
Keyboard Sample Help

Sample Description: Keyboard

Points of Interest

About Keyboard Events

Identifying Keyboard Characters

Manually Clearing a ListBox

Automatically Clearing a ListBox

ANSI Code Chart

Controls

TextBox

ListBox

Button

CheckBox

For Help on Help, Press F1

-Keyboard

The Keyboard application is a visual demonstration of    the various keyboard events. The application uses several event procedures to
display information about the generated events in a ListBox on the form. The ListBox may quickly overflow since a great deal of
information about the events are recorded. Once the ListBox overflows, a scrollbar will appear automatically for you to review the
keyboard events.

A Manual Clear button is provided to clear the contents of the ListBox. An Automatic Clear CheckBox is provided to automatically clear
the contents of the ListBox when it is about to overflow. Clicking the Automatic Clear CheckBox to True, will display an "X" and
temporarily disable the Manual Clear button.

Event information that will be displayed includes all KeyDown, KeyPress, and KeyUp events. Each event will display information about
the character code that was struck and the shift key code associated with the event.

Identifying Keyboard Characters

This application identifies keyboard characters using the following KeyPress event.

Sub txtKeyboardEntry_KeyPress(keyAscii As Integer)
    Dim action As String

    action = "KeyPress - keyAscii is: " & keyAscii & " Character is: [" & Chr(keyAscii) & "]"
    lstKeyboard.AddItem action
    ' Don't allow anything to come into the box
    keyAscii = 0
End Sub

As character keys are pressed on the keyboard, the KeyPress event is triggered and the program code shown above is executed. The
program code converts the ANSI character code to a character with Chr function. This information is then added to the Listbox on the
form.

Manually Clearing a ListBox

In this application, a Manual Clear button contains the following program code:

Sub btnClear_Click()
    lstKeyboard.Clear
    txtKeyboardEntry.SetFocus
End Sub

The ListBox’s standard Clear method is used to clear the contents of the ListBox when the Manual Clear button is clicked. Once the list is
cleared, the insertion point is placed back in the keyboard TextBox with the SetFocus method. This is necessary since the keyboard events
are defined on this textbox.

Automatically Clearing a ListBox

The Automatic Clear CheckBox executes the following Click method:

Sub chkAutoClear_Click()
    If chkAutoClear.Value == 0 Then
        btnClear.Enabled = "True"
    Else
        btnClear.Enabled = "False"
    End If

    txtKeyboardEntry.SetFocus
End Sub

When the CheckBox is clicked to True, its Value property is set to "1" and the Manual Clear button is disabled. This prevents the user from
automatically clearing the ListBox contents when the Automatic Clear method is activated. When keys on the keyboard are pressed, the
following KeyUp event method is executed:

Sub txtKeyboardEntry_KeyUp(keyCode As Integer, ByVal shift As Integer)
    Dim action As String

    action = "KeyUp - keyCode is: " & keyCode & " Shift parameter is: " & shift
    lstKeyboard.AddItem action

    ' Check to see if the autoclear is on
    If chkAutoClear.Value == 1 Then
        If lstKeyboard.ListCount > 18 Then
            lstKeyboard.Clear
        End If
    End If

End Sub

An If test is performed to determine if the value of the CheckBox is True, or equal to "1." When the CheckBox is toggled on, the program
code uses the ListCount method to determine the number of entries in the ListBox. If the Count is greater than 18, the Clear method is
executed and the ListBox contents is cleared.

ANSI Code Chart

The following table lists the values that represent alphanumeric characters for the Envelop interpreter. The table shows the basis of the
character code of the American National Standards Institute (ANSI). This code has been adapted by Microsoft for use with Microsoft
Windows, so it contains some elements of the all-encompassing ANSI code as well as some elements of ASCII (American Standard Code
for Information Interchange) on which the ANSI code is partly based.

Understanding ANSI and ASCII Character Sets

The original ASCII character set was limited to numeric values in the range of 1 to 127. Later, an extended ASCII character set added
values 128 to 255. Envelop's ANSI character set is a superset of the original ASCII character set; values 1 to 127 define the same characters
in both ASCII and ANSI. The characters associated with the values from 128 to 255, however, differ between ANSI and Extended ASCII.

Not all numeric values correlate to an ANSI character that can be displayed. Some values produce special effects. For example, Chr(9)
produces a Tab and Chr(10), a line feed. Not all character values technically defined in the ANSI set are supported by Windows. The chart
below also does not contain all Envelop supported characters.

Character Hex Code ANSI Code

Backspace &H08 8
Tab &H09 9
Line Feed &H0A 10
Carriage Return &HOD 13
Space &H20 32
! &H21 33
" &H22 34
&H23 35
$ &H24 36
% &H25 37
& &H26 38
' &H27 39
(&H28 40
) &H29 41
* &H2A 42
+ &H2B 43
, &H2C 44
- &H2D 45
. &H2E 46
/ &H2F 47
0 &H30 48
1 &H31 49
2 &H32 50
3 &H33 51
4 &H34 52
5 &H35 53
6 &H36 54
7 &H37 55
8 &H38 56
9 &H39 57
: &H3A 58
; &H3B 59
< &H3C 60
= &H3D 61
> &H3E 62
? &H3F 63
@ &H40 64
A &H41 65
B &H42 66
C &H43 67
D &H44 68
E &H45 69
F &H46 70
G &H47 71
H &H48 72
I &H49 73
J &H4A 74
K &H4B 75
L &H4C 76
M &H4D 77
N &H4E 78
O &H4F 79

P &H50 80
Q &H51 81
R &H52 82
S &H53 83
T &H54 84
U &H55 85
V &H56 86
W &H57 87
X &H58 88
Y &H59 89
Z &H5A 90
[&H5B 91
\ &H5C 92
] &H5D 93
^ &H5E 94
_ &H5F 95
` &H60 96
a &H61 97
b &H62 98
c &H63 99
d &H64 100
e &H65 101
f &H66 102
g &H67 103
h &H68 104
I &H69 105
j &H6A 106
k &H6B 107
l &H6C 108
m &H6D 109
n &H6E 110
o &H6F 111
p &H70 112
q &H71 113
r &H72 114
s &H73 115
t &H74 116
u &H75 117
v &H76 118
w &H77 119
x &H78 120
y &H79 121
z &H7A 122
{ &H7B 123
| &H7C 124
} &H7D 125
~ &H7E 126

About Keyboard Events

The KeyDown, KeyPress, and KeyUp events are usually activated when a user presses a key on the keyboard.

KeyDown

For low-level keyboard handling, use the KeyDown event to report the current keyboard status when a key is pressed. The format for the
KeyDown event is as follows:

Sub txtKeyboardEntry_KeyDown(keyCode As Integer, ByVal shift As Integer)

The KeyDown event occurs for the current control (the control that has focus) every time a user presses a key. This does include the
"Shift," "Ctrl," or "Alt," keys. By using the KeyDown event, the program can react to function keys 1 through @, and unique key
combinations like "Shift," "Ctrl" key. The program can process these keys because it can handle all keys, not just the standard character
keys.

To inform the program of which keys being pressed triggered the event, this event provides the keyCode and shift arguments. The
keyCode argument uniquely identifies the key that is pressed by supplying a unique number. The shift argument is an integer variable
indicating the status of three special keys, "Shift", "Alt," and "Ctrl" at the time the KeyDown event was called. Each of these keys keys is
assigned a unique value: 1 for "Shift," 2 for "Ctrl," and 4 for "Alt." Pressing any of these keys, causes its value to be added to the shift
argument.

KeyPress

The program uses the KeyPress event to intercept ASCII keystrokes when the event's control has the focus. As the keys are intercepted, the
program can review the user's input on a byte by byte basis. The KeyPress event format is as follows:

Sub txtKeyboardEntry_KeyPress(keyAscii As Integer)

The KeyPress event can be useful for validating data input and alerting the user as soon as an invalid character is entered. This event can
also be used to limit the type of characters that may be entered in a box. For example, the following program code for a TextBox will
accept only numbers 0-9 and the period character as input. The backspace character can also be entered. See the ANSI Code section for
other character codes.

Sub TextBox1_KeyPress(keyAscii As Integer)
    Select Case keyAscii
        Case 8 ' Backspace
        Case 46 ' Period
        Case 48 To 57 ' Numbers 0-9
        Case Else
            keyAscii = 0 ' No Character Input
    End Select
End Sub

The control with the focus receives this event every time the user presses a key that corresponds to a valid ASCII character. If the value of
keyAscii is modified within this event, the modification is passed on to the control. In the example shown above, the keyAscii value is set
to 0 (zero) if it is not picked up by one of the Case statements. The example below will automatically convert lowercase characters to
uppercase.

Sub TextBox1_KeyPress(keyAscii As Integer)
    Dim lower_char As String
    Dim upper_char As String

    Select Case keyAscii
        Case 97 To 122 ' Lower-case characters a-z
            lower_char = Chr(keyAscii)
            upper_char = UCase(lower_char)
            keyAscii = Asc(upper_char)
    End Select
End Sub

KeyUp

For low-level keyboard handling, use the KeyUp event to report the current keyboard status when a key is released and this event's control
has the focus. The format for the KeyUp event is as follows:

Sub txtKeyboardEntry_KeyUp(keyCode As Integer, ByVal shift As Integer)

The KeyUp event complements the KeyDown event, since each time a user releases a pressed key on the keyboard, including the "Shift,"
"Ctrl," and "Alt" keys, the current object (that has the focus) receives this event.

