMLSocket class


	Error Messages
	Operator Precedence and Associativity
	Keyboard Keys and Key Code Values
	Letters A to Z and standard numbers 0 to 9
	Keys on the numeric keypad
	Function keys
	Other keys

	Writing Scripts for Earlier Versions of Flash Player
	About targeting older versions of Flash Player
	Using Flash MX 2004 to create content for Flash Player 4
	Using Flash MX 2004 to open Flash 4 files
	Using slash syntax


	Object-Oriented Programming with ActionScript 1
	About ActionScript 1
	Creating a custom object in ActionScript 1
	Assigning methods to a custom object in ActionScript 1
	Defining event handler methods in ActionScript 1
	Creating inheritance in ActionScript 1
	Adding getter/setter properties to objects in ActionScript 1
	Using Function object properties in ActionScript 1
	Invoking a function using the Function.call() method in ActionScript 1
	Specifying the object to which a function is applied using Function.apply() in ActionScript 1



	Index



