Stream Classes User Guide

This class library provides some classes for Delphi 4 to 7 that can be used to extend the

functionality of Delphi's TStream classes.

Overview

The classes included in this release are as follows:

Class

Unit

Description

TPJStreamWrapper

PjStreamWrapper

This is a base class for descendant
classes that "wrap" a TStream class to
provide some form of filter or additional
functionality. The wrapped TStream is
used to do physical i/o.
TStreamWprapper simply replicates the
facilities in the wrapped stream - it is
for descendant classes to add
functionality.

TPJCustomResWriterStream

PJResWriterStreams

Base class for all resource stream writer
classes. Provides some basic
functionality required by all stream
involved in writing resource files.

TPJResWriterStream

PJResWriterStreams

Writes a resource file in correct format.
It is responsible for writing the required
header data. This class should not be
used on its own, but should be wrapped
by a TPJResDataStream class (see
below)

TPJResDataStream

PJResWriterStreams

Writes data to a resource of a specified
type contained in a resource file written
using a TPJResWriterStream object.

TPJResHeader

PJResWriterStreams

Creates a resource file header record of
required kind. Properties of the header
are exposed and the class can write the
header to the current location in any
given stream. This class is essentially
private to the other classes in this unit.

TPJIStreamWrapper PJIStreams

Implements the IStream interface for a
wrapped TStream object.

TPJHandleIStreamWrapper |PJIStreams

Implements an IStream interface for a
wrapped THandleStream object (or
descendant such as TFileStream). Acts
in a similar way to TPJIStreamWrapper
except that file date stamps are
returned by the Stat method.

TPJFileIStream PJIStreams

Implements a IStream interface on a
file.

Page 1




TPJStreamWrapper

This class is not normally used on its own. It is designed as a descendant for classes that
"wrap" a stream. Such classes will add methods to the base class and/or override the base
class's handling of the Read, Write and Seek methods. Study the source code of
TPJCustomResWriterStream for details of how this can be achieved. The only method that is
different to those inherited from TStream is

constructor Create (const Stream: TStream;

const CloseStream: Boolean = False);

e Stream is the stream that is "wrapped" by this object

e CloseStream is an optional parameter that is False by default. When true the
parameter causes the wrapped stream to be freed when this object is destroyed.
This saves the used from having to remember to free the wrapped stream. It allows
the wrapped streams that are created "on the fly" in this constructor call to be freed
without keeping a reference to them.

Resource Stream Classes

The purpose of these classes is to allow the creation of resource files that can be linked into
executable programs without the use of a resource editor. The classes are particularly useful
in creating custom RCDATA resources. The public resource classes all ultimately descend
from TStream via TPJStreamWrapper.

The only classes that need to be accessed by the user are TPJResWriterStream (which looks
after the format of the resource file itself) and TPJResDataStream (which writes individual
resources within a resource file). The classes are always used together. TPJResDataStream
wraps around a TPJResWriterStream object which in turn wraps a TStream that is attached
to the resource file.

It is easiest to explain the purpose of these classes by presenting an example. Suppose we
need to write two custom resources name RES1 and RES2 to a resource file named
MyResource.res we can use the following code (Assume Datal and Data2 are records
containing all the data that needs to be written to RES1 and RES2 respectively):

var
FS: TFileStream;
RCDATAl, RCDATA2: TResDataStream;
RS: TResWriterStream;

begin
FS := TFileStream.Create('MyResource.res', fmCreate);
RS := TPJResWriterStream.Create (FS, True);
RCDATA1l := TPJResDataStream.Create(FS, 'RES1l', RS, False);

RCDATAl .WriteBuffer (Datal, SizeOf (Datal));
RCDATAl .Free;
RCDATA2 := TPJResDataStream.Create(FS, 'RES2', RS, True);
RCDATA2 .WriteBuffer (Data2, SizeOf (Data2));
RCDATA2 .Free;
end;

Note that we never free FS or RS. This is because RCDATA2 has been asked to
automatically free RS which in turn automatically frees FS.

Once you have got the hang of using the classes in conjunction with each other, the classes
are very easy to use - you simply construct the required classes and then write to the
stream as you normally would using the WriteBuffer and Write methods of TStream. The
only methods and properties that vary from TStream are explained below.

Page 2



TPJResWriterStream

constructor Create (const Stream: TStream;
const CloseStream: Boolean = False);

e The parameters are the same as for TPJStreamWrapper.

TPJResDataStream

constructor Create (const ResId: PChar;

const ResType: PChar;

const Stream: TResWriterStream;

const CloseStream: Boolean = False);
constructor Create(const ResId: string;

const ResType: PChar;

const Stream: TResWriterStream;

const CloseStream: Boolean = False);
constructor Create (const ResId: Integer;

const ResType: PChar;

const Stream: TResWriterStream;

const CloseStream: Boolean = False);

e ResId is the resource identifier. The overloaded versions of the constructor all vary
in this parameter - it can either be a name (as a string or a PChar) or an integer ID.

e ResType is the type of the resource. This is often RT_RCDATA, but can be any valid
value although it should be noted that this class knows nothing of the internal
structure of the predefined resource formats.

e Stream is the TPJResWriterStream that is associated with the resource file. This class
outputs its data via that stream.

¢ CloseStream operates in a similar way as the same parameter in TPJStreamWrapper
- except that it applies to the "wrapped" TPJResWriterStream object rather than a
TStream object.

property LanguagelID: WORD;

e This property sets the language ID that is associated with the resource. See the
Windows API help for more information on language IDs.

IStream Classes

The purpose of this group of classes is to implement the IStream interface for various kinds
of stream. The following classes are available. For details of the IStream methods see the
Windows help file documentation.

TPJIStreamWrapper

This class can wrap any TStream derived class and provide access to it by means of an
IStream interface. The stream to be wrapped is simply passed to the class constructor:

constructor Create (const Stream: TStream;
const CloseStream: Boolean = False);

e Stream is the stream that is "wrapped" by this object
e CloseStream is an optional parameter that is False by default. When true the
parameter causes the wrapped stream to be freed when this object is destroyed.

This saves the user from having to remember to free the wrapped stream. It allows
the wrapped streams that are created "on the fly" in this constructor call to be freed

Page 3



without keeping a reference to them.

The following comments apply to the IStream methods:

function Read(pv: Pointer; cb: Longint;
pcbRead: PLongint): HResult; wvirtual; stdcall;

¢ Reads a specified number of bytes from the stream object into memory starting at
the current seek pointer. Sets pcbRead, if not nil, to number of bytes actually read.

function Write (pv: Pointer; cb: Longint;
pcbWritten: PLongint): HResult; wvirtual; stdcall;

e Writes a specified number of bytes into the stream object starting at the current
seek pointer. The number of bytes actually written is returned in pcbWritten if this is
non nil.

function Seek (dlibMove: Largeint; dwOrigin: Longint;
out libNewPosition: Largeint): HResult; wvirtual; stdcall;

¢ Changes the seek pointer to a new location relative to the beginning of the stream,
the end of the stream, or the current seek pointer. Returns the new seek pointer
position in libNewPosition.

function SetSize (libNewSize: Largeint): HResult; wvirtual; stdcall;

¢ Changes the size of the stream object.

function CopyTo (stm: IStream;
cb: Largeint; out cbRead: Largeint;
out cbWritten: Largeint): HResult; wvirtual; stdcall;

e Copies a specified number of bytes from the current seek pointer in the stream to
the current seek pointer in another stream. The number of bytes actually read and
written is recorded in cbRead and cbWritten. If the source stream has less than the
required number of bytes available then all remaining bytes are written.

function Commit (grfCommitFlags: Longint): HResult; wvirtual; stdcall;

e Provided in IStream implementations that support transacted streams to ensure that
any changes made to a stream object open in transacted mode are reflected in the
parent storage object. Since we don't support transacted mode there's nothing to do
here.

function Revert: HResult; wvirtual; stdcall;
e Discards all changes that have been made to a transacted stream since the last

IStream.Commit call. Since we don't supported transacted streams we just return
that we've reverted the stream.

function LockRegion (libOffset: Largeint; cb: Largeint;
dwLockType: Longint): HResult; wvirtual; stdcall;
e Restricts access to a specified range of bytes in the stream. It is optional to support
this method, and we don't!
function UnlockRegion (1libOffset: Largeint; cb: Largeint;
dwLockType: Longint): HResult; wvirtual; stdcall;
e Removes the access restriction on a range of bytes previously restricted with
IStream.LockRegion. We don't support locking.
function Stat (out statstg: TStatStg;
grfStatFlag: Longint): HResult; wvirtual; stdcall;

e Retrieves the STATSTG structure for this stream. grfStatFlag can be
STATFLAG_DEFAULT, which omits the stream name from the structure, or
STATFLAG_NORMAL, which includes the stream name. In the latter case the name
should be freed using IMalloc.

Page 4



e The only supported TStatStg elements are:
e dwType (= STGTY_STREAM)
e cbSize (= size of underlying stream)

e pwcsName (= name of stream made up of wrapper class followed by name of
wrapped class in parentheses.

function Clone (out stm: IStream): HResult; wvirtual; stdcall;

¢ Not implemented. (Where implemented Clone creates a new stream object that
references the same bytes as the original stream but provides a separate seek
pointer to those bytes).

TPJHandleIStreamWrapper

This class provides an IStream interface to any wrapped object of type THandleStream or
descendant (such as TFileStream) - i.e. any stream based on a Windows file handle. It acts
as TPJIStreamWrapper except that the TStatStg structure returned by the Stat function also
returns information about file creation, modification and access dates where available.

This class has a constructor that only accepts stream which descend from THandleStream:

constructor Create(const Stream: THandleStream;
const CloseStream: Boolean);

TPJFileIStream

TPJFileIStream provides an interface to a file. It's constructor is like that of TFileStream:

constructor Create (const FileName: string; Mode: Word);

However, in this instance the constructor returns an object of type TPJFileIStream which can
be cast to IStream.

The Stat function, like that of TPJHandleIStreamWrapper, provides file date/time stamp
information. Additionally, the pwcsName element of the TStatStg structure returns the
name of the open file rather than a name based on the class name.

Page 5



