

See Also
Object Type
Creating, Running, and Distributing Executable (.EXE) Files
Registering OLE Custom Controls
Trappable Errors for Windows 95 Custom Controls
Using Custom Properties Dialog Boxes
Visual Basic Custom Control Constants

Object Type

In Visual Basic, a control's object type is used with the TypeOf keyword in an If...Then...Else statement.
This is useful for creating a variable of that object type or determining the type of a control that is passed
as an argument to an event (for example, the source argument of the DragDrop event).    For more
information on using a control's object type, search Help for the If keyword.
The object type, or class name, for each control is listed in the following table.

Control Object type
3D check box SSCheck
3D command button SSCommand
3D frame SSFrame
3D group push button SSRibbon
3D option button SSOption
3D panel SSPanel
Animated button AniPushButton
Communications MSComm
Data Outline DataOutline
Gauge Gauge
Graph Graph
ImageList ImageList
Key state MhState
ListView ListView
MAPI MapiSession, MapiMessages
Masked edit MaskEdBox
Multimedia MCI MMControl
Outline Outline
Picture clip PictureClip
ProgressBar ProgressBar
RichTextBox RichTextBox
Slider Slider
Spin button SpinButton
SSTab SSTab
StatusBar StatusBar
TabStrip TabStrip
ToolBar ToolBar
TreeView TreeView

Creating, Running, and Distributing Executable (.EXE) Files

To run your application under Microsoft Windows outside Visual Basic, create an executable (.EXE) file.
You can create executable files for applications that use custom controls the same way you do for any
other application.    There are a few issues to consider, however, when running such an application.   
See the following topics for more information.
Visual Basic Executable (.EXE) Files
Required Custom Control Files

Visual Basic Executable (.EXE) Files

A custom control file is a DLL that is accessed both by Visual Basic and applications created by using
Visual Basic.    When you run an executable file that contains a custom control, the .OCX file associated
with it must be on your system's path or in the same directory as the .EXE file.    Otherwise, the
application will not be able to find the code needed to create the control.
If a custom control can't be found, the Visual Basic run-time DLL generates the error message File
Not Found.    To distribute an application that uses custom controls, it is recommended that your
installation procedure copy all required .OCX files into the user's Microsoft Windows \SYSTEM
subdirectory.
You can freely distribute any application you create with Visual Basic to any Microsoft Windows user.   
(Visual Basic provides a Setup Wizard for writing your own application setups.)    Users will need copies
of the following:

The Visual Basic run-time file (VBRUN40016DLL or VBRUN40032.DLL).
Any .OCX files.
Additional DLLs as required by your application or by custom controls.

Required Custom Control Files

The files required by each custom control are listed in the following table.

Control Required files
3D check box THREED16.OCX (16 bit)

THREED32.OCX (32 bit)
3D command button THREED16.OCX (16 bit)

THREED32.OCX (32 bit)
3D frame THREED16.OCX (16 bit)

THREED32.OCX (32 bit)
3D group push button THREED16.OCX (16 bit)

THREED32.OCX (32 bit)
3D option button THREED16.OCX (16 bit)

THREED32.OCX (32 bit)
3D panel THREED16.OCX (16 bit)

THREED32.OCX (32 bit)
Animated button ANIBTN16.OCX (16 bit)

ANIBTN32.OCX (32 bit)
Communications MSCOMM16.OCX (16 bit)

MSCOMM32.OCX (32 bit)
Gauge GAUGE16.OCX (16 bit)

GAUGE32.OXC (32 bit)
Graph GRAPH16.OCX, GSW16.EXE,

GSWDLL16.DLL (16 bit)
GRAPH32.OCX, GSW32.EXE,
GSWDLL32.DLL (32 bit)

ImageList COMCTL.OCX (32 bit only)
Key state KEYSTA16.OCX (16 bit)

KEYSTA32.OCX (32 bit)
ListView COMCTL.OCX (32 bit only)
MAPI * MSMAPI16.OCX (16 bit)

MSMAPI32.OCX (32 bit)
Masked edit MSMASK16.OCX (16 bit)

MSMASK32.OCX (32 bit)
Multimedia MCI ** MCI16.OCX (16 bit)

MCI32.OCX (32 bit)
Outline MSOUTL16.OCX (16 bit)

MSOUTL32.OCX (32 bit)
Picture clip PICCLP16.OCX (16 bit)

PICCLP32.OCX (32 bit)
ProgressBar COMCTL.OCX (32 bit only)
RichEdit RICHTX32.OCX (32 bit only)
Slider COMCTL.OCX (32 bit only)
Spin button SPIN16.OCX (16 bit)

SPIN32.OCX (32 bit)
SSTab COMCTL.OCX (32 bit only)
StatusBar COMCTL.OCX (32 bit only)
TabStrip COMCTL.OCX (32 bit only)
Toolbar COMCTL.OCX (32 bit only)
Treeview COMCTL.OCX (32 bit only)

* Microsoft Mail for Windows electronic mail system required.

** Multimedia PC required.

Registering OLE Custom Controls

When you install the Professional Edition, Visual Basic 4.0 automatically registers its OLE custom
controls in the system registry.    You are then able to use the custom controls at design time to build
your applications.
If you plan to create a set-up program for your application, you'll need to include information on any OLE
custom controls in the SETUP.LST file.    For more information, see chapter 30, "Distributing Your
Applications," in the Programmer's Guide.
The VB.LIC file, shipped in previous versions of Visual Basic, is not used for OLE Custom Controls.

Note      It is a violation of your license agreement to copy and distribute any information from the
Licenses section of the system registry.

Using Custom Properties Dialog Boxes

When setting the properties of a custom control, you may need or prefer to use the control's custom
properties dialog box.    This dialog box provides an alternative to the list of properties in the Properties
window for setting control properties at design time.

Two Ways to Set Properties
The reason for the custom properties dialog box is that not all applications that use custom controls
provide a Properties window like the one in Visual Basic.    The dialog box provides an interface for
setting key control properties regardless of the interface supplied by the hosting application.
For some control properties, you choose either of these two locations to set the property:

The Properties window
The custom properties dialog box

In some cases, the dialog box is the only way to set a property at design time.    This is usually the
situation when the interface needed to set a property doesn't work inside the Properties window.    For
example, assigning a series of images to an ImageList control involves more than typing the name of a
file or choosing from a list.

Finding the Dialog Box
Not all custom controls provide a custom properties dialog box.    To see whether a control provides this
dialog box, scroll the list of properties in the Properties Window to the top.    If the list of properties
contains the name (Custom), then the control provides the dialog box.

Using the Dialog Box
After you choose the (Custom) entry in the Properties window, click the Properties button to display the
control's custom properties dialog box, often presented as a tabbed dialog box.    Chose the tab that
contains the interface for setting the properties that you want to set.
After you make changes in one tab, you can often apply those changes immediately by clicking the
Apply button (if provided).    You can click other tabs to set other properties as needed.    To approve all
changes made in the dialog box, click the OK button.    To return to the Properties window without
changing any property settings, click the Cancel button.

Documents the SetupWizard application.    For information
about the Setup Toolkit, see the Visual Basic Help file.

Documents Visual Basic for Windows.

Documents the Data Access application.

Documents the Data Manager application.

Tutorials for learning to use Visual Basic for Windows.

Documents Microsoft Support Services.

Lists the applications written in Visual Basic that demonstrate
techniques discussed in the printed documentation.

Documents the custom controls provided with the
Professional Edition.

Documents the Crystal Reports application.

Documents the segmented hypergraphic editor for creating
hotspots within graphics for use in authoring Help files.

Documents the installation tools for ODBC.

Documents the ODBC driver for SQL Server databases.

Documents the VisData sample application.

Documents Windows functions as used in the C programming language.

Documents the Code Profiler add-in.

Documents Remote Automation, the Component Manager,
Remote Data Objects (RDO), and the RemoteData control
provided with the Enterprise Edition.

Documents the SourceSafe add-in for administrators.

Documents the SourceSafe add-in for users.

Text Files

Microsoft Visual Basic 4.0 includes additional information in the following files:

Text File Description
APILOD.TXT Describes how to use the API Text Viewer.
LABELS.TXT Contains information about mailing labels.
PACKING.LST Lists all files on the distribution disks provided with Visual Basic.
VB4DLL.TXT Contains additional information about developing dynamic link libraries (DLLs) to

use with Visual Basic.
WIN31API.TXT Contains procedure, constant, and type declarations for 16-bit versions of Windows

API functions.
WIN32API.TXT Contains symbolic constants for 32-bit versions of Windows API functions.
WINMMSYS.TXT Contains procedure, constant, and type declarations for Windows 3.1 multimedia

API functions.

 3D Check Box Control
Properties Methods Events Constants Error Messages

Description
The 3D check box control emulates the standard Visual Basic check box control, which displays an
option that can be turned on or off.    In addition, this control allows you to align three-dimensional text to
the right or left of the check box.

File Name
THREED16.OCX, THREED32.OCX

Class Name
SSCheck

Remarks
The 3D check box has several custom properties that allow you to adjust the three-dimensional
appearance of the control.    When you draw a 3D check box on a form, the custom property settings for
the control are saved and used as a template for the next 3D check box that you create.
Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control.    In Visual Basic, this control should be used on forms that
have the BackColor property set to light gray (&H00C0C0C0&).

Bound Properties
The 3D check box has three bound properties: DataChanged, DataField, and DataSource.    This means
that it can be linked to a data control and display field values for the current record in the recordset.   
The 3D check box can only be bound to a field that is of a boolean data type.    The 3D check box control
can also write out values to the recordset.
When the value of the field referenced by the DataField property is read, it is converted to a Value
property value, if possible.    If the field value is NULL, then the Value property is set to 2, which means
the check box is grayed.
For more information on using bound controls, refer to Chapter 22, "Accessing Databases With the Data
Control," in the Programmer's Guide.

Distribution Note      When you create and distribute applications that use the 3D check box control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory.    The
Setup Wizard included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*Alignment Font Height Parent
Caption *Font3D HelpContextID TabIndex
Container FontBold hWnd TabStop
DataChanged FontItalic Index Tag
DataField FontName Left Top
DataSource FontSize MouseIcon Value
DragIcon FontStrikethru MousePointer Visible
DragMode FontUnderline Name WhatsThisHelpID
Enabled ForeColor Object Width

Value is the default value of the control.

Note      The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtlName property in Visual Basic 1.0.
The DataChanged, DataField, and DataSource properties are bound properties and are only available in
Visual Basic 3.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

*Click GotFocus KeyUp MouseMove
DragDrop KeyDown LostFocus MouseUp
DragOver KeyPress MouseDown

Note      The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Refresh ZOrder
 Move SetFocus ShowWhatsThis

Note      The Drag and ZOrder methods are only available in Visual Basic.

 3D Command Button Control
Properties Methods Events Constants Error Messages

The 3D command button control emulates the standard Visual Basic command button control, which
performs a task when the user either clicks the button or presses a key. In addition, this control can
display a three-dimensional caption as well as a bitmap or icon. A variable bevel width allows the button
to appear raised off the screen.

File Name
THREED16.OCX, THREED32.OCX

Class Name
SSCommand

Remarks
The 3D command button has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D command button on a form, the custom property
settings for the control are saved and used as a template for the next 3D command button that you
create.
Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control. In Visual Basic, this control should be used on forms that have
the BackColor property set to light gray (&H00C0C0C0&).

Distribution Note      When you create and distribute applications that use the 3D command button
control, you should install the appropriate file in the customer's Microsoft Windows \SYSTEM
subdirectory. The Setup Kit included with Visual Basic provides tools to help you write setup programs
that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*AutoSize *Font3D hWnd *RoundedCorners
*BevelWidth FontBold Index TabIndex
Cancel FontItalic Left TabStop
Caption FontName MouseIcon Tag
Container FontSize MousePointer Top
Default FontStrikethru Name Value
DragIcon FontUnderline Object Visible
DragMode ForeColor *Outline WhatsThisHelpID
Enabled Height Parent Width
Font HelpContextID *Picture

Value is the default value of the control.

Note      The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table.
Click GotFocus KeyUp MouseMove
DragDrop KeyDown LostFocus MouseUp
DragOver KeyPress MouseDown

Note      The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.
Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

Note      The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

Picture Property, 3D Command Button Control
Example

Specifies a bitmap or an icon to display on the command button. This property is write-only at design
time.

Syntax
[form.]CommandButton3d.Picture[= picture]

Remarks
The following table lists the Picture property settings for the 3D command button control.

Setting Description
(none) (Default) No picture.
(bitmap) or (icon) Designates a graphic to display. You can load the graphic from the Properties

window at design time.

In Visual Basic, you can load a graphic at design time from the Properties window. At run time, you can
set this property by using the LoadPicture function on a bitmap or icon, or you can use Clipboard
methods such as GetData, SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap
and vbCFDIB, as defined in the object library in the Object Browser.
If you set the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture function to save a graphic from a form or picture
box into a file.

Note      This control can display bitmaps (.BMP) and icons (.ICO), but not Windows metafiles (.WMF). At
run time, you can set the Picture property to any other object's DragIcon, Icon, Picture, or Image
property, or you can assign it the graphic returned by the LoadPicture function. You can only assign the
Picture property directly.

Data Type
Integer

Picture Property Example, 3D Command Button Control

The following example pastes a bitmap from the Clipboard onto a command button. To try this example,
create a form with a command button, and then, in another application, copy a picture onto the
Clipboard, switch to Visual Basic, and run this example.

Note      The picture must be on the Clipboard in bitmap form.

Private Sub Form_Click ()
Const vbCFBitmap = 2
Command3D1.Picture = Clipboard.GetData(vbCFBitmap)

End Sub

 3D Frame Control
Properties Methods Events Constants Error Messages

The 3D frame control emulates the standard Visual Basic frame control, which provides a graphical or
functional grouping of controls. The 3D frame control also allows the use of three-dimensional text (right,
left, or centered in the frame), and the frame itself can appear raised or inset.

File Name
THREED16.OCX, THREED32.OCX

Class Name
SSFrame

Remarks
The 3D frame has several custom properties that allow you to adjust the three-dimensional appearance
of the control. When you draw a 3D frame on a form, the custom property settings for the control are
saved and used as a template for the next 3D frame that you create.
Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control. In Visual Basic, this control should be used on forms that have
the BackColor property set to light gray (&H00C0C0C0&).

Distribution Note When you create and distribute applications that use the 3D frame control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*Alignment FontBold hWnd *ShadowColor
Caption FontItalic Index *ShadowStyle
Container FontName Left TabIndex
DragIcon FontSize MouseIcon Tag
DragMode FontStrikethru MousePointer Top
Enabled FontUnderline Name Visible
Font ForeColor Object WhatsThisHelpI

D
*Font3D Height Parent Width

Caption is the default value of the control.

Note The Align, DragIcon, DragMode, HelpContextID, Index, and Parent properties are only available
in Visual Basic. The Name property is the same as the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table.
Click DragDrop MouseDown MouseUp
DblClick DragOver MouseMove

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.
Drag Refresh ShowWhatsThis ZOrder
Move

Note The Drag and ZOrder methods are only available in Visual Basic.

ShadowStyle Property, 3D Frame Control

Determines whether the frame appears inset or raised.

Syntax
[form.]Frame3d.ShadowStyle[= color%]

Remarks
The following table lists the ShadowStyle property settings for the 3D frame control.

Setting Description
0 (Default) Inset. Frame appears inset into the form.
1 Raised. Frame appears raised off the form.

Data Type
Integer (Enumerated)

 3D Group Push Button Control
Properties Methods Events Constants Error Messages

The 3D group push button control is a push button that turns its state on and off when clicked. Individual
3D group push buttons can be used in groups to emulate the functionality of the tool bar in Microsoft
Excel spreadsheets or the ribbon in Microsoft Word for Windows word processing program. This control
has a Picture property to which a bitmap graphic can be assigned.

File Name
THREED16.OCX, THREED32.OCX

Class Name
SSRibbon

Remarks
The buttons on the 3D group push button control look similar to command buttons, but they behave
more like option buttons; that is, depressing one button within a button group automatically raises the
previously depressed button. You group buttons using the GroupNumber property. The GroupAllowAllUp
property also allows all 3D group push buttons in a group to be in the up position.
The button has three picture properties: PictureUp, PictureDn, and PictureDisabled. The PictureDisabled
property determines which graphic is displayed when the button is in the disabled state. You can specify
both PictureUp and PictureDn properties, or you can specify the up bitmap only, in which case the 3D
group push button will either dither, invert, or use the unchanged up bitmap when displaying the button
in the down position. You choose the type of change with the PictureDnChange property.

Note      If the BevelWidth property is set to 1 or 2 rather than 0, the bitmap that you specify is only for
the area inside the bevels. The 3D group push button takes care of drawing the bevels and offsetting the
bitmap down and to the right when it is pressed. However, you may set the BevelWidth property to 0 and
incorporate the button shading for the up and down positions in your pictures.

Unlike most three-dimensional controls, the 3D group push button has a BackColor property. The
BackColor property defaults to light gray, but it can be changed to match the background color of the
bitmap that is placed on it. In this way a bitmap with a dominant background color can appear to be part
of the button. Note that the BackColor property only affects the area inside the 3D group push button's
beveled edges. The edges are always shaded with white and dark gray.
The 3D group push button has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D group push button on a form, the custom property
settings for the control are saved and used as a template for the next 3D group push button that you
create.

Distribution Note      When you create and distribute applications that use the 3D group push button
control, you should install the appropriate file in the customer's Microsoft Windows \SYSTEM
subdirectory. The Setup Kit included with Visual Basic provides tools to help you write setup programs
that install your applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*AutoSize *GroupNumber Name *RoundedCorners
BackColor Height Object TabIndex
*BevelWidth HelpContextID *Outline Tag
Container hWnd Parent Top
DragIcon Index *PictureDisabled Value
DragMode Left *PictureDn Visible
Enabled MouseIcon *PictureDnChange WhatsThisHelpID
*GroupAllowAllUp MousePointer *PictureUp Width

Value is the default value of the control.

Note      The Align, DragIcon, DragMode, HelpContextID, Index, and Parent properties are only available
in Visual Basic. Name is the same as the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
*Click DragOver MouseMove MouseUp
DragDrop MouseDown

Note      The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.
Drag Move Refresh Zorder
ShowWhatsThis

Note      The Drag and ZOrder methods are only available in Visual Basic.

GroupAllowAllUp Property, 3D Group Push Button Control

Determines whether all buttons in a logical group can be in the up position.

Syntax
[form.]GroupPushButton.GroupAllowAllUp[= {True | False}]

Remarks
The following table lists the GroupAllowAllUp property settings for the 3D group push button control.

Setting Description
True (Default) All buttons in the current logical group may be in the up position.
False At least one button in the current logical group must be depressed.

The setting of the GroupAllowAllUp property for a button in one group has no effect on any other group.
If the GroupAllowAllUp property is set to False, no check will be made by the 3D group push button
control to ensure that at least one button is depressed when the form on which the button resides is
loaded. It is up to you to set the initial state of the Value property for one of the buttons in the group to
True (depressed).

Note      When the GroupAllowAllUp property is set for a button in a logical group, the GroupAllowAllUp
property is automatically set to the same value for all the other buttons in the group. Use the
GroupNumber property to create logical groups of 3D group push buttons.

Data Type
Integer (Boolean)

GroupNumber Property, 3D Group Push Button Control

Sets or returns the GroupNumber associated with the 3D group push button.

Syntax
[form.]GroupPushButton.GroupNumber[= group%]

Remarks
The following table lists the GroupNumber property settings for the 3D group push button control.

Setting Description
0 The button is not part of a logical grouping and as such can be turned on and off (by

means of code or a mouse click) independently of any other group push buttons on the
form.

1 99 (Default = 1) The button is a member of a logical grouping of 3D group push buttons (that
is, other buttons on the same form with the same GroupNumber property setting).

The GroupNumber property only has a grouping effect on buttons that are siblings, that is, buttons with
the same parent. For example, in Visual Basic, you could consider two buttons placed directly on a form
siblings, and you can use their GroupNumber property to group them. Then, if you place a third button in
a frame control on the same form, the third button would not be a sibling of the first two, even though
they are all on the same form.
This property defaults to 1, and all sibling buttons form a group.
If this property is set to 0, the button will operate independently. It will turn its state on or off when
clicked.
It is possible to set up multiple logical groups on a single form, frame, panel, or picture box by varying
the GroupNumber property. All siblings with the same GroupNumber will operate as a group.

Note      There are two types of groups. The first type requires that at least one button in the group be
depressed (it operates like an option button group); the other type allows all buttons to be up. Refer to
the GroupAllowAllUp property for details.

Data Type
Integer

PictureDisabled Property, 3D Group Push Button Control

Specifies a bitmap to display on the 3D group push button when it is disabled. This property is write-only
at design time.

Syntax
[form.]GroupPushButton.PictureDisabled[= picture]

Remarks
The following table lists the PictureDisabled property settings for the 3D group push button control.

Setting Description
(none) (Default) No bitmap is specified for display when the button is disabled.
(bitmap) Designates a graphic to display on the button when it is disabled. You can load the

graphic from the Properties window at design time.

This graphic is only displayed if the 3D group push button is disabled, that is, its Enabled property is set
to False. Setting this property is optional. If you do not set this property, the button will display the
graphic specified for the PictureUp property.
In Visual Basic, you can load a graphic at design time from the Properties window. At run time, you can
set this property by using the LoadPicture function on a bitmap or, you can use Clipboard methods
such as GetData, SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap and
vbCFDIB, as defined in the Visual Basic (VB) object library in the Object Browser.
When setting the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture statement to save a graphic from a form or picture
box into a file.

Note      At run time, you can set the Picture property to any other object's Picture or Image property, or
you can assign it the graphic returned by the LoadPicture function. The Picture property can only be
assigned directly.

Data Type
Integer

PictureDn Property, 3D Group Push Button Control

Specifies a bitmap to display on the button when it is in the depressed or down position. This property is
write-only at design time.

Syntax
[form.]GroupPushButton.PictureDn[= picture]

Remarks
The following table lists the PictureDn property settings for the 3D group push button control.

Setting Description
(none) (Default) No bitmap is specified for display when the button is down. When the button is

down, the PictureUp bitmap is displayed modified, as determined by the
PictureDnChange property.

(bitmap) Designates a graphic to display on the button when it is down. You can load the graphic
from the Properties window at design time.

This bitmap is displayed only if the button is in the down state; that is, the Value property is True. It is not
necessary to assign a bitmap to this property; if this property is set to none, the 3D group push button
automatically creates the bitmap to be displayed when the button is in the down position. See the
PictureDnChange property for an explanation of the options available when you want to have the 3D
group push button create the down bitmap.
If the BevelWidth property is set to 1 or 2 rather than 0, the bitmap that you specify is only for the area
inside the bevels. The 3D group push button takes care of drawing the bevels and offsetting the bitmap
down and to the right when it is pressed. However, you may set the BevelWidth property to 0 and
incorporate button shading for the up and down positions in your pictures.
You can load a graphic at design time from the Properties window. At run time, you can set this property
by using the LoadPicture function on a bitmap, or you can use Clipboard methods such as GetData,
SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap and vbCFDIB as defined in
the Visual Basic (VB) object library in the Object Browser.
When setting the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture statement to save a graphic from a form or picture
box into a file.

Note      At run time, the Picture property can be set to any other object's Picture or Image property, or
you can assign it the graphic returned by the LoadPicture function. The Picture property can only be
assigned directly.

Data Type
Integer

PictureDnChange Property, 3D Group Push Button Control

Determines how the PictureUp bitmap is used to create the PictureDn bitmap if a PictureDn bitmap is
not specified.

Syntax
[form.]GroupPushButton.PictureDnChange[= setting%]

Remarks
The following table lists the PictureDnChange property settings for the 3D group push button control.

Setting Description
0 PictureUp bitmap unchanged.
1 (Default) Dither PictureUp bitmap. Create a copy of the up bitmap and change every other

pixel that is in the BackColor color to white. This has the effect of lightening that color (for
example, light gray will appear to be a lighter shade of gray).

2 Invert PictureUp bitmap.

When using setting 1 with large bitmaps, due to the overhead of dithering the bitmap, there is a slight
time lag the first time the button is pressed. If the time lag is unacceptable, use one of the other settings,
or specify a PictureDn bitmap.

Data Type
Integer (Enumerated)

PictureUp Property, 3D Group Push Button Control

Specifies a bitmap to display on the button when it is in the up position. This property is write-only at
design time.

Syntax
[form.]GroupPushButton.PictureUp[= picture]

Remarks
The following table lists the PictureUp property settings for the 3D group push button control.

Setting Description
(none) (Default) No bitmap is specified for display when the button is in the up position.
(bitmap) Designates a graphic to display on the button when it is up. You can load the graphic from

the Properties window at design time.

This bitmap is displayed if the button is in the up state; that is, the Value property is False. If the
PictureDn property is set to none, you can also use the PictureUp to create the bitmap to be displayed
when the button is in the down position. See the PictureDnChange property for an explanation of the
options available when you choose to have the 3D group push button create the down bitmap.
You can load a graphic at design time from the Properties window. At run time, you can set this property
by using the LoadPicture function on a bitmap, or you can use Clipboard methods such as GetData,
SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap and vbCFDIB as defined in
the Visual Basic (VB) object library in the Object Browser.
When setting the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture statement to save a graphic from a form or picture
box into a file.

Note      At run time, you can set the Picture property to any other object's Picture or Image property, or
you can assign it the graphic returned by the LoadPicture function. The Picture property can only be
assigned directly.

Data Type
Integer

 3D Option Button Control
Properties Methods Events                      Constants Error Messages

The 3D option button control emulates the standard Visual Basic option button control, which displays
an option that can be turned on or off. This control also allows you to align three-dimensional text to the
right or left of the option button.

File Name
THREED16.OCX, THREED32.OCX

Class Name
SSOption

Remarks
The 3D option button has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D option button on a form, the custom properties for the
control are remembered and used as a template for the next 3D option button that you create.
Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control. In Visual Basic, this control should be used on forms that have
the BackColor property set to light gray (&H00C0C0C0&).

Distribution Note      When you create and distribute applications that use the 3D option button control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*Alignment FontItalic Index Tag
Caption FontName Left Top
Container FontSize MouseIcon Value
DragIcon FontStrikethru MousePointer Visible
DragMode FontUnderline Name WhatsThisHelpID
Enabled ForeColor Object Width
Font Height Parent
*Font3D HelpContextID TabIndex
FontBold hWnd TabStop

Value is the default value of the control.

Note      The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
*Click DragOver KeyDown KeyUp
*DblClick GotFocus KeyPress LostFocus
DragDrop

Note      The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.
Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

Note      The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

DblClick Event, 3D Option Button Control

 

Occurs when the user presses and then releases a mouse button, then presses it again over an option
button. You can trigger the DblClick event in code by setting the control's Value property to True.

Syntax
Private Sub OptionButton3d_DblClick (Value As Integer)

Remarks
This event is the same as the standard Visual Basic DblClick event, except that the control's Value is
passed as an argument. When the option button is selected, Value = True. When it is not selected,
Value = False.

 3D Panel Control
Properties Methods Events Constants Error Messages

You can use the 3D panel control to display plain or three-dimensional text on a three-dimensional
background, to group other controls on a three-dimensional background as an alternative to the frame
control, or to lend a three-dimensional appearance to standard controls such as list boxes, combo
boxes, scroll bars, and so on.

File Name
THREED16.OCX, THREED32.OCX

Class Name
SSPanel

Remarks
The 3D panel is a three-dimensional rectangular area of variable size that can be as large as the form
itself or just large enough to display a single line of text. It can present status information in a
dynamically colored circle or bar with or without showing percent. (See the FloodShowPct property.)
While you can create some dramatic effects with the 3D panel, the control only has four basic visual
properties: OuterBevel, InnerBevel, BevelWidth, and BorderWidth. By combining these properties in
different ways, you can generate interesting backgrounds for text and controls.
Unlike most 3D controls, the 3D panel has a BackColor property. It defaults to light gray but can be
changed to any color you choose. When used sparingly, the BackColor property can give presentation
panels additional impact without getting in the way of the form's usefulness.
Like frames, 3D panels can have other controls placed on them.
The 3D panel has several custom properties that allow you to adjust the three-dimensional appearance
of the control. When you draw a 3D panel on a form, the custom property settings for the control are
saved and used as a template for the next 3D panel that you create.

Bound Properties
The 3D panel has three bound properties: DataChanged, DataField, and DataSource. This means that it
can be linked to a data control and display field values for the current record in the recordset. The 3D
panel control can also write out values to the recordset.
When the value of the field referenced by the DataField property is read, it is converted to a Caption
property string, if possible. If the recordset is updatable, the string is converted to the data type of the
field.
For more information on using bound controls, refer to Chapter 22, "Accessing Databases With the Data
Control," in the Programmer's Guide.

Distribution Note      When you create and distribute applications that use the 3D panel control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Wizard included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
Align DataSource FontName Negotiate
*Alignment DragIcon FontSize Object
*AutoSize DragMode FontStrikethru *Outline
BackColor Enabled FontUnderline Parent
*BevelInner *FloodColor ForeColor *RoundedCorners
*BevelOuter *FloodPercent Height *ShadowColor
*BevelWidth *FloodShowPct hWnd TabIndex
*BorderWidth *FloodType Index Tag
Container Font Left Top
DataChanged *Font3D MouseIcon Visible
DataField FontBold MousePointer WhatsThisHelpID

FontItalic Name Width

Caption is the default value of the control.

Note      The DragIcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtlName property in Visual Basic 1.0.
The DataChanged, DataField, and DataSource properties are bound properties and are only available in
Visual Basic 3.0.

Events
All of the events for this control are listed in the following table.
Click DragDrop MouseDown MouseUp
DblClick DragOver MouseMove

Note      The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.
Drag Move Refresh Zorder
ShowWhatsThis

Note      The Drag and ZOrder methods are only available in Visual Basic.

BevelInner Property, 3D Panel Control

Determines the style of the inner bevel of the panel.

Syntax
[form.]Panel3d.BevelInner[= setting%]

Remarks
The following table lists the BevelInner property settings for the 3D panel control.

Setting Description
0 (Default) None. No inner bevel is drawn.
1 Inset. The inner bevel appears inset on the screen.
2 Raised. The inner bevel appears raised off the screen.

Use this property with the BevelOuter, BorderWidth, and BevelWidth properties.

Data Type
Integer (Enumerated)

BevelOuter Property, 3D Panel Control

Determines the style of the outer bevel of the panel.

Syntax
[form.]Panel3d.BevelOuter[= setting%]

Remarks
The following table lists the BevelOuter property settings for the 3D panel control.

Setting Description
0 None. No outer bevel is drawn.
1 Inset. The outer bevel appears inset on the screen.
2 (Default) Raised. The outer bevel appears raised off the screen.

Use this property with the BevelInner, BorderWidth, and BevelWidth properties.

Data Type
Integer (Enumerated)

BorderWidth property, 3D Panel Control

Sets or returns the width of the border, which is the distance between the outer and inner bevels of the
panel.

Syntax
[form.]Panel3d.BorderWidth[= width%]

Remarks
The setting for this property determines the number of pixels between the inner and outer bevels that
surround the panel.
Border width can be set to a value between 0 and 30, inclusive.
Use this property in conjunction with the BevelInner, BevelOuter, and BevelWidth properties.

Data Type
Integer

FloodColor Property, 3D Panel Control

Sets or returns the color used to paint the area inside the panel's inner bevel when the 3D panel is used
as a status or progress indicator (that is, when the FloodType property setting is other than none).

Syntax
[form.]Panel3d.FloodColor[= color&]

Remarks
The FloodColor property has the same range of settings as standard Visual Basic color settings.

Setting Description
Normal RGB colors In Visual Basic, specified by using the Color palette, the RGB scheme, or

QBColor functions in code.
System default colors In Visual Basic, specified with system color constants listed in the object

library in the Object Browser.

Use this property with FloodPercent, FloodShowPct, and FloodType to cause the panel to display a
colored status bar indicating the degree of completion of a task.
At design time you can set this property by entering a hexadecimal value in the Settings box or by
clicking the three dots that appear at the right of the Settings box. Clicking this button displays a dialog
box that allows you to select a FloodColor setting from a palette of colors similar to the Visual Basic
Color Palette window.

Note      The FloodColor property defaults to bright blue: RGB (0, 0, 255). The valid range for a normal
RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range equals 0; the lower
three bytes, from least to most significant, determine the amount of red, green, and blue, respectively.
The red, green, and blue components are each represented by a number between 0 and 255 (&HFF).

Data Type
Long

FloodPercent Property, 3D Panel Control
Example

Sets or returns the percentage of the painted area inside the panel's inner bevel when the panel is used
as a status or progress indicator (that is, FloodType property setting other than none). This property is
not available at design time.

Syntax
[form.]Panel3d.FloodPercent[= percent%]

Remarks
The FloodPercent property can be set to an integer value between 0 and 100.
Use this property in conjunction with FloodColor, FloodShowPct, and FloodType to cause the panel to
display a colored status bar, indicating the degree of completion of a task.

Data Type
Integer

FloodPercent Example, 3D Panel Control

Visual Basic Example
The following example shows how the FloodPercent property updates the display of a panel status bar.

Private Sub Command1_Click ()
Panel3d1.FloodPercent = 0 ' Init status
Panel3d1.FloodType = 1 ' Left to right
' Do some long running process and update status bar at 10%
' intervals.
For I% = 1 To 10

DoLongRunningProcess
Panel3d1.FloodPercent = I% * 10
a% = DoEvents() ' Let Windows do other operations.

Next I%
End Sub

FloodShowPct Property, 3D Panel Control

Determines whether the current setting of the FloodPercent property will be displayed in the center of
the panel when the panel is used as a status or progress indicator (that is, FloodType property setting is
other than none).

Syntax
[form.]Panel3d.FloodShowPct[= {True | False}]

Remarks
The following table lists the FloodShowPct property settings for the 3D panel control.

Setting Description
True (Default) The current setting of the FloodPercent property will be displayed.
False The current setting of the FloodPercent property will not be displayed.

Data Type
Integer (Boolean)

FloodType Property, 3D Panel Control

Determines if and how the panel is used as a status or progress indicator.

Syntax
[form.]Panel3d.FloodType[= setting%]

Remarks
The following table lists the FloodType property settings for the 3D panel control.

Setting Description
0 (Default) None. Panel has no status bar capability and the caption (if any) is displayed.
1 Left to right. Panel will be painted in a color, which is specified by the FloodColor property,

from the left inner bevel to the right as the FloodPercent property increases.
2 Right to left. Panel will be painted in a color, which is specified by the FloodColor property,

from the right inner bevel to the left as the FloodPercent property increases.
3 Top to bottom. Panel will be painted in a color, which is specified by the FloodColor

property, from the top inner bevel downward as the FloodPercent property increases.
4 Bottom to top. Panel will be painted in a color, which is specified by the FloodColor

property, from the bottom inner bevel upward as the FloodPercent property increases.
5 Widening circle. Panel will be painted in a color, which is specified by the FloodColor

property, from the center outward in a widening circle as the FloodPercent property
increases.

Note      If the FloodType setting is a value other than 0, the panel caption (if any) will not be displayed.

Data Type
Integer (Enumerated)

 Animated Button Control
Properties Methods Events Constants Error Messages

The animated button control is a flexible button control that allows you to use any icon, bitmap, or
metafile to define your own button controls. Control types include animated buttons, multistate buttons,
and animated check boxes.

File Name
ANIBTN16.OCX, ANIBTN32.OCX

Class Name
AniPushButton

Remarks
Each animated button can contain zero or more images and an optional text caption. An animated
button can be thought of as a series of frames that are displayed in sequence.
You can use the Picture property to load images into the animated button control. The Frame property
indicates which picture is currently accessible through the Picture property. In other words, the Frame
property is an index of the array of images in the control.
The images are displayed within the control's border. The default is to display the images in the center of
the control, but you can use the PictureXpos and PictureYpos properties to position the image within the
control. You can also use the PictDrawMode property to scale the image to the exact size of the control
or to adjust the control to the size of your image.
The Caption text can be displayed next to the images or on the images, depending on the TextPosition
property.

Distribution Note      When you create and distribute applications that use the animated button control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Animation Cycles and Button Types
The following table shows how you can use frame sequences to implement various types of animated
buttons.

Button type Cycle Description
Animated 0 When the left mouse button is clicked, half of the frames are displayed

in order. When the button is released, the remaining frames are
displayed in order, returning to the first frame.

Multistate 1 Each frame specifies a particular state. When the left button is clicked,
it automatically switches to the next state and displays the appropriate
frame.

2-state animated 2 When the left button is clicked, frames are displayed in sequential order
until the middle frame appears, and the state is changed to 2 (that is,
checked).
When the button is clicked again, the remaining frames are displayed,
returning to the first frame. The state is changed back to 1.

Enhanced button 0 An animated button with only two frames.
Enhanced check box 1 A multistate button with two frames.

It is possible to pass Clipboard images directly into animated button frames. When loading frames, it is
also possible to pass Windows metafiles; images are scaled to the control and then converted into
bitmaps.

Note      The animated button control is generally used to create small- to medium-sized buttons.
However, the control is capable of holding large bitmaps. Bitmaps and icons held in an animated button
control use few Windows resources. The data is stored in global memory in a private format and does

not use Windows bitmap or icon resource handles. The animated button control is a useful tool for
archiving bitmaps or icons.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
BackColor Font hWnd *SpecialOp
BorderStyle FontBold Index *Speed
Caption FontItalic Left TabIndex
*CCBfileLoad FontName MouseIcon TabStop
*CCBfileSave FontSize MousePointer Tag
*ClearFirst FontStrikethru Name *TextPosition
*ClickFilter FontUnderline Object *TextXpos
Caption ForeColor Parent *TextYpos
*Cycle *Frame *PictDrawMode Top
DragIcon Height *Picture *Value
DragMode HelpContextID *PictureXpos Visible
Enabled *HideFocusBox *PictureYpos WhatsThisHelpID

Width
Value is the default value of the control.

Note      The Name property is the same as the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
*Click DragOver KeyDown KeyUp
DragDrop GotFocus KeyPress LostFocus

Methods
All of the methods for this control are listed in the following table. For documentation of the methods not
unique to this control, see Appendix A, "Standard Properties, Events, and Methods," in the Custom
Control Reference.
Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

CCBfileLoad Property, Animated Button Control

Loads image and animated button property information from files previously saved with the CCBfileSave
property. This property is write-only.

Syntax
[form.]AniButton.CCBfileLoad = filename$

Remarks
All animated button files have the extension .CCB.
CCB files save only image information and animated button property information. Except for the
BorderStyle property, information for standard properties is not saved in these files. If you want to save
all of the information for an animated button control, place it on a form and save the form. In App Studio,
place the control on a dialog and save the dialog. You can also copy controls using the Clipboard.
You can type the name of the file directly or click the ellipsis (...) to the right of the Settings box to open a
CCBfileLoad dialog box.
Animated button CCB files are fully compatible with Desaware's Custom Control Factory and can be
used to transfer frame sequences to and from Custom Control Factory controls.

Data Type
String

CCBfileSave Property, Animated Button Control

Saves information for an animated button control in a file. This property is write-only.

Syntax
[form.]AniButton.CCBfileSave = filename$

Remarks
The name of the CCB file to save is indicated by the placeholder filename$. All animated button files
have the extension .CCB.
You can save image and property information into CCB files that can then be distributed or used to build
a library of animated button controls. These files save only image and animated button property
information. Except for the BorderStyle property, information for standard properties is not saved in the
CCB files. If you want to save all of the information for an animated button control, place it on a form and
save the form. In App Studio, place the control on a dialog and save the dialog. You can also use the
Clipboard to copy controls.
You can type in the name of the file directly or click the ellipsis (...) to the right of the Settings box to
open a CCBfileSave dialog box.
Animated button CCB files are fully compatible with Desaware's Custom Control Factory and can be
used to transfer frame sequences to and from Custom Control Factory controls.

Data Type
String

ClearFirst Property, Animated Button Control

Determines whether the control is cleared between frames.

Syntax
[form.]AniButton.ClearFirst[= {True | False}]

Remarks
Normally, button controls are animated by drawing a new frame right on top of a previous frame. This
produces a smooth animation effect when either the image is stable or changes are gradual.
If you animate an image with large changes (for example, if an object is moving rapidly), an illusion of
tearing may occur when part of the old image and part of the new image are on the screen at the same
time.
Setting ClearFirst to True causes the control to be cleared between frames. This eliminates the tearing
effect; however, it does tend to cause increased flicker between frames. Try the control both ways to
determine which produces the best effect.
The following table lists the ClearFirst property settings for the animated button control.

Setting Description
False (Default) ClearFirst feature disabled.
True ClearFirst feature enabled.

Data Type
Integer (Boolean)

ClickFilter Property, Animated Button Control

Determines what part of the animated button control detects a mouse click.

Syntax
[form.]AniButton.ClickFilter[= setting%]

Remarks
The following table lists the ClickFilter property settings for the animated button control.

Setting Description
0 (Default) Mouse clicks are detected anywhere in the control.
1 Mouse clicks must be on either the caption text or the actual image frame in order to be

detected.
2 Mouse clicks must be on the image frame in order to be detected.
3 Mouse clicks must be on the caption text in order to be detected.

All mouse clicks on parts of the window that are not specified will be ignored. The animated button
invokes a Click event when a mouse click is detected.

Data Type
Integer (Enumerated)

Cycle Property, Animated Button Control

Controls the animation cycle and differentiates between animated, multistate, and 2-state animated
buttons.

Syntax
[form.]AniButton.Cycle[= setting%]

Remarks
The following table lists the Cycle property settings for the animated button control.

Setting Description
0 (Default) Plays one half of the frame sequence when the user chooses (clicks) the button.

Plays the rest of the frame sequence when the button is released. Returns to the first
frame.

1 Jumps to the next frame in the sequence when the button is released. Increments the
Value property at this time. This implements a one-frame-per-state multistate button.
Clicking the button when the button is set to the last frame (last state) causes the button
to return to the first frame (first state).

2 Plays one half of the frame sequence when the user chooses (clicks) the button for the
first time. This sets the Value property to 2 (from 1). When the button is clicked again, the
remaining frames will be played and the button will return to frame 1. At this time the
Value property will be set back to 1. This implements a 2-state animated button.

The Cycle property affects only the display sequence of images. The Click event occurs when the
mouse button is released. Pressing the SPACEBAR when a button has the focus causes the button to be
selected and released (as if it were clicked by the mouse).

Data Type
Integer (Enumerated)

Frame Property, Animated Button Control
Example

Indicates the current frame.

Syntax
[form.]AniButton.Frame[= setting%]

Remarks
The frame property has the following effects:

The current frame is the frame displayed while in design mode.
The current frame is the frame that can be accessed using the Picture property (in both design

and run modes under program control).

The Frame property has no effect on the appearance of the control at run time. It still can be set to
choose the frame to set or retrieve using the Picture property.
The Frame property can have the values one through the number of frames plus one. The argument
setting% is the number of the individual frame that is displayed in design mode and that can be
accessed in both design and run mode.

Data Type
Integer

Frame Property Example, Animated Button Control

The following example shows how to determine the number of frames in an animated button control at
run time.

Private Sub Form_Click ()
Dim a%, done%
' This will hold the frame number.
a% = 1
' This flag tells us when done.
done% = 0
On Error GoTo foundprop
Do

' Buttons CtlName property here.
AniButton1.frame = a%
' Done. a% contains the number of
' the frame that caused the error.
If done% Then Exit Do
a% = a% + 1

Loop While - 1
' Calculate the actual number of images.
' a% - 1 is the empty trailing frame.

a% = a% - 1
Exit Sub
FoundProp:

done% = -1
Resume Next

End Sub

HideFocusBox Property, Animated Button Control

Normally, when an animated button has the focus, a dotted-line rectangle appears around the caption
(or around the image if no caption is present).
There are occasions, however, when the focus rectangle might interfere with the animation. To prevent
the focus rectangle from appearing, set this property to True.

Syntax
[form.]AniButton.HideFocusBox[= {True | False}]

Remarks
The following table lists the HideFocusBox property settings for the animated button control.

Setting Description
False (Default) Focus rectangle appears when the control has the focus.
True Focus rectangle is hidden when the control has the focus.

Data Type
Integer (Boolean)

PictDrawMode Property, Animated Button Control

Defines how the image frame is drawn within the control. It is possible for any given image frame
(bitmap or icon) to be smaller or larger than the control.

Syntax
[form.]AniButton.PictDrawMode[= setting%]

Remarks
The following table lists the PictDrawMode property settings for the animated button control.

Setting Description
0 (Default) Positions the image according to the values in the PictureXpos and PictureYpos

properties and places the caption according to the TextPosition property value. These
properties control the X and Y position on a scale of 0 to 100.

1 Automatically controls the sizing mode. The animated button control is sized to fit the
largest image frame or the caption, whichever is largest.

2 Stretches the image to fit. The image frame is expanded or contracted to fill the current
size of the control. In this mode, the caption (if present) is always printed as if the
TextPosition property were set to 0 (that is, displayed on top of the image).

Data Type
Integer (Enumerated)

Picture Property, Animated Button Control

You can use this property to set and get the image frames in the control. In design mode, you can click
the ellipsis (...) to the right of the Settings box to open the Load Picture dialog box.
You can use this property to transfer images between forms and picture controls and the animated
button control. This is done by assignment in the same way that images can be transferred using the
Picture property in forms and picture controls. For example:

Form.Picture = Anibutton1.Picture.

The image frame that is accessed with this property is always the image specified by the Frame
property.

PictureXpos Property, Animated Button Control

Controls the horizontal placement of the image in the control.

Syntax
[form.]AniButton.PictureXpos[= setting%]

Remarks
The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the control. Thus, a value of 0 places the image at the upper-left
corner of the control; a value of 100 places it at the lower-right corner of the control. The default value is
50. Refer to the TextPosition property for details on how the behavior of this property may be modified
by the positioning of the caption.

Data Type
Integer

PictureYpos Property, Animated Button Control

Controls the vertical placement of the image in the control.

Syntax
[form.]AniButton.PictureYpos[= setting%]

Remarks
The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the control. Thus, a value of 0 places the image at the upper-left
corner of the control; a value of 100 places it at the lower-right corner of the control. The default value is
50. Refer to the TextPosition property for details on how the behavior of this property may be modified
by the positioning of the caption.

Data Type
Integer

SpecialOp Property, Animated Button Control

Triggers special operations on the part of the animated button control. A special operation is triggered by
assigning a value to this property at run time. This property is not available at design time and is write-
only at run time.

Syntax
[form.]AniButton.SpecialOp = setting%

Remarks
The following table lists the SpecialOp property settings for the animated button control.

Setting Description
1 Simulates a click. The control behaves exactly as if it had been clicked. The control

receives the focus and the form is activated if necessary. This option will not work if
the button's Enabled property is False. This option has no effect if the control's
Visible property is set to False.

Any other value No effect. No error is reported.

Data Type
Integer

Speed Property, Animated Button Control

Specifies the approximate delay, in milliseconds, between frames.

Syntax
[form.]AniButton.Speed[= setting%]

Remarks
Enter a value between 0 and 32767, inclusive. The default value is 0.
Larger numbers slow down the animation speed, and using very large numbers with this property
significantly impacts system performance. For best results, choose values below 100.

Data Type
Integer

TextPosition Property, Animated Button Control

Controls the position of the caption in the control. By doing so, it also influences the position of the
image.

Syntax
[form.]AniButton.TextPosition[= setting%]

Remarks
The following table lists the TextPosition property settings for the animated button control.

Setting Description
0 (Default) Caption is positioned within the control based on the TextXpos and TextYpos

properties. The image is positioned according to the PictDrawMode, PictureXpos, and
PictureYpos properties.

1 Image is placed at the left of the control. The TextXpos property positions the caption
within the space between the rightmost position of the image and the rightmost position of
the control. The vertical position is determined the same as when the TextPosition
property is 0.

2 Image is placed at the right of the control. The TextXpos property positions the caption
within the space between the leftmost position of the image and the leftmost position of
the control. The vertical position is determined the same as when the TextPosition
property is 0.

3 Image is placed at the bottom of the control. The TextYpos property positions the caption
within the space between the top of the image and the top of the control. The horizontal
position is determined the same as when the TextPosition property is 0.

4 Image is placed at the top of the control. The TextYpos property positions the caption
within the space between the bottom of the image and the bottom of the control. The
horizontal position is determined the same as when the TextPosition property is 0.

Note      When the PictDrawMode property is 2, the image and caption positions are the same as when
the TextPosition property is 0.

Data Type
Integer (Enumerated)

TextXpos Property, Animated Button Control

Controls the horizontal placement of the text caption.

Syntax
[form.]AniButton.TextXpos[= setting%]

Remarks
The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the caption area in the control. Thus, a value of 0 places the
caption at the upper-left corner of the caption area; a value of 100 places it at the lower-right corner of
the caption area. The default value is 50.
The caption area refers to the part of the control reserved for the text caption. This depends on which
setting you use for the TextPosition property, as described in the following table.

Setting Description
0 Caption area is entire control. Caption overlays any images in the control.
1 Caption placed to the right of the image.
2 Caption placed to the left of the image.
3 Caption placed above the image.
4 Caption placed below the image.

Data Type
Integer (Enumerated)

TextYpos Property, Animated Button Control

Controls the vertical placement (TextYpos) of the text caption.

Syntax
[form.]AniButton.TextYpos[= setting%]

Remarks
The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the caption area in the control. Thus, a value of 0 places the
caption at the upper-left corner of the caption area; a value of 100 places it at the lower-right corner of
the caption area. The default value is 50.
The caption area refers to the part of the control reserved for the text caption. This depends on which
setting you use for the TextPosition property, as described in the following table.

Setting Description
0 Caption area is entire control. Caption overlays any images in the control.
1 Caption placed to the right of the image.
2 Caption placed to the left of the image.
3 Caption placed above the image.
4 Caption placed below the image.

Data Type
Integer (Enumerated)

Value Property, Animated Button Control

Indicates the state of a 2-state or multistate animated button. Refer to the Cycle property for how this
property works for the different button and animation modes.

Syntax
[form.]AniButton.Value[= setting%]

Remarks
This property can be retrieved to determine the current frame number of an animated button control.
When the Cycle property is set to 1, you can use the Value property to specify the frame of the cycle you
want to display.
When the Value property of a control is changed, the display may not be updated until subsequent
events have occurred (such as the DoEvents() function).
Setting the Value property of a control does not cause a Click event to occur.

Data Type
Integer (Enumerated)

Click Event, Animated Button Control

Occurs when the user presses and then releases a mouse button over an animated button.

Syntax
Private Sub AniButton_Click ()

Remarks
This event is the same as the standard Visual Basic Click event, except that it is not generated when the
user presses Enter. You can use a KeyPress event to detect when the user presses Enter.

 Communications Control
Properties Events Functions Example Constants Error Messages

The communications control provides serial communications for your application by allowing the
transmission and reception of data through a serial port.

File Name
MSCOMM16.OCX, MSCOMM32.OCX

Class Name
MSComm

Remarks
The communications control provides the following two ways for handling communications:

Event-driven communications is a very powerful method for handling serial port interactions. In
many situations you want to be notified the moment an event takes place, as when a character arrives or
a change occurs in the Carrier Detect (CD) or Request To Send (RTS) lines. In such cases, you would
use the communications control's OnComm event to trap and handle these communications events. The
OnComm event also detects and handles communications errors. For a list of all possible events and
communications errors, see the CommEvent property.

You can also poll for events and errors by checking the value of the CommEvent property after
each critical function of your program. This may be preferable if your application is small and self-
contained. For example, if you are writing a simple phone dialer, it may not make sense to generate an
event after receiving every character, because the only characters you plan to receive are the OK
response from the modem.

Each communications control you use corresponds to one serial port. If you need to access more than
one serial port in your application, you must use more than one communications control. The port
address and interrupt address can be changed from the Windows Control Panel.
Although the communications control has many important properties, there are a few that you should be
familiar with first.

Properties Description
CommPort Sets and returns the communications port number.
Settings Sets and returns the baud rate, parity, data bits, and stop bits as a string.
PortOpen Sets and returns the state of a communications port. Also opens and closes a port.
Input Returns and removes characters from the receive buffer.
Output Writes a string of characters to the transmit buffer.

Distribution Note      When you create and distribute applications that use the communications control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Communications Control Example
The following simple example shows how to perform basic serial port communications:

Private Sub Form_Load ()
' Use COM1.
Comm1.CommPort = 1
' 9600 baud, no parity, 8 data, and 1 stop bit.
Comm1.Settings = "9600,N,8,1"
' Tell the control to read entire buffer when Input is used.
Comm1.InputLen = 0
' Open the port.
Comm1.PortOpen = True
' Send the attention command to the modem.
Comm1.Output = "AT" + Chr$(13)
' Wait for data to come back to the serial port.
Do

Dummy = DoEvents()
Loop Until Comm1.InBufferCount >= 2
' Read the "OK" response data in the serial port.
InString$ = Comm1.Input
' Close the serial port.
Comm1.PortOpen = False

End Sub

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*Break *DSRTimeout Left *PortOpen
*CDHolding *DTREnable Name *RThreshold
*CDTimeout *Handshaking *NullDiscard *RTSEnable
*CommEvent *InBufferCount Object *Settings
*CommID *InBufferSize *OutBufferCount *SThreshold
*CommPort Index *OutBufferSize Tag
*CTSHolding *Input *Output Top
*CTSTimeout *InputLen Parent

*DSRHolding *Interval *ParityReplace

Input is the default value of the control.

Note      The Name property is the same as the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
*OnComm

Functions
All of the functions for this control are listed in the following table. Functions that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*ComInput *ComOutput

Break Property, Communications Control
Example

Sets or clears the break signal state. This property is not available at design time.

Syntax
[form.]MSComm.Break[= {True | False}]

Remarks
The following table lists the Break property settings for the communications control.

Setting Description
True Sets the break signal state.
False Clears the break signal state.

When set to True, the Break property sends a break signal. The break signal suspends character
transmission and places the transmission line in a break state until you set the Break property to False.
Typically, you set the break state for a short interval of time, and only if the device with which you are
communicating requires that a break signal be set.

Data Type
Integer (Boolean)

Break Example, Communications Control

The following example shows how to send a break signal for a tenth of a second:

' Set the Break condition.
Comm1.Break = True
' Set duration to 1/10 second.
Duration! = Timer + .1
' Wait for the duration to pass.
Do Until Timer > Duration!

Dummy = DoEvents()
Loop
' Clear the Break condition.
Comm1.Break = False

CDHolding Property, Communications Control

Determines whether the carrier is present by querying the state of the Carrier Detect (CD) line. Carrier
Detect is a signal sent from a modem to the attached computer to indicate that the modem is online.
This property is not available at design time and is read-only at run time.

Syntax
[form.]MSComm.CDHolding

Remarks
The following table lists the CDHolding property settings for the communications control.

Setting Description
True Carrier Detect line is high.
False Carrier Detect line is low.

When the Carrier Detect line is high (CDHolding = True) and the CDTimeout number of milliseconds has
passed, the communications control sets the CommEvent property to comCDTO (Carrier Detect
Timeout Error), and generates the OnComm event.

Note      It is especially important to trap a loss of the carrier in a host application, such as a bulletin
board, because the caller can hang up (dropping the carrier) at any time.

The Carrier Detect is also known as the Receive Line Signal Detect (RLSD).
See the CDTimeout property for information on trapping this condition using the OnComm event.

Data Type
Integer (Boolean)

CDTimeout Property, Communications Control

Sets and returns the maximum amount of time (in milliseconds) that the control waits for the Carrier
Detect (CD) signal before timing out. This property indicates timing out by setting the CommEvent
property to comCDTO (Carrier Detect Timeout Error) and generating the OnComm event.

Syntax
[form.]MSComm.CDTimeout[= milliseconds&]

Remarks

Note      The 32-bit version of this control (MSCOMM32.OCX) doesn't support this property.

When the Carrier Detect line is low (CDHolding = False) and CDTimeout number of milliseconds has
passed, the communications control sets the CommEvent property to comCDTO (Carrier Detect
Timeout Error) and generates the OnComm event.
Refer to the CDHolding property for more information on detecting the presence of a carrier.

Data Type
Long

CommEvent Property, Communications Control

Returns the most recent communication event or error. This property is not available at design time and
is read-only at run time.

Syntax
[form.]MSComm.CommEvent

Remarks
Although the OnComm event is generated whenever a communication error or event occurs, the
CommEvent property holds the numeric code for that error or event. To determine the actual error or
event that caused the OnComm event, you must reference the CommEvent property.
The code returned by the CommEvent property is one of the settings of the following communication
errors or events, as specified in the object library in the Object Browser.
Communications errors include the following settings.

Setting Value Description
comBreak 1001 A Break signal was received.
comCTSTO 1002 Clear To Send Timeout. The Clear To Send line was low for CTSTimeout

number of milliseconds while trying to transmit a character.
comDSRTO 1003 Data Set Ready Timeout. The Data Set Ready line was low for

DSRTimeout number of milliseconds while trying to transmit a character.
comFrame 1004 Framing Error. The hardware detected a framing error.
comOverrun 1006 Port Overrun. A character was not read from the hardware before the

next character arrived and was lost. If you get this error under Windows
version 3.0, decrease the value of the Interval property. For more details,
refer to the Interval property.

comCDTO 1007 Carrier Detect Timeout. The Carrier Detect line was low for CDTimeout
number of milliseconds while trying to transmit a character. Carrier
Detect is also known as the Receive Line Signal Detect (RLSD).

comRxOver 1008 Receive Buffer Overflow. There is no room in the receive buffer.
comRxParity 1009 Parity Error. The hardware detected a parity error.
comTxFull 1010 Transmit Buffer Full. The transmit buffer was full while trying to queue a

character.

Communications events include the following settings.

Setting Value Description
comEvSend 1 There are fewer than SThreshold number of characters in the transmit

buffer.
comEvReceive 2 Received RThreshold number of characters. This event is generated

continuously until you use the Input property to remove the data from the
receive buffer.

comEvCTS 3 Change in Clear To Send line.
comEvDSR 4 Change in Data Set Ready line. This event is only fired when DSR

changes from    1 to 0.

comEvCD 5 Change in Carrier Detect line.
comEvRing 6 Ring detected. Some UARTs (universal asynchronous receiver-transmitters) may
not support this event.
comEvEOF 7 End Of File (ASCII character 26) character received.

Data Type
Integer

CommID Property, Communications Control

Returns a handle that identifies the communications device. This property is not available at design time
and is read-only at run time.

Syntax
[form.]MSComm.CommID

Remarks
This is the value returned by the Windows API OpenComm function and used by the internal
communications routines in the Windows API.

Data Type
Integer

CommPort Property, Communications Control

Sets and returns the communications port number.

Syntax
[form.]MSComm.CommPort[= portNumber%]

Remarks
You can set portNumber to any number between 1 and 99 at design time (the default is 1). However, the
communications control generates error 68 (Device unavailable) if the port does not exist when you
attempt to open it with the PortOpen property.

Warning      You must set the CommPort property before opening the port.

Data Type
Integer

CTSHolding Property, Communications Control

Determines whether you can send data by querying the state of the Clear To Send (CTS) line. Typically,
the Clear To Send signal is sent from a modem to the attached computer to indicate that transmission
can proceed. This property is not available at design time and is read-only at run time.

Syntax
[form.]MSComm.CTSHolding

Remarks
The following table lists the CTSHolding property settings for the communications control.

Setting Description
True Clear To Send line high.
False Clear To Send line low.

When the Clear To Send line is low (CTSHolding = False) and the CTSTimeout number of milliseconds
has passed, the communications control sets the CommEvent property to comCTSTO (Clear To Send
Timeout) and invokes the OnComm event.
The Clear To Send line is used in RTS/CTS (Request To Send/Clear To Send) hardware handshaking.
The CTSHolding property gives you a way to manually poll the Clear To Send line if you need to
determine its state.
For more information on handshaking protocols, see the Handshaking property.

Data Type
Integer (Boolean)

CTSTimeout Property, Communications Control

Sets and returns the number of milliseconds to wait for the Clear To Send signal before setting the
CommEvent property to comCTSTO and generating the OnComm event.

Syntax
[form.]MSComm.CTSTimeout[= milliseconds&]

Remarks

Note      The 32-bit version of this control (MSCOMM32.OCX) doesn't support this property.

When the Clear To Send line is low (CTSHolding = False) and the CTSTimeout number of milliseconds
has passed, the communications control sets the CommEvent property to comCTSTO (Clear To Send
Timeout) and generates the OnComm event.
See the CTSHolding property, which gives you a means to manually poll the Clear To Send line.

Data Type
Long

DSRHolding Property, Communications Control

Determines the state of the Data Set Ready (DSR) line. Typically, the Data Set Ready signal is sent by a
modem to its attached computer to indicate that it is ready to operate. This property is not available at
design time.

Syntax
[form.]MSComm.DSRHolding[= setting]

Remarks
The following table lists the DSRHolding property settings for the communications control.

Setting Description
True Data Set Ready line high.
False Data Set Ready line low.

When the Data Set Ready line is high (DSRHolding = True) and the DSRTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to comDSRTO
(Data Set Ready Timeout) and invokes the OnComm event.
This property is useful when writing a Data Set Ready/Data Terminal Ready handshaking routine for a
Data Terminal Equipment (DTE) machine.

Data Type
Integer (Boolean)

DSRTimeout Property, Communications Control

Sets and returns the number of milliseconds to wait for the Data Set Ready (DSR) signal before setting
the CommEvent property to comDSRTO and generating the OnComm event.

Syntax
[form.]MSComm.DSRTimeout[= milliseconds&]

Remarks

Note      The 32-bit version of this control (MSCOMM32.OCX) doesn't support this property.

When the Data Set Ready line is high (DSRHolding = True) and the DSRTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to comDSRTO
(Data Set Ready Timeout) and generates the OnComm event.
This property is useful when writing a Data Set Ready/Data Terminal Ready handshaking routine for a
DTE machine.
See the DSRHolding property, which allows you to manually poll the Data Set Ready line.

Data Type
Long

DTREnable Property, Communications Control

Determines whether to enable the Data Terminal Ready (DTR) line during communications. Typically,
the Data Terminal Ready signal is sent by a computer to its modem to indicate that the computer is
ready to accept incoming transmission.

Syntax
[form.]MSComm.DTREnable[= {True | False}]

Remarks
The following table lists the DTREnable property settings for the communications control.

Setting Description
True Enable the Data Terminal Ready line.
False (Default) Disable the Data Terminal Ready line.

When DTREnable is set to True, the Data Terminal Ready line is set to high (on) when the port is
opened, and low (off) when the port is closed. When DTREnable is set to False, the Data Terminal
Ready always remains low.

Note      In most cases, setting the Data Terminal Ready line to low hangs up the telephone.

Data Type
Integer (Boolean)

Handshaking Property, Communications Control

Sets and returns the hardware handshaking protocol.

Syntax
[form.]MSComm.Handshaking[= protocol%]

Remarks
Handshaking refers to the internal communications protocol by which data is transferred from the
hardware port to the receive buffer. When a character of data arrives at the serial port, the
communications device has to move it into the receive buffer so that your program can read it. If there is
no receive buffer and your program is expected to read every character directly from the hardware, you
will probably lose data because the characters can arrive very quickly.
A handshaking protocol insures that data is not lost due to a buffer overrun, in which case data arrives at
the port too quickly for the communications device to move the data into the receive buffer.
Valid protocols are listed in the following table.

Setting Value Description
comNone 0 (Default) No handshaking.
comXOnXOff 1 XON/XOFF handshaking.
comRTS 2 RTS/CTS (Request To Send/Clear To Send) handshaking.
comRTSXOnXOff 3 Both Request To Send and XON/XOFF handshaking.

Data Type
Integer

InBufferCount Property, Communications Control

Returns the number of characters waiting in the receive buffer. This property is not available at design
time.

Syntax
[form.]MSComm.InBufferCount[= count%]

Remarks
InBufferCount refers to the number of characters that have been received by the modem and are waiting
in the receive buffer for you to take them out. You can clear the receive buffer by setting the
InBufferCount property to 0.

Note      Do not confuse this property with the InBufferSize property InBufferSize reflects the total size
of the receive buffer.

Data Type
Integer

InBufferSize Property, Communications Control

Sets and returns the size of the receive buffer in bytes.

Syntax
[form.]MSComm.InBufferSize[= numBytes%]

Remarks
InBufferSize refers to the total size of the receive buffer. The default size is 1024 bytes. Do not confuse
this property with the InBufferCount property InBufferCount reflects the number of characters
currently waiting in the receive buffer.

Note      Note that the larger you make the receive buffer, the less memory you have available to your
application. However, if your buffer is too small, it runs the risk of overflowing unless handshaking is
used. As a general rule, start with a buffer size of 1024 bytes. If an overflow error occurs, increase the
buffer size to handle your application's transmission rate.

Data Type
Integer

Input Property, Communications Control
Example

Returns and removes a string of characters from the receive buffer. This property is not available at
design time and is read-only at run time.

Syntax
[form.]MSComm.Input

Remarks
The InputLen property determines the number of characters that are read by the Input property. Setting
InputLen to 0 causes the Input property to read the entire contents of the receive buffer.

Data Type
String

Input Example, Communications Control
This example shows how to retrieve data from the receive buffer:

' Retrieve all available data.
Comm1.InputLen = 0
' Check for data.
If Comm1.InBufferCount Then

' Read data.
InString$ = Comm1.Input

End If

InputLen Property, Communications Control
Example

Sets and returns the number of characters the Input property reads from the receive buffer.

Syntax
[form.]MSComm.InputLen[= numChars%]

Remarks
The default value for the InputLen property is 0. Setting InputLen to 0 causes the communications
control to read the entire contents of the receive buffer when Input is used.
If InputLen characters are not available in the receive buffer, the Input property returns a zero-length
string (""). The user can optionally check the InBufferCount property to determine if the required number
of characters are present before using Input.
This property is useful when reading data from a machine whose output is formatted in fixed-length
blocks of data.

Data Type
Integer

InputLen Example, Communications Control
This example shows how to read 10 characters of data:

' Specify a 10 character block of data.
Comm1.InputLen = 10
' Read data.
CommData$ = Comm1.Input

Interval Property, Communications Control

Sets the interval, in milliseconds, for polling the hardware port for data under Windows version 3.0.

Syntax
[form.]MSComm.Interval[= milliseconds&]

Remarks
The default value for the Interval property is 1000 (1 second).
You only need this property for applications that run under Windows graphical environment version 3.0,
because the communications control has to manually poll the hardware port for data at a given interval.
However, under Windows operating system version 3.1 this is not necessary, and you don't need to use
the Interval property.

Data Type
Long

NullDiscard Property, Communications Control

Determines whether null characters are transferred from the port to the receive buffer.

Syntax
[form.]MSComm.NullDiscard[= {True | False}]

Remarks
The following table lists the NullDiscard property settings for the communications control.

Setting Description
True Null characters are not transferred from the port to the receive buffer.
False (Default) Null characters are transferred from the port to the receive buffer.

A null character is defined as ASCII character 0, Chr$(0).

Data Type
Integer (Boolean)

OutBufferCount Property, Communications Control

Returns the number of characters waiting in the transmit buffer. You can also use it to clear the transmit
buffer. This property is not available at design time.

Syntax
[form.]MSComm.OutBufferCount[= 0]

Remarks
You can clear the transmit buffer by setting the OutBufferCount property to 0.

Note      Do not confuse the OutBufferCount property with the OutBufferSize property OutBufferSize
reflects the total size of the transmit buffer.

Data Type
Integer

OutBufferSize Property, Communications Control

Sets and returns the size, in characters, of the transmit buffer.

Syntax
[form.]MSComm.OutBufferSize[= NumBytes%]

Remarks
OutBufferSize refers to the total size of the transmit buffer. The default size is 512 bytes. Do not confuse
this property with the OutBufferCount property bmc emdash.bmp} OutBufferCount reflects the number of
bytes currently waiting in the transmit buffer.

Note      The larger you make the transmit buffer, the less memory you have available to your application.
However, if your buffer is too small, you run the risk of overflowing unless you use handshaking. As a
general rule, start with a buffer size of 512 bytes. If an overflow error occurs, increase the buffer size to
handle your application's transmission rate.

Data Type
Integer

Output Property, Communications Control
Example

Writes a string of characters to the transmit buffer. This property is not available at design time.

Syntax
[form.]MSComm.Output[= outString$]

Data Type
String

Output Example, Communications Control

The following example shows how to send every character the user types to the serial port:

Private Sub Form_KeyPress (KeyAscii As Integer)
Comm1.Output = Chr$(KeyAscii)

End Sub

ParityReplace Property, Communications Control

Sets and returns the character that replaces an invalid character in the data stream when a parity error
occurs.

Syntax
[form.]MSComm.ParityReplace[= char$]

Remarks
The parity bit refers to a bit that is transmitted along with a specified number of data bits to provide a
small amount of error checking. When you use a parity bit, the communications control adds up all the
bits that are set (having a value of 1) in the data and tests the sum as being odd or even (according to
the parity setting used when the port was opened).
By default, the control uses a question mark (?) character for replacing invalid characters. Setting
ParityReplace to an empty string ("") disables replacement of the character where the parity error
occurs.    The OnComm event is still fired and the CommEvent property is set to comRXParity.

Data Type
String

PortOpen Property, Communications Control
Example

Sets and returns the state of the communications port (open or closed). This property is not available at
design time.

Syntax
[form.]MSComm.PortOpen[= {True | False}]

Remarks
The following table lists the PortOpen property settings for the communications control.

Setting Description
True Port is opened.
False Port is closed.

Setting the PortOpen property to True opens the port. Setting it to False closes the port and clears the
receive and transmit buffers. The communications control automatically closes the serial port when your
application is terminated.
Make sure that the CommPort property is set to a valid port number before opening the port. If the
CommPort property is set to an invalid port number when you try to open the port, the communications
control generates error 68 (Device unavailable).
In addition, your serial port device must support the Settings property. If the Settings property contains
communications settings that your hardware does not support, your hardware may not work correctly.
If either the DTREnable or the RTSEnable properties is set to True before the port is opened, the
properties are set to False when the port is closed. Otherwise, the DTR and RTS lines remain in their
previous state.

Data Type
Integer (Boolean)

PortOpen Example, Communications Control

The following example opens communications port number 1 at 2400 baud with no parity checking, 8
data bits, and 1 stop bit:

Comm1.Settings = "2400,n,8,1"
Comm1.CommPort = 1
Comm1.PortOpen = True

RThreshold Property, Communications Control

Sets and returns the number of characters to receive before the communications control sets the
CommEvent property to comEvReceive and generates the OnComm event.

Syntax
[form.]MSComm.RThreshold[= numChars%]

Remarks
Setting the RThreshold property to 0 (the default) disables generating the OnComm event when
characters are received.
Setting RThreshold to 1, for example, causes the communications control to generate the OnComm
event every time a single character is placed in the receive buffer.

Data Type
Integer

RTSEnable Property, Communications Control

Determines whether to enable the Request To Send (RTS) line. Typically, the Request To Send signal
that requests permission to transmit data is sent from a computer to its attached modem.

Syntax
[form.]MSComm.RTSEnable[= {True | False}]

Remarks
The following table lists the RTSEnable property settings for the communications control.

Setting Description
True Enables the Request To Send line.
False (Default) Disables the Request To Send line.

When RTSEnable is set to True, the Request To Send line is set to high (on) when the port is opened,
and low (off) when the port is closed.
The Request To Send line is used in RTS/CTS hardware handshaking. The RTSEnable property allows
you to manually poll the Request To Send line if you need to determine its state.
For more information on handshaking protocols, see the Handshaking property.

Data Type
Integer (Boolean)

Settings Property, Communications Control
Example

Sets and returns the baud rate, parity, data bit, and stop bit parameters.

Syntax
[form.]MSComm.Settings[= paramString$]

Remarks
If paramString$ is not valid when the port is opened, the communications control generates error 380
(Invalid property value).
ParamString$ is composed of four settings and has the following format:

"BBBB,P,D,S"

Where BBBB is the baud rate, P is the parity, D is the number of data bits, and S is the number of stop
bits. The default value of paramString$ is:

"9600,N,8,1"

The following table lists the valid baud rates.

Setting
110
300
600
1200
2400
9600 (Default)
14400
19200
38400 (reserved)
56000 (reserved)
128000 (reserved)
256000 (reserved)

The following table describes the valid parity values.

Setting Description
E Even
M Mark
N (Default) None
O Odd
S Space

The following table lists the valid data bit values.

Setting
4
5
6
7
8 (Default)

The following table lists the valid stop bit values.

Setting
1 (Default)

1.5
2

Data Type
String

Settings Example, Communications Control

The following example sets the control's port to communicate at 2400 baud with no parity checking, 8
data bits, and 1 stop bit:

Comm1.Settings = "2400,N,8,1"

SThreshold Property, Communications Control

Sets and returns the minimum number of characters allowable in the transmit buffer before the
communications control sets the CommEvent property to comEvSend and generates the OnComm
event.

Syntax
[form.]MSComm.SThreshold[= numChars%]

Remarks
Setting the SThreshold property to 0 (the default) disables generating the OnComm event for data
transmission events. Setting the SThreshold property to 1 causes the communications control to
generate the OnComm event when the transmit buffer is completely empty.
If the number of characters in the transmit buffer is less than numChars%, the CommEvent property is
set to comEvSend, and the OnComm event is generated. The comEvSend event is only fired once,
when the number of characters crosses the SThreshold. For example, if SThreshold equals five, the
comEvSend event occurs only when the number of characters drops from five to four in the output
queue. If there are never more than SThreshold characters in the output queue, the event is never fired.

Data Type
Integer

OnComm Event, Communications Control
Example

The OnComm event is generated whenever the value of the CommEvent property changes, indicating
that either a communications event or an error occurred.

Syntax
Private Sub MSComm_OnComm ()

Remarks
The CommEvent property contains the numeric code of the actual error or event that generated the
OnComm event. Note that setting the RThreshold or SThreshold properties to 0 disables trapping for the
comEvReceive and comEvSend events, respectively.

OnComm Event Example, Communications Control

The following example shows how to handle communications errors and events. You can insert code to
handle a particular error or event after its Case statement.

Private Sub Comm_OnComm ()
Select Case Comm1.CommEvent
' Errors

Case comBreak ' A Break was received.
' Code to handle a BREAK goes here.
Case comCDTO ' CD (RLSD) Timeout.
Case comCTSTO ' CTS Timeout.
Case comDSRTO ' DSR Timeout.
Case comFrame ' Framing Error
Case comOverrun ' Data Lost.
Case comRxOver ' Receive buffer overflow.
Case comRxParity ' Parity Error.
Case comTxFull ' Transmit buffer full.

' Events
Case comEvCD ' Change in the CD line.
Case comEvCTS ' Change in the CTS line.
Case comEvDSR ' Change in the DSR line.
Case comEvRing ' Change in the Ring Indicator.
Case comEvReceive ' Received RThreshold # of chars.
Case comEvSend ' There are SThreshold number of

' characters in the transmit buffer.
End Select

End Sub

ComInput Function, Communications Control

Returns and removes a string of characters from the receive buffer.

Syntax
ComInput(ByVal hWnd As Integer, lpData As Any, ByVal cbData As Integer) As Integer

Parameter Type Description
hWnd HWND Window handle of the control.
lpData LPSTR Long pointer to the start of the data buffer.
cbData int The length of lpData in bytes.

Remarks
This function is equivalent to the Input property.
In Visual Basic 1.0, the Input and Output properties are defined as HSZ (null-terminated string) data
types. This means that if an application attempts to retrieve a string with an embedded Null character
from the receive buffer, the resulting string is truncated at the embedded Null character. The ComInput
function can retrieve strings from the receive buffer that have embedded Null characters.

Return Value
Number of bytes received.

ComOutput Function, Communications Control

Writes a string of characters to the transmit buffer.

Syntax
ComOutput(ByVal hWnd As Integer, lpData As Any, ByVal cbData As Integer) As Integer

Parameter Type Description
hWnd HWND Window handle of the control.
lpData LPSTR Long pointer to the start of the data buffer.
cbData int The length of lpData in bytes.

Remarks
This function is equivalent to the Output property.
In Visual Basic 1.0, the Input and Output properties are defined as HSZ (null-terminated string) data
types. This means that if an application attempts to send a string with an embedded Null character to the
transmit buffer, the resulting string is truncated at the embedded Null character. The ComOutput
function can send strings to the transmit buffer that have embedded Null characters.

Return Value
Number of bytes sent.

 Gauge Control
Properties Methods Events Constants

The gauge control creates user-defined gauges with a choice of linear (filled) or needle styles.

File Name
GAUGE16.OCX, GAUGE32.OCX

Class Name
Gauge

Remarks
This control is useful for thermometers, fuel gauges, percent-complete indicators, or any other type of
analog gauge.

Note      When you use bitmaps or icons in the gauge control and specify those bitmaps in the Picture
property at design time, the bitmaps become a part of your form. This means you do not have to
distribute them separately. On the other hand, if you use LoadPicture to add bitmaps or icons at run
time, then the bitmaps must be present at run time.

The Style property defines the type of gauge to be displayed. The default setting is 0 (horizontal linear).
The control's fill area is defined by the InnerTop, InnerBottom, InnerRight, and InnerLeft properties. The
default values for these properties create a fill area that covers most of the control. Therefore, when you
define a bitmap for the control, only the edges of the bitmap are displayed. To display the bitmap, either
set the Style property to 2 or 3 (semicircular or full needle, respectively) or resize the fill area of the
control.
When the Style property is either 0 or 1 (indicating a linear gauge), the BackColor and ForeColor
properties define the colors of the fill area. The Min, Max, and Value properties determine how the colors
are used to fill this area. For example, if Min is 0, Max is 100, and Value is 25, then 25% of the fill area
will be drawn with the ForeColor, and 75% will be drawn with the BackColor.

Distribution Note      When you create and distribute applications that use the gauge control, you should
install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The Setup Kit
included with Visual Basic provides tools to help you write setup programs that install your applications
correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
AutoSize Index MousePointer Tag
*BackColor *InnerBottom Name Top
Container *InnerLeft *NeedleWidth *Value
DragIcon *InnerRight Object Visible
DragMode *InnerTop Parent WhatsThisHelpID
Enabled Left *Picture *Width
*ForeColor *Max *Style hWnd
*Height *Min TabIndex
HelpContextID MouseIcon TabStop

Value is the default value of the control.

Note      Name is the equivalent of the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
*Change DragOver KeyUp MouseUp
Click GotFocus LostFocus
DblClick KeyDown MouseDown
DragDrop KeyPress MouseMove

Methods
All of the methods for this control are listed in the following table.
Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

BackColor Property, Gauge Control

Sets or returns the color used to erase the area created by the InnerTop, InnerLeft, InnerBottom, and
InnerRight properties.

Syntax
[form.]Gauge.BackColor[= color&]

Remarks
BackColor has no effect on gauges with Style = 2 (semicircular needle), or Style = 3 (full needle) when
you assign the control's Picture property to a bitmap.

Data Type
Long

ForeColor Property, Gauge Control

Sets the color used to fill the area defined by the InnerTop, InnerLeft, InnerBottom, and InnerRight
properties.

Syntax
[form.]Gauge.ForeColor[= color&]

Remarks
This property only affects gauges with Style = 0 or 1 (horizontal bar or vertical bar, respectively).

Data Type
Long

Height, Width Properties, Gauge Control

Determines the height and width of the gauge control.

Syntax
[form.]Gauge.Height[= setting%]
[form.]Gauge.Width[= setting%]

Remarks
You cannot resize a gauge control unless the AutoSize property is set to False.

Data Type
Integer

InnerBottom Property, Gauge Control

Sets or returns the distance from the bottom edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerBottom[= pixels%]

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerBottom is relative to the
bottom edge of the control.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

InnerLeft Property, Gauge Control

Sets or returns the distance from the left edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerLeft[= pixels%]

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerLeft is relative to the Top
property of the control.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

InnerRight Property, Gauge Control

Sets or returns the distance from the right edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerRight[= pixels%]

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerRight is relative to the right
edge of the control.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

InnerTop Property, Gauge Control

Sets or returns the distance from the top edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerTop[= pixels%]

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerTop is relative to the Top
property.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

Max Property, Gauge Control

An integer value (0 32767) that sets or returns the maximum number that the Value property can take
on. The default value is 100.

Syntax
[form.]Gauge.Max[= setting%]

Remarks
If you attempt to set the Value property to a value greater than the Max property, it is adjusted to the
value of the Max property.

Data Type
Integer

Min Property, Gauge Control

An integer value (0 32767) that sets or returns the minimum number that the Value property can take
on. The default value is zero.

Syntax
[form.]Gauge.Min[= setting%]

Remarks
If you attempt to set the Value property to a value less than the Min property, it is adjusted to the value of
the Min property.

Data Type
Integer

NeedleWidth Property, Gauge Control

Sets or returns the width, in pixels, of the needle on needle-style gauges. The range is 0 to 32767.

Syntax
[form.]Gauge.NeedleWidth[= width%]

Data Type
Integer

Picture Property, Gauge Control

Specifies a bitmap to display on the gauge.

Syntax
[form.]Gauge.Picture[= picture]

Remarks
The following table lists the Picture property settings for the gauge control.

Setting Description
(none) (Default) No bitmap specified for the gauge.
(bitmap) Designates a graphic to display on the gauge. You can load the graphic from the

Properties window at design time.

Several bitmaps for the gauge control are located in the \BITMAPS\GAUGE subdirectory. The style you
choose for a gauge must be compatible with the bitmap or the graphic will not be drawn properly.

Note      This control can display bitmap (.BMP) and icon (.ICO) files.

You can load a graphic at design time from the Properties window. When you set the Picture property at
design time, the graphic is saved and loaded with the form. If you create an executable file, the .EXE file
contains the image.
You can set this property at run time by using the LoadPicture function on a bitmap or icon, or you can
use Clipboard methods such as GetData, SetData, and GetFormat with the nontext Clipboard formats
vbCFBitmap and vbCFDIB, as defined in the object library in the Object Browser. When you load a
graphic at run time, the graphic is not saved with the application. Use the SavePicture statement to
save a graphic from a form or picture box into a file.

Note      At run time, either you can set the Picture property to any other object's Picture or Image
property, or you can assign it the graphic returned by the LoadPicture function. You can only assign the
Picture property directly.

Data Type
Integer

Style Property, Gauge Control

Sets or returns the type of gauge.

Syntax
[form.]Gauge.Style[= setting%]

Remarks
The following table lists the Style property settings for the gauge control.

Setting Description
0 (Default) Horizontal linear gauge with fill.
1 Vertical gauge with fill.
2 Semicircular needle gauge.
3 Full circle needle gauge.

The semicircular needle gauge places the needle base in the bottom center of the area defined by the
Innerportion properties. The needle length is calculated so that the needle is never drawn outside of this
area. When Value = Min, the needle will point 90 degrees to the left. When Value = Max, the needle will
point 90 degrees to the right. When Value = (Min + Max)/2, the needle points straight up.
The full-circle needle gauge places the needle base in the center of the area defined by the Innerportion
properties. The needle length is calculated so that the needle will never be drawn outside of this area.
When Value = Min or Value = Max, the needle points 90 degrees to the left. Setting the Value property
between Min and Max will point the needle to a proportionate point on the circle, moving clockwise.

Data Type
Integer (Enumerated)

Value Property, Gauge Control

Sets or returns the current position of the gauge. See the Style property for more details.

Syntax
[form.]Gauge.Value[= setting%]

Remarks
If you attempt to set the Value property to a value less than the Min property, it is adjusted to the value of
the Min property. If you attempt to set the Value property to a value greater than the Max property, it is
adjusted to the value of the Max property.

Data Type
Integer

Change Event, Gauge Control

Occurs when the control's Value property changes.

Syntax
Private Sub Gauge_Change()

 Graph Control
See Also Properties Methods Events Constants Error Messages

The graph control allows you to design graphs interactively on your forms. At run time, you can send
new data to the graphs and draw them, print them, copy them onto the Clipboard, or change their styles
and shapes. The following is a typical graph control:

File Name
GRAPH16.OCX, GRAPH32.OCX

Class Name
Graph

Remarks
The graph control acts as a link between your application and the Graphics Server graphing and
charting library.
At design time, the graph control has an automatic redraw capability. Every time you change a property,
the control redraws the graph so that you can see the effects of the change. You can enter data for the
graph either at design time or at run time. At run time, when graph is given new data and style options, it
combines these new values with your design-time values.
As a design aid, the graph control automatically generates random data at design time to give you an
idea of what your graph will look like.

Distribution Note      When you create and distribute applications that use the graph control, you should
install the appropriate files in the customer's Microsoft Windows \SYSTEM subdirectory. The Setup Kit
included with Visual Basic provides tools to help you write setup programs that install your applications
correctly.

See Also
Property Types and Arrays
Graph Control Extended Version
Graph Types and Negative Values

Property Types and Arrays, Graph Control
Example

The following table describes array properties for the graph control.

Property Description
GraphData Values to be graphed (this is a two-dimensional array when there are multiple data

sets).
ColorData Colors of bars, pie slices, lines, and so on.
ExtraData Extra style options (for example, which pie slices to explode).
LabelText Labels.
LegendText Legends.
PatternData Pattern and line styles.
SymbolData Symbols for lines, legends, and so on.
XPosData X-variable data for scatter graphs.

Array properties are controlled through two simple properties: ThisSet and ThisPoint. ThisSet is the
index for the data you entered with the GraphData property. ThisPoint references the individual data
points for the set specified by the ThisSet property. Both have a minimum value of 1.
For example, if you set ThisSet to 1, ThisPoint to 5, and LabelText to "Friday," the fifth label of the first
data set is set to the text string "Friday."
The AutoInc property, when set to 1 (on), automatically increments ThisPoint and ThisSet every time you
enter an array property value.
At run time, when you dynamically create a new instance of a control array, you must reassign all data
associated with array properties.
The overall dimensions of the arrays are determined by the properties NumSets and NumPoints.
ThisSet and ThisPoint cannot exceed NumSets and NumPoints, respectively, and the AutoInc property
functions monitor their current values. NumSets and NumPoints also determine what the graphs look
like. For example, if you want to graph three data sets, each containing ten points, set NumSets to 3 and
NumPoints to 10, and then enter the GraphData values.
DataReset is another property associated with arrays. It allows you to clear all the data held in any or all
of the array properties. For example, if you haven't set any LabelText strings, the graph control labels
your graph 1, 2, 3, and so on. Deleting all your labels individually would have the effect of displaying no
labels (that is, labels exist but they are all null). Using DataReset sets the LabelText strings back to their
original numeric values of 1, 2, 3, and so on.

Property Types and Arrays Example, Graph Control

At design time, to enter a data set of five points, set the AutoInc property to 1 (on), select the GraphData
property in the Properties window, and enter the following five values, pressing ENTER between each
number. For example:
10 ENTER

9 ENTER

8 ENTER

7 ENTER

6 ENTER

Other information about graphs, such as labels and legends, can be entered in the same manner.
To change the values of a graph at run time, you write code. The following two examples would cause
the same property value changes as in the previous example:

' Example 1
Graph1.AutoInc = 1
Graph1.GraphData = 10
Graph1.GraphData = 9
Graph1.GraphData = 8
Graph1.GraphData = 7
Graph1.GraphData = 6
Graph1.DrawMode = 2

' Example 2
Graph1.AutoInc = 1
For I% = 1 To 5

Graph1.GraphData = 11 i%
Next I%
Graph1.DrawMode = 2

Graph Types and Negative Values, Graph Control

Certain graph types cannot handle negative data meaningfully. They are the following:

Pie charts (2D & 3D).
Stacked Bar graphs.
Gantt charts.
Area graphs.
Polar graphs.

For these graphs, negative data is forced to a positive number, however the data is not permanently
changed. Changing to a graph type for which negative values are meaningful restores the original data.

Properties
The following table lists the properties for this control. Properties that apply only to this control, or that
require special consideration, are marked with an asterisk (*).
*AutoInc *Foreground *LegendStyle TabStop
*Background *GraphCaption *LegendText Tag
BorderStyle *GraphData *LineStats *ThickLines
*BottomTitle *GraphStyle Name *ThisPoint
*ColorData *GraphTitle *NumPoints *ThisSet
Container *GraphType *NumSets *TickEvery
*CtlVersion *GridStyle Object *Ticks
*DataReset Height *Palette Top
DragIcon HelpContextID Parent Visible
DragMode hWnd *PatternData WhatsThisHelpID
*DrawMode *ImageFile *PatternedLines Width
*DrawStyle Index *Picture *XPosData
Enabled *IndexStyle *PrintStyle *YAxisMax
*ExtraData *LabelEvery *QuickData *YAxisMin
*FontFamily *Labels *RandomData *YAxisPos
*FontSize *LabelText *SeeThru *YAxisStyle
*FontStyle Left *SymbolData *YAxisTicks
*FontUse *LeftTitle TabIndex

QuickData is the default value of the control.

Note      Name is equivalent to the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table.
Click DragOver KeyPress MouseDown
DblClick GotFocus KeyUp MouseMove
DragDrop KeyDown LostFocus MouseUp

Methods
All of the methods for this control are listed in the following table.
Drag Refresh SetFocus ShowWhatsThis

ZOrder

AutoInc Property, Graph Control
Example

Allows the properties specific to arrays to be set without manually incrementing the ThisPoint counter
from ThisPoint = 1 to ThisPoint = NumPoints.
When NumSets > 1, AutoInc goes through all the points and sets them consecutively from ThisPoint = 1
to ThisPoint = NumPoints and from ThisSet = 1 to ThisSet = NumSets.

Syntax
[form.]Graph.AutoInc[= setting%]

Remarks
The following table lists the AutoInc property settings for the graph control.

Setting Description
0 Off
1 (Default) On

When AutoInc is set to a new value (0 or 1), ThisPoint and ThisSet are both reinitialized to 1.
If you set the AutoInc property to 1 (on), when you switch from setting one of the array properties to
setting a different one, both ThisPoint and ThisSet are reinitialized to 1.
AutoInc only changes ThisPoint and ThisSet when you set data values. When you get or use data
values, ThisPoint and ThisSet are unaffected.
The AutoInc property works for all the properties specific to arrays:

ColorData
ExtraData
GraphData
LabelText
LegendText
PatternData
SymbolData
XPosData

Data Type
Integer

AutoInc Example, Graph Control

Graph1.ThisSet = 1
For I% = 1 to Graph1.NumSets

Graph1.ThisPoint = 1
For J% = 1 to Graph1.NumPoints

Graph1.GraphData = J%*I%
If Graph1.ThisPoint < Graph1.NumPoints Then

Graph1.ThisPoint = Graph1.ThisPoint + 1
End If

Next J%
If Graph1.ThisSet < Graph1.NumSets Then

Graph1.ThisSet = Graph1.ThisSet + 1
End If

Next I%
Graph1.DrawMode = 2

Using the AutoInc property, the preceding code may be rewritten as:

Graph1.AutoInc = 1
For I% = 1 To (Graph1.NumSets * Graph1.NumPoints)

Graph1.GraphData = Graph1.ThisPoint * Graph1.ThisSet
Next I%
Graph1.DrawMode = 2

It is not possible to use ThisPoint or ThisSet as counters in For statements. Visual Basic does not allow
it.

Background Property, Graph Control

Selects the background color of the graph.

Syntax
[form.]Graph.Background[= color%]

Remarks
The following table lists the Background property settings for the graph control.

Setting Description
0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 (Default) White
When you change the background color, the colors for the components of the graph are automatically
selected. However, you may change the Foreground and the ColorData properties.

Data Type
Integer (Enumerated)

BottomTitle Property, Graph Control
Example

Places the text string that you provide at the bottom of the graph, parallel to the horizontal axis.

Syntax
[form.]Graph.BottomTitle[= string$]

Remarks
This property is ignored for Pie charts.

Data Type
String

BottomTitle Example, Graph Control

The following code places the title, "Title," at the bottom of a graph (Graph1) when you click a command
button and no title currently exists. If the BottomTitle property does have a value, when you click the
command button, the title will become blank. To try this example, paste the code into the Declarations
section of a form that contains a command button and a graph.

Private Sub Command1_Click ()
Graph1.RandomData = 1
If Graph1.BottomTitle = "" Then

Graph1.BottomTitle = "Title"
Else

Graph1.BottomTitle = ""
End If
Graph1.DrawMode = 2

End Sub

ColorData Property, Graph Control

Selects the colors for each of the data sets on the graph. For pie charts and for bar graphs with
NumSets = 1, you should specify a color for each point rather than for each set.

Syntax
[form.]Graph.ColorData[= setting%]

Remarks
The following table lists the ColorData property settings for the graph control.

Setting Description
0 (Default) Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 White
Once you select one color, colors should be selected for all sets or they are shown in black.
Since this is an array property, the array element is determined by the current value of the ThisPoint
property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

CtlVersion Property, Graph Control

Gives the current release of your graph control. This property is read-only.

Syntax
[form.]Graph.CtlVersion

Data Type
String

DataReset Property, Graph Control

Allows you to remove any or all of the array information that has been supplied to the graph control.

Syntax
[form.]Graph.DataReset[= setting%]

Remarks
The following table lists the DataReset property settings for the graph control.

Setting Description
0 (Default) None
1 GraphData
2 ColorData
3 ExtraData
4 LabelText
5 LegendText
6 PatternData
7 SymbolData
8 XPosData
9 All Data
The All Data option resets all the data and text arrays.
When you reset an array, you reset it to the original empty state. All properties are set to their default
values.

Data Type
Integer (Enumerated)

DrawMode Property, Graph Control

Defines the drawing mode for the graph control.

Syntax
[form.]Graph.DrawMode[= mode%]

Remarks
The following table lists the DrawMode property settings for the graph control.

Setting Description
0 No Action
1 Clear
2 Draw
3 Blit
4 Copy
5 Print
6 Write
DrawMode property values 0 through 3 are recorded when a graph is saved to disk. These values
remain the same between design mode and run mode. DrawMode property values 4, 5, and 6 are
transient values that trigger the specified actions.
At design time, when you change a property value, the graph is automatically redrawn to show the effect
of the change. At run time, the graph is only redrawn when you set DrawMode to 2 (Draw) or 3 (Blit).
This allows you to change as many property values as you want before displaying the graph. However,
when the form containing a graph is first displayed, the graph is automatically displayed according to the
current DrawMode value.

Setting Action
0 The control is left blank; the graph will not appear. When you want the graph to appear,

reset DrawMode to 2.
1 No graph is drawn, but the background of the control is set to the color specified by the

Background property. If there is graph caption text, it is displayed in the center of the
control.

2 (Default)    At design time, this redraws your graph every time you change a property. At
run time, resetting DrawMode to 2 causes the graph to be redrawn.

3 There is a brief pause, and then the graph appears all at once. In this mode, the Graphics
Server builds a hidden bitmap of the graph and then displays it using the Windows API
BitBlit function. This mode is useful if you want to draw a graph, update it with new data,
and then instantaneously display the updated graph.

4 The image of the graph is copied onto the Clipboard in either bitmap or metafile format. If
DrawMode is set to 3 (Blit), it is in bitmap format; otherwise, it is in metafile format.

5 A high-quality image of the graph can be printed without the form. For more information,
see the PrintStyle property.

6 The image of the graph is written to disk as a bitmap (.BMP) or metafile (.WMF). For this
option to work, the ImageFile property must be set to provide a name for the file. If
DrawMode is set to 3 (Blit), a bitmap is created; otherwise, a metafile is created.

Data Type
Integer (Enumerated)

DrawStyle Property, Graph Control

If the setting is monochrome, this property sets the background to white and all colors to black. If no
PatternData, SymbolData, or GraphStyle properties have been set, DrawStyle supplies default patterns
and symbols.

Syntax
[form.]Graph.DrawStyle[= style%]

Remarks
The following table lists the DrawStyle property settings for the graph control.

Setting Description
0 Monochrome
1 (Default) Color

Data Type
Integer (Enumerated)

ExtraData Property, Graph Control
Example

The ExtraData property has two purposes:

To explode pie chart segment(s).
To specify the color of the sides of a three-dimensional bar chart.

Syntax
[form.]Graph.ExtraData[= setting%]

Remarks
The ExtraData property settings for pie charts are listed in the following table.

Setting Description
0 (Default) Not exploded
1 Exploded

Note      With pie charts, when the AutoInc property is set to 1, setting the ExtraData property cycles
automatically through the set of pie slices, exploding each slice in turn. To explode a single slice, set
AutoInc to 0, set the ThisPoint property to the datapoint you wish to explode, and finally set the
ExtraData property to 1.

For three-dimensional bar charts, the ExtraData property settings are described in the following table.

Setting Description
0 (Default) Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 White
Since this is an array property, the array element you set is determined by the current value of the
ThisPoint property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

ExtraData Example, Graph Control

The following code explodes the segments from the center of a three-dimensional pie chart. To try this
example, paste the code into the Form_Load event procedure of a form that contains a graph (Graph1).

Private Sub Form_Load ()
For I% = 1 to 4

Graph1.GraphData = I%
Next I%
ThisPoint = 2
Graph1.ExtraData = 1
ThisPoint = 4
Graph1.ExtraData = 1
Graph1.DrawMode = 2
Graph1.GraphType = 2

End Sub

FontFamily Property, Graph Control

Selects the font family in which the text specified by the FontUse property is displayed.

Syntax
[form.]Graph.FontFamily[= setting%]

Remarks
The following table lists the FontFamily property settings for the graph control.

Setting Description
0 (Default) Roman
1 Swiss
2 Modern

The graph control specifies font families rather than type faces to avoid having to list all the available
fonts, which may vary from one computer to another. A font of the requested generic type (Roman,
Swiss, or Modern) is always available, regardless of the Windows configuration used on your computer.

Data Type
Integer (Enumerated)

FontSize Property, Graph Control

Determines the approximate font size in which the text specified by the FontUse property is displayed.

Syntax
[form.]Graph.FontSize[= setting%]

Remarks
Enter a value between 50 and 500, inclusive. This value is the percentage of the system font size. The
default depends on the setting of the FontUse property.

FontUse setting FontSize default
0 (graph title) 200%
1 (other titles) 150%
2 (labels) 100%
3 (legend) 100%
FontSize acts as a starting point rather than an absolute setting; the text is reduced, if necessary, to fit
into the available space.

Data Type
Integer

FontStyle Property, Graph Control

Determines the style in which the text specified by the FontUse property is displayed.

Syntax
[form.]Graph.FontStyle[= setting%]

Remarks
The following table lists the FontStyle property settings for the graph control.

Setting Description
0 (Default)
1 Italic
2 Bold
3 Bold italic
4 Underlined
5 Underlined italic
6 Underlined bold
7 Underlined bold italic

Data Type
Integer (Enumerated)

FontUse Property, Graph Control

Determines to which text on a graph you will apply the settings for the FontFamily, FontSize, and
FontStyle properties.

Syntax
[form.]Graph.FontUse[= setting%]

Remarks
The following table lists the FontUse property settings for the graph control.

Setting Description
0 (Default) Graph title
1 Other titles
2 Labels
3 Legend
4 All text

After you select a text type using FontUse, select the font family, size, and style for that type by setting
the FontFamily, FontSize, and FontStyle properties. You can use setting 4 (all text) to make all of your
text look alike. For example, you can set all text to display as Swiss family, size 200%, and bold. You
can then reuse the FontUse property to change one or more specific text types; for example, you might
make all legends bold and underlined.

Note      At design time, the values displayed in the Properties window for the font family, size, and style
are shown for the graph title only.

Data Type
Integer (Enumerated)

Foreground Property, Graph Control

Sets the color of titles, labels, legends, and axes.

Syntax
[form.]Graph.Foreground[= setting%]

Remarks
The following table lists the Foreground property settings for the graph control.

Setting Description
0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 White
16 (Default) Auto black/white

The graph control automatically uses black or white as its foreground default color. Depending on the
background color set, it picks the color that gives the best contrast.
The ColorData property determines the colors of bars, pie slices, and so on.

Data Type
Integer (Enumerated)

GraphCaption Property, Graph Control
Example

Accepts a single line of text that is displayed when DrawMode = 1 (Clear).

Syntax
[form.]Graph.GraphCaption[= caption$]

Remarks
The colors of the text and the background can be selected using the Foreground and Background
properties.

Data Type
String

GraphCaption Example, Graph Control

The following code displays the text, "Graphics Server," as the caption for Graph1.

Graph1.GraphCaption = "Graphics Server"
Graph1.DrawMode = 1

GraphData Property, Graph Control
Example

Sets the data to be graphed.

Syntax
[form.]Graph.GraphData[= data!]

Remarks
Since this is a two-dimensional array property, the array element you set is determined by the current
value of the ThisPoint and ThisSet properties.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented. When it reaches its
maximum value (NumPoints), the ThisSet counter is incremented, and ThisPoint is reset to 1. If ThisSet
reaches its maximum value (NumSets), it is also reset to 1.

Data Type
Single

GraphData Example, Graph Control

The following code draws the data sets for a bar graph. The data sets are specified by the NumSets
property, and the number of points per data set is specified by the NumPoints property. To try this
example, paste this code into the Form_Load event procedure of a form that contains a graph (Graph1).

Private Sub Form_Load ()
Graph1.ThisSet = 1
For I% = 1 to Graph1.NumSets

Graph1.ThisPoint = 1
For J% = 1 to Graph1.NumPoints

Graph1.GraphData = J%*I%
If Graph1.ThisPoint < Graph1.NumPoints Then

Graph1.ThisPoint = Graph1.ThisPoint + 1
End If
Next J%
If Graph1.ThisSet < Graph1.NumSets Then

Graph1.ThisSet = Graph1.ThisSet + 1
End If

Next I%
Graph1.DrawMode = 2
Graph1.DrawMode = 4

End Sub

Using the AutoInc property, the preceding code may be rewritten as:

Graph1.AutoInc = 1
For I% = 1 To (Graph1.NumSets * Graph1.NumPoints)

Graph1.GraphData = Graph1.ThisPoint * Graph1.ThisSet
Next I%
Graph1.DrawMode = 2
Graph1.DrawMode = 4

GraphStyle Property, Graph Control

Sets the characteristics of each type of graph.

Syntax
[form.]Graph.GraphStyle[= type%]

Remarks
The following table describes the GraphStyle property settings for each type of graph.

Graph type GraphStyle setting Notes
2D and 3D
pie

0 (Default) Lines join
labels to pie

1 No label lines
2 Colored labels
3 Colored labels

without lines
4 % Labels
5 % Labels without

lines
6 % Colored labels
7 % Colored labels

without lines

If LabelText values are set, then
those labels are used; otherwise,
the numerical value is used as a
label.

2D bar 0 (Default) Vertical
bars, clustered if
NumSets > 1

1 Horizontal
2 Stacked
3 Horizontal

stacked
4 Stacked %
5 Horizontal

stacked%

If NumSets = 1, then each bar
has a different color. If NumSets >
1, then each data set is a different
color.

3D bar As preceding, plus:
6 Z-clustered
7 Horizontal Z-

clustered

Z-clustered means that the data
points for successive sets are
drawn in front of the previous one.
This gives an illusion of depth.

Gantt 0 (Default) Adjacent
bars

1 Spaced bars Spaced bars have a gap of one
bar's width between successive
bars.

Line, Log/Lin,
and polar

0 (Default) Lines
1 Symbols
2 Sticks
3 Sticks and

symbols
4 Lines
5 Lines and

symbols
6 Lines and sticks
7 Lines and sticks

You can create thick or patterned
lines by setting the ThickLine or
PatternLine property to 1 (on).

and symbols
Area 0 (Default) Stack the

data sets
1 Absolute

2 Percentage

Absolute uses absolute values
from Y = 0 (so values can be
hidden).
Percentage shows the sets as a
percentage of the total.

Scatter 0 (Default) Symbols
only

Scatter graphs require XPosData
to be present.

HLC 0 (Default) High,
low, and close
bars

1 No close bar
2 No high-low bars
3 No bars

ThickLines may be used.

Data Type
Integer (Enumerated)

GraphTitle Property, Graph Control
Example

Places a text string above the graph.

Syntax
[form.]Graph.GraphTitle[= title$]

Remarks
A graph title cannot contain more than 80 characters.
A graph title may not be displayed if it is too long to fit on a graph. When this occurs, increase the width
of the graph to display the graph title.

Data Type
String

GraphTitle Example, Graph Control
The following code places the title, "Title," at the top of a graph (Graph1) when you click a command
button and no title currently exists. If the GraphTitle property does have a value, when you click the
command button, the title will become blank. To try this example, paste the code into the Declarations
section of a form that contains a command button and a graph.

Private Sub Command1_Click ()
Graph1.RandomData = 1
If Graph1.GraphTitle = "" Then

Graph1.GraphTitle = "Title"
Else

Graph1.GraphTitle = ""
End If
Graph1.DrawMode = 2

End Sub

GraphType Property, Graph Control

Specifies the type of graph. For illustrations of the different types of graphs, see the Custom Control
Reference.

Syntax
[form.]Graph.GraphType[= setting%]

Remarks
The following table lists the GraphType property settings for the graph control.

Setting Description
0 None
1 2D pie
2 3D pie
3 (Default) 2D bar
4 3D bar
5 Gantt
6 Line
7 Log/Lin
8 Area
9 Scatter
10 Polar
11 HLC
For each graph type there are many style options. For more information, see the GraphStyle property.

Data Type
Integer (Enumerated)

GridStyle Property, Graph Control

Places reference grids on the graph axes. For illustrations showing each style of grid, see the Custom
Control Reference.

Syntax
[form.]Graph.GridStyle[= setting%]
The following table lists the GridStyle property settings for the graph control.

Setting Description
0 (Default) None
1 Horizontal
2 Vertical
3 Both
For polar graphs, the horizontal axes are concentric circles, and the vertical axes are radial lines
(spokes).

Data Type
Integer (Enumerated)

ImageFile Property, Graph Control

Sets a file name to which the bitmap or metafile is written when DrawMode is set to 6. If a path is not
specified, the current directory is used.

Syntax
[form.]Graph.ImageFile[= filename$]

Remarks
The appropriate extension (.BMP or .WMF) is appended automatically. If you set DrawMode to 3 (Blit), a
bitmap is created; otherwise, a metafile is created.

Note      You cannot use this property to create a 256-color bitmap.

Data Type
String

IndexStyle Property, Graph Control
Example1 Example2

Sets the data array index style.

Syntax
[form.]Graph.IndexStyle[= setting%]

Remarks
The following table lists the IndexStyle property settings for the graph control.

Setting Description
0 (Default) Standard. One-dimensional arrays are accessed through the ThisPoint property.
1 Enhanced. One-dimensional arrays are accessed through the IndexStyle property.
When IndexStyle = 1, the graph control's arrays are accessed as described in the following table.

Array Properties used
GraphData ThisSet and ThisPoint (two-dimensional array).
ColorData ThisSet or ThisPoint.
ExtraData ThisSet or ThisPoint.
LabelText ThisPoint.
LegendText ThisSet or ThisPoint.
PatternData ThisSet or ThisPoint.
SymbolData ThisSet.
XPosData ThisSet and ThisPoint (two-dimensional array).

If the current graph type is a pie chart or a single-data-set bar graph, ThisPoint is used. For any other
graph types, ThisSet is used. Pie charts and single-data-set bar graphs use ThisPoint because they
display legends per point rather than per data set.

Note      If the AutoInc property is on, the IndexStyle setting does not matter because AutoInc increments
ThisSet and ThisPoint correctly irrespective of the IndexStyle setting. Also, once data arrays have been
created, graphs are drawn in the normal way, regardless of the IndexStyle property.

Data Type
Integer (Enumerated)

IndexStyle Example 1, Graph Control

Graph1.GraphType = 6 ' Line graph.
Graph1.IndexStyle = 1 ' Enhanced index style.

For i% = 1 To Graph1.NumSets
Graph1.ThisSet = i%
For j% = 1 To Graph1.NumPoints

Graph1.ThisPoint = j%
Graph1.GraphData = your data value
Graph1.XPosData = your data value

Next
Next

For i% = 1 to Graph1.NumSets
Graph1.ThisSet = i% ' Use ThisSet as index.
Graph1.LegendText = "Data set" + Str$(i%)
Graph1.ExtraData = your data value
Graph1.ColorData = your data value
Graph1.PatternData = your data value
Graph1.SymbolData = your data value

Next

For i% = 1 To Graph1.NumPoints
Graph1.ThisPoint = i%
Graph1.LabelText = "Data point" = Str$(i%)

Next

Graph1.DrawMode = 2

IndexStyle Example 2, Graph Control

Graph1.GraphType = 6 ' Line graph.
Graph1.IndexStyle = 0 ' Standard index style.

For i% = 1 to Graph1.NumSets
Graph1.ThisSet = i%
For j% = 1 To Graph1.NumPoints

Graph1.ThisPoint = j%
Graph1.GraphData = your data value
Graph1.XPosData = your data value

Next
Next

For i% = 1 to Graph1.NumSets
Graph1.ThisPoint = i% ' Use ThisPoint as index.
Graph1.LegendText = "Legend" + Str$(i%)
Graph1.ExtraData = your data value
Graph1.ColorData = your data value
Graph1.PatternData = your data value
Graph1.SymbolData = your data value

Next

For i% = 1 To Graph1.NumPoints
Graph1.ThisPoint = i%
Graph1.LabelText = "Label" = Str$(i%)

Next

Graph1.DrawMode = 2

LabelEvery Property, Graph Control

Determines the frequency of labels displayed on the X axis.

Syntax
[form.]Graph.LabelEvery[= frequency%]

Remarks
Enter a value between 1 (the default) and 1000, inclusive.
For example, suppose you have a graph with five points and the LabelText property is set to "Jan,"
"Feb," "Mar," "Apr," and "May." If the LabelEvery property is set to 1, all five labels are displayed. If it is
set to 2, "Jan," "Mar," and "May" (the first, third, and fifth labels) are displayed. Finally, if LabelEvery is
set to 3, only "Jan" and "Apr" (the first and fourth labels) are displayed.

Note      The LabelEvery property only affects the graph control when the XPosData property is not set.
Therefore, LabelEvery never affects scatter diagrams, which always use XPosData.

Data Type
Integer

Labels Property, Graph Control

Determines if labels are displayed along the graph's X and Y axes. For pie charts, this property
determines if labels are displayed.

Syntax
[form.]Graph.Labels[= setting%]

Remarks
The following table lists the Labels property settings for the graph control.

Setting Description
0 (Default) Off
1 On
2 X labels displayed
3 Y labels displayed

You can display the labels for the X and Y axes separately. This property operates independently of the
Ticks property.

Data Type
Integer (Enumerated)

LabelText Property, Graph Control

Allows label text to be entered. For illustrations of this property, see the Custom Control Reference.

Syntax
[form.]Graph.LabelText[= label$]

Remarks
If no text has been entered, the labels show the value of the ThisPoint property for all graphs except pie
charts, which show the magnitude of the slices.
Since this is an array property, the array element you set is determined by the current value of the
ThisPoint property.
When entering text, you may use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new string, the ThisPoint counter is automatically incremented.
The LabelText property cannot contain more than 80 characters.
Label text may not be displayed if it is too long to fit on a graph.

Data Type
String

LeftTitle Property, Graph Control
Example

Places the text string that you provide to the left of the vertical axis.

Syntax
[form.]Graph.LeftTitle[= title$]

Remarks
This property is ignored for pie charts.
A left title cannot contain more than 80 characters.
A left title may not be displayed if it is too long to fit on a graph. When this occurs, increase the width of
the graph to display the left title.

Data Type
String

LeftTitle Example, Graph Control

The following code places the title, "Title," to the left of the vertical axis of a graph (Graph1) when you
click a command button and LeftTitle currently has no value. If the LeftTitle property does contain a text
string, when you click the command button, the title will become blank. To try this example, paste the
code into the Declarations section of a form that contains a command button and a graph.

Private Sub Command1_Click ()
If Graph1.LeftTitle = "" Then

Graph1.LeftTitle = "Title"
Else

Graph1.LeftTitle = ""
End If
Graph1.DrawMode = 2

End Sub

LegendStyle Property, Graph Control

Gives the option of coloring the text you enter as legends (LegendText property). This color is in addition
to the colored symbols or patterns.

Syntax
[form.]Graph.LegendStyle[= setting%]

Remarks
The following table lists the LegendStyle property settings for the graph control.

Setting Description
0 Monochrome
1 Color

Data Type
Integer (Enumerated)

LegendText Property, Graph Control

Allows you to enter text for legends.

Syntax
[form.]Graph.LegendText[= text$]

Remarks
There should be one text string for each data set. Pie charts and bar graphs with only one data set
should have a string for each data point.
Since this is an array property, the array element is determined by the current value of the ThisPoint
property.
When entering text, you can use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new string, the ThisPoint counter is automatically incremented.
The LegendText property cannot contain more than 80 characters.
Legend text may not be displayed if it is too long to fit on a graph. When this occurs, increase the width
of the graph to display the legend text.

Data Type
String

LineStats Property, Graph Control

Allows statistics lines to be superimposed on the graph. This property is valid for line or log/lin graphs
only.

Syntax
[form.]Graph.LineStats[= setting%]

Remarks
The following table lists the LineStats property settings for the graph control.

Setting Description
0 None.
1 Mean.
2 MinMax.
3 Mean and MinMax.
4 StdDev.
5 StdDev and Mean.
6 StdDev and MinMax.
7 StdDev and MinMax and Mean.
8 BestFit.
9 BestFit and Mean.
10 BestFit and MinMax.
11 BestFit and MinMax and Mean.
12 BestFit and StdDev.
13 BestFit and StdDev and Mean.
14 BestFit and StdDev and MinMax.
15 All.

Data Type
Integer (Enumerated)

NumPoints Property, Graph Control

Specifies the number of data points in each data set.

Syntax
[form.]Graph.NumPoints[= points%]

Remarks
The minimum value of NumPoints is 2. The default value for this property is 5.
The product of (NumPoints x NumSets) cannot be greater than 3800.
NumPoints can be changed at any time.
If NumPoints is less than the number of data items you have, excess array data is discarded. If
NumPoints is greater than the number of data items you have, additional null-value data is created.

Data Type
Integer

NumSets Property, Graph Control

Specifies the number of data sets to be graphed.

Syntax
[form.]Graph.NumSets[= sets%]

Remarks
The minimum value for NumSets is 1. The default value for this property is 1.
The product of (NumPoints x NumSets) cannot be greater than 3800.
NumSets can be changed at any time.
If NumSets is less than the number of sets of data you have, any excess array data is discarded. If
NumSets is greater than the number of data sets, additional null-value data is created.

Note      Pie charts only use the first data set, even if NumSets > 1.

Data Type
Integer

Palette Property, Graph Control

Allows you to select a specific set of palette colors.

Syntax
[form.]Graph.Palette [= setting%]

Remarks
The following table lists the Palette property settings for the graph control.

Setting Description
0 (Default) Solid
1 Pastel (dithered)
2 Grayscale (dithered)
If the Palette property is set to 1, the color values for the graph change from solid colors to dithered
pastel colors. If the Palette property is set to 2, the color values for the graph are changed to the nearest
dithered shade of gray equivalent.

Data Type
Integer (Enumerated)

PatternData Property, Graph Control

Selects a pattern for solid fills, a line pattern for patterned lines, or a line width (in pixels) for thick lines.

Syntax
[form.]Graph.PatternData[= pattern%]

Remarks
The PatternData property settings are illustrated in the following figure.
Pattern data values range from 0 to 31. Select one pattern per data set or one pattern per point for pie or
bar charts with NumSets = 1.
For illustrations of the PatternData property settings, see the Custom Control Reference.
Since this is an array property, the array element you set is determined by the current value of the
ThisPoint property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented.

Note      Fill patterns 8 through 15 do not exist.

Data Type
Integer (Enumerated)

PatternedLines Property, Graph Control

Sets the style of the lines connecting the data points.

Syntax
[form.]Graph.PatternedLines[= setting%]

Remarks
The following table lists the PatternedLines property settings for the graph control.

Setting Description
0 (Default) Off
1 On
When you set the PatternedLines property to 1 (on), the graph is plotted with dotted lines of pattern 1,
unless a different PatternData has been set. For information on different pattern styles, see the
PatternData property.

Data Type
Integer

Picture Property, Graph Control
Example

Passes a graph image directly to a picture control. This property is not available at design time and is
read-only at run time.

Syntax
[form.]Graph.Picture

Data Type
Integer

Picture Example, Graph Control
The following code puts a copy of the graph currently displayed in Graph1 into Picture1.

Picture1.Picture = Graph1.Picture

If Picture1 has a different aspect ratio from Graph1, the graph image is stretched or compressed
accordingly.

PrintStyle Property, Graph Control

Selects the print style options when printing the control (DrawMode = 5).

Syntax
[form.]Graph.PrintStyle[= style%]

Remarks
The following table lists the PrintStyle property settings for the Graph control.

Setting Description
0 (Default) Monochrome
1 Color
2 Monochrome with border
3 Color with border

The default option temporarily converts the DrawStyle to Monochrome (0) before printing. If you are
using a color printer, or have a printer capable of printing gray scales, set PrintStyle = 1.
If you use these options with DrawMode = 5, the graph is printed with the best resolution of your printer.
No bitmap is generated.

Data Type
Integer (Enumerated)

QuickData Property, Graph Control
Example

Sets or returns all the data in the GraphData array in a single operation. This property is not available at
design time.

Syntax
[form.]Graph.QuickData[= data$]

Remarks
To assign values to the GraphData array, set this property to a string that contains tab-delimited,
numeric values.
To create the string, separate each point in the data set with a tab character (Chr$(9)), and each data set
by a CR+LF (Chr$(13) + Chr$(10)).
This property is useful when exchanging data between the graph control and the grid control. The format
required by QuickData is the same format used by the grid control's Clip property. In Visual Basic, you
assign a grid's data to a GraphData array with a single line of code:

Graph1.QuickData = Grid1.Clip

Note      When using QuickData to set the GraphData array, NumPoints and NumSets are automatically
set according to the number of points and sets within the QuickData string.
If the format of the QuickData string is incorrect (for example, the data sets do not contain the same
number of points), an error will occur. GraphData, NumPoints, and NumSets will not be set.
QuickData must always contain at least one data set with at least two points.

Data Type
Integer

QuickData Example, Graph Control

Dim T As String
Dim CL As String
Dim MyDataString As String

T = Chr$(9)
CRLF = Chr$(13) + Chr$(10)
MyDataString = "11" + T + "12" + T + "13" + CRLF + "21" + T + "22" + T + "23"
+ CRLF + "31" + T + "32" + T + "33" + CRLF
Graph1.QuickData = MyDataString

RandomData Property, Graph Control

If you set the RandomData property to 1 (on), it generates random data to be graphed. This is mainly
useful at design time, when you want to see how the graph will appear at run time.

Syntax
[form.]Graph.RandomData[= setting%]

Remarks
The following table lists the RandomData property settings for the graph control.

Setting Description
0 Off
1 (Default) On

Random numbers that are generated are never negative. To see the effect of negative values, enter your
own data.

Note      The RandomData property is automatically set to 0 (off) if GraphData values are present. You
can override the GraphData values by setting the RandomData property to 1 (on). Setting it to 0 (off)
again reinstates the GraphData values. Using DataReset with GraphData (or all data) sets the
RandomData property back to 1 (on).

Data Type
Integer

SeeThru Property, Graph Control
Example

If you set the SeeThru property to 1 (on), the graph background is not cleared. Instead, whatever was
there before you inserted the graph will show through. You can create special effects by drawing a graph
over a picture control containing a bitmap. This property is available at run time only.

Syntax
[form.]Graph.SeeThru[= setting%]

Remarks
The following table lists the SeeThru property settings for the graph control.

Setting Description
0 (Default) Off
1 On

To function correctly, some programming is necessary. Otherwise, the graph cannot be redrawn if it is
covered and then uncovered by another window.

Note      See-through graphs do not work when DrawMode = 3 (Blit).

Data Type
Integer

SeeThru Example, Graph Control

Create a picture (Picture1), and then create a graph (Graph1), not as a child of the picture, but directly
on your form. Move the graph over the top of the picture, making sure the graph does not entirely cover
the picture. Leave a narrow border all the way around to ensure the picture receives paint messages.
The BorderStyle should be set to None, or a black line will appear around the area of the graph.
When the picture (Picture1) receives a paint message, it refreshes both itself and the graph (Graph1),
ensuring that the graph is still on top of the picture with the picture showing through. The flag is
necessary to prevent entering the loop again. The Paint event is triggered by Picture1.Refresh.

Dim Flag As Integer

Private Sub Form_Load ()
Flag = 0
Graph1.SeeThru = 1

End Sub

Private Sub Picture1_Paint ()
If Flag = 1 Then

Flag = 0
Picture1.Refresh
Graph1.Refresh

Else
Flag = 1

End If
End Sub

SymbolData Property, Graph Control

Selects symbols to be used for line, log/lin, scatter, and polar graphs.

Syntax
[form.]Graph.SymbolData[= symbol%]

Remarks
The following table describes the settings for the SymbolData property

Setting Description
0 Cross (+)
1 Cross (X)
2 Triangle (up)
3 Solid Triangle (up)
4 Triangle (down)
5 Solid Triangle (down)
6 Square
7 Solid Square
8 Diamond
9 Solid Diamond
You should select one symbol per data set. The default setting is 0.
Since this is an array property, the array element you set is determined by the current value of the
ThisPoint property.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

ThickLines Property, Graph Control

Sets the width of the lines. For illustrations, see the Custom Control Reference.

Syntax
[form.]Graph.ThickLines[= setting%]

Remarks
The following table lists the ThickLines property settings for the graph control.

Setting Description
0 (Default) Off
1 On
When the ThickLines property is set to 1 (on), 3-pixel thick lines are drawn, unless a PatternData
property is set. If DrawStyle = 0 (Monochrome), line widths between 2 and 7 pixels (depending on the
PatternData property setting) are selected.

Data Type
Integer

ThisPoint Property, Graph Control
Example

Sets the current point number manually so that a particular data point can be changed.

Syntax
[form.]Graph.ThisPoint[= point%]

Remarks
The property settings for ThisPoint are from 1 to NumPoints. Setting ThisPoint overrides the AutoInc
setting.

Data Type
Integer

ThisPoint Example, Graph Control

The following code draws a 3D bar graph with 1 data set and 5 points. To try this example, paste this
code into the Form_Load event procedure of a form that contains a graph (Graph1).

Private Sub Form_Load ()
Graph1.NumPoints = 5
Graph1.NumSets = 1
Graph1.AutoInc = 1
For I% = 1 to 5

Graph1.GraphData = i%
Next I%
Graph1.ThisPoint = 3
Graph1.GraphData = 10
Graph1.GraphType = 4
Graph1.DrawMode = 2

End Sub

ThisSet Property, Graph Control
Example

Allows you to manually control the current set number so that a particular data set can be changed.

Syntax
[form.]Graph.ThisSet[= set%]

Remarks
The property settings for ThisSet are from 1 to NumSets. Setting ThisSet overrides the AutoInc setting.
This allows you to address any individual data point when you have multiple data sets.

Data Type
Integer

ThisSet Example, Graph Control

The following code draws a 3D bar graph with 3 data sets with 5 points in each set. To try this example,
paste this code into the Form_Load event procedure of a form that contains a graph (Graph1).

Private Sub Form_Load ()
Graph1.NumPoints = 5
Graph1.NumSets = 3
Graph1.AutoInc = 1
For I% = 1 To Graph1.NumPoints * Graph1.NumSets

Graph1.GraphData = 5
Next I%
Graph1.ThisSet = 2
Graph1.ThisPoint = 3
Graph1.GraphData = 10
Graph1.GraphType = 4
Graph1.DrawMode = 2

End Sub

TickEvery Property, Graph Control

Determines the interval between tick marks on the X axis. The TickEvery value specifies that the tick
mark represents n data points, where n is a value in the range 1 to 1000. The default value for this
property is 1.

Syntax
[form.]Graph.TickEvery[= interval%]

Remarks
This property is ignored when the XPosData property is set. This means that the TickEvery property
never has any effect on scatter graphs, which always have XPosData property values.
If the NumPoints property is less than TickEvery, the X axis of your graph is extended to the value of
TickEvery. Also, since there must always be an integral number of ticks, the X axis will be extended to a
multiple of TickEvery, if necessary. For example, if NumPoints = 127 and TickEvery = 50, then the X axis
is extended to 150.

Data Type
Integer

Ticks Property, Graph Control

Determines whether axis ticks are displayed.

Syntax
[form.]Graph.Ticks[= setting%]

Remarks
You can turn ticks on and off separately for the X and Y axes.
This property operates independently of the Labels property. Ticks has no affect on a three-dimensional
graph drawn with a cage affect.
The following table lists the Ticks property settings for the graph control.

Setting Description
0 (Default) Off
1 On
2 X ticks
3 Y ticks

Data Type
Integer (Enumerated)

XPosData Property, Graph Control
Example

Gives an independent X value for a graph.

Syntax
[form.]Graph.XPosData[= xvalue!]

Remarks
The property setting for XPosData is any real number.
This property can be set for all graph types except pie and Gantt charts.
Since this is a two-dimensional array property, the array element you set is determined by the current
value of the ThisSet and ThisPoint properties.
When you enter data, you can use the AutoInc property. If you set the AutoInc property to 1 (on), every
time you set a new value, the ThisSet and ThisPoint counters are automatically incremented.
If you have multiple sets of GraphData, but only one set of XPosData, the graph control automatically
applies the single set of XPosData to each set of GraphData.

Data Type
Single

XPosData Example, Graph Control

Sub Form_Load
Dim I%, J%
Graph1.AutoInc = 0
Graph1.NumPoints = 10
Graph1.NumSets = 2
For I% = 1 To 2

Graph1.ThisSet = I%
For J% = 1 To 10

Graph1.ThisPoint = J%
If I% = 1 Then Graph1.GraphData = 5 J%

If I% = 2 Then Graph1.GraphData = J% 5
Graph1.XPosData = J%

Next J%
Next I%
Graph1.DrawMode = 2

YAxisMax, YAxisMin Properties, Graph Control

Specifies the maximum Y-axis value (YAxisMax) and minimum Y-axis value (YAxisMin) on your graph.

Syntax
[form.]Graph.YAxisMax[= max!]
[form.]Graph.YAxisMin[= min!]

Remarks
The property settings for YAxisMax and YAxisMin are any real numbers.
These properties are used in combination with YAxisTicks and only take affect when YAxisStyle = 2
(user-defined). For more information, see the YAxisStyle property.

Data Type
Single

YAxisPos Property, Graph Control

Specifies the position of the Y axis on your graph.

Syntax
[form.]Graph.YAxisPos[= position%]

Remarks
The following table lists the YAxisPos property settings for the graph control.

Setting Description
0 (Default) Y axis is positioned automatically according to your XPosData values. When the

values are all positive, the Y axis appears at the leftmost edge of the graph. If the values
are all negative, the Y axis appears on the rightmost edge of the graph.

1 Left.
2 Right.

Data Type
Integer (Enumerated)

YAxisStyle Property, Graph Control

Specifies the method used to scale and range the Y axis on your graph.

Syntax
[form.]Graph.YAxisStyle[= style%]

Remarks
The following table lists the YAxisStyle property settings for the graph control.

Setting Description
0 (Default) Y-axis range is calculated automatically based on the data to be graphed. The

maximum Y-axis value is greater than or equal to the maximum data value. The minimum
axis value is 0, or, if the data includes negative values, it is less than or equal to the
minimum data value. The Y axis, therefore, always includes the 0 origin.

1 Variable origin. The maximum Y-axis value is equal to or greater than the maximum data
value. The minimum Y-axis value is less than or equal to the minimum data value,
whether the data includes negative values or not. The Y axis, therefore, may not include
the 0 origin.

2 User-defined origin. The YAxisMax, YAxisMin, and YAxisTicks properties work together to
control the range.

The variable origin style is useful when you are graphing data with a small variation around a nonzero
value. If you use the default style, the variation may not be visible.
Use the user-defined style when you want to present the data in a certain way. For example, to create a
series of comparable graphs, you might set the Y-axis range from 1000 to +1000, even though the data
values for some graphs are all positive.

Caution      If your data exceeds the limits of the Y-axis range, the graph is drawn outside of the axes
bounds and can result in strange effects.

YAxisTicks specifies the number of ticks from the origin to the greater of the YAxisMax and YAxisMin
values, regardless of sign. Because there must always be an integral number of ticks on an axis, the
graph will sometimes override the YAxisMin value or YAxisMax value.
In this example, YAxisMax has the greater value: YAxisMax = 300, YAxisMin = 10, and YAxisTicks = 3.
The graph places ticks 100 units apart, and the YAxisMin value displayed is 100.
In this example, YAxisMin has the greater value (even though it is negative): YAxisMax = 10, YAxisMin =
300, and YAxisTicks = 3. The YAxisMax value displayed is 100.

Data Type
Integer (Enumerated)

YAxisTicks Property, Graph Control

Specifies the number of ticks on the Y axis of your graph.

Syntax
[form.]Graph.YAxisTicks[= ticks%]

Remarks
Enter a value between 1 (default) and 100, inclusive.
YAxisTicks works in combination with YAxisMax and YAxisMin and is only used when YAxisStyle = 2
(user-defined). For more information, see the YAxisStyle property.

Data Type
Integer

Graph Control Extended Version
See Also

The extended version of the Graph control includes the following addition features:

Rotating graphs
Hot events for drill-down
Combo graphs
Curve fitting
More graph types
Extended customization

For more information on the extended version of the Graph control in the Graphics Server Developers
Kit, please complete this form and mail or fax it to one of the publishers below.

USA & International
Pinnacle Publishing Inc
PO Box 888, Kent,
WA 98035-0888, USA
Tel: 206/251-1900
Fax: 206/251-5057

Germany & Austria
heilerSoftware
Mittlerer Pfad 5
70499 Stuttgart
Germany
Tel: 0711 139840
Fax: 0711 8666301

UK & rest of Europe
Bits Per Second Ltd
14 Regent Hill, Brighton,
Sussex BN1 3ED, UK
Tel: 01273 727119
Fax: 01273 731925

NAME __

COMPANY __

ADDRESS __

__

__

FAX __

PHONE __

See Also
Graph Control

 Key State Control
Properties Methods Events Constants

You can use the key state control to display or modify the CAPS LOCK, NUM LOCK, INS and SCROLL LOCK
keyboard states.

File Name
KEYSTA16.OCX, KEYSTA32.OCX

Class Name
mhState

Remarks
Key state sets or returns the state of certain keys on your keyboard. The Style property determines
which key the control affects. At run time, you turn a key on and off by setting the Value property to True
and False, respectively. The user can also change the state of a key at run time by clicking a key state
control.
The first 16 controls automatically update their appearance when the user presses the corresponding
key. If you create more than 16 controls, the subsequent controls will be visible, however, their
appearance will not be updated when the key is pressed.

Distribution Note      When you create and distribute applications that use the key state control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk(*).
AutoSize HelpContextID Parent *Value
BackColor Index *Style Visible
Container Left TabIndex WhatsThisHelpID
DragIcon MouseIcon TabStop *Width
DragMode MousePointer Tag
Enabled Name *TimerInterval
*Height Object Top

Value is the default value of the control.

Note      The Name property is equivalent to the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk(*).
*Change GotFocus KeyPress LostFocus
Click KeyDown KeyUp

Methods
All of the methods for this control are listed in the following table.
Move SetFocus ZOrder
Refresh ShowWhatsThis

Height, Width Properties, Key State Control

Determine the height and width of the key state control.

Syntax
[form.]Keystate.Height[= setting%]
[form.]Keystate.Width[= setting%]

Remarks
You cannot resize a key state control unless the AutoSize property is set to False.

Data Type
Integer

Style Property, Key State Control

 

Determines which keyboard state is associated with the key state control.

Syntax
[form.]Keystate.Style[= setting%]

Remarks
The following table lists the Style property settings for the key state control.

Setting Description
0 (Default) Capitals lock
1 Number lock
2 Insert state
3 Scroll lock

Data Type
Integer (Enumerated)

TimerInterval Property, Key State Control

Sets or returns the current timer interval setting for all key state controls. The default is 1000
milliseconds.

Syntax
[form.]Keystate.TimerInterval[= milliseconds%]

Remarks
This property determines the interval at which the key state is checked. If you are having performance
problems, try setting TimerInterval to a higher value.
Only one timer operates all key state controls. If you change the TimerInterval for one control, you are
changing it for all of them.
The TimerInterval property cannot be set to a negative value.

Data Type
Long

Value Property, Key State Control

Sets or returns the current state for the key defined in the Style property. The Value property returns the
lock state of the key, not the pressed state. This property is not available at design time.

Syntax
[form.]Keystate.Value[= {True | False}]

Remarks
The following table lists the Value property settings for the key state control.

Setting Description
False Key state is off (for example, Caps Lock is off).
True Key state is on (for example, Caps Lock is on).

Data Type
Integer (Boolean)

Change Event, Key State Control

Occurs when the Value property changes.

Syntax
Private Sub Keystate_Change ()

 MAPI Session Control
Properties Methods Constants Error Messages

The messaging application program interface (MAPI) controls allow you to create a mail-enabled Visual
Basic MAPI application. There are two MAPI custom controls, MAPI session and MAPI messages. The
MAPI session control establishes a MAPI session, and then the MAPI messages control allows the user
to perform a variety of messaging system functions.
The MAPI controls are invisible at run time. In addition, there are no events for the controls. To use
them, you must specify the appropriate methods.
For these controls to work, MAPI services must be present. MAPI services are provided in MAPI
compliant electronic mail systems using Windows version 3.0 or later.

The MAPI session control establishes a messaging session.

File Name
MSMAPI16.OCX, MSMAPI32.OCX

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control or require special consideration when used with it, are marked with an asterisk (*).
*Action Name *SessionID
*DownloadMail *NewSession Tag
Index Object Top
Left Parent *UserName
*LogonUI *Password

Methods
All of the methods for this control are listed in the following table.
SignOff SignOn

Action Property (MAPI Session Control)

Determines what action is performed when the MAPI session control is invoked. This property is not
available at design time. Setting the Action value at run time invokes the control. The Action property is
write-only at run time.

Note      The Action property is included for compatibility with earlier versions of Visual Basic. For
additional functionality, use the new methods listed in the Methods table for the MAPI Session control.

Syntax
[form.]MapiSession.Action[= setting%]

Remarks
This property is used to select between signing on and signing off from a messaging session. When
signing on, a session handle is returned and stored in the SessionID property.
The Action property settings are:

Setting Description
SignOn Logs user into the account specified by the UserName and Password properties and

provides a session handle to the underlying message subsystem. The session handle is
stored in the SessionID property.
Depending on the value of the NewSession property, the session handle may refer to a
newly created session or an existing session.

SignOff Ends the messaging session and signs the user off the specified account.

Data Type
Integer (Enumerated)

DownloadMail Property

Specifies whether new messages are downloaded from the mail server for the designated user.

Syntax
[form.]MapiSession.DownloadMail[= {True | False}]

Remarks
The DownloadMail property settings are:

Setting Description
True (Default) All new messages from the mail server are forced to the user's Inbox during the

sign-on process. A progress indicator is displayed until the message download is
complete.

False New messages on the server are not forced to the user's Inbox immediately, but are
downloaded at the time interval set by the user.

This property can be set to True when you want to access the user's complete set of messages when
signing on. However, processing time may increase as a result.

Data Type
Integer (Boolean)

LogonUI Property

Specifies whether or not a dialog box is provided for sign-on.

Syntax
[form.]MapiSession.LogonUI[= {True | False}]

Remarks
The LogonUI property settings are:

Setting Description
True (Default) A dialog box prompts new users for their user name and password (unless a

valid messaging session already exists    see the NewSession property for more
information).

False No dialog box is displayed.

The False setting is useful when you want to begin a mail session without user intervention, and you
already have the account name and password for the user. If insufficient or incorrect values are
provided, however, an error is generated.

Data Type
Integer (Boolean)

NewSession Property

Specifies whether a new mail session should be established, even if a valid session currently exists.

Syntax
[form.]MapiSession.NewSession[= {True | False}]

Remarks
The NewSession property settings are:

Setting Description
True A new messaging session is established, regardless of whether a valid session already

exists.
False (Default) Use the existing session established by the user.

Data Type
Integer (Boolean)

Password Property (MAPI Sessions Control)

Specifies the account password associated with the UserName property.

Syntax
[form.]MapiSession.Password[= string$]

Remarks
An empty string in this property indicates that a sign-on dialog box with an empty password field should
be generated. The default is an empty string.

Data Type
String

SessionID Property (MAPI Sessions Control)

Stores the current messaging session handle. This property is not available at design time, and is read
only at run time.

Syntax
[form.]MapiSession.SessionID

Remarks
This property is set when you specify the SignOn method. The SessionID property contains the unique
messaging session handle. The default is 0.
Use this property to set the SessionID property of the MAPI messages control.

Data Type
Long

UserName Property

Specifies the account user name.

Syntax
[form.]MapiSession.UserName[= string$]

Remarks
This property contains the name of the user account desired for sign-on or sign-off. If the LogonUI
property is True, an empty string in the UserName property indicates that a sign-on dialog box with an
empty name field should be generated. The default is an empty string.

Data Type
String

SignOff Method

Ends the messaging session and signs the user off from the account specified by the UserName and
Password properties.

Syntax
[form.]MapiSession.SignOff

SignOn Method

Logs the user into the account specified by the UserName and Password properties, and provides a
session handle to the underlying message subsystem.

Syntax
[form.]MapiSession.SignOn

Remarks
The session handle is stored in the SessionID property. Depending on the value of the NewSession
property, the session handle may refer to a newly created session or an existing session.

 MAPI Messages Control
Properties Methods Constants Error Messages

The messaging application program interface (MAPI) controls allow you to create a mail-enabled Visual
Basic MAPI application. There are two MAPI custom controls, MAPI session and MAPI messages. The
MAPI session control establishes a MAPI session, and then the MAPI messages control allows the user
to perform a variety of messaging system functions.
The MAPI controls are invisible at run time. In addition, there are no events for the controls. To use
them, you must specify the appropriate methods.
For these controls to work, MAPI services must be present. MAPI services are provided in MAPI
compliant electronic mail systems using Windows version 3.0 or later.

The MAPI messages control performs a variety of messaging system functions after a messaging session
is established with the MAPI session control.

Class Name
MapiMessages

Remarks
With the MAPI messages control, you can:

Access messages currently in the Inbox.
Compose a new message.
Add and delete message recipients and attachments.
Send messages (with or without a supporting user interface).
Save, copy, and delete messages.
Display the Address Book dialog box.
Display the Details dialog box.
Access attachments, including Object Linking and Embedding (OLE) attachments.
Resolve a recipient name during addressing.
Perform reply, reply-all, and forward actions on messages.

Most of the properties of the MAPI messages control can be categorized into four functional areas:
address book, file attachment, message, and recipient properties. The file attachment, message, and
recipient properties are controlled by the AttachmentIndex, MsgIndex, and RecipIndex properties,
respectively.
For example, as the index value changes in the MsgIndex property, all other message, file attachment,
and recipient properties change to reflect the characteristics of the specified message. The set of
message and recipient properties works the same way. The address book properties specify the
appearance of the address book dialog box.

Message Buffers
When using the MAPI messages control, you need to keep track of two buffers, the compose buffer and
the read buffer. The read buffer is made up of an indexed set of messages fetched from a user's Inbox.
The MsgIndex property is used to access individual messages within this set, starting with a value of 0
for the first message and incrementing by one for each message through the end of the set.
The message set is built using the Fetch method. The set includes all messages of type FetchMsgType
and is sorted as specified by the FetchSorted property. Previously read messages can be included or
left out of the message set with the FetchUnreadOnly property. Messages in the read buffer can't be
altered by the user, but can be copied to the compose buffer for alteration.
Messages can be created or edited in the compose buffer. The compose buffer is the active buffer when
the MsgIndex property is set to -1. Many of the messaging actions are valid only within the compose
buffer, such as sending messages, sending messages with a dialog box, saving messages, or deleting
recipients and attachments.
Refer to the object library in the Object Browser for property and error constants for the control.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control or require special consideration when used with it, are marked with an asterisk (*). (Note that the
list order is alphabetic from top to bottom, then left to right.)
*Action *FetchUnreadOnly *MsgType
*AddressCaption Index Name
*AddressEditFieldCount *MsgConversationID Object
*AddressLabel *MsgCount Parent
*AddressModifiable *MsgDateReceived *RecipAddress
*AddressResolveUI *MsgID *RecipCount
*AttachmentCount *MsgIndex *RecipDisplayName
*AttachmentIndex *MsgNoteText *RecipIndex
*AttachmentName *MsgOrigAddress *RecipType
*AttachmentPathName *MsgOrigDisplayName *SessionID
*AttachmentPosition *MsgRead Tag
*AttachmentType *MsgReceiptRequested Top
*FetchMsgType *MsgSent
*FetchSorted *MsgSubject

Methods
All of the methods for this control are listed in the following table. (Note that the list order is alphabetic
from top to bottom, then left to right.)
Compose Forward Save
Copy Reply Send
Delete ReplyAll Show
Fetch ResolveName

Action Property (MAPI Message Control)

Determines what action is performed when the MAPI messages control is invoked. This property is not
available at design time. Setting the Action value at run time invokes the control. This property is write-
only at run time.

Note      The Action property is included for compatibility with earlier versions of Visual Basic. For
additional functionality, use the new methods listed in the Methods table for the MAPI Messages control.

Syntax
[form.]MapiMessages.Action[= setting%]

Remarks
The following table lists the Action property settings from Visual Basic 3.0 and the corresponding new
methods in Visual Basic 4.0.

Action property setting (VB3) Corresponding method (VB4)
MESSAGE_FETCH Fetch method
MESSAGE_SENDDLG Send method
MESSAGE_SEND Send method
MESSAGE_SAVEMSG Save method
MESSAGE_COPY Copy method
MESSAGE_COMPOSE Compose method
MESSAGE_REPLY Reply method
MESSAGE_REPLYALL ReplyAll method

MESSAGE_FORWARD Forward method
MESSAGE_DELETE Delete method
MESSAGE_SHOWADBOOK Show method
MESSAGE_SHOWDETAILS Show method
MESSAGE_RESOLVENAME ResolveName method
RECIPIENT_DELETE Delete method
ATTACHMENT_DELETE Delete method

Data Type
Integer

AddressCaption Property

Specifies the caption appearing at the top of the Address Book dialog box when the Show method is
specified with the details argument missing or set to False.

Syntax
[form.]MapiMessages.AddressCaption[= string$]

Remarks
If this property is a null or empty string, the default value of the Address Book is used.

Data Type
String

AddressEditFieldCount Property

Specifies the number of edit controls available to the user in the Address Book dialog box when the
Show method is specified with the details argument missing or set to False.

Syntax
[form.]MapiMessages.AddressEditFieldCount[= setting%]

Remarks
The AddressEditFieldCount property settings are:

Setting Description
0 No edit controls; only browsing is allowed.
1 (Default) Only the To edit control should be present in the dialog box.
2 The To and CC (copy) edit controls should be present in the dialog box.
3 The To, CC (copy), and BCC (blind copy) edit controls should be present in the dialog

box.
4 Only those edit controls supported by the messaging system should be present in the

dialog box.

For example, if AddressEditFieldCount is 3, the user can select from the To, CC, and BCC edit controls
in the Address Book dialog box. The AddressEditFieldCount is adjusted so that it is equal to at least the
minimum number of edit controls required by the recipient set.

Data Type
Integer (Enumerated)

AddressLabel Property

Specifies the appearance of the To edit control in the Address Book when the Show method is specified
with the details argument missing or set to False.

Syntax
[form.]MapiMessages.AddressLabel[= string$]

Remarks
This property is normally ignored and should contain an empty string to use the default label "To."
However, when the AddressEditFieldCount property is set to 1, the user has the option of explicitly
specifying another label (providing the number of editing controls required by the recipient set equals 1).

Data Type
String

AddressModifiable Property

Specifies whether the Address Book can be modified.

Syntax
[form.]MapiMessages.AddressModifiable[= {True | False}]

Remarks
The AddressModifiable property settings are:

Setting Description
True The user is allowed to modify their personal address book.
False (Default) The user is not allowed to modify their personal address book.

Data Type
Integer (Boolean)

AddressResolveUI Property

Specifies whether a dialog box is displayed for recipient name resolution during addressing when the
ResolveName method is specified.

Syntax
[form.]MapiMessages.AddressResolveUI[= {True | False}]

Remarks
The AddressResolveUI property settings are:

Setting Description
True A dialog box is displayed with names that closely match the intended recipient's name.
False (Default) No dialog box is displayed for ambiguous names. An error occurs if no potential

matches are found (no matches is not an ambiguous situation).

Data Type
Integer (Boolean)

AttachmentCount Property

Specifies the total number of attachments associated with the currently indexed message. This property
is not available at design time, and is read-only at run time.

Syntax
[form.]MapiMessages.AttachmentCount

Remarks
The default value is 0. The value of AttachmentCount depends on the number of attachments in the
current indexed message.

Data Type
Long

AttachmentIndex Property

Sets the currently indexed attachment. This property is not available at design time.

Syntax
[form.]MapiMessages.AttachmentIndex[= index%]

Remarks
Specifies an index number to identify a particular message attachment. The index number in this
property determines the values in the AttachmentFileName, AttachmentPathName, AttachmentPosition,
and AttachmentType properties. The attachment identified by the AttachmentIndex property is called the
currently indexed attachment. The value of AttachmentIndex can range from 0 (the default) to
AttachmentCount -1.
To add a new attachment, set the AttachmentIndex to a value greater than or equal to the current
attachment count while in the compose buffer (MsgIndex = -1). The AttachmentCount property is
updated automatically to reflect the implied new number of attachments.
For example, if the current AttachmentCount property has the value 3, setting the AttachmentIndex
property to 4 adds 2 new attachments and increases the AttachmentCount property to 5.
To delete an existing attachment, specify the Delete method with the object parameter set to 2.
Attachments can be added or deleted only when the MsgIndex property is set to -1.

Data Type
Long

AttachmentName Property
Specifies the name of the currently indexed attachment file. This property is not available at design time.
It is read-only unless MsgIndex is set to -1.

Syntax
[form.]MapiMessages.AttachmentName[= string$]

Remarks
The file name specified is the file name seen by the recipients of the currently indexed message. If
AttachmentFileName is an empty string, the file name from the AttachmentPathName property is used.
If the attachment is an OLE object, AttachmentFileName contains the class name of the object, for
example, "Microsoft Excel Worksheet."
Attachments in the read buffer are deleted when a subsequent fetch action occurs. The value of
AttachmentName depends on the currently indexed message as selected by the AttachmentIndex
property.

Data Type
String

AttachmentPathName Property
Specifies the full path name of the currently indexed attachment. This property is not available at design
time. It is read-only unless MsgIndex is set to    -1.

Syntax
[form.]MapiMessages.AttachmentPathName[= string$]

Remarks
If you attempt to send a message with an empty string for a path name, an error results. Attachments in
the read buffer are deleted when a subsequent fetch action occurs. Attachments in the compose buffer
need to be manually deleted. The value of AttachmentPathName depends on the currently indexed
message, as selected by the AttachmentIndex property.

Data Type
String

AttachmentPosition Property
Specifies the position of the currently indexed attachment within the message body. This property is not
available at design time. It is read-only unless MsgIndex is set to    -1.

Syntax
[form.]MapiMessages.AttachmentPosition[= position&]

Remarks
To determine where an attachment is placed, count the characters in the message body and decide
which character position you wish to replace with the attachment. The character count at that position
should be used for the AttachmentPosition value.
For example, in a message body that is five-characters long, you could place an attachment at the end
of the message by setting AttachmentPosition equal to 4. (The message body occupies character
positions 0 to 4.)
You can't place two attachments in the same position within the same message. In addition, you can't
place an attachment beyond the end of the message body.
The value of AttachmentPosition depends on the currently indexed message, as selected by the
AttachmentIndex property.

Data Type
Long

AttachmentType Property
Specifies the type of the currently indexed file attachment. This property is not available at design time.
It is read-only unless MsgIndex is set to    -1.

Syntax
[form.]MapiMessages.AttachmentType[= type%]

Remarks
The AttachmentType property settings are:

Setting Description
Data The attachment is a data file.
EOLE The attachment is an embedded OLE object.
SOLE The attachment is a static OLE object.

The value of AttachmentType depends on the currently indexed message, as selected by the
AttachmentIndex property.

Data Type
Integer (Enumerated)

FetchMsgType Property

Specifies the message type to populate the message set.

Syntax
[form.]MapiMessages.FetchMsgType[= string$]

Remarks
This property determines which message types are added to the message set when the Fetch method
is specified. A null or empty string in this property specifies an interpersonal message type (IPM), which
is the default.

Data Type
String

FetchSorted Property

Specifies the message order when populating the message set with messages from the Inbox.

Syntax
[form.]MapiMessages.FetchSorted[= {True | False}]

Remarks
The FetchSorted property settings are:

Setting Description
True Messages are added to the message set in the order they were received (first in, first out).
False (Default) Messages are added in the sort order as specified by the user's Inbox.

Data Type
Integer (Boolean)

FetchUnreadOnly Property

Determines whether to restrict the messages in the message set to unread messages only.

Syntax
[form.]MapiMessages.FetchUnreadOnly[= {True | False}]

Remarks
The FetchUnreadOnly property settings are:

Setting Description
True (Default) Only unread messages of the type specified in the FetchMsgType property are

added to the message set.
False All messages of the proper type in the Inbox are added.

Data Type
Integer (Boolean)

MsgConversationID Property

Specifies the conversation thread identification value for the currently indexed message. It is read-only
unless MsgIndex is set to 1.

Syntax
[form.]MapiMessages.MsgConversationID[= string$]

Remarks
A conversation thread is used to identify a set of messages beginning with the original message and
including all the subsequent replies. Identical conversation IDs indicate that the messages are part of
the same thread. New messages are assigned an ID by the message system. The value of
MsgConversationID depends on the currently indexed message, as selected by the MsgIndex property.

Data Type
String

MsgCount Property
Indicates the total number of messages present in the message set during the current messaging
session. This property is not available at design time, and is read-only at run time.

Syntax
[form.]MapiMessages.MsgCount

Remarks
This property is used to get a current count of the messages in the message set. The default value is 0.
This property is reset each time a fetch action is performed.

Data Type
Long

MsgDateReceived Property
Specifies the date on which the currently indexed message was received. This property is not available
at design time and is read-only at run time.

Syntax
[form.]MapiMessages.MsgDateReceived

Remarks
The format for this property is YYYY/MM/DD HH:MM. Hours are measured on a standard 24-hour base.
The value of MsgDateReceived is set by the message system and depends on the currently indexed
message, as selected by the MsgIndex property.

Data Type
String

MsgID Property
Specifies the string identifier of the currently indexed message. This property is not available at design
time and is read-only at run time.

Syntax
[form.]Map/iMessages.MsgID

Remarks
The message-identifier string is a system-specific, nonprintable, 64-character string used to uniquely
identify a message. The value of MsgID depends on the currently indexed message, as selected by the
MsgIndex property.

Data Type
String

MsgIndex Property
Specifies the index number of the currently indexed message. This property is not available at design
time.

Syntax
[form.]MapiMessages.MsgIndex[= index&]

Remarks
The MsgIndex property determines the values of all the other message-related properties of the MAPI
messages control. The index number can range from -1 to MsgCount -1.

Note      Changing the MsgIndex property also changes the entire set of attachments and recipients.

The message identified by the MsgIndex property is called the currently indexed message. When this
index is changed, all of the other message properties change to reflect the characteristics of the indexed
message. A value of -1 signifies a message being built in the compose buffer    in other words, an
outgoing message.

Data Type
Long

MsgNoteText Property

Specifies the text body of the message. This property is not available at design time. It is read-only
unless MsgIndex is set to 1.

Syntax
[form.]MapiMessages.MsgNoteText[= string$]

Remarks
This property consists of the entire textual portion of the message body (minus any attachments). An
empty string indicates no text.
For inbound messages, each paragraph is terminated with a carriage return-line feed pair (0x0d0a). For
outbound messages, paragraphs can be delimited with a carriage return 0x0d), line feed 0x0a), or a
carriage return-line feed pair (0x0d0a). The value of MsgNoteText depends on the currently indexed
message, as selected by the MsgIndex property.

Data Type
String

MsgOrigAddress Property
Indicates the mail address of the originator of the currently indexed message. This property is not
available at design time and is read-only at run time. The messaging system sets this property for you
when sending a message.

Syntax
[form.]MapiMessages.MsgOrigAddress

Remarks
The value of MsgOrigAddress depends on the currently indexed message as selected by the MsgIndex
property. The value is null in the compose buffer.

Data Type
String

MsgOrigDisplayName Property
Specifies the originator's name for the currently indexed message. This property is not available at
design time and is read-only at run time. The messaging system sets this property for you.

Syntax
[form.]MapiMessages.MsgOrigDisplayName

Remarks
The name in this property is the originator's name, as displayed in the message header. The value of
MsgOrigDisplayName depends on the currently indexed message, as selected by the MsgIndex
property. The value is null in the compose buffer.

Data Type
String

MsgRead Property
Indicates whether the message has already been read. This property is not available at design time and
is read-only at run time.

Syntax
[form.]MapiMessages.MsgRead

Remarks
The MsgRead property settings are:

Setting Description
True The currently indexed message has already been read by the user.
False (Default) The message remains unread.

The value of MsgRead depends on the currently indexed message, as selected by the MsgIndex
property. The message is marked as read when the note text or any of the attachment information is
accessed. However, accessing header information does not mark the message as read.

Data Type
Integer (Boolean)

MsgReceiptRequested Property
Specifies whether a return receipt is requested for the currently indexed message. This property is not
available at design time.

Syntax
[form.]MapiMessages.MsgReceiptRequested[= {True | False}]

Remarks
The MsgReceiptRequested property settings are:

Setting Description
True A receipt notification is returned to the sender when the recipient opens the message.
False (Default) No return receipt is generated.

The value of MsgReceiptRequested depends on the currently indexed message, as selected by the
MsgIndex property.

Data Type
Integer (Boolean)

MsgSent Property

Specifies whether the currently indexed message has already been sent to the mail server for
distribution. This property is not available at design time and is read-only at run time. The messaging
system sets this property for you when sending a message.

Syntax
[form.]MapiMessages.MsgSent

Remarks
The MsgSent property settings are:

Setting Description
True The currently indexed message has already been submitted to the mail server as an

outgoing message.
False The currently indexed message has not yet been delivered to the server.

The value of MsgSent depends on the currently indexed message, as selected by the MsgIndex
property.

Data Type
Integer (Boolean)

MsgSubject Property

Specifies the subject line for the currently indexed message as displayed in the message header. This
property is not available at design time. It is read-only unless MsgIndex is set to    -1.

Syntax
[form.]MapiMessages.MsgSubject[= string$]

Remarks
The value of MsgSubject depends on the currently indexed message, as selected by the MsgIndex
property. MsgSubject is limited to 64 characters, including the null character.

Data Type
String

MsgType Property

Specifies the type of the currently indexed message. This property is not available at design time. It is
read-only unless MsgIndex is set to    -1.

Syntax
[form.]MapiMessages.MsgType[= string$]

Remarks
The MsgType property is for use by applications other than interpersonal mail (IPM message type). Not
all mail systems support message types that are not IPM and may not provide (or may ignore) this
parameter.
A null or empty string indicates an IPM message type. The value of MsgType depends on the currently
indexed message, as selected by the MsgIndex property. This property is not meant for use as a filter to
isolate messages by sender, receipt time, and other categories.

Data Type
String

RecipAddress Property

Specifies the electronic mail address of the currently indexed recipient. This property is not available at
design time. It is read-only unless MsgIndex is set to    -1.

Syntax
[form.]MapiMessages.RecipAddress[= string$]

Remarks
The value of RecipAddress depends on the currently indexed recipient, as selected by the RecipIndex
property.

Data Type
String

RecipCount Property

Specifies the total number of recipients for the currently indexed message. This property is not available
at design time, and is read-only at run time.

Syntax
[form.]MapiMessages.RecipCount

Remarks
The default value is 0. The value of RecipCount depends on the currently indexed message, as selected
by the MsgIndex property.

Data Type
Long

RecipDisplayName Property

Specifies the name of the currently indexed recipient. This property is not available at design time. It is
read-only unless MsgIndex is set to    -1.

Syntax
[form.]MapiMessages.RecipDisplayName[= string$]

Remarks
The name in this property is the recipient's name, as displayed in the message header. The value of
RecipDisplayName depends on the currently indexed message, as selected by the RecipIndex property.
The ResolveName method uses the recipient name as it is stored here.

Data Type
String

RecipIndex Property

Sets the currently indexed recipient. This property is not available at design time.

Syntax
[form.]MapiMessages.RecipIndex[= index&]

Remarks
Specifies an index number to identify a particular message recipient. The index number in this property
determines the values in the RecipAddress, RecipCount, RecipDisplayName, and RecipType properties.
The recipient identified by the RecipIndex property is called the currently indexed recipient. The value of
RecipIndex can range from 0 (the default) to RecipCount -1. When in the read buffer with RecipIndex set
to -1, values of the other recipient properties show message originator information. The default setting is
0.
To add a new recipient, set the RecipIndex to a value greater than or equal to the current recipient count
while in the compose buffer. The RecipCount property is updated automatically to reflect the implied new
number of recipients. For example, if the current RecipCount property has the value 3, setting the
RecipIndex property to 4 adds 2 new recipients and increases the RecipCount property to 5.
To delete an existing recipient, specify the Delete method with the object parameter set to 1. Recipients
can be added or deleted only when the MsgIndex property is set to -1.

Data Type
Long

RecipType Property

Specifies the type of the currently indexed recipient. This property is not available at design time. It is
read-only unless MsgIndex is set to -1.

Syntax
[form.]MapiMessages.RecipType[= setting%]

Remarks
The RecipType property settings are:

Setting Description
OrigList The message originator.
ToList The recipient is a primary recipient.
CcList The recipient is a copy recipient.
BccList The recipient is a blind copy recipient.

The value of RecipType depends on the currently indexed message, as selected by the RecipIndex
property. You cannot set the recipient type to 0 (the message system uses a value of 0 to indicate the
message originator.)

Data Type
Integer

SessionID Property (MAPI Messages Control)

Stores the current messaging session handle. This property is not available at design time.

Syntax
[form.]MapiMessages.SessionID[= handle&]

Remarks
This property contains the messaging session handle returned by the SessionID property of the MAPI
session control. To associate the MAPI messages control with a valid messaging session, set this
property to the SessionID of a MAPI session control that was successfully signed on.

Data Type
Long

Compose Method

Composes a message.

Syntax
[form.]MapiMessages.Compose

Remarks
This method clears all the components of the compose buffer, and sets the MsgIndex property to -1.

Copy Method

Copies the currently indexed message to the compose buffer.

Syntax
[form.]MapiMessages.Copy

Remarks
This method sets the MsgIndex property to -1.

Delete Method

Deletes a message, recipient, or attachment.

Syntax
[form.]MapiMessages.Delete [object As Integer]

Remarks
The values for object and their corresponding actions are:

Value Description
Missing or 0 Deletes all components of the currently indexed message, reduces the MsgCount

property by 1, and decrements the index number by 1 for each message that follows
the deleted message.
If the deleted message was the last message in the set, this method decrements the
MsgIndex property by 1.

1 Deletes the currently indexed recipient. Automatically reduces the RecipCount
property by 1, and decrements the index number by 1 for each recipient that follows
the deleted recipient.
If the deleted recipient was the last recipient in the set, this method decrements the
RecipIndex property by 1.

2 Deletes the currently indexed attachment. Automatically reduces the AttachmentCount
property by 1, and decrements the index by 1 for each attachment that follows the
deleted attachment.
If the deleted attachment was the last attachment in the set, this method decrements
the AttachmentIndex by 1.

Fetch Method

Creates a message set from selected messages in the Inbox.

Syntax
[form.]MapiMessages.Fetch

Remarks
The message set includes all messages in the Inbox which are of the types specifed by the
FetchMsgType property. They are sorted as specified by the FetchSorted property. If the
FetchUnreadOnly property is set to True, only unread messages are included in the message set.
Any attachment files in the read buffer are deleted when a subsequent fetch action occurs.

Forward Method

Forwards a message.

Syntax
[form.]MapiMessages.Forward

Remarks
This method copies the currently indexed message to the compose buffer as a forwarded message and
adds FW: to the beginning of the Subject line. It also sets the MsgIndex property to -1.

Reply Method

Replies to a message.

Syntax
[form.]MapiMessages.Reply

Remarks
This method copies the currently indexed message to the compose buffer and adds RE: to the beginning
of the Subject line. It also sets the MsgIndex property to -1.
The currently indexed message originator becomes the outgoing message recipient.

ReplyAll Method

Replies to all message recipients.

Syntax
[form.]MapiMessages.ReplyAll

Remarks
This method copies the currently indexed message to the compose buffer and adds RE: to the beginning
of the Subject line. It also sets the MsgIndex property to -1.
The message is sent to the currently indexed message originator and to all To: and CC: recipients.

ResolveName Method

Resolves the name of the currently indexed recipient.

Syntax
[form.]MapiMessages.ResolveName

Remarks
This method searches the address book for a match on the currently indexed recipient name. If no
match is found, an error is returned. It does not provide additional resolution of the message originator's
name or address.
The AddressResolveUI property determines whether to display a dialog box to resolve ambiguous
names.
This method may cause the RecipType property to change.

Save Method

Saves the message currently in the compose buffer (with MsgIndex = -1).

Syntax
[form.]MapiMessages.Save

Send Method

Sends a message.

Syntax
[form.]MapiMessages.Send [dialog As Integer]

Remarks
The values for dialog and their corresponding actions are:

Value Description
True Sends a message inside a dialog box. Prompts the user for the various

components of the message and submits the message to the mail server for
delivery.
All message properties associated with the message being built in the compose
buffer form the basis for the message dialog box. However, changes made in the
dialog box do not alter information in the compose buffer.

False or missing Submits the outgoing message to the mail server without displaying a dialog box.
An error occurs if you attempt to send a message with no recipients or with
missing attachment path names.

Show Method

Displays the mail Address Book dialog box or the details of the currently indexed recipient.

Syntax
[form.]MapiMessages.Show [details As Integer]

Remarks
The values for details and their corresponding actions are:

Value Description
True Displays a dialog box that shows the details of the currently indexed recipient.

The amount of information presented in the dialog box is determined by the
message system. As a minimum, it contains the display name and address of the
recipient.

False or missing Displays the mail Address Book dialog box. You can use the address book to
create or modify a recipient set. Any changes to the address book outside of the
compose buffer are not saved.

 Masked Edit Control
Properties Methods Events Constants

The masked edit control provides restricted data input as well as formatted data output. This control
supplies visual cues about the type of data being entered or displayed. This is what the control looks like
as an icon in the Toolbox:

File Name
MSMASK16.OCX, MSMASK32.OCX

Class Name
MaskEdBox

Remarks
The masked edit control generally behaves as a standard text box control with enhancements for
optional masked input and formatted output. If you don't use an input mask, the masked edit control
behaves much like a standard text box, except for its dynamic data exchange (DDE) capability.
If you define an input mask using the Mask property, each character position in the masked edit control
maps to either a placeholder of a specified type or a literal character. Literal characters, or literals, give
visual cues about the type of data being used. For example, the parentheses surrounding the area code
of a telephone number are literals: (206).
If you attempt to enter a character that conflicts with the input mask, the control generates a
ValidationError event. The input mask prevents you from entering invalid characters into the control.
The masked edit control has three bound properties: DataChanged, DataField, and DataSource. This
means that it can be linked to a data control and display field values for the current record in the
recordset. The masked edit control can also write out values to the recordset.
When the value of the field referenced by the DataField property is read, it is converted to a Text
property string, if possible. If the recordset is updatable, the string is converted to the data type of the
field.

To clear the Text property when you have a mask defined, you first need to set the Mask property to an
empty string, and then the Text property to an empty string:

MaskedEdit1.Mask = ""
MaskedEdit1.Text = ""

When you define an input mask, the masked edit control behaves differently from the standard text box.
The insertion point automatically skips over literals as you enter data or move the insertion point.
When you insert or delete a character, all nonliteral characters to the right of the insertion point are
shifted, as necessary. If shifting these characters leads to a validation error, the insertion or deletion is
prevented, and a ValidationError event is triggered.
Suppose the Mask property is defined as "?###", and the current value of the Text property is "A12." If
you attempt to insert the letter "B" before the letter "A," the "A" would shift to the right. Since the second
value of the input mask requires a number, the letter "A" would cause the control to generate a
ValidationError event.
The masked edit control also validates the values of the Text property at run time. If you set the Text
property so that it conflicts with the input mask, the control generates a run-time error.

You may select text in the same way as for a standard text box control. When selected text is deleted,
the control attempts to shift the remaining characters to the right of the selection. However, any
remaining character that might cause a validation error during this shift is deleted, and no ValidationError
event is generated.
Normally, when a selection in the masked edit control is copied onto the Clipboard, the entire selection,
including literals, is transferred onto the Clipboard. You can use the ClipMode property to transfer only
user-entered data onto the Clipboard    literal characters that are part of the input mask are not copied.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*AllowPrompt Enabled HideSelection SelLength
Appearance Font hWnd SelStart
*AutoTab FontBold Index *SelText
BackColor FontItalic Left TabIndex
BorderStyle FontName *Mask TabStop
*ClipMode FontSize *MaxLength Tag
*ClipText FontStrikethru MouseIcon *Text
Container * FontUnderline MousePointer Top
DataChanged ForeColor Name Visible
DataField *Format Object WhatsThisHelpID
DataSource *FormattedText Parent Width
DragIcon Height *PromptChar
DragMode HelpContextID *PromptInclude

Text is the default value of the control

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
Change GotFocus KeyUp
DragDrop KeyDown LostFocus
DragOver KeyPress *ValidationError

Methods
All of the methods for this control are listed in the following table.
Drag Refresh ShowWhatsThis
Move SetFocus ZOrder

AllowPrompt Property

Determines whether or not the prompt character is a valid input character.

Syntax
[form.]MaskedEdit.AllowPrompt [= {True | False}]

Remarks
The AllowPrompt property settings are as follows:

Setting Description
False (Default) The prompt character is not a valid input character. A ValidationError event is

triggered if you enter the prompt character.
True The prompt character is a valid input character.

For example, suppose you have defined a prompt character of 0, and you want the masked edit control
to accept any five digits from 0 to 9. You specify a mask of #####. If the AllowPrompt property is False
and you enter 0, a ValidationError event occurs. If AllowPrompt is set to True, you can enter 0 as a valid
input character.

Data Type
Integer (Boolean)

AutoTab Property

Determines whether or not the next control in the tab order receives the focus as soon as the Text
property of the masked edit control is filled with valid data. The Mask property determines whether the
values in the Text property are valid.

Syntax
[form.]MaskedEdit.AutoTab[= {True | False}]

Remarks
Automatic tabbing occurs only if all the characters defined by the Mask property are entered into the
control, the characters are valid, and the AutoTab property is set to True.

Setting Description
False (Default) AutoTab is not on. A ValidationError event occurs when you enter more

characters than are defined by the input mask.
True AutoTab is on. When you enter all the characters defined by the input mask, focus goes to

the next control in the tab sequence, and all subsequent characters entered are handled
by the next control.

The masked edit control is considered filled when you enter the last valid character in the control,
regardless of where the character is in the input mask. This property has no effect if the Mask property is
set to the empty string ("").

Data Type
Integer (Boolean)

ClipMode Property

Determines whether to include or exclude the literal characters in the input mask when doing a cut or
copy command.

Syntax
[form.]MaskedEdit.ClipMode [= setting%]

Remarks
The following table lists the ClipMode property settings for the masked edit control.

Setting Description
0 (Default) Include literals on a cut or copy command.
1 Exclude literals on a cut or copy command.

This property has no effect if the Mask property is set to the empty string ("").

Data Type
Integer (Enumerated)

ClipText Property

Returns the text in the masked edit control, excluding literal characters of the input mask. This property
is not available at design time and is read-only at run time.

Syntax
[form.]MaskedEdit.ClipText

Remarks
This property acts the same as the SelText property when the Mask property is set to the empty string
("").

Data Type
String

FontUnderline Property

The masked edit control uses an underline character as a placeholder for user input. Under normal
behavior, the underline character disappears when the user enters a valid character. If this property is
set to True, characters entered in the control remain underlined.

Syntax
[form.]MaskedEdit.FontUnderline[= {True | False}]

Remarks
The following table lists the FontUnderline property settings for the masked edit control.

Setting Description
False (Default) Underlined characters in the control disappear when you enter a valid character.
True Entered characters are underlined.

Data Type
Integer (Boolean)

Format Property

Specifies the format for displaying and printing numbers, dates, times, and text.

Syntax
[form.]MaskedEdit.Format [= posformat$; negformat$; zeroformat$; nullformat$]

Parameter Description
posformat$ Expression used to display positive values.
negformat$ Expression used to display negative values.
zeroformat$ Expression used to display zero values.
nullformat$ Expression used to display null or empty values.

Remarks
The Format property defines the format expressions used to display the contents of the control. You can
use the same format expressions as defined by the Visual Basic Format$ function, with the exception
that named formats ("On/Off") can't be used.
This property can have from one to four parameters separated by semicolons. If one of the parameters
is not specified, the format specified by the first parameter is used. If multiple parameters appear, the
appropriate number of separators must be used. For example, to specify posformat$ and nullformat$,
use the syntax
[form.]MaskedEdit.Format = posformat$;;; nullformat$
The following table shows a number of standard formats available to the user; however, any valid
Format$ expression may be defined.

Data type Value Description
Number (Default) Empty string General Numeric format. Displays

as entered.
Number $#,##0.00;($#,##0.00) Currency format. Uses thousands

separator; displays negative
numbers enclosed in parentheses.

Number 0 Fixed number format. Displays at
least one digit.

Number #,##0 Commas format. Uses commas as
thousands separator.

Number 0% Percent format. Multiplies value by
100 and appends a percent sign.

Number 0.00E+00 Scientific format. Uses standard
scientific notation.

Date/Time (Default) c General Date and Time format.
Displays date, time, or both.

Date/Time dddddd Long Date format. Same as the
Long Date setting in the
International section of the
Microsoft Windows Control Panel.
Example: Tuesday, May 26, 1992.

Date/Time dd-mmm-yy Medium Date format. Example: 26-
May-92.

Date/Time ddddd Short Date format. Same as the
Short Date setting in the
International section of the
Microsoft Windows Control Panel.
Example: 5/26/92.

Date/Time ttttt Long Time format. Same as the
Time setting in the International

section of the Microsoft Windows
Control Panel. Example: 05:36:17
A.M.

Date/Time hh:mm AM/PM Medium Time format. Example:
05:36 A.M.

Date/Time hh:mm Short Time format. Example:
05:36.

Data Type
String

FormattedText Property

This is identical to the string displayed in the masked edit control when the control doesn't have the
focus. This property is read-only at run time.

Syntax
[form.]MaskedEdit.FormattedText

Remarks
If the Format property is equal to the empty string (""), this property is identical to the Text property,
except that it is read-only. If the HideSelection property is set to False, the control doesn't display the
formatted text when it doesn't have the focus. However, the formatted text is still available through this
property.

Data Type
String

Mask Property

Determines the input mask for the control.

Syntax
[form.]MaskedEdit.Mask [= string$]

Remarks
You can define input masks at both design time and run time. However, the following standard,
predefined input masks are available at design time.

Mask Description
Null String (Default) No mask. Acts like a standard text box.
##-???-## Medium date (US). Example: 20-May-92
##-##-## Short date (US). Example: 05-20-92
##:## ?? Medium time. Example: 05:36 AM

##:## Short time. Example: 17:23

The input mask can consist of the following characters.

Mask character Description
Digit placeholder.
. Decimal placeholder. The actual character used is the one specified as the

decimal placeholder in your international settings. This character is treated as a
literal for masking purposes.

, Thousands separator. The actual character used is the one specified as the
thousands separator in your international settings. This character is treated as a
literal for masking purposes.

: Time separator. The actual character used is the one specified as the time
separator in your international settings. This character is treated as a literal for
masking purposes.

/ Date separator. The actual character used is the one specified as the date
separator in your international settings. This character is treated as a literal for
masking purposes.

\ Treat the next character in the mask string as a literal. This allows you to include
the '#', '&', 'A', and '?' characters in the mask. This character is treated as a literal
for masking purposes.

& Character placeholder. Valid values for this placeholder are ANSI characters in
the following ranges: 32-126 and 128-255.

> Convert all the characters that follow to uppercase.
< Convert all the characters that follow to lowercase.
A Alphanumeric character placeholder (entry required). For example: a        z, A       

Z, or 0      9.
a Alphanumeric character placeholder (entry optional).
9 Digit placeholder (entry optional). For example: 0      9.
C Character or space placeholder (entry optional).
? Letter placeholder. For example: a        z or A      Z.
Literal All other symbols are displayed as literals; that is, as themselves.

When the value of the Mask property is an empty string (""), the control behaves like a standard text box
control. When an input mask is defined, underscores appear beneath every placeholder in the mask.
You can only replace a placeholder with a character that is of the same type as the one specified in the
input mask. If you enter an invalid character, the masked edit control rejects the character and generates
a ValidationError event.

Note      When you define an input mask for the masked edit control and you tab to another control, the

ValidationError event is generated if there are any invalid characters in the masked edit control.

Data Type
String

MaxLength Property

Sets or returns the maximum length of the masked edit control.

Syntax
[form.]MaskedEdit.MaxLength [= setting%]

Remarks
The masked edit field can have a maximum of 64 characters (the valid range for this property is 1 to 64).
The default value is set to 64 characters, including literal characters in the input mask.
If the user enters characters beyond the specified maximum length, the control generates a beep.

Data Type
Integer

PromptChar Property

Sets or returns the character used to prompt a user for input.

Syntax
[form.]MaskedEdit.PromptChar [= char$]

Remarks
The underscore character "_" is the default character value for the property. The PromptChar property
can only be set to exactly one character.
Use the PromptInclude property to specify whether prompt characters are contained in the Text property.

Data Type
String

PromptInclude Property

Specifies whether prompt characters are contained in the Text property value. Use the PromptChar
property to change the value of the prompt character.

Syntax
[form.]MaskedEdit.PromptInclude [= { True | False }]

Remarks
The following table lists the PromptInclude property settings for the masked edit control.

Setting Description
False The value of the Text property does not contain any prompt character.
True (Default) The value of the Text property contains prompt characters, if any.

If the masked edit control is bound to a data control, the PromptInclude property affects how the data
control reads the bound Text property. If PromptInclude is False, the data control ignores any literals or
prompt characters in the Text property. In this mode, the value that the data control retrieves from the
masked edit control is equivalent to the value of the ClipText property.
If PromptInclude is True, the data control uses the value of the Text property as the data value to store.

Data Type
Integer (Boolean)

SelText Property (Masked Edit Control)

Sets or returns the text contained in the control.

Syntax
[form.]MaskedEdit.SelText[= string$]

Remarks
If an input mask is not defined for the masked edit control, the SelText property behaves like the
standard SelText property for the text box control.
If an input mask is defined and there is selected text in the masked edit control, the SelText property
returns a text string. Depending on the value of the ClipMode property, not all the characters in the
selected text are returned. If ClipMode is on, literal characters don't appear in the returned string.
When the SelText property is set, the masked edit control behaves as if text was pasted from the
Clipboard. This means that each character in string$ is entered into the control as if the user typed it in.

Data Type
String

Text Property (MaskedEdit Control)

Sets or returns the text contained in the control. This property is not available at design time.

Syntax
[form.]MaskedEdit.Text[= string$]

Remarks
This property sets and retrieves the text in the masked edit control, including literal characters and
underscores that are part of the input mask. When setting the text property, the string$ value must match
the characters in the input mask exactly, including literal characters and underscores.

Note      The ClipMode property setting has no effect on the value of the Text property.

The SelText property provides an easier way of setting the text in the masked edit control.

Data Type
Variant

ValidationError Event

Occurs when the masked edit field receives invalid input, as determined by the input mask.

Syntax
Private Sub ctlname_ValidationError(InvalidText As String; StartPosition As Integer)

Remarks
InvalidText is the value of the Text property, including the invalid character. This means that any
placeholders and literal characters used in the input mask are included in InvalidText.
StartPosition is the position in InvalidText where the error occurred (the first invalid character).

    Multimedia MCI Control
See Also Properties Methods Events Constants Error Messages

The multimedia MCI control manages the recording and playback of multimedia files on Media Control
Interface (MCI) devices. Conceptually, this control is a set of push buttons that issues MCI commands to
devices such as audio boards, MIDI sequencers, CD-ROM drives, audio CD players, videodisc players,
and videotape recorders and players. The MCI control also supports the playback of Video for Windows
(*.AVI) files.
When you add the multimedia MCI control to a form at design time, the control appears on the form as
follows:

The buttons are defined as Prev, Next, Play, Pause, Back, Step, Stop, Record, and Eject, respectively.

File Name
MCI16.OCX, MCI32.OCX

Class Name
MMControl

Remarks
Your application should already have the MCI device open and the appropriate buttons in the multimedia
MCI control enabled by the time the user chooses a button from the multimedia MCI control. In Visual
Basic, place the MCI Open command in the Form_Load event.
When you intend to record audio with the multimedia MCI control, open a new file. This action ensures
that the data file containing the recorded sound will be in a format compatible with your system's
recording capabilities. Also, issue the MCI Save command before closing the MCI device to store the
recorded data in the file.
The multimedia MCI control is programmable in several ways:

The control can be visible or invisible at run time.
You can augment or completely redefine the functionality of the buttons in the control.
You can control multiple devices in a form.

If you want to use the buttons in the multimedia MCI control, set the Visible and Enabled properties to
True. If you do not want to use the buttons in the control, but want to use the multimedia MCI control for
its multimedia functionality, set the Visible and Enabled properties to False. An application can control
MCI devices with or without user interaction.
The events (button definitions) of the multimedia MCI control are programmable. You can augment or
completely redefine the functionality of these buttons by developing code for the button events.
The MCI extensions support multiple instances of the multimedia MCI control in a single form to provide
concurrent control of several MCI devices. You use one control per device.

Distribution Note      When you create and distribute applications that use the multimedia MCI control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Wizard included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

See Also
Multimedia MCI
Examples

Multimedia MCI

Multimedia MCI consists of a set of high-level, device-independent commands that control audio and
visual peripherals. The first MCI command you issue is the Open command. This command opens the
specified MCI device and identifies the file that will play on the device or be recorded by the device.
(Some devices, such as CDAudio, VCR, and videodisc, do not use files and do not require file names.)
Once the device is open, you can issue any of the other MCI commands (Prev, Next, Pause, and so on).
The Close command is the last MCI command you issue for the device, returning it to the available pool
of system resources. The Close command also closes the data file associated with the device.
For a list of the MCI commands supported by the multimedia MCI control, see the Command property.
For additional information on multimedia MCI, refer to either the Microsoft Multimedia Development Kit
Programmer's Workbook or the Microsoft Windows Software Development Kit Multimedia Programmer's
Reference.

Examples, Multimedia MCI Control

Visual Basic Example

The following example illustrates the procedure used to open an MCI device with a compatible data file.
By placing this code in the Form_Load procedure, your application can use the multimedia MCI control
"as is" to play, record, and rewind the multimedia file GONG.WAV. To try this example, first create a form
with a multimedia MCI control.

Private Sub Form_Load ()
' Set properties needed by MCI to open.
Form1.MMControl1.Notify = FALSE
Form1.MMControl1.Wait = TRUE
Form1.MMControl1.Shareable = FALSE
Form1.MMControl1.DeviceType = "WaveAudio"
Form1.MMControl1.FileName = "C:\WINDOWS\MMDATA\GONG.WAV"

' Open the MCI WaveAudio device.
Form1.MMControl1.Command = "Open"

End Sub

To properly manage multimedia resources, you should close those MCI devices that are open before
exiting your application. You can place the following statement in the Form_Unload procedure to close
an open MCI device before exiting from the form containing the multimedia MCI custom control.

Private Sub Form_Unload (Cancel As Integer)
MMControl1.Command = "Close"

End Sub

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration, when used with it, are marked with an asterisk (*).
Properties beginning with Button are defined for each of the nine individual buttons in the multimedia
MCI control.

*AutoEnable *Error Name *TimeFormat
BorderStyle *ErrorMessage *Notify *To
*ButtonEnabled *FileName *NotifyMessage Top
*ButtonVisible *Frames *NotifyValue *Track
*CanEject *From Object *TrackLength
*CanPlay Height *Orientation *TrackPosition
*CanRecord HelpContextID Parent *Tracks
*CanStep hWnd *Position *UpdateInterval
*Command *hWndDisplay *RecordMode *UsesWindows
Container Index *Shareable *Visible
*DeviceID Left *Silent *Wait
*DeviceType *Length *Start WhatsThisHelpID
DragIcon *Mode TabIndex Width
DragMode MouseIcon TabStop
*Enabled MousePointer Tag

Note      The DragIcon, DragMode, HelpContextID, and Index properties are only available in Visual
Basic. The Name property is the equivalent of the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
Several of the following events are defined for each of the nine individual buttons in the multimedia MCI
control. Events defined separately for all nine buttons are described under a heading beginning with
Button.
*Button Click *Button GotFocus *Done DragOver
*Button Completed *Button LostFocus DragDrop *StatusUpdate

Note      The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.
Drag Refresh ShowWhatsThis
Move SetFocus ZOrder

Note      The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

AutoEnable Property, Multimedia MCI Control

Determines if the multimedia MCI control can automatically enable or disable individual buttons in the
control. If the AutoEnable property is set to True, the multimedia MCI control enables those buttons that
are appropriate for the current mode of the specified MCI device type. This property also disables those
buttons that the current mode of the MCI device does not support.

Syntax
[form.]MMControl.AutoEnable[= {True | False}]

Remarks
The effect of the AutoEnable property is superseded by the Enabled property. The AutoEnable property
can automatically enable or disable individual buttons in the control when the multimedia MCI control is
enabled (Enabled property set to True). When the Enabled property is False, keyboard and mouse run-
time access to the multimedia MCI control are turned off, regardless of the AutoEnable property setting.
The following table lists the AutoEnable property settings for the multimedia MCI control.

Setting Description
False Does not enable or disable buttons. The program controls the states of the buttons by

setting the Enabled and ButtonEnabled properties.
True (Default) Enables buttons whose functions are available and disables buttons whose

functions are not.

The following tables show how the MCI mode settings are reflected in the control's property settings.
Play mode
Record mode
Pause mode
Stop mode
Open mode
Seek or Not Ready modes
The effect of the AutoEnable property supersedes the effects of ButtonEnabled properties. When the
Enabled and AutoEnable properties are both True, the ButtonEnable properties are not used.

Data Type
Integer (Boolean)

Play mode
*Button is enabled if the operation is supported by the open MCI device.

Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Disabled
Prev Enabled
Record* Disabled
Step* Enabled
Stop Enabled

Record mode
*Button is enabled if the operation is supported by the open MCI device.

Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Disabled
Prev Enabled
Record* Disabled
Step* Enabled
Stop Enabled

Pause mode
*Button is enabled if the operation is supported by the open MCI device.

Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Enabled
Prev Enabled
Record* Enabled
Step* Enabled
Stop Enabled

Stop mode

Button Status
Back* Enabled
Eject* Enabled
Next Enabled
Pause Disabled
Play* Enabled
Prev Enabled
Record* Enabled
Step* Enabled
Stop Disabled

Open mode
*Button is enabled if the operation is supported by the open MCI device.

Button Status
Back* Disabled
Eject* Enabled
Next Disabled
Pause Disabled
Play* Disabled
Prev Disabled
Record* Disabled
Step* Disabled
Stop Disabled

Seek or Not Ready modes
*Button is enabled if the operation is supported by the open MCI device.

Button Status
Back* Disabled
Eject* Disabled
Next Disabled
Pause Disabled
Play* Disabled
Prev Disabled
Record* Disabled
Step* Disabled
Stop Disabled

ButtonEnabled Property, Multimedia MCI Control

Determines if a button in the control is enabled or disabled (dimmed).

Syntax
[form.]MMControl.ButtonEnabled[= {True | False}]

Remarks
The effects of the ButtonEnabled properties are superseded by the Enabled and AutoEnable properties.
Individual ButtonEnabled properties enable or disable the associated buttons in the multimedia MCI
control when the multimedia MCI control is enabled (Enabled property set to True) and the AutoEnable
property is turned off (set to False).
For this property, Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record,
Step, or Stop.
The following table lists the ButtonEnabled property settings for the multimedia MCI control.

Setting Description
False (Default) Disables (dims) the button specified by Button. This button's function is not

available in the control.
True Enables the button specified by Button. This button's function is available in the control.

Data Type
Integer (Boolean)

ButtonVisible Property, Multimedia MCI Control

Determines if the specified button is displayed in the control.

Syntax
[form.]MMControl.ButtonVisible[= {True | False}]

Remarks
The effects of the ButtonVisible properties are superseded by the Visible property. Individual
ButtonVisible properties display and hide the associated buttons in the multimedia MCI control when the
multimedia MCI control is visible (Visible property set to True). If the multimedia MCI control is invisible,
these properties are not used.
For this property, Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record,
Step, or Stop.
The following table lists the ButtonVisible property settings for the multimedia MCI control.

Setting Description
False Does not display the button specified by Button. This button's function is not available in

the control.
True (Default) Displays the button specified by Button.

Data Type
Integer (Boolean)

CanEject Property, Multimedia MCI Control

Determines if the open MCI device can eject its media. This property is not available at design time and
is read-only at run time.

Syntax
[form.]MMControl.CanEject

Remarks
The following table lists the CanEject property settings for the multimedia MCI control.

Setting Description
False (Default) The device cannot eject its media.
True The device can eject its media.
The value of CanEject is retrieved using MCI_GETDEVCAPS during the processing of an Open
command.

Data Type
Integer (Boolean)

CanPlay Property, Multimedia MCI Control

Determines if the open MCI device can play. This property is not available at design time and is read-
only at run time.

Syntax
[form.]MMControl.CanPlay

Remarks
The following table lists the CanPlay property settings for the multimedia MCI control.

Setting Description
False (Default) The device cannot play.
True The device can play.

The value of CanPlay is retrieved using MCI_GETDEVCAPS during the processing of an Open
command.

Data Type
Integer (Boolean)

CanRecord Property, Multimedia MCI Control

Determines if the open MCI device can record. This property is not available at design time and is read-
only at run time.

Syntax
[form.]MMControl.CanRecord

Remarks
The following table lists the CanRecord property settings for the multimedia MCI control.

Setting Description
False (Default) The device cannot record.
True The device can record.

The value of CanRecord is retrieved using MCI_GETDEVCAPS during the processing of an Open
command.

Data Type
Integer (Boolean)

CanStep Property, Multimedia MCI Control

Determines if the open MCI device can step a frame at a time. This property is not available at design
time and is read-only at run time.

Syntax
[form.]MMControl.CanStep

Remarks
The following table lists the CanStep property settings for the multimedia MCI control.

Setting Description
False (Default) The device cannot step a frame at a time.
True The device can step a frame at a time.

Currently only MMMovie, Overlay, and VCR MCI devices can step a frame at a time. Because there is
no way to check whether a device can step, programs set the value of this property by checking if the
device type is MMMovie, Overlay, or VCR during the processing of an Open command.

Data Type
Integer (Boolean)

Command Property, Multimedia MCI Control

Specifies an MCI command to execute. This property is not available at design time.

Syntax
[form.]MMControl.Command[= cmdstring$]

Remarks
The cmdstring$ argument gives the name of the MCI command to execute: Open, Close, Play, Pause,
Stop, Back, Step, Prev, Next, Seek, Record, Eject, Sound, or Save. The command is executed
immediately, and the error code is stored in the Error property.
The following table describes each command and lists the properties it uses. If a property is not set,
either a default value is used (shown in parentheses following the property name), or the property is not
used at all (if no default value is shown).

Command Description/Properties used
Open Opens a device using the MCI_OPEN command.

Notify (False)
Wait (True)
Shareable
DeviceType
FileName

Close Closes a device using the MCI_CLOSE command.
Notify (False)
Wait (True)

Play Plays a device using the MCI_PLAY command.
Notify (True)
Wait (False)
From
To

Pause Pauses playing or recording using the MCI_PLAY command. If executed while the device
is paused, tries to resume playing or recording using the MCI_RESUME command.

Notify (False)
Wait (True)

Stop Stops playing or recording using the MCI_STOP command.
Notify (False)
Wait (True)

Back Steps backwards using the MCI_STEP command.
 Notify (False)

Wait (True)
Frames

Step Steps forwards using the MCI_STEP command.
Notify (False)
Wait (True)
Frames

Prev Goes to the beginning of the current track using the Seek command. If executed within
three seconds of the previous Prev command, goes to the beginning of the previous track
or to the beginning of the first track if at the first track.

Notify (False)
Wait (True)

Next Goes to the beginning of the next track (if at last track, goes to beginning of last track)
using the Seek command.

Notify (False)
Wait (True)

Seek If not playing, seeks a position using the MCI_SEEK command. If playing, continues
playing from the given position using the MCI_PLAY command.

Notify (False)
Wait (True)
To

Record Records using the MCI_RECORD command.
Notify (True)
Wait (False)
From
To
RecordMode (0Insert)

Eject Ejects media using the MCI_SET command.
Notify (False)
Wait (True)

Sound Plays a sound using the MCI_SOUND command.
Notify (False)
Wait (False)
FileName

Save Saves an open file using the MCI_SAVE command.
Notify (False)
Wait (True)
FileName

Data Type
String

DeviceID Property, Multimedia MCI Control

Specifies the device ID for the currently open MCI device. This property is not available at design time
and is read-only at run time.

Syntax
[form.]MMControl.DeviceID[= id%]

Remarks
The argument id% is the device ID of the currently open MCI device. This ID is obtained from
MCI_OPEN as a result of an Open command. If no device is open, this argument is 0.

Data Type
Integer

DeviceType Property, Multimedia MCI Control

Specifies the type of MCI device to open.

Syntax
[form.]MMControl.DeviceType[= device$]

Remarks
The argument device$ is the type of MCI device to open: AVIVideo, CDAudio, DAT, DigitalVideo,
MMMovie, Other, Overlay, Scanner, Sequencer, VCR, Videodisc, or WaveAudio.
The value of this property must be set when opening simple devices (such as an audio CD that does not
use files). It must also be set when opening compound MCI devices when the file-name extension does
not specify the device to use.

Data Type
String

Enabled Property, Multimedia MCI Control

Determines if the control can respond to user-generated events, such as the KeyPress and mouse
events.

Syntax
[form.]MMControl.Enabled[= {True | False}]

Remarks
This property permits the multimedia MCI control to be enabled or disabled at run time. The effect of the
Enabled property supersedes the effects of the AutoEnable and ButtonEnable properties. For example,
if the Enabled property is False, the multimedia MCI control does not permit access to its buttons,
regardless of the settings of the AutoEnable and ButtonEnable properties.
The following table lists the Enabled property settings for the multimedia MCI control

Setting Description
False All buttons on the control are disabled (dimmed).
True (Default) The control is enabled. Use the AutoEnable property to let the multimedia MCI

control automatically enable or disable the buttons in the control. Or, use the
ButtonEnable properties to enable or disable individual buttons in the control.

Data Type
Integer (Boolean)

Error Property, Multimedia MCI Control

Specifies the error code returned from the last MCI command. This property is not available at design
time and is read-only at run time.

Syntax
[form.]MMControl.Error

Remarks
If the last MCI command did not cause an error, this value is 0.

Data Type
Integer

ErrorMessage Property, Multimedia MCI Control

Describes the error code stored in the Error property. This property is not available at design time and is
read-only at run time.

Syntax
[form.]MMControl.ErrorMessage

Data Type
String

FileName Property, Multimedia MCI Control

Specifies the file to be opened by an Open command or saved by a Save command.

Syntax
[form.]MMControl.FileName[= stringexpression$]

Remarks
The argument stringexpression$ specifies the file to be opened or saved.

Data Type
String

Frames Property, Multimedia MCI Control

Specifies the number of frames the Step command steps forward or the Back command steps
backward. This property is not available at design time.

Syntax
[form.]MMControl.Frames[= frames&]

Remarks
The argument frames& specifies the number of frames to step forward or backward.

Data Type
Long

From Property, Multimedia MCI Control

Specifies the starting point, using the current time format, for the Play or Record command. This
property is not available at design time.

Syntax
[form.]MMControl.From[= location&]

Remarks
The argument location& specifies the starting point for the play or record operation. The current time
format is given by the TimeFormat property.
The value you assign to this property is used only with the next MCI command. Subsequent MCI
commands ignore the From property until you assign it another (different or identical) value.

Data Type
Long

hWndDisplay Property, Multimedia MCI Control

Specifies the output window for MCI MMMovie or Overlay devices that use a window to display output.
This property is not available at design time.

Syntax
[form.]MMControl.hWndDisplay

Remarks
This property is a handle to the window that the MCI device uses for output. If the handle is 0, a default
window (also known as the stage window) is used.
To determine whether a device uses this property, check the UsesWindows property.
In Visual Basic, to get a handle to a control, first use the SetFocus method to set the focus to the
desired control. Then call the Windows GetFocus function. For additional information, see Chapter 25,
"Calling Procedures in DLLs," in the Visual Basic Programmer's Guide.
To get a handle to a Visual Basic form, use the hWnd property for that form.

Data Type
Integer

Length Property, Multimedia MCI Control

Specifies, in the current time format, the length of the media in an open MCI device. This property is not
available at design time and is read-only at run time.

Syntax
[form.]MMControl.Length

Data Type
Long

Mode Property, Multimedia MCI Control

Specifies the current mode of an open MCI device. This property is not available at design time and is
read-only at run time.

Syntax
[form.]MMControl.Mode

Remarks
The following table lists the Mode property return values for the multimedia MCI control.

Value Setting/Device mode
524 mciModeNotOpen

Device is not open.
525 mciModeStop

Device is stopped.
526 mciModePlay

Device is playing.
527 mciModeRecord

Device is recording.
528 mciModeSeek

Device is seeking.
529 mciModePause

Device is paused
530 mciModeReady

Device is ready.

Data Type
Long

Notify Property, Multimedia MCI Control

Determines if the next MCI command uses MCI notification services. If set to True, the Notify property
generates a callback event (Done), which occurs when the next MCI command is complete. This
property is not available at design time.

Syntax
[form.]MMControl.Notify[= {True | False}]

Remarks
The following table lists the Notify property settings for the multimedia MCI control.

Setting Description
False (Default) The next command does not generate the Done event.
True The next command generates the Done event.

The value assigned to this property is used only with the next MCI command. Subsequent MCI
commands ignore the Notify property until it is assigned another (different or identical) value.

Note      A notification message is aborted when you send a new command that prevents the callback
conditions, which were set by a previous command, from being satisfied. For example, to restart a
paused device that does not support the MCI Resume command, the multimedia MCI control sends the
Play command to the paused device. However, the Play command that restarts the device sets callback
conditions, superseding callback conditions and pending notifications from earlier commands.

Data Type
Integer (Boolean)

NotifyMessage Property, Multimedia MCI Control

Describes the notify code returned in the Done event. This property is not available at design time and is
read-only at run time.

Syntax
[form.]MMControl.NotifyMessage

Data Type
String

NotifyValue Property, Multimedia MCI Control

Specifies the result of the last MCI command that requested a notification. This property is not available
at design time and is read-only at run time.

Syntax
[form.]MMControl.NotifyValue

Remarks
The following table lists the NotifyValue return values for the multimedia MCI control.

Value Setting/Device mode
1 mciNotifySuccessful

Command completed successfully.
2 mciNotifySuperseded

Command was superseded by another command.
4 mciNotifyAborted

Command was aborted by the user.
8 mciNotifyFailure

Command failed.
The program can check the Done event to determine this value for the most recent MCI command.

Data Type
Integer (Enumerated)

Orientation Property, Multimedia MCI Control

Determines whether buttons on the control are arranged vertically or horizontally.

Syntax
[form.]MMControl.Orientation[= orientation%]

Remarks
The following table lists the Orientation property settings for the multimedia MCI control.

Constant Value Description
mciOrientHorz 0 Buttons are arranged horizontally.
mciOrientVert 1 Buttons are arranged vertically.

Data Type
Integer (Enumerated)

Position Property, Multimedia MCI Control

Specifies, in the current time format, the current position of an open MCI device. This property is not
available at design time and is read-only at run time.

Syntax
[form.]MMControl.Position

Data Type
Long

RecordMode Property, Multimedia MCI Control

Specifies the current recording mode for those MCI devices that support recording.

Syntax
[form.]MMControl.RecordMode[= mode%]

Remarks
The following table lists the RecordMode property settings for the multimedia MCI control.

Constant Value Recording mode
mciRecordInsert 0 Insert
mciRecordOverwrite 1 Overwrite

To determine whether a device supports recording, check the CanRecord property.
A device that supports recording may support either or both of the recording modes. There is no way to
check ahead of time which mode a device supports. If recording with a particular mode fails, try the
other mode.
WaveAudio devices support Insert mode only.

Data Type
Integer (Enumerated)

Shareable Property, Multimedia MCI Control

Determines if more than one program can share the same MCI device.

Syntax
[form.]MMControl.Shareable[= {True | False}]

Remarks
The following table lists the Shareable property settings for the multimedia MCI control.

Setting Description
False No other controls or applications can access this device.
True More than one control or application can open this device.

Data Type
Integer (Boolean)

Silent Property, Multimedia MCI Control

Determines if sound plays.

Syntax
[form.]MMControl.Silent[= {True | False}]

Remarks
The following table lists the Silent property settings for the multimedia MCI control.

Setting Description
False Any sound present is played.
True Sound is turned off.

Data Type
Integer (Boolean)

Start Property, Multimedia MCI Control

Specifies, in the current time format, the starting position of the current media. This property is not
available at design time and is read-only at run time.

Syntax
[form.]MMControl.Start

Data Type
Long

TimeFormat Property, Multimedia MCI Control

Specifies the time format used to report all position information.

Syntax
[form.]MMControl.TimeFormat[= format&]

Remarks
The following table lists the TimeFormat property settings for the multimedia MCI control.

Value Setting/Time format
0 mciFormatMilliseconds

Milliseconds are stored as a 4-byte integer variable.
1 mciFormatHms

Hours, minutes, and seconds are packed into a 4-byte integer. From least significant byte
to most significant byte, the individual data values are:
Hours (least significant byte)
Minutes
Seconds
Unused (most significant byte)

2 mciFormatMsf
Minutes, seconds, and frames are packed into a 4-byte integer. From least significant byte
to most significant byte, the individual data values are:
Minutes (least significant byte)
Seconds
Frames
Unused (most significant byte)

3 mciFormatFrames
Frames are stored as a 4-byte integer variable.

4 mciFormatSmpte24
24-frame SMPTE packs the following values in a 4-byte variable from least significant
byte to most significant byte:
Hours (least significant byte)
Minutes
Seconds
Frames (most significant byte)
SMPTE (Society of Motion Picture and Television Engineers) time is an absolute time
format expressed in hours, minutes, seconds, and frames. The standard SMPTE division
types are 24, 25, and 30 frames per second.

5 mciFormatSmpte25
25-frame SMPTE packs data into the 4-byte variable in the same order as 24-frame
SMPTE.

6 mciFormatSmpte30
30-frame SMPTE packs data into the 4-byte variable in the same order as 24-frame
SMPTE.

7 mciFormatSmpte30Drop
30-drop-frame SMPTE packs data into the 4-byte variable in the same order as 24-frame
SMPTE.

8 mciFormatBytes
Bytes are stored as a 4-byte integer variable.

9 mciFormatSamples
Samples are stored as a 4-byte integer variable.

10 mciFormatTmsf
Tracks, minutes, seconds, and frame are packed in the 4-byte variable from least
significant byte to most significant byte:

Tracks (least significant byte)
Minutes
Seconds
Frames (most significant byte)
Note that MCI uses continuous track numbering.

Note      Not all formats are supported by every device. If you try to set an invalid format, the assignment
is ignored.

The current timing information is always passed in a 4-byte integer. In some formats, the timing
information returned is not really an integer, but single bytes of information packed in the long integer.
Properties that access or send information in the current time format are:
From To
Length TrackLength
Position TrackPosition
Start

Data Type
Long (Enumerated)

To Property, Multimedia MCI Control

Specifies the ending point, using the current time format, for the Play or Record command. This property
is not available at design time.

Syntax
[form.]MMControl.To[= location&]

Remarks
The argument location& specifies the ending point for the play or record operation. The current time
format is given by the TimeFormat property.
The value assigned to this property is used only with the next MCI command. Subsequent MCI
commands ignore the To property until it is assigned another (different or identical) value.

Data Type
Long

Track Property, Multimedia MCI Control

Specifies the track about which the TrackLength and TrackPosition properties return information. This
property is not available at design time.

Syntax
[form.]MMControl.Track[= track&]

Remarks
The argument track& specifies the track number.
This property is used only to get information about a particular track. It has no relationship to the current
track.

Data Type
Long

TrackLength Property, Multimedia MCI Control

Specifies the length, using the current time format, of the track given by the Track property. This property
is not available at design time and is read-only at run time.

Syntax
[form.]MMControl.TrackLength

Data Type
Long

TrackPosition Property, Multimedia MCI Control

Specifies the starting position, using the current time format, of the track given by the Track property.
This property is not available at design time and is read-only at run time.

Syntax
[form.]MMControl.TrackPosition

Data Type
Long

Tracks Property, Multimedia MCI Control

Specifies the number of tracks available on the current MCI device. This property is not available at
design time and is read-only at run time.

Syntax
[form.]MMControl.Tracks

Data Type
Long

UpdateInterval Property, Multimedia MCI Control

Specifies the number of milliseconds between successive StatusUpdate events.

Syntax
[form.]MMControl.UpdateInterval[= milliseconds%]

Remarks
The argument milliseconds% specifies the number of milliseconds between events. If milliseconds is 0,
no StatusUpdate events occur.

Data Type
Integer

UsesWindows Property, Multimedia MCI Control

Determines if the currently open MCI device uses a window for output. This property is not available at
design time and is read-only at run time.

Syntax
[form.]MMControl.UsesWindows

Remarks
The following table lists the UsesWindows property return values for the multimedia MCI control.

Value Description
False The current device does not use a window for output.
True The current device uses a window.

Currently, only MMMovie and Overlay devices use windows for display. Because there is no way to
determine whether a device uses windows, the value of UsesWindows is set during processing of an
Open command by checking the device type. If the device type is MMMovie, Overlay, or VCR, the
device uses windows.
For devices that use windows, you can use the hWndDisplay property to set the window that will display
output.

Data Type
Integer (Boolean)

Visible Property, Multimedia MCI Control

Determines if the multimedia MCI control is visible or invisible at run time.

Syntax
[form.]MMControl.Visible[= {True | False}]

Remarks
The effect of the Visible property supersedes the effects of the individual ButtonVisible properties. When
the multimedia MCI control is visible, the individual ButtonVisible properties govern the visibility of the
associated buttons in the control. When the Visible property is False, the entire control is invisible, and
the ButtonVisible properties are not used.
The following table lists the Visible property settings for the multimedia MCI control.

Setting Description
False The control is invisible.
True (Default) Each button is visible or hidden individually, depending on its ButtonVisible

property. This button's function is still available in the control.

Data Type
Integer (Boolean)

Wait Property, Multimedia MCI Control

Determines whether the multimedia MCI control waits for the next MCI command to complete before
returning control to the application. This property is not available at design time.

Syntax
[form.]MMControl.Wait[= {True | False}]

Remarks
The following table lists the Wait property settings for the multimedia MCI control.

Setting Description
False Multimedia MCI does not wait until the MCI command completes before returning control

to the application.
True Multimedia MCI waits until the next MCI command completes before returning control to

the application.

The value assigned to this property is used only with the next MCI command. Subsequent MCI
commands ignore the Wait property until it is assigned another (different or identical) value.

Data Type
Integer (Boolean)

ButtonClick Event, Multimedia MCI Control

Occurs when the user presses and releases the mouse button over one of the buttons in the multimedia
MCI control.

Syntax
Private Sub MMControl_ButtonClick (Cancel As Integer)

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or Stop.
Each of the ButtonClick events, by default, perform an MCI command when the user chooses a button.
The following table lists the MCI commands performed for each button in the control.

Button Command
Back MCI_STEP
Step MCI_STEP
Play MCI_PLAY
Pause MCI_PAUSE
Prev MCI_SEEK
Next MCI_SEEK
Stop MCI_STOP
Record MCI_RECORD
Eject MCI_SET with the MCI_SET_DOOR_OPEN parameter

Setting the Cancel parameter for the ButtonClick event to True prevents the default MCI command from
being performed. The Cancel parameter can take either of the following settings.

Setting Description
True Prevents the default MCI command from being performed.
False Performs the MCI command associated with the button after performing the body of the

appropriate ButtonClick event.

The body of an event procedure is performed before performing the default MCI command associated
with the event. Adding code to the body of the ButtonClick events augments the functionality of the
buttons. If you set the Cancel parameter to True within the body of an event procedure or pass the value
True as the argument to a ButtonClick event procedure, the default MCI command associated with the
event will not be performed.

Note      Issuing a Pause command to restart a paused device can end pending notifications from the
original Play command if the device does not support the MCI Resume command. The multimedia MCI
control uses the MCI Play command to restart devices that do not support the MCI Resume command.
Notifications from the Play command that restarts a paused device cancel callback conditions and
supersede pending notifications from the original play command.

ButtonCompleted Event, Multimedia MCI Control

Occurs when the MCI command activated by a multimedia MCI control button finishes.

Syntax
Private Sub MMControl_ButtonCompleted (Errorcode As Long)

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or Stop.
The Errorcode argument can take the following settings.

Setting Description
0 Command completed successfully.
Any other value Command did not complete successfully.

If the Cancel argument is set to True during a ButtonClick event, the ButtonCompleted event is not
triggered.

ButtonGotFocus Event, Multimedia MCI Control

Occurs when a button in the multimedia MCI control receives the input focus.

Syntax
Private Sub MMControl_ButtonGotFocus ()

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or Stop.

ButtonLostFocus Event, Multimedia MCI Control

Occurs when a button in the multimedia MCI control loses the input focus.

Syntax
Private Sub MMControl_ButtonLostFocus ()

Remarks
Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record, Step, or Stop.

Done Event, Multimedia MCI Control

Occurs when an MCI command for which the Notify property is True finishes.

Syntax
Private Sub MMControl_Done (NotifyCode As Integer)

Remarks
The NotifyCode argument indicates whether the MCI command succeeded. It can take any of the
following settings.

Value Setting/Result
1 mciSuccessful

Command completed successfully.
2 mciSuperseded

Command was superseded by another command.
4 mciAborted

Command was aborted by the user.
8 mciFailure

Command failed.

StatusUpdate Event, Multimedia MCI Control

Occurs automatically at intervals given by the UpdateInterval property.

Syntax
Private Sub MMControl_StatusUpdate ()

Remarks
This event allows an application to update the display to inform the user about the status of the current
MCI device. The application can obtain status information from properties such as Position, Length, and
Mode.

    Outline Control
See Also Properties Events Methods Constants Error Messages

The outline control is a special type of list box that allows you to display items in a list hierarchically. This
is useful for showing directories and files in a file system, which is the technique used by the Windows
File Manager.

File Name
MSOUTL16.OCX, MSOUTL32.OCX

Class Name
Outline

Remarks
The outline control displays items in a list box hierarchically. Each item can have subordinate items,
which are visually represented by indentation levels. When an item is expanded, its subordinate items
are visible; when an item is collapsed, its subordinate items are hidden. Items in the outline control can
also display graphical elements to provide visual cues about the state of the item.

Distribution Note      When you create and distribute applications that use the outline control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Wizard included with Visual Basic provides tools to help you write setup programs that install your
applications.

See Also
Visual Elements
Hot Spots
Keyboard Interface

Visual Elements

The outline control can display graphics and text for each item in a list. An item can have five visual
elements:

Tree lines
vertical and horizontal lines that link items with subordinate items.

Indentation
an item's level of subordination. Each level of indentation is a level of subordination you specify with the

Indent property.
Plus/minus pictures

indicate whether subordinate items are visible or hidden. When the plus sign is clicked, subordinate
items become visible and a minus sign replaces the plus sign. When the minus sign is clicked, the
subordinate items are hidden and a plus sign replaces the minus sign.

Type pictures
indicate the state of an item. Type pictures typically show whether an item with subordinate items can be

expanded or collapsed. The state of an item is user-defined.
Text

the string displayed for an item.

Hot Spots

Each graphical element tree lines, plus/minus pictures, and type pictures    is a hot spot graphic. Clicking
a hot spot triggers a special set of events. The following diagram shows an item's possible hot spots.

Note      To select an item, you must click or double-click the text; you can't select an item by clicking a
graphical element.

Keyboard Interface

You can use the keyboard to select items in an outline control's list. The following table lists the keys and
their actions.

This key Moves focus
LEFT ARROW To the parent item, if the current item is subordinate.
RIGHt Arrow To the first subordinate item, if visible.
UP Arrow To the previous item, if any.
DOWN Arrow To the next item, if any.
HOME To the first item in the list.
END To the last item that is visible.
PAGE UP Backward one page, or to the first item currently displayed.
PAGE DOWN Forward one page, or to the last item currently displayed.

In addition, you can use two keys to expand and collapse an item that has subordinate items.

Key Action
 + (plus sign) Expands an item.
 - (minus sign) Collapses an item.

Properties
The Properties for this control are listed in the following table. Properties that apply only to the outline
control, or that require special consideration when used with it, are marked with an asterisk (*).

BackColor FontUnderline *ListCount *PictureType
BorderStyle ForeColor *ListIndex *Style
Container *FullPath MouseIcon TabIndex
DragIcon *HasSubItems MousePointer TabStop
DragMode Height Name Tag
Enabled HelpContextID Object Text
*Expand hWnd Parent Top
Font *Indent *PathSeparator *TopIndex
FontBold Index *PictureClosed Visible
FontItalic *IsItemVisible *PictureLeaf WhatsThisHelpID
FontName ItemData *PictureMinus Width
FontSize Left *PictureOpen
FontStrikethru *List *PicturePlus

Note      The DragIcon, DragMode, HelpContextID, Indent, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtlName property in Visual Basic 1.0.

Events
All the events for this control are listed in the following table.    Events that apply only to the outline
control, or that require special consideration when used with it, are marked with an asterisk (*).

Click DragOver KeyPress MouseMove
*Collapse *Expand KeyUp MouseUp
DblClick GotFocus LostFocus *PictureClick
DragDrop KeyDown MouseDown *PictureDblClick

Methods
All the methods for this control are listed in the following table. Methods that apply only to the outline
control, or that require special consideration when used with it, are marked with an asterisk (*).

*AddItem Move SetFocus
Clear Refresh ShowWhatsThis
Drag *RemoveItem ZOrder

Note      The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

Expand Property

Specifies whether an item is expanded (subordinate items visible). If the Expand property is set to True,
the Expand event will be generated. Not available at design time.

Syntax
[form.]Outline1.Expand(index%)[= {True | False}]

Remarks
The following table lists the Expand property settings for the outline control.

Setting Description
True The item has expanded (visible) subordinate items.
False The item's subordinate items, if any, are collapsed (hidden).

The Expand property gives you programmatic control over expanding and collapsing subordinate items.
This can be useful when the outline control is context-sensitive in relation to other control values.
If an item is collapsed and you set Expand to True, the outline control will generate the run-time error
Parent Not Expanded.

Data Type
Integer (Boolean)

FullPath Property (Outline Control)

Returns the fully qualified name of an item. The fully qualified name is the concatenation of the item with
its parent item, the parent item's parent item, and so on until the parent item at indentation level 1 is
reached. The FullPath property is an array whose index values correspond to the items in the list. Not
available at design time and read-only at run time.

Syntax
[form.]Outline1.FullPath(index)

Remarks
If the first item in the outline control has an indentation level of 0 and is visible, then the FullPath
property includes the first item.
Use the PathSeparator property to create a delimiter between the components of the FullPath property.
This is useful when the outline control contains file-system components such as directory names and file
names.

Using the preceding figure of the outline control, the following code returns the FullPath value of the
selected item. First the code sets the PathSeparator property to "\", which means that all items in the
value returned by FullPath are delimited by this string. Next, the FullName$ variable is set to the
FullPath property of the currently selected item:
Outline1.PathSeparator = "\"
FullName$ = Outline1.FullPath(Outline1.ListIndex)

The value of FullName$ is vb\clipart\business.

Data Type
String

HasSubItems Property

Returns whether an item has subordinate items. The HasSubItems property is an array whose index
values correspond to the items in the list. Not available at design time and read-only at run time.

Syntax
[form.]Outline1.HasSubItems(index)

Remarks
If an item has subordinate items, the HasSubItems property will return True regardless of whether the
subordinate items are visible. To determine whether a specific item is visible, use the IsItemVisible
property.
Use the HasSubItems property to determine which type picture to display for an item. For example, the
following code sets a different type picture for each item depending on the return value of HasSubItems:
For i = 0 To Outline1.ListCount - 1

If Outline1.HasSubItems(i) Then
Outline1.PictureType(i) = outOpen

Else
Outline1.PictureType(i) = outLeaf

End If
Next

Data Type
Integer (Boolean)

Indent Property

Sets and returns the indentation level for the specified index in the list. The Indent property is an array
whose index values correspond to the items in the list. Not available at design time.

Syntax
[form.]Outline1.Indent(index)[= indentation%]

Remarks
If the value of indentation% is two or more than its parent's indentation level, the run-time error Bad
Outline Indentation will be generated. For example, if the first item in a list has an indentation
value of 1, and you set the second item to an indentation value of 3, the run-time error will occur.
An indentation level of 0 has two meanings. If an item is first, an indentation level of 0 means it is the
root item in a hierarchy (for example, a drive letter). This is true only for controls whose Style property
includes pictures and tree lines. If an item is not first, an indentation level of 0 means it is not visible until
the indentation level is greater than 0.
If index refers to an item that does not exist, the outline control will automatically add additional items to
the list and the ListCount property will be adjusted. For example, notice what happens when you create
an outline control and specify the following code in the Form_Load procedure:
Private Sub Form_Load ()

' Set indentation level.
Outline1.Indent(3) = 1

End Sub

Since index refers to 3, the outline control automatically adds 4 items to its list. However, the list will not
display any items until you add items to the list with the AddItem method, or set items using the List
property.

Data Type
Integer

IsItemVisible Property

Returns whether an item is currently visible. The IsItemVisible property is an array whose index values
correspond to the items in the list. Not available at design time and read-only at run time.

Syntax
[form.]Outline1.IsItemVisible(index)

Data Type
Integer (Boolean)

List Property

Determines the items contained in the control's list portion. The list is a string array in which each
element is a list item. Not available at design time.

Syntax
[form.]Outline1.List(index)[= itemstring$]

Remarks
The outline control's List property is similar to the standard List property for list boxes, except for the
following difference: If the index of the item doesn't exist, the outline control will automatically add
additional items to the list, and the ListCount property will be adjusted. However, the items are not visible
until the indentation level is greater than 0.

Data Type
String

PathSeparator Property (Outline Control)

Sets and returns the item delimiter string used when accessing the FullPath property. The default value
is the backslash character (\).

Syntax
[form.]Outline1.PathSeparator[= delimiter$]

Remarks
For a code example of the PathSeparator property, see the Remarks section for the FullPath property.

Data Type
String

PictureClosed, PictureOpen, PictureLeaf Properties

Set and return the type picture associated with the PictureType property. Each item in the outline control
has a PictureType equal to 0, 1 or 2. A PictureType of 0 refers to the PictureClosed picture; 1 refers to
PictureOpen; 2 refers to PictureLeaf.

Syntax
[form.]Outline1.PictureClosed[= picture%]
[form.]Outline1.PictureOpen[= picture%]
[form.]Outline1.PictureLeaf[= picture%]

Remarks
To display a type picture, the Style property must be set to 1, 3, or 5.
The PictureClosed, PictureOpen, and PictureLeaf properties can display either bitmap files (*.BMP) or
icon files (*.ICO).
If you don't set a value for PictureClosed, PictureOpen, and PictureLeaf, the outline control will use
default pictures. You can also change the picture value at run time (for example, using the return value
of the LoadPicture statement). In addition, the default bitmaps CLOSED.BMP, OPEN.BMP, and
LEAF.BMP are provided in the Visual Basic \BITMAPS\OUTLINE subdirectory.

Data Type
Integer

PictureMinus, PicturePlus Properties

PictureMinus
sets and returns the picture for an item whose subordinate items can be collapsed.

PicturePlus
sets and returns the picture for an item whose subordinate items can be expanded.

Syntax
[form.]Outline1.PictureMinus[= picture%]
[form.]Outline1.PicturePlus[= picture%]

Remarks
To display plus/minus pictures, the Style property must be set to 2 or 3.
The PictureMinus and PicturePlus properties can display either bitmap files (*.BMP) or icon files (*.ICO).
If you don't set a value for PictureMinus and PicturePlus, the outline control will use default pictures. You
can also change the picture value at run time (for example, using the return value of the LoadPicture
statement). In addition, the default bitmaps MINUS.BMP and PLUS.BMP are provided in the Visual
Basic \BITMAPS\OUTLINE subdirectory.

Data Type
Integer

PictureType Property

Sets and returns an integer representing the PictureClosed, PictureOpen, or PictureLeaf picture. The
PictureType property is an array whose index values correspond to the items in the list. Not available at
design time.

Syntax
[form.]Outline1.PictureType(index)[= type%]

Remarks
The following table lists the PictureType property settings for the outline control.

Constant Value Description
outClosed 0 Use PictureClosed picture.
outOpen 1 Use PictureOpen picture.
outLeaf 2 Use PictureLeaf picture.

If you don't set a value for PictureClosed, PictureOpen, and PictureLeaf, the outline control will use
default pictures.

Data Type
Integer

Style Property (Outline Control)

Set and returns the style of graphics and text that appear for each item in the outline control.

Syntax
[form.]Outline1.Style[= style%]

Remarks
The following table lists the Style property settings for the outline control.

Setting Description
0 Text only.
1 Picture and text.
2 (Default) Plus/minus and text.
3 Plus/minus, picture, and text.
4 Tree lines and text.
5 Tree lines, picture, and text.

Graphical elements are tree lines, plus/minus pictures, and type pictures. Here are two examples of
what you can display:

Data Type
Integer (Enumerated)

TopIndex Property

Sets and returns the item that appears in the topmost position in the outline control. If the specified item
is not visible because it is collapsed, the next visible item will be set. The default is 0, or the first item.
Not available at design time.

Syntax
[form.]Outline1.TopIndex[= top%]

Data Type
Integer

Collapse Event (Outline Control)

Generated whenever an item is collapsed, which means the item's subordinate items are hidden.

Syntax
Private Sub Outline_Collapse ([Index As Integer,] I As Integer)

Remarks
This event passes I, the index of the item in the list that was closed.

Expand Event (Outline Control)

 

Generated whenever an item is expanded, which means the item's subordinate items are visible.

Syntax
Private Sub Outline_Expand ([Index As Integer,] I As Integer)

Remarks
This event passes I, the index of the item in the list that was expanded.
You can use the Expand event to change an item's type picture. For example, you can display one
picture when an item is expanded, and a different picture when the item is collapsed. The following code
displays the PictureOpen picture when the item is expanded:
Private Sub Outline1_Expand (I As Integer)

If Outline1.HasSubItems(I) Then
Outline1.PictureType(I) = outOpen

End If
End Sub

Note      If you set an item's Expand property to True, an Expand event will occur even if the item has no
subordinate items.

PictureClick Event

Generated whenever a type picture associated with an item is clicked.

Syntax
Private Sub Outline_PictureClick ([Index As Integer,] I As Integer)

Remarks
This event passes I, the index of the item whose picture was clicked.

PictureDblClick Event

Generated whenever a type picture associated with an item is double-clicked.

Syntax
Private Sub Outline_PictureDblClick ([Index As Integer,] I As Integer)

Remarks
This event passes I, the index of the item whose picture was double-clicked.

AddItem Method

Adds an item to the outline control at run time.

Syntax
[form.]Outline1.AddItem item [, index%]

Remarks
If index% is specified and refers to an existing item, the new item is inserted into the list, using the
existing item's indentation level. However, if index% is specified and the item doesn't exist, the item is
added with the indentation level set to 0. If an item's indentation level is 0 and it is not the first item in the
outline control, the item will not be visible until its indentation level is greater than 0.
If index% is not specified, the currently selected item determines where the new item is added. For
example, if the ListIndex property is set to 2, the new item is added to the end of the subordinate items
for the item whose ListIndex value is 2. In the case where ListIndex is set to -1 (no item selected), the
item is added to the end of the list with an indentation level of 1.

RemoveItem Method

Removes an item and its subordinate items from the outline control at run time.

Syntax
[form.]Outline1.RemoveItem index%

Remarks
When applied to a standard list box or combo box control, the RemoveItem method removes only the
item specified by the index% argument. However, when applied to the outline control, the RemoveItem
method removes both the specified item and all of its subordinate items.

 Picture Clip Control
Properties Error Messages

The picture clip control allows you to select an area of a source bitmap and then display the image of
that area in a form or picture box. Picture clip controls are invisible at run time. This is a typical bitmap
that might be used in the picture clip control:

File Name
PICCLP16.OCX, PICCLP32.OCX

Class Name
PictureClip

Remarks
Picture clip provides an efficient mechanism for storing multiple picture resources. Instead of using
multiple bitmaps or icons, create a source bitmap that contains all the icon images required by your
application. When you need to access an individual icon, use picture clip to select the region in the
source bitmap that contains that icon.
For example, you could use this control to store all the images needed to display a toolbox for your
application. It is much more efficient to store all of the toolbox images in a single picture clip control than
it is to store each image in a separate picture box. To do this, you first need to create a source bitmap
that contains all of the toolbar icons. The preceding picture is an example of such a bitmap.
You can use the following two methods to specify the clipping region in the source bitmap:

Use the Random Access method to select any portion of the source bitmap as the clipping region.
Specify the upper-left corner of the clipping region using the ClipX and ClipY properties. The ClipHeight
and ClipWidth properties determine the area of the clipping region. This method is useful when you want
to view a portion of a bitmap.

Use the Enumerated Access method to divide the source bitmap into a specified number of rows
and columns. The result is a uniform matrix of picture cells numbered 0, 1, 2, and so on. You can access
individual cells with the GraphicCell property. This method is useful when the source bitmap contains a
palette of icons that you want to access individually, such as in the preceding bitmap.

Load the source bitmap into the picture clip control using the Picture property. You can only load
bitmap (.BMP) files into the picture clip control.

Distribution Note      When you create and distribute applications that use the picture clip control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
*CellHeight *ClipY Name *StretchY
*CellWidth *Cols Object Tag
*Clip *GraphicCell Parent *Width
*ClipHeight *Height *Picture
*ClipWidth hWnd *Rows
*ClipX Index *StretchX

Picture is the default value of the control.

Note      The Index and Parent properties are only available in Visual Basic. The Name property is the
equivalent of the CtlName property in Visual Basic 1.0.

Clip Property, Picture Clip Control
Example

Returns a bitmap of the area in the picture clip control specified by the ClipX, ClipY, ClipWidth, and
ClipHeight properties. This property is read-only at run time.

Syntax
[form.]PictureClip.Clip

Remarks
Use this property to specify a clipping region when using the Random Access Method.
When assigning a Clip image to a picture control in Visual Basic, make sure that the ScaleMode
property for the picture control is set to 3 (pixels). You must do this since the ClipHeight and ClipWidth
properties that define the clipping region are measured in pixels.

Data Type
Integer

Clip Example, Picture Clip Control

Visual Basic Example
The following example displays a Clip image in a picture box when the user specifies X and Y
coordinates and then clicks a form. First create a form with a picture box, a picture clip control, and two
text boxes. At design time, use the Properties window to load a valid bitmap into the picture clip control.

Private Sub Form_Click ()
Dim SaveMode As Integer
' Save the current ScaleMode for the picture box.
SaveMode = Picture1.ScaleMode
' Get X and Y coordinates of the clipping region.
PicClip1.ClipX = Val(Text1.Text)
PicClip1.ClipY = Val(Text2.Text)
' Set the area of the clipping region (in pixels).
PicClip1.ClipHeight = 100
PicClip1.ClipWidth = 100
' Set the picture box ScaleMode to pixels.
Picture1.ScaleMode = 3
' Set the destination area to fill the picture box.
PicClip1.StretchX = Picture1.ScaleWidth
PicClip1.StretchY = Picture1.ScaleHeight
' Assign the clipped bitmap to the picture box.
Picture1.Picture = PicClip1.Clip
' Reset the ScaleMode of the picture box.
Picture1.ScaleMode = SaveMode

End Sub

ClipHeight Property, Picture Clip Control

Specifies the area of the picture clip control to be copied by the Clip property. This property is not
available at design time.

Syntax
[form.]PictureClip.ClipHeight[= Height%]
[form.]PictureClip.ClipWidth[= Width%]
[form.]PictureClip.ClipX[= X%]
[form.]PictureClip.ClipY[= Y%]

Remarks
This property is measured in pixels.

Data Type
Integer

ClipWidth Property, Picture Clip Control

Specifies the area of the picture clip control to be copied by the Clip property. This property is not
available at design time.

Syntax
[form.]PictureClip.ClipWidth[= Width%]

Remarks
This property is measured in pixels.

Data Type
Integer

ClipX Property, Picture Clip Control

Specifies the area of the picture clip control to be copied by the Clip property. This property is not
available at design time.

Syntax
[form.]PictureClip.ClipX[= X%]

Remarks
This property is measured in pixels.

Data Type
Integer

ClipY Property, Picture Clip Control

Specifies the area of the picture clip control to be copied by the Clip property. This property is not
available at design time.

Syntax
[form.]PictureClip.ClipY[= Y%]

Remarks
This property is measured in pixels.

Data Type
Integer

Cols, Rows Properties, Picture Clip Control

Set or return the total number of columns or rows in the picture.

Syntax
[form.]PictureClip.Cols[= cols%]
[form.]PictureClip.Rows[= rows%]

Remarks
Use these properties to divide the source bitmap into a uniform matrix of picture cells. Use the
GraphicCell property to specify individual cells.
A picture clip control must have at least one column and one row.
The height of each graphic cell is determined by dividing the height of the source bitmap by the number
of specified rows. Leftover pixels at the bottom of the source bitmap (caused by integer rounding) are
clipped.
The width of each graphic cell is determined by dividing the width of the source bitmap by the number of
specified columns. Leftover pixels at the right of the source bitmap (caused by integer rounding) are
clipped.

Data Type
Integer

GraphicCell Property, Picture Clip Control

A one-dimensional array of pictures representing all of the picture cells. This property is not available at
design time and is read-only at run time.

Syntax
[form.]PictureClip.GraphicCell (Index%)

Remarks

Use the Rows and Cols properties to divide a picture into a uniform matrix of graphic cells.
The cells specified by GraphicCell are indexed, beginning with 0, and increase from left to right

and top to bottom.
Use this property to specify a clipping region when using the Sequential Access method.
When reading this property, an error is generated when there is no picture or the Rows or Cols

property is set to 0.

Data Type
Integer

Height, Width Properties, Picture Clip Control

Return the height and width (in pixels) of a bitmap displayed in the control. These properties are not
available at design time and are read-only at run time.

Syntax
[form.]PictureClip.Height
[form.]PictureClip.Width

Remarks
These properties are only valid when the control contains a bitmap.
You can load a bitmap into a picture clip control at design time using the Properties window. In Visual
Basic, you can also set this property at run time by using the LoadPicture function.

Data Type
Integer

Picture Property, Picture Clip Control

This property is the same as the standard Visual Basic Picture property except that it only supports
bitmap (.BMP) files.

StretchX, StretchY Properties, Picture Clip Control

Specify the target size for the bitmap created with the Clip property. These properties are not available at
design time.

Syntax
[form.]PictureClip.StretchX[= X%]
[form.]PictureClip.StretchY[= Y%]

Remarks
Use these properties to define the area to which the Clip bitmap is copied. When the bitmap is copied, it
is either stretched or condensed to fit the area defined by StretchX and StretchY.
StretchX and StretchY are measured in pixels.

Note      In Visual Basic, the default ScaleMode for forms and picture boxes is twips. Set ScaleMode = 3
(pixels) for all controls that display pictures from a picture clip control.

Data Type
Integer

 Spin Button Control
Properties Methods Events Constants Error Messages

Spin button is a spinner control you can use with another control to increment and decrement numbers.
You can also use it to scroll back and forth through a range of values or a list of items.

File Name
SPIN16.OCX, SPIN32.OCX

Class Name
SpinButton

Remarks
You can use the spin button control to increment or decrement numbers that are displayed in a text box
or other control. At run time, when the user clicks the up (or right) arrow of the spin button, SpinUp
events are generated repeatedly until the user releases the mouse. Likewise, when the user clicks the
down (or left) arrow, SpinDown events are generated until the user releases the mouse. When using this
control, you write code for the SpinUp and SpinDown events that increments or decrements the desired
values.
The Delay property determines how often the SpinUp and SpinDown events are generated.
The spin button supports additional color properties that you can set using the Visual Basic Color
Palette.

Distribution Note      When you create and distribute applications that use the spin button control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties
All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).
BackColor ForeColor MousePointer *SpinOrientation
*BorderColor Height Name TabIndex
*BorderThickness HelpContextID Object Tag
Container hWnd Parent *TdThickness
*Delay Index *ShadeColor Top
DragIcon Left *ShadowBackColor Visible
DragMode *LightColor *ShadowForeColor WhatsThisHelpID
Enabled MouseIcon *ShadowThickness Width

Note      The DragIcon, DragMode, HelpContextID, and Index properties are only available in Visual
Basic. The Name property is the equivalent of the CtlName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).
DragDrop DragOver *SpinDown *SpinUp

Note      The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table. For documentation of the methods not
unique to this control, see Appendix A, "Standard Properties, Events, and Methods," in the Custom
Control Reference.
Drag Refresh ZOrder
Move ShowWhatsThis

Note      The Drag and ZOrder methods are only available in Visual Basic.

BorderColor Property, Spin Button Control

Determines the color of the border drawn around the control.

Syntax
[form.]SpinButton.BorderColor[= color&]

Remarks
The following table lists the BorderColor property settings for the spin button control.

Setting Description
&H00000000& (Default) Black.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor function in

code.

Data Type
Long

BorderThickness Property, Spin Button Control

Sets the width of the border.

Syntax
[form.]SpinButton.BorderThickness[= setting%]

Remarks
The following table lists the BorderThickness property settings for the spin button control.

Setting Description
0 No border.
1 (Default) 1-pixel border.
(integer) Width of three-dimensional border, in pixels.

Data Type
Integer

Delay Property, Spin Button Control

Sets the delay between SpinUp or SpinDown events.
The Delay property slows the number of SpinUp or SpinDown events generated when the user clicks
one of the arrows in a spin button and then continues to hold down the button.

Syntax
[form.]SpinButton.Delay[= setting%]

Remarks
The following table lists the Delay property settings for the spin button control.

Setting Description
250 (Default) 250 milliseconds, 1/4 of a second.
(0 32767) Milliseconds delay between events.

Data Type
Integer

LightColor Property, Spin Button Control

Sets the color of a narrow margin located along the left and upper edges of the control.

Syntax
[form.]SpinButton.LightColor[= color&]

Remarks
The following table lists the LightColor property settings for the spin button control.

Setting Description
&H00FFFFFF& (Default) White.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor function in

code.

Setting the LightColor property to a lighter shade of the same color as the ShadeColor property
generates a raised visual effect. Setting it to a darker shade of the same color as the ShadeColor
generates an inset visual effect.

Note      To see the effect of the LightColor and ShadeColor properties, you should set the TdThickness
property to a value greater than 1.

Data Type
Long

ShadeColor Property, Spin Button Control

Sets the color of a narrow margin that is located along the right and lower edges of the control.

Syntax
[form.]SpinButton.ShadeColor[= color&]

Remarks
The following table lists the ShadeColor property settings for the spin button control.

Setting Description
&H007F7F7F& (Default) Dark gray.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor function in

code.

This property is used with the LightColor property to generate a raised or inset effect.

Note      To see the effect of the LightColor and ShadeColor properties, you should set the TdThickness
property to a value greater than 1.

Data Type
Long

ShadowBackColor Property, Spin Button Control

Sets the background color for the shadow effect.

Syntax
[form.]SpinButton.ShadowBackColor[= color&]

Remarks
The following table lists the ShadowBackColor property settings for the spin button control.

Setting Description
&H00FFFFFF& (Default) White.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor function

in code.

ShadowBackColor is usually set to the same color as the surrounding area. It is visible at the lower-left
and upper-right areas of the shadow area where the shadow does not cover the background.

Note      To see the effect of the ShadowBackColor and ShadowForeColor properties, you should set the
ShadowThickness property to a value greater than 0.

Data Type
Long

ShadowForeColor Property, Spin Button Control

Sets the color of the shadow effect.

Syntax
[form.]SpinButton.ShadowForeColor[= color&]

Remarks
The following table lists the ShadowForeColor property settings for the spin button control.

Setting Description
&H007F7F7F& (Default) Dark Gray.
(color) In Visual Basic, color specified by using the RGB scheme or the QBColor function in

code.

ShadowForeColor makes a control appear as if it were floating above the surrounding surface. Usually a
control will have a dark shadow, but you can use a variation of the underlying form color. For example, in
Visual Basic, if the form's BackColor property is set to green, you may want to set the ShadowForeColor
property to a darker shade of green.

Note      To see the effect of the ShadowBackColor and ShadowForeColor properties, you should set the
ShadowThickness property to a value greater than 0.

Data Type
Long

ShadowThickness Property, Spin Button Control

Sets the width of the shadow effect.

Syntax
[form.]SpinButton.ShadowThickness[= setting%]

Remarks
The following table lists the ShadowThickness property settings for the spin button control.

Setting Description
0 (Default) No shadow.
(integer) Width of shadow in pixels.

ShadowThickness varies the width of the shadow to give the control a floating appearance. The floating
effect is most realistic when ShadowThickness is just a few pixels.

Note      To see the effect of the ShadowBackColor and ShadowForeColor properties, you should set the
ShadowThickness property to a value greater than 0.

Data Type
Integer

SpinOrientation Property, Spin Button Control

Sets the direction of the spin control arrows.

Syntax
[form.]SpinButton.SpinOrientation[= setting%]

Remarks
The following table lists the SpinOrientation property settings for the spin button control.

Setting Description
0 (Default) Vertical:    up and down arrows.
1 Horizontal: left and right arrows.

Data Type
Integer

TdThickness Property, Spin Button Control

Sets the width of the LightColor and the ShadeColor borders.

Syntax
[form.]SpinButton.TdThickness[= setting%]

Remarks
The following table lists the TdThickness property settings for the spin button control.

Setting Description
0 (Default) No three-dimensional effect.
(integer) Width of three-dimensional margin in pixels.

Note      To see the effect of the LightColor and ShadeColor properties, you should set the TdThickness
property to a value greater than 1.

Data Type
Integer

SpinUp, SpinDown Events, Spin Button Control
Example

Occur when the user clicks one of the arrows of a spin button.

Syntax
Private Sub SpinButton_SpinUp ()
Private Sub SpinButton_SpinDown ()

Remarks
SpinUp is generated when the up or the right arrow is clicked. SpinDown is generated by clicking the
down or the left arrow. The arrows can be clicked once to send a single Spin event, or the left mouse
button can be held down to generate multiple events.
Holding down the mouse button allows the user to cycle through a range of values. The Delay property
slows the rate of cycling.
If you change the value or contents of a control in response to a Spin event, you must also call that
control's Refresh method to insure that the updated value is displayed.

SpinUp, SpinDown Example, Spin Button Control

Visual Basic Example
The following examples illustrate how a number is incremented or decremented in a control containing
text. To run these examples, create a form with a spin button and a text box.

Private Sub Spin1_SpinUp ()
' Increment the value in the text box on every SpinUp event.
Text1.Text = Str$(Val(Text1.Text)+1)

 ' Display the current value in the text box.
Text1.Refresh

End Sub

Private Sub Spin1_SpinDown ()
' Decrement the value in the text box on every SpinDown event.
Text1.Text = Str$(Val(Text1.Text)-1)
' Display the current value in the text box.
Text1.Refresh

End Sub

3D Controls Constants
See Also

AlignTo Constants

Constant Value Description
ssTextRight 0 Text to right.
ssTextLeft 1 Text to left.

AlignFrameText Constants

Constant Value Description
ssLeftJustify 0 Left align text.
ssRightJustify 1 Right align text.
ssCenter 2 Center text.

AlignPanelText Constants

Constant Value Description
ssLeftTop 0 Text to left and top.
ssLeftMiddle 1 Text to left and middle.
ssLeftBottom 2 Text to left and bottom.
ssRightTop 3 Text to right and top.
ssRightMiddle 4 Text to right and middle.
ssRightBottom 5 Text to right and bottom.
ssCenterTop 6 Text to center and top.
ssCenterMiddle 7 Text to center and middle.
ssCenterBottom 8 Text to center and bottom.

AutoSizeButton Constants

Constant Value Description
ssNone 0 No autosizing.
ssPictureToButton 1 Autosize picture to button.
ssButtonToPicture 2 Autosize button to picture.

AutoSizePanel Constants

Constant Value Description
ssNone 0 No autosizing.
ssWidthToCaption 1 Autosize panel width to caption.
ssHeightToCaption 2 Autosize panel height to caption.
ssChildToPanel 3 Autosize child form to panel.

Bevel Constants

Constant Value Description
ssNone 0 No inner or outer bevel.
ssInset 1 Inset inner or outer bevel.
ssRaised 2 Raised inner or outer bevel.

FloodType Constants

Constant Value Description
ssNone 0 No flood.
ssLeftToRight 1 Flood from left to right.
ssRightToLeft 2 Flood from right to left.

ssTopToBottom 3 Flood from top to bottom.
ssBottomToTop 4 Flood from bottom to top.
ssWideningCircle 5 Flood in widening circle.

Font3D Constants

Constant Value Description
ssNone 0 No 3-D text font.
ssRaisedLight 1 Font raised with light shading.
ssRaisedHeavy 2 Font raised with heavy shading.
ssInsetLight 3 Font inset with light shading.
ssInsetHeavy 4 Font inset with heavy shading.

PictureDnChange Constants

Constant Value Description
ssNoChange 0 Use Up bitmap with no change.
ssDither 1 Dither Up bitmap.
ssInvert 2 Invert Up bitmap.

Shadow Color Constants

Constant Value Description
ssDarkGrey 0 Dark gray shadow.
ssBlack 1 Black shadow.

ShadowStyle Constants

Constant Value Description
ssInset 0 Shadow inset.
ssRaised 1 Shadow raised.

Animated Button Control Constants
See Also

Cycle Constants

Constant Value Description
aniHalfHalf 0 Animated button display.
aniByFrame 1 Automatic multistate display.
aniTwoStateHalfHalf 2 Two-state display.

ClickFilter Constants

Constant Value Description
aniAnywhere 1 Mouse clicks detected anywhere.
aniTextOrPicture 2 Mouse clicks detected on caption text or image frame.
aniPictureOnly 3 Mouse clicks detected on image frame.
aniTextOnly 4 Mouse clicks detected on caption text.

PictDrawMode Constants

Constant Value Description
aniAsDefined 0 Positions image at X and Y settings.
aniAutoSize 1 Automatically controls sizing mode.
aniStretch 2 Stretches image to fit button.

TextPos Constants

Constant Value Description
aniTextOnPicture 0 Positions caption at X and Y settings.
aniTextLeft 1 Positions image at left of control.
aniTextRight 2 Positions image at right of control.
aniTextBelow 3 Positions image at bottom of control.
aniTextAbove 4 Positions image at top of control.

Gauge Control Constants
See Also

Style Constants

Constant Value Description
gauHoriz 0 Horizontal linear gauge with fill.
gauVert 1 Vertical gauge with fill.
gauSemi 2 Semicircular needle gauge.
gauFull 3 Full circle needle gauge.

Graph Control Constants
See Also

AutoInc Constants

Constant Value Description
gphOff 0 Automatic incrementing off.
gphOn 1 Automatic incrementing on.

DrawLineStyle and LegendStyle Constants

Constant Value Description
gphMonochrome 0 Sets background white and all colors black.
gphColor 1 Uses specified colors.

GraphType Constants

Constant Value Description
gphNone 0 No graph.
gphPie2d 1 Two-dimensional pie chart.
gphPie3d 2 Three-dimensional pie chart.
gphBar2d 3 Two-dimensional bar chart.
gphBar3d 4 Three-dimensional bar chart.
gphGantt 5 Gantt chart.
gphLine 6 Line graph.
gphLogLin 7 Log/Lin graph.
gphArea 8 Area graph.
gphScatter 9 Scatter graph.
gphPolar 10 Polar graph.
gphHLC 11 High-low-close graph.

BackgroundColor, ForegroundColor, and ColorData Constants

Constant Value Description
gphBlack 0 Black.
gphBlue 1 Blue.
gphGreen 2 Green.
gphCyan 3 Cyan.
gphRed 4 Red.
gphMagenta 5 Magenta.
gphBrown 6 Brown.
gphLightGray 7 Light gray.
gphDarkGray 8 Dark gray.
gphLightBlue 9 Light blue.
gphLightGreen 10 Light green.
gphLightCyan 11 Light cyan.
gphLightRed 12 Light red.
gphLightMagenta 13 Light magenta.
gphYellow 14 Yellow.
gphWhite 15 White.
gphAutoBW 16 (Default) Automatic black and white. Only available in

Foreground constants.

SymbolData Constants

Constant Value Description
gphCrossPlus 0 Plus sign (+) symbol.
gphCrossTimes 1 Multiplication sign (x) symbol.
gphTriangleUp 2 Upright triangle symbol.
gphSolidTriangle 3 Solid triangle symbol.
gphTriangleDown 4 Upside-down triangle symbol.
gphSolidTriangle 5 Solid triangle symbol.
gphSquare 6 Square symbol.
gphSolidSquare 7 Solid square symbol.
gphDiamond 8 Diamond symbol.
gphSolidDiamond 9 Solid diamond symbol.

GridStyle Constants

Constant Value Description
gphNone 0 No grid.
gphHorizontal 1 Horizontal grid.
gphVertical 2 Vertical grid.
gphBoth 3 Both grids.

DataReset Constants

Constant Value Description
gphNone 0 No reset.
gphGraphData 1 Resets graph data.
gphColorColorData 2 Resets color data.
gphExtraData 3 Resets extra data.
gphLabelText 4 Resets label text.
gphLegendText 5 Resets legend text.
gphPatternData 6 Resets pattern data.
gphSymbolData 7 Resets symbol data.
gphXPosData 8 Resets x-position data.
gphAllData 9 Resets all data.
gphFontInfo 10 Resets font information.

DrawMode Constants

Constant Value Description
gphNoAction 0 No graph drawn at design time.
gphClear 1 No graph drawn at design time, but properties

displayed.
gphDraw 2 Displays graph at design time and run time.
gphBlit 3 Displays graph using blitting technique.
gphCopy 4 Copies graph to Clipboard.
gphPrint 5 Sends graph to printer.
gphWrite 6 Writes graph to disk.

FontStyle Constants

Constant Value Description
gphDefault 0 Default.
gphItalic 1 Italic.
gphBold 2 Bold.

gphBoldItalic 3 BoldItalic.
gphUnderlined 4 Underlined.
gphUnderlinedItalic 5 UnderlinedItalic.
gphUnderlinedBold 6 UnderlinedBold.
gphUnderlinedBoldItalic 7 UnderlinedBoldItalic.

FontFamily Constants

Constant Value Description
gphRoman 0 Roman.
gphSwiss 1 Swiss.
gphModern 2 Modern.

FontUse Constants

Constant Value Description
gphGraphTitle 0 GraphTitle.
gphOtherTitles 1 OtherTitles.
gphLabels 2 Labels.
gphLegend 3 Legend.
gphAllText 4 AllText.

IndexStyle Constants

Constant Value Description
gphStandard 0 Standard.
gphEnhanced 1 Enhanced.

Labels Constants

Constant Value Description
gphOff 0 Off.
gphOn 1 On.
gphXAxisLabelsOnly 2 X-axis labels only.
gphYAxisLabelsOnly 3 Y-axis labels only.

LineStats Constants

Constant Value Description
gphNone 0 None.
gphMean 1 Mean.
gphMinmax 2 MinMax.
gphMeanMinmax 3 Mean and MinMax.
gphStddev 4 Stddev.
gphStddevMean 5 StdDev and Mean.
gphStddevMinmax 6 StdDev and MinMax.
gphStddevMinmaxMean 7 StdDev and MinMax and Mean.
gphBestfit 8 BestFit.
gphBestfitMean 9 BestFit and Mean.
gphBestfitMinmax 10 BestFit and MinMax.
gphBestfitMinmaxMean 11 BestFit and MinMax and Mean.
gphBestfitStddev 12 BestFit and StdDev.
gphBestfitStddevMean 13 BestFit and StdDev and Mean.
gphBestfitStddevMinmax 14 BestFit and StdDev and MinMax.
gphAll 15 All.

Palette Constants

Constant Value Description
gphDefault 0 Default.
gphPastel 1 Pastel.
gphGrayscale 2 Grayscale.

PatternedLines Constants

Constant Value Description
gphPatternOff 0 Pattern off.
gphPatternOn 1 Pattern on.

PrintStyle Constants

Constant Value Description
gphMonochrome 0 Color.
gphColor 1 Color with border.
gphMonochromeWithBorder 2 Monochrome.
gphColorWithBorder 3 Monochrome with border.

RandomData Constants

Constant Value Description
gphOff 0 Off.
gphOn 1 On.

ThickLines Constants

Constant Value Description
gphLinesOff 0 Lines off.
gphLinesOn 1 Lines on.

YAxisPos Constants

Constant Value Description
gphDefault 0 Default.
gphAlignLeft 1 Align left.
gphAlignRight 2 Align right.

YAxisStyle Constants

Constant Value Description
gphDefault 0 Default.
gphVariableOrigin 1 Variable origin.
gphUserDefined 2 User-defined.

Ticks Constants

Constant Value Description
gphTicksOff 0 Ticks off.
gphTicksOn 1 Ticks on.
gphXAxisTicksOnly 2 X-axis ticks only.
gphYAxisTicksOnly 3 Y-axis ticks only.

Key State Control Constants
See Also

Style Constants

Constant Value Description
keyCapsLock 0 CAPS LOCK key.
keyNumLock 1 NUM LOCK key.
keyInsert 2 INSERT key.
keyScrollLock 3 SCROLL LOCK key.

Multimedia MCI Control Constants
See Also

Mode Constants

Constant Value Description
mciModeOpen 524 Device not open.
mciModeStop 525 Device stop.
mciModePlay 526 Device play.
mciModeRecord 527 Device record.
mciModeSeek 528 Device seek.
mciModePause 529 Device pause.
mciModeReady 530 Device ready.

Notify Constants

Constant Value Description
mciNotifySuccessful 1 Command completed successfully.
mciNotifySuperseded 2 Command superseded by another command.
mciAborted 4 Command aborted by user.
mciFailure 8 Command failed.

Orientation Constants

Constant Value Description
mciOrientHorz 0 Buttons arranged horizontally.
mciOrientVert 1 Buttons arranged vertically.

RecordMode Constants

Constant Value Description
mciRecordInsert 0 Insert recording mode.
mciRecordOverwrite 1 Overwrite recording mode.

Format Constants

Constant Value Description
mciFormatMilliseconds 0 Milliseconds format.
mciFormatHms 1 Hours, seconds, and minutes format.
mciFormatMsf 2 Minutes, seconds, and frames format.
mciFormatFrames 3 Frames format.
mciFormatSmpte24 4 24-frame SMPTE format.
mciFormatSmpte25 5 25-frame SMPTE format.
mciFormatSmpte30 6 30-frame SMPTE format.
mciFormatSmpte30Drop 7 30-drop-frame SMPTE format.
mciFormatBytes 8 Bytes format.
mciFormatSamples 9 Samples format.
mciFormatTmsf 10 Tracks minutes, seconds, and frames format.

Spin Button Control Constants
See Also

Orientation Constants

Constant Value Description
spnVertical 0 Up and down spin arrows.
spnHorizontal 1 Left and right spin arrows.

Masked Edit Control Constants
See Also

ClipMode Constants

Constant Value Description
mskIncludeLiterals 0 Include literals on cut or copy.
mskExcludeLiterals 1 Exclude literals on cut or copy.

Communications Control Constants
See Also

Handshake Constants

Constant Value Description
comNone 0 No handshaking.
comXonXoff 1 XOn/XOff handshaking.
comRTS 2 Request-to-send/clear-to-send handshaking.
comRTSXOnXOff 3 Both request-to-send and XOn/XOff handshaking.

OnComm Constants

Constant Value Description
comEvSend 1 Send event.
comEvReceive 2 Receive event.
comEvCTS 3 Change in clear-to-send line.
comEvDSR 4 Change in data-set ready line.
comEvCD 5 Change in carrier detect line.
comEvRing 6 Ring detect.
comEvEOF 7 End of file.

Error Constants

Constant Value Description
comBreak 1001 Break signal received.
comCTSTO 1002 Clear-to-send timeout.
comDSRTO 1003 Data-set ready timeout.
comFrame 1004 Framing error.
comOverrun 1006 Port overrun.
comCDTO 1007 Carrier detect timeout.
comRxOver 1008 Receive buffer overflow.
comRxParity 1009 Parity error.
comTxFull 1010 Transmit buffer full.

MAPI Control Constants
See Also

SessonAction Constants

Constant Value Description
mapSignOn 1 Log user into account.
mapSignOff 2 End messaging session.

Delete Constants

Constant Value Description
mapMessageDelete 10 Delete current message.
mapRecipientDelete 14 Delete the currently indexed recipient.
mapAttachmentDelete 15 Delete the currently indexed attachment.

MAPIErrors

Constant Value Description
mapSuccessSuccess 32000 Action returned successfully.
mapUserAbort 32001 User cancelled process.
mapFailure 32002 Unspecified failure.
mapLoginFail 32003 Login failure.
mapDiskFull 32004 Disk full.
mapInsufficientMem 32005 Insufficient memory.
mapAccessDenied 32006 Access denied.
mapGeneralFailure 32007 General failure.
mapTooManySessions 32008 Too many sessions.
mapTooManyFiles 32009 Too many files.
mapTooManyRecipients 32010 Too many recipients.
mapAttachmentNotFound 32011 Attachment not found.
mapAttachmentOpenFailure 32012 Attachment open failure.
mapAttachmentWriteFailure 32013 Attachment write failure.
mapUnknownRecipient 32014 Unknown recipient.
mapBadRecipType 32015 Invalid recipient type.
mapNoMessages 32016 No message.
mapInvalidMessage 32017 Invalid message.
mapTextTooLarge 32018 Text too large.
mapInvalidSession 32019 Invalid session.
mapTypeNotSupported 32020 Type not supported.
mapAmbiguousRecipient 32021 Ambiguous recipient.
mapMessageInUse 32022 Message in use.
mapNetworkFailure 32023 Network failure.
mapInvalidEditFields 32024 Invalid editfields.
mapInvalidRecips 32025 Invalid Recipients.
mapNotSupported 32026 Current action not supported.
mapUserAbout 32027 User aborted previous action.
mapSessionExist 32050 Session ID already exists.
mapInvalidBuffer 32051 Read-only in read buffer.
mapInvalidReadBufferAction 32052 Valid in compose buffer only.
mapNoSession 32053 No valid session ID.
mapInvalidRecipient 32054 Originator information not available.

mapInvalidComposeBufferAction 32055 Action not valid for Compose Buffer.
mapControlFailure 32056 No messages in list.
mapNoRecipients 32057 No recipients.
mapNoAttachment 32058 No attachments.

RecipType Constants

Constant Value Description
mapOrigList 0 Message originator.
mapToList 1 Recipient is a primary recipient.
mapCcList 2 Recipient is a copy recipient.
mapBccList 3 Recipient is a blind copy recipient.

AttachType Constants

Constant Value Description
mapData 0 Attachment is a data file.
mapEOLE 1 Attachment is an embedded OLE object.
mapSOLE 2 Attachment is a static OLE object.

See Also
Error Messages, MAPI Controls
Visual Basic Custom Control Constants

Outline Control Constants
See Also

PictureType Constants

Constant Value Description
outClosed 0 PictureClosed picture.
outOpen 1 PictureOpen picture.
outLeaf 2 PictureLeaf picture.

Error Constants

Constant Value Description
outBadPicFormat 32000 Picture format not supported.
outBadIndentation 32001 Bad outline indentation.
outOutOfMemory 32002 Out of memory.
outParentNotExpanded 32003 Parent not expanded.

Style Constants

Constant Value Description
outTextOnly 0 Picture and text.
outPictureText 1 Plus/Minus and text.
outPlusMinusText 2 Plus/Minus, picture, and text.
outPlusPictureText 3 Text only.
outTreelinesText 4 Treelines, picture, and text.
outTreelinesPictureText 5 Treelines and text.

See Also
Visual Basic Custom Control Constants

Visual Basic Custom Control Constants

The following constants are specified by Visual Basic.    As a result, they can be used anywhere in your
code in place of the actual values.

3D Controls Constants
Animated Button Control Constants
Communications Control Constants
Gauge Control Constants
Graph Control Constants
ImageList Control Constants
Key State Control Constants
ListView Control Constants
MAPI Control Constants
Masked Edit Control Constants
Multimedia MCI Control Constants
RichTextBox Control Constants
Slider Control Constants
Spin Button Control Constants
SSTab Control Constants
StatusBar Control Constants
TabStrip Control Constants
Toolbar Control Constants
TreeView Control Constants
Windows 95 Control Constants

You can search for data access, Visual Basic, and Visual Basic for application constants for more
constant lists.
Use the Object Browser to browse the list of built-in constants.    From the View menu, choose Object
Browser, select the appropriate library, and then select the constants you want to see.    Scroll the list in
the Methods/Properties box to see the complete list of constants.

Error Messages, Animated Button Control
The following table lists the trappable errors for the Animated Button control.

Error Message
Number Explanation
30000 Error loading picture
30001 Invalid hot spot
30002 Invalid CCB file
30003 Current frame is not a metafile
30004 Current frame is not an icon

Error Messages, Communications Control
The following table lists the trappable errors for the Communications control.

Error Message
Number Explanation
8000 Operation not valid while the port is opened
8001 Timeout value must be greater than zero
8002 Invalid Port Number
8003 Property available only at run time
8004 Property is read only at runtime
8005 Port already open
8006 The device identifier is invalid or unsupported
8007 The device's baud rate is unsupported
8008 The specified byte size is invalid
8009 The default parameters are in error
8010 The hardware is not available (locked by another device)
8011 The function cannot allocate the queues
8012 The device is not open
8013 The device is already open
8014 Could not enable comm notification
8015 Could not set comm state
8016 Could not set comm event mask
8018 Operation valid only when the port is open
8019 Device busy
8020 Error reading comm device

Error Messages, Graph Control
The following table lists the trappable errors for the Graph control.

Error Message
Number Explanation
32000 String value too long
32001 Subscript out of range
32002 Error creating graph image

Error Messages, MAPI Controls
The following table lists the trappable errors for the MAPI controls.

Error Message
Number Explanation
32001 User cancelled process

The current action was not completed because the user cancelled the process.
32002 Unspecified failure has occurred

An unspecified error occurred during the current action.    For example, the action was
unable to delete or address mail correctly.

32003 Login has failed
There was no default logon, and the user failed to log on correctly.

32004 Disk is full
The disk is full.    The current action could not create a disk file.

32005 Insufficient memory
There is insufficient memory to proceed with the current action.

32006 Access denied
32007 General Failure

This is an unspecified error.
32008 Too many sessions

The user has too many sessions open at once.
32009 Too many files

Too many file attachments are contained in the message.    The mail wasn't sent or read.
32010 Too many recipients

There are too many message recipients specified.    Mail wasn't sent or read.
32011 Attachment not found

The specified attachment wasn't found, and mail wasn't sent.
32012 Failure on opening attachment

The attachment couldn't be located.    Mail wasn't sent.    Verify that the
AttachmentPathName property is valid.

32013 Failure attempting to write an attachment
An attachment could not be written to a temporary file.    Check directory permissions.

32014 Unknown recipient
The recipient doesn't appear in the address list.    Mail wasn't sent.

32015 Invalid recipient type
The type of recipient was incorrect.    Valid type values are 1 (primary recipient), 2 (copy
recipient), and 3 (blind copy recipient).

32016 No messages
Unable to find the next message.

32017 Invalid message
An invalid message ID was used.    The current action was not completed.

32018 Text is too large
The text in the message was too large to send.    The mail wasn't sent.    Text is limited to
32K.

32019 Invalid session
An invalid session ID was used.    To associate the MAPI messages control with a valid
messaging session, set the SessionID property to the MAPI session control's SessionID.

32020 Type not supported
32021 Ambiguous recipient

One or more recipient addresses are invalid.    Make sure the addresses for the
RecipAddress property are valid.

32022 Message in use
32023 Network failure
32024 Invalid editfields

The value of the AddressEditFieldCount property is invalid.    Valid values are from 0 to
4.

32025 Invalid Recipients
One or more recipient addresses are invalid.    Make sure the addresses for the
RecipAddress property are valid.

32026 Not supported
The current action is not supported by the underlying mail system.

32027 The user has aborted the previous action
32050 Logon failure: valid session ID already exists

The MAPI messages control is already using a valid session ID.
32051 Property is read only when not using Compose Buffer. Set MsgIndex = -1
32052 Action only valid for Compose Buffer. Set MsgIndex = -1
32053 MAPI Failure: valid session ID does not exist

The MAPI messages control does not have a valid session handle from the MAPI session
control.

32054 No originator in the Compose Buffer
You cannot see message originator information while in the Compose Buffer (MsgIndex
set to 1).

32055 Action not valid for Compose Buffer
The attempted action is not valid in the Compose Buffer (MsgIndex set
to 1).

32056 Cannot perform action, no messages in list
32057 Cannot perform action, no recipients
32058 Cannot perform action, no attachments

Error Messages, Multimedia MCI Control
The following table lists the trappable errors for the Multimedia MCI control.

Error Message
Number Explanation
30001 Can't create button
30002 Can't create a timer resource
30003 Can't create string.    Either string too long or out of memory

Error Messages, Outline Control
The following table lists the trappable errors for the Outline control.

Error Message
Number Explanation
32000 Outline: Picture format not supported
32001 Bad outline indentation
32002 Outline: Out of memory
32003 Outline: Parent not expanded
32004 Outline: Unknown error

Error Messages, Picture Clip Control
The following table lists the trappable errors for the Picture Clip control.

Error Message
Number Explanation
32000 Picture format not supported

You can only load bitmap (.BMP) files into the picture clip control.
32001 Unable to obtain display context
32002 Unable to obtain memory device context
32003 Unable to obtain bitmap
32004 Unable to select bitmap object
32005 Unable to allocate internal picture structure
32006 Bad GraphicCell Index

The index argument for the GraphicCell property is out of range.    This argument must
be in the range 0 to (PicClip.Rows * PicClip.Cols) 1.

32007 No GraphicCell picture size specified
32008 Only bitmap GraphicCell pictures allowed
32010 Bad GraphicCell picture clip property request

32012 GetObject() Windows function failure
A call to the Windows function GetObject () failed.

32014 GlobalAlloc() Windows function failure
A call to the Windows function GlobalAlloc () failed.

32015 Clip region boundary error
The ClipHeight and ClipWidth properties specify coordinates which are outside the
boundary of the bitmap loaded in the Picture Clip control.

32016 Cell size too small (must be at least 1 by 1 pixel)
32017 Rows property must be greater than zero
32018 Cols property must be greater than zero
32019 StretchX property cannot be negative
32020 StretchY property cannot be negative
32021 No picture assigned

Error Messages, Spin Button Control
The following table lists the trappable errors for the Spin Button control.

Error Message
Number Explanation
30000 Negative value invalid for this property

The Delay, BorderThickness, ShadowThickness, and TdThickness properties cannot
be set to a negative value.

Error Messages, 3D Controls
The following table lists the trappable errors for these 3D controls: Command Button, Group Push
Button, and Panel.    The remaining 3D controls Check Box, Frame, and Option Button

have no trappable errors.

3D Command Button Control

Error Message
Number Explanation
30000 Only Picture formats '.BMP' & '.ICO' supported

An unsupported graphic type is assigned to the Picture property of the command button.
Only bitmap and icon formats are supported.

30004 Bevel width must be from 0 to 10
The bevel width is set to an invalid value.

3D Group Push Button Control

Error Message
Number Explanation
30001 Only Picture format '.BMP' supported

An unsupported graphic type is assigned to the Picture property of the 3D group push
button.    Only the bitmap format is supported.

30005 Group number must be from 0 to 99
The GroupNumber property is set to an invalid value.

30007 Bevel width must be from 0 to 2
The bevel width is set to an invalid value.

3D Panel Control

Error Message
Number Explanation
30002 Bevel width must be from 0 to 30

The BevelWidth property is set to an invalid value.
30003 Border width must be from 0 to 30

The BorderWidth property is set to an invalid value.
30006 Flood percent must be from 0 to 100

The FloodPercent property is set to an invalid value.

    StatusBar Control
See Also Properties Methods Events Constants

A StatusBar control provides a window, usually at the bottom of a parent form, through which an
application can display various kinds of status data.    The StatusBar can be divided up into a maximum
of sixteen Panel objects that are contained in a Panels collection.

Syntax
StatusBar

Remarks
A StatusBar control consists of Panel objects, each of which can contain text and/or a picture.   
Properties to control the appearance of individual panels include Width, Alignment (of text and
pictures), and Bevel.    Additionally, you can use one of seven values of the Style property to
automatically display common data such as date, time, and keyboard states.
At design time, you can create panels, customize their appearances, and set their functions using the
Panel Properties dialog box.    At run time, the Panel objects can be reconfigured to reflect different
functions, depending on the state of the application.    For detailed information about the properties,
events, and methods of Panel objects, see the Panel Object, Panels Collection topic.
A StatusBar control typically displays information about an object being viewed on the form, the object's
components, or contextual information that relates to that object's operation.    The StatusBar, along
with other controls such as the Toolbar control, gives you the tools to create an interface that is
economical and yet rich in information.

Distribution Note      The StatusBar control is a 32-bit custom control that can only run on 32-bit
systems such as Windows 95 and Windows NT version 3.51 or higher.    Additionally, the StatusBar
control is part of a group of custom controls that are found in the COMCTL32.OCX file.    To use the
StatusBar control in your application, you must add the COMCTL32.OCX file to the project.    When
distributing your application, install the COMCTL32.OCX file in the user's Microsoft Windows SYSTEM
directory.    For more information on how to add a custom control to a project, see the Programmer's
Guide.

See Also
Panel Object, Panels Collection

StatusBar Control Properties

Align Property
Container Property
DragIcon Property
DragMode Property
Enabled Property
Font Property
Height Property
hWnd Property
Index Property
Left Property
MouseIcon Property
MousePointer Property
Name Property
Negotiate Property
Panels Property
Parent Property
SimpleText Property
Style Property (StatusBar Control)
Tag Property
Top Property
Visible Property
WhatsThisHelpID Property
Width Property

StatusBar Control Methods

Move Method
Refresh Method
ShowWhatsThis Method
ZOrder Method

StatusBar Control Events

Click Event
DblClick Event
DragDrop Event
DragOver Event
MouseDown Event
MouseMove Event
MouseUp Event
PanelClick Event
PanelDblClick Event

StatusBar Control Constants
See Also

Sbar Style Constants

Constant Value Description
sbrNormal 0 Normal.    StatusBar is divided into panels.
sbrSimple 1 Simple.    StatusBar has only one large panel and SimpleText.

PanelAlignment Constants

Constant Value Description
sbrLeft 0 Text to left.
sbrCenter 1 Text centered.
sbrRight 2 Text to right.

PanelAutoSize Constants

Constant Value Description
sbrNoAutoSize 0 No Autosizing.
sbrSpring 1 Extra space divided among panels.
sbrContents 2 Fit to contents.

PanelBevel Constants

Constant Value Description
sbrNoBevel 0 No bevel.
sbrInset 1 Bevel inset.
sbrRaised 2 Bevel raised.

PanelStyle Constants

Constant Value Description
sbrText 0 Text and/or bitmap displayed.
sbrCaps 1 Caps Lock status displayed.
sbrNum 2 Number Lock status displayed.
sbrIns 3 Insert key status displayed.
sbrScrl 4 Scroll Lock status displayed.
sbrTime 5 Time displayed in System format.
sbrDate 6 Date displayed in System format.

See Also
Alignment Property (Panel Object)
Autosize Property (Panel Object)
Bevel Property (Panel Object)
SimpleText Property
Style Property (StatusBar Control)
Style Property (Panel Object)
Visual Basic Custom Control Constants
Windows 95 Controls Constants

Panel Object, Panels Collection
See Also Properties Methods Events

A Panel object can contain text and a bitmap that can be used to reflect the status of an
application.

A Panels collection contains a collection of Panel objects.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
statusbar.Panels
statusbar.Panels(index)

The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to standard collection syntax.

The Panel object, Panels collection syntax has these parts:

Part Description
statusbar An object expression that evaluates to a StatusBar control.
index An integer or string that uniquely identifies the object in the collection.    The integer is the

value of the Index property; the string is the value of the Key property.

Remarks
The Panels collection is a 1-based array of Panel objects.    By default, there is one Panel object on a
StatusBar control.    Therefore, if you want three panels to be created, you only need toad two objects to
the default collection.

The Panels property returns a reference to a Panels collection.
To add a Panel object to a collection, use the Add method for Panel objects at run time, or the Panel
Properties tab on the Status Bar Control Properties dialog box at design time.
Each item in the collection can be accessed by its Index property or its Key property.    For example, to
get a reference to the third Panel object in a collection, use the following syntax:
Dim pnlX As Panel
Set pnlX = StatusBar1.Panels(3) ' Reference by index number.

' or
Set pnlX = StatusBar1.Panels.("Third") ' Reference by unique key.

' or
Set pnlX = StatusBar1.Panels.Item(3) ' Use Item method.

See Also
Add Method (Panels Collection)
Index Property
Key Property
Panels Property
StatusBar Control

Panel Object, Panels Collection Properties

Legend

Alignment Property (Panel Object)

Autosize Property (Panel Object)
Bevel Property(Panel Object)
Count Property
Enabled Property
Index Property
Left Property
MinWidth Property
Picture Property
Style Property (Panel Object)
Tag Property

Text Property

Visible Property
Width Property (Panel Object)

Panel Object, Panels Collection Methods

Legend

Add Method (Panels Collection)

Clear Method
Item Method
Remove Method

Panel Object, Panels Collection Events

Legend

PanelClick Event

PanelDblClick Event

Add Method (Panels Collection)
See Also Example

Adds a Panel object to a Panels collection and returns a reference to the newly created Panel object.   
Doesn't support named arguments.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Add(index, key, text, style, picture)

The Add method syntax has these parts:

Part Description
object An object expression that evaluates to a Panels collection.
index Optional.    An integer specifying the position where the Panel object is to be inserted.    If

no index is specified, the Panel is added to the end of the Panels collection.
key Optional.    A unique string that identifies the Panel.    Use the key to retrieve a specific

Panel.
text Optional.    A string that appears in the Panel.
style Optional.    The style of the panel.    The available styles are detailed in the Style Property

(Panel Object).
picture Optional.    Specifies the bitmap displayed in the active Panel.    For more information, see

the LoadPicture function.

Remarks
At run time, the Add method returns a reference to the newly inserted Panel object.    With this
reference, you can set properties for every new Panel in the following manner:
Dim pnlX as Panel
Dim I as Integer
For I = 1 to 6 ' Add six Panel objects.
' Create a panel and get a reference to it simultaneously.
Set pnlX = StatusBar1.Panels.Add(,"Panel " & I) ' Set Key property.
pnlX.Style = I ' Set Style property.
pnlX.AutoSize = sbrContents ' Set AutoSize property.
Next I

If you set the Style property for a Panel object to any value other than 0 (text and picture), any text you
set for the Text property will not appear unless you reset the Style property to 0.
The Panels collection is a 1-based collection.    In order to get a reference to the first (default) Panel in a
collection, use the Item method:
Dim pnlX As Panel
' Get a reference to first Panel.
Set pnlX = StatusBar1.Panels.Item(1)
pnlX.Text = "Changed text" ' Alter the Panel object's text.

By default, one Panel already exists on the control.    Therefore, after adding panels to a collection, the
Count will be one more than the number of panels added.    For example:
Dim I as Integer
For I = 1 to 4 ' Add four panels.

StatusBar1.Panels.Add ' Add panels without any properties.
Next I
MsgBox StatusBar1.Panels.Count ' Returns 5 panels.

See Also
Alignment Property (Panel Object)
AutoSize Property (Panel Object)
Bevel Property (Panel Object)
Count Property
Index Property
Item Method
Key Property
Panel Object, Panels Collection
StatusBar Control
Style Property (Panel Object)
Visible Property

Add Method (Panels Collection) Example

This example uses the Add method to add two new Panel objects to a StatusBar control.    To try the
example, place a StatusBar control on a form and paste the code into the form's Declarations section.   
Run the example.

Private Sub Form_Load()
Dim pnlX as Panel

' Add a panel with a clock icon and time style.
Set pnlX = StatusBar1.Panels.Add _
(,,,sbrTime,LoadPicture("icons\misc\clock03.ico"))
' Add second panel, with bitmap and Date style.
Set pnlX = StatusBar1.Panels.Add _
(,,,sbrDate,LoadPicture("bitmaps\assorted\calendar.bmp"))
' Set Bevel property for last Panel object.
pnlX.Bevel = sbrInset ' Inset bevel.
pnlX.Alignment = sbrRight ' Set Alignment property for last object.
' Set Text and AutoSize properties for first (default)Panel object.
StatusBar1.Panels(1).Text = "Add Panel Example"
StatusBar1.Panels(1).AutoSize = sbrContents

End Sub

Alignment Property (Panel Object)
See Also Example

Returns or sets the alignment of text in the caption of a Panel object in a StatusBar control.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Alignment [= number]

The Alignment property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel object.
number A constant or value specifying the type of action, as described in Settings.

Settings
The settings for number are:

Constant Value Description
sbrLeft 0 (Default).    Text appears left-justified and to right of bitmap.
sbrCenter 1 Text appears centered and to right of bitmap.
sbrRight 2 Text appears right-justified and to left of bitmap.

See Also
Add Method (Panels Collection)
Clear Method
Item Method
Panel Object, Panels Collection
Remove Method
StatusBar Control
StatusBar Control Constants

Alignment Property (Panel Object) Example

This example adds two Panel objects to a StatusBar control and aligns the text in each panel using one
of the three available styles.    To try the example, place a StatusBar control on a form and paste the
code into the Declarations section of the form.    Run the example.

Sub Form_Load()
Me.ScaleMode = vbTwips ' Set ScaleMode to twips.
Me.Width = 8145 ' Make sure form is wide enough to see all

panels.
' Declare variables.
Dim pnlX As Panel
Dim I As Integer

For I = 1 to 2 ' Add two panels.
StatusBar1.Panels.Add

Next I

For I = 1 to 3 ' Add pictures to each Panel.
Set pnlX = StatusBar1.Panels(I)
Set pnlX.Picture = LoadPicture("icons\comm\net12.ico")

Next I

' Set styles and alignment.
With StatusBar1.Panels
.Item(1).Text = "Left"
.Item(1).Alignment = sbrLeft ' Left alignment.
.Item(1).MinWidth = 2500 ' Allow space to see effect.
.Item(2). Text = "Center"
.Item(2).Alignment = sbrCenter ' Centered alignment.
.Item(2).MinWidth = 2500 ' Allow space to see effect.
.Item(3).Text = "Right"
.Item(3).Alignment = sbrRight ' Right alignment.
.Item(3).MinWidth = 2500 ' Allow space to see effect.
End With

End Sub

AutoSize Property (Panel Object)
See Also Example

Returns or sets a value that allows the width of a StatusBar control's Panel object to be automatically
sized when the panel's contents change or the parent form resizes.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.AutoSize [= number]

The AutoSize property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel object.
number A constant or value specifying the type of action, as described in Settings.

Settings
The settings for number are:

Constant Value Description
sbrNoAutoSize 0 (Default).    None.    No autosizing occurs.    The width of the Panel is

always and exactly that specified by the Width property.
sbrSpring 1 Spring.    When the parent form resizes and there is extra space

available, all panels with this setting divide the space and grow
accordingly.    However, the panels' width never falls below that specified
by the MinWidth property.

sbrContents 2 Content.    The Panel is resized to fit its contents.

Remarks
Panel objects with the Content style have precedence over those with the Spring style.    This means
that a Spring-style Panel is shortened if a Panel with the Contents style requires that space.

See Also
MinWidth Property
Panel Object, Panels Collection
StatusBar Control
StatusBar Control Constants
Width Property (Panel Object)

AutoSize Property (Panel Object) Example

This example adds two Panel objects to a StatusBar control and sets the AutoSize property to Content
for all panels.    As the cursor is moved over the objects on the form, the x and y coordinates are
displayed as well as the Tag property value for each control.    To try the example, place a StatusBar, a
PictureBox, and a CommandButton on a form, then paste the code into the Declarations section.   
Run the example and move the cursor over the various controls.

Private Sub Form_Load()
Dim pnlX As Panel
' Set long tags for each object.
Form1.Tag = "Project 1 Form"
Command1.Tag = "A command button"
Picture1.Tag = "Picture Box Caption"
StatusBar1.Tag = "Application StatusBar1"
' Set the AutoSize style of the first panel to Contents.
StatusBar1.Panels(1).AutoSize = sbrContents
' Add 2 more panels, and set them to Contents.
Set pnlX = StatusBar1.Panels.Add
pnlX.AutoSize = sbrContents
Set pnlX = StatusBar1.Panels.Add
pnlX.AutoSize = sbrContents

End Sub

Private Sub Form_MouseMove(Button As Integer, Shift As Integer, x As Single,
y As Single)

' Display the control's tag in panel 1, and x and y
' coordinates in panels 2 and 3. Because AutoSize = Contents,
' the first panel stretches to accommodate the varying text.
StatusBar1.Panels(1).Text = Form1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub

Private Sub Command1_MouseMove(Button As Integer, Shift As Integer, x As
Single, y As Single)

StatusBar1.Panels(1).Text = Command1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub

Private Sub Picture1_MouseMove(Button As Integer, Shift As Integer, x As
Single, y As Single)

StatusBar1.Panels(1).Text = Picture1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub

Private Sub StatusBar1_MouseMove(Button As Integer, Shift As Integer, x As
Single, y As Single)

StatusBar1.Panels(1).Text = StatusBar1.Tag
StatusBar1.Panels(2).Text = "X = " & x
StatusBar1.Panels(3).Text = "Y = " & y

End Sub

Bevel Property (Panel Object)
See Also Example

Returns or sets the bevel style of a StatusBar control's Panel object.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Bevel [= value]

The Bevel property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel object.
value A constant or value which determines the bevel style, as specified in Settings.

Settings
The settings for value are:

Constant Value Description
sbrNoBevel 0 None.    The Panel displays no bevel, and text looks like it is displayed right on

the status bar.
sbrInset 1 (Default).    Inset.    The Panel appears to be sunk into the status bar.
sbrRaised 2 Raised.    The Panel appears to be raised above the status bar.

See Also
Add Method (Panels Collection)
Panel Object, Panels Collection
StatusBar Control
StatusBar Control Constants

Bevel Property (Panel Object) Example

This example adds two Panel objects to a StatusBar control, and gives each Panel a different bevel
style.    To use the example, place a StatusBar control on a form and paste the code into the
Declarations section.    Run the example.
Private Sub Form_Load()

Dim pnlX As Panel
Dim I as Integer

For I = 1 to 2
Set pnlX = StatusBar1.Panels.Add() ' Add 2 panels.

Next I

With StatusBar1.Panels
.Item(1).Style = sbrCaps ' Caps Lock
.Item(1).Bevel = sbrInset ' Inset
.Item(2).Style = sbrNum' NumLock
.Item(2).Bevel = sbrNoBevel ' No bevel
.Item(3).Style = sbrDate ' Date
.Item(3).Bevel = sbrRaised ' Raised bevel

End With
End Sub

MinWidth Property
See Also Example

Returns or sets the minimum width of a StatusBar control's Panel object.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.MinWidth [= value]

The MinWidth property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel object.
value An integer that determines the minimum width of a Panel object.    The scale mode for this

value is determined by the container of the control.

Remarks
The default value is the same as the default of the Width property.    The value argument uses the same
scale units as the scale mode of the parent form or container.
The Width property always reflects the actual width of a Panel.    The Width and MinWidth properties
can only be different if the AutoSize property is set to Spring style and there is extra space in the status
bar.    In this case, the Panel is widened.

See Also
AutoSize Property (Panel Object)
Panel Object, Panels Collection
Width Property (Panel Object)
StatusBar Control

MinWidth Property Example

This example creates a StatusBar control with three Panel objects, and sets each of their MinWidth
properties to different values.    To use the example, place a StatusBar control on a form, and paste the
code into the Declarations section.    Run the example and click on any Panel to make it grow.
Private Sub Form_Load()

Dim I as Integer
Form1.ScaleMode = vbTwips 'Twips
For I = 1 to 2

StatusBar1.Panels.Add ' Add 2 panels.
Next I

With StatusBar1.Panels
.Item(1).Text = "Short"
.Item(1).AutoSize = sbrSpring ' AutoSize = Spring
.Item(1).MinWidth = 200 ' A short panel
.Item(2).Text = "Long"
.Item(2).AutoSize = sbrSpring ' AutoSize = Spring
.Item(2).MinWidth = 1000 ' A long panel
.Item(3).Style = sbrTime ' Time
.Item(3).AutoSize = sbrSpring ' Spring

End With
End Sub

Private Sub StatusBar1_PanelClick(ByVal Panel As Panel)
Panel.MinWidth = 2000

End Sub

Panels Property
See Also

Returns a reference to a collection of Panel objects.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Panels

The object placeholder is an object expression that evaluates to a StatusBar control.

See Also
Add Method (Panels Collection)
Count Property
Item Method
Panel Object, Panels Collection

PanelClick Event
See Also Example

Similar to the standard Click event, but the PanelClick event occurs when a user presses and then
releases a mouse button over any of the StatusBar control's Panel objects.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
Private Sub object_PanelClick(ByVal panel As Panel)

The PanelClick event syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar control.
panel A reference to a Panel object.

Remarks
The standard Click event also occurs when a Panel object is clicked.
The PanelClick event is only generated when the click occurs over a Panel object.    When the
StatusBar control's Style property is set to Simple style, panels are hidden, and therefore the
PanelClick event is not generated.
You can use the reference to the Panel object to set properties for that panel.    For example, the
following code resets the Bevel property of a clicked Panel:
Private Sub StatusBar1_PanelClick(ByVal Panel As Panel)
If Panel.Index = 1 Then

Panel.Bevel = sbrRaised ' Reset Bevel property.
End If
End Sub

See Also
Click Event
Panel Object, Panels Collection
PanelDblClick Event
StatusBar Control
Style Property (Panel Object)

PanelClick Event Example

This example adds two Panel objects to a StatusBar control; when each Panel is clicked, the value of
the Key and Width properties of the clicked Panel are displayed in the second Panel.    To try the
example, place a StatusBar control on a form and paste the code into the Declarations section.    Run
the example.

Private Sub Form_Load()
Dim I as Integer
For I = 1 to 2

StatusBar1.Panels.Add
Next I

With StatusBar1.Panels
.Item(1).Style = sbrDate
.Item(1).Key = "Date panel"
.Item(1).AutoSize = sbrContents
.Item(1).MinWidth = 2000
.Item(2).Style = sbrTime
.Item(2).Key = "Time panel"
.Item(3).AutoSize = sbrContents ' Content
.Item(3).Text = "Miscellaneous Data"
.Item(3).Key = "Panel 3"

End With
End Sub

Private Sub StatusBar1_PanelClick(ByVal Panel As Panel)
' Show clicked panel's key and width in Panel 3.
StatusBar1.Panels(3).Text = Panel.Key & " Width = " & Panel.Width

End Sub

PanelDblClick Event
See Also Example

Similar to the standard DblClick Event, the PanelDblClick occurs when a user presses and then releases
a mouse button twice over a StatusBar control's Panel object.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
Sub object_PanelDblClick(ByVal panel As Panel)

The PanelDblClick event syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar control.
panel A reference to the double-clicked Panel.

Remarks
The standard DblClick event also occurs when a Panel is double-clicked.
The PanelDblClick event is only generated when the double-click occurs over a Panel object.    When
the StatusBar control's Style property is set to Simple style, panels are hidden, and therefore the
PanelDblClick event is not generated.

See Also
DblClick Event
PanelClick Event
Panel Object, Panels Collection
StatusBar Control

PanelDblClick Event Example

This example adds two Panel objects to a StatusBar control.    When the user double-clicks on the
control, the text of the clicked Panel object is displayed.    To try the example, place a StatusBar control
on a form and paste the code into the form's Declarations section.    Run the example and double-click
on the control.

Private Sub Form_Load()
Dim I as Integer

For I = 1 to 2
StatusBar1.Panels.Add

Next I

With StatusBar1.Panels
.Item(1).Text = "A long piece of information."
.Item(1).AutoSize = sbrContents ' Content
.Item(2).Style = sbrDate ' Date style
.Item(2).AutoSize = sbrContents ' Content
.Item(3).Style = sbrTime ' Time style

End With
End Sub

Private Sub StatusBar1_PanelDblClick(ByVal Panel As Panel)
MsgBox Panel.Style

End Sub

SimpleText Property
See Also Example

Returns or sets the text displayed when a StatusBar control's Style property is set to Simple.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.SimpleText [= string]

The SimpleText property syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar control.
string A string that is displayed when the Style property is set to Simple.

Remarks
The StatusBar control has a Style property which can be toggled between Simple and Normal styles.   
When in Simple style, the status bar displays only one Panel.    The text displayed in Simple style is also
different from that displayed in Normal style.    This text is set with the SimpleText property.
The SimpleText property can be used in situations where an application's mode of operation temporarily
switches.    For example, when a menu is pulled down, the SimpleText could describe the menu's
purpose.

See Also
StatusBar Control
Style Property (StatusBar Control)

SimpleText Property Example

This example adds two Panel objects to a StatusBar control that appear in Normal style, and then adds
a string (using the SimpleText property) that appears when the Style property is set to Simple.    The
control toggles between the Simple style and the Normal style.    To try the example, place a StatusBar
control on a form and paste the code into the Declarations section of the form.    Run the example and
click on the StatusBar control.

Private Sub Form_Load()
Dim I As Integer
For I = 1 to 2

StatusBar1.Panels.Add ' Add 2 Panel objects.
Next I

With StatusBar1.Panels
.Item(1).Style = sbrNum ' Number lock
.Item(2).Style = sbrCaps ' Caps lock
.Item(3).Style = sbrScrl ' Scroll lock

End With

' This text will be displayed when the StatusBar is in Simple style.
StatusBar1.SimpleText = "Date and Time: " & Now

End Sub

Private Sub StatusBar1_Click()
' Toggle between simple and normal style.
With StatusBar1

If .Style = 0 Then
.Style = sbrSimple ' Simple style.

Else
.Style = sbrNormal ' Normal style.

End If
End With

End Sub

Style Property (StatusBar Control)
See Also Example

Returns or sets the style of a StatusBar control.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Style [= number]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a StatusBar control.
number An integer or constant that determines the appearance of the StatusBar control, as

specified in Settings.

Settings
The settings for number are:

Constant Value Description
sbrNormal 0 (Default).    Normal.    The StatusBar control shows all Panel objects.
sbrSimple 1 Simple.    The control displays only one large Panel.

Remarks
The StatusBar can toggle between two modes: Normal and Simple.    When in Simple style, the
Statusbar displays only one panel.    The appearance also changes: the bevel style is raised with no
borders.    This allows the control to have two appearances, both of which are maintained separately
from each other.
You can display different strings depending on the control's style.    Use the SimpleText property to set
the text of the string to be displayed when the Style property is set to Simple.

See Also
SimpleText Property
StatusBar Control
Style Property (Panel Object)
StatusBar Control Constants

Style Property (StatusBar Control) Example

This example adds two Panel objects to a StatusBar control that appear in Normal style, and then adds
a string (using the SimpleText property) that will appear when the Style property is set to Simple.    The
control toggles between the Simple style and the Normal style to show the SimpleText property string.   
To try the example, place a StatusBar control on a form and paste the code into the Declarations
section of the form.    Run the example and click on the StatusBar control.

Private Sub Form_Load()
Dim I As Integer
For I = 1 to 2

StatusBar1.Panels.Add
Next I
With StatusBar1.Panels

.Item(1).Style = sbrDate ' Date

.Item(2).Style = sbrCaps ' Caps lock

.Item(3).Style = sbrScrl ' Scroll lock
End With
StatusBar1.SimpleText = Time ' Show the time.

End Sub

Private Sub StatusBar1_Click()
With StatusBar1

If .Style = sbrNormal Then
.Style = sbrSimple ' Simple style

Else
.Style = sbrNormal ' Normal style

End If
End With

End Sub

Style Property (Panel Object)
See Also Example

Returns or sets the style of a StatusBar control's Panel object.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Style [= number]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel object.
number An integer or constant specifying the style of the Panel, as described in Settings.

Settings
The settings for number are:

Constant Value Description
sbrText 0 (Default).    Text and/or a bitmap.    Set text with the Text property.
sbrCaps 1 Caps Lock key.    Displays the letters CAPS in bold when Caps Lock is enabled,

and dimmed when disabled.
sbrNum 2 Number Lock.    Displays the letters NUM in bold when the number lock key is

enabled, and dimmed when disabled.
sbrIns 3 Insert key.    Displays the letters INS in bold when the insert key is enabled, and

dimmed when disabled.
sbrScrl 4 Scroll Lock key.    Displays the letters SCRL in bold when scroll lock is enabled,

and dimmed when disabled.
sbrTime 5 Time.    Displays the current time in the system format.
sbrDate 6 Date.    Displays the current date in the system format.

Remarks
If you set the Style property to any style except 0 (text and bitmap), any text set with the Text property
will not display unless the Style property is set to 0.
The Style property can be set as Panel objects are added to a collection.    See the Add method    for
more information.

Note      The StatusBar control also has a Style property. When the StatusBar control's Style is set to
Simple, the control displays only one large panel and its string (set with the SimpleText property).

See Also
Add Method (Panels Collection)
SimpleText Property
StatusBar Control Constants
Style Property (StatusBar Control)

Style Property (Panel Object) Example

This example displays data in the various styles on a StatusBar control.    To try this example, place a
StatusBar control on a form and paste the code into the form's Declarations section, and run the
example.

Private Sub Form_Load()
' Dim variables.
Dim I as Integer
Dim pnlX as Panel

For I = 1 to 5 ' Add 5 panels.
Set pnlX = StatusBar1.Panels.Add()

Next I

' Set the style of each panel.
With StatusBar1.Panels

.Item(1).Style = sbrDate ' Date

.Item(2).Style = sbrTime ' Time

.Item(3).Style = sbrCaps ' Caps lock

.Item(4).Style = sbrNum ' Number lock

.Item(5).Style = sbrIns ' Insert key

.Item(6).Style = sbrScrl ' Scroll lock
End With
Form1.Width = 9140 ' Widen form to show all panels.

End Sub

Width Property (Panel Object)
See Also Example

Returns or sets the current width of a StatusBar control's Panel object.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Width[= number]

The Width property syntax has these parts:

Part Description
object An object expression that evaluates to a Panel object.
number An integer that determines the width of the Panel.

Remarks
The Width property always reflects the actual width of a Panel.    The Width and MinWidth properties
can only be different if the AutoSize property is set to Spring, and if there is extra space in the status
bar.    In this case the Panel is widened.
The Width property can't be smaller than the MinWidth property.

See Also
AutoSize Property (Panel Object)
MinWidth Property
Panel Object, Panels Collection
StatusBar Control

Width Property (Panel Object) Example

This example creates three Panel objects and sets their Width property to different values.    When you
click on the form, the Width property of the first Panel is reset.    To try the example, place a StatusBar
control on a form, and paste the code into the Declarations section.    Run the example and click on each
panel to see its width.

Private Sub Form_Load()
Dim X As Panel
Dim I as Integer
For I = 1 to 2 ' Add 2 panels.

Set X = StatusBar1.Panels.Add()
Next I
With StatusBar1.Panels

.Item(1).Text = "Path = " & App.Path

.Item(1).AutoSize = sbrContents ' Contents

.Item(1).Width = 5000 ' A long panel

.Item(2).Text = "Record Field"

.Item(2).AutoSize = sbrSpring ' Spring

.Item(2).Width = 1000 ' A medium panel

.Item(3).Style = sbrTime ' Time

.Item(3).AutoSize = sbrSpring ' Spring

.Item(3).Width = 1000 ' A medium panel
End With

End Sub

Private Sub StatusBar1_PanelClick(ByVal Panel As Panel)
MsgBox Panel.Width ' Click each Panel to see its width.

End Sub

Private Sub Form_Click()
' Change Width.
StatusBar1.Panels(1). Width = 800

End Sub

Panels

The Panels keyword is used in these contexts:
Panels Collection
Panels Property

    TreeView Control
See Also Properties Methods Events Constants

A TreeView control displays a hierarchical list of Node objects, each of which consists of a label and an
optional bitmap.    A Treeview is typically used to display the headings in a document, the entries in an
index, the files and directories on a disk, or any other kind of information that is conducive to a
hierarchical view.

Syntax
Treeview

Remarks
After creating a TreeView control, you can add, remove, arrange, and otherwise manipulate Node
objects by setting properties and invoking methods.    You can programmatically expand and collapse
Node objects to display or hide all child nodes.    Three events, the Collapse, Expand, and NodeClick
event, also provide programming functionality.
You can navigate through a tree in code by retrieving a reference to Node objects using Root, Parent,
Child, FirstSibling, Next, Previous, and LastSibling properties.    Users can navigate through a tree
using the keyboard as well.    UP ARROW and DOWN ARROW keys cycle downward through all expanded
Node objects.    Node objects are selected from left to right, and top to bottom.    At the bottom of a tree,
the selection jumps back to the top of the tree, scrolling the window if necessary.    RIGHT ARROW and
LEFT ARROW keys also tab through expanded Node objects, but if the RIGHT ARROW key is pressed
while an unexpanded Node is selected, the Node expands; a second press will move the selection to
the next Node.    Conversely, pressing the LEFT ARROW key while an expanded Node has the focus
collapses the Node.    If a user presses an ANSI key, the focus will jump to the nearest Node that begins
with that letter.    Subsequent pressings of the key will cause the selection to cycle downward through all
expanded nodes that begin with that letter.
Several styles are available which alter the appearance of the control.    Node objects can appear with
text, bitmaps, lines, and plus/minus signs, or one of seven combinations of the above.
The TreeView control uses the ImageList control, specified by the ImageList property, to store the
bitmaps and icons that are displayed in Node objects.    A TreeView control can use only one ImageList
at a time.    This means that every item in the TreeView control will have an equal-sized image next to it
when the TreeView control's Style property is set to a style which displays images.

Distribution Note      The TreeView control is a 32-bit custom control that can only run on Windows 95
or Windows NT 3.51 or higher.    The TreeView control is part of a group of custom controls that are

found in the COMCTL32.OCX file.    To use the TreeView control in your application, you must add the
COMCTL32.OCX file to the project.    When distributing your application, install the COMCTL32.OCX file
in the user's Microsoft Windows SYSTEM directory.

See Also
ImageList Control
Node Object, Nodes Collection

Treeview Control Properties

BorderStyle Property
Container Property
DragIcon Property
DragMode Property
DropHighlight Property
Enabled Property
Font Property
Height, Width Properties
HelpContextID Property
HideSelection Property
hWnd Property
ImageList Property
Indentation Property
Index Property
LabelEdit Property
Left, Top Properties
LineStyle Property
MousePointer Property
MouseIcon Property
Name Property
Nodes Property
PathSeparator Property
Parent Property
Scrollbars Property
SelectedItem Property
Sorted Property
Style Property (Treeview Control)
TabIndex Property
TabStop Property
Tag Property
Visible Property
WhatsThisHelpID Property

Treeview Control Methods

Clear Method
GetVisibleCount Method
HitTest Method
Move Method
Refresh Method
Remove Method
SetFocus Method
StartLabelEdit Method
ShowWhatsThis Method
ZOrder Method

Treeview Control Events

AfterLabelEdit Event
BeforeLabelEdit Event
Click Event
Collapse Event
DblClick Event
DragDrop Event
DragOver Event
Expand Event
GotFocus Event
KeyDown Event
KeyPress Event
KeyUp Event
LostFocus Event
MouseDown Event
MouseMove Event
MouseUp Event
NodeClick Event

TreeView Control Constants
See Also

TreeLine Constants

Constant Value Description
tvwTreeLines 0 Treelines shown.
tvwRootLines 1 Rootlines shown with Treelines.

TreeRelationship Constants

Constant Value Description
tvwFirst 0 First Sibling.
tvwLast 1 Last Sibling.
tvwNext 2 Next sibling.
tvwPrevious 3 Previous sibling.
tvwChild 4 Child.

TreeStyle Constants

Constant Value Description
tvwTextOnly 0 Text only.
tvwPictureText 1 Picture and text.
tvwPlusMinusText 2 Plus/minus and text.
tvwPlusPictureText 3 Plus/minus, picture, and text.
tvwTreelinesText 4 Treelines and text.
tvwTreelinesPictureText 5 Teelines, Picture, and Text.
tvwTreelinesPlusMinusText 6 Treelines, Plus/Minus, and Text.
tvwTreelinesPlusMinusPictureText 7 Treelines, Plus/Minus, Picture, and Text.

LabelEdit Constants

Constant Value Description
tvwAutomatic 0 Label Editing is automatic.
tvwManual 1 LabelEditing must be invoked.

See Also
Add Method (Nodes Collection)
Child Property
FirstSibling Property
LastSibling Property
LineStyle Property
Next Property
Style Property (TreeView Control)
TreeView Control
Visual Basic Custom Control Constants
Windows 95 Controls Constants

Node Object, Nodes Collection
See Also Properties Methods

A Node object is an item in a TreeView control that can contain images and text.
A Nodes collection contains one or more Node objects.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
treeview.Nodes
treeview.Nodes.Item(index)

The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to standard collection syntax.
The Node object, Nodes collection syntax has these parts:

Part Description
treeview An object expression that evaluates to a TreeView control.
index Either an integer or string that uniquely identifies a member of a Nodes collection.    The

integer is the value of the Index property; the string is the value of the Key property.

Remarks
Nodes can contain both text and pictures.    However, to use pictures, you must associate an ImageList
control using the ImageList property.
Pictures can change depending on the state of the node; for example, a selected node can have a
different picture from an unselected node if you set the SelectedImage property to an image from the
associated ImageList.

See Also
Add Method (Nodes Collection)
ImageList Control
ImageList Property
Nodes Property
TreeView Control

Node Object, Nodes Collection Properties

Legend

Child Property

Children Property
Count Property
Enabled Property
Expanded Property
ExpandedImage Property
FirstSibling Property
FullPath Property
Image Property
Index Property
Key Property
LastSibling Property
Next Property

Parent Property (Node Object)

Previous Property (Node Object)
Root Property (Node Object)
Selected Property
SelectedImage Property
Sorted Property (TreeView)
Tag Property
Text Property
Visible Property

Node Object, Nodes Collection Methods

Legend

Add Method (Nodes Object)

Clear Method
CreateDragImage Method
EnsureVisible Method
Item Method
Remove Method

Add Method (Nodes Collection)
See Also Example

Adds a Node object to a Treeview control's Nodes collection.    Doesn't support named arguments.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Add(relative, relationship, key, text, image, selectedimage)

The Add method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a Nodes collection.
relative Optional.    The index number or key of a pre-existing Node object. The relationship

between the new node and this pre-existing node is found in the next argument,
relationship.

relationship Optional.    Specifies the relative placement of the Node object, as described in
Settings.

key Optional.    A unique string that can be used to retrieve the Node with the Item
method.

text Required.    The string that appears in the Node.
image Optional.    The index of an image in an associated ImageList control.
selectedimage Optional.    The index of an image in an associated ImageList control that is shown

when the Node is selected.

Settings
The settings for relationship are:

Constant Value Description
tvwLast 1 Last.    The Node is placed after all other nodes at the same level of the node

named in relative.
tvwNext 2 Next.    The Node is placed after the node named in relative.
tvwPrevious 3 Previous.    The Node is placed before the node named in relative.
tvwChild 4 (Default) Child.    The Node becomes a child node of the node named in

relative.

Note      If no Node object is named in relative, the new node is placed in the last position of the top node
hierarchy.

Remarks
The Nodes collection is a 1-based collection.
As a Node object is added it is assigned an index number, which is stored in the Node object's Index
property.    This value of the newest member is the value of the Node collection's Count property plus 1.
Because the Add method returns a reference to the newly created Node object, it is most convenient to
set properties of the new Node using this reference.    The following example adds several Node objects
with identical properties:
Dim nodX As Node ' Create the object variable.
Dim I as Integer ' Create a counter variable.
For I = 1 to 4

Set nodX = TreeView1.Nodes.Add(,,,"Node " & Cstr(i))
' Use the reference to set other properties, such as Enabled.
nodX.Enabled = True
' Set image property to image 3 in an associated ImageList.
nodX.ExpandedImage = 3

Next I

See Also
Clear Method
Index Property
Item Method (Custom Controls)
Key Property
Node Object, Nodes Collection
Remove Method (Custom Controls)
TreeView Control

Add Method Example (Nodes Collection)

The following example adds several Node objects with images to a TreeView control.    To try the
example, place a TreeView control and an ImageList control on a form, paste the code into the form's
Declarations section.      Run the example, and click other Node objects to see their keys.

Private Sub Form_Load()
' Load pictures into ImageList control.
Dim imgI As ListImage ' Create Image variable.
' Image 1: Open folder, key = "open."
Set imgI = ImageList1.ListImages.Add _
(, "open", LoadPicture("bitmaps\outline\open.bmp"))
' Image 2: Closed folder, key = "closed."
Set imgI = ImageList1.ListImages.Add _
(, "closed", LoadPicture("bitmaps\outline\closed.bmp"))
' Image 3: document, key = "leaf."
Set imgI = ImageList1.ListImages.Add _
(, "leaf", LoadPicture("bitmaps\outline\leaf.bmp"))

' Set Treeview control properties.
TreeView1.ImageList = ImageList1' Initialize ImageList.
TreeView1.Style = tvwTreelinesPlusMinusPictureText ' Style 7
TreeView1.LineStyle = tvwRootLines ' Linestyle 1

' Add Node objects.
Dim nodX As Node ' Create variable.

' First node with 'Root' as text, image 2 ("closed") for Image.
Set nodX = TreeView1.Nodes.Add(, ,"r", "Root", "closed")
nodX.ExpandedImage = "open" ' Open folder for expanded node.

' Second node has 'Parent' as text, image 2 for Image.
Set nodX = TreeView1.Nodes.Add(, , "p", "Parent", "closed")
nodX.ExpandedImage = "open" ' Open folder for expanded node.

' This next node is a child of Node 1 ("Root"), and uses
' image 3 ("leaf") for Image.
Set nodX = TreeView1.Nodes.Add(1,tvwChild,"c", "Child", "leaf")

' This next node is a child of "p." Instead of using an index,
' to specify the relative, we use its key "p."
Set nodX = TreeView1.Nodes.Add _
("p", tvwChild, "uns", "Unsorted", "closed")
nodX.ExpandedImage = "open"

' Add three Nodes, children of "Unsorted."
Set nodX = TreeView1.Nodes. _
Add("uns",tvwChild,"xx","Xu Xiang","leaf")
Set nodX = TreeView1.Nodes. _
Add("uns",tvwChild,"date","1967","leaf")
Set nodX = TreeView1.Nodes. _
Add("uns",tvwChild,"srt","Sorted",2)
nodX.ExpandedImage = "open"
' Children of last created node will be sorted.
nodX.Sorted = True

' Add three Nodes, children of "Sorted," with image "leaf."
Set nodX = TreeView1.Nodes.Add("srt",tvwChild,"x","X", "leaf")
Set nodX = TreeView1.Nodes.Add("srt",tvwChild,"j","J", "leaf")
Set nodX = TreeView1.Nodes.Add("srt",tvwChild,"a","A", "leaf")
nodX.EnsureVisible ' Expand tree to see all nodes

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
' Form caption shows index, parent, and key.
Dim strI As String
strI = "Index = " & Node.Index
On Error Resume Next ' Level 1 nodes have no parents--an error.
strI = strI & ": Parent =" & Node.Parent.Text
strI = strI & ": Key =" & Node.Key
Me.Caption = strI

End Sub

Child Property
See Also Example

Returns a reference to the first child of a Node object in a TreeView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Child

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a
reference to another Node object.    Therefore, you can simultaneously reference and perform
operations on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With

You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" ' Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With

See Also
Children Property
Node Object, Nodes Collection
Parent Property (Node Object)
TreeView Control

Child Property Example

This example creates several Node objects.    When you click on a Node object, the code uses the
Child property to navigate down the tree and return the names of all Child nodes.      As long as a Node
object has a Child node, the text of that Child node will be stored in a variable.    The process stops
when a Node has no children.    To try the example, place a TreeView control on a form and paste the
code into the form's Declarations section.    Run the program and click on any Node to see its children
and descendants.

Private Sub Form_Load()
TreeView1.Style = tvwTreelinesPlusMinusText ' Style 6.
TreeView1.LineStyle = tvwRootLines 'Linestyle 1.

' Add several Node objects.
Dim nodX As Node ' Create variable.

Set nodX = TreeView1.Nodes.Add(, , "r", "Root")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c1", "Child 1")
Set nodX = TreeView1.Nodes.Add("c1", tvwChild, "c2", "Child 2")
Set nodX = TreeView1.Nodes.Add("c2", tvwChild, "c3", "Child 3")
Set nodX = TreeView1.Nodes.Add("c3", tvwChild, "c4", "Child 4")
Set nodX = TreeView1.Nodes.Add("c2", tvwChild, "c5", "Child 5")
Set nodX = TreeView1.Nodes.Add("c3", tvwChild, "c6", "Child 6")
Set nodX = TreeView1.Nodes.Add("c4", tvwChild, "c7", "Child 7")
nodX.EnsureVisible ' Show all nodes.
Set nodX = TreeView1.Nodes.Add("c5", tvwChild, "c8", "Child 8")
Set nodX = TreeView1.Nodes.Add("c8", tvwChild, "c9", "Child 9")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim strC As String
Dim n As Integer
' Set n to current node's index.
n = Node.Index
Dim blnFlag As Boolean
blnFlag = True
' Put current node's text into the string variable.
strC = Node.Text & Chr(10)
' Create two Node variables.
Dim nod1, nod2 As Node
While blnFlag

' Set first variable to child of Node n.
Set nod1 = TreeView1.Nodes(n).Child
If nod1 is Nothing then

blnFlag = False
Else
' Put text of child node into string variable.
strC = strC & nod1.Text & Chr(10)
' Reset n to child node's index.
n = TreeView1.Nodes(n).Child.Index
' Set second variable to next child.
Set nod2 = TreeView1.Nodes(n).Child
' If next child's index = n, then stop.

If nod2 Is Nothing Then
 blnFlag = False
End If

End If
Wend
MsgBox strC ' Show Child nodes.

End Sub

Children Property
See Also Example

Returns the number of children a Node object has.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Children

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The Children property can be used to check if a Node object has any children before performing an
operation that affects the children.    For example, the following code checks for the presence of children
nodes before retrieving the Text property of the first Node, using the Child property.
Private Sub TreeView1_NodeClick(ByVal Node As Node)

If Node.Children > 0 Then
MsgBox Node.Child.Text

End If
End Sub

See Also
Child Property
Node Object, Nodes Collection
TreeView Control

Children Property Example

This example puts several Node objects in a TreeView control.    The code checks to see if a Node has
children nodes.    If so, then it displays the text of the children nodes.    To try the example, place a
TreeView control on a form and paste the code into the form's Declarations section.      Run the example,
click a Node object to select it, then click the form to see the text of the Node object's children.

Private Sub Form_Click()
Dim strC As String
Dim N As Integer
If TreeView1.SelectedItem.Children > 0 Then ' There are children.

' Get first child's text, and set N to its index value.
strC = TreeView1.SelectedItem.Child.Text & Chr(10)
N = TreeView1.SelectedItem.Child.Index

' While N is not the index of the child node's
' last sibling, get next sibling's text.
While N <> TreeView1.SelectedItem.Child.LastSibling.Index

strC = strC & TreeView1.Nodes(N).Next.Text & Chr(10)
' Reset N to next sibling's index.
N = TreeView1.Nodes(N).Next.Index

Wend
' Show results.
MsgBox "Children of " & TreeView1.SelectedItem.Text & _
" are: " & Chr(10) & strC

Else ' There are no children.
MsgBox TreeView1.SelectedItem.Text & " has no children"

End If
End Sub

Private Sub Form_Load()
TreeView1.BorderStyle = 1 ' Ensure border is visible
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"d","Dates")
Set nodX = TreeView1.Nodes.Add("d",tvwChild,"d89","1989")
Set nodX = TreeView1.Nodes.Add("d",tvwChild,"d90","1990")

' Create children of 1989 node.
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"John")
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"Brent")
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"Eric")
Set nodX = TreeView1.Nodes.Add("d89",tvwChild, ,"Ian")
nodX.EnsureVisible ' Show all nodes.

' Create children of 1990 node.
Set nodX = TreeView1.Nodes.Add("d90",tvwChild, ,"Randy")
Set nodX = TreeView1.Nodes.Add("d90",tvwChild, ,"Ron")
nodX.EnsureVisible ' Show all nodes.

End Sub

Collapse Event (TreeView Control)
See Also Example

Generated when any Node object in a TreeView control is collapsed.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Private Sub object_Collapse(ByVal node As Node)

The Collapse event syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView control.
node A reference to the clicked Node object.

Remarks
The Collapse event occurs before the standard Click event.
There are three methods of collapsing a Node: by setting the Node object's Expanded property to
False, by double-clicking a Node object, and by clicking a plus/minus image when the TreeView
control's Style property is set to a style that includes plus/minus images.    All of these methods generate
the Collapse event.
The event passes a reference to the collapsed Node object which can be used to validate an action, as
in the following example:
Private Sub TreeView1_Collapse(ByVal Node As Node)

If Node.Index = 1 Then
Node.Expanded = True ' Expand the node again.

End If
End Sub

See Also
Expand Event
Expanded Property
Node Object, Nodes Collection
NodeClick Event
SelectedItem Property
Style Property (TreeView Control)
TreeView Control

Collapse Event (TreeView Control) Example

This example adds one Node object, with several child nodes, to a TreeView control.    When the user
collapses a Node, the code checks to see how many children the Node has.    If it has more than one
child, the Node is re-expanded.    To try the example, place a TreeView control on a form and paste the
code into the form's Declarations section.        Run the example, and double-click a Node to collapse it and
generate the event.

Private Sub Form_Load()
TreeView1.Style = tvwTreelinesPlusMinusText ' Style 6.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"DV","Da Vinci")
Set nodX = TreeView1.Nodes.Add("DV",tvwChild,"T","Titian")
Set nodX = TreeView1.Nodes.Add("T",tvwChild,"R","Rembrandt")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Goya")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"David")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_Collapse(ByVal Node As Node)
' If the Node has more than one child node,
' keep the node expanded.
Select Case Node.Children

Case Is > 1
Node.Expanded = True

End Select
End Sub

AfterLabelEdit Event (ListView, TreeView Controls)
See Also Examples

Occurs after a user edits the label of the currently selected Node or ListItem object.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Sub object_AfterLabelEdit(cancel As Integer, newstring As String)

The AfterLabelEdit event syntax has these parts:

Part Description
object An object expression that evaluates to a ListView or TreeView control.
cancel An integer that determines if the label editing operation is canceled.    Any nonzero integer

cancels the operation.    Boolean values are also accepted.
newstring The string the user entered, or Null if the user canceled the operation.

Remarks
Both the AfterLabelEdit and the BeforeLabelEdit events are generated only if the LabelEdit property is
set to 1 (Automatic), or if the StartLabelEdit method is invoked.
The AfterLabelEdit event is generated after the user finishes the editing operation, which occurs when
the user clicks on another Node or ListItem or presses the ENTER key.
To cancel a label editing operation, set cancel to any nonzero number or to True.    If a label editing
operation is canceled, the previously existing label is restored.
The newstring argument can be used to test for a condition before canceling an operation.    For
example, the following code verifies that newstring is a numeral before allowing the operation to
conclude:
Private Sub TreeView1_AfterLabelEdit(Cancel As Integer, NewString As String)

If IsNumeric(NewString) Then
MsgBox "No numbers allowed"
Cancel = True

End If
End Sub

See Also
BeforeLabelEdit Event
LabelEdit Property
ListItem Object , ListItems Collection
ListView Control
NodeClick Event
Node Object, Nodes Collection
StartLabelEdit Method
TreeView Control

AfterLabelEdit Event (ListView, TreeView Controls) Example

This example adds three Node objects to a TreeView control.    When you attempt to edit a Node
object's label, the object's index is checked.    If it is 1, the operation is canceled.    To try the example,
place a TreeView control on a form and paste the code into the form's Declarations section.    Run the
example, click twice on the top Node object's label to edit it, type in some text, and press ENTER.

Private Sub Form_Load()
TreeView1.Style = tvwTreelinesText ' Lines and text.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Parent")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Child1")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Child2")
nodX.EnsureVisible ' Make sure all nodes are visible.

End Sub

Private Sub TreeView1_AfterLabelEdit _
(Cancel As Integer, NewString As String)

' If current node's index is 1, edit is canceled.
If TreeView1.SelectedItem.Index = 1 Then

Cancel = True
MsgBox "Can't replace " & TreeView1.SelectedItem.Text & _
" with " & NewString

End If
End Sub

This example adds three ListItem objects to a ListView control.    When you attempt to edit a ListItem
object's label, the object's index is checked.    If it is 1, the operation is canceled.    To try the example,
place a ListView control on a form and paste the code into the form's Declarations section.    Run the
example, click twice on any ListItem object's label to edit it, type in some text, and press ENTER.

Private Sub Form_Load()
Dim itmX As ListItem
Set itmX = ListView1.ListItems.Add(,,"Item1")
Set itmX = ListView1.ListItems.Add(,,"Item 2")
Set itmX = ListView1.ListItems.Add(,,"Item 3")

End Sub

Private Sub ListView1_AfterLabelEdit _
(Cancel As Integer, NewString As String)

' If current ListItem's index is 1, edit is canceled.
If ListView1.SelectedItem.Index = 1 Then

Cancel = True
MsgBox "Can't replace " & ListView1.SelectedItem.Text & _
" with " & NewString

End If
End Sub

BeforeLabelEdit Event (ListView, TreeView Controls)
See Also Example

Occurs when a user attempts to edit the label of the currently selected ListItem or Node object.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Sub object_BeforeLabelEdit(cancel As Integer)

The BeforeLabelEdit event syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView or a ListView control.
cancel An integer that determines if the operation is canceled.    Any nonzero integer cancels the

operation.    The default is 0.

Remarks
Both the AfterLabelEdit and the BeforeLabelEdit events are generated only if the LabelEdit property is
set to 1 (Automatic), or if the StartLabelEdit method is invoked.
The BeforeLabelEdit event occurs after the standard Click event.
To begin editing a label, the user must first click the object to select it, and click it a second time to begin
the operation.    The BeforeLabelEdit event occurs after the second click.
To determine which object's label is being edited, use the SelectedItem property.    The following
example checks the index of a selected Node before allowing an edit:
Private Sub TreeView1_BeforeLabelEdit(Cancel As Integer)

If TreeView1.SelectedItem.Index = 1 Then
Cancel = True ' Cancel the operation

End If
End Sub

See Also
AfterLabelEdit Event
LabelEdit Property
ListView Control
Node Object, Nodes Collection
SelectedItem Property
StartLabelEdit Method
TreeView Control

BeforeLabelEdit Event (ListView, TreeView Controls) Example

This example adds several Node objects to a TreeView control.    If you try to edit a label, the Node
object's index is checked.    If it is 1, the edit is prevented.    To try the example, place a TreeView control
on a form and paste the code into the form's Declarations section.    Run the example, and try to edit the
labels.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"P1","Parent 1")
Set nodX = TreeView1.Nodes.Add("P1",tvwChild,,"Child 1")
Set nodX = TreeView1.Nodes.Add("P1",tvwChild,,"Child 2")
nodX.EnsureVisible ' Make sure all nodes are visible.

End Sub

Private Sub TreeView1_BeforeLabelEdit(Cancel As Integer)
' Check selected node's index. If it is 1,
' then cancel the editing operation.
If TreeView1.SelectedItem.Index = 1 Then

MsgBox "Can't edit " + TreeView1.SelectedItem.Text
Cancel = True

End If
End Sub

This example adds several ListItem objects to a ListView control.    If you try to edit a label, the
ListItem object's index is checked.    If it is 1, the edit is prevented.    To try the example, place a
ListView control on a form and paste the code into the form's Declarations section.    Run the example,
and try to edit the labels.
Private Sub Form_Load()

Dim nodX As ListViewItem
Set nodX = ListView1.ListItems.Add(, , "Item 1")
Set nodX = ListView1.ListItems.Add(, , "Item 2")
Set nodX = ListView1.ListItems.Add(, , "Item 3")

End Sub

Private Sub ListView1_BeforeLabelEdit(Cancel As Integer)
' Check selected item's index. If it is 1,
' then cancel the editing operation.
If ListView1.SelectedItem.Index = 1 Then

MsgBox "Can't edit " + ListView1.SelectedItem.Text
Cancel = True

End If
End Sub

CreateDragImage Method
See Also Example

Creates a drag image using a dithered version of an object's associated image and label.    This image is
typically used in drag-and-drop operations.

Important    This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.CreateDragImage

The object placeholder represents an object expression that evaluates to a ListItem or Node object.

Remarks
The CreateDragImage method is typically used to assign an image to a DragIcon property at the start
of a drag-and-drop operation.

See Also
DropHighLight Property
HitTest Method
Node Object, Nodes Collection
TreeView Control

CreateDragImage Method Example

This example adds several Node objects to a TreeView control. After you select a Node object, you can
drag it to any other Node.    To try the example, place TreeView and ImageList controls on a form and
paste the code into the form's Declaration section. Run the example and drag Node objects around to
see the result.

' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = imagelist1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = imagelist1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown_
(Button As Integer, Shift As Integer, x As Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop_
(Source As Control, x As Single, y As Single)

If TreeView1.DropHighlight Is Nothing Then
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub

Else
If nodX = TreeView1.DropHighlight Then Exit Sub
Cls
Print nodX.Text & " dropped on " & TreeView1.DropHighlight.Text

Set TreeView1.DropHighlight = Nothing
indrag = False

End If
End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

If indrag = True Then
' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)

End If
End Sub

DropHighlight Property (ListView, TreeView Controls)
See Also Example

Returns or sets a reference to a Node or ListItem object that is highlighted with the system highlight
color.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.DropHighlight [=    value]

The DropHighlight property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView or TreeView control.
value A Node or ListItem object.

Remarks
The DropHighlight property is typically used in combination with the HitTest method in drag-and-drop
operations.    As the cursor is dragged over a control, the HitTest method returns a reference to any
object it is dragged over.    In turn, the DropHighlight property is set to the hit object, and simultaneously
returns a reference to that object.    The DropHighlight property then highlights the hit object with the
system highlight color.    The following code sets the DropHighlight property to the object hit with the
HitTest method.
Private Sub TreeView1_DragOver _
(Source As Control, X As Single, Y As Single, State As Integer)

Set TreeView1.DropHighlight = TreeView1.HitTest(X,Y)
End Sub

Subsequently, you can use the DropHighlight property in the DragDrop event to return a reference to
the last object the source control was dropped over, as shown in the following code:
Private Sub TreeView1_DragDrop _
(Source As Control, x As Single, y As Single)

' DropHighlight returns a reference to object drop occurred over.
Me.Caption = TreeView1.DropHighlight.Text
' To release the DropHighlight reference, set it to Nothing.
Set TreeView1.DropHighlight = Nothing

End Sub

Note in the preceding example that the DropHighlight property is set to Nothing after the procedure is
completed.    This must be done to release the highlight effect.

See Also
HitTest Method
ListView Control
TreeView Control

DropHighlight Property Example

This example adds several Node objects to a TreeView control. After you select a Node object, you can
drag it to any other Node.    To try the example, place TreeView and ImageList controls on a form and
paste the code into the form's Declaration section. Run the example and drag Node objects around to
see the result.

' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = imagelist1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = imagelist1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown_
(Button As Integer, Shift As Integer, x As Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop_
(Source As Control, x As Single, y As Single)

If TreeView1.DropHighlight Is Nothing Then
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub

Else
If nodX = TreeView1.DropHighlight Then Exit Sub
Cls
Print nodX.Text & " dropped on " & TreeView1.DropHighlight.Text

Set TreeView1.DropHighlight = Nothing
indrag = False

End If
End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

If indrag = True Then
' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)

End If
End Sub

EnsureVisible Method
See Also Example

Ensures that a specified ListItem or Node object is visible.    If necessary, this method scrolls and
expands the TreeView or ListView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.EnsureVisible

The object placeholder represents an object expression that evaluates to a ListItem or Node object.

Return Values

Value Description
True The method returns True if the ListView or TreeView control must scroll and/or expand to

expose the object.
False The method returns False if no scrolling and/or expansion is required.

Remarks
Use the EnsureVisible method when you want a particular Node or ListItem object, which might be
hidden deep in a TreeView or ListView control, to be visible.

See Also
Collapse Event
Expand Event
Expanded Property
ListItem Object , ListItems Collection
ListView Control
Node Object, Nodes Collection
TreeView Control

EnsureVisible Method Example

This example adds many nodes to a TreeView control, and uses the EnsureVisible method to scroll
and expand the tree.    To try the example, place a TreeView control on a form and paste the code into
the form's Declarations section. Run the example, and click the form to see the TreeView expand.
Private Sub Form_Load()

Dim nodX As Node
Dim i as Integer
TreeView1.BorderStyle = FixedSingle ' Show borders.

Set nodX = TreeView1.Nodes.Add(,,,"Root") Add first node.
For i = 1 to 15 ' Add 15 nodes

Set nodX = TreeView1.Nodes.Add(i,,,"Node " & CStr(i))
Next i

Set nodX = TreeView1.Nodes.Add(,,,"Bottom") ' Add one with text.
Set nodX = TreeView1.Nodes.Add(i,,,"Expanded") ' Add child to node.
Set nodX = TreeView1.Nodes.Add(i+1,,,"Show me") ' Add a final child.

End Sub

Private Sub Form_Click()
' Tree will scroll and expand when you click the form.
TreeView1.Nodes(TreeView1.Nodes.Count).EnsureVisible

End Sub

Expand Event (TreeView Control)
See Also Example

Occurs when a Node object in a TreeView control is expanded; that is, when its child nodes become
visible.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Sub object_Expand(ByVal node As Node)

The Expand event syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView control.
node A reference to the expanded Node object.

Remarks
The Expand event occurs after the Click and DblClick events.
The Expand event is generated in three ways: when the user double-clicks a Node object that has child
nodes; when the Expanded property for a Node object is set to True; and when the plus/minus image is
clicked.    Use the Expand event to validate an object, as in the following example:
Private Sub TreeView1_Expand(ByVal Node As Node)

If Node.Index <> 1 Then
Node.Expanded = False ' Prevent expand.

End If
End Sub

See Also
Collapse Event
Expanded Property
Node Object, Nodes Collection
TreeView Control

Expand Event Example

This example adds several Node objects to a TreeView control.    When a Node is expanded, the
Expand event is generated, and information about the Node is displayed.    To try the example, place a
TreeView control on a form and paste the code into the form's Declarations section. Run the example,
and expand the nodes.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , "RP", "Root Parent")
Set nodX = TreeView1.Nodes.Add("RP", tvwChild, "C1", "Child1")
Set nodX = TreeView1.Nodes.Add("C1", tvwChild, "C2", "Child2")
Set nodX = TreeView1.Nodes.Add("C2", tvwChild, "C3", " Child3")
Set nodX = TreeView1.Nodes.Add("C2", tvwChild, "C4", " Child4")
TreeView1.Style = tvwTreelinesPlusMinusText ' Style 6.
TreeView1.LineStyle = tvwRootLines ' Style 1

End Sub

Private Sub TreeView1_Expand(ByVal Node As Node)
Select Case Node.Key Like "C*"
Case Is = True

MsgBox Node.Text & " is a child node."
End Select

End Sub

Expanded Property
See Also Example

Returns or sets a value that determines whether a Node object in a TreeView control is currently
expanded or collapsed.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Expanded[= boolean]

The Expanded property syntax has these parts:

Part Description
object An object expression that evaluates to a Node object.
boolean A Boolean expression specifying whether the node is expanded or collapsed.

The settings for boolean are:

Setting Description
True The Node is currently expanded.
False The Node is currently collapsed.

Remarks
You can use the Expanded property to programmatically expand a Node object.    The following code
has the same effect as double-clicking the first Node:
TreeView1.Nodes(1).Expanded = True

When a Node object is expanded, the Expand event is generated.
If a Node object has no child nodes, the property value is ignored.

See Also
EnsureVisible Method
Expand Event
Node Object, Nodes Collection
TreeView Control

Expanded Property Example

This example adds several Node objects to a TreeView control.    When you click the form, the
Expanded property for each Node is set to True.    To try the example, place a TreeView control on a
form and paste the code into the form's Declarations section.    Run the example, and click the form to
expand all the Node objects.

Private Sub Form_Load()
Dim nodX As Node
Dim i as Integer
TreeView1.BorderStyle = vbFixedSingle ' Show border.

' Create a root node.
Set nodX = TreeView1.Nodes.Add(,,"root","Root")

For i = 1 to 5 ' Add 5 child nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,"Node " & CStr(i))

Next i
End Sub

Private Sub Form_Click()
Dim I as Integer
For I = 1 to TreeView1.Nodes.Count

' Expand all nodes.
TreeView1.Nodes(i).Expanded = True

Next I
End Sub

ExpandedImage Property
See Also

Returns or sets the index or key value of a ListImage object in an associated ImageList control; the
ListImage is displayed when a Node object is expanded.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.ExpandedImage[= number]

The ExpandedImage property syntax has these parts:

Part Description
object An object expression that evaluates to a Node object.
number A numeric expression that specifies the index of the image to be displayed.

Remarks
This property allows you to change the image associated with a Node object when the user double-
clicks the node or when the Node object's Expanded property is set to True.

See Also
Expanded Property
Expand Event
Image Property
ImageList Control
ImageList Property
SelectedImage Property
TreeView Control

FirstSibling Property
See Also Example

Returns a reference to the first sibling of a Node object in a TreeView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.FirstSibling

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The first sibling is the Node that appears in the first position in one level of a hierarchy of nodes.    Which
Node actually appears in the first position depends on whether or not the Node objects at that level are
sorted, which is determined by the Sorted property.    To sort Node objects, set the Sorted property of
the Parent node to True, as follows:
Private Sub TreeView1_NodeClick(ByVal Node As Node)

Node.Parent.Sorted = True
End Sub

The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a
reference to another Node object.    Therefore you can simultaneously reference and perform operations
on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With

You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" ' Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With

See Also
Child Property
LastSibling Property
Node Object, Nodes Collection
Parent Property
Sorted Property (TreeView)
TreeView Control

FirstSibling Property Example

This example adds several nodes to a TreeView control.    The FirstSibling property, in conjunction with
the Next property and the LastSibling property, is used to navigate through a clicked Node object's
hierarchy level.    To try the example, place a TreeView control on a form and paste the code into the
form's Declarations section.    Run the example and click the various nodes to see what is returned.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"dad","Mike") ' A first sibling.
Set nodX = TreeView1.Nodes.Add(,,"mom","Carol")
Set nodX = TreeView1.Nodes.Add(,,,"Alice")

' Marsha is the FirstSibling.
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Marsha")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Jan")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Cindy")
nodX.EnsureVisible ' Show all nodes.

' Greg is the FirstSibling.
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Greg")
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Peter")
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Bobby")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim strText As String
Dim n As Integer
' Set n to FirstSibling's index.
n = Node.FirstSibling.Index
' Place FirstSibling's text & linefeed in string variable.
strText = Node.FirstSibling.Text & Chr(10)
While n <> Node.LastSibling.Index
' While n is not the index of the last sibling, go to the
' next sibling and place its text into the string variable.

strText = strText & TreeView1.Nodes(n).Next.Text & Chr(10)
' Set n to the next node's index.

n = TreeView1.Nodes(n).Next.Index
Wend
MsgBox strText ' Display results.

End Sub

FullPath Property (TreeView Control)
See Also Example

Returns the fully qualified path of the currently selected Node object in a TreeView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.FullPath

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The fully qualified name is the concatenation of the text in the selected Node object's Text property with
the Text property values of all its ancestors.    The value of the PathSeparator property determines the
delimiter.

See Also
Node Object, Nodes Collection
PathSeparator Property
TreeView Control

FullPath Property Example

This example adds several Node objects to a TreeView control and displays the fully qualified path of
each when selected.    To try the example, place a TreeView control on a form and paste the code into
the form's Declarations section.    Run the example, then select a node and click the form to display the
Node object's full path.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Root")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Dir1")
Set nodX = TreeView1.Nodes.Add(2,tvwChild,,"Dir2")
Set nodX = TreeView1.Nodes.Add(3,tvwChild,,"Dir3")
Set nodX = TreeView1.Nodes.Add(4,tvwChild,,"Dir4")
nodX.EnsureVisible ' Show all nodes.
TreeView1.Style = tvwTreelinesText ' Style 4.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
MsgBox Node.FullPath

End Sub

GetVisibleCount Method
See Also Example

Returns the number of Node objects that fit in the internal area of a TreeView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.GetVisibleCount

The object placeholder represents an object expression that evaluates to a TreeView control.

Remarks
The number of Node objects is determined by how many lines can fit in a window.    The total number of
lines possible is determined by the height of the control and the Size property of the Font object.    The
count includes the partially visible item at the bottom of the list.
You can use the GetVisibleCount property to make sure that a minimum number of lines are visible so
the user can accurately assess a hierarchy.    If the minimum number of lines is not visible, you can reset
the size of the TreeView using the Height property.
If a particular Node object must be visible, use the EnsureVisible method to scroll and expand the
TreeView control.

See Also
EnsureVisible Method
Height Property
Node Object, Nodes Collection
TreeView Control

GetVisibleCount Method Example

This example adds several Node objects to a TreeView control.    When you click the form, the code
uses the GetVisibleCount method to check how many lines are visible, and then enlarges the control to
show all the objects.    To try the example, place a TreeView control on a form and paste the code into
the form's Declarations section.    Run the example, and click the form to enlarge the control.

Private Sub Form_Load()
Dim nodX As Node
Dim i as Integer
TreeView1.BorderStyle = 1 ' Show border.
For i = 1 to 20

Set nodX = TreeView1.Nodes.Add(,,,"Node " & CStr(i))
Next I
TreeView1.Height = 1500 ' TreeView is short, for comparison's sake.

End Sub

Private Sub Form_Click()
While Treeview1.GetVisibleCount < 20

' Make the treeview larger.
TreeView1.Height = TreeView1.Height + TreeView1.Font.Size

Wend
End Sub

HitTest Method (ListView, TreeView Controls)
See Also Example

Returns a reference to the ListItem object or Node object located at the coordinates of x and y.    Most
often used with drag-and-drop operations to determine if a drop target item is available at the present
location.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.HitTest (x As Single, y As Single)
The HitTest method syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView or ListView control.
x,y Coordinates of a target object, which is either a Node object or a ListItem object.

Remarks
If no object exists at the specified coordinates, the HitTest method returns Nothing.
The HitTest method is most frequently used with the DropHighlight property to highlight an object as
the mouse is dragged over it.    The DropHighlight property requires a reference to a specific object that
is to be highlighted.    In order to determine that object, the HitTest method is used in combination with
an event that returns x and y coordinates, such as the DragOver event, as follows:
Private Sub TreeView1_DragOver _
(Source As Control, X As Single, Y As Single, State As Integer)

Set TreeView1.DropHighlight = TreeView1.HitTest(X,Y)
End Sub

Subsequently, you can use the DropHighlight property in the DragDrop event to return a reference to
the last object the source control was dropped over, as shown in the following code:
Private Sub TreeView1_DragDrop _
(Source As Control, x As Single, y As Single)

' DropHighlight returns a reference to object drop occurred over.
Me.Caption = TreeView1.DropHighlight.Text
' To release the DropHighlight reference, set it to Nothing.
Set TreeView1.DropHighlight = Nothing

End Sub

Note in the preceding example that the DropHighlight property is set to Nothing after the procedure is
completed.    This must be done to release the highlight effect.

See Also
DragDrop Event
DragOver Event
DropHighLight Property
ListItem Object , ListItems Collection
ListView Control
Node Object, Nodes Collection
TreeView Control

HitTest Method (ListView, TreeView Controls) Example

This example adds several Node objects to a TreeView control. After you select a Node object, you can
drag it to any other Node.    To try the example, place TreeView and ImageList controls on a form and
paste the code into the form's Declaration section. Run the example and drag Node objects around to
see the result.

' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = imagelist1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = imagelist1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown_
(Button As Integer, Shift As Integer, x As Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop_
(Source As Control, x As Single, y As Single)

If TreeView1.DropHighlight Is Nothing Then
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub

Else
If nodX = TreeView1.DropHighlight Then Exit Sub
Cls
Print nodX.Text & " dropped on " & TreeView1.DropHighlight.Text

Set TreeView1.DropHighlight = Nothing
indrag = False

End If
End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

If indrag = True Then
' Set DropHighlight to the mouse's coordinates.
Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)

End If
End Sub

Indentation Property
See Also Example

Returns or sets the width of the indentation for a TreeView control.    Each new child Node object is
indented by this amount.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Indentation[= number]
The Indentation property syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView control.
number An integer specifying the width that each child Node is indented.

Remarks
If you change the Indentation property at run time, the TreeView is redrawn to reflect the new width.   
This property uses the scale mode of its container.    The property value cannot be negative.

See Also
Node Object, Nodes Collection
TreeView Control

Indentation Property Example

This example adds several Node objects to a TreeView control, while the Indentation property is shown
in the form's caption.    A ComboBox control provides alternate values for the Indentation width.    To try
the example, place a TreeView control and a ComboBox control on a form, and paste the code into the
form's Declarations section.    Run the example, and use the ComboBox to change the Indentation
property.

Private Sub Form_Load()
With combo1 ' Populate ComboBox with alternate values.
.AddItem "250"
.AddItem "550"
.AddItem "1000"
.ListIndex = 1
End With

Dim nodX As Node
Dim i As Integer

Set nodX = TreeView1.Nodes.Add(,,,CStr(1)) ' Add first node.

For i = 1 To 6 ' Add 6 nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,CStr(i + 1))

Next i

nodX.EnsureVisible ' Makes sure all nodes are visible.
Form1.Caption = "Indentation = " & TreeView1.Indentation

End Sub

Sub combo1_Click() ' Change Indentation with ComboBox value.
TreeView1.Indentation = combo1.Text
Form1.Caption = "Indentation = " & TreeView1.Indentation

End Sub

LabelEdit Property
See Also Example

Returns or sets a value that determines if a user can edit labels of ListItem or Node objects in a
ListView or TreeView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.LabelEdit [= integer]

The LabelEdit property syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView or ListView control.
integer An integer that determines whether the label of a Node or ListItem object can be

edited, as specified in Settings.

Settings
The settings for integer are:

Constant Value Description
lvwAutomatic 0 (Default) Automatic.    The BeforeLabelEdit event is generated when the

user clicks the label of a selected node.
lvwManual 1 Manual.    The BeforeLabelEdit event is generated only when the

StartLabelEdit method is invoked.

Note      The constants above are for the ListView control.    The constants for the TreeView control are:
tvwAutomatic and tvwManual.

Remarks
Label editing of an object is initiated when a selected object is clicked.    That is, the first click on an
object will select it; a second (single) click on the object will initiate the label editing operation.
The LabelEdit property, in combination with the StartLabelEdit method, allows you to programmatically
determine when and which labels can be edited.    When the LabelEdit property is set to 1, no label can
be edited unless the StartLabelEdit method is invoked.    For example, the following code allows the
user to edit a Node object's label by clicking a Command button:
Private Sub Command1_Click()

' Determine if the right Node is selected.
If TreeView1.SelectedItem.Index = 1 Then

TreeView1.StartLabelEdit ' Let user begin editing.
End If

End Sub

See Also
AfterLabelEdit Event
BeforeLabelEdit Event
ListItem Object, ListItems Collection
ListView Control
ListView Control Constants
Node Object, Nodes Collection
StartLabelEdit Method
TreeView Control Constants
TreeView Control

LabelEdit Property Example

This example initiates label editing when you click the Command button.    It allows a Node object to be
edited unless it is a root Node.    The LabelEdit property must be set to Manual.    To try the example,
place a TreeView control and a CommandButton on a form.    Paste the code into the form's
Declarations section. Run the example, select a node to edit, and press the Command button.

Private Sub Form_Load()
Dim nodX As Node
Dim i As Integer
TreeView1.LabelEdit = tvwManual ' Set property to manual.
Set nodX = TreeView1.Nodes.Add(,,," Node 1")' Add first node.

For i = 1 to 5 ' Add 5 nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,"Node " & CStr(i + 1))

Next I

nodX.EnsureVisible ' Show all nodes.
End Sub

Private Sub Command1_Click()
' Invoke the StartLabelEdit method on the selected node,
' which triggers the BeforeLabelEdit event.
TreeView1.StartLabelEdit

End Sub

Private Sub TreeView_BeforeLabelEdit (Cancel as Integer)
' If the selected item is the root, then cancel the edit.
If TreeView1.SelectedItem Is TreeView1.SelectedItem.Root Then

Cancel = True
End If

End Sub

Private Sub TreeView_AfterLabelEdit _
(Cancel As Integer, NewString As String)

' Assume user has entered some text and pressed the ENTER key.
' Any nonempty string will be valid.
If Len(NewString) = 0 Then

Cancel = True
End If

End Sub

LastSibling Property
See Also Example

Returns a reference to the last sibling of a Node object in a TreeView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.LastSibling

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The last sibling is the Node that appears in the last position in one level of a hierarchy of nodes.    Which
Node actually appears in the last position depends on whether or not the Node objects at that level are
sorted, which is determined by the Sorted property.    To sort the Node objects at one level, set the
Sorted property of the Parent node to True.    The following code demonstrates this:
Private Sub TreeView1_NodeClick(ByVal Node As Node)

Node.Parent.Sorted = True
End Sub

The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a
reference to another Node object.    Therefore, you can simultaneously reference and perform
operations on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With

You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" ' Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With

See Also
FirstSibling Property
Next Property
Node Object, Nodes Collection
TreeView Control

LastSibling Property Example

This example adds several Node objects to a TreeView control.    The LastSibling property, in
conjunction with the Next property and the FirstSibling property, is used to navigate through a clicked
Node object's hierarchy level.    To try the example, place a TreeView control on a form and paste the
code into the form's Declarations section.    Run the example, and click the various nodes to see what is
returned.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"dad","Mike")
Set nodX = TreeView1.Nodes.Add(,,"mom","Carol")
' Alice is the LastSibling.
Set nodX = TreeView1.Nodes.Add(,,,"Alice")

Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Marsha")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Jan")
' Cindy is the LastSibling.
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Cindy")
nodX.EnsureVisible ' Show all nodes.

Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Greg")
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Peter")
' Bobby is the LastSibling.
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Bobby")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim strText As String
Dim n As Integer
' Set n to FirstSibling's index.
n = Node.FirstSibling.Index
' Place FirstSibling's text & linefeed in string variable.
strText = Node.FirstSibling.Text & Chr(10)
While n <> Node.LastSibling.Index
' While n is not the index of the last sibling, go to the
' next sibling and place its text into the string variable

strText = strText & TreeView1.Nodes(n).Next.Text & Chr(10)
' Set n to the next node's index.

n = TreeView1.Nodes(n).Next.Index
Wend
MsgBox strText ' Display results.

End Sub

LineStyle Property
See Also Example

Returns or sets the style of lines displayed between Node objects.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.LineStyle [= number]

The LineStyle property syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView control.
number A value or constant that specifies the line style as shown in Settings.

Settings
The settings for number are:

Constant Value Description
tvwTreeLines 0 (Default) Tree lines.    Displays lines between Node siblings and their

parent Node.
tvwRootLines 1 Root Lines.    In addition to displaying lines between    Node siblings and

their parent Node, also displays lines between the root nodes.

Remarks
You must set the Style property to a style that includes tree lines.

See Also
Style Property (TreeView Control)
TreeView Control
TreeView Control Constants

LineStyle Property Example

This example adds several Node objects with images to a TreeView control.    You can change the
LineStyle and Style properties by selecting the alternate styles in two ComboBox controls.    To try the
example, place a TreeView control, an ImageList control, and    two ComboBox controls on a form, and
paste the code into the form's Declarations section. Run the example, and click either ComboBox to
change the LineStyle and Style properties.

Private Sub Form_Load()
' Add an image to the ImageList control.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(,,LoadPicture("bitmaps\outline\leaf.bmp"))

TreeView1.ImageList = ImageList1 ' Initialize ImageList.

With combo1 ' Populate ComboBox with line styles.
.AddItem "Tree lines"
.AddItem "Root lines"
.ListIndex = 0 ' The default is TreeLines.
End With

With Combo2 ' Populate ComboBox with all styles.
.AddItem "Text only" ' 0
.AddItem "Image & text" ' 1
.AddItem "Plus/minus & text" ' 2
.AddItem "Plus/minus, image & text" ' 3
.AddItem "Lines & text" ' 4
.AddItem "Lines, image & Text" ' 5
.AddItem "Lines, plus/minus & Text" ' 6
.AddItem "Lines, plus/minus, image & text" ' 7
.ListIndex = 7
End With

Dim nodX As Node
Dim i as Integer
' Create root node.
Set nodX = TreeView1.Nodes.Add(,,,"Node " & "1",1)

For i = 1 to 5 ' Add 5 nodes.
Set nodX = TreeView1.Nodes. _
Add(i,tvwChild,,"Node " & CStr(i + 1),1)

Next I
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub combo1_Click()
' Change line style from ComboBox.
TreeView1.LineStyle = combo1.ListIndex

End Sub

Sub combo2_Click() ' Change Style with ComboBox.
TreeView1.Style = Combo2.ListIndex
Form1.Caption = "Indentation = " & Combo1.Text

End Sub

Next Property
See Also Example

Returns a reference to the next sibling Node of a TreeView control's Node object.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Next

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a
reference to another Node object.    Therefore you can simultaneously reference and perform operations
on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With

You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" ' Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With

See Also
FirstSibling Property
LastSibling Property
Previous Property
TreeView Control

Next Property Example

This example adds several Node objects to a TreeView control.    The LastSibling property, in
conjunction with the Next property and the FirstSibling property, is used to navigate through a clicked
Node object's hierarchy level.    To try the example, place a TreeView control on a form and paste the
code into the form's Declarations section.    Run the example, and click the various nodes to see what is
returned.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"dad","Mike")
Set nodX = TreeView1.Nodes.Add(,,"mom","Carol")
' Alice is the LastSibling.
Set nodX = TreeView1.Nodes.Add(,,,"Alice")

Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Marsha")
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Jan")
' Cindy is the LastSibling.
Set nodX = TreeView1.Nodes.Add("mom",tvwChild,,"Cindy")
nodX.EnsureVisible ' Show all nodes.

Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Greg")
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Peter")
' Bobby is the LastSibling.
Set nodX = TreeView1.Nodes.Add("dad",tvwChild,,"Bobby")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim strText As String
Dim n As Integer
' Set n to FirstSibling's index.
n = Node.FirstSibling.Index
' Place FirstSibling's text & linefeed in string variable.
strText = Node.FirstSibling.Text & Chr(10)
' While n is not the index of the last sibling, go to the
' next sibling and place its text into the string variable.
While n <> Node.LastSibling.Index

strText = strText & TreeView1.Nodes(n).Next.Text & Chr(10)
' Set n to the next node's index.

n = TreeView1.Nodes(n).Next.Index
Wend
MsgBox strText ' Display results.

End Sub

NodeClick Event
See Also Example

Occurs when a Node object is clicked.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Private Sub object_NodeClick(ByVal node As Node)

The NodeClick event syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView control.
node A reference to the clicked Node object.

Remarks
The standard Click event is generated when the user clicks any part of the TreeView control.    The
NodeClick event is generated when the user clicks a particular Node object; the NodeClick event also
returns a reference to a particular Node object which can be used to validate the Node before further
action.
The NodeClick event occurs before the standard Click event.

See Also
Node Object, Nodes Collection
SelectedItem Property
TreeView Control

NodeClick Event Example

This example adds several Node objects to a TreeView control.    When a Node is clicked, the
NodeClick event is triggered and is used to get the Node object's index and text.    To try the example,
place a TreeView control on a form and paste the code into the form's Declarations section. Run the
example, and click any Node.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"R","Root")
nodX.Expanded = True
Set nodX = TreeView1.Nodes.Add(,,"P","Parent")
nodX.Expanded = True
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Child 1")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Child 2")
Set nodX = TreeView1.Nodes.Add("R",tvwChild,,"Child 3")
Set nodX = TreeView1.Nodes.Add("P",tvwChild,,"Child 4")
Set nodX = TreeView1.Nodes.Add("P",tvwChild,,"Child 5")
Set nodX = TreeView1.Nodes.Add("P",tvwChild,,"Child 6")

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Form1.Caption = "Index = " & Node.Index & " Text:" & Node.Text

End Sub

Nodes Property
See Also Example

Returns a reference to a collection of TreeView control Node objects.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Nodes

The object placeholder represents an object expression that evaluates to a TreeView control.

Remarks
You can manipulate Node objects using standard collection methods (for example, the Add and
Remove methods).    Each element in the collection can be accessed by its index, or unique key which
you store in the Key property.

See Also
Add Method (Nodes Collection)
Clear Method
Index Property
Item Method
Key Property
Node Object, Nodes Collection
Remove Method
TreeView Control

Nodes Property Example

This example adds several Node objects to a TreeView control.    When the form is clicked, a reference
to each Node is used to display each Node object's text.    To try the example, place a TreeView control
on a form and paste the code into the form's Declarations section.    Run the example, and click the
form.Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,"R","Root")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C1","Child 1")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C2","Child 2")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C3","Child 3")
Set nodX = TreeView1.Nodes.Add("R", tvwChild,"C4","Child 4")
nodX.EnsureVisible
TreeView1.Style = tvwTreelinesText ' Style 4.
TreeView1.BorderStyle = vbFixedSingle

End Sub

Private Sub Form_Click()
Dim i As Integer
Dim strNodes As String
For i = 1 To TreeView1.Nodes.Count
strNodes = strNodes & TreeView1.Nodes(i).Index & " " & _
"Key: " & TreeView1.Nodes(i).Key & " " & _
"Text: " & TreeView1.Nodes(i).Text & Chr(10)
Next i
MsgBox strNodes

End Sub

Parent Property (Node Object)
See Also Example

Returns or sets the parent object of a Node object.    Available only at run time.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Parent[= node]

The Parent property syntax has these parts:

Part Description
object An object expression that evaluates to a Node object.
node A Node object that becomes the parent of the object.

Remarks
At run time, an error occurs if you set this property to an object that creates a loop.    For example, you
cannot set any Node to become a child Node of its own descendants.
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a
reference to another Node object.    Therefore, you can simultaneously reference and perform
operations on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With

You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" ' Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With

See Also
Child Property
FirstSibling Property
LastSibling Property
Next Property
Node Object, Nodes Collection
Previous Property
Root Property

Parent Property Example (Node Object)

This example adds several Node objects to a TreeView control. After you select a Node object, you can
then click and drag it to any other Node to make it a child of the target Node. To try the example, place
TreeView and ImageList controls on a form and paste the code into the form's Declaration section. Run
the example and drag Node objects onto other Node objects to see the result.

' Declare global variables.
Dim indrag As Boolean ' Flag that signals a Drag Drop operation.
Dim nodX As Object ' Item that is being dragged.

Private Sub Form_Load()
' Load a bitmap into an Imagelist control.
Dim imgX As ListImage
Dim BitmapPath As String
BitmapPath = "icons\mail\mail01a.ico"
Set imgX = ImageList1.ListImages.Add(, , LoadPicture(BitmapPath))

' Initialize TreeView control and create several nodes.
TreeView1.ImageList = ImageList1
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(, , , "Parent1", 1)
Set nodX = TreeView1.Nodes.Add(, , , "Parent2", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 1", 1)
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Child 2", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 3", 1)
Set nodX = TreeView1.Nodes.Add(2, tvwChild, , "Child 4", 1)
Set nodX = TreeView1.Nodes.Add(3, tvwChild, , "Child 5", 1)
nodX.EnsureVisible ' Expand tree to show all nodes.

End Sub

Private Sub TreeView1_MouseDown(Button As Integer, Shift As Integer, x As
Single, y As Single)

Set nodX = TreeView1.SelectedItem ' Set the item being dragged.
Set TreeView1.DropHighlight = Nothing

End Sub

Private Sub TreeView1_MouseMove _
(Button As Integer, Shift As Integer, x As Single, y As Single)

If Button = vbLeftButton Then ' Signal a Drag operation.
indrag = True ' Set the flag to true.
' Set the drag icon with the CreateDragImage method.
TreeView1.DragIcon = TreeView1.SelectedItem.CreateDragImage
TreeView1.Drag vbBeginDrag ' Drag operation.

End If
End Sub

Private Sub TreeView1_DragDrop(Source As Control, x As Single, y As Single)
' If user didn't move mouse or released it over an invalid area.
If TreeView1.DropHighlight Is Nothing Then

indrag = False
Exit Sub

Else
' Set dragged node's parent property to the target node.
On Error GoTo checkerror ' To prevent circular errors.
Set nodX.Parent = TreeView1.DropHighlight

Cls
Print TreeView1.DropHighlight.Text & _
" is parent of " & nodX.Text
' Release the DropHighlight reference.
Set TreeView1.DropHighlight = Nothing
indrag = False
Exit Sub ' Exit if no errors occured.

End If

checkerror:

' Define constants to represent Visual Basic errors code.
Const CircularError = 35614
If Err.Number = CircularError Then

Dim msg As String
msg = "A node can't be made a child of its own children."
' Display the message box with an exclamation mark icon
' and with OK and Cancel buttons.
If MsgBox(msg, vbExclamation & vbOKCancel) = vbOK Then

' Release the DropHighlight reference.
indrag = False
Set TreeView1.DropHighlight = Nothing
Exit Sub

End If
End If

End Sub

Private Sub TreeView1_DragOver(Source As Control, x As Single, y As Single,
State As Integer)

Set TreeView1.DropHighlight = TreeView1.HitTest(x, y)
End Sub

PathSeparator Property (TreeView Control)
See Also Example

Returns or sets the delimiter string used for the path returned by the FullPath property.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.PathSeparator [= string]

The PathSeparator syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView control.
string A string that determines the PathSeparator, usually a single character.

Remarks
The default character is "\."

See Also
FullPath Property
TreeView Control

PathSeparator Property Example

This example adds several Node objects to a TreeView control, and uses a ComboBox control to
change the PathSeparator property.    To try the example, place a TreeView control and a ComboBox
on a form, and paste the code into the form's Declarations section.    Run the example, select a Node,
and click the form.    Change the PathSeparator property value using the ComboBox.

Private Sub Form_Load
TreeView1.BorderStyle = vbFixedSingle ' Show border.
With combo1 ' Populate the ComboBox with alternate characters.
.AddItem "/"
.AddItem "-"
.AddItem ":"
.ListIndex = 1
End With

Dim nodX As Node
Dim i As Integer
Set nodX = TreeView1.Nodes.Add(,,,CStr(1)) ' Add first node.

For i = 1 to 5 ' Add other nodes.
Set nodX = TreeView1.Nodes.Add(i,tvwChild,,CStr(i + 1))

Next i

nodX.EnsureVisible ' Ensure all are visible.
End Sub

Private Sub combo1_Click() ' Change the delimiter character.
TreeView1.PathSeparator = combo1.Text

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
' Show path in form's caption.
Me.Caption = Node.FullPath

End Sub

Previous Property (Node Object)
See Also Example

Returns a reference to the previous sibling of a Node object.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object. Previous

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a
reference to another Node object.    Therefore you can simultaneously reference and perform operations
on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With

You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" ' Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With

See Also
FirstSibling Property
LastSibling Property
Node Object, Nodes Collection
Parent Property

Previous Property Example

This example adds several nodes to a TreeView control.    The Previous property, in conjunction with
the LastSibling property and the FirstSibling property, is used to navigate through a clicked Node
object's hierarchy level.    To try the example, place a TreeView control on a form and paste the code
into the form's Declarations section.    Run the example, and click the various nodes to see what is
returned.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , "r", "Root")
Set nodX = TreeView1.Nodes.Add(, , "p", "parent")

Set nodX = TreeView1.Nodes.Add("r", tvwChild, , "Child 1")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, , "Child 2")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, , "Child 3")
nodX.EnsureVisible ' Show all nodes.

Set nodX = TreeView1.Nodes.Add("p", tvwChild, , "Child 4")
Set nodX = TreeView1.Nodes.Add("p", tvwChild, , "Child 5")
Set nodX = TreeView1.Nodes.Add("p", tvwChild, , "Child 6")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim strText As String
Dim n As Integer
' Set n to LastSibling's index.
n = Node.LastSibling.Index
' Place LastSibling's text & linefeed in string variable.
strText = Node.LastSibling.Text & Chr(10)
While n <> Node.FirstSibling.Index

' While n is not the index of the FirstSibling, go to the
' previous sibling and place its text into the string variable.
strText = strText & TreeView1.Nodes(n).Previous.Text & Chr(10)
' Set n to the previous node's index.
n = TreeView1.Nodes(n).Previous.Index

Wend
MsgBox strText ' Display results.

End Sub

Root Property (Node Object)
See Also Example

Returns a reference to the root Node object of a selected Node.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Root

The object placeholder represents an object expression that evaluates to a Node object.

Remarks
The Child, FirstSibling, LastSibling, Previous, Parent, Next, and Root properties all return a
reference to another Node object.    Therefore, you can simultaneously reference and perform
operations on a Node, as follows:
With TreeView1.Nodes(x).Child

.Text = "New text"

.Key = "New key"

.SelectedImage = 3
End With

You can also set an object variable to the referenced Node, as follows:
Dim NodChild As Node
' Get a reference to the child of Node x.
Set NodChild = TreeView1.Nodes(x).Child
' Use this reference to perform operations on the child Node.
With nodChild

.Text = "New text" ' Change the text.

.Key = "New key" ' Change key.

.SelectedImage = 3 ' Change SelectedImage.
End With

See Also
FirstSibling Property
LastSibling Property
Node Object, Nodes Collection
Parent Property (Node Object)
SelectedItem Property

Root Property Example

This example adds several Node objects to a TreeView control.    When you click a Node, the code
navigates up the tree to the Root node, and displays the text of each Parent node.    To try the example,
place a TreeView control on a form and paste the code into the form's Declarations section. Run the
example, and click a Node.

Private Sub Form_Load()
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(,,"r", "Root")
Set nodX = TreeView1.Nodes.Add(,,"p", "Parent")
Set nodX = TreeView1.Nodes.Add("p",tvwChild,, "Child 1")
nodX.EnsureVisible ' Show all nodes.
Set nodX = TreeView1.Nodes.Add("r",tvwChild,"C2", "Child 2")
Set nodX = TreeView1.Nodes.Add("C2",tvwChild,"C3", "Child 3")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,, "Child 4")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,, "Child 5")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim n As Integer
Dim strParents As String ' Variable for information.
n = Node.Index ' Set n to index of clicked node.
strParents = Node.Text & Chr(10)
While n <> Node.Root.Index

strParents = strParents & _
TreeView1.Nodes(n).Parent.Text & Chr(10)
' Set n to index of next parent Node.
n = TreeView1.Nodes(n).Parent.Index

Wend
MsgBox strParents

End Sub

Selected Property (Custom Controls)
See Also Example

Returns or sets a value that determines if a ListItem, Node, or Tab object is selected.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Selected [= boolean]

The Selected property syntax has these parts:

Part Description
object An object expression that evaluates to a ListItem, Node, or Tab object.
boolean A Boolean expression that determines if an object is selected.

Remarks
The Selected property is used to programmatically select a specific Node, ListItem or Tab object.   
Once you have selected an object in this manner, you can perform various operations on it, such as
setting properties and invoking methods.
To select a specific Node object, you must refer to it either by the value of its Index property or its Key
property.    The following example selects a specific Node object in a TreeView control:
Private Sub Command1_Click()

ListView1.ListItems(3).Selected = True ' Selects an object.
' Use the SelectedItem property to get a reference to the object.
ListView1.SelectedItem.Text = "Changed Text"

End Sub

In the ListView control, the SelectedItem property always refers to the first selected item.    Therefore, if
multiple items are selected, you must iterate through all of the items, checking each item's Selected
property.

See Also
ListItem Object, ListItems Collection
ListView Control
Node Object, Nodes Collection
SelectedItem Property
TreeView Control

Selected Property Example

This example adds several Node objects to a TreeView control.    When a Node is selected, a reference
to the selected Node is used to display its key.    To try the example, place a TreeView control on a form,
and paste the code into the form's Declarations section.    Run the example, select a Node, and click the
form.

Private Sub Form_Load()
Dim nodX As Node ' Create a tree.
Set nodX = TreeView1.Nodes.Add(,,"r","Root")
Set nodX = TreeView1.Nodes.Add(,,"p","Parent")
Set nodX = TreeView1.Nodes.Add("p",tvwChild,,"Child 1")
nodX.EnsureVisible ' Show all nodes.
Set nodX = TreeView1.Nodes.Add("r",tvwChild,"C2","Child 2")
Set nodX = TreeView1.Nodes.Add("C2",tvwChild,"C3","Child 3")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,,"Child 4")
Set nodX = TreeView1.Nodes.Add("C3",tvwChild,,"Child 5")
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub Form_Click()
Dim intX As Integer
On Error Resume Next ' If an integer isn't entered.
intX = InputBox("Check Node",,TreeView1.SelectedItem.Index)
If IsNumeric(intX) Then ' Ensure an integer was entered.

If TreeView1.Nodes(intX).Selected = True Then
MsgBox TreeView1.Nodes(intX).Text & " is selected."

Else
MsgBox "Not selected"

End If
End If

End Sub

The following example adds three ListItem objects to a ListView control.      When you click the form,
the code uses the Selected property to determine if a specific ListItem object is selected.    To try the
example, place a ListView control on a form and paste the code into the form's Declarations section.   
Run the example, select a ListItem, and click the form.

Private Sub Form_Load()
Listview1.BorderStyle = vbFixedSingle ' Show the border.
Dim itmX As ListViewItem
Set itmX = ListView1.ListItems.Add(,,"Item 1")
Set itmX = ListView1.ListItems.Add(,,"Item 2")
Set itmX = ListView1.ListItems.Add(,,"Item 3")

End Sub

Private Sub Form_Click()
Dim intX As Integer
On Error Resume Next ' If an integer isn't entered.
intX = InputBox("Check Item", , Listview1.SelectedItem.Index)
If IsNumeric(intX) Then ' Ensure an integer was entered.

If ListView1.ListItems(intX).Selected = True Then
MsgBox ListView1.ListItems(intX).Text & " is selected."

Else
MsgBox "Not selected"

End If
End If

End Sub

SelectedImage Property
See Also

Returns or sets the index or key value of a ListImage object in an associated ImageList control; the
ListImage is displayed when a Node object is selected.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.SelectedImage [= index]

The SelectedImage property syntax has these parts:

Part Description
object An object expression that evaluates to a Node object.
index An integer or unique string that identifies a ListImage object in an associated ImageList

control.    The integer is the value of the ListImage object's Index property; the string is
the value of the Key property.

Remarks
If Null, the mask of the default image specified by the Image property is used.

See Also
Image Property
ImageList Control
TreeView Control

SelectedItem Property
See Also Example

Returns a reference to a selected ListItem, Node, or Tab object.

Syntax
object.SelectedItem

The object placeholder represents an object expression that evaluates to a ListView, TabStrip, or
TreeView control.

Remarks
The SelectedItem property returns a reference to an object that can be used to set properties and
invoke methods on the selected object.    This property is typically used to return a reference to a
ListItem, Node, or Tab or object that the user has clicked or selected.    With this reference, you can
validate an object before allowing any further action, as demonstrated in the following code:
Command1_Click()

' If the selected object is not the root, then remove the Node.
If TreeView1.SelectedItem.Index <> 1 Then

Treeview1.Nodes.Remove TreeView1.SelectedItem.Index
End If

End Sub

See Also
ListView Control
Selected Property
TreeView Control

SelectedItem Property Example

This example adds several Node objects to a TreeView control.    After you select a Node, click the form
to see various properties of the Node.    To try the example, place a TreeView control on a form and
paste the code into the form's Declarations section.    Run the example, select a Node, and click the
form.

Private Sub Form_Load()
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , "r", "Root")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c1", "Child 1")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c2", "Child 2")
Set nodX = TreeView1.Nodes.Add("r", tvwChild, "c3", "Child 3")
Set nodX = TreeView1.Nodes.Add("c3", tvwChild, "c4", "Child 4")
Set nodX = TreeView1.Nodes.Add("c3", tvwChild, "c5", "Child 5")
Set nodX = TreeView1.Nodes.Add("c5", tvwChild, "c6", "Child 6")
Set nodX = TreeView1.Nodes.Add("c5", tvwChild, "c7", "Child 7")
nodX.EnsureVisible
TreeView1.BorderStyle = vbFixedSingle

End Sub

Private Sub Form_Click()
Dim nodX As Node
' Set the variable to the SelectedItem.
Set nodX = TreeView1.SelectedItem
Dim strProps As String
' Retrieve properties of the node.
strProps = "Text: " & nodX.Text & Chr(10)
strProps = strProps & "Key: " & nodX.Key & Chr(10)
On Error Resume Next ' Root node doesn't have a parent.
strProps = strProps & "Parent: " & nodX.Parent.Text & Chr(10)
strProps = strProps & "FirstSibling: " & _
nodX.FirstSibling.Text & Chr(10)
strProps = strProps & "LastSibling: " & _
nodX.LastSibling.Text & Chr(10)
strProps = strProps & "Next: " & nodX.Next.Text & Chr(10)

MsgBox strProps
End Sub

Sorted Property (TreeView Control)
See Also Example

Returns or sets a value that determines whether the child nodes of a Node object are sorted
alphabetically.

Returns or sets a value that determines whether the root level nodes of a TreeView control are
sorted alphabetically.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Sorted [= boolean]

The Sorted property syntax has these parts:

Part Description
object An object expression that evaluates to a Node object or TreeView control.
boolean A Boolean expression specifying whether the Node objects are sorted, as described in

Settings.

Settings
The settings for boolean are:

Setting Description
True The Node objects are sorted alphabetically.
False The Node objects are not sorted.

Remarks
The Sorted property can be used in two ways:    first, to sort the Node objects at the root (top) level of a
TreeView control and, second, to sort the immediate children of any individual Node object.    For
example, the following code sorts the root nodes of a TreeView control:
Private Sub Command1_Click()

TreeView1.Sorted = True ' Top level Node objects are sorted.
End Sub

The next example shows how to set the Sorted property for a Node object as it is created:
Private Sub Form_Load()

Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Parent Node")
nodX.Sorted = True

End Sub

In either case, setting the Sorted property to True means any new Node objects added to a Node or
TreeView control will be sorted automatically.

See Also
Node Object, Nodes Collection

Sorted Property (TreeView Control) Example

This example adds several Node objects to a tree.    When you click a Node, you are asked if you want
to sort the Node.    To try the example, place a TreeView control on a form and paste the code into the
form's Declarations section. Run the example, and click a Node to sort it.

Private Sub Form_Load()
' Create a tree with several unsorted Node objects.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(, , , "Adam")
Set nodX = TreeView1.Nodes.Add(1, tvwChild, "z", "Zachariah")
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Noah")
Set nodX = TreeView1.Nodes.Add(1, tvwChild, , "Abraham")
Set nodX = TreeView1.Nodes.Add("z", tvwChild, , "Stan")
Set nodX = TreeView1.Nodes.Add("z", tvwChild, , "Paul")
Set nodX = TreeView1.Nodes.Add("z", tvwChild, "f", "Frances")
Set nodX = TreeView1.Nodes.Add("f", tvwChild, , "Julie")
Set nodX = TreeView1.Nodes.Add("f", tvwChild, "c", "Carol")
Set nodX = TreeView1.Nodes.Add("f", tvwChild, , "Barry")
Set nodX = TreeView1.Nodes.Add("c", tvwChild, , "Yale")
Set nodX = TreeView1.Nodes.Add("c", tvwChild, , "Harvard")
nodX.EnsureVisible

End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
Dim answer As Integer
' Check if there are children nodes.
If Node.Children > 1 Then ' There are more than one children nodes.

answer = MsgBox("Sort this node?", vbYesNo) ' Prompt user.
If answer = vbYes Then ' User wants to sort.

Node.Sorted = True
End If

End If
End Sub

Style Property (TreeView Control)
See Also Example

Returns or sets the type of graphics (images, text, plus/minus, and lines) and text that appear for each
Node object in a TreeView control.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.Style [= number]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a TreeView control.
number An integer specifying the style of the graphics, as described in Settings.

Settings
The settings for number are:

Setting Description
0 Text only.
1 Image and text.
2 Plus/minus and text.
3 Plus/minus, image, and text.
4 Lines and text.
5 Lines, image, and text.
6 Lines, plus/minus, and text.
7 (Default) Lines, plus/minus, image, and text.

Remarks
If the Style property is set to a value that includes lines, the LineStyle property determines the
appearance of the lines.    If the Style property is set to a value that does not include lines, the LineStyle
property will be ignored.

See Also
LineStyle Property
TreeView Control Constants

StyleProperty    Example (TreeView Control)

This example adds several Node objects with images to a TreeView control.    You can change the
LineStyle and Style properties by selecting the alternate styles in two ComboBox controls.    To try the
example, place a TreeView control, an ImageList control, and    two ComboBox controls on a form, and
paste the code into the form's Declarations section. Run the example, and click either ComboBox to
change the LineStyle and Style properties.

Private Sub Form_Load()
' Add an image to the ImageList control.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(,,LoadPicture("bitmaps\outline\leaf.bmp"))

TreeView1.ImageList = ImageList1 ' Initialize ImageList.

With combo1 ' Populate ComboBox with line styles.
.AddItem "Tree lines"
.AddItem "Root lines"
.ListIndex = 0 ' The default is TreeLines.
End With

With Combo2 ' Populate ComboBox with all styles.
.AddItem "Text Only" ' 0
.AddItem "Image & text" ' 1
.AddItem "Plus/minus & text" ' 2
.AddItem "Plus/minus, image & Text" ' 3
.AddItem "Lines & Text" ' 4
.AddItem "Lines, image & Text" ' 5
.AddItem "Lines, Plus/minus & Text" ' 6
.AddItem "Lines, plus/minus, image & text" ' 7
.ListIndex = 7
End With

Dim nodX As Node
Dim i as Integer
' Create root node.
Set nodX = TreeView1.Nodes.Add(,,,"Node 1",1)

For i = 1 to 5 ' Add 5 nodes.
Set nodX = TreeView1.Nodes. _
Add(i,tvwChild,,"Node " & CStr(i + 1),1)

Next I
nodX.EnsureVisible ' Show all nodes.

End Sub

Private Sub combo1_Click()
' Change line style from ComboBox.
TreeView1.LineStyle = combo1.ListIndex

End Sub

Sub combo2_Click() ' Change Style with ComboBox.
TreeView1.Style = Combo2.ListIndex
Form1.Caption = "Indentation = " & Combo1.Text

End Sub

StartLabelEdit Method
See Also Example

Enables a user to edit a label.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
object.StartLabelEdit

The object placeholder is an object expression that evaluates to a ListView or TreeView control.

Remarks
The StartLabelEdit method must be used to initiate a label editing operation when the LabelEdit
property is set to 1 (Manual).
When the StartLabelEdit method is invoked upon an object, the BeforeLabelEdit event is also
generated.

See Also
AfterLabelEdit Event
BeforeLabelEdit Event
LabelEdit Property
ListItem Object, ListItems Collection
ListView Control
Node Object, Nodes Collection
TreeView Control

StartLabelEdit Method Example

This example adds several Node objects to a TreeView control.    After a Node is selected, click the
form to begin editing it.    To try the example, place a TreeView control on a form, and paste the code
into the form's Declarations section.    Run the example, select a Node, and click the form.

Private Sub Form_Load
Dim nodX As Node

Set nodX = TreeView1.Nodes.Add(,,,"Da Vinci") ' Root
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Titian")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Rembrandt")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"Goya")
Set nodX = TreeView1.Nodes.Add(1,tvwChild,,"David")
nodX.EnsureVisible ' Expand tree to see all nodes.

End Sub

Private Sub Form_Click()
' If selected Node isn't the Root node then allow edits.
If TreeView1.SelectedItem.Index <> 1 Then

TreeView1.StartLabelEdit
End If

End Sub

Nodes

The Nodes keyword is used in these contexts:
Nodes Collection
Nodes Property

    ListView Control
See Also Properties Methods Events Constants

The ListView control displays items using one of four different views.    You can arrange items into
columns with or without column headings as well as display accompanying icons and text.

Syntax
ListView

Remarks
With a ListView control, you can organize list entries, called ListItem objects, into one of four different
views:

Large (standard) Icons
Small Icons
List
Report

The View property determines which view the control uses to display the items in the list.    You can also
control whether the labels associated with items in the list wrap to more than one line using the
LabelWrap property.    In addition, you can manage how items in the list are sorted and how selected
items appear.
The ListView control contains ListItem and ColumnHeader objects.    A ListItem object defines the
various characteristics of items in the ListView control, such as:

A brief description of the item.
Icons that may appear with the item, supplied by an ImageList control.
Additional pieces of text, called subitems, associated with a ListItem object that you can display

in Report view.

You can choose to display column headings in the ListView control using the HideColumnHeaders
property.    They can be added at both design and run time.    At design time, you can use the Column
Headers tab of the ListView Control Properties dialog box.    At run time, use the Add method to add a
ColumnHeader object to the ColumnHeaders collection.

Distribution Note      The ListView control is a 32-bit custom control that can only run on Windows 95
and Windows NT 3.51 or higher.    The ListView control is part of a group of custom controls that are
found in the COMCTL32.OCX file.    To use the ListView control in your application, you must add the
COMCTL32.OCX file to the project.    When distributing your application, install the COMCTL32.OCX file
in the user's Microsoft Windows SYSTEM directory.    For more information on how to add a custom
control to a project, see the Programmer's Guide.

See Also
Add Method (ColumnHeaders Collection)
ColumnHeader Object, ColumnHeaders Collection
ImageList Control
ListItem Object, ListItems Collection
TreeView Control

ListView Control Properties

Arrange Property
BackColor Property
BorderStyle Property
ColumnHeaders Property
Container Property
DragIcon Property
DragMode Property
DropHighLight Property
Enabled Property
Font Property
ForeColor Property
Height Property
HelpContextID Property
HideColumnHeaders Property
HideSelection Property
hWnd Property
Icons Property
Index Property
ListItems Property
LabelEdit Property
LabelWrap Property
Left Property
MouseIcon Property
MousePointer Property
MultiSelect Property
Name Property
Object Property
Parent Property
SelectedItem Property
SmallIcons Property
Sorted Property (ListView Control)
SortKey Property
SortOrder Property
TabIndex Property
TabStop Property
Tag Property
Top Property
View Property
Visible Property
WhatsThisHelpID Property
Width Property

ListView Control Methods

Drag Method
FindItem Method
GetFirstVisible Method
HitTest Method
Move Method
Refresh Method
SetFocus Method
ShowWhatsThis Method
StartLabelEdit Method
ZOrder Method

ListView Control Events

AfterLabelEdit Event
BeforeLabelEdit Event
Click Event
ColumnClick Event
DblClick Event
DragDrop Event
DragOver Event
GotFocus Event
ItemClick Event
KeyDown Event
KeyPress Event
KeyUp Event
LostFocus Event
MouseDown Event
MouseMove Event
MouseUp Event

ColumnHeader Object, ColumnHeaders Collection
See Also Properties Methods

A ColumnHeader object is an item in a ListView control that contains heading text.
A ColumnHeaders collection contains one or more ColumnHeader objects.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
listview.ColumnHeaders
listview.ColumnHeaders(index)

The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to the standard collection syntax.
The ColumnHeader object, ColumnHeaders collection syntax has these parts:

Part Description
listview An object expression that evaluates to a ListView control.
index Either an integer or string that uniquely identifies a member of an object collection.    The

integer is the value of the Index property; the string is the value of the Key property.

Remarks
You can view ColumnHeader objects in Report view only.
You can add ColumnHeader objects to a ListView control at both design time and run time.
With a ColumnHeader object, a user can:

Click it to trigger the ColumnClick event and sort the items based on that data item.
Grab the object's right border and drag it to adjust the width of the column.
Hide ColumnHeader objects in Report view.

There is always one column in the ListView control, which is Column 1.    This column contains the
actual ListItem objects; not their subitems.    The second column (Column 2) contains subitems.   
Therefore, you always have one more ColumnHeader object than subitems and the ListItem object's
SubItems property is a 1-based array of size ColumnHeaders.Count - 1.
The number of ColumnHeader objects determines the number of subitems each ListItem object in the
control can have.    When you delete a ColumnHeader object, all of the subitems associated with the
column are also deleted.    Each ListItem object's subitem array shifts to update the indices of the
ColumnHeader, causing the remaining column headers' SubItemIndex properties to change.

See Also
Add Method (ColumnHeaders Collection)
Clear Method
ColumnClick Event
ColumnHeaders Property
HideColumnHeaders Property
Index Property
ListItem Object, ListItems Collection
Key Property
Remove Method
SubItemIndex Property
SubItems Property (ListItems Object)

ColumnHeader Object, ColumnHeaders Collection Properties

Legend

Alignment Property

Count Property
Index Property
Key Property
Left Property
SubItemIndex Property
Tag Property
Text Property
Width Property

 ColumnHeader Object, ColumnHeaders Collection Methods

Legend

Add Method (ColumnHeaders Collection)

Clear Method
Item Method
Remove Method

Add Method (ColumnHeaders Collection)
See Also Example

Adds a ColumnHeader object to a ColumnHeaders collection in a ListView control.    Doesn't support
named arguments.

Important      This method requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Add(index, key, text, width, alignment)

The Add method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a ColumnHeaders collection.
index Optional.    An integer that uniquely identifies a member of an object collection.
key Optional.    A unique string expression that can be used to access a member of the

collection.
text Optional.    A string that appears in the ColumnHeader object.
width Optional.    A numeric expression specifying the width of the object using the scale units of

the control's container.
alignment Optional.    An integer that determines the alignment of text in the ColumnHeader object.

See the Alignment property for settings.

Remarks
The Add method returns a reference to the newly inserted ColumnHeader object.
Use the index argument to insert a column header in a specific position.

See Also
Alignment Property (ColumnHeader Object)
Clear Method
ColumnHeader Object , ColumnHeaders Collection
Index Property
Key Property
ListView Control
Remove Method
SubItemIndex Property
SubItems Property (ListItems Object)

ListItem Object, ListItems Collection
See Also Properties Methods

A ListItem consists of text, the index of an associated icon (ListImage object), and, in Report
view, an array of strings representing subitems.

A ListItems collection contains one or more ListItem objects.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
listview.ListItems
listview.ListItems(index)

The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to the standard collection syntax.
The ListItem object, ListItems collection syntax has these parts:

Part Description
listview An object expression that evaluates to a ListView control.
index Either an integer or string that uniquely identifies a member of a ListItem collection.    The

integer is the value of the Index property; the string is the value of the Key property.

Remarks
ListItem objects can contain both text and pictures.    However, to use pictures, you must reference an
ImageList control.
You can change the image by using the Icon or SmallIcon property.
The following example shows how to add ColumnHeaders and several ListItem objects with subitems
to a ListView control.
Private Sub Form_Load()

Dim clmX As ColumnHeader
Dim itmX As ListItem
Dim i As Integer

For i = 1 To 3
Set clmX = ListView1.ColumnHeaders.Add()
clmX.Text = "Col" & i

Next i

For i = 1 To 10
Set itmX = ListView1.ListItems.Add()
itmX.SmallIcon = 1
itmX.Text = "ListItem " & i
itmX.SubItems(1) = "Subitem 1"
itmX.SubItems(2) = "Subitem 2"

Next i
End Sub

See Also
Icon, SmallIcon Properties
ImageList Control
ListImage Object, ListImages Collection
ListView Control

ListItem Object, ListItems Collection Properties

Legend

Count Property

Ghosted Property
Height Property
Icon Property
Index Property
Key Property
Left Property
Selected Property
SmallIcon Property
SubItems Property (Listitems Object)
Tag Property
Text Property
Top Property

Width Property

ListItem Object, ListItems Collection Methods

Legend

Add Method (ListItems Collection)

Clear Method
CreateDragImage Method
EnsureVisible Method
Item Method
Remove Method

Add Method (ListItems Collection)
See Also Example

Adds a ListItem object to a ListItems collection in a ListView control and returns a reference to the
newly created object.    Doesn't support named arguments.

Important      This method requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Add(index, key, text, icon, smallIcon)

The Add method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a ListItems collection.
index Optional.    An integer specifying the position where you want to insert the ListItem.    If no

index is specified, the ListItem is added to the end of the ListItems collection.
key Optional.    A unique string expression that can be used to access a member of the

collection.
text Optional.    A string that is associated with the ListItem object control.
icon Optional.    An integer that sets the icon to be displayed from an ImageList control, when

the ListView control is set to Icon view.
smallIcon Optional.    An integer that sets the icon to be displayed from an ImageList control, when

the ListView control is set to SmallIcon view.

Remarks
Before setting either the Icons or SmallIcons properties, you must first initialize them.    You can do this
at design time with the General tab of the ListView Control Properties dialog box, or at run time with the
following code:
ListView1.Icons = ImageList1 'Assuming the Imagelist is ImageList1.
ListView1.SmallIcons = ImageList2

If the list is not currently sorted, a ListItem object can be inserted in any position by using the index
argument.    If the list is sorted, the index argument is ignored and the ListItem object is inserted in the
appropriate position based upon the sort order.
If index is not supplied, the ListItem object is added with an index that is equal to the greatest number +
1.

See Also
Count Property
Ghosted Property
Index Property
Item Method
ListItem Object, ListItems Collection
Key Property
ListView Control
Selected Property
Sorted Property (ListView Control)
SubItems Property

Add Method (ListItems, ColumnHeaders), ListItems Property, SubItems Property Example

The following example adds several ListItem objects with images from an ImageList control to a
ListView control.    To try this example, place a ComboBox, ListView, and two ImageList controls on a
form and paste the code into the Declarations section.    Note: the example will not run unless you add a
reference to the Microsoft DAO 3.0 Object Library by using the References command on the Tools
menu.    Run the example.

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Author", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Author ID", ListView1.Width / 3, lvwColumnCenter)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Birthdate", ListView1.Width / 3)

ListView1.View = lvwReport ' Set View property to Report.

' Load one image into an ImageList control.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages.Add _
(,,LoadPicture("icons\Writing\Note06.ico"))
Set imgX = ImageList2.ListImages.Add _
(,,LoadPicture("bitmaps\assorted\w.bmp"))
' Set Icons property to ImageList1.
ListView1.Icons = ImageList1
ListView1.SmallIcons = ImageList2

' Add items to a ComboBox for switching views.
With Combo1

.AddItem "Icon" ' 0

.AddItem "SmallIcon" ' 1

.AddItem "List" ' 2

.AddItem "Report" ' 3

.ListIndex = 0
End With

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the "Authors" table.
Set myRs = myDb.OpenRecordset("Authors", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the author field for the ListItem object's text.
' Use the ID field 0 for the ListItem object's SubItem(1).
' Use the "Year of Birth" field for the ListItem object's SubItem(2).

While Not myRs.EOF
Set itmX = ListView1.ListItems. _
Add(, , CStr(myRs!Author),1) ' Author.

' If the AuthorID field is not null, then set SubItem 1 to it.
If Not IsNull(myRs!Au_id) Then

itmX.SubItems(1) = CStr(myRs!Au_id) ' Author ID.
End If

' If the birth field is not Null, set the SubItem 2 to it.
If Not IsNull(myRs![Year Born]) Then

itmX.SubItems(2) = myRs![Year Born]
End If
myRs.MoveNext ' Move to next record.

Wend
End Sub

Private Sub combo1_Click()
' Switch ListView with the ComboBox.
ListView1.View = combo1.ListIndex

End Sub

Alignment Property (ColumnHeader Object)
See Also

Returns or sets the alignment of text in a ColumnHeader object.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Alignment [= integer]

The Alignment Property syntax has these parts:

Part Description
object An object expression that evaluates to a ColumnHeader object.
integer An integer that determines the alignment, as described in Settings.

Settings
The settings for integer are:

Constant Value Description
lvwColumnLeft 0 (Default) Left. Text is aligned left.
lvwColumnRight 1 Right. Text is aligned right.
lvwColumnCenter 2 Center. Text is centered.

See Also
Add Method (ColumnHeaders Collection)
ColumnHeader Object, ColumnHeaders Collection
ListView Control

Arrange Property
See Also Example

Returns or sets a value that determines how the icons in a ListView control's Icon or SmallIcon view are
arranged.    Only effective for Icon or SmallIcon view.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Arrange [= value]

The Arrange property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
value An integer or constant that determines how the icons or small icons are arranged, as

described in Settings.

Settings
The settings for value are:

Constant Value Description
lvwNoArrange 0 (Default) None.
lvwAutoLeft 1 Left.    Items are aligned automatically along the left side of the control.
lvwAutoTop 2 Top.    Items are aligned automatically along the top of the control.

See Also
Icons, SmallIcons Properties (ListView Control)
ListView Control
Sorted Property (ListView Control)
SortKey Property
SortOrder Property
View Property

Arrange Property Example

This example adds several ListItem objects and subitems to a ListView control.    When you click on the
ComboBox control, the Arrange property is set with the ListIndex value of the ComboBox.    To try the
example, place a ComboBox, ListView, and two ImageList controls on a form and paste the code into
the form's Declarations section.    Run the example and click on the CombBox to change the Arrange
property.

Private Sub Combo1_Click()
' Set Arrange property to Combo1.ListIndex.
ListView1.Arrange = Combo1.ListIndex

End Sub

Private Sub Form_Load()
' Populate ComboBox with Arrange choices.
With Combo1

.AddItem "No Arrange" ' 0

.AddItem "Align Auto Left" ' 1

.AddItem "Align Auto Top" ' 2

.ListIndex = 0
End With

' Declare variables for creating ListView and ImageList objects.
Dim i As Integer
Dim itmX As ListItem ' Object variable for ListItems.
Dim imgX As ListImage ' Object variable for ListImages.

' Add a ListImage object to an ImageList control.
Set imgX = ImageList1.ListImages. _
Add(,,LoadPicture("icons\mail\mail01a.ico"))

ListView1.Icons = ImageList1 ' Associate an ImageList control.

' Add ten ListItem objects, each with an Icon.
For i = 1 To 10

Set itmX = ListView1.ListItems.Add()
itmX.Icon = 1 ' Icon.
itmX.Text = "ListItem " & i

Next i
End Sub

ColumnClick Event
See Also Example

Occurs when a ColumnHeader object in a ListView control is clicked.    Only available in Report view.

Important      This event requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Private Sub object_ColumnClick(ByVal columnheader As ColumnHeader)

The ColumnClick event syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
columnheader A reference to the ColumnHeader object that was clicked.

Remarks
The Sorted, SortKey, and SortOrder properties are commonly used in code to sort the list using the
clicked column header as the key.

See Also
Click Event
ListView Control
Sorted Property (ListView Control)
SortKey Property
SortOrder Property

ColumnHeaders Property
See Also

Returns a reference to a collection of ColumnHeader objects.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.ColumnHeaders

The object placeholder represents an object expression that evaluates to a ListView control.

Remarks
You can manipulate ColumnHeader objects using standard collection methods (for example, the
Remove method).    Each ColumnHeader in the collection can be accessed either by its index or by a
unique key, stored in the Key property.

See Also
Add Method (ColumnHeaders Collection)
ColumnHeader Object, ColumnHeaders Collection
Key Property
ListView Control

Ghosted Property
See Also Example

Returns or sets a value that determines whether a ListItem object in a ListView control is dimmed.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Ghosted [= boolean]

The Ghosted property syntax has these parts:

Part Description
object An object expression that evaluates to a ListItem object.
boolean A Boolean expression specifying if the icon or small icon is ghosted, as described in

Settings.

Settings
The settings for boolean are:

Setting Description
True The ListItem object's icon is dimmed.
False (Default) The ListItem isn't dimmed.

Remarks
The Ghosted property is typically used to show when a ListItem is cut.
When a ghosted ListItem is selected, the label is highlighted but its image is not.

See Also
ListItem Method
ListView Control
SelectedItem Property

Ghosted, MultiSelect Properties Example

This example populates a ListView control with the contents of the Authors table from the BIBLIO.MDB
database, and fills a ComboBox with MultiSelect property options.    You can select any item, or hold
down the SHIFT Key and select multiple items.    Clicking on the CommandButton sets the Ghosted
property of the selected items to True.    To try the example, place a ComboBox, ListView, ImageList,
and CommandButton control on a form and paste the code into the form's Declarations section.    Note:
the example will not run unless you add a reference to the Microsoft DAO 3.0 Object Library by using
the References command on the Tools menu.    Run the example, select a MultiSelect option from the
ComboBox, click on items to select them and click the CommandButton to ghost them.

Private Sub Command1_Click()
Dim x As Object
Dim i As Integer
' Ghost selected ListItem.

If ListView1.SelectedItem Is Nothing Then Exit Sub
For i = 1 To ListView1.ListItems.Count

If ListView1.ListItems(i).Selected = True Then
ListView1.ListItems(i).Ghosted = True

End If
Next i

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

' Populate Combobox with MultiSelect options.
With Combo1

.AddItem "No MultiSelect"

.AddItem " MultiSelect"

.ListIndex = 1 ' Set MultiSelect to True.
End With

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.
ListView1.View = lvwReport ' Set View property to Report.
' Add one image to ImageList control.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("icons\mail\mail01a.ico"))
ListView1.Icons = ImageList1

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's SubItem(1).
' Use the Phone field for the ListItem object's SubItem(2).

While Not myRs.EOF
Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))
itmX.Icon = 1 ' Set icon to the ImageList icon.

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set SubItem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend

ListView1.View = lvwIcon ' Show Icons view.
Command1.Caption = "Cut" ' Set caption of the CommandButton.
' Add a caption to the form.
Me.Caption = "Select any item(s) and click 'Cut'."

End Sub

Private Sub Combo1_Click()
ListView1.MultiSelect = Combo1.ListIndex

End Sub

HideColumnHeaders Property
See Also Example

Returns or sets whether ColumnHeader objects in a ListView control are hidden in Report view.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.HideColumnHeaders [= boolean]

The HideColumnHeaders property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
boolean A Boolean expression that specifies if the column headers are visible in Report view, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True The column headers are not visible.
False (Default) The column headers are visible.

Remarks
The subitems remain visible even if the HideColumnHeaders property is set to True.

See Also
ColumnHeaders Property
ListView Control

HideColumnHeaders Property Example

This example adds several ListItem objects with subitems to a ListView control.    When you click on
the CommandButton, the HideColumnHeaders property toggles between True (-1) and False (0).    To
try the example, place ListView and CommandButton controls on a form and paste the code into the
form's Declarations section.    Run the example and click the CommandButton to toggle the
HideColumnHeaders property.

Private Sub Command1_Click()
' Toggle HideColumnHeaders property off and on.
ListView1.HideColumnHeaders = Abs(ListView1.HideColumnHeaders) - 1

End Sub

Private Sub Form_Load()
Dim clmX As ColumnHeader
Dim itmX As ListItem
Dim i As Integer
Command1.Caption = "HideColumnHeaders"

' Add 3 ColumnHeader objects to the control.
For i = 1 To 3

Set clmX = ListView1.ColumnHeaders.Add()
clmX.Text = "Col" & i

Next I

' Set View to Report.
ListView1.View = lvwReport

' Add 10 ListItems to the control.
For i = 1 To 10

Set itmX = ListView1.ListItems.Add()
itmX.Text = "ListItem " & i
itmX.SubItems(1) = "Subitem 1"
itmX.SubItems(2) = "Subitem 2"

Next i
End Sub

Icon, SmallIcon Properties (ListItem Object)
See Also Example

Returns or sets the index or key value of an icon or small icon associated with a ListItem object in an
ImageList control.

Important      These properties require either Microsoft Windows 95 or Microsoft Windows NT version
3.51 or higher.

Syntax
object.Icon [= index]
object.SmallIcon [= index]

The Icon, SmallIcon properties syntax has the following parts:

Part Description
object An object expression that evaluates to a ListItem object.
index An integer or unique string that identifies an icon or smallicon in an associated ImageList

control.    The integer is the value of the ListItem object's Index property; the string is the
value of the Key property.

Remarks
Before you can use an icon in a ListItem object, you must associate an ImageList control with the
ListView control containing the object.    See the Icons, SmallIcons Properties (ListView Control) for
more information.    The example below shows the proper syntax:
ListView1.ListItems(1).SmallIcons=1

The images will appear when the ListView control is in SmallIcons view.

See Also
Icons, SmallIcons Properties (ListView Control)
ImageList Control
Index Property
ListView Control

Icons, SmallIcons Properties
See Also Example

Returns or sets the ImageList controls associated with the Icon and SmallIcon views in a ListView
control.

Important      These properties require either Microsoft Windows 95 or Microsoft Windows NT version
3.51 or higher.

Syntax
object.Icons [= imagelist]
object.SmallIcons [= imagelist]

The Icons, SmallIcons properties syntax has the following parts:

Part Description
object An object expression that evaluates to the ListView control.
imagelist An object expression that evaluates to an ImageList control.

Remarks
To associate an ImageList control with a ListView control at run time, set these properties to the
desired ImageList control.
Each ListItem object in the ListView control also has properties, Icon and SmallIcon, which index the
ListImage objects and determine which image is displayed.
Once you associate an ImageList with the ListView control, you can use the value of either the Index
or Key property to refer to a ListImage object in a procedure.

See Also
Icon , SmallIcon Properties (ListItem Object)
ImageList Control
ListItem Object, ListItems Collection
ListView Control

Icon, SmallIcon, Icons, SmallIcons, View Properties Example

This example populates a ListView control with the contents of the Publishers table in the BIBLIO.MDB
database.    A ComboBox control is populated with View property choices.    You must place two
ImageList controls on the form, one to contain images for the Icon property, and a second to contain
images for the SmallIcon property of each ListItem object.    To try the example, place a ListView,
ComboBox, and two ImageList controls on a form and paste the code into the form's Declarations
section.    Note: the example will not run unless you add a reference to the Microsoft DAO 3.0 Object
Library by using the References command on the Tools menu.    Run the example and click on the
ComboBox control to switch views.

Private Sub combo1_Click()
' Set the ListView control's View property to the
' ListIndex of Combo1.
ListView1.View = combo1.ListIndex

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.
ListView1.View = lvwReport ' Set View property to Report.

' Add one image to ImageList1--the Icons ImageList.
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("icons\mail\mail01a.ico"))
' Add an image to ImageList2--the SmallIcons ImageList.
Set imgX = ImageList2.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\w.bmp"))

' To use ImageList controls with the ListView control, you must
' associate a particular ImageList control with the Icons and
' SmallIcons properties.
ListView1.Icons = ImageList1
ListView1.SmallIcons = ImageList2
' Populate ComboBox1 with View choices.
With Combo1

.AddItem "Icon" ' 0

.AddItem "SmallIcon" ' 1

.AddItem "List" ' 2

.AddItem "Report" ' 3

.ListIndex = 0 ' Set to Icon View.
End With

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset

' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's SubItem(1)
' Use the Phone field for the ListItem object's SubItem(2)

While Not myRs.EOF

Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))
itmX.Icon = 1 ' Set an icon from ImageList1.
itmX.SmallIcon = 1 ' Set an icon from ImageList2.

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set SubItem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend

End Sub

ListItems Property
See Also Example

Returns a reference to a collection of ListItem objects in a ListView control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.ListItems

The object placeholder represents an object expression that evaluates to a ListView control.

Remarks
ListItem obects can be manipulated using the standard collection methods.    Each ListItem in the
collection can be accessed by its unique key, which you create and store in the Key property.
You can also retrieve ListItem objects by their display position using the Index property.

See Also
Icons , SmallIcons Properties (ListView Control)
Index Property
Key Property
ListItem Object, ListItems Collection
ListView Control

LabelWrap Property
See Also

Returns or sets a value that determines whether or not labels are wrapped when a ListView control is in
Icon view.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.LabelWrap [= boolean]

The LabelWrap property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
boolean A Boolean expression specifying if the labels wrap, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The labels wrap.
False The labels don't wrap.

Remarks
The length of the label is determined by setting the icon spacing in the Control Panel.    In Windows NT,
use the Desktop option.    In Windows 95, use the Appearance tab in the Display Properties Dialog box.

See Also
ListView Control
View Property

MultiSelect Property
See Also Example

Returns or sets a value indicating whether a user can make multiple selections in the ListView control
and how they can be made.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.MultiSelect [= boolean]

The MultiSelect property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
boolean A value specifying the type of selection, as described in Settings.

Settings
The settings for boolean are:

Constant Description
False (Default)    Multiple selection isn't allowed.
True Multiple selection.    Pressing SHIFT and clicking the mouse or pressing SHIFT and

one of the arrow keys (UP ARROW, DOWN ARROW, LEFT ARROW, and RIGHT
ARROW) extends the selection from the previously selected ListItem to the current
ListItem.    Pressing CTRL and clicking the mouse selects or deselects a ListItem in
the list.

See Also
ListItem Object , ListItems Collection
ListView Control

SortKey Property
See Also Example

Returns or sets a value that determines how the ListItem objects in a ListView control are sorted.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.SortKey [= integer]

The SortKey property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
integer An integer specifying the sort key, as described in Settings.

Settings
The settings for integer are:

Setting Description
0 Sort using the ListItem object's Text property.
> 1 Sort using this subitem.

Remarks:
The Sorted property must be set to True before the change takes place.
It is common to sort a list when the column header is clicked.    For this reason, the SortKey property is
commonly included in the ColumnClick event to sort the list using the clicked column, as determined by
the sort key, and demonstrated in the following example:
Private Sub ListView1_ColumnClick (ByVal ColumnHeader as ColumnHeader)

ListView1.SortKey=ColumnHeader.Index-1
End Sub

See Also
ColumnClick Event
ListView Control
SortOrder Property
Text Property

SortOrder Property
See Also Example

Returns or sets a value that determines whether ListItem objects in a ListView control are sorted in
ascending or descending order.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.SortOrder [= integer]

The SortOrder property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
integer An integer specifying the type of sort order, as described in Settings.

Settings
The settings for integer are:

Constant Value Description
lvwAscending 0 (Default)    Ascending order.    Sorts from the beginning of the alphabet

(A-Z), the earliest date, or the lowest number.
lvwDescending 1 Descending order.    Sorts from the end of the alphabet (Z-A), the latest

date, or the highest number.

Remarks
The Sorted property must be set to True before SortOrder can reorder the list.

See Also
ListView Control
Sorted Property (ListView Control)
SortKey Property

SortKey, SortOrder, Sorted Properties, ColumnClick Event Example

This example adds three ColumnHeader objects to a ListView control and populates the control with
the Publishers records of the BIBLIO.MDB database.    A ComboBox control contains the two choices
for sorting records.    When you click on a ColumnHeader, the ListView control is sorted according to
the SortOrder property, as determined by the ComboBox control.    To try the example, place a
ListView and a ComboBox control on a form and paste the code into the form's Declarations section.   
Run the example and click on the ColumnHeaders to sort, and click on the ComboBox to switch the
SortOrder property.    Also, the example will not run unless you add a reference to the Microsoft DAO
3.0 Object Library by using the References command on the Tools menu.

Private Sub Combo1_Click()
' This ComboBox has two items: Ascending (ListIndex 0),
' and Descending (ListIndex 1). Clicking on one of these
' sets the SortOrder for the ListView control.
ListView1.SortOrder = Combo1.ListIndex
ListView1.Sorted = True ' Sort the List.

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.
ListView1.View = lvwReport ' Set View property to Report.

' Populate ComboBox with SortOrder choices.
With Combo1

.AddItem "Ascending (A-Z)"

.AddItem "Descending (Z-A)"

.ListIndex = 0
End With

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's subitem(1).
' Use the Phone field for the ListItem object's subitem(2).

While Not myRs.EOF
Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))

' If the Address field is not Null, set subitem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set subitem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend

End Sub

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As ColumnHeader)
' When a ColumnHeader object is clicked, the ListView control is
' sorted by the subitems of that column.
' Set the SortKey to the Index of the ColumnHeader - 1
ListView1.SortKey = ColumnHeader.Index - 1
' Set Sorted to True to sort the list.
ListView1.Sorted = True

End Sub

SubItemIndex Property
See Also Example

Returns the index of the subitem associated with a ColumnHeader object in a ListView control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax

object.SubItemIndex [= integer]

The SubItemIndex property syntax has these parts:

Part Description
object An object expression that evaluates to a ColumnHeader object.
integer An integer specifying the index of the subitem associated with the ColumnHeader object.

Remarks
Subitems are arrays of strings representing the ListItem object's data and are displayed in Report view.
The first column header always has a SubItemIndex property set to 0 because the small icon and the
ListItem object's text always appear in the first column and are considered ListItem objects rather than
subitems.
The number of column headers dictates the number of subitems.    There is always exactly one more
column header than there are subitems.

See Also
ListView Control
SubItems Property

SubItemIndex Property Example

This example adds three ColumnHeader objects to a ListView control.    The code then adds several
ListItem and Subitems using the SubItemIndex to associate the SubItems string with the correct
ColumnHeader object.    To try the example, place a ListView control on a form and paste the code into
the form's Declarations section.    Run the example.

' Make sure ListView control is in report view.
ListView1.View = lvwReport

' Add three columns.
ListView1.ColumnHeaders.Add , "Name", "Name"
ListView1.ColumnHeaders.Add , "Address", "Address"
ListView1.ColumnHeaders.Add , "Phone", "Phone"

' Add ListItem objects to the control.
Dim itmX As ListItem
' Add names to column 1.
Set itmX= ListView1.ListItems.Add(1, "Mary", "Mary")
' Use the SubItemIndex to associate the SubItem with the correct
' ColumnHeader. Use the key ("Address") to specify the right
' ColumnHeader.
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) _
= "212 Grunge Street"
' Use the ColumnHeader key to associate the SubItems string
' with the correct ColumnHeader.
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) _
= "555-1212"

Set itmX = ListView1.ListItems.Add(2, "Bill", "Bill")
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) _
= "101 Pacific Way"
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) _
= "555-7879"

Set itmX= ListView1.ListItems.Add(3, "Susan", "Susan")
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) = _
"800 Chicago Street"
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) = _
"555-4537"

Set itmX= ListView1.ListItems.Add(4, "Tom", "Tom")
itmX.SubItems(ListView1.ColumnHeaders("Address").SubItemIndex) _
= "200 Ocean City"
itmX.SubItems(ListView1.ColumnHeaders("Phone").SubItemIndex) = _
"555-0348"

View Property
See Also Example

Returns or sets the appearance of the ListItem objects in a ListView control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.View [= value]

The View property syntax has these parts:

Part Description
object The object expression that evaluates to a ListView control.
value An integer or constant specifying the control's appearance, as described in Settings.

Settings
The settings for value are:

Constant Value Description
IvwIcon 0 (Default) Icon.    Each ListItem object is represented by a full-sized

(standard) icon and a text label.
IvwSmallIcon 1 SmallIcon.    Each ListItem object is represented by a small icon and a

text label that appears to the right of the icon.    The items appear
horizontally.

IvwList 2 List.    Each ListItem object is represented by a small icon and a text
label that appears to the right of the icon.    The ListItem objects are
arranged vertically, each on its own line with information arranged in
columns.

IvwReport 3 Report.    Each ListItem object is displayed with its small icon and text
labels.    You can provide additional information about each ListItem
object in a subitem.    The icons, text labels, and information appear in
columns with the leftmost column containing the small icon, followed by
the text label.    Additional columns display the text for each of the item's
subitems.

Remarks
In Icon view only, use the LabelWrap property to specify if the ListItem object's labels are wrapped or
not.
In Report view, you can hide the column headers by setting the HideColumnHeaders property to True.
You can also use the ColumnClick event and sorting properties to sort the ListItem objects or subitems
when a user clicks a column header.    The user can change the size of the column by grabbing the right
border of a column header and dragging it to the desired size.

See Also
ColumnClick Event
HideColumnHeaders Property
LabelWrap Property
ListView Control
Sorted Property (ListView Control)
SortKey Property
SortOrder Property

FindItem Method
See Also Example

Finds and returns a reference to a ListItem object in a ListView control and returns a reference to that
ListItem. Doesn't support named arguments.

Important      This method requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.FindItem (string, value, index, match)

The FindItem method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a ListView control.
string Required.    A string expression indicating the ListItem object to be found.
value Optional.    An integer or constant specifying whether the string will be matched to the

ListItem object's Text, Subitems, or Tag property, as described in Settings.
index Optional.    An integer or string that uniquely identifies a member of an object collection

and specifies the location from which to begin the search.    The integer is the value of the
Index property; the string is the value of the Key property.    If no index is specified, the
default is 1.

match Optional.    An integer or constant specifying that a match will occur if the item's Text
property is the same as the string, as described in Settings.

Settings
The settings for value are:

Constant Value Description
lvwText 0 (Default)    Matches the string with a ListItem object's Text property.
lvwSubitem 1 Matches the string with any string in a ListItem object's SubItems

property.
lvwTag 2 Matches the string with any ListItem object's Tag property.

The settings for match are:

Constant Value Description
lvwWholeWord 0 (Default)    An integer or constant specifying that a match will occur if the

item's Text property begins with the whole word being searched.   
Ignored if the criteria is not text.

lvwPartial 1 An integer or constant specifying that a match will occur if the item's
Text property begins with the string being searched.    Ignored if the
criteria is not text.

Remarks
If you specify Text as the search criteria, you can use lvwPartial so that a match occurs when the
ListItem object's Text property begins with the string you are searching for.    For example, to find the
ListItem whose text is "Autoexec.bat", use:
'Create a ListItem variable.
Dim itmX As ListItem
'Set the variable to the found item.
Set itmX = ListView1.FindItem("Auto",,,lvwpartial)

See Also
Index Property
Key Property
ListView Control
SubItems Property (ListItems Object)
Tag Property
Text Property

FindItem Method Example

This example populates a ListView control with the contents of the Publishers table of the BIBLIO.MDB
database.    A ComboBox control is also populated with three options for the FindItem method.    A
CommandButton contains the code for the FindItem method; when you click on the button, you are
prompted to enter the string to search for, and the FindItem method searches the ListView control for
the string.    If the string is found, the control is scrolled using the EnsureVisible method to show the
found ListItem object.    To try the example, place a ListView, ComboBox, and a CommandButton
control on a form and paste the code into the form's Declarations section.    Run the example and click
on the command button.    Note: the example will not run unless you add a reference to the Microsoft
DAO 3.0 Object Library by using the References command from the Tools menu.

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.
ListView1.View = lvwReport ' Set View property to Report.
Command1.Caption = "&FindItem"

' Populate Combo1 to switch FindItem (FindWhere) arguments.
With Combo1

.AddItem "Text" ' 0 Find in text.

.AddItem "SubItem" ' 1 Find in subitem.

.AddItem "Tag" ' 2 Find in tag.

.ListIndex = 0 ' Set the ComboBox to show first item.
End With

' Populate the ListView control with database records.
' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset

' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' While the record is not the last record, add a ListItem object.
' Use the reference to the new object to set properties.
' Set the Text property to the Name field (myRS!Name).
' Set SubItem(1) to the Address field (myRS!Address).
' Set SubItem(7) to the Phone field (myRS!Telephone).

While Not myRs.EOF
Dim itmX As ListItem ' A ListItem variable.
Dim intCount As Integer ' A counter variable.
' Use the Add method to add a new ListItem and set an object
' variable to the new reference. Use the reference to set
' properties.

Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))
intCount = intCount + 1 ' Increment counter for the Tag property.
itmX.Tag = "ListItem " & intCount ' Set Tag with counter.

' If the Address field is not Null, set SubItem 1 to Address.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set SubItem 2 to Phone.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend

End Sub

Private Sub Command1_Click()
' FindItem method.
' Create a string variable called strFindMe. Use the InputBox
' to store the string to be found in the variable. Use the
' FindItem method to find the string. Combo1 is used to
' switch the FindItem argument that determines where to look.

Dim strFindMe As String
strFindMe = InputBox("Find in " & Combo1.Text)
' FindItem method returns a reference to the found item, so
' you must create an object variable and set the found item
' to it.
Dim itmFound As ListItem ' FoundItem variable.

Set itmFound = ListView1. _
FindItem(strFindMe, Combo1.ListIndex, , lvwPartial)

' If no ListItem is found, then inform user and exit. If a
' ListItem is found, scroll the control using the EnsureVisible
' method, and select the ListItem.
If itmFound Is Nothing Then ' If no match, inform user and exit.

MsgBox "No match found"
Exit Sub

Else
 itmFound.EnsureVisible ' Scroll ListView to show found ListItem.
 itmFound.Selected = True ' Select the ListItem.
' Return focus to the control to see selection.
 ListView1.SetFocus

End If
End Sub

Private Sub ListView1_LostFocus()
' After the control loses focus, reset the Selected property
' of each ListItem to False.
Dim i As Integer
For i = 1 to ListView1.ListItems.Count

ListView1.ListItems.Item(i).Selected = False
Next i

End Sub

GetFirstVisible Method
See Also Example

Retrieves a reference to the first ListItem object visible in the internal area of a ListView control.

Important      This method requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.GetFirstVisible()

The object placeholder represents an object expression that evaluates to a ListView control.

Remarks
A ListView control can be scrolled to show more ListItem objects than can be seen in the internal area
of the ListView control.    You can use the reference to the first ListItem object in List and Report views,
or the Left and Top properties of the first ListItem object in Icon and SmallIcon views, to determine the
place to begin scrolling.

See Also
EnsureVisible Method
Index Property
Key Property
Left , Top Properties
ListView Control

GetFirstVisible Method Example

This example populates a ListView control with the contents of the Publishers table in the BIBLIO.MDB
database.    When you click on the CommandButton control, the text of the first visible item is
displayed.    Click on the column headers to change the SortKey property and click the
CommandButton again.    To try the example, place a ListView and a CommandButton control on a
form and paste the code into the form's Declaration section.    Also, the example will not run unless you
add a reference to the Microsoft DAO 3.0 Object Library using the References command from the Tools
menu.    Run the example.

Private Sub Command1_Click()
' Create a ListItem variable and set the variable to the object
' returned by the GetFirstVisible method. Use the reference to
' display the text of the ListItem.
Dim itmX As ListItem
Set itmX = ListView1.GetFirstVisible
MsgBox itmX.Text

End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's subitem(1).
' Use the Phone field for the ListItem object's subitem(2).

While Not myRs.EOF

Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set the SubItem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend
ListView1.View = lvwReport ' Set view to Report.

End Sub

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As ColumnHeader)
ListView1.SortKey = ColumnHeader.Index - 1
ListView1.Sorted = True

End Sub

ColumnHeaders

The ColumnHeaders keyword is used in these contexts:
ColumnHeaders Collection
ColumnHeaders Property

SubItems Property
See Also Example

Returns or sets an array of strings (a subitem) representing the ListItem object's data in a ListView
control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.SubItems(index) [= string]

The SubItems property syntax has these parts:

Part Description
object An object expression that evaluates to a ListItem object.
index An integer that identifies a subitem for the specified ListItem.
string Text that describes the subitem.

Remarks
Subitems are arrays of strings representing the ListItem object's data and are displayed in Report view.
For example, you could show the file size and the date last modified for a file.
A ListItem object can have any number of associated item data strings (subitems) but each ListItem
object must have the same number of subitems.    These strings become visible when the ListView
control is in Report view.
There are corresponding column headers defined for each subitem.
You cannot add elements directly to the subitems array.    Use the Add method of the ColumnHeaders
collection to add subitems.

See Also
Add Method (ColumnHeaders Collection)
Index Property
ListItem Object, ListItems Collection
Key Property
ListView Control

ListView Control Constants
See Also

ListView Control Constants

Constant Value Description
IvwIcon 0 (Default) Icon.    Each ListItem object is represented by a full-sized

(standard) icon and a text label.
IvwSmallIcon 1 SmallIcon.    Each ListItem is represented by a small icon and a text

label that appears to the right of the icon.    The items appear
horizontally.

IvwList 2 List.    Each ListItem is represented by a small icon and a text label
that appears to the right of the icon.    Each ListItem appears vertically
and on its own line with information arranged in columns.

IvwReport 3 Report.    Each ListItem is displayed with its small icons and text
labels.    You can provide additional information about each ListItem.   
The icons, text labels, and information appear in columns with the
leftmost column containing the small icon, followed by the text label.   
Additional columns display the text for each of the item's subitems.

ListArrange Constants

Constant Value Description
lvwNoArrange 0 (Default)    None.
lvwAutoLeft 1 Left.    ListItem objects are aligned along the left side of the control.
lvwTop 2 Top.    ListItem objects are aligned along the top of the control.

ListColumnAlignment Constants

Constant Value Description
lvwColumnLeft 0 (Default) Left.    Text is aligned left.
lvwColumnRight 1 Right.    Text is aligned right.
lvwColumnCenter 2 Center.    Text is centered.

ListLabelEdit Constants

Constant Value Description
lvwAutomatic 0 (Default) Automatic.    The BeforeLabelEdit event is generated when

the user clicks the label of a selected node.
lvwManual 1 Manual.    The BeforeLabelEdit event will be generated only when the

StartLabelEdit method is invoked.

ListSortOrder Constants

Constant Value Description
lvwAscending 0 (Default) Ascending order.    Sorts from the beginning of the alphabet

(A-Z), the earliest date, or the lowest number.
lvwDescending 1 Descending order.    Sorts from the end of the alphabet (Z-A), the latest

date, or the highest number.

ListFindItemWhere Constants

Constant Value Description
lvwText 0 (Default) Text.    Matches the string with a ListItem object's Text

property.
lvwSubItem 1 SubItem.    Matches the string with any string in a ListItem object's

SubItems property.
lvwTag 2 Tag.    Matches the string with any ListItem object's Tag property.

ListFindItemHow Constants

Constant Value Description
lvwWholeWord 0 (Default) Whole word.    Sets the search so that a match occurs if the

item's Text property begins with the whole word being searched for.   
Ignored if the criteria is not text.

lvwPartial 1 Partial.    Sets the search so that a match occurs if the item's Text
property begins with the string being searched for.    Ignored if the
criteria is not text.

See Also

Arrange Property
Alignment Property (ColumnHeader Object)
FindItem Method
LabelEdit Property
SortOrder Property
View Property
Visual Basic Custom Control Constants
Windows 95 Controls Constants

Sorted Property (ListView Control)
See Also Example

Returns or sets a value that determines whether the ListItem objects in the Icon and SmallIcon views of
a ListView control are sorted.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Sorted [= boolean]

The Sorted property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
boolean A Boolean expression specifying whether the ListItem objects are sorted, as described in

Settings.

Settings
The settings for boolean are:

Setting Description
True The list items are sorted alphabetically, according to the SortOrder property.
False The list items are not sorted.

Remarks
The Sorted property must be set to True for the settings in the SortOrder and SortKey properties to
take effect.
Each time the coordinates of a ListItem in the Icon and SmallIcon views change, the Sorted property
becomes False.

See Also
Height , Width Properties
Left , Top Properties
ListView Control
SortKey Property
SortOrder Property

ItemClick Event
See Also Example

Occurs when a ListItem object in a ListView control is clicked.

Important      This event requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Private Subobject_ItemClick(ByVal Item As ListItem)

The ItemClick event syntax has these parts:

Part Description
object An object expression that evaluates to a ListView control.
listitem The ListItem object that was clicked.

Remarks
Use this event to determine which ListItem was clicked.    This event is triggered before the Click event.
The standard Click event is generated    if the mouse is clicked on any part of the ListView control.   
The ItemClick event is generated only when the mouse is clicked on the text or image of a ListItem
object.

See Also
Click Event
ListItem Object, ListItems Collection
ListView Control

ItemClick Event Example

This example populates a ListView control with contents of the Publishers table in the BIBLIO.MDB
database.    When a ListItem object is clicked, the code checks the value of the Index property.    If the
value is less than 15, nothing occurs.    If the value is over 15, the ListItem object is ghosted. To try the
example, place a ListView control on a form and paste the code into the form's Declarations section.   
Run the example and click on one of the items.

Private ListView1_ItemClick(ByVal Item As ListItem)
Select Case Item.Index
Case Is = <15

Exit Sub
Case Is => 15

' Toggle Ghosted property.
Item.Ghosted = Abs(Item.Ghosted) - 1

End Select
End Sub

Private Sub Form_Load()
' Create an object variable for the ColumnHeader object.
Dim clmX As ColumnHeader
' Add ColumnHeaders. The width of the columns is the width
' of the control divided by the number of ColumnHeader objects.
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Company", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Address", ListView1.Width / 3)
Set clmX = ListView1.ColumnHeaders. _
Add(, , "Phone", ListView1.Width / 3)

ListView1.BorderStyle = ccFixedSingle ' Set BorderStyle property.

' Create object variables for the Data Access objects.
Dim myDb As Database, myRs As Recordset
' Set the Database to the BIBLIO.MDB database.
Set myDb = DBEngine.Workspaces(0).OpenDatabase("BIBLIO.MDB")
' Set the recordset to the Publishers table.
Set myRs = myDb.OpenRecordset("Publishers", dbOpenDynaset)

' Create a variable to add ListItem objects.
Dim itmX As ListItem

' While the record is not the last record, add a ListItem object.
' Use the Name field for the ListItem object's text.
' Use the Address field for the ListItem object's SubItem(1).
' Use the Phone field for the ListItem object's SubItem(2).

While Not myRs.EOF

Set itmX = ListView1.ListItems.Add(, , CStr(myRs!Name))

' If the Address field is not Null, set SubItem 1 to the field.
If Not IsNull(myRs!Address) Then

itmX.SubItems(1) = CStr(myRs!Address) ' Address field.
End If

' If the Phone field is not Null, set the SubItem 2 to the field.
If Not IsNull(myRs!Telephone) Then

itmX.SubItems(2) = myRs!Telephone ' Phone field.
End If

myRs.MoveNext ' Move to next record.
Wend
ListView1.View = lvwReport ' Set View to Report.

End Sub

Private Sub ListView1_ColumnClick(ByVal ColumnHeader As ColumnHeader)
ListView1.SortKey = ColumnHeader.Index - 1
ListView1.Sorted = True

End Sub

ListItems

The ListItems keyword is used in these contexts:
ListItems Collection
ListItems Property

 ProgressBar Control
See Also Properties Methods Events

The ProgressBar control shows the progress of a lengthy operation by filling a rectangle with chunks
from left to right.

Syntax
ProgressBar

Remarks
The ProgressBar control monitors an operation's progress toward completion.    It functions like the
Gauge control, but without the same precision.

ProgressBar
fills in chunks that approximate the relative progress of an operation.

Gauge
fills continuously and precisely measures a value, such as how much memory remains.
You can use the Align property with the ProgressBar control to automatically position it at the top or
bottom of the form.
A ProgressBar control has a range and a current position.    The range represents the entire duration of
the operation.    The current position represents the progress the application has made toward
completing the operation.    The Max and Min properties set the limits of the range.    The Value property
specifies the current position within that range.    Because chunks are used to fill in the control, the
amount filled in only approximates the Value property's current setting.    Based on the control's size, the
Value property determines when to display the next chunk.
The ProgressBar control's Height and Width properties determine the number and size of the chunks
that fill the control.    The more chunks, the more accurately the control portrays an operation's progress.
To increase the number of chunks displayed, decrease the control's Height or increase its Width.    The
BorderStyle property setting also affects the number and size of the chunks.    To accommodate a
border, the chunk size becomes smaller.

Tip      For a chunk size that best shows incremental progress, make a ProgressBar control at least 12
times wider than its height.

The following example shows how to use the ProgressBar control, named ProgressBar1, to show the
progress of a lengthy operation of a large array.    Put a CommandButton control and a ProgressBar
control on a form.    The Align property in the sample code positions the ProgressBar control along the
bottom of the form.    The ProgressBar control displays no text.
Private Sub Command1_Click()

Dim Counter As Integer
Dim Workarea(250) As String
ProgressBar1.Min = LBound(Workarea)
ProgressBar1.Max = UBound(Workarea)
ProgressBar1.Visible = True

'Set the Progress's Value to Min.
ProgressBar1.Value = ProgressBar1.Min

'Loop through the array.
For Counter = LBound(Workarea) To UBound(Workarea)

'Set initial values for each item in the array.
Workarea(Counter) = "Initial value" & Counter
ProgressBar1.Value = Counter

Next Counter
ProgressBar1.Visible = False

ProgressBar1.Value = ProgressBar1.Min
End Sub

Private Sub Form_Load()
ProgressBar1.Align = vbAlignBottom
ProgressBar1.Visible = False
Command1.Caption = "Initialize array"

End Sub

Distribution Note      The ProgressBar control is a 32-bit custom control that can only run on Windows
95 and Windows NT 3.51 or higher.    Additionally, the ProgressBar control is part of a group of custom
controls that are found in the COMCTL32.OCX file.    To use the ProgressBar control in your
application, you must add the COMCTL32.OCX file to the project.    When distributing your application,
install the COMCTL32.OCX file in the user's Microsoft Windows SYSTEM directory.    For more
information on how to add a custom control to a project, see the Programmer's Guide.

See Also

Align Property

BorderStyle Property

Gauge Control

Height, Width Properties

Max, Min Properties (ProgressBar, Slider Controls)

Value Property (ProgressBar, Slider Controls)

ProgressBar Control Properties

Align Property

Appearance Property

BorderStyle Property

Container Property

DragIcon Property

DragMode Property

Enabled Property

Height Property
hWnd Property

Index Property

Left Property

Max Property

Min Property

MouseIcon Property

MousePointer Property

Name Property

Negotiate Property

Object Property

Parent Property
TabIndex Property

Tag Property

Top Property

Value Property (ProgressBar, Slider Controls)

Visible Property

WhatsThisHelpID Property

Width Property

ProgressBar Control Methods

Drag Method
Move Method

ShowWhatsThis Method
ZOrder Method

ProgressBar Control Events

Click Event

DragDrop Event

DragOver Event

MouseDown Event

MouseMove Event

MouseUp Event

    Slider Control
Properties Methods Events Constants

A Slider control is a window containing a slider and optional tick marks.    You can move the slider by
dragging it, clicking the mouse to either side of the slider, or using the keyboard.

Syntax
Slider

Remarks
Slider controls are useful when you want to select a discrete value or a set of consecutive values in a
range.    For example, you could use a Slider to set the size of a displayed image by moving the slider to
a given tick mark rather than by typing a number.    To select a range of values, set the SelectRange
property to True, and program the control to select a range when the SHIFT key is down.
The Slider control can be oriented either horizontally or vertically.

Distribution Note      The Slider control is a 32-bit custom control that can only run on Windows 95 and
Windows NT 3.51 or higher.    Additionally, the Slider control is part of a group of custom controls that
are found in the COMCTL32.OCX file.    To use the Slider control in your application, you must add the
COMCTL32.OCX file to the project.    When distributing your application, install the COMCT32.OCX file
in the user's Microsoft Windows SYSTEM directory.    For more information on how to add a custom
control to a project, see the Programmer's Guide.

Slider Control Properties

BorderStyle Property
Container Property
DragIcon Property
DragMode Property
Enabled Property
Height Property
HelpContextID Property
hWnd Property
Index Property
LargeChange Property
Left Property
Max Property
Min Property
MouseIcon Property
MousePointer Property
Name Property
Orientation Property
Parent Property
SelectRange Property
SelLength Property
SelStart Property
SmallChange Property
TabIndex Property
TabStop Property
Tag Property
TickFrequency Property
TickStyle Property
Top Property
Value Property
Visible Property
WhatsThisHelpID Property
Width Property

Slider Control Methods

ClearSel Method
Drag Method
GetNumTicks Method
Move Method
Refresh Method
SetFocus Method
ShowWhatsThis Method
ZOrder Method

Slider Control Events

Change Event
Click Event
DragDrop Event
DragOver Event
GotFocus Event
KeyDown Event
KeyPress Event
KeyUp Event
LostFocus Event
MouseDown Event
MouseMove Event
MouseUp Event
Scroll Event

LargeChange, SmallChange Properties (Slider Control)
See Also Example

The LargeChange property sets the number of ticks the slider will move when you press the
PAGEUP or PAGEDOWN keys, or when you click the mouse to the left or right of the slider.

The SmallChange property sets the number of ticks the slider will move when you press the left
or right arrow keys.

Syntax
object.LargeChange = number
object.SmallChange = number

The LargeChange and SmallChange property syntaxes have these parts:

Part Description
object An object expression that evaluates to a Slider control.
number A long integer specifying how many ticks the slider moves.

Remarks
The default for the LargeChange property is 5.    The default for the SmallChange property is 1.

See Also
Max, Min Properties
Value Property
Slider Control

LargeChange, SmallChange Properties Example

This example matches a TextBox control's width to that of a Slider control.    While the Slider control's
Value property is above a certain value, the TextBox control's width matches the Slider control's value.
The SmallChange and LargeChange properties depend on the value of the Slider control's Max
property.    To try the example, place a Slider control and a TextBox control on a form and paste the
code into the form's Declarations section.    Run the example and press the PAGEDOWN, PAGEUP, and
LEFT and RIGHT ARROW keys.

Sub Form_Load()
Text1.Width = 4500 ' Set a minimum width for the TextBox.
Slider1.Left = Text1.Left ' Align the Slider to the TextBox.
' Match the width of the Slider to the TextBox.
Slider1.Max = Text1.Width
' Place the Slider a little below the Textbox.
Slider1.Top = Text1.Top + 600
' Set TickFrequency to a fraction of the Max value.
Slider1.TickFrequency = Slider1.Max * 0.1
' Set LargeChange and SmallChange value to a fraction of Max.
Slider1.LargeChange = Slider1.Max * 0.1
Slider1.SmallChange = Slider1.Max * 0.01

End Sub

Private Sub Slider1_Change()
' If the slider is under 1/3 the size of the textbox, no change.
' Else, match the width of the textbox to the Slider's value.
If Slider1.Value > Slider1.Max / 3 Then

Text1.Width = Slider1.Value
End If

End Sub

Orientation Property (Slider Control)
See Also Example

Sets a value that determines whether the Slider control is oriented horizontally or vertically.

Syntax
object.Orientation = number

The Orientation property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider control.
number A constant or value specifying the orientation, as described in Settings.

Settings
The settings for number are:

Constant Value Description
sldHorizontal 0 (Default) Horizontal.    The slider moves horizontally and tick marks can be

placed on either the top or bottom, both, or neither.
sldVertical 1 Vertical.    The slider moves vertically and tick marks can be placed on either

the left or right sides, both, or neither.

See Also
Max, Min Properties
Slider Control
Slider Control Constants

Orientation Property Example

This example toggles the orientation of a Slider control on a form.    To try the example, place a Slider
control onto a form and paste the code into the form's Declarations section, and then run the example.   
Click the form to toggle the Slider control's orientation.

Private Sub Form_Click()
If Slider1.Orientation = 0 Then

Slider1.Orientation = 1
Else

Slider1.Orientation = 0
End If

End Sub

Scroll Event (Slider Control)
See Also

Occurs when you move the slider on a Slider control, either by clicking on the control or using keyboard
commands.

Syntax
Private Sub object_Scroll()

The object placeholder represents an object expression that evaluates to a Slider control.

Remarks
The Scroll Event occurs before the Click event.
The Scroll Event continuously returns the value of the Value property as the slider is moved.    You can
use this event to perform calculations to manipulate controls that must be coordinated with ongoing
changes in the Slider control.    In contrast, use the Change event when you want an update to occur
only once, after a Slider control's Value property has changed.

Note      Avoid using a MsgBox statement or function in this event.

See Also
LargeChange , SmallChange Properties
Value Property
Slider Control

SelectRange Property
See Also Example

Sets a value that determines if a Slider control can have a selected range.

Syntax
object.SelectRange = boolean

The SelectRange property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider control.
boolean A Boolean expression that determines whether or not the Slider can have a selected

range, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The Slider can have a selected range.
False The Slider can't have a selected range.

Remarks
If SelectRange is set to False, then the SelStart property setting is the same as the Value property
setting.    Setting the SelStart property also changes the Value property, and vice-versa, which will be
reflected in the position of the slider on the control.    Setting SelLength when the SelectRange property
is False has no effect.

See Also
ClearSel Method
SelLength, SelStart Properties
Slider Control
Value Property

SelectRange Property Example

This example allows the user to select a range when the SHIFT key is held down.    To try the example,
place a Slider control on a form and paste the code into the form's Declarations section.    Run the
example and select a range by holding down the SHIFT key and dragging or clicking the mouse on the
Slider control.

Private Sub Form_Load()
'Set slider control settings
Slider1.Max = 20

End Sub

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, x As
Single, y As Single)

If Shift = 1 Then ' If Shift button is down then
Slider1.SelectRange = True ' turn SelectRange on.
Slider1.SelStart = Slider1.Value ' Set the SelStart value
Slider1.SelLength = 0 ' Set previous SelLength (if any) to 0.

Else
Exit Sub

End If
End Sub

Private Sub Slider1_MouseUp(Button As Integer, Shift As Integer, x As Single,
y As Single)

If Shift = 1 Then
' If user selects backwards from a point, an error will occur.
On Error Resume Next
' Else set SelLength using SelStart and current value.

Slider1.SelLength = Slider1.Value - Slider1.SelStart
Else

Slider1.SelectRange = False ' If user lifts SHIFT key.
Exit Sub
End If

End Sub

SelLength, SelStart Properties (Slider Control)
See Also Example

SelLength returns or sets the length of a selected range in a Slider control.
SelStart returns or sets the start of a selected range in a Slider control.

Syntax
object.SelLength [= value]
object.SelStart [= value]

The SelLength and SelStart property syntaxes have these parts:

Part Description
object An object expression that evaluates to a Slider control.
value A value that falls within the Min and Max properties.

Remarks
The SelLength and SelStart properties are used together to select a range of contiguous values on a
Slider control.    The Slider control then has the additional advantage of being a visual analogue of the
range of possible values.
The SelLength property can't be less than 0, and the sum of SelLength and SelStart can't be greater
than the Max property.

See Also
ClearSel Method
SelectRange Property
Slider Control

SelLength, SelStart Properties Example

This example selects a range on a Slider control.    To try this example, place a Slider control onto a
form with three TextBox controls, named Text1, Text2, and Text3.    The Slider control's SelectRange
property must be set to True.    Paste the code below into the form's Declarations section, and run the
example.    While holding down the SHIFT key, you can select a range on the slider, and the various
values will be displayed in the text boxes.

Private Sub Form_Load()
' Make sure SelectRange is True so selection can occur.
Slider1.SelectRange = True

End Sub

Private Sub Slider1_MouseDown(Button As Integer, Shift As Integer, x As
Single, y As Single)

If Shift = 1 Then ' If SHIFT is down, begin the range selection.
Slider1.ClearSel ' Clear any previous selection.
Slider1.SelStart = Slider1.Value
Text2.Text = Slider1.SelStart ' Show the beginning

' of the range in the textbox.
Else

Slider1.ClearSel ' Clear any previous selection.
End If
End Sub

Private Sub Slider1_MouseUp(Button As Integer, Shift As Integer, x As Single,
y As Single)

' When SHIFT is down and SelectRange is True,
' this event is triggered.
If Shift = 1 And Slider1.SelectRange = True Then

' Make sure the current value is larger than SelStart or
' an error will occur--SelLength can't be negative.
If Slider1.Value >= Slider1.SelStart Then

Slider1.SelLength = Slider1.Value - Slider1.SelStart
Text1.Text = Slider1.Value ' To see the end of the range.
' Text3 is the difference between the end and start values.
Text3.Text = Slider1.SelLength

End If
End If

End Sub

TickFrequency Property
See Also Example

Returns or sets the frequency of tick marks on a Slider control in relation to its range.    For example, if
the range is 100, and the TickFrequency property is set to 2, there will be one tick for every 2
increments in the range.

Syntax
object.TickFrequency [= number]

The TickFrequency property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider control.
number A numeric expression specifying the frequency of tick marks.

See Also
GetNumTicks Method
Max, Min Properties
Slider Control

TickFreqency Property Example

This example matches a TextBox control's width to that of a Slider control.    While the Slider control's
Value property is above a certain value, the TextBox control's width matches the Slider control's value.
The TickFrequency depends on the value of the Slider control's Max property.    To try the example,
place a Slider and a TextBox control on a form and paste the code into the form's Declarations section.
Run the example and click the slider several times.

Sub Form_Load()
Text1.Width = 4500 ' Set a minimum width for the TextBox.
Slider1.Left = Text1.Left ' Align the Slider to the TextBox.
' Match the width of the Slider to the TextBox.
Slider1.Max = Text1.Width
' Place the Slider a little below the Textbox.
Slider1.Top = Text1.Top + 600
' Set TickFrequency to a fraction of the Max value.
Slider1.TickFrequency = Slider1.Max * 0.1
' Set LargeChange and SmallChange value to a fraction of Max.
Slider1.LargeChange = Slider1.Max * 0.1
Slider1.SmallChange = Slider1.Max * 0.01

End Sub

Private Sub Slider1_Change()
' If the slider is under 1/3 the size of the textbox, no change.
' Else, match the width of the textbox to the Slider's value.
If Slider1.Value > Slider1.Max / 3 Then

Text1.Width = Slider1.Value
End If

End Sub

TickStyle Property
See Also Example

Returns or sets the style (or positioning) of the tick marks displayed on the Slider control.

Syntax
object.TickStyle [= number]

The TickStyle property syntax has these parts:

Part Description
object An object expression that evaluates to a Slider control.
number A constant or integer that specifies the TickStyle property, as described in Settings.

Settings
The settings for number are:

Constant Value Description
sldBottomRight 0 (Default) Bottom/Right.    Tick marks are positioned along the bottom of

the Slider if the control is oriented horizontally, or along the right side if it
is oriented vertically.

sldTopLeft 1 Top/Left.    Tick marks are positioned along the top of the Slider if the
control is oriented horizontally, or along the left side if it is oriented
vertically.

sldBoth 2 Both.    Tick marks are positioned on both sides or top and bottom of the
Slider.

sldNoTicks 3 None.    No tick marks appear on the Slider.

See Also
GetNumTicks Method
Max, Min Properties
Slider Control
Slider Control Constants

TickStyle Property Example

This example allows you to see the various tick styles available in a drop-down list.    To try the example,
place a Slider control and a ComboBox control on a form.    Paste the code into the Declarations
section of the form, and run the example.    Click on the ComboBox to change the TickStyle property
value.

Sub Form_Load()
With combo1

.AddItem "Bottom/Right"

.AddItem "Top/Left"

.AddItem "Both"

.AddItem "None"

.ListIndex = 0
End With

End Sub

Private Sub combo1_Click()
Slider1.TickStyle = combo1.ListIndex

End Sub

ClearSel Method
See Also

Clears the current selection of a Slider control.

Syntax
object.ClearSel

The object placeholder represents an object expression that evaluates to a Slider control.

Remarks
This method sets the SelStart property to the value of the Value property and sets the SelLength
property to 0.

See Also
SelectRange Property
SelLength, SelStart Properties (Slider Control)
Slider Control
Value Property

GetNumTicks Method
See Also Example

Returns the number of ticks between the Min and Max properties of the Slider control.

Syntax
object.GetNumTicks

The object placeholder represents an object expression that evaluates to a Slider control.

Remarks
To change the number of ticks, reset the Min or Max properties or the TickFrequency property.

See Also
Max, Min Properties
TickFrequency Property
Slider Control

GetNumTicks Method Example

This example displays the current number of ticks on a Slider control, then increments the Max property
by 10.    To try this example, place a Slider control onto a form and paste the code into the form's
Declarations section.    Run the example, and click the Slider control to get the number of ticks.    Every
click on the control increases the ticks.

Sub Slider1_Click()
MsgBox Slider1.GetNumTicks
Slider1.Max = Slider1.Max + 10

End Sub

Slider Constants
See Also

Orientation Constants

Constant Value Description
sldHorizontal 0 Horizontal orientation.
sldVertical 1 Vertical orientation.

TickStyle Constants

Constant Value Description
sldBottomRight 0 Bottom/Right.    Tick marks are positioned along the bottom of the

Slider if the control is oriented horizontally, or along the right side if it is
oriented vertically.

sldTopLeft 1 Top/Left.    Tick marks are positioned along the top of the Slider if the
control is oriented horizontally, or along the left side if it is oriented
vertically.

sldBoth 2 Both.    Tick marks are positioned on both sides or top and bottom of the
Slider.

sldNoTicks 3 None.    No tick marks appear on the Slider.

See Also
TickStyle Property
Orientation Property
Slider Control
Visual Basic Custom Control Constants
Windows 95 Controls Constants

Image Property (Custom Controls)
See Also

Returns or sets a value that specifies which ListImage object in a ImageList control to use with another
object.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Image [= index]
The Image property syntax has these parts:

Part Description
object An object expression that evaluates to a Button, Node, or Tab object.
index An integer or unique string specifying the ListImage object to use with object.    The

integer is the value of the Index property; the string is the value of the Key property.

Remarks
Before setting the Image property, you must associate an ImageList control with a Toolbar, TreeView,
or TabStrip control by setting each control's ImageList property to an ImageList control.
At design time, put an ImageList control on the form and load it with images, each of which is a
ListImage object assigned an index number in a ListImages collection.    On the General tab in the
control's properties dialog box, select the ImageList you want from the ImageList list box, such as
ImageList1.    For Tab and Button objects, you can also specify the image you want to associate with
these objects by typing the index number of the specific ListImage in the Image field on the Tabs or
Buttons tab.
At run time, use code like the following to associate an ImageList to a control and then a ListImage to a
specific object:
Set TabStrip1.ImageList=ImageList1
TabStrip1.Tabs(1).Image=2

Use the Key property to specify an ImageList control's ListImage object when you wish your code to be
self-documenting, as follows:
' Assuming there is a ListImage object with the Key property value =
' "close," use that image for a Toolbar button.
Toolbar1.Buttons(1).Image = "close"

' This is easier to read than just specifying an Index value, as below:
Toolbar1.Buttons(1).Image = 4 ' Requires that the ListImage object
' with Index property = 4 is the "close" image.

Additionally, when you use the Key property to specify a ListImage object, you can ignore the Index
property, which may change if ListImage objects are added or deleted from a collection.
If there are no images for a Tabs collection, the value of index is -1.

See Also
Add Method (ListImages Collection)
ImageList Control
Index Property
Key Property

Index Property (Custom Controls)
See Also

Returns or sets the number that uniquely identifies an object in a collection.

Syntax
object.Index

The object placeholder is an object expression that evaluates to a Button, ColumnHeader, ListImage,
ListItem, Node, Panel, or Tab object.

See Also
Key Property

Key Property (Custom Controls)
See Also

Returns or sets a string that uniquely identifies a member in a collection.

Syntax
object.Key [= string]

The Key property syntax has these parts:

Part Description
object An object expression that evaluates to a Button, ColumnHeader, ListImage, ListItem,

Node, Panel, or Tab object.
string A unique string identifying a member in a collection.

Remarks
If the string is not unique, an error will occur.
You can set the Key property when you use the Add method to add an object to a collection.

See Also
Add Method
Index Property

Max, Min Properties (Custom Controls)

Max
returns or sets a control's maximum value.

Min
returns or sets a control's minimum value.

Syntax
object.Max [= integer]
object.Min [= integer]

The Max and Min properties syntaxes have these parts:

Part Description
object An object expression that evaluates to a ProgressBar or Slider control.
integer An integer specifying the maximum or minimum value.

Remarks
The Max and Min properties define the range of a control.
Setting the Min property greater than the Max property produces an error.
For the ProgressBar control, you can't set the Min property equal to the Max property, and the Min
property must be greater than or equal to 0.    By default, the ProgressBar control sets the Max property
to 100 and the Min property to 0.    This range represents the duration of the operation.

ToolTipText Property (Custom Controls)
See Also

Returns or sets a ToolTip.

Syntax
object.ToolTipText [= string]

The ToolTipText property syntax has these parts:

Part Description
object An object expression that evaluates to a Button or Tab object.
string A string associated with a Tab or Button that appears in a small rectangle below the

object when the user's cursor hovers over the object at run time for about one second.

Remarks
If you use only an image to label an object, you can use this property to explain each object with a few
words.    The ShowTips property must be set to True for a ToolTipText property string to appear with
the object at run time.
At design time you can set the ToolTipText property string on the Buttons (Toolbar) or Tabs (TabStrip)
tab in the control's properties dialog box.

See Also
ShowTips Property

ShowTips Property (Custom Controls)
See Also

Returns or sets a value that determines whether ToolTips are displayed for an object.

Syntax
object.ShowTips [= value]

The ShowTips property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip or Toolbar control.
value A Boolean expression specifying whether ToolTips are displayed, as described in

Settings.

Settings
The settings for value are:

Setting Description
True (Default) Each object in the control may display an associated string, which is the setting

of the ToolTipText property, in a small rectangle below the object.    This ToolTip appears
when the user's cursor hovers over the object at run time for about one second.

False An object will not display a ToolTip at run time.

Remarks
At design time you can set the ShowTips property on the General tab in the control's properties dialog
box.

See Also
ToolTipText Property

ImageList Property (Custom Controls)
See Also

Returns or sets the ImageList control, if any, that is associated with another control.

Syntax
object.ImageList [= imagelist]

The ImageList property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip, Toolbar, or TreeView control.
imagelist An object reference that specifies which ImageList control to use.

Remarks
For the control to use the ImageList property, you must put an ImageList control on the form.    Then, at
design time, you can set the ImageList property in the associated control's properties dialog box from
the combo box containing the names of all the ImageList controls currently on the form.    To associate
an ImageList with a control at run time, set the control's ImageList property to the ImageList control
you want to use, as in this example:
Set TabStrip1.ImageList = ImageList1

See Also
ImageList Control

Clear Method (Custom Controls)
See Also Example

Clears all objects in a collection.

Syntax
object.Clear

The object placeholder represents an object expression that evaluates to one of the following
collections: Buttons, ColumnHeaders, ListImages, ListItems, Nodes, Panels, or Tabs.

Remarks
To remove one object from a collection, use the Remove method.

See Also
Remove Method

Clear Method (Custom Controls) Example

This example adds six Panel objects to a StatusBar control, creating a total of seven Panel objects.    A
click on the form clears all Panel objects when their number reaches seven.    If the number of Panel
objects is less than seven, each click on the form will add a new Panel object to the control until the
number seven is once again reached.    To try the example, place a StatusBar control on a form and
paste the code into the Declarations section.    Run the example and click on the form to clear all Panel
objects and subsequently add Panel objects.

Private Sub Form_Load()
Dim pnlX As Panel ' Declare object variable for Panel objects.
Dim I As Integer

' Add 6 Panel objects to the single default Panel object,
' making 7 Panel objects.
For I = 1 to 6

Set pnlX = StatusBar1.Panels.Add
Next I

End Sub

Private Sub Form_Click()
' If the Count of the collection is 7, then clear the collection.
' Otherwise, add one Panel and use the collection's Count property
' to set its Style.
If StatusBar1.Panels.Count = 7 Then

StatusBar1.Panels.Clear
Else

Dim pnlX As Panel
Set pnlX = StatusBar1.Panels.Add(, , "simple", 0)
' The Style property is enumerated from 0 to 6. Use the Panels
' Count property -1 to set the Style property for the new Panel.
' Display all panels regardless of form width.
pnlX.minwidth = TextWidth("simple")
pnlX.AutoSize = sbrSpring
pnlX.Style = Statusbar1.Panels.Count - 1

End If
End Sub

Remove Method (Custom Controls)
See Also Example

Removes a specific member from a collection.

Syntax
object.Remove index

The Remove method syntax has these parts:

Part Description
object An object expression that evaluates to one of the following collections: Buttons,

ColumnHeaders, ListImages, ListItems, Nodes, Panels, Tabs.
index An integer or string that uniquely identifies the object in the collection.    An integer

specifies the value of the Index property; a string specifies the value of the Key property.

Remarks
To remove all the members of a collection, use the Clear method.

See Also
Clear Method
Index Property
Key Property

Remove Method (Custom Controls) Example

This example adds six Panel objects to a StatusBar control, creating a total of seven Panel objects.   
When you click on the form, the code checks to see how many Panel objects there are.    If there is only
one Panel object, the code adds six Panel objects.    Otherwise, it removes the first panel.    To try the
example, place a StatusBar control on a form and paste the code into the Declarations section.    Run
the example and click on the form to remove one Panel object at a time, and subsequently add Panel
objects.

Private Sub Form_Load()
Dim pnlX As Panel ' Declare object variable for Panel objects.
Dim i As Integer

' Add 6 Panel objects to the single default Panel object,
' making 7 Panel objects.
For i = 1 To 6

Set pnlX = StatusBar1.Panels.Add(, , , i)
pnlX.AutoSize = sbrSpring

Next i
End Sub

Private Sub Form_Click()
' If the Count of the collection is 1, add 6 Panel objects.
' Otherwise, remove the first panel from the collection.
If StatusBar1.Panels.Count = 1 Then

Dim sbrX As Panel
Dim i As Integer
For i = 1 To 6 ' Each panel has its style set by i.

Set sbrX = StatusBar1.Panels.Add(, , , i)
sbrX.AutoSize = sbrSpring

Next i
Else ' Remove the first panel.

StatusBar1.Panels.Remove 1
End If

End Sub

Value Property (Custom Controls)
See Also Example

Returns or sets the value of an object.    See Remarks for more specific information.

Syntax
object.Value [= integer]

The Value property syntax has these parts:

Part Description
object An object expression that evaluates to a Button object, 3D check box, 3D command

button, 3D group push button, 3D option button, Slider, or ProgressBar control.
integer For a Slider control, a long integer that specifies the current position of the slider.    For the

ProgressBar control, an integer that specifies the value of the ProgressBar control.    For
other controls, see Settings below.

Settings
For the Button object, the settings for integer are:

Constant Value Description
tbrPressed 0 (Default).    The button is not currently pressed or checked.
tbrUnpressed 1 The button is currently pressed or checked.

For the 3D check box, 3D command button, and 3D group push button controls, the settings for integer
are:

Value Description
True The button is pressed.
False (Default).    The button is not pressed.

For the 3D option button control, the settings for integer are:

Value Description
True The button is selected.
False (Default).    The button is not selected.

Remarks

Slider control
returns or sets the current position of the slider.    Value is always between the values for the Max and

Min properties, inclusive, for a Slider control.
ProgressBar

returns or sets a value indicating an operation's approximate progress toward completion.    Incrementing
the Value property doesn't change the appearance of the ProgressBar control by the exact value of the
Value property.    Value is always in the range between the values for the Max and Min properties,
inclusive.    Not available at design time.

3D command button control
returns or sets a value indicating whether the button is chosen; not available at design time. Setting the

Value property to True in code invokes the button's Click event.

See Also
Max , Min Properties

Value Property Example

This example uses the Value property to determine which icon from an associated ImageList control is
displayed on the Toolbar control.    To try the example, place a Toolbar control on a form and paste the
code into the form's Declarations section.    Then run the example.

Private Sub Toolbar1_ButtonClick(ByVal Button As Button)
' Use the Key value to determine which button has been clicked.
Select Case Button.Key

Case Is "Done" ' A check button.
If Button.Value = 0 Then ' The button is unchecked.

Button.Value = 1 ' Check the button.
' Assuming there is a ListImage object with key "down."
Button.Icon = "down"

Else
Button.Value = 0 ' Uncheck the button
' Assuming there is a ListImage object with key " up."
Button.Icon = "up"

End If

' More Cases are possible.
End Select

End Sub

HideSelection Property (Custom Controls)

Returns or sets a value that specifies if the selected item remains highlighted when a control loses
focus.

Syntax
object .HideSelection [= boolean]

The HideSelection property syntax has these parts:

Part Description
object An object expression that evaluates to a ListView, RichTextBox, or TreeView control.
boolean A Boolean expression specifying how a control is displayed when it loses the focus, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The items in the control are no longer selected when the control loses the focus.
False The items are still selected after the control loses focus.

Remarks
Normally, the selected items in a control are hidden when the control loses focus.    This is the default
action of the property.
If you want the selected items to remain selected after the control loses focus, set the HideSelection
property to False.

Text Property (Custom Controls)
Example

Returns or sets the text contained in an object.

Syntax
object.Text [= string]

The Text property syntax has these parts:

Part Description
object An object expression that evaluates to a ColumnHeader, ListItem, Panel, or Node

object, or a RichTextBox control.
string A string expression specifying the text appearing in the object.

Text Property (Custom Controls) Example

This example populates a TreeView control with the titles of files in a FileListBox control.    When an
item in the TreeView control is clicked, the Text property is displayed in a message box.    To try the
example, place TreeView and FileListBox controls on a form and paste the code into the form's
Declarations section.    Run the example and click on any item to see its Text property.

Private Sub Form_Load()
Dim nodX As Node ' Declare an object variable for the Node.
Dim i As Integer ' Declare a variable for use as a counter.

' Add one Node to the TreeView control, and use the Path
' property of the FileListBox as its Text property.
Set nodX = TreeView1.Nodes.Add()
nodX.Text = File1.Path

' Add child nodes to the first Node object. Use the
' FileListBox to populate the control.
For i = 0 To File1.ListCount - 1

Set nodX = TreeView1.Nodes.Add(1, tvwChild)
nodX.Text = File1.List(i)
nodX.EnsureVisible ' Make sure all nodes are visible.

Next i
End Sub

Private Sub TreeView1_NodeClick(ByVal Node As Node)
' Display the clicked Node object's Text property.
MsgBox Node.Text

End Sub

ImageList Control
See Also Properties Methods Constants

An ImageList control contains a collection of ListImage objects, each of which can be referred to by its
index or key.    The ImageList control is not meant to be used alone, but as a central    repository to
conveniently supply other controls with images.

Syntax
ImageList

Remarks
You can use the ImageList control with any control that assigns a Picture object to a Picture property.
For example, the following code assigns the first ListImage object in a ListImages collection to the
Picture property of a newly created StatusBar panel:
Dim pnlX As Panel
Set pnlX = StatusBar1.Panels.Add() ' Add a new Panel object.
Set pnlX.Picture = ImageList1.ListImages(1).Picture ' Set Picture.

Note      You must use the Set statement when assigning an image to a Picture object.

The ImageList control can load either or both bitmaps and icons together as long as all images are of
the same size.    You are not limited to any particular image size, but the total number of images that can
be loaded is limited by the amount of available memory.
At design time, you can add images using the General tab of the ImageList Control Properties dialog
box.    At run time, you can add images using the Add method for the ListImages collection.
Besides storing Picture objects, the ImageList control can also perform graphical operations on images
before assigning them to other controls.    For example, the Overlay method creates a composite image
from two disparate images.
Additionally, you can bind one or more ImageList controls to certain other Windows 95 common
controls to conserve system resources.    These include the ListView, ToolBar, TabStrip, and TreeView
controls.    In order to use an ImageList with one of these controls, you must associate a particular
ImageList with the control through an appropriate property.    For the ListView control, you must set the
Icons and SmallIcons properties to ImageList controls.    For the TreeView, TabStrip, and Toolbar
controls, you must set the ImageList property to an ImageList control.
For these controls, you can specify an ImageList at design time using the Custom Properties dialog
box.    At run time, you can also specify an ImageList which sets a TreeView control's ImageList
property, as in the following example:
TreeView1.ImageList = ImageList1 ' Specify ImageList

Once you associate an ImageList with a control, you can use the value of either the Index or Key
property to refer to a ListImage object in a procedure.    The following example sets the Image property
of a TreeView control's third Node object to the first ListImage object in an ImageList control:
' Use the value of the Index property of ImageList1.
TreeView1.Nodes(3).Image = 1
' Or use the value of the Key property.
TreeView1.Nodes(3).Image = "image 1" ' Assuming Key is "image 1."

Distribution Note      The ImageList control is a 32-bit custom control that can only run on 32-bit
systems such as Windows 95 and Windows NT 3.51 or higher.    Additionally, the ImageList control is
part of a group of custom controls that are found in the COMCTL32.OCX file.    To use the ImageList
control in your application, you must add the COMCTL32.OCX file to the project.    When distributing
your application, install the COMCTL32.OCX file in the user's Microsoft Windows SYSTEM directory.   
For more information on how to add a custom control to a project, see the Programmer's Guide.

See Also
Add Method (ListImages Collection)
Icons Property
ImageList Property
Index Property
Key Property
ListImage Object, ListImages Collection
ListView Control
SmallIcons Property
TabStrip Control
Toolbar Control
TreeView Control

ImageList Control Properties

BackColor Property
ImageHeight Property
ImageWidth Property
Index Property
ListImages Property
MaskColor Property
Name Property
Object Property
Parent Property
Tag Property

ImageList Control Methods

Overlay Method

ListImage Object, ListImages Collection
See Also Properties Methods

A ListImage object is a bitmap of any size that can be used in other controls.
A ListImages collection is a collection of ListImage objects.

Syntax
imagelist.ListImages
imagelist.ListImages(index)

The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to standard collection syntax.
The ListImage Object, ListImages Collection syntaxes have these parts:

Part Description
imagelist An object expression that evaluates to an ImageList control.
index An integer or string that uniquely identifies the object in the collection.    The integer is the

value of the Index property; the string is the value of the Key property.

Remarks
The ListImages collection is a 1-based collection.
You can add and remove a ListImage at design time using the General tab of the ImageList Control
Properties page, or at run time using the Add method for ListImage objects.
Each item in the collection can be accessed by its index or unique key.    For example, to get a reference
to the third ListImage object in a collection, use the following syntax:
Dim imgX As ListImage

' Reference by index number.
Set imgX = ImageList.ListImages(3)

' Or reference by unique key.
Set imgX = ImageList1.ListImages("third") ' Assuming Key is "third."

' Or use Item method.
Set imgX = ImageList1.ListImages.Item(3)

Each ListImage object has a corresponding mask that is generated automatically using the MaskColor
property.    This mask is not used directly, but is applied to the original bitmap in graphical operations
such as the Overlay and Draw methods.

See Also
ImageList Control
ImageList Property
MaskColor Property
Overlay Method

ListImage Object, ListImages Collection Properties

Legend

Count Property

Index Property
Key Property
Picture Property

ListImage Object, ListImages Collection Methods

Legend

Add Method

Clear Method
Draw Method
ExtractIcon Method
Item Method
Remove Method

Add Method (ListImages Collection)
See Also Example

Adds a ListImage object to a ListImages collection.    Doesn't support named arguments.

Syntax
object.Add(index, key, picture)

The Add method syntax has these parts:

Part Description
object An object expression that evaluates to a ListImages collection.

index Optional.    An integer specifying the position where you want to insert the ListImage.    If
no index is specified, the ListImage is added to the end of the ListImages collection.

key Optional.    A unique string that identifies the ListImage object.    Use this value to retrieve
a specific ListImage object.    NOTE: An error occurs if the key is not unique.

picture Required.    Specifies the picture to be added to the collection.

Remarks
The ListImages collection is a 1-based collection.
You can load either bitmaps or icons into a ListImage object as long as all images are of the same size.
To load a bitmap or icon, you must use the LoadPicture function, as follows:
Set imgX = ImageList1.ListImages.Add(,,LoadPicture("file name"))

You can also load a Picture object directly into the ListImage object.    For example, this example loads
a PictureBox control's picture into the ListImage object:
Set imgX = ImageList1.ListImages.Add(,,Picture1.Picture)

If no ListImage objects have been added to a ListImages collection, you can set the ImageHeight and
ImageWidth properties before adding the first ListImage object.    The first ListImage object you add to
a collection can be any size.    However, all subsequent ListImage objects must be the same size as the
first ListImage object.    Once a ListImage object has been added to the collection, the ImageHeight
and ImageWidth properties become read-only properties, and any image added to the collection must
have the same ImageHeight and ImageWidth values.
You should use the Key property to reference a ListImage object if you expect the value of the Index
property to change.    For example, if you allow users to add and delete their own images to the
collection, the value of the Index property may change.
When a ListImage object is added to the collection, a reference to the newly created object is returned.
You can use the reference to set other properties of the ListImage, as follows:
Dim imgX As ListImage
Dim I As Integer

Set imgX = ImageList1.ListImages. _
Add(,,LoadPicture("icons\comm\net01.ico"))
imgX.Key = "net connect" ' Use the new reference to assign Key.

See Also
Clear Method
Count Property
ListImage Object, ListImages Collection
ImageHeight, ImageWidth Properties
Item Method
Remove Method

Add Method (ListImages Collection) Example

This example adds several images to a ListImages collection, and then uses the images in a TreeView
control.    To try the example, place ImageList and TreeView controls on a form, and paste the code into
the form's Declarations section.    Run the example to see the TreeView populated with pictures from the
ImageList.

Private Sub Form_Load()
Dim imgX As ListImage
' Load three icons into the ImageList control's collection.
Set imgX = ImageList1.ListImages. _
Add(,"rocket", LoadPicture("icons\industry\rocket.ico"))
Set imgX = ImageList1.ListImages. _
Add(,"plane",LoadPicture("icons\industry\plane.ico"))
Set imgX = ImageList1.ListImages. _
Add(,"car",LoadPicture("icons\industry\cars.ico"))

' Set TreeView control's ImageList property.
Set TreeView1.ImageList = ImageList1

' Create a Treeview, and use ListImage objects for its images.
Dim nodX As Node
Set nodX = TreeView1.Nodes.Add(,,,"Rocket")
nodX.Image = 1 ' Use the Index property of image 1.
Set nodX = TreeView1.Nodes.Add(,,,"Plane")
nodX.Image = "plane" ' Use the Key property of image 2.
Set nodX = TreeView1.Nodes.Add(,,,"Car")
nodX.Image = "car" ' Use the Key property of image 3.

End Sub

Draw Method
See Also Example

Draws an image into a destination device context (DC), such as a PictureBox control, after performing
a graphical operation on the image.    Doesn't support named arguments.

Syntax
object.Draw (hDC, x,y, style)

The Draw method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a ListImage object.
hDC Required.    A value set to the target object's hDC property.
x,y Optional.    The coordinates used to specify the location within the device context where

the image will be drawn.    If you don't specify these, the image is drawn at the origin of the
DC.

style Optional.    Specifies the operation performed on the image, as described in Settings.

Settings
The settings for style are:

Constant Value Description
imlNormal 0 (Default) Normal.    Draws the image with no change.
imlTransparent 1 Transparent.    Draws the image using the MaskColor property to

determine which color of the image will be transparent.
imlSelected 2 Selected.    Draws the image dithered with the system highlight color.
imlFocus 3 Focus.    Draws the image dithered and striped with the highlight color

creating a hatched effect to indicate the image has the focus.

Remarks
The hDC property is a handle (a number) that the Windows operating system uses for internal reference
to an object.    You can paint in the internal area of any control that has an hDC property.    In Visual
Basic, these include the Form object, PictureBox control, and Printer object.
Because an object's hDC can change while an application is running, it is better to specify the hDC
property rather than an actual value.    For example, the following code ensures that the correct hDC
value is always supplied to the ImageList control:
ImageList1.ListImages(1).Draw Form1.hDC

See Also
ExtractIcon Method
ImageList Control
MaskColor Property
Overlay Method

Draw Method Example

This example loads an image into an ImageList control.    When you click the form, the image is drawn
on the form in four different styles.    To try the example, place an ImageList control on a form and paste
the code into the form's Declarations section.    Run the example and click the form.

Private Sub Form_Load()
Dim X As ListImage
'Load one image into the ImageList.
Set X = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\intl_no.bmp"))

End Sub

Private Sub Form_Click()
Dim space, intW As Integer ' Create spacing variables.

' Use the ImageWidth property for spacing.
intW = ImageList1.ImageWidth
space = Form1.Font.Size * 2 ' Use the Font.Size for height spacing.

ScaleMode = vbPoints ' Set ScaleMode to points.
Cls ' Clear the form.

' Draw the image with Normal style.
ImageList1.ListImages(1).Draw Form1.hDC, , space,imlNormal
' Set MaskColor to red, which will become transparent.
ImageList1.MaskColor = vbRed
' Draw the image with red (MaskColor) the transparent color.
ImageList1.ListImages(1).Draw Form1.hDC, intW, space,imlTransparent
' Draw image with the Selected style.
ImageList1.ListImages(1).Draw Form1.hDC, intW * 2,space,imlSelected
' Draw image with Focus style.
ImageList1.ListImages(1).Draw Form1.hDC, intW * 3, space,imlFocus

' Print a caption for the images.
Print _
"Normal Transparent Selected Focus"

End Sub

ExtractIcon Method
See Also Example

Creates an icon from a bitmap in a ListImage object of an ImageList control and returns a reference to
the newly created icon.

Syntax
object.ExtractIcon

The object placeholder represents an object expression that evaluates to a ListImage object.

Remarks
You can use the icon created with the ExtractIcon method like any other icon.    For example, you can
use it as a setting for the MouseIcon property, as the following code illustrates:
Set Command1.MouseIcon = ImageList1.ListImages(1).ExtractIcon

See Also
Add Method (ListImages Collection)
ImageList Control
ListImage Object, ListImages Collection

ExtractIcon Method Example

This example loads a bitmap into an ImageList control.    When the user clicks the form, the
ExtractIcon method is used to create an icon from the bitmap, and that icon is used as a setting in the
Form object's MouseIcon property.    To try the example, place an ImageList control on a form and
paste the code into the form's Declarations section.    Run the example and click the form.

Private Sub Form_Load()
Dim imgX As ListImage
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\balloon.bmp"))

End Sub

Private Sub Form_Click()
Dim picX As Picture
Set picX = ImageList1.ListImages(1).ExtractIcon ' Make an icon.

With Form1
.MouseIcon = picX ' Set new icon.
.MousePointer = vbCustom ' Set to custom icon.
End With

End Sub

ImageHeight, ImageWidth Properties
See Also Example

The ImageHeight property returns or sets the height of ListImage objects in an ImageList
control.

The ImageWidth property returns or sets the width of ListImage objects in an ImageList control.

Syntax
object.ImageHeight
object.ImageWidth

The object placeholder represents an object expression that evaluates to an ImageList control.

Remarks
Both height and width are measured in pixels.    All images in a ListImages collection have the same
height and width properties.
When an ImageList contains no ListImage objects, you can set both ImageHeight and ImageWidth
properties.    However, once a ListImage object has been added, all subsequent images must be of the
same height and width as the first object.    If you try to add an image of a different size, an error is
returned.

See Also
Add Method (ListImages Collection)
ImageList Control

ImageHeight, ImageWidth Properties Example

This example loads an icon into an ImageList control, and uses the image in a ListView control.    When
the user clicks the form, the code uses the ImageHeight property to adjust the height of the ListView
control to accommodate the ListImage object.    To try the example, place ImageList and ListView
controls on a form and paste the code into the form's Declarations section.    Run the example and click
the form.

Private Sub Form_Load()
' Create variables for ImageList and ListView objects.
Dim imgX As ListImage
Dim itmX As ListItem

Form1.ScaleMode = vbPixels ' Make sure ScaleMode is set to pixels.

ListView1.BorderStyle = FixedSingle ' Show border.
' Shorten ListView control so later contrast is more obvious.
ListView1.Height = 50

' Put a large bitmap into the ImageList.
Set imgX = ImageList1.ListImages. _
Add(,, LoadPicture("bitmaps\gauge\vert.bmp"))

ListView1.Icons = ImageList1 ' Set Icons property.

' Add an item to the ListView control.
Set itmX = ListView1.ListItems.Add()
itmX.Icon = 1 ' Set Icon property to ListImage 1 of

ImageList.
itmX.Text = "Thermometer" ' Set text of ListView ListItem object.

End Sub

Private Sub Form_Click()
Dim strHW As String

strHW = "Height: " & ImageList1.ImageHeight & _
" Width: " & ImageList1.ImageWidth
caption = strHW ' Show dimensions.
' Enlarge ListView to accommodate the tallest image.
ListView1.Height = ImageList1.ImageHeight + 50

End Sub

ListImages Property
See Also Example

Returns a reference to a collection of ListImage objects in an ImageList control.

Syntax
object.ListImages

The object placeholder represents an object expression that evaluates to an ImageList control.

Remarks
You can manipulate ListImage objects using standard collection methods (for example, the Add and
Clear methods).    Each member of the collection can be accessed by its index or unique key.    These
are stored in the Index and Key properties, respectively, when ListImage is added to a collection.

See Also
Add Method (ListImages Collection)
Clear Method
Count Property
Item Method
ListImage Object, ListImages Collection
Remove Method

ListImages Property Example

This example adds three ListImage objects to a ListImages collection and uses them in a ListView
control.    The code refers to the ListImage objects using both their Key and Item properties.    To try the
example, place ImageList and ListView controls on a form and paste the code into the form's
Declarations section.    Run the example.

Private Sub Form_Load()
Dim imgX As ListImage
' Add images to ListImages collection.
Set imgX = ImageList1. _
ListImages.Add(,"rocket",LoadPicture("icons\industry\rocket.ico"))
Set imgX = ImageList1. _
ListImages.Add(,"jet",LoadPicture("icons\industry\plane.ico"))
Set imgX = ImageList1. _
ListImages.Add(,"car",LoadPicture("icons\industry\cars.ico"))

ListView1.Icons = ImageList1 ' Set Icons property.

' Add Item objects to the ListView control.
Dim itmX as ListItem
Set itmX = ListView1.ListItems.Add()
' Reference by index.
itmX.Icon = 1
itmX.Text = "Rocket" ' Set Text string.
Set itmX = ListView1.ListItems.Add()
' Reference by key ("jet").
itmX.Icon = "jet"
itmX.Text = "Jet" ' Set Text string.
Set itmX = ListView1.ListItems.Add()
itmX.Icon = "car"
itmX.Text = "Car" ' Set Text string.

End Sub

MaskColor Property
See Also Example

Returns or sets the color used to create masks for an ImageList control.

Syntax
object.MaskColor [= color]

The MaskColor property syntax has these parts:

Part Description
object An object expression that evaluates to an ImageList control.
color A value or constant that determines the color used to create masks.    You can specify

colors using either Visual Basic intrinsic constants, the QBColor function, or the RGB
function.

Remarks
Every image in a ListImages collection has a corresponding mask associated with it.    The mask is a
monochrome image derived from the image itself, automatically generated using the MaskColor
property as the specific color of the mask.    This mask is not used directly, but is applied to the original
bitmap in graphical operations such as the Overlay and Draw methods.    For example, the MaskColor
property determines which color of an image will be transparent in the Overlay method.

See Also
Draw Method
ImageList Control
Overlay Method

MaskColor Property Example

This example loads several bitmaps into an ImageList control.    As you click the form, one ListImage
object is overlaid over one of the other ListImage objects.    To try the example, place an ImageList
control and a Picture control on a form and paste the code into the form's Declarations section.    Run
the program and click the form.

Private Sub Form_Load()
Dim imgX As ListImage

' Load bitmaps.
Set imgX = ImageList1.ListImages. _
Add(, "No", LoadPicture("bitmaps\assorted\Intl_No.bmp"))
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\smokes.bmp"))
Set imgX = ImageList1.ListImages. _
Add(, , LoadPicture("bitmaps\assorted\beany.bmp"))

ScaleMode = vbPixels
' Set MaskColor property.
ImageList1.MaskColor = vbGreen
' Set the form's BackColor to white.
Form1.BackColor = vbWhite

End Sub

Private Sub Form_Click()
Static intCount As Integer ' Static variable to count images.

' Reset variable to 2 if it is over the ListImages.Count value.
If intCount > ImageList1.ListImages.Count Or intCount < 1 Then

intCount = 2 ' Reset to second image
End If

' Overlay ListImage(1) over ListImages 2-3.
Picture1.Picture = ImageList1.Overlay(intCount, 1)
' Increment count.
intCount = intCount + 1

' Create variable to hold ImageList.ImageWidth value.
Dim intW
intW = ImageList1.ImageWidth

' Draw images onto the form for reference. Use the ImageWidth
' value to space the images.
ImageList1.ListImages(1).Draw Form1.hDC, 0, 0, imlNormal
ImageList1.ListImages(2).Draw Form1.hDC, 0, intW, imlNormal
ImageList1.ListImages(3).Draw Form1.hDC, 0, intW * 2, imlNormal

End Sub

Overlay Method
See Also Example

Draws one image from a ListImages collection over another, and returns the result.    Doesn't support
named arguments.

Syntax
object.Overlay (index1, index2)

The Overlay method syntax has these parts:

Part Description
object An object expression that evaluates to an ImageList control.
index1 An integer (Index property) or unique string (Key property) that specifies the image to be

overlaid.
index2 An integer (Index property) or unique string (Key property) that specifies the image to be

drawn over the object specified in index1.    Note: The color of the image that matches the
MaskColor property will be made transparent.    If no color matches, the image will be
drawn opaquely over the other image.

Remarks
Use the Overlay method in conjunction with the MaskColor property to create a single image from two
disparate images.    The Overlay method imposes one bitmap over another to create a third, composite
image.    The MaskColor property determines which color of the overlaying image is transparent.
The index can be either an index or a key.    For example, to overlay the first picture in the collection with
the second:
Set Picture1.Picture = ImageList1.Overlay(1,2) ' Reference by Index.

'Or reference by Key property.
Set Picture1.Picture = ImageList1.Overlay("First", "Second")

See Also
Draw Method
Index Property
ListImage Object, ListImages Collection
MaskColor Property

Overlay Method Example

This example loads five ListImage objects into an ImageList control and displays any two images in
two PictureBox controls.    For each PictureBox, select an image to display from one of the two
ComboBox controls.    When you click the form, the code uses the Overlay method to create a third
image that is displayed in a third PictureBox control.    To try the example, place an ImageList control,
two ComboBox controls, and three PictureBox controls on a form and paste the code into the form's
Declarations section.    Run the example and click the form.

Private Sub Form_Load()
Dim X As ListImage
' Add 5 images to a ListImages collection.
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\elements\moon05.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\elements\snow.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\writing\erase02.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\writing\note06.ico"))
Set X = ImageList1.ListImages. _
 Add(, , LoadPicture("icons\flags\flgfran.ico"))

With combo1 ' Populate the first ComboBox.
.AddItem "Moon"
.AddItem "Snowflake"
.AddItem "Pencil"
.AddItem "Note"
.AddItem "Flag"
.ListIndex = 0

End With

With combo2 ' Populate the second ComboBox.
.AddItem "Moon"
.AddItem "Snowflake"
.AddItem "Pencil"
.AddItem "Note"
.AddItem "Flag"
.ListIndex = 2

End With

Picture1.BackColor = vbWhite ' Make BackColor white.
Picture2.BackColor = vbWhite
Picture3.BackColor = vbWhite

End Sub

Private Sub Form_Click()
' Overlay the two images, and display in PictureBox3.
Set Picture3.Picture = ImageList1. _
 Overlay(combo1.ListIndex + 1, combo2.ListIndex + 1)

End Sub

Private Sub combo1_Click()
' Change PictureBox to reflect ComboBox selection.
Set Picture1.Picture = ImageList1. _
 ListImages(combo1.ListIndex + 1).ExtractIcon

End Sub

Private Sub combo2_Click()
' Change PictureBox to reflect ComboBox selection.
Set Picture2.Picture = ImageList1. _
 ListImages(combo2.ListIndex + 1).ExtractIcon

End Sub

ListImages

The ListImages keyword is used in these contexts:
ListImages Collection
ListImages Property

ImageList Control Constants
See Also

Constant Value Description
imlNormal 0 Image is drawn with no change.
imlTransparent 1 Image is drawn transparently.
imlSelected 2 Image is drawn selected.
imlFocus 3 Image is drawn with focus.

See Also
Draw Method
ImageList Control
Visual Basic Custom Control Constants
Windows 95 Controls Constants

 TabStrip Control
See Also Properties Methods Events Constants

A TabStrip is like the dividers in a notebook or the labels on a group of file folders.    By using a TabStrip
control, you can define multiple pages for the same area of a window or dialog box in your application.

Syntax
TabStrip

Remarks
The control consists of one or more Tab objects in a Tabs collection.    At both design time and run time,
you can affect the Tab object's appearance by setting properties, and at run time, by invoking methods
to add and remove Tab objects.
The Style property determines whether the TabStrip control looks like push buttons (Buttons) or
notebook tabs (Tabs).    At design time when you put a TabStrip control on a form, it has one notebook
tab.    If you choose the Tabs setting for the Style property, a three-dimensional border defines the
TabStrip control's internal area.    Even though the Style property's Buttons setting shows no border
around the internal area, that area still exists.
To set the overall size of the TabStrip control, use its drag handles and/or set the Top, Left, Height, and
Width properties. Based on the control's overall size at run time, Visual Basic automatically determines
the size and position of the internal area and returns the Client-coordinate properties ClientLeft,
ClientTop, ClientHeight, and ClientWidth.        The MultiRow property determines whether the control
can have more than one row of tabs, the TabWidthStyle property determines the appearance of each
row, and, if TabWidthStyle is set to Fixed, you can use the TabFixedHeight and TabFixedWidth
properties to set the same height and width for all tabs in the TabStrip control.
The TabStrip control is not a container.    To contain the actual pages and their objects, you must use
PictureBox controls or other containers that match the size of the internal area which is shared by all
Tab objects in the control.    If you use a control array for the container, you can associate each item in
the array with a specific Tab object, as in the following example:
' This code puts the selected tab's picture container on top.
Picture1(TabStrip1.SelectedItem.Index - 1).ZOrder 0

The Tabs property of the TabStrip control is the collection of all the Tab objects.    Each Tab object has
properties associated with its current state and appearance.    For example, you can associate an
ImageList control with the TabStrip control, and then use images on individual tabs.    You can also
associate a ToolTip with each Tab object.

Distribution Note      The TabStrip control is a 32-bit custom control that can only run on Windows 95
and Windows NT 3.51 or higher.    Additionally, the TabStrip control is part of a group of custom controls
that are found in the COMCTL32.OCX file.    To use the TabStrip control in your application, you must
add the COMCTL32.OCX file to the project.    When distributing your application, install the
COMCTL32.OCX file in the user's Microsoft Windows SYSTEM directory.    For more information on how
to add a custom control to a project, see the Programmer's Guide.

See Also
ImageList Control
SelectedItem Property
Selected Property
Tab Object, Tabs Collection
ZOrder Method

TabStrip Control Properties

ClientHeight Property
ClientLeft Property
ClientTop Property
ClientWidth Property
Container Property
DragIcon Property
DragMode Property
Enabled Property
Font Property
Height Property
HelpContextID Property
hWnd Property
ImageList Property
Index Property
Left Property
MouseIcon Property
MousePointer Property
MultiRow Property
Name Property
Object Property
Parent Property
SelectedItem Property
ShowTips Property
Style Property
TabFixedHeight Property
TabFixedWidth Property
TabIndex Property
Tabs Property
TabStop Property
TabWidthStyle Property
Tag Property
Top Property
Visible Property
WhatsThisHelpID Property
Width Property

TabStrip Control Methods

Drag Method
Move Method
Refresh Method
SetFocus Method
ShowWhatsThis Method
ZOrder Method

TabStrip Control Events

BeforeClick Event
Click Event
DblClick Event
DragDrop Event
DragOver Event
GotFocus Event
KeyDown Event
KeyPress Event
KeyUp Event
LostFocus Event
MouseDown Event
MouseMove Event
MouseUp Event

Tab Object, Tabs Collection
See Also Properties Methods

A Tabs collection contains all the Tab objects in a TabStrip control.    A Tab object is analogous to a
divider in a notebook.

Important      This object requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
tabstrip.Tabs
tabstrip.Tabs(index)

The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to standard collection syntax.
The Tab object, Tabs collection syntax has these parts:

Part Description
tabstrip An object expression that evaluates to a TabStrip control.
index An integer or string that uniquely identifies a member of an object collection.    The integer

is the value of the Index property; the string is the value of the Key property.

Remarks
For each Tab object, you can use various properties to specify its appearance, and you can specify its
state with the Selected property.
At design time, use the Insert Tab and Remove Tab buttons on the Tabs tab in the TabStrip Control
Properties dialog box to insert and remove tabs, and use the text boxes to specify any of these
properties for a Tab object: Caption, Image, ToolTipText, Tag, Index, and/or Key.    You can also
specify these properties at run time.
Use the Caption and Image properties, separately or together, to label or put an icon on a tab.

To use the Caption property, in the Caption text box on the Tabs tab in the TabStrip Control
Properties dialog box, type the text you want to appear on the tab or button at run time.

To use the Image property, put an ImageList control on the form and fill the ListImages
collection with ListImage objects, which each get an index number.    On the General tab in the TabStrip
Control Properties dialog box, select that ImageList to associate it with the TabStrip control.    In the
Image text box on the Tabs tab, type the index number of the ListImage object that should appear on the
Tab object.

Use the ToolTipText property to temporarily display a string of text in a small rectangular box at run time
when the user's cursor hovers over the tab.    To set the ToolTipText property at design time, select the
ShowTips checkbox on the General tab, and then in the ToolTipText text box on the Tabs tab, type the
ToolTip string.
At run time, use the Index and/or Key properties to retrieve a Tab object from the Tabs collection.
To return a reference to a Tab object a user has selected, use the SelectedItem property; to determine
whether a specific tab is selected, use the Selected property.    These properties are useful in
conjunction with the BeforeClick event to verify or record data associated with the currently-selected tab
before displaying the next tab the user selects.
Each Tab object also has read-only properties you can use to reference a single Tab object in the Tabs
collection: Left, Top, Height and Width.
The Tabs collection uses the Count property to return the number of tabs in the collection.    To
manipulate the Tab objects in the Tabs collection, use these methods at run time:

Add
adds Tab objects to the TabStrip control.

Item
retrieves the Tab identified by its Key or Index from the collection.

Clear
removes all Tab objects from the collection.

Remove
removes the Tab identified by its Key or Index from the collection.

See Also
SelectedItem Property
TabStrip Control

Tab Object, Tabs Collection Properties

Legend

Caption Property

Count Property
Height Property
Image Property
Index Property
Left Property
Key Property
Selected Property
Tag Property
ToolTipText Property
Top Property
Width Property

Tab Object, Tabs Collection Methods

Legend

Add Method

Clear Method
Item Method
Remove Method

TabStrip Control Constants
See Also

TabStyle Constants

Constant Value Description
tabTabs 0 Tabs appear as notebook tabs, and the internal area has a three-

dimensional border enclosing it.
tabButtons 1 Tabs appear as push buttons, and the internal area has no border

around it.

TabWidthStyle Constants

Constant Value Description
tabJustified 0 Each tab is wide enough to accommodate its contents, and the width of

each tab is increased, if needed, so that each row of tabs spans the
width of the control.    If there is only a single row of tabs, this style has
no effect.

tabNonJustified 1 Each tab is just wide enough to accommodate its contents. The rows
are not justified, so multiple rows of tabs are jagged.

tabFixed 2 The height and width of all tabs are identical, and are set by the
TabFixedHeight and TabFixedWidth properties.

See Also
MultiRow Property
Style Property (TabStrip Control)
TabFixedHeight , TabFixedWidth Properties
Tab Object, Tabs Collection
TabStrip Control
TabWidthStyle Property

Add Method (Tabs Collection)
See Also Example

Adds a Tab object to a Tabs collection in a TabStrip control.    Doesn't support named arguments.

Important      This method requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Add(index, key, caption, image)

The Add method syntax has these parts:

Part Description
object An object expression that evaluates to a Tabs collection.
index Optional.    An integer specifying the position where you want to insert the Tab. If you don't

specify an index, the Tab is added to the end of the Tabs collection.
key Optional.    A unique string that can be used to retrieve the Tab with the Item method or

remove the Tab with the Remove method.
caption Optional.    The string that appears on the Tab.
image Optional.    The index of an image in an associated ImageList control.    This image is

displayed on the tab.

Remarks
To add tabs to the TabStrip control at design time, click the Insert Tab button on the Tab tab in the
TabStrip Control Properties dialog box, and then fill in the appropriate fields for the new tab.
To add tabs to the TabStrip control at run time, use the Add method, which returns a reference to the
newly inserted Tab object.    For example, the following code adds a tab with the caption, "Howdy!"
whose key is "MyTab," as the second tab (its index is 2):
Set X = TabStrip1.Tabs.Add(2,"MyTab","Howdy!")

See Also
Caption Property (Tabs Object)
Clear Method
Image Property
Index Property
Item Method
Key Property
Remove Method
Tab Object, Tabs Collection

Add Method (Tabs Collection) Example

This example adds three Tab objects, each with captions and images from an ImageList control, to a
TabStrip control.    To try this example, put an ImageList and a TabStrip control on a form.    The
ImageList control supplies the images for the Tab objects.    Paste the following code into the Load
event of the Form object, and run the program.

Private Sub Form_Load()
Dim X As Integer
Set TabStrip1.ImageList = ImageList1
TabStrip1.Tabs(1).Caption = "Time"
TabStrip1.Tabs.Add 2, , "Date"
TabStrip1.Tabs.Add 3, , "Mail"
For X = 1 To TabStrip1.Tabs.Count

TabStrip1.Tabs(X).Image = X
Next X

End Sub

BeforeClick Event
See Also Example

Generated when a Tab object in a TabStrip control is clicked, or a Tab object's Selected setting has
changed.

Important      This event requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51 or
higher.

Syntax
Private Sub object_BeforeClick(cancel As Integer)

The BeforeClick event syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip control.
cancel Evaluates to an integer with values of 0 (False) and -1 (True).    The initial value is 0.

Remarks
Use the BeforeClick event to validate the information on the old Tab object before actually generating a
Click event that selects the new Tab object.    The cancel argument allows you to stop a change to the
new selection.

Note      If you use the MsgBox or InputBox functions during the BeforeClick event procedure, the
TabStrip control will not receive a Click event, regardless of the setting of the cancel argument.

See Also
Click Event
SelectedItem Property
TabStrip Control

BeforeClick Event Example

This example uses the BeforeClick event to demonstrate how to prevent a Click event from occurring.
This is useful when you want to verify information on the current tab before displaying the newly
selected tab.
To try this example, place a TabStrip control and a two-element PictureBox control array on the form.   
In the first PictureBox control, add a CheckBox control and in the second, add a TextBox.    Paste the
following code into the Load event of the Form object, and run the program.    Click the tab labeled Text
after you select/deselect the CheckBox on the tab labeled Check.

Private Sub Form_Load()
Dim i As Integer
Dim Tabx As Object
' Sets the caption of the first tab to "Check."
TabStrip1.Tabs(1).Caption = "Check"
' Adds a second tab with "Text" as its caption.
Set Tabx = TabStrip1.Tabs.Add(2, , "Text")
' Labels the checkbox.
Check1.Caption = "Cancel tab switch"

' Aligns the picture boxes with the internal area
' of the Tabstrip Control.
For i = 0 To 1

Picture1(i).Left = TabStrip1.ClientLeft
Picture1(i).Top = TabStrip1.ClientTop
Picture1(i).Height = TabStrip1.ClientHeight
Picture1(i).Width = TabStrip1.ClientWidth

Next
' Puts the first tab's picture box container on top.
Picture1(0).ZOrder 0

End Sub

' The BeforeClick event verifies the check box value
' to determine whether to proceed with the Click event.
Private Sub TabStrip1_BeforeClick(Cancel As Integer)

If TabStrip1.Tabs(1).Selected Then
If Check1.Value = 1 Then Cancel = True

End If
End Sub

Private Sub TabStrip1_Click()
Picture1(TabStrip1.SelectedItem.Index-1).ZOrder 0

End Sub

Caption Property (Tab Object)
See Also Example

Returns or sets the caption that appears on the tab or button of a Tab object in a TabStrip control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Caption [= string]

The Caption property syntax has these parts:

Part Description
object An object expression that evaluates to a Tab object.
string A string expression that evaluates to the text displayed as the caption.

Remarks
You can set the Caption property for a Tab object in the TabStrip control at design time or at run time.

Design time
On the Tab tab in the TabStrip Control properties dialog box, type the caption string in the Caption text

box.
Run time

Set the caption as follows:
TabStrip1.Tabs(1).Caption = "First Tab"
      Or
TabStrip1.Tabs.Add 2, , "Second Tab"

See Also
Add Method (Tabs Collection)
Image Property
Tab Object, Tabs Collection
TabStrip Control

Caption Property (Tab Object) Example

This example sets the Caption property for each of three Tab objects it adds to a TabStrip control.   
The caption strings are "Time," "Date," and "Mail."    Each Tab object also displays an image from an
ImageList control.    To try this example, place an ImageList and a TabStrip control on a form.    Place
three sample bitmaps in the ImageList control.    The ImageList control supplies the images for the Tab
objects.    Paste the following code into the Load event of the Form object, and run the program.

Private Sub Form_Load()
Dim X As Integer
' Associate an ImageList with the TabStrip control.
Set TabStrip1.ImageList = ImageList1
' Set the captions.
Set TabStrip1.Tabs(1).Caption = "Time"
TabStrip1.Tabs.Add 2, , "Date"
TabStrip1.Tabs.Add 3, , "Mail"
For X = 1 To TabStrip1.Tabs.Count

' Associate an image with a tab.
TabStrip1.Tabs(X).Image = X

Next X
End Sub

ClientHeight, ClientWidth, ClientLeft, ClientTop Properties
See Also Example

Return the coordinates of the internal area (display area) of the TabStrip control.    Read-only at run
time; not available at design time.

Important      These properties require either Microsoft Windows 95 or Microsoft Windows NT version
3.51 or higher.

Syntax
object.ClientHeight
object.ClientWidth
object.ClientLeft
object.ClientTop

The object placeholder represents an object expression that evaluates to a TabStrip control.

Remarks
At run time, the client-coordinate properties ClientLeft, ClientTop, ClientHeight, and ClientWidth

automatically store the coordinates of the TabStrip control's internal area, which is shared by all Tab
objects in the control.    So that the controls associated with a specific Tab appear when that Tab object is
selected, place the Tab object's controls inside a container, such as a PictureBox control, whose size
and position match the client-coordinate properties.    To associate a container (and its controls) with a
Tab object, create a control array, such as a PictureBox control array.
All client-coordinate properties use the scale mode of the parent form.    To place a PictureBox control so
it fits perfectly in the internal area, use the following code:
Picture1.Left = TabStrip1.ClientLeft
Picture1.Top = TabStrip1.ClientTop
Picture1.Width = TabStrip1.ClientWidth
Picture1.Height = TabStrip1.ClientHeight

To create the effect of placing a new tab and its associated container on top when the tab is selected:

Set the size and location of the container in the TabStrip control's internal area to the client-
coordinate properties; and

Program the Visible property to manually show and hide the tab-specific container and its
controls; or

Use the ZOrder method to place the controls you specify at the front or back of the z-order.

See Also
Tab Object, Tabs Collection
TabStrip Control
Visible Property
ZOrder Method

ClientHeight, ClientWidth, ClientLeft, ClientTop Properties Example

The following example demonstrates using the Client-coordinate properties ClientLeft, ClientTop,
ClientWidth, and ClientHeight

along with a PictureBox control array to display tab-specific objects in the internal area of the TabStrip
control when switching tabs.    The example uses the ZOrder method to display the appropriate
PictureBox control and the objects it contains.

To try this example, place a TabStrip control and a three-element PictureBox control array on the form.
In one PictureBox control, place a CheckBox control, in another, place a CommandButton control,
and in the third, place a TextBox control.    Paste the following code into the Load event of the Form
object, and run the program.    Click the various tabs to select them and their contents.

Private Sub Form_Load()
Dim Tabx As Object
Dim i As Integer

' Sets the caption of the first tab to "Check."
TabStrip1.Tabs(1).Caption = "Check"
' Adds a second tab with "Command" as its caption.
Set Tabx = TabStrip1.Tabs.Add(2, , "Command")
' Adds a third tab with "Text" as its caption.
Set Tabx = TabStrip1.Tabs.Add(3, , "Text")

' Aligns the picture boxes with the internal area
' of the TabStrip control.
For i = 0 To 2

Picture1(i).Left = TabStrip1.ClientLeft
Picture1(i).Top = TabStrip1.ClientTop
Picture1(i).Height = TabStrip1.ClientHeight
Picture1(i).Width = TabStrip1.ClientWidth

Next
' Puts the first tab's picture box container on top
' at startup.
Picture1(0).ZOrder 0

End Sub

Private Sub TabStrip1_Click()
Picture1(TabStrip1.SelectedItem.Index - 1).ZOrder 0

End Sub

MultiRow Property
See Also

Returns or sets a value indicating whether a TabStrip control can display more than one row of tabs.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.MultiRow [= boolean]

The MultiRow property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip control.
boolean A boolean expression that specifies whether the control has more than one row of tabs,

as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Allows more than one row of tabs.
False Restricts tabs to a single row.

Remarks
The number of rows is automatically set by the width and number of the tabs.    The number of rows can
change if the control is resized, which ensures that the tab wraps to the next row.    If MultiRow is set to
False, and the last tab exceeds the width of the control, a horizontal spin control is added at the right
end of the TabStrip control.
At design time, set the MultiRow property on the General tab in the TabStrip Properties dialog box.    At
run time, use code like the following to set the MultiRow property:
'Allows more than one row of tabs in the TabStrip control.
TabStrip1.MultiRow = TRUE

See Also
ClientHeight , ClientWidth , ClientLeft , ClientTop Properties
TabFixedHeight , TabFixedWidth Properties
TabStrip Control
TabStrip Control Constants
TabWidthStyle Property

Style Property (TabStrip Control)
See Also

Returns or sets the appearance tabs or buttons

of a TabStrip control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Style [= value]
The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip control.
value A constant or integer that determines the appearance of the tabbed dialog box, as

described in Settings.

Settings
The settings for value are:

Constant Value Description
tabTabs 0 (Default) Tabs. The tabs appear as notebook tabs, and the internal area

has a three-dimensional border around it.
tabButtons 1 Buttons. The tabs appear as regular push buttons, and the internal area

has no border around it.

Remarks
At design time, select the Style property you want tabs or buttons

from the Style list on the General tab of the TabStrip Control Properties dialog box.
At run time, use code like the following to set the Style property:
' Style property set to the Tabs style.
TabStrip1.Style = tabTabs

' Style property set to the Buttons style:
TabStrip1.Style = tabButtons

See Also
ClientHeight, ClientWidth, ClientLeft, ClientTop Properties
MultiRow Property
TabFixedHeight , TabFixedWidth Properties
TabStrip Control
TabStrip Control Constants
TabWidthStyle Property

Tabs Property (TabStrip Control)
See Also

Returns a reference to the collection of Tab objects in a TabStrip control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.Tabs(index)

The Tabs property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip control.
index A value that identifies a Tab object in the Tabs collection.

Remarks
The Tabs collection can be accessed by using the standard collection methods, such as the Item
method.

See Also
Add Method (Tabs Collection)
Clear Method (Collection Objects)
Index Property
Item Method
Key Property
Remove Method
Tab Object, Tabs Collection
TabStrip Control

TabFixedHeight, TabFixedWidth Properties
See Also

Return or set the fixed height and width of all Tab objects in a TabStrip control, but only if the
TabWidthStyle property is set to tabFixed.

Important      These properties require either Microsoft Windows 95 or Microsoft Windows NT version
3.51 or higher.

Syntax
object.TabFixedHeight [= integer]
object.TabFixedWidth [= integer]

The TabFixedHeight and TabFixedWidth properties syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip control.
integer The number of pixels or twips of the height or width of a TabStrip control.

Remarks
The TabFixedHeight property applies to all Tab objects in the TabStrip control.    It defaults either to the
height of the font as specified in the Font property, or the height of the ListImage object specified by the
Image property, whichever is higher, plus a few extra pixels as a border.    If the TabWidthStyle property
is set to tabFixed, and the value of the TabFixedWidth property is set, the width of each Tab object
remains the same whether you add or delete Tab objects in the control.

See Also
ClientHeight , ClientWidth , ClientLeft , ClientTop Properties
Font Property
Image Property
ImageList Property
TabStrip Control
TabStrip Control Constants
TabWidthStyle Property

TabWidthStyle Property
See Also

Returns or sets a value that determines the justification or width of all Tab objects in a TabStrip control.

Important      This property requires either Microsoft Windows 95 or Microsoft Windows NT version 3.51
or higher.

Syntax
object.TabWidthStyle [=value]

The TabWidthStyle property syntax has these parts:

Part Description
object An object expression that evaluates to a TabStrip control.
value An integer or constant that determines whether tabs are justified or set to a fixed width, as

described in Settings.

Settings
The settings for value are:

Constant Value Description
tabJustified 0 (Default) Justified.    If the MultiRow property is set to True, each tab is

wide enough to accommodate its contents and, if needed, the width of
each tab is increased so that each row of tabs spans the width of the
control.    If the MultiRow property is set to False, or if there is only a
single row of tabs, this setting has no effect.

tabNonJustified 1 Nonjustified.    Each tab is just wide enough to accommodate its
contents. The rows are not justified, so multiple rows of tabs are jagged.

tabFixed 2 Fixed.    All tabs have an identical width which is determined by the
TabFixedWidth property.

Remarks
At design time you can set the TabWidthStyle property on the General tab of the TabStrip Control
Properties dialog box.    The setting of the TabWidthStyle property affects how wide each Tab object
appears at run time.
At run time, you can set the TabWidthStyle property as follows:
' Justifies all the tabs in a row to fit the width of the control.
TabStrip1.MultiRow = True
TabStrip1.TabWidthStyle = tabJustified

' Creates ragged rows of tabs.
TabStrip1.MultiRow = True
TabStrip1.TabWidthStyle = tabNonJustified

' Sets the same width for all tabs.
TabStrip1.TabFixedWidth = 500
TabStrip1.TabWidthStyle = tabFixed

See Also
ClientHeight , ClientWidth , ClientLeft , ClientTop Properties
MultiRow Property
TabFixedHeight , TabFixedWidth Properties
TabStrip Control

Tabs

The Tabs keyword is used in these contexts:
Tabs Collection
Tabs Property (TabStrip Control)

    Toolbar Control
See Also Properties Methods Events Constants Example

A Toolbar control contains a collection of Button objects used to create a toolbar that is associated with
an application.

Syntax
Toolbar

Remarks
Typically, a toolbar contains buttons that correspond to items in an application's menu, providing a
graphic interface for the user to access an application's most frequently used functions and commands.
The Toolbar control allows you to create toolbars by adding Button objects to a Buttons collection;
each Button object can have optional text and/or an image, supplied by an associated ImageList
control.    Set text with the Caption property, and an image with the Image property for each Button
object.    At design time, you can add Button objects to the control with the Toolbar Control Properties
dialog box.    At run time, you can add or remove buttons from the Buttons collection using Add and
Remove methods.
To program the Toolbar, the ButtonClick event allows individual Button objects to respond to the user's
actions.    You can also determine the behavior and appearance of each Button object using the Style
property.    For example, if four buttons are assigned the ButtonGroup style, only one button can be
pressed at any time and at least one button is always pressed.
You can place another control on a toolbar by assigning a Button object the PlaceHolder style.    For
example, to place a drop-down text box on a toolbar at design time, add a Button object with the
PlaceHolder style and size it to the size of a ComboBox control.    Then place a ComboBox on the
placeholder.
Double clicking a toolbar at run time invokes the Customize Toolbar dialog box, which allows the user to
hide, display, or rearrange toolbar buttons.    To enable or disable the dialog box, use the
AllowCustomize property.    You can also invoke the Customize Toolbar dialog box using the
Customize method.    If you wish to save and restore the state of a toolbar, or allow the user to do so,
two methods are provided: the SaveToolbar and RestoreToolbar methods.    The Change event,
generated when a toolbar is altered, is typically used to invoke the SaveToolbar method.
Usability is further enhanced by programming ToolTipText descriptions of each Button object.    To
display ToolTips, the ShowTips Property must be set to True.    When the user invokes the Customize
Toolbar dialog box, clicking a button causes a description of the button to be displayed in the dialog box;
this description can be programmed by setting the Description property.

Distribution Note      The Toolbar control is a 32-bit custom control that can only run on 32-bit systems
such as Windows 95 and Windows NT version 3.51 or higher.    Additionally, the Toolbar control is part
of a group of custom controls that are found in the COMCTL32.OCX file.    To use the Toolbar control in
your application, you must add the COMCTL32.OCX file to the project.    When distributing your
application, install the COMCTL32.OCX file in the user's Microsoft Windows SYSTEM directory.    For
more information on how to add a custom control to a project, see the Programmer's Guide.

See Also
Add Method (Buttons Collection)
Button Object, Buttons Collection
ImageList Control

Toolbar Control Properties

Align Property
AllowCustomize Property
ButtonHeight Property
Buttons Property
ButtonWidth Property
Container Property
DragIcon Property
DragMode Property
Enabled Property
Font Property
Height Property
hWnd Property
ImageList Property
Index Property
Left Property
MouseIcon Property
MousePointer Property
Name Property
Negotiate Property
Object Property
Parent Property
ShowTips Property
TabIndex Property
Tag Property
Top Property
Visible Property

WhatsThisHelpID Property
Width Property
Wrappable Property

Toolbar Control Methods

Customize Method
Drag Method
Move Method
Refresh Method
RestoreToolbar Method
SaveToolbar Method
ShowWhatsThis Method
ZOrder Method

Toolbar Control Events

ButtonClick Event
Change Event (Toolbar Control)
Click Event
DblClick Event
DragDrop Event
DragOver Event
MouseDown Event
MouseMove Event
MouseUp Event

Toolbar Control Example

This example adds several Button objects to a Toolbar control using the Add method and assigns
images supplied by the ImageList control.    The behavior of each button is determined by the Style
property.    The code creates buttons to open and save files for a RichTextBox control, set text
alignment, and set font color.    Two CommandButton controls allow you to edit and restore the state of
the toolbar. To try the example, place a Toolbar, RichTextBox, ImageList, CommonDialog,
ComboBox, and two CommandButton controls on a form and paste the code into the form's
Declarations section.    Run the example, click the various buttons, and type into the RichTextBox.

' SaveToolbar method constants.
Const SaveToolbarKey = 1
Const SaveToolbarSubKey = "MyToolbar"
Const SaveToolbarVal = "True"

Private Sub Form_Load()
' Create object variable for the ImageList.
Dim imgX As ListImage

' Load pictures into the ImageList control.
Set imgX = ImageList1.ListImages. _
Add(, "open", LoadPicture("bitmaps\tlbr_w95\open.bmp")) ' 1
Set imgX = ImageList1.ListImages. _
Add(, "save", LoadPicture("bitmaps\tlbr_w95\save.bmp")) ' 2
Set imgX = ImageList1.ListImages. _
Add(, "left", LoadPicture("bitmaps\tlbr_w95\lft.bmp")) ' 3
Set imgX = ImageList1.ListImages. _
Add(, "right", LoadPicture("bitmaps\tlbr_w95\rt.bmp")) ' 4
Set imgX = ImageList1.ListImages. _
Add(, "center", LoadPicture("bitmaps\tlbr_w95\cnt.bmp")) ' 5
Set imgX = ImageList1.ListImages. _
Add(, "justify", LoadPicture("bitmaps\tlbr_w95\jst.bmp")) ' 6
Set imgX = ImageList1.ListImages. _
Add(, "bold", LoadPicture("bitmaps\tlbr_w95\bld.bmp")) ' 7
Set imgX = ImageList1.ListImages. _
Add(, "italic", LoadPicture("bitmaps\tlbr_w95\Itl.bmp")) ' 8
Toolbar1.ImageList = ImageList1

' Create object variable for the Toolbar.
Dim btnX As Button
' Add button objects to Buttons collection using the
' Add method. After creating each button, set both
' Description and ToolTipText properties.
Set btnX = Toolbar1.Buttons.Add(, , , tbrSeparator)
Set btnX = Toolbar1.Buttons.Add(, "open", , tbrDefault, "open")
btnX.ToolTipText = "Open File"
btnX.Description = btnX.ToolTipText
Set btnX = Toolbar1.Buttons.Add(, "save", , tbrDefault, "save")
btnX.ToolTipText = "Save File"
btnX.Description = btnX.ToolTipText
Set btnX = Toolbar1.Buttons.Add(, , , tbrSeparator)
Set btnX = Toolbar1.Buttons.Add(, "left", , tbrButtonGroup,"left")
btnX.ToolTipText = "Align Left"
btnX.Description = btnX.ToolTipText
Set btnX = Toolbar1.Buttons.Add(,"center", ,tbrButtonGroup,"center")
btnX.ToolTipText = "Center"

btnX.Description = btnX.ToolTipText
Set btnX = Toolbar1.Buttons.Add(, "right", ,tbrButtonGroup,"right")
btnX.ToolTipText = "Align Right"
btnX.Description = btnX.ToolTipText
Set btnX = Toolbar1.Buttons.Add(, , , tbrSeparator)
Set btnX = Toolbar1.Buttons.Add(, "bold", , tbrCheck, "bold")
btnX.ToolTipText = "Bold"
btnX.Description = btnX.ToolTipText
Set btnX = Toolbar1.Buttons.Add(, "italic", , tbrCheck, "italic")
btnX.ToolTipText = "Italic"
btnX.Description = btnX.ToolTipText
Set btnX = Toolbar1.Buttons.Add(, , , tbrSeparator)

' The next button has the Placeholder style. A ComboBox control
' will be placed on top of this button.
Set btnX = Toolbar1.Buttons.Add(, "combo1", , tbrPlaceholder)
btnX.Width = 2000 ' Placeholder width to accommodate a combobox.

Show ' Show form to continue configuring ComboBox.

' Configure ComboBox control to be at same location as the
' Button object with the PlaceHolder style (key = "combo1").
With Combo1

.Width = Toolbar1.Buttons("combo1").Width

.Top = Toolbar1.Buttons("combo1").Top

.Left = Toolbar1.Buttons("combo1").Left

.AddItem "Black" ' Add colors for text.

.AddItem "Blue"

.AddItem "Red"

.ListIndex = 0
End With

With Toolbar1
.Wrappable = True ' Buttons can wrap.
' Prevent customization except by clicking Command1.
.AllowCustomize = False

End With

' Configure commondialog1 for opening and saving files.
With CommonDialog1

.DefaultExt = ".rtf"

.Filter = "RTF file (*.RTF)|*.RTF"
End With

'Configure CommandButton 1 to be positioned just below the toolbar.
With Command1

.Left = Toolbar1.Buttons(2).Left

.Top = Toolbar1.Top + Toolbar1.Height + 100

.Width = 1500

.Height = 300

.Caption = "Customize Toolbar"
End With

'Configure CommandButton 2 to be positioned to right of Command1.
With Command2

.Left = Command1.Left + Command1.Width + 50

.Top = Command1.Top

.Width = 1500

.Height = 300

.Caption = "Restore Toolbar"
End With

' Set margin of the RichTextBox to the width of the control.
richtextbox1.RightMargin = richtextbox1.Width

End Sub

Private Sub Form_Resize()
' Configure ComboBox control.
With Combo1

.Width = Toolbar1.Buttons("combo1").Width

.Top = Toolbar1.Buttons("combo1").Top

.Left = Toolbar1.Buttons("combo1").Left
End With

End Sub

Private Sub richtextbox1_SelChange()
' When the insertion point changes, set the Toolbar buttons
' to reflect the attributes of the text where the cursor is located.
' Use the Select Case statement.
' The SelAlignment property returns either 0, 1, 2, or Null.
Select Case richtextbox1.SelAlignment
Case Is = rtfLeft ' 0

Toolbar1.Buttons("left").VALUE = tbrPressed
Case Is = rtfRight '1

Toolbar1.Buttons("right").VALUE = tbrPressed
Case Is = rtfCenter '2

Toolbar1.Buttons("center").VALUE = tbrPressed
Case Else ' Null -- No buttons are shown in the up position.

Toolbar1.Buttons("left").VALUE = tbrUnpressed
Toolbar1.Buttons("right").VALUE = tbrUnpressed
Toolbar1.Buttons("center").VALUE = tbrUnpressed

End Select

' SelBold returns 0, -1, or Null. If it's Null then set
' the MixedState property to True.

 Select Case richtextbox1.SelBold
Case 0 ' Not bold.

Toolbar1.Buttons("bold").VALUE = tbrUnpressed
Case -1 ' Bold.

Toolbar1.Buttons("bold").VALUE = tbrPressed
Case Else ' Mixed state.

Toolbar1.Buttons("bold").MixedState = True
End Select

' SelItalic returns 0, -1, or Null. If it's Null then set
' the MixedState property to True.
Select Case richtextbox1.SelItalic
Case 0 ' Not italic.

Toolbar1.Buttons("italic").VALUE = tbrUnpressed
Case -1 ' Italic.

Toolbar1.Buttons("italic").VALUE = tbrPressed
Case Else ' Mixed State.

Toolbar1.Buttons("italic").MixedState = True
End Select

End Sub

Private Sub toolbar1_ButtonClick(ByVal Button As Button)
' Use the Key property with the SelectCase statement to specify
' an action.
Select Case Button.KEY
Case Is = "open" ' Open file.

Dim strOpen As String ' String variable for file name.
CommonDialog1.ShowOpen ' Show Open File dialog box.
strOpen = CommonDialog1.filename ' Set variable to filename.
richtextbox1.LoadFile strOpen, 0 ' Use LoadFile method.

Case Is = "save" ' Save file.
Dim strNewFile As String ' String variable for new file name.
CommonDialog1.ShowSave ' Show Save dialog box.
strNewFile = CommonDialog1.filename ' Set variable to file name.
richtextbox1.SaveFile strNewFile, 0 ' Use SaveFile method.

Case Is = "left"
richtextbox1.SelAlignment = rtfLeft

Case Is = "center"
richtextbox1.SelAlignment = rtfCenter

Case Is = "right"
richtextbox1.SelAlignment = rtfRight

Case Is = "bold"
' Test to see if the MixedState property is True. If so,
' then set it to false before doing anything else.
If Button.MixedState = True Then

Button.MixedState = False
End If
' Toggle the SelBold property.
richtextbox1.SelBold = Abs(richtextbox1.SelBold) - 1

Case Is = "italic"
' Test to see if the MixedState property is True. If so,
' then set it to false before doing anything else.
If Button.MixedState = True Then

Button.MixedState = False
End If
' Toggle the SelItalic property.
richtextbox1.SelItalic = Abs(richtextbox1.SelItalic) - 1

End Select
End Sub

Private Sub Combo1_Click()
' Change font colors of text using the ComboBox.
With richtextbox1

Select Case Combo1.ListIndex
Case 0
.SelColor = vbBlack
Case 1
.SelColor = vbBlue
Case 2
.SelColor = vbRed
End Select

End With
' Return focus to the RichTextbox control.
richtextbox1.SetFocus

End Sub

Private Sub command1_Click()
' Save the state of Toolbar1 before allowing further customization.
With Toolbar1

.SaveToolbar SaveToolbarKey, SaveToolbarSubKey, SaveToolbarVal

.AllowCustomize = True ' AllowCustomize must be True.

.Customize ' Customize method invokes Customize Dialog box.

.AllowCustomize = False ' After customization, set this to False.
End With

End Sub

Private Sub Command2_Click()
' Restore state of Toolbar1 using Constants.
Toolbar1.RestoreToolbar SaveToolbarKey, _
SaveToolbarSubKey, SaveToolbarVal

End Sub

Button Object, Buttons Collection
See Also Properties Methods

A Button object contains an image and a caption, both of which are optional.
A Buttons collection is a collection of Button objects for a Toolbar control.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
toolbar.Buttons
toolbar.Buttons(index)

The syntax lines above refer to the collection and to individual elements in the collection, respectively,
according to standard collection syntax.
The Button object, Buttons collection syntax has these parts:

Part Description
toolbar An object expression that evaluates to a Toolbar control.
index An integer or string that uniquely identifies the object in the collection.    The integer is the

value of the Index property; the string is the value of the Key property.

Remarks
The Buttons collection is a 1-based collection, which means the collection's Index property begins with
the number 1 (versus 0 in a 0-based collection).
Each item in the collection can be accessed by its index or unique key.    For example, to get a reference
to the third Button object in a collection, use the following syntax:
Dim btnX As Button

' Reference by index number.
Set btnX = Toolbar1.Buttons(3)

' Or reference by unique key.
Set btnX = Toolbar1.Buttons("third") ' Assuming Key is "third."

' Or use Item method.
Set btnX = Toolbar1.Buttons.Item(3)

See Also
ImageList Control
Index Property
Key Property
Toolbar Control

Button Object , Buttons Collection Properties

Legend

Caption Property

Count Property
Description Property (Button Object)
Enabled Property
Height Property
Image Property
Index Property
Key Property
Left Property
MixedState Property
Style Property
Tag Property

ToolTipText Property

Top Property
Value Property
Visible Property
Width Property

Button Object, Buttons Collection Methods

Legend

Add Method (Buttons Collection)

Clear Method
Item Method
Remove Method

Add Method (Buttons Collection)
See Also

Adds a Button object to a Buttons collection and returns a reference to the newly created object.   
Doesn't support named arguments.

Important      This method requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Add(index, key, caption, style, image)

The Add method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a Buttons collection.

index Optional.    An integer specifying the position where you want to insert the Button object.
If no index is specified, the Button is added to the end of the Buttons collection.

key Optional.    A unique string that identifies the Button object.    Use this value to retrieve a
specific Button object.

caption Optional.    A string that will appear beneath the Button object.
style Optional.    The style of the Button object.    The available styles are detailed in the Style

Property (Button Object).
image Optional.    An integer or unique key that specifies a ListImage object in an associated

ImageList control.

Remarks
You can add Button objects at design time using the Buttons tab of the Toolbar Control Properties
dialog box.    At run time, use the Add method to supplement the buttons already present on the toolbar.
You associate an ImageList control with the Toolbar through the Toolbar control's ImageList property.

See Also
Caption Property
ImageList Control
ImageList Property
Index Property
Key Property
Style Property (Button Object)
Toolbar Control

AllowCustomize Property
See Also

Returns or sets a value determining if a Toolbar control can be customized by the end user with the
Customize Toolbar dialog box.

Important      This property requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.AllowCustomize [= boolean]

The AllowCustomize property syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar control.
boolean A constant or value that determines if the user can customize a Toolbar control, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True Allows the end user to invoke the Customize Toolbar dialog box by double clicking a

Toolbar control.
False Customization of the Toolbar control with the Customize Toolbar dialog box is not

allowed.

Remarks
If the AllowCustomize property is set to True, double-clicking a Toolbar control at run time invokes the
Customize Toolbar dialog box.
The Customize Toolbar can also be invoked with the Customize method.    However, the
AllowCustomize property must be set to True before the method can be invoked.

See Also
Customize Method
RestoreToolbar Method
SaveToolbar Method
Toolbar Control

ButtonClick Event
See Also

Occurs when the user clicks on a Button object in a Toolbar control.

Important      This event requires either the Microsoft Windows 95 operating system or Windows NT 3.51
and higher.

Syntax
Private Sub object_ButtonClick(ByVal button As Button)

The ButtonClick event syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar control.
button A reference to the clicked Button object.

Remarks
To program an individual Button object's response to the ButtonClick event, use the value of the button
argument.    For example, the following code uses the Key property of the Button object to determine
the appropriate action.
Private Sub Toolbar1_ButtonClick(ByVal Button As Button)

Select Case Button.Key
Case "Open"

CommandDialog1.ShowOpen
Case "Save"

CommandDialog.ShowSave
End Select

End Sub

Note      Because the user can rearrange Button objects using the Customize Toolbar dialog box, the
value of the Index property may not always indicate the position of the button.    Therefore, it's preferable
to use the value of the Key property to retrieve a Button object.

See Also
Toolbar Control
Button Object, Buttons Collection
Value Property

ButtonHeight, ButtonWidth Properties
See Also

Return or set the height and width of a Toolbar control's buttons.

Important      These properties require either the Microsoft Windows 95 operating system or Windows
NT 3.51 and higher.

Syntax
object.ButtonHeight [= number]
object.ButtonWidth [= number]

The ButtonHeight, ButtonWidth properties syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar control.
number A numeric expression specifying the dimensions of all buttons on the control that have the

Button, Check, or ButtonGroup style.

Remarks
ButtonHeight and ButtonWidth use the scale units of the Toolbar control's container, which is
determined by the ScaleMode property of the container.
The ButtonWidth is automatically updated to accommodate the longest string (Caption property of the
Button object) on a Toolbar control.

See Also
Toolbar Control
Height , Width Properties

Buttons Property
See Also

Returns a reference to a Toolbar control's collection of Button objects.

Important      This property requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Buttons

The object placeholder is an object expression that evaluates to a Toolbar control.

Remarks
You can manipulate Button objects using standard collection methods (for example, the Add and
Remove methods).    Each element in the collection can be accessed by its index, the value of the Index
property, or a unique key, the value of the Key property.

See Also
Add Method (Buttons Collection)
Clear Method
Count Property
Item Method
Remove Method

Change Event (Toolbar Control)
See Also

Generated after the end user customizes a Toolbar control's appearance using the Customize Toolbar
dialog box.

Important      This event requires either the Microsoft Windows 95 operating system or Windows NT 3.51
and higher.

Syntax
Private Sub object_Change()

The object placeholder is an object expression that evaluates to a Toolbar control.

Remarks
The Change event is typically used in conjunction with the SaveToolbar method to save changes to a
toolbar, as follows:
Private Sub Toolbar1_Change()

' Save the changes to the Windows registry whenever
' the Toolbar changes.
Toolbar1.SaveToolbar(1, "Custom1", "MyToolbar")

End Sub

See Also
AllowCustomize Property
Customize Method
RestoreToolbar Method
SaveToolbar Method

Customize Method
See Also

Invokes the Customize Toolbar dialog box which allows the end user to rearrange or hide Button
objects on a Toolbar control.

Important      This object requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Customize

The object placeholder is an object expression that evaluates to a Toolbar control.

Remarks
The Toolbar control contains a built-in dialog box that allows the user to hide, display, or rearrange
buttons on a toolbar.    When the Toolbar control's AllowCustomize property is set to True, double-
clicking the toolbar calls the Customize method, which invokes the dialog box illustrated below:

Use the Customize method when you wish to restrict the alteration of the toolbar.    For example, the
code below allows the user to customize the toolbar only if a password is given:
Private Sub Command1_Click()

If InputBox("Password:") = "Chorus&Line9" Then
Toolbar1.AllowCustomize = True ' Allow customization.
Toolbar1.Customize ' Invoke Customize method.

End If
End Sub

To preserve the state of a Toolbar control, the SaveToolbar method writes to the Windows registry.   
You can restore a Toolbar control to a previous state using the RestoreToolbar method to read the
information previously saved in the registry.

See Also
AllowCustomize Property
Description Property
RestoreToolbar Method
SaveToolbar Method
Toolbar Control

Description Property (Button Object)
See Also

Returns or sets the text for a Button object's description, which is displayed in the Customize Toolbar
dialog box.

Important      This property requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Description [= string]

The Description property syntax has these parts:

Part Description
object An object expression that evaluates to a Button object.
string The string displayed in the Customize Toolbar dialog box when the button is selected.

Remarks
At run time, the Customize Toolbar dialog box can be invoked either by a user double-clicking the
Toolbar control or programmatically using the Customize method.    In either case, when the user
selects a button in the dialog box, a description of the button is displayed in the lower-left corner of the
dialog box.    The text for that description is set with the Description property.
You can set the Description text when you add a Button object, as follows:
Dim btnX As Button
' Set Image property to a button with the Key "save."
Set btnX = Toolbar1.Buttons.Add(,"save")
btnX.Description = "Save a file."

See Also
AllowCustomize Property
Button Object, Buttons Collection
Caption Property
Customize Method

MixedState Property
See Also

Returns or sets a value that determines if a Button object in a Toolbar control appears in an
indeterminate state.

Important      This property requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.MixedState [= boolean]

The MixedState property syntax has these parts:

Part Description
object An object expression that evaluates to a Button object.
boolean A Boolean expression that determines if a Button shows the indeterminate state, as

specified in Settings.

Settings
The settings for boolean are:

Setting Description
True The Button object is in the indeterminate state and becomes dimmed.
False The Button object is not in the indeterminate state and looks normal.

Remarks
The MixedState property is typically used when a selection contains a variety of attributes.    For
example, if you select text that contains both plain (normal) characters and bold characters, the
MixedState property is used.    The image displayed by the Button object could then be changed to
indicate its state, which would differ from the Checked and Unchecked value returned by the Value
property.

See Also
Button Object, Buttons Collection
Toolbar Control
Value Property

RestoreToolbar Method
See Also

Restores a toolbar, created with a Toolbar control, to its original state after being customized.    Doesn't
support named arguments.

Important      This method requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.RestoreToolbar(key As Integer, subkey As String, value As String)

The RestoreToolbar method syntax has these parts:

Part Description
object Required. An object expression that evaluates to a Toolbar control.
key Required.    An integer that specifies the key in the Windows registry where the method

retrieves the Toolbar information.
subkey Required.    A string that specifies a location under the key specified in key.
value Required.    The Toolbar information stored in the subkey.

Remarks
Toolbars created with a Toolbar control can be customized at run time using the Customize method.   
The state of the toolbar can be saved in the registry using the SaveToolbar method; the
RestoreToolbar method restores the state of a toolbar by reading the registry.
Both the key and subkey arguments must exist in the registry of the user's computer, or an error will
occur.

See Also
AllowCustomize Property
Change Event (Toolbar Control)
Customize Method
SaveToolbar Method
Toolbar Control

SaveToolbar Method
See Also

At run time, saves the state of a toolbar, created with the Toolbar control, in the registry.    Doesn't
support named arguments.

Important      This method requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.SaveToolbar(key As Integer, subkey As String, value As String)

The SaveToolbar method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a Toolbar control.
key Required.    An integer specifying the key in the registry where the method stores the

Toolbar information.
subkey Required.    A string expression that specifies a location under the key specified in the

previous parameter.
value Required.    The Toolbar information to be stored in the subkey.

Remarks
If the key or subkey you specify doesn't exist in the registry, a new key or subkey is created.
You must set the AllowCustomize property to True to enable users to customize the toolbar.
Unless you create a new subkey, the SaveToolbar method allows the user to save only one version of
the toolbar by overwriting the registry information each time the method is invoked.

See Also
AllowCustomize Property
Change Event (Toolbar Control)
Customize Method
RestoreToolbar Method
Toolbar Control

Style Property (Button Object)
See Also

Returns or sets a constant or value that determines the appearance and behavior of a Button object in
a Toolbar control.

Important      This property requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Style [=value]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to a Button object.
value A constant or integer that determines the appearance and behavior of a Button object, as

specified in Settings.

Settings
The settings for value are:

Constant Value Description
tbrDefault 0 (Default) Button.    The button is a regular push button.
tbrCheck 1 Check.    The button is a check button, which can be checked or

unchecked.
tbrButtonGroup 2 ButtonGroup.    The button remains pressed until another button in the

group is pressed.    Exactly one button in the group can be pressed at any
one moment.

tbrSeparator 3 Separator.    The button functions as a separator with a fixed width of 8
pixels.

tbrPlaceholder 4 Placeholder.    The button is like a separator in appearance and
functionality, but has a settable width.

Remarks
Buttons that have the ButtonGroup style must be grouped.    To distinguish a group, place all Button
objects with the same style (ButtonGroup) between two Button objects with the Separator style.
You can also place another control on a toolbar by assigning a Button object the PlaceHolder style.   
For example, to place a drop-down text box on a toolbar at design time, add a Button object with the
PlaceHolder style and size it to the size of a ComboBox control.    Then place a ComboBox on the
placeholder.
When a Button object is assigned the PlaceHolder style, you can set the value of the Width property to
accommodate another control placed on the Button.    If a Button object has the Button, Check, or
ButtonGroup style, the height and width are determined by the ButtonHeight and ButtonWidth
properties.
If you place a control on a button with the PlaceHolder style, you must programmatically align and size
the control if the form is resized, as shown below:
Private Sub Form_Resize()

' Track a ComboBox by setting its Top, Left, and Width properties
' to the Top, Left, and Width properties of a Button object.
Combo1.Top = Toolbar1.Buttons("combo1").Top
Combo1.Left = Toolbar1.Buttons("combo1").Left
Combo1.Width = Toolbar1.Buttons("combo1").Width

End Sub

See Also
ButtonHeight , ButtonWidth Properties
Button Object, Buttons Collection
Toolbar Control

Wrappable Property
See Also

Returns or sets a value that determines if Toolbar control buttons will automatically wrap when the
window is resized.

Important      This property requires either the Microsoft Windows 95 operating system or Windows NT
3.51 and higher.

Syntax
object.Wrappable [= boolean]

The Wrappable property syntax has these parts:

Part Description
object An object expression that evaluates to a Toolbar control.
boolean A Boolean expression that determines if the Button objects on a Toolbar control will

wrap, as described in Settings.

Settings
The settings for boolean are:

Value Description
True The buttons on the Toolbar control wrap if the form is resized.
False The buttons on the Toolbar control won't wrap if the form is resized.

See Also
Button Object, Buttons Collection
Toolbar Control

Buttons

The Buttons keyword is used in these contexts:
Buttons Collection
Buttons Property

Toolbar Control Constants
See Also

Style Constants

Constant Value Description
tbrDefault 0 The button is a regular push button.
tbrCheck 1 The button is a check button.
tbrButtonGroup 2 The button remains pressed until another button in the group is pressed.

Exactly one button in the group is pressed at any time.
tbrSeparator 3 The button functions as a separator with a fixed width of 8 pixels.
tbrPlaceholder 4 The button is like a separator in appearance and functionality but has a

settable width.

Value Constants

Constant Value Description
tbrUnpressed 0 The button is not currently pressed or checked.
tbrPressed 1 The button is currently pressed or checked.

See Also
Style Property (Button Object)
Toolbar Control
Value Property
Visual Basic Custom Control Constants
Windows 95 Controls Constants

    RichTextBox Control
See Also Properties Methods Events Constants

The RichTextBox control allows the user to enter and edit text while also providing more advanced
formatting features than the conventional TextBox control.

Syntax

RichTextBox

Remarks
The RichTextBox control provides a number of properties you can use to apply formatting to any
portion of text within the control.    To change the formatting of text, it must first be selected.    Only
selected text can be assigned character and paragraph formatting.    Using these properties, you can
make text bold or italic, change the color, and create superscripts and subscripts.    You can also adjust
paragraph formatting by setting both left and right indents, as well as hanging indents.
The RichTextBox also opens and saves files in both the RTF format and regular ASCII text format.   
You can use methods of the control (LoadFile and SaveFile) to directly read and write files, or use
properties of the control such as SelRTF and TextRTF in conjunction with Visual Basic's file input/output
statements.    You can also load the contents of an .RTF file into the RichTextBox control simply by
dragging the file (from the Windows 95 Explorer for example), or a highlighted portion of a file used in
another application (such as Microsoft Word), and dropping the contents directly onto the control.    You
can also set the FileName property to load the contents of an .RTF or text file to the control.
You can also print all or part of the text in a RichTextBox control using the SelPrint method.
Because the RichTextBox is a data-bound control, you can bind it with a Data control to a Memo field in
a Microsoft Access database or a similar large capacity text field in other databases (such as a TEXT
data type field in SQL Server).
The RichTextBox control supports almost all of the properties, events and methods used with the
standard TextBox control, such as MaxLength, MultiLine, ScrollBars, SelLength, SelStart, and
SelText.    Applications that already use TextBox controls can easily be adapted to make use of
RichTextBox controls.    However, the RichTextBox control doesn't have the same 64K character
capacity limit of the conventional TextBox control.

Distribution Note      The RichTextBox control is a 32-bit custom control that can only run on 32-bit
systems, such as Windows 95 and Windows NT 3.51 or higher.    To use the RichTextBox control in
your application, you must add the RICHTX32.OCX file to the project.    When distributing your
application, install the RICHTX32.OCX file in the user's Microsoft Windows SYSTEM directory. For more
information on how to add a custom control to a project, see the Programmer's Guide.

See Also
Supported RTF Codes

RichTextBox Control Properties

Appearance Property
BackColor Property
BorderStyle Property
BulletIndent Property
Container Property
DataChanged Property
DataField Property
DataSource Property
DisableNoScroll Property
DragIcon Property
DragMode Property
Enabled Property
FileName Property
Font Property
Height Property
HelpContextID Property
HideSelection Property
hWnd Property
Index Property
Left Property
Locked Property
MaxLength Property
MouseIcon Property
MousePointer Property
MultiLine Property
Name Property
Object Property
Parent Property
ScrollBars Property
SelAlignment Property
SelBold Property
SelBullet Property
SelCharOffset Property
SelColor Property
SelFontName Property
SelFontSize Property
SelHangingIndent Property
SelIndent Property
SelItalic Property
SelLength Property
SelRightIndent Property
SelRTF Property
SelStart Property
SelStrikethru Property
SelTabCount Property

SelTabs Property
SelText Property
SelUnderline Property
TabIndex Property
TabStop Property
Tag Property
Text Property
TextRTF Property
Top Property
Visible Property
WhatsThisHelpID Property
Width Property

RichTextBox Control Methods

Drag Method
Find Method
GetLineFromChar Method
LoadFile Method
Move Method
Refresh Method
SaveFile Method
SelPrint Method
SetFocus Method
ShowWhatsThis Method
Span Method
UpTo Method
ZOrder Method

RichTextBox Control Events

Change Event
Click Event
DblClick Event
DragDrop Event
DragOver Event
GotFocus Event
KeyDown Event
KeyPress Event
KeyUp Event
LostFocus Event
MouseDown Event
MouseMove Event
MouseUp Event
SelChange Event

DisableNoScroll Property
See Also

Returns or sets a value that determines whether scroll bars in the RichTextBox control are disabled.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.DisableNoScroll [= boolean]

The DisableNoScroll property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
boolean A Boolean expression specifying whether or not the scroll bars are enabled, as described

in Settings.

Settings
The settings for boolean are:

Setting Description

False (Default) Scroll bars appear normally when displayed.

True Scroll bars appear dimmed when displayed.

Remarks
The DisableNoScroll property is ignored when the ScrollBars property is set to 0 (None). However,
when ScrollBars is set to 1 (Horizontal), 2 (Vertical), or 3 (Both), individual scroll bars are disabled
when there are too few lines of text to scroll vertically or too few characters of text to scroll horizontally in
the RichTextBox control.

See Also
RichTextBox Control
ScrollBars Property

FileName Property (RichTextBox Control)
See Also

Returns or sets the filename of the file loaded into the RichTextBox control at design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.FileName

The object placeholder represents an object expression that evaluates to a RichTextBox control.

Settings
You can only specify the names of text files or valid .RTF files for this property.

See Also
LoadFile Method
RichTextBox Control
SaveFile Method
Supported RTF Codes

Find Method
See Also Example

Searches the text in a RichTextBox control for a given string.    Doesn't support named arguments.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.Find(string, start, end, options)

The Find method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a RichTextBox control.
string Required.    A string expression you want to find in the control.
start Optional.    An integer character index that determines where to begin the search.    Each

character in the control has an integer index that uniquely identifies it.    The first character
of text in the control has an index of 0.

end Optional.    An integer character index that determines where to end the search.
options Optional.    The sum of one or more constants used to specify optional features, as

described in Settings.

Settings
The setting for options can include:

Constant Value Description
rtfWholeWord 2 Determines if a match is based on a whole word or a fragment of a

word.
rtfMatchCase 4 Determines if a match is based on the case of the specified string as

well as the text of the string.
rtfNoHighlight 8 Determines if a match appears highlighted in the RichTextBox control.

You can combine multiple options by either adding their values or constants together or combine the
values with the Or operator.

Remarks
If the text searched for is found, the Find method highlights the specified text and returns the index of
the first character highlighted.    If the specified text is not found, the Find method returns -1.
If you use the Find method without the rtfNoHighlight option while the HideSelection property is True
and the RichTextBox control does not have the focus, the control still highlights the found text.   
Subsequent uses of the Find method will search only for the highlighted text until the insertion point
moves.
The search behavior of the Find method varies based on the combination of values specified for the
start and end arguments.    This table describes the possible behaviors:

Start End Search Behavior
Specified Specified Searches from the specified start location to the specified end location.
Specified Omitted Searches from the specified start location to the end of the text in the

control.
Omitted Specified Searches from the current insertion point to the specified end location.
Omitted Omitted Searches the current selection if text is selected or the entire contents

of the control if no text is selected.

See Also
RichTextBox Control

Find Method Example

This example finds a string in a RichTextBox control based on a word entered in a TextBox control.   
After it finds the specified string, it displays a message box that shows the number of the line containing
the specified word.    To try this example, put a RichTextBox control, a CommandButton control and a
TextBox control on a form.    Load a file into the RichTextBox, and paste this code into the Click event
of the CommandButton control.    Then run the example, enter a word in the TextBox, and click the
CommandButton.

Private Sub Command1_Click()
Dim FoundPos As Integer
Dim FoundLine As Integer
' Find the text specified in the TextBox control.
FoundPos = RichTextBox1.Find(Text1.Text, , , rtfWholeWord)
' Show message based on whether the text was found or not.
If FoundPos <> -1 Then

' Returns number of line containing found text.
FoundLine = RichTextBox1.GetLineFromChar(FoundPos)
MsgBox "Word found on line " & CStr(FoundLine)

Else
MsgBox "Word not found."

End If
End Sub

GetLineFromChar Method
See Also Example

Returns the number of the line containing a specified character position in a RichTextBox control.   
Doesn't support named arguments.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.GetLineFromChar(charpos)

The GetLineFromChar method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a RichTextBox control.
charpos Required.    A long integer that specifies the index of the character whose line you want to

identify.    The index of the first character in the RichTextBox control is 0.

Remarks
You use the GetLineFromChar method to find out which line in the text of a RichTextBox control
contains a certain character position in the text.    You might need to do this because the number of
characters in each line of text can vary, making it very difficult to find out which line in the text contains a
particular character, identified by its position in the text.

See Also
RichTextBox Control

GetLineFromChar Method Example

This example finds a string in a RichTextBox control based on a word entered in a TextBox control.   
After it finds the specified string, it displays a message box that shows the number of the line containing
the specified word.    To try this example, put a RichTextBox control, a CommandButton control and a
TextBox control on a form.    Load a file into the RichTextBox, and paste this code into the Click event
of the CommandButton control.    Then run the example, enter a word in the TextBox, and click the
CommandButton.

Private Sub Command1_Click()
Dim FoundPos As Integer
Dim FoundLine As Integer
' Find the text specified in the TextBox control.
FoundPos = RichTextBox1.Find(Text1.Text, , , rtfWholeWord)
' Show message based on whether the text was found or not.
If FoundPos <> -1 Then

' Returns number of line containing found text.
FoundLine = RichTextBox1.GetLineFromChar(FoundPos)
MsgBox "Word found on line " & CStr(FoundLine)

Else
MsgBox "Word not found."

End If
End Sub

SelHangingIndent, SelIndent, SelRightIndent Properties
See Also Example

Returns or sets the margin settings for the paragraph(s) in a RichTextBox control that either contain the
current selection or are added at the current insertion point.    Not available at design time.

Important      These properties require the Microsoft Windows 95 or Microsoft Windows NT 3.51
operating system.

Syntax

object.SelHangingIndent [= integer]

object.SelIndent [= integer]

object.SelRightIndent [= integer]

The SelHangingIndent, SelIndent, and SelRightIndent properties syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
integer An integer that determines the amount of indent.    These properties use the scale mode

units of the Form object containing the RichTextBox control.

Remarks
For the affected paragraph(s), the SelIndent property specifies the distance between the left edge of the
RichTextBox control and the left edge of the text that is selected or added.    Similarly, the
SelRightIndent property specifies the distance between the right edge of the RichTextBox control and
the right edge of the text that is selected or added.
The SelHangingIndent property specifies the distance between the left edge of the first line of text in
the selected paragraph(s) (as specified by the SelIndent property) and the left edge of subsequent lines
of text in the same paragraph(s).
These properties return zero (0) if the selection spans multiple paragraphs with different margin settings.

See Also
RichTextBox Control
SelAlignment Property
SelBullet Property
SelTabCount , SelTabs Properties

SelHangingIndent, SelIndent, SelRIghtIndent Properties Example

This example selects all the text in a RichTextBox control, then sets both the left and right indents to
create margins.    To try this example, put a RichTextBox control, a CommandButton control, and a
TextBox control on a form.    Load a file into the RichTextBox, and paste this code into the Click event
of the CommandButton control.    Then run the example.

Private Sub Command1_Click()
Dim Margins As Integer
Margins = CInt(Text1.Text)
With RichTextBox1

.SelStart = 1

.SelLength = Len(RichTextBox1.Text)

.SelIndent = Margins

.SelRightIndent = Margins
End With

End Sub

LoadFile Method
See Also Example

Loads an .RTF file or text file into a RichTextBox control.    Doesn't support named arguments.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.LoadFile pathname, filetype

The LoadFile method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a RichTextBox control.
pathname Required.    A string expression defining the path and filename of the file to load into the

control.
filetype Optional.    An integer or constant that specifies the type of file loaded, as described in

Settings.

Settings
The settings for filetype are:

Constant Value Description
rtfRTF 0 (Default) RTF.    The file loaded must be a valid .RTF file.
rtfText 1 Text.    The RichTextBox control loads any text file.

Remarks
When loading a file with the LoadFile method, the contents of the loaded file replaces the entire
contents of the RichTextBox control.    This will cause the values of the Text and RTFText properties to
change.
You can also use the Input function in Visual Basic and the TextRTF and SelRTF properties of the
RichTextBox control to read .RTF files.    For example, you can load the contents of an .RTF file to the
RichTextBox control as follows:
Open "mytext.rtf" For Input As 1
RichTextBox1.TextRTF = Input$(LOF(1), 1)

See Also
FileName Property
RichTextBox Control
SaveFile Method
SelRTF Property
Supported RTF Codes
TextRTF Property

LoadFile Method Example

This example displays a dialog box to choose an .RTF file, then loads that file into a RichTextBox
control.    To try this example, put a RichTextBox control, a CommandButton control, and a
CommonDialog control on a form.    Paste this code into the Click event of the CommandButton
control.    Then run the example.

Private Sub Command1_Click()
CommonDialog1.Filter = "Rich Text Format files|*.rtf"
CommonDialog1.ShowOpen
RichTextBox1.LoadFile CommonDialog1.Filename, rtfRTF

End Sub

BulletIndent Property
See Also

Returns or sets the amount of indent used in a RichTextBox control when SelBullet is set to True.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.BulletIndent [= integer]

The BulletIndent property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
integer An integer that determines the amount of indent.    These properties use the scale mode

units of the Form object containing the RichTextBox control.

Remarks
The BulletIndent property returns Null if the selection spans multiple paragraphs with different margin
settings.

See Also
RichTextBox Control
SelBullet Property

SaveFile Method
See Also Example

Saves the contents of a RichTextBox control to a file.    Doesn't support named arguments.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.SaveFile(pathname, filetype)

The SaveFile method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a RichTextBox control.
pathname Required.    A string expression defining the path and filename of the file to receive the

contents of the control.
filetype Optional.    An integer or constant that specifies the type of file loaded, as described in

Settings.

Settings
The settings for filetype are:

Constant Value Description
rtfRTF 0 (Default) RTF.    The RichTextBox control saves its contents as an .RTF file.
rtfText 1 Text.    The RichTextBox control saves its contents as a text file.

Remarks
You can also use the Write function in Visual Basic and the TextRTF and SelRTF properties of the
RichTextBox control to write .RTF files.    For example, you can save the highlighted contents of a
RichTextBox control to an .RTF file as follows:
Open "mytext.rtf" For Output As 1
Print #1, RichTextBox1.SelRTF

See Also
LoadFile Method
RichTextBox Control
SelRTF Property
Supported RTF Codes
TextRTF Property

SaveFile Method Example

This example displays a dialog box to choose an .RTF file to which you will save the contents of a
RichTextBox control.    To try this example, put a RichTextBox control, a CommandButton control, and
a CommonDialog control on a form.    Paste this code into the Click event of the CommandButton
control.    Then run the example.

Private Sub Command1_Click()
CommonDialog1.ShowSave
RichTextBox1.SaveFile(CommonDialog1.Filename, rtfRTF)

End Sub

SelAlignment Property
See Also Example

Returns or sets a value that controls the alignment of the paragraphs in a RichTextBox control.    Not
available at design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.SelAlignment [= value]

The SelAlignment property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
value An integer or constant that determines paragraph alignment, as described in Settings.

Settings
The settings for value are:

Constant Value Description
Null Neither.    The current selection spans more than one paragraph with different

alignments.
rtfLeft 0 (Default) Left.    The paragraph is aligned along the left margin.
rtfRight 1 Right.    The paragraph is aligned along the right margin.
rtfCenter 2 Center.    The paragraph is centered between the left and right margins.

Remarks
The SelAlignment property determines paragraph alignment for all paragraphs that have text in the
current selection or for the paragraph containing the insertion point if no text is selected.
To distinguish between the values of Null and 0 when reading this property at run time, use the IsNull
function with the If...Then...Else statement.    For example:
If IsNull(RichTextBox1.SelAlignment) = True Then

' Code to run when selection is mixed.
ElseIf RichTextBox1.SelAlignment = 0 Then

' Code to run when selection is left aligned.
...
End If

See Also
RichTextBox Control
SelHangingIndent , SelIndent , SelRightIndent Properties
SelBullet Property
SelTabCount , SelTabs Properties

SelAlignment Property Example

This example uses an array of OptionButton controls to change the paragraph alignment of selected
text in a RichTextBox control, but only if text is selected.    The indices of the controls in the array
correspond to settings for the SelAlignment property.    To try this example, put a RichTextBox control
and three OptionButton controls on a form.    Give all three of the OptionButton controls the same
name and set their Index property to 0, 1, and 2.    Paste this code into the Click event of the
OptionButton control.    Then run the example.

Private Sub Option1_Click(Index As Integer)
If RichTextBox1.SelLength > 0 Then

RichTextBox1.SelAlignment = Index
End If

End Sub

SelBold, SelItalic, SelStrikethru, SelUnderline Properties
See Also

Return or set font styles of the currently selected text in a RichTextBox control.    The font styles include
the following formats: Bold, Italic, Strikethru, and Underline.    Not available at design time.

Important      These properties require the Microsoft Windows 95 or Microsoft Windows NT 3.51
operating system.

Syntax

object.SelBold [= value]

object.SelItalic [= value]

object.SelStrikethru [= value]

object.SelUnderline [= value]

The SelBold, SelItalic, SelStrikethru, and SelUnderline properties syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
value A Boolean expression or constant that determines the font style, as described in Settings.

Settings
The settings for value are:

Setting Description
Null Neither.    The selection or character following the insertion point contains characters that

have a mix of the appropriate font styles.
True All the characters in the selection or character following the insertion point have the

appropriate font style.
False (Default)    None of the characters in the selection or character following the insertion point

have the appropriate font style.

Remarks
These properties behave like the Bold, Italic, Strikethru, and Underline properties of a Font object.   
The RichTextBox control has a Font property and therefore the ability to apply font styles to all the text
in the control through the properties of the control's Font object.    Use these properties to apply font
styles to selected text or to characters entered at the insertion point.
Typically, you access these properties by creating a toolbar in your application with buttons to toggle
these properties individually.
To distinguish between the values of Null and False when reading these properties at run time, use the
IsNull function with the If...Then...Else statement.    For example:
If IsNull(RichTextBox1.SelBold) = True Then

' Code to run when selection is mixed.
ElseIf RichTextBox1.SelBold = False Then

' Code to run when selection is not bold.
...
End If

See Also
RichTextBox Control
SelCharOffset Property
SelColor Property
SelFontName Property
SelFontSize Property

SelChange Event
See Also Example

Occurs when the current selection of text in the RichTextBox control has changed or the insertion point
has moved.

Syntax
Private Sub object_SelChange([index As Integer])

The SelChange event syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
index An integer that uniquely identifies a control if it's in a control array.

Remarks
You can use the SelChange event to check the various properties that give information about the current
selection (such as SelBold) so you can update buttons in a toolbar, for example.

See Also
RichTextBox Control

SelChange Event Example

This example checks the size of the current selection to see if the menu commands for cutting or
copying text to the Clipboard should be enabled.    To try this example, put a RichTextBox control and
three Menu controls on a form to create a menu with commands to cut and copy.    Paste this code into
the SelChange event of the RichTextBox control.    Then run the example.

Private Sub RichTextBox1_SelChange()
If RichTextBox1.SelLength > 0 Then

EditCutMenu.Enabled = True
EditCopyMenu.Enabled = True

Else
EditCutMenu.Enabled = False
EditCopyMenu.Enabled = False

End If
End Sub

SelCharOffset Property
See Also Example

Returns or sets a value that determines whether text in the RichTextBox control appears on the
baseline (normal), as a superscript above the baseline, or as a subscript below the baseline.    Not
available at design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.SelCharOffset [= offset]

The SelCharOffset property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
offset An integer that determines how far the characters in the current selection or that following

the insertion point are offset from the baseline of the text, as described in Settings.

Settings
The settings for offset are:

Setting Description
Null Neither.    The selection has a mix of characters with different offsets.
0 (Default) Normal.    The characters all appear on the normal text baseline.
Positive integer Superscript.    The characters appear above the baseline by the number of twips

specified.
Negative integer Subscript.    The characters appear below the baseline by the number of twips

specified.

Remarks
To distinguish between the values of Null and 0 when reading this property at run time, use the IsNull
function with the If...Then...Else statement.    For example:
If IsNull(RichTextBox1.SelCharOffset) = True Then

' Code to run when selection is mixed.
ElseIf RichTextBox1.SelCharOffset = 0 Then

' Code to run when selection is all on the baseline.
...
End If

See Also
RichTextBox Control
SelBold , SelItalic , SelStrikethru , SelUnderline Properties
SelColor Property
SelFontName Property
SelFontSize Property

SelCharOffset Property Example

This example uses a scroll bar to move selected text above or below the baseline.    The minimum and
maximum amount of offset is established by the font size of the text within the RichTextBox control.    To
try this example, put a RichTextBox control and a VScrollBar control on a form.    Paste this code into
the Change event of the VScrollBar control.    Then run the example.

Private Sub VScroll1_Change ()
VScroll1.Max = RichTextBox1.SelFontSize
VScroll1.Min = -(VScroll1.Max)
RichTextBox1.SelCharOffset = VScroll1.Value

End Sub

SelColor Property
See Also Example

Returns or sets a value that determines the color of text in the RichTextBox control.    Not available at
design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.SelColor [= color]

The SelColor property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
color A value that specifies a color, as described in Settings.

Settings
The settings for color are:

Setting Description
Null The text contains a mixture of different color settings.
RGB colors Colors specified in code with the RGB or QBColor functions.
System Colors specified with the system color constants in the Visual Basic object library in the

Object Browser.    The color of the text then matches user selections for the specified
constant in the Windows Control Panel.

Remarks
If there is no text selected in the RichTextBox control, setting this property determines the color of all
new text entered at the current insertion point.

See Also
RichTextBox Control
SelBold , SelItalic , SelStrikethru , SelUnderline Properties
SelCharOffset Property
SelFontName Property
SelFontSize Property

SelColor Property Example

This example displays a color dialog box from a CommonDialog control to specify the color of selected
text in a RichTextBox control.    To try this example, put a RichTextBox control, a CommandButton
control, and a CommonDialog control on a form.    Paste this code into the Click event of the
CommandButton control.    Then run the example.

Private Sub Command1_Click()
CommonDialog1.ShowColor
RichTextBox1.SelColor = CommonDialog1.Color

End Sub

SelFontName Property
See Also Example

Returns or sets the font used to display the currently selected text or the character(s) immediately
following the insertion point in the RichTextBox control.    Not available at design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.SelFontName [= string]

The SelFontName property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
string A string expression that identifies a font installed on the system.

Remarks
The SelFontName property returns Null if the selected text contains different fonts.

See Also
RichTextBox Control
SelBold , SelItalic , SelStrikethru , SelUnderline Properties
SelCharOffset Property
SelColor Property
SelFontSize Property

SelFontName Property Example

This example displays a font dialog box from a CommonDialog control to specify font attributes of
selected text in a RichTextBox control.    To try this example, put a RichTextBox control, a
CommandButton control, and a CommonDialog control on a form.    Paste this code into the Click
event of the CommandButton control.    Then run the example.

Private Sub Command1_Click ()
CommonDialog1.Flags = cdlCFBoth
CommonDialog1.ShowFont
With RichTextBox1

.SelFontName = CommonDialog1.FontName

.SelFontSize = CommonDialog1.FontSize

.SelBold = CommonDialog1.FontBold

.SelItalic = CommonDialog1.FontItalic

.SelStrikethru = CommonDialog1.FontStrikethru

.SelUnderline = CommonDialog1.FontUnderline
End With

End Sub

SelFontSize Property
See Also Example

Returns or sets a value that specifies the size of the font used to display text in a RichTextBox control.
Not available at design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.SelFontSize [= points]

The SelFontSize property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
points An integer that specifies the size in points of the currently selected text or the characters

immediately following the insertion point.

Remarks
The maximum value for SelFontSize is 2160 points.
In general, you should change the SelFontName property before you set the size and style attributes.   
However, when you set TrueType fonts to smaller than 8 points, you should set the point size to 3 with
the SelFontSize property, then set the SelFontName property, and then set the size again with the
SelFontSize property.

Note      Available fonts depend on your system configuration, display devices, and printing devices, and
therefore may vary from system to system.

The SelFontSize property returns Null if the selected text contains different font sizes.

See Also
RichTextBox Control
SelBold , SelItalic , SelStrikethru , SelUnderline Properties
SelCharOffset Property
SelColor Property
SelFontName Property

SelFontSize Property Example

This example displays a font dialog box from a CommonDialog control to specify font attributes of
selected text in a RichTextBox control.    To try this example, put a RichTextBox control, a
CommandButton control, and a CommonDialog control on a form.    Paste this code into the Click
event of the CommandButton control.    Then run the example.

Private Sub Command1_Click ()
CommonDialog1.Flags = Both
CommonDialog1.ShowFont
With RichTextBox1

.SelFontName = CommonDialog1.FontName

.SelFontSize = CommonDialog1.FontSize

.SelBold = CommonDialog1.FontBold

.SelItalic = CommonDialog1.FontItalic

.SelStrikethru = CommonDialog1.FontStrikethru

.SelUnderline = CommonDialog1.FontUnderline
End With

End Sub

SelBullet Property
See Also Example

Returns or sets a value that determines if a paragraph in the RichTextBox control    containing the
current selection or insertion point has the bullet style.    Not available at design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.SelBullet [= value]

The SelBullet property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
value An integer or constant that determines the bullet style of the paragraph(s), as described in

Settings.

Settings
The settings for value are:

Setting Description
Null Neither.    The selection spans more than one paragraph and contains a mixture of bullet

and nonbullet styles.
True The paragraphs in the selection have the bullet style.
False (Default) The paragraphs in the selection don't have the bullet style.

Remarks
Use the SelBullet property to build a list of bulleted items in a RichTextBox control.
To distinguish between the values of Null and False when reading this property at run time, use the
IsNull function with the If...Then...Else statement.    For example:
If IsNull(RichTextBox1.SelBullet) = True Then

' Code to run when selection is mixed.
ElseIf RichTextBox1.SelBullet = False Then

' Code to run when selection doesn't have bullet style.
...
End If

See Also
RichTextBox Control
SelAlignment Property
SelHangingIndent , SelIndent , SelRightIndent Properties
SelTabCount , SelTabs Properties

SelBullet Property Example

This example changes the state of a CheckBox control on a form to show the bullet status of selected
text in a RichTextBox control.    To try this example, put a RichTextBox control and a CheckBox control
on a form.    Paste this code into the SelChange event of the RichTextBox control.    Then run the
example.

Private Sub RichTextBox1_SelChange()
If IsNull(RichTextBox1.SelBullet) = True Then

Check1.Value = vbGrayed
ElseIf RichTextBox1.SelBullet = True Then

Check1.Value = vbChecked
ElseIf RichTextBox1.SelBullet = False Then

Check1.Value = vbUnchecked
End If

End Sub

SelPrint Method
See Also Example

Sends formatted text in a RichTextBox control to a device for printing.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.SelPrint(hdc)

The SelPrint method syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
hdc The device context of the device you plan to use to print the contents of the control.

Remarks
If text is selected in the RichTextBox control, the SelPrint method sends only the selected text to the
target device.    If no text is selected, the entire contents of the RichTextBox are sent to the target
device.
The SelPrint method does not print text from the RichTextBox control.    Rather, it sends a copy of
formatted text to a device which can print the text.    For example, you can send the text to the Printer
object using code as follows:
RichTextBox1.SelPrint(Printer.hDC)

Notice that the hDC property of the Printer object is used to specify the device context argument of the
SelPrint method.

Note      If you use the Printer object as the destination of the text from the RichTextBox control, you
must first initialize the device context of the Printer object by printing something like a zero-length string.

See Also
RichTextBox Control

SelPrint Method Example

This example prints the formatted text in a RichTextBox control.    To try this example, put a
RichTextBox control, a CommonDialog control, and a CommandButton control on a form.    Paste this
code into the Click event of the CommandButton control.    Then run the example.

Private Sub Command1_Click()
CommonDialog1.Flags = cdlPDReturnDC + cdlPDNoPageNums
If RichTextBox1.SelLength = 0 Then

CommonDialog1.Flags = CommonDialog1.Flags + cdlPDAllPages
Else

CommonDialog1.Flags = CommonDialog1.Flags + cdlPDSelection
End If
CommonDialog1.ShowPrinter
RichTextBox1.SelPrint CommonDialog1.hDC

End Sub

SelTabCount, SelTabs Properties
See Also Example

Returns or sets the number of tabs and the absolute tab positions of text in a RichTextBox control.    Not
available at design time.

Important      These properties require the Microsoft Windows 95 or Microsoft Windows NT 3.51
operating system.

Syntax
object.SelTabCount [= count]
object.SelTabs(index) [= location]

The SelTabCount and SelTabs properties syntaxes have these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
count An integer that determines the number of tab positions in the selected paragraph(s) or in

those paragraph(s) following the insertion point.
index An integer that identifies a specific tab.    The first tab location has an index of zero (0).   

The last tab location has an index equal to SelTabCount minus 1.
location An integer that specifies the location of the designated tab.    The units used to express

tab positions are determined by the scale mode of the Form object or other object
containing the RichTextBox control.

Remarks
By default, pressing TAB when typing in a RichTextBox control causes focus to move to the next control
in the tab order, as specified by the TabIndex property.    One way to insert a tab in the text is by
pressing CTRL+TAB.    However, users who are accustomed to working with word processors may find
the CTRL+TAB key combination contrary to their experience.    You can enable use of the TAB key to
insert a tab in a RichTextBox control by temporarily switching the TabStop property of all the controls
on the Form object to False while the RichTextBox control has focus.    For example:
Private Sub RichTextBox1_GotFocus()

' Ignore errors for controls without the TabStop property.
On Error Resume Next
' Switch off the change of focus when pressing TAB.
For Each Control In Controls

Control.TabStop = False
Next Control

End Sub

Make sure to reset the TabStop property of the other controls when the RichTextBox control loses
focus.

See Also
RichTextBox Control
SelAlignment Property
SelHangingIndent , SelIndent , SelRightIndent Properties
SelBullet Property

SelTabCount, SelTabs Properties Example

This example sets the number of tabs in a RichTextBox control to a total of five and then sets the
positions of the tabs to multiples of five.    To try this example, put a RichTextBox control and a
CommandButton control on a form.    Paste this code into the Click event of the CommandButton
control.    Then run the example.

Private Sub Command1_Click()
With RichTextBox1

.SelTabCount = 5
For X = 0 To .SelTabCount - 1

.SelTabs(X) = 5 * X
Next X

End With
End Sub

SelRTF Property
See Also Example

Returns or sets the text (in .RTF format) in the current selection of a RichTextBox control.    Not
available at design time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.SelRTF [= string]

The SelRTF property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
string A string expression in .RTF format.

Remarks
Setting the SelRTF property replaces any selected text in the RichTextBox control with the new string.
This property returns a zero-length string ("") if no text is selected in the control.
You can use the SelRTF property along with the Print function to write .RTF files.

See Also
RichTextBox Control
Supported RTF Codes
TextRTF Property

SelRTF Property Example

This example saves the highlighted contents of a RichTextBox control to an .RTF file.    To try this
example, put a RichTextBox control and a CommandButton control on a form.    Paste this code into
the Click event of the CommandButton control.    Then run the example.

Private Sub Command1_Click ()
Open "mytext.rtf" For Output As 1
Print #1, RichTextBox1.SelRTF
Close 1

End Sub

Span Method
See Also Example

Selects text in a RichTextBox control based on a set of specified characters.    Doesn't support named
arguments.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.Span characterset, forward, negate

The Span method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a RichTextBox control.
characterset Required.    A string expression that specifies the set of characters to look for when

extending the selection, based on the value of negate.
forward Optional.    A Boolean expression that determines which direction the insertion point

moves, as described in Settings.
negate Optional.    A Boolean expression that determines whether the characters in

characterset define the set of target characters or are excluded from the set of target
characters, as described in Settings.

Settings
The settings for forward are:

Setting Description
True (Default) Selects text from the current insertion point or the beginning of the current

selection forward, toward the end of the text.
False Selects text from the current insertion point or the beginning of the current selection

backward, toward the start of the text.

The settings for negate are:

Setting Description
True The characters included in the selection are those which do not appear in the

characterset argument.    The selection stops at the first character found that appears in
the characterset argument.

False (Default) The characters included in the selection are those which appear in the
characterset argument.    The selection stops at the first character found that does not
appear in the characterset argument.

Remarks
The Span method is primarily used to easily select a word or sentence in the RichTextBox control.
If the Span method cannot find the specified characters based on the values of the arguments, then the
current insertion point or selection remains unchanged.
The Span method does not return any data.

See Also
RichTextBox Control
UpTo Method

Span Method Example

This example defines a pair of keyboard shortcuts that selects text in a RichTextBox control to the end
of a sentence (CTRL+S) or the end of a word (CTRL+W).    To try this example, put a RichTextBox control
on a form.    Paste this code into the KeyUp event of the RichTextBox control.    Then run the example.

Private Sub RichTextBox1_KeyUp (KeyCode As Integer, Shift As Integer)
If Shift = vbCtrlMask Then

Select Case KeyCode
' If Ctrl+S:
Case vbKeyS

' Select to the end of the sentence.
RichTextBox1.Span ".?!:", True, True
' Extend selection to include punctuation.
RichTextBox1.SelLength = RichTextBox1.SelLength + 1

' If Ctrl+W:
Case vbKeyW

' Select to the end of the word.
RichTextBox1.Span " ,;:.?!", True, True

End Select
End If

End Sub

TextRTF Property
See Also Example

Returns or sets the text of a RichTextBox control, including all .RTF code.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax

object.TextRTF [= string]

The TextRTF property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
string A string expression in .RTF format.

Remarks
Setting the TextRTF property replaces the entire contents of a RichTextBox control with the new string.
You can use the TextRTF property along with the Print function to write .RTF files.    The resulting file
can be read by any other word processor capable of reading RTF-encoded text.

See Also
RichTextBox Control
SaveFile Method
SelRTF Property
Supported RTF Codes

TextRTF Property Example

This example saves the entire contents of a RichTextBox control to an .RTF file.    To try this example,
put a RichTextBox control and a CommandButton control on a form.    Paste this code into the Click
event of the CommandButton control.    Then run the example.

Private Sub Command1_Click ()
Open "mytext.rtf" For Output As 1
Print #1, RichTextBox1.TextRTF
Close 1

End Sub

Upto Method
See Also Example

Moves the insertion point up to, but not including, the first character that is a member of the specified
character set in a RichTextBox control.    Doesn't support named arguments.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.Upto(characterset, forward, negate)

The Upto method syntax has these parts:

Part Description
object Required.    An object expression that evaluates to a RichTextBox control.
characterset Required.    A string expression that specifies the set of characters to look for when

moving the insertion point, based on the value of negate.
forward Optional.    A Boolean expression that determines which direction the insertion point

moves, as described in Settings.
negate Optional.    A Boolean expression that determines whether the characters in

characterset define the set of target characters or are excluded from the set of target
characters, as described in Settings.

Settings
The settings for forward are:

Setting Description
True (Default)    Moves the insertion point forward, toward the end of the text.
False Moves the insertion point backward, toward the start of the text.

The settings for negate are:

Setting Description
True The characters not specified in the characterset argument are used to move the insertion

point.
False (Default)    The characters specified in the characterset argument are used to move the

insertion point.

See Also
RichTextBox Control
Span Method

Upto Method Example

This example defines a pair of keyboard shortcuts that moves the insertion point in a RichTextBox
control to the end of a sentence (ALT+S) or the end of a word (ALT+W).    To try this example, put a
RichTextBox control on a form.    Paste this code into the KeyUp event of the RichTextBox control.   
Then run the example.

Private Sub RichTextBox1_KeyUp (KeyCode As Integer, Shift As Integer)
If Shift = vbAltMask Then

Select Case KeyCode
' If Alt+S:
Case vbKeyS

' Move insertion point to the end of the sentence.
RichTextBox1.Upto ".?!:", True, False

' If Alt+W:
Case vbkeyW

' Move insertion point to the end of the word.
RichTextBox1.Upto " .?!:", True, False

End Select
End If

End Sub

RichTextBox Control Constants
See Also

Appearance Property

Constant Value Description
rtfFlat 0 Flat.    Paints without visual effects.
rtfThreeD 1 (Default).    3D.    Paints with three-dimensional effects.

Find Method

Constant Value Description
rtfWholeWord 2 Determines if a match is based on a whole word or a fragment of a

word.
rtfMatchCase 4 Determines if a match is based on the case of the specified string

as well as the text of the string.
rtfNoHighlight 8 Determines if a match appears highlighted in the RichTextBox

control.

LoadFile, SaveFile Methods

Constant Value Description
rtfRTF 0 (Default) RTF.    The file loaded must be a valid .RTF file (LoadFile

method) or the contents in the control are saved to an .RTF file
(SaveFile method).

rtfText 1 Text.    The RichTextBox control loads any text file (LoadFile
method) or the contents in the control are saved to a text file
(SaveFile method).

MousePointer Property

Constant Value Description
rtfDefault 0 (Default) Shape determined by the object.
rtfArrow 1 Arrow.
rtfCross 2 Cross (cross-hair pointer).
rtfIbeam 3 I Beam.
rtfIcon 4 Icon (small square within a square).
rtfSize 5 Size (four-pointed arrow pointing north, south, east, and west).
rtfSizeNESW 6 Size NE SW (double arrow pointing northeast and southwest).
rtfSizeNS 7 Size N S (double arrow pointing north and south).
rtfSizeNWSE 8 Size NW, SE.
rtfSizeEW 9 Size E W (double arrow pointing east and west).
rtfUpArrow 10 Up Arrow.
rtfHourglass 11 Hourglass (wait).
rtfNoDrop 12 No Drop.
rtfArrowHourglass 13 Arrow and hourglass. (Only available in 32-bit Visual Basic 4.0.)
rtfArrowQuestion 14 Arrow and question mark. (Only available in 32-bit Visual Basic

4.0.)
rtfSizeAll 15 Size all. (Only available in 32-bit Visual Basic 4.0.)
rtfCustom 99 Custom icon specified by the MouseIcon property.

SelAlignment Property

Constant Value Description
rtfLeft 0 (Default) Left.    The paragraph is aligned along the left margin.
rtfRight 1 Right.    The paragraph is aligned along the right margin.

rtfCenter 2 Center.    The paragraph is centered between the left and right
margins.

ScrollBars Property

Constant Value Description
rtfNone 0 (Default)    None.
rtfHorizontal 1 Horizontal scroll bar only.
rtfVertical 2 Vertical scroll bar only.
rtfBoth 3 Both horizontal and vertical scroll bars.

See Also
Appearance Property
Find Method
LoadFile Method
MousePointer Property
RichTextBox Control
SaveFile Method
SelAlignment Property
ScrollBars Property
Visual Basic Custom Control Constants
Windows 95 Controls Constants

Supported RTF Codes
See Also

The RichTextBox control recognizes the following RTF (Rich Text Format) codes.    All other RTF codes
are ignored by the control when loading text.

RTF Code Description RTF Code Description
- OptionalHyphen objcropl CropLeft
\n EndParagraph objcropr CropRight
\r EndParagraph objcropt CropTop
_ NonBreakingHyphen objdata ObjectData
| FormulaCharacter object Object
~ NonBreakingSpace objemb ObjectEmbedded
ansi CharSetAnsi objh Height
b Bold objicemb ObjectMacICEmbedder
bin BinaryData objlink ObjectLink
blue ColorBlue objname ObjectName
bullet ANSI Character 149 objpub ObjectMacPublisher
cb ColorBackground objscalex ScaleX
cell Cell objscaley ScaleY
cf ColorForeground objsetsize ObjectSetSize
colortbl ColorTable objsub ObjectMacSubscriber
cpg CodePage objw Width
deff DefaultFont par EndParagraph
deflang DefaultLanguage pard ParagraphDefault
deftab DefaultTabWidth pc CharSetPc
deleted Deleted pca CharSetPs2
dibitmap PictureWindowsDIB piccropb CropBottom
dn Down piccropl CropLeft
dy TimeDay piccropr CropRight
emdash ANSI Character 151 piccropt CropTop
endash ANSI Character 150 pich Height
f FontSelect pichgoal DesiredHeight
fbidi FontFamilyBidi picscalex ScaleX
fchars FollowingPunct picscaley ScaleY
fcharset CharSet pict Picture
fdecor FontFamilyDecorative picw Width
fi IndentFirst picwgoal DesiredWidth
field Field plain CharacterDefault
fldinst FieldInstruction pmmetafile PictureOS2Metafile
fldrslt FieldResult pn ParaNum
fmodern FontFamilyModern pnindent ParaNumIndent
fname RealFontName pnlvlblt ParaNumBullet
fnil FontFamilyDefault pntext ParaNumText
fontemb FontEmbedded pntxta ParaNumAfter
fontfile FontFile pntxtb ParaNumBefore
fonttbl FontTable protect Protect
footer NullDestination (Footer) qc AlignCenter
footerf NullDestination (Footer, first) ql AlignLeft

footerl NullDestination (Footer, left) qr AlignRight
footerr NullDestination (Footer, right) rdblquote ANSI Character 34
footnote NullDestination (footnote) red ColorRed
fprq Pitch result ObjectResult
froman FontFamilyRoman revauth RevAuthor
fs FontSize revised Revision
fscript FontFamilyScript ri IndentRight
fswiss FontFamilySwiss row Row
ftech FontFamilyTechnical rquote ANSI Character 39
ftncn NullDestination (Footnote

cont.)
rtf Rtf

ftnsep NullDestination (Footnote
separ)

rtlch RightToLeftChars

ftnsepc NullDestination (Footnote cont.
separ)

rtldoc RightToLeftDocument

green ColorGreen rtlmark DisplayRightToLeft
header NullDestination (Header) rtlpar RightToLeftParagraph
headerf NullDestination (Header, first) sec TimeSecond
headerl NullDestination (Header, left) sect EndSection
headerr NullDestination (Header, right) sectd SectionDefault
horzdoc HorizontalRender strike StrikeOut
hr TimeHour stylesheet StyleSheet
i Italic sub Subscript
info DocumentArea (Info fields) super Superscript
intbl InTable tb TabPosition
lang Language tc NullDestination (Table of

contents)
lchars LeadingPunct tx TabPosition
ldblquote ANSI Character 34 ul Underline
li IndentLeft uld UnderlineDotted
line SoftBreak uldash UnderlineDash
lquote ANSI Character 39 uldashd UnderlineDashDotted
ltrch LeftToRightChars uldashdd UnderlineDashDotDotted
ltrdoc LeftToRightDocument uldb UnderlineDouble
ltrmark DisplayLeftToRight ulhair UnderlineHairline
ltrpar LeftToRightParagraph ulnone StopUnderline
mac CharSetMacintosh ulth UnderlineThick
macpict PictureQuickDraw ulw UnderlineWord
margl MarginLeft ulwave UnderlineWave
marglsxn SectionMarginLeft up Up
margr MarginRight v HiddenText
margrsxn SectionMarginRight vertdoc VerticalRender
min TimeMinute wbitmap PictureWindowsBitmap
mo TimeMonth wbmbitspixel BitmapBitsPerPixel
nocwrap NoWordBreak wbmplanes BitmapNumPlanes
nooverflow NoOverflow wbmwidthbyte

s
BitmapWidthBytes

nosupersub NoSuperSub wmetafile PictureWindowsMetafile
nowwrap NoWordWrap xe NullDestination (index

entry)
objautlink ObjectAutoLink yr TimeYear
objclass ObjectClass zwj ZeroWidthJoiner
objcropb CropBottom zwnj ZeroWidthNonJoiner

See Also
FileName Property
LoadFile Method
RichTextBox Control
SaveFile Method
SelRTF Property
TextRTF Property

CellHeight, CellWidth Properties, Picture Clip Control
See Also

Returns the height and width, in pixels, of a Picture Clip control's GraphicCell property.

Syntax
object.CellHeight
object.CellWidth

The object placeholder represents an object expression that evaluates to a PictureClip control.

Remarks
The CellHeight and CellWidth properties are dependent upon the Cols and Rows properties of a
PictureClip control. For example, dividing a picture into four columns and four rows would result in a
GraphicCell that is twice the size of the same picture divided into eight columns and eight rows.

See Also
Cols, Rows Properties, Picture Clip Control
GraphicCell Propery, Picture Clip Control

    SSTab Control
See Also Properties Methods Events Constants

The SSTab control provides an easy way of presenting several dialogs or screens of information on a
single form using the same interface seen in many commercial Microsoft Windows applications.

Syntax
SSTab

Remarks
The SSTab control provides a group of tabs, each of which acts as a container for other controls.    Only
one tab is active in the control at a time, displaying the controls it contains to the user while hiding the
controls in the other tabs.    Using the properties of this control, you can:

Determine the number of tabs.
Organize the tabs into more than one row.
Set the text for each tab.
Display a graphic on each tab.
Determine the style of tabs used.
Set the size of each tab.

To use this control, you must first decide how you want to organize the controls you will place into
various tabs.    Set the Tabs and TabsPerRow properties to create the tabs and organize them into
rows.    Then select each tab at design time by clicking the tab.    For each tab, draw the controls you
want displayed when the user selects that tab.    Set the Caption, Picture, TabHeight, and
TabMaxWidth properties as needed to customize the top part of the tab.
At run time, users can navigate between tabs by either pressing CTRL+TAB or by using mnemonics
defined in the caption of each tab.
You can also customize the entire SSTab control using the Style, ShowFocusRect, TabOrientation,
and WordWrap properties.

Distribution Note      The SSTab control is found in the TABCTL32.OCX file (32-bit version) or in
TABCTL16.OCX (16-bit version).    To use the SSTab control in your application, you must add the
control's OCX file to the project.    When distributing your application, install the appropriate OCX file in
the user's Microsoft Windows SYSTEM directory.    For more information on how to add a custom control
to a project, see the Programmer's Guide.

See Also
TabStrip Control

SSTab Control Properties

BackColor Property
Caption Property
Container Property
DragIcon Property
DragMode Property
Enabled Property
Font Property
ForeColor Property
Height Property
HelpContextID Property
hWnd Property
Index Property
Left Property
MouseIcon Property
MousePointer Property
Name Property
Object Property
Parent Property
Picture Property
Rows Property
ShowFocusRect Property
Style Property
Tab Property
TabCaption Property
TabEnabled Property
TabHeight Property
TabIndex Property
TabMaxWidth Property
TabOrientation Property
TabPicture Property
Tabs Property (SSTab Control)
TabsPerRow Property
TabStop Property
TabVisible Property
Tag Property
Top Property
Visible Property
WhatsThisHelpID Property
Width Property
WordWrap Property

SSTab Control Methods

Drag Method
Move Method
SetFocus Method
ShowWhatsThis Method
ZOrder Method

SSTab Control Events

Click Event
DblClick Event
DragDrop Event
DragOver Event
GotFocus Event
KeyDown Event
KeyPress Event
KeyUp Event
LostFocus Event
MouseDown Event
MouseMove Event
MouseUp Event

Click Event (SSTab Control)
See Also Example

Occurs when the user selects a tab on an SSTab control.

Syntax
Sub object_Click ([index As Integer], previoustab As Integer)

The Click event syntax has these parts:

Part Description
I

object An object expression that evaluates to an SSTab control.
Index An integer that uniquely identifies a control if it is in a control array.
previoustab A numeric expression that identifies the tab that was previously active.

Remarks
Use the Click event to determine when a user clicks a tab to make it the active tab.    When a tab
receives a Click event, that tab becomes the active tab and the controls placed on it at design time
appear.
With the previoustab argument, you can check for changes made when the user clicks another tab.
Use the Tab property to determine the current tab.

See Also
SSTab Control

Click Event (SSTab Control) Example

This example saves preferences information from two tabs of an SSTab control as soon as the user
selects a different tab.

Private Sub sstbPrefs_Click(PreviousTab As Integer)
Dim ThisSetting As String
Select Case PreviousTab

Case 0
If optLoanLen(0) = True Then

ThisSetting = "Months"
Else

ThisSetting = "Years"
End If
SaveSetting("LoanSheet", "LoanLength", _

"Period", ThisSetting)
Case 1

Dim X As Integer
For X = 0 To 3

If OptPctsShown(X) = True Then
SaveSetting("LoanSheet", "InterestRate", _
 "Precision", OptPctsShown(X).Tag)
Exit For

End If
Next X

End Select
End Sub

Picture Property (SSTab Control)
See Also Example

Returns or sets a graphic to be displayed in the current tab of an SSTab control.

Syntax
object.Picture [= picture]

The Picture property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
picture A string expression that designates a bitmap or icon to display on the current tab, as

described in Settings.

Settings
The settings for picture are:

Setting Description
(None) An object expression that evaluates to an SSTab control.
(Bitmap, icon, metafile) A string expression that designates a bitmap or icon to display on the

current tab.

Remarks
At design time, you set the Picture property for a tab by clicking that tab and then setting the property in
the Properties window.    At run time, you can set the Picture property using the LoadPicture function or
the Picture property of another control or of a Form object.    You can make any tab the current tab by
setting the Tab property.
When setting the Picture property at design time, the graphic is saved and loaded with the Form object
containing the SSTab control.    If you create an executable file, the file contains the image.    When you
load a graphic at run time, the graphic isn't saved with the application.
Setting the Picture property affects the value of the TabPicture property for the current tab as well as
displays the picture in the active tab.

See Also
SSTab Control
TabPicture Property

Picture Property (SSTab Control) Example

This example loads a bitmap from a file and places that bitmap on the active tab. To try this example, put
the SSTab and CommandButton controls on the Form. Then run the example.

Private Sub Command1_Click()
SSTab1.Picture = LoadPicture("c:\windows\cars.bmp")

End Sub

Rows Property (SSTab Control)
See Also

Returns the total number of rows of tabs in an SSTab control.

Syntax
object.Rows

The object placeholder represents an object expression that evaluates to an SSTab control.

Remarks
You specify the number of rows in the SSTab control at design time by setting the Tabs and
TabsPerRow properties.

See Also
SSTab Control
Tabs Property (SSTab Control)
TabsPerRow Property

ShowFocusRect Property
See Also

Returns or sets a value that determines if the focus rectangle is visible on a tab on an SSTab control
when the tab gets the focus.

Syntax
object.ShowFocusRect [= boolean]

The ShowFocusRect property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
boolean A Boolean expression that specifies how the focus rectangle behaves, as described in

Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The control shows the focus rectangle on the tab that has the focus.
False The control does not show the focus rectangle on the tab that has the focus.

See Also
SSTab Control

Style Property (SSTab Control)
See Also

Returns or sets the style of the tabs on an SSTab control.

Syntax
object.Style [= value]

The Style property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
value A constant or integer that specifies the style of the tabs, as described in Settings.

Settings
The settings for value are:

Constant Value Description
ssStyleTabbedDialog 0 (Default)    The tabs that appear in the tabbed dialogs look like

those in Microsoft Office for Microsoft Windows 3.1 applications.   
If you select this style, the active tab's font is bold.

ssStylePropertyPage 1 The tabs that appear in the tabbed dialogs look like those in
Microsoft Windows 95.    When you select this setting, the
TabMaxWidth property is ignored and the width of each tab
adjusts to the length of the text in its caption.    The font used to
display text in the tab is not bold.

See Also
SSTab Control
TabMaxWidth Property

Tab Property (SSTab Control)
See Also Example

Returns or sets the current tab for an SSTab control.

Syntax
object.Tab [= tabnumber]

The Tab property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
tabnumber A numeric expression that indicates a specific tab.    The first tab is always 0.

Remarks
The current tab moves to the front and becomes the active tab.
Typically, the user of your application clicks a tab to make it the current tab.    However, you may need to
select the current tab in code.    For example, you may want the same tab to be the current tab each time
you display a certain dialog box in your application.    If you dismiss the dialog box by using the Hide
method of the Form, the last tab to be the active tab when the Form was hidden will be the active tab
the next time the dialog box appears.    You can set the Tab property of the SSTab control so the same
tab is active every time the dialog box appears.

See Also
SSTab Control

Tab Property Example

This example always makes the first tab in the SSTab control the active tab just before showing the form
which contains the control.    To try this example, create two Form objects.    Place a CommandButton
control on Form1 and an SSTab control on Form2.    Paste the code into the Click event of the
CommandButton on Form1, and then run the example.

Private Sub Command1_Click()
Form2.SSTab1.Tab = 1
Form2.Show

End Sub

TabCaption Property
See Also Example

Returns or sets the caption for each tab for an SSTab control.

Syntax
object.TabCaption(tab) [= text]

The TabCaption property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
tab A numeric expression that specifies the tab you want the caption to appear on.
text A string expression that evaluates to the text displayed as the caption for the specified

tab.

Remarks
At design time, you can set the TabCaption property by clicking a tab and then setting the Caption
property in the Properties window.    Or you can select (Custom) in the Properties window and set the
TabCaption property in the General tab of the Properties dialog box.
At run time, you can read or change the caption of any tab using the TabCaption property.    You can
also use the Caption property to change the TabCaption property for just the active tab.
You can use the TabCaption property to assign an access key to a tab.    In the TabCaption setting,
include an ampersand (&) immediately preceding the character you want to designate as an access key.
The character is underlined.    Press the ALT key plus the underlined character to make that tab the
active tab.    To include an ampersand in a caption without creating an access key, include two
ampersands (&&).    A single ampersand is displayed in the caption and no characters are underlined.

See Also
Caption Property
SSTab Control
Tab Property (SSTab Control)

TabCaption Property Example

This example adds or removes an extra word from the tabs of an SSTab control that lists the defensive
players of a sport on one tab and the offensive players on another tab.    By clicking the CheckBox
control on the Form, the user can toggle between longer captions or shorter ones.

Private Sub Check1_Click()
Dim X As Integer
For X = 0 To SSTab1.Tabs - 1

Select Case Check1.Value
Case 0 ' Toggle to short captions.

SSTab1.TabCaption(X) = Left(SSTab.TabCaption(X), 7)
Case 1 ' Toggle to long captions.

SSTab1.TabCaption(X) = SSTab1.TabCaption(X) & " Players"
End Select

Next X
End Sub

TabEnabled Property
See Also

Returns or sets a value that determines whether a tab in an SSTab control will respond to being clicked.

Syntax
object.TabEnabled(tab)[= boolean]

The TabEnabled property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
tab A numeric expression that specifies the tab.
boolean A Boolean expression that specifies if the tab will respond to being clicked, as described

in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) The tab responds when clicked.
False The tab doesn't respond when clicked.

Remarks
When a tab is disabled, the text on the tab is grayed out and the user cannot select that tab.
The TabEnabled property enables or disables a single tab.    Use the Enabled property to enable or
disable the entire SSTab control.

See Also
SSTab Control
Enabled Property

TabHeight Property
See Also

Returns or sets the height of all tabs on an SSTab control.

Syntax
object.TabHeight [= height]

The TabHeight property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
height A numeric expression that specifies the height of the tab, based on the scale mode of its

container.

See Also
SSTab Control

TabMaxWidth Property
See Also

Returns or sets the maximum width of each tab on an SSTab control.

Syntax
object.TabMaxWidth [= width]

The TabMaxWidth property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
width A numeric expression that determines the maximum width of each tab in the scale mode

of its container.

Remarks
When the Style property setting is ssStyleTabbedDialog and the TabMaxWidth property is set to zero
(0), the SSTab control automatically sizes the tabs, based on the TabsPerRow property, to fit evenly
across the control.
If you select the ssStylePropertyPage setting in the Style property, the TabMaxWidth property is
ignored.    The width of each tab adjusts automatically to the length of the text in the TabCaption
property.

See Also
SSTab Control

TabOrientation Property
See Also

Returns or sets the location of the tabs on the SSTab control.

Syntax
object.TabOrientation [= number]

The TabOrientation property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
number A numeric expression that specifies the location of the tabs, as described in Settings.

Settings
The settings for number are:

Constant Value Description
ssTabOrientationTop 0 The tabs appear at the top of the control.
ssTabOrientationBottom 1 The tabs appear at the bottom of the control.
ssTabOrientationLeft 2 The tabs appear on the left side of the control.
ssTabOrientationRight 3 The tabs appear on the right side of the control.

Remarks
If you are using TrueType fonts, the text is rotated when the TabOrientation property is set to
ssTabOrientationLeft or ssTabOrientationRight.

See Also
SSTab Control

TabPicture Property
See Also

Returns or sets the bitmap or icon to display on the specified tab of an SSTab control.

Syntax
object.TabPicture(tab) [= picture]

The TabPicture property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
tab A numeric expression that specifies the tab on which to display the picture.
picture A string expression that specifies a graphic, as described in Settings.

Settings
The settings for picture are:

Setting Description
(None) (Default)    No picture.
(Bitmap, icon, metafile) Specifies a graphic.    At run time, you can set this property using the

LoadPicture function or the Picture property of another control or Form
object.

Remarks
At design time, you can set the TabPicture property by clicking a tab then setting the Picture property in
the Properties window.    Or you can select (Custom) in the Properties window and set the Picture
property in the Pictures tab of the Properties dialog box.
At run time, you can refer to or change the graphic on any tab using the TabPicture property or use the
Picture property to work with the active tab.

See Also
Picture Property (SSTab Control)
SSTab Control
Tab Property (SSTab Control)

Tabs Property (SSTab Control)
See Also

Returns or sets the total number of tabs on an SSTab control.

Syntax
object.Tabs [= tabnumber]

The Tabs property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
tabnumber A numeric expression that specifies the number of tabs you want on the control.    The

tabs are automatically given the captions Tab x where x is 0, 1, 2, 3, and so on.

Remarks
You can change the Tabs property at run time to add new tabs or remove tabs.
At design time, use the Tabs property in conjunction with the TabsPerRow property to determine the
number of rows of tabs displayed by the control.    At run time, use the Rows property.

See Also
SSTab Control
TabsPerRow Property

TabsPerRow Property
See Also

Returns or sets the number of tabs for each row of an SSTab control.

Syntax
object.TabsPerRow [= tabnumber]

Part Description
object An object expression that evaluates to an SSTab control.
tabnumber A numeric expression that specifies the number of tabs you want on each row.

Remarks
Use this property at design time in conjunction with the Tabs property to determine the number of rows
displayed by the control.    At run time, use the Rows property.

See Also
SSTab Control
Tabs Property (SSTab Control)

TabVisible Property
See Also

Returns or sets a value indicating if a tab in an SSTab control is visible or hidden.    Not available at
design time.

Syntax
object.TabVisible(tab) [= boolean]

The TabVisible property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
tab A numeric expression that specifies the tab you want to be visible or hidden.
boolean A Boolean expression that specifies if the tab is visible or hidden, as described in

Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Tab is visible.
False Tab is hidden.    Other tabs adjust their position so there are no gaps between tabs.

Remarks
The TabVisible property hides or displays a single tab.    Use the Visible property to hide or display the
entire SSTab control.

See Also
SSTab Control
Visible Property

SSTab Control Constants
See Also

StyleConstants

Constant Value Description
ssStyleTabbedDialog 0 The tabs look like those in the tabbed dialogs in Microsoft

Office for Microsoft Windows 3.1 applications.
ssStylePropertyPage 1 The tabs look like the tabs in Microsoft Windows 95.

Tab OrientationConstants

Constant Value Description
ssTabOrientationTop 0 The tabs appear at the top of the control.
ssTabOrientationBottom 1 The tabs appear at the bottom of the control.
ssTabOrientationLeft 2 The tabs appear on the left side of the control.
ssTabOrientationRight 3 The tabs appear on the right side of the control.

See Also
SSTab Control
Style Property (SSTab Control)
TabOrientation Property

WordWrap Property (SSTab Control)
See Also

Returns or sets a value indicating whether the text on each tab is wrapped to the next line if it is too long
to fit horizontally on the tab on an SSTab control.

Syntax
object.WordWrap [= boolean]

The WordWrap property syntax has these parts:

Part Description
object An object expression that evaluates to an SSTab control.
boolean A Boolean expression that specifies whether the text on each tab will wrap to the next line

if it does not fit horizontally, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True The text wraps if it is too long to fit within the width of each tab.
False (Default) The text doesn't wrap and will be truncated if it is too long.

Remarks
Use the WordWrap property to determine how an SSTab control displays the text on each tab.    For
example, a tabbed dialog that changes dynamically might have text that also changes.    To assure that
text will not be truncated if it is too long, set the WordWrap property to True, the TabMaxWidth property
to 0, and the TabHeight property to a height that allows you to view the longest piece of text.

See Also
Caption Property
SSTab Control
TabHeight Property
TabMaxWidth Property
Tabs (SSTab Control) Property

access key
A key pressed while holding down the ALT key that allows the user to open a menu, carry out a
command, select an object, or move to an object.    For example, ALT+F opens the File menu.

ANSI Character Set
American National Standards Institute (I) 8-bit character set used by Microsoft Windows that allows you
to represent up to 256 characters (5) using your keyboard.    The first 128 characters (7) correspond to
the letters and symbols on a standard U.S. keyboard.    The second 128 characters (5) represent special
characters, such as letters in international alphabets, accents, currency symbols, and fractions.

application
A collection of code and visual elements that work together as a single program.    Developers can build
and run applications within the development environment, while users usually run applications as
executable files outside the development environment.

array
A set of sequentially indexed elements having the same intrinsic data type.    Each element of an array
has a unique identifying index number.    Changes made to one element of an array do not affect the
other elements.

bitmap
An image represented by pixels and stored as a collection of bits in which each bit corresponds to one
pixel.    On color systems, more than one bit corresponds to each pixel.    A bitmap usually has a .BMP
filename extension.

Boolean expression
An expression that evaluates to either True or False.

bound control
A data-aware control that can provide access to a specific field in a database through a Data control.    A
data-aware control can be bound to a Data control through its DataSource and DataField properties.   
When a Data control moves from one record to the next, all bound controls connected to the Data
control change to display data from fields in the current record.    When users change data in a bound
control and then move to a different record, the changes are automatically saved in the database.

Cancel button

A button you choose to cancel changes.    This is also a generic term for any command button on a form
that has the Cancel property set to True, allowing the user to press ESC or to click the button to cancel
changes on that form.

cascading event
A sequence of events caused by an event procedure directly or indirectly calling itself; also referred to as
an event cascade or recursion.    Cascading event procedures often result in run-time errors, such as
stack overflow.

Clipboard
A temporary storage location used to transfer text, graphics, and code.

collection
An object that contains a set of related objects.    An object's position in the collection can change
whenever a change occurs in the collection; therefore, the position of any specific object in the collection
may vary.

collection syntax
For a Things collection that contains Thing objects, the collection itself would be referred to as

object.Things
while an individual Thing object would be referred to as

object.Things.Item(index)
or

object.Things(index)
where index is an integer denoting a specific element in the collection.
For a complete discussion of collection syntax see Using Syntax for Collections.

container
An object that contains child forms or controls.

constant
A named item that retains a constant value throughout the execution of a program, as opposed to a
variable, whose value can change during execution.    Each host application can define its own set of
constants.    Additional constants may be defined by the user with the Const statement.    Constants can
be used anywhere in your code in place of actual values.    A constant may be a string or numeric literal,
another constant, or any combination that includes arithmetic or logical operators except Is and
exponentiation.    For example:

Const A = "MyString"

control array
A group of controls that share a common name, type, and event procedures.    Each control in the array
has a unique index number that can be used to determine which control recognizes an event.

Control Panel
A set of programs that control your system configuration.    You use Control Panel utilities to adjust
hardware and software options, such as desktop colors, printer selections, date and number formats,
fonts, and locale settings, such as language and system of measurement.

current record
The record in a Recordset object that you can use to modify or examine data.    Use the Move methods
to reposition the current record in a recordset.    Use the Find methods (t) or the Seek method (t) to
change the current record position according to specific criteria.
Only one record in a Recordset can be the current record; however, a Recordset may have no current
record.    For example, after a dynaset-type Recordset record has been deleted, or when a Recordset
has no records, the current record is undefined.    In this case, operations that refer to the current record
result in a trappable error.

custom control
A file with an .OCX filename extension or an insertable object that, when added to a project using the
Custom Controls dialog box, extends the Toolbox.    The ProgressBar and StatusBar controls are
examples of custom controls.

data type
The characteristic of a variable that determines what kind of data it can hold.    Data types include Byte,
Boolean, Integer, Long, Currency, Single, Double, Date, String, Object, Variant    (default) and user-
defined types, as well as specific types of objects.

design time
The time during which you build an application in the development environment by adding controls,
setting control or form properties, and so on.    In contrast, during run time, you interact with the
application as a user would.

device context
A link between a Windows-based application, a device driver, and an output device such as a display,
printer, or plotter.

executable file
A Windows-based application that can run outside the development environment.    An executable file
has an .EXE filename extension.

expression
A combination of keywords, operators, variables, and constants that yield a string, number, or object.   
An expression can perform a calculation, manipulate characters, or test data.

flag
A variable you use to keep track of a condition in your application.    You can set a flag using a constant
or combination of constants.

focus
In the Microsoft Windows environment, only one window, form, or control can receive mouse clicks or
keyboard input at any one time.    The object that "has the focus" is normally indicated by a highlighted
caption or title bar.    The focus can be set by the user or by the application.

form
A window or dialog box.    Forms are containers for controls.    A multiple-document interface (MDI) form
can also act as a container for child forms and some controls.

handle
A unique integer value defined by the operating environment and used by a program to identify and
access an object, such as a form or control.

icon
A graphical representation of an object or concept; commonly used to represent minimized applications
in Microsoft Windows.    Essentially, an icon is a bitmap with a maximum size of 32 x 32 pixels.    Icons
have an .ICO filename extension.

internal area
The area in a multiple-document interface (MDI) form used to display MDI child forms.    The internal
area excludes the MDI form's title bar, border, menu bar, and aligned controls on the MDI form.    Also
called the client area.

legend

 Applies only to object.
 Applies only to collection.
 Applies to both object and collection.

named argument
An argument that has a name that is predefined in the object library.    Instead of providing values for
arguments in the order expected by the syntax, you can use named arguments to assign values in any
order.    For example, suppose a method accepts three arguments:

DoSomeThing namedarg1, namedarg2, namedarg3

By assigning values to named arguments, you can use the following statement:

DoSomeThing namedarg3 := 4, namedarg2 := 5, namedarg1 := 20

Note that the arguments need not be in their normal positional order.

numeric expression
Any expression that can be evaluated as a number.    Elements of the expression can include any
combination of keywords, variables, constants, and operators that result in a number.

Object Browser
A dialog box that lets you examine the contents of an object library to get information about the objects
provided.

object expression
An expression that specifies a particular object.    This expression can include any of the object's
containers.    For example, if your application has an Application object that contains a Document
object that contains a Text object, the following are valid object expressions:
Application.Document.Text
Application.Text
Document.Text
Text

object library
A file with the .OLB extension that provides information to OLE Automation controllers (like Visual Basic)
about available OLE Automation objects.    You can use the Object Browser to examine the contents of
an object library to get information about the objects provided.

object variable
A variable that contains a reference to an object.

parent form
A form containing controls.

persistent graphic
The output from a graphics method that is stored in memory.    Persistent graphics are automatically
retained when certain kinds of screen events occur, for example, when a form is redisplayed after being
hidden behind another window.    Graphics are persistent if they are drawn when the AutoRedraw
property is set to True.

Properties window
A window used to display or change properties of a selected form or control at design time.    Some
custom controls have customized Properties windows.

registry
In Windows version 3.1, OLE registration information and file associations are stored in the registration
database, and program settings are stored in Windows system initialization (.INI) files. In Windows 95,
the Windows registry serves as a central configuration database for user, application, and computer-
specific information, including the information previously contained in both the Windows 3.1 registration
database and .INI files.

run time
The time when code is running.    During run time, you interact with the code as a user would.

source
The application, form, or control that sends information and commands when two or more programs that
support dynamic data exchange (DDE) are running simultaneously.

string expression
Any expression that evaluates to a sequence of contiguous characters.    Elements of the expression can
include a function that returns a string, a string literal, a string constant, a string variable, a string
Variant, or a function that returns a string Variant (VarType 8).

title bar
An area at the top of a window that displays the window's caption or name.

ToolTip
The word or short phrase that describes the function of a toolbar button or other tool. The ToolTip
appears when you pause the cursor over an object.

Windows API
The Windows API (Application Programming Interface) consists of the functions, messages, data
structures, data types, and statements you can use in creating applications that run under Microsoft
Windows.    The parts of the API you use most are code elements included for calling API functions from
Windows.    These include procedure declarations (for the Windows functions), user-defined type
definitions (for data structures passed to those functions), and constant declarations (for values passed
to and returned from those functions).

z-order
The relative order that determines how controls overlap each other on a form.

Windows 95 Control Constants
See Also

The following constants are recognized by the custom controls.    As a result, they can be used
anywhere in your code in place of the actual values.

BorderStyle Constants
MousePointer Constants

Use the Object Browser to view the intrinsic constants you can use with methods and properties.    From
the View menu, choose Object Browser, select the appropriate control library, and then the Constants
object.    You can scroll through the constants that appear under Methods/Properties.

Note      Prefixes for the constants change with the specific control or group of controls.    However, the
description remains the same unless indicated.

See Also
Visual Basic Custom Control Constants

MousePointer Constants
See Also

Constant Value Description
ccDefault 0 (Default) Shape determined by the object.
ccArrow 1 Arrow.
ccCross 2 Cross (cross-hair pointer).
ccIbeam 3 I Beam.
ccIcon 4 Icon (small square within a square).
ccSize 5 Size (four-pointed arrow pointing north, south, east, and west).
ccSizeNESW 6 Size NE SW (double arrow pointing northeast and southwest).
ccSizeNS 7 Size N S (double arrow pointing north and south).
ccSizeNWSE 8 Size NW, SE.
ccSizeEW 9 Size E W (double arrow pointing east and west).
ccUpArrow 10 Up Arrow.
ccHourglass 11 Hourglass (wait).
ccNoDrop 12 No Drop.
ccArrowHourglass 13 Arrow and hourglass. (Only available in 32-bit Visual Basic.)
cc ArrowQuestion 14 Arrow and question mark. (Only available in 32-bit Visual Basic.)
ccSizeAll 15 Size all. (Only available in 32-bit Visual Basic.)
ccCustom 99 Custom icon specified by the MouseIcon property.

Note      The cc prefix refers to the custom controls. Prefixes for the constants change with the specific
control or group of controls.    However, the description remains the same unless indicated.

See Also
BorderStyle Constants
MouseIcon Property
Visual Basic Custom Control Constants

BorderStyle Constants
See Also

Constant Value Description
ccNone 0 (Default)    No border or border-related elements.
ccFixedSingle 1 (Default for ListView control)    Fixed single.    Can include Control-

menu box, title bar, Maximize button, and Minimize button.   
Resizable only using Maximize and Minimize buttons.

Note      The cc prefix refers to the custom controls. The prefixes for the constants change with the
specific control or group of controls.    However, the description remains the same unless indicated.

See Also
MousePointer Constants
Visual Basic Custom Control Constants

WhatsThisHelpID Property (Custom Controls)
See Also

Returns or sets an associated context number for an object.    Used to provide context-sensitive Help for
your application using the What's This popup in Windows 95 Help.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.WhatsThisHelpID [= number]

The WhatsThisHelpID property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph, Key
state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider,
Spin button, StatusBar, SSTab, TabStrip, Toolbar, or TreeView control.

number A numeric expression specifying a Help context number, as described in Settings.

Settings
The settings for number are:

Setting Description
0 (Default) No context number specified.
>0 An integer specifying the valid context number for the What's This topic associated with

the object.

Remarks
Visual Basic applications can support either of two different models for context-sensitive Help.

Windows 3.x
Windows 95

The Windows 3.x model uses the F1 key to start Windows Help and load the topic identified by the
HelpContextID property.    The Windows 95 model typically uses the What's This button in the upper-
right corner of the window to start Windows Help and load a topic identified by the WhatsThisHelpID
property.    Use the WhatsThisHelp property to select between the two context-sensitive models.

See Also
HelpContextID Property
ShowWhatsThis Method
WhatsThisButton Property
WhatsThisHelp Property

ShowWhatsThis Method (Custom Controls)
See Also Example

Displays a selected topic in a Help file using the What's This popup provided by Windows 95 Help.

Important      This method requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.ShowWhatsThis

The object placeholder represents an object expression that evaluates to a 3D check box, 3D command
button, 3D frame, 3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph,
Key state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Spin
button, StatusBar, SSTab, TabStrip, Toolbar, or TreeView control.

Remarks
The ShowWhatsThis method is very useful for providing context-sensitive Help from a context menu in
your application.    The method displays the topic identified by the WhatsThisHelpID property of the
object specified in the syntax.

See Also
WhatsThisButton Property
WhatsThisHelp Property
WhatsThisHelpID Property

ShowWhatsThis Method (Custom Controls) Example

This example displays the What's This Help topic for a CommandButton control by selecting a menu
command from a context menu created for the button.

Private ThisControl As Control

Private Sub Command1_MouseUp(Button As Integer, Shift As Integer, _
X As Single, Y As Single)

If Button = vbRightButton Then
Set ThisControl = Command1
PopupMenu mnuBtnContextMenu

End If
Set ThisControl = Nothing

End Sub

Private Sub mnuBtnWhatsThis_Click()
ThisControl.ShowWhatsThis

End Sub

WhatsThisButton Property (Custom Controls)
See Also

Returns or sets a value that determines whether the What's This button appears in the title bar of a
Form object.    Read only at run time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.WhatsThisButton

The object placeholder represents an object expression that evaluates to a 3D check box, 3D command
button, 3D frame, 3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph,
Key state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Spin
button, StatusBar, SSTab, TabStrip, Toolbar, or TreeView control.

Settings
The settings for the WhatsThisButton property are:

Setting Description
True Turns display of the What's This Help button on.
False (Default)    Turns display of the What's This Help button off.

Remarks
The WhatsThisHelp property must be True for the WhatsThisButton property to be True.    In addition,
the BorderStyle property must be set to ccFixedSingle.

See Also
BorderStyle Property
ShowWhatsThis Method
WhatsThisHelp Property
WhatsThisHelpID Property

WhatsThisHelp Property (Custom Controls)
See Also

Returns or sets a value that determines whether context-sensitive Help uses the What's This pop-up
provided by Windows 95 Help or the main Help window.    Read-only at run time.

Important      This property requires the Microsoft Windows 95 or Microsoft Windows NT 3.51 operating
system.

Syntax
object.WhatsThisHelp

The object placeholder represents an object expression that evaluates to a 3D check box, 3D command
button, 3D frame, 3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph,
Key state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Spin
button, StatusBar, SSTab, TabStrip, Toolbar, or TreeView control.

Settings
The settings for the WhatsThisHelpID property are:

Setting Description
True The application uses one of the What's This access techniques to start Windows Help and

load a topic identified by the WhatsThisHelpID property.
False (Default)    The application uses the F1 key to start Windows Help and load the topic

identified by the HelpContextID property.

Remarks
There are three access techniques for providing What's This Help in an application.    The
WhatsThisHelp property must be set to True for any of these techniques to work.

Providing a What's This button in the title bar of the form using the WhatsThisButton property.   
The mouse pointer changes into the What's This state (arrow with question mark).    The topic displayed is
identified by the WhatsThisHelpID property of the control clicked by the user.

Invoking the WhatsThisMode method of a form.    This produces the same behavior as clicking
the What's This button without using a button.    For example, you can invoke this method from a
command on a    menu in the menu bar of your application.

Invoking the ShowWhatsThis method for a particular control.    The topic displayed is identified
by the WhatsThisHelpID property of the control.

See Also
ShowWhatsThis Method
WhatsThisButton Property
WhatsThisHelpID Property

Add

The Add keyword is used in these contexts:
Add Method (Buttons Collection)
Add Method (ColumnHeaders Collection)
Add Method (ListImages Collection)
Add Method (ListItems Collection)
Add Method (Nodes Collection)
Add Method (Panels Collection)
Add Method (Tabs Collection)

Index

The Index keyword is used in these contexts:
Index Property (Control Array)
Index Property (Custom Controls)

Sorted

The Sorted keyword is used in these contexts:
Sorted Property (ListView Control)
Sorted Property (TreeView Control)

Style

The Style keyword is used in these contexts:
Style Property (Button Object)
Style Property (Panel Object)
Style Property (StatusBar Control)
Style Property (TabStrip Control)
Style Property (TreeView Control)

Width

The Width keyword is used in these contexts:
Width Property (Panel Object)
Height , Width Properties (Custom Controls)

Alignment

The Alignment keyword is used in these contexts:
Alignment Property (ColumnHeader Object)
Alignment Property (Panel Object)

AutoSize

The AutoSize keyword is used in these contexts:
Autosize Property (Custom Controls)
Autosize Property (Panel Object)

Caption

The Caption keyword is used in these contexts:
Caption Property (Custom Controls)
Caption Property (Tab Object)

Change

The Change keyword is used in these contexts:
Change Event (Custom Controls)
Change Event (Toolbar Control)

ImageList

The ImageList keyword is used in these contexts:
ImageList Control
ImageList Property (Custom Controls)

Parent

The Parent keyword is used in these contexts:
Parent Property (Custom Controls)
Parent Property (Node Object)

Change Event (Custom Controls)
See Also

Indicates that the contents of a control have changed.    How and when this event occurs varies with the
control.

Syntax
Private Sub object_Change([index As Integer])

The Change event syntax has these parts:

Part Description
object An object expression that evaluates to a Masked edit, Gauge, RichTextBox, Slider, or

Toolbar control.
index An integer that uniquely identifies a control if it's in a control array.

Remarks

Masked edit and RichTextBox
changes the contents of the text box.    Occurs when a DDE link updates data, when a user changes the

text, or when you change the Text property setting through code.
Slider

generated when the Value property changes, either through code, or when the user moves the control's
slider.

Toolbar
generated after the end user customizes a Toolbar control's toolbar using the Customize Toolbar dialog

box.
The Change event procedure can synchronize or coordinate data display among controls.    For
example, you can use a Slider control's Change event procedure to update the control's Value property
setting in a TextBox control.    Or you could use a Change event procedure to display data and formulas
in a work area and results in another area.

Note      A Change event procedure can sometimes cause a cascading event.    This occurs when the
control's Change event alters the control's contents by setting a property in code that determines the
control's value, such as the Text property setting for a TextBox control.    To prevent a cascading event:

If possible, avoid writing a Change event procedure for a control that alters that control's
contents.    If you do write such a procedure, be sure to set a flag that prevents further changes while the
current change is in progress.

Avoid creating two or more controls whose Change event procedures affect each other, for
example, two TextBox controls that update each other during their Change events.

See Also
Text Property (Masked Edit Control)
Text Property
Value Property

Click Event (Custom Controls)
See Also

Occurs when the user presses and then releases a mouse button over an object.    It can also occur
when the value of a control is changed.

Syntax
Private Sub object_Click([index As Integer])

The Click event syntax has these parts:

Part Description
object An object expression that evaluates to a 3D command button, 3D frame, Gauge, Graph,

Key state, ListView, Outline, ProgressBar, RichTextBox, Slider, StatusBar, TabStrip,
Toolbar, or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.

Remarks
For a control, this event occurs when the user:

Clicks a control with the left or right mouse button.    With a 3D check box, 3D command button, or
3D option button control, the Click event occurs only when the user clicks the left mouse button.

Presses the SPACEBAR when a 3D command button, 3D option button, or 3D check box control
has the focus.

Presses ENTER when a form has a 3D command button control with its Default property set to
True.

Presses ESC when a form has a Cancel button
for example, a 3D command button control with its Cancel property set to True.

Presses an access key for a control.    For example, if the caption of a 3D command button
control is "&Go", pressing ALT+G triggers the event.

You can also trigger the Click event in code by:

Setting a 3D command button control's Value property to True.
Setting a 3D option button control's Value property to True.
Changing a 3D check box control's Value property setting.

Typically, you attach a Click event procedure to a 3D command button control to carry out commands
and command-like actions.    For the other applicable controls, use this event to trigger actions in
response to a change in the control.
You can use a control's Value property to test the state of the control from code.

Note      To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

See Also
Cancel Property (3D Command Button Control)
Default Property (3D Command Button Control)
MouseDown, MouseUp Events
Value Property (3D Controls)
Value Property, Gauge Control
Value Property, Key State Control

DragDrop Event (Custom Controls)
See Also

Occurs when a drag-and-drop operation is completed as a result of dragging a control over a form or
control and releasing the mouse button or using the Drag method with its action argument set to 2
(Drop).

Syntax
Private Sub object_DragDrop([index As Integer,]source As Control, x As Single, y As Single)

The DragDrop event syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph,
ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Spin
button, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.
source The control being dragged.    You can include properties and methods with this argument

for example, Source.Visible = 0.

x, y A number that specifies the current horizontal (x) and vertical (y) position of the mouse pointer
within the target form or control.    These coordinates are always expressed in terms of the target's
coordinate system as set by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties.

Remarks
Use a DragDrop event procedure to control what happens after a drag operation is completed.    For
example, you can move the source control to a new location or copy a file from one location to another.
When multiple controls can potentially be used in a source argument:

Use the TypeOf keyword with the If statement to determine the type of control used with source.
Use the control's Tag property to identify a control, and then use a DragDrop event procedure.

Note      Use the DragMode property and Drag method to specify the way dragging is initiated.    Once
dragging has been initiated, you can handle events that precede a DragDrop event with a DragOver
event procedure.

See Also
Drag Method
DragMode Property
DragOver Event
Tag Property

DragOver Event (Custom Controls)
See Also

Occurs when a drag-and-drop operation is in progress.    You can use this event to monitor the mouse
pointer as it enters, leaves, or rests directly over a valid target.    The mouse pointer position determines
the target object that receives this event.

Syntax
Private Sub object_DragOver([index As Integer,]source As Control, x As Single, y As Single, state
As Integer)

The DragOver event syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph,
ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Spin
button, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.
source The control being dragged.    You can refer to properties and methods with this argument

for example, Source.Visible = False.

x, y A number that specifies the current horizontal (x) and vertical (y) position of the mouse pointer
within the target form or control.    These coordinates are always expressed in terms of the target's
coordinate system as set by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties.
state An integer that corresponds to the transition state of the control being dragged in relation to a
target form or control, as described in Settings.

Settings
The settings for state are:

Setting Description
0 Enter.    The source control is being dragged within the range of a target.
1 Leave.    The source control is being dragged out of the range of a target.
2 Over.    The source control has moved from one position in the target to another.

Remarks
Use a DragOver event procedure to determine what happens after dragging is initiated and before a
control drops onto a target.    For example, you can verify a valid target range by highlighting the target
(set the BackColor or ForeColor property from code) or by displaying a special drag pointer (set the
DragIcon or MousePointer property from code).
Use the state argument to determine actions at key transition points.    For example, you might highlight
a possible target when state is set to 0 (Enter) and restore the object's previous appearance when state
is set to 1 (Leave).
When state is set to 0 (Enter) and an object receives a DragOver event :

If the source control is dropped on the object, that object receives a DragDrop event.
If the source control isn't dropped on the object, that object receives another DragOver event

when state is set to 1 (Leave).

Note      Use the DragMode property and Drag method to specify the way dragging is initiated.    For
suggested techniques with the source argument, see Remarks for the DragDrop event topic.

See Also
BackColor , ForeColor Properties
Drag Method
DragDrop Event
DragIcon Property
DragMode Property
MousePointer Property

GotFocus Event (Custom Controls)
See Also

Occurs when an object receives the focus, either by user action, such as tabbing to or clicking the
object, or by changing the focus in code using the SetFocus method.

Syntax
Private Sub object_GotFocus([index As Integer])

The GotFocus event syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D option

button, Animated button, Gauge, Graph, Key state, ListView, Masked edit, Outline,
RichTextBox, Slider, SSTab, TabStrip, or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.

Remarks
Typically, you use a GotFocus event procedure to specify the actions that occur when a control first
receives the focus.    For example, by attaching a GotFocus event procedure to each control on a form,
you can guide the user by displaying brief instructions or status bar messages.    You can also provide
visual cues by enabling, disabling, or showing other controls that depend on the control that has the
focus.

Note      To customize the keyboard interface in Visual Basic for moving the focus, set the tab order or
specify access keys for controls on a form.

See Also
SetFocus Method

KeyDown, KeyUp Events (Custom Controls)
See Also

Occur when the user presses (KeyDown) or releases (KeyUp) a key while an object has the focus.

Note      To interpret ANSI characters, use the KeyPress event.

Syntax
Private Sub object_KeyDown([index As Integer,]keycode As Integer, shift As Integer)
Private Sub object_KeyUp([index As Integer,]keycode As Integer, shift As Integer)

The KeyDown and KeyUp event syntaxes have these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D option

button, Animated button, Gauge, Graph, Key state, ListView, Masked edit, Outline,
RichTextBox, Slider, SSTab, TabStrip, or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.
keycode A key code, such as vbKeyF1 (the F1 key) or vbKeyHome (the HOME key).    To specify

key codes, use the constants in the object library in the Object Browser.
shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at the time of

the event.    The shift argument is a bit field with the least-significant bits corresponding to
the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits
correspond to the values 1, 2, and 4, respectively.    Some, all, or none of the bits can be
set, indicating that some, all, or none of the keys are pressed.    For example, if both CTRL
and ALT are pressed, the value of shift is 6.

Remarks
For both events, the object with the focus receives all keystrokes. Although the KeyDown and KeyUp
events can apply to most keys, they're most often used for:

Extended character keys such as function keys.
 Navigation keys.

Combinations of keys with standard keyboard modifiers.
Distinguishing between the numeric keypad and regular number keys.

Use KeyDown and KeyUp event procedures if you need to respond to both the pressing and releasing of
a key.
KeyDown and KeyUp aren't invoked for:

The ENTER key if the form has a 3D command button control with the Default property set to
True.

The ESC key if the form has a 3D command button control with the Cancel property set to True.
The TAB key.

KeyDown and KeyUp interpret the uppercase and lowercase of each character by means of two
arguments: keycode, which indicates the physical key (thus returning A and a as the same key) and
shift, which indicates the state of shift+key and therefore returns either A or a.
If you need to test for the shift argument, you can declare constants that define the bits within the
argument by using constants listed in the object library in the Object Browser.    The shift constants have
the following values:

Constant Value
vbShiftMask 1
vbCtrlMask 2
vbAltMask 4

The constants act as bit masks that you can use to test for any combination of keys.    Place the
constants at the procedure level or in the Declarations section of a module and use this syntax:
Const constantname = expression

You test for a condition by first assigning each result to a temporary integer variable and then comparing
shift to a bit mask.    Use the And operator with the shift argument to test whether the condition is greater
than 0, indicating that the modifier was pressed, for example:

ShiftDown = (Shift And vbShiftMask) > 0

In a procedure, you can test for any combination of conditions, for example:

If ShiftDown And CtrlDown Then

Note      If the KeyPreview property is set to True, a form receives these events before controls on the
form receive the events.    Use the KeyPreview property to create global keyboard-handling routines.

See Also
Cancel Property (3D Command Button)
Default Property (3D Command Button)

KeyPress Event (Custom Controls)
See Also

Occurs when the user presses and releases an ANSI key.

Syntax
Private Sub object_KeyPress([index As Integer,]keyascii As Integer)

The KeyPress event syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D option

button, Animated button, Gauge, Graph, Key state, ListView, Masked edit, Outline,
RichTextBox, Slider, SSTab, TabStrip or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.
keyascii An integer that returns a standard numeric ANSI keycode.    The keyascii argument is

passed by reference; changing it sends a different character to the object.    Changing
keyascii to 0 cancels the keystroke so the object receives no character.

Remarks
The object with the focus receives the event.    A form can receive the event only if it has no visible and
enabled controls or if the KeyPreview property is set to True.    A KeyPress event can involve any
printable keyboard character, the CTRL key combined with a character from the standard alphabet or
one of a few special characters, and the ENTER or BACKSPACE key.    A KeyPress event procedure is
useful for intercepting keystrokes entered in a RichTextBox control.    It enables you to immediately test
keystrokes for validity or to format characters as they're typed.    Changing the value of the keyascii
argument changes the character displayed.
You can convert the keyascii argument into a character by using the expression:

Chr(KeyAscii)

You can then perform string operations and translate the character back to an ANSI number that the
control can interpret by using the expression:

KeyAscii = Asc(char)

Use KeyDown and KeyUp event procedures to handle any keystroke not recognized by KeyPress, such
as function keys, editing keys, navigation keys, and any combinations of these with keyboard modifiers.
Unlike the KeyDown and KeyUp events, KeyPress doesn't indicate the physical state of the keyboard;
instead, it passes a character.
KeyPress interprets the uppercase and lowercase of each character as separate key codes and,
therefore, as two separate characters.    KeyDown and KeyUp interpret the uppercase and lowercase of
each character by means of two arguments: keycode, which indicates the physical key (thus returning A
and a as the same key), and shift, which indicates the state of shift+key and therefore returns either A or
a.
If the KeyPreview property is set to True, a form receives the event before controls on the form receive
the event.    Use the KeyPreview property to create global keyboard-handling routines.

Note      The ANSI number for the keyboard combination of CTRL+@ is 0.    Because Visual Basic
recognizes a keyascii value of 0 as a zero-length string (""), avoid using CTRL+@ in your applications.

See Also
KeyDown, KeyUp Events

LostFocus Event (Custom Controls)
See Also

Occurs when an object loses the focus, either by user action, such as tabbing to or clicking another
object, or by changing the focus in code using the SetFocus method.

Syntax
Private Sub object_LostFocus([index As Integer])

The LostFocus event syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D option

button, Animated button, Gauge, Graph, Key state, ListView, Masked Edit, Outline,
RichTextBox, Slider, SSTab, TabStrip, or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.

Remarks
A LostFocus event procedure is primarily useful for verification and validation updates.    Using
LostFocus can cause validation to take place as the user moves the focus from the control.    Another
use for this type of event procedure is enabling, disabling, hiding, and displaying other objects as in a
GotFocus event procedure.    You can also reverse or change conditions that you set up in the object's
GotFocus event procedure.

See Also
GotFocus Event
SetFocus Method

MouseDown, MouseUp Events (Custom Controls)
See Also

Occur when the user presses (MouseDown) or releases (MouseUp) a mouse button.

Syntax
Private Sub object_MouseDown([index As Integer,]button As Integer, shift As Integer, x As Single, y
As Single)
Private Sub object _MouseUp([index As Integer,]button As Integer, shift As Integer, x As Single, y
As Single)

The MouseDown and MouseUp event syntaxes have these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D panel, Gauge, Graph, ListView, Outline, ProgressBar,
RichTextBox Slider, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

index Returns an integer that uniquely identifies a control if it's in a control array.
button Returns an integer that identifies the button that was pressed (MouseDown) or released

(MouseUp) to cause the event.    The button argument is a bit field with bits corresponding
to the left button (bit 0), right button (bit 1), and middle button (bit 2).    These bits
correspond to the values 1, 2, and 4, respectively.    Only one of the bits is set, indicating
the button that caused the event.

shift Returns an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when
the button specified in the button argument is pressed or released.    A bit is set if the key
is down.    The shift argument is a bit field with the least-significant bits corresponding to
the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits
correspond to the values 1, 2, and 4, respectively.    The shift argument indicates the state
of these keys.    Some, all, or none of the bits can be set, indicating that some, all, or none
of the keys are pressed.    For example, if both CTRL and ALT were pressed, the value of
shift would be 6.

x, y Returns a number that specifies the current location of the mouse pointer.    The x and y
values are always expressed in terms of the coordinate system set by the ScaleHeight,
ScaleWidth, ScaleLeft, and ScaleTop properties of the object.

Remarks
Use a MouseDown or MouseUp event procedure to specify actions that will occur when a given mouse
button is pressed or released.    Unlike the Click and DblClick events, MouseDown and MouseUp events
enable you to distinguish between the left, right, and middle mouse buttons.    You can also write code
for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
The following applies to both Click and DblClick events:

If a mouse button is pressed while the pointer is over a control, that object "captures" the mouse
and receives all mouse events up to and including the last MouseUp event.    This implies that the x, y
mouse-pointer coordinates returned by a mouse event may not always be in the client area of the object
that receives them.

If mouse buttons are pressed in succession, the object that captures the mouse after the first
press receives all mouse events until all buttons are released.

If you need to test for the button or shift arguments, you can use constants listed in the object library in
the Object Browser to define the bits within the argument:

Constant Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having to
figure out the unique bit field value for each combination.

Note      You can use a MouseMove event procedure to respond to an event caused by moving the
mouse.    The button argument for MouseDown and MouseUp differs from the button argument used for
MouseMove.    For MouseDown and MouseUp, the button argument indicates exactly one button per
event; for MouseMove, it indicates the current state of all buttons.

See Also
Click Event
Click Event, 3D Controls
DblClick Event
MouseMove Event

MouseMove Event (Custom Controls)
See Also

Occurs when the user moves the mouse.

Syntax
Private Sub object_MouseMove([index As Integer,] button As Integer, shift As Integer, x As Single, y
As Single)

The MouseMove event syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D panel, Gauge, Graph, ListView, Outline, ProgressBar,
RichTextBox, Slider, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

index An integer that uniquely identifies a control if it's in a control array.
button An integer that corresponds to the state of the mouse buttons in which a bit is set if the

button is down.    The button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively.    It indicates the complete state of the mouse buttons;
some, all, or none of these three bits can be set, indicating that some, all, or none of the
buttons are pressed.

shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys.    A bit is set if
the key is down.    The shift argument is a bit field with the least-significant bits
corresponding to the SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).   
These bits correspond to the values 1, 2, and 4, respectively.    The shift argument
indicates the state of these keys.    Some, all, or none of the bits can be set, indicating that
some, all, or none of the keys are pressed.    For example, if both CTRL and ALT were
pressed, the value of shift would be 6.

x, y A number that specifies the current location of the mouse pointer.    The x and y values are
always expressed in terms of the coordinate system set by the ScaleHeight, ScaleWidth,
ScaleLeft, and ScaleTop properties of the object.

Remarks
The MouseMove event is generated continually as the mouse pointer moves across objects.    Unless
another object has captured the mouse, an object recognizes a MouseMove event whenever the mouse
position is within its borders.
If you need to test for the button or shift arguments, you can use constants listed in the object library in
the Object Browser to define the bits within the argument:

Constant Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.
vbShiftMask 1 SHIFT key is pressed.
vbCtrlMask 2 CTRL key is pressed.
vbAltMask 4 ALT key is pressed.

The constants then act as bit masks you can use to test for any combination of buttons without having to
figure out the unique bit field value for each combination.
You test for a condition by first assigning each result to a temporary integer variable and then comparing
the button or shift arguments to a bit mask.    Use the And operator with each argument to test if the
condition is greater than zero, indicating the key or button is pressed, as in the following code:

LeftDown = (Button And vbLeftButton) > 0
CtrlDown = (Shift And vbCtrlMask) > 0

Then, in a procedure, you can test for any combination of conditions, as follows:

If LeftDown And CtrlDown Then

Note      You can use MouseDown and MouseUp event procedures to respond to events caused by
pressing and releasing mouse buttons.
The button argument for MouseMove differs from the button argument for MouseDown and MouseUp.   
For MouseMove, the button argument indicates the current state of all buttons; a single MouseMove
event can indicate that some, all, or no buttons are pressed.    For MouseDown and MouseUp, the
button argument indicates exactly one button per event.
Any time you move a window inside a MouseMove event, it can cause a cascading event.    MouseMove
events are generated when the window moves underneath the pointer.    A MouseMove event can be
generated even if the mouse is perfectly stationary.

See Also
MouseDown, MouseUp Events

DblClick Event (Custom Controls)
See Also

Occurs when the user presses and releases a mouse button and then presses and releases it again
over an object.
For a control, it occurs when the user double-clicks a control with the left mouse button.

Syntax
Private Sub object_DblClick (index As Integer)

Part Description
object An object expression that evaluates to a 3D frame, 3D panel, Gauge, Graph, Outline,

ListView, RichTextBox, SSTab, StatusBar, TabStrip, Toolbar or TreeView control.
index Identifies the control if it's in a control array.

Remarks
The argument Index uniquely identifies a control if it's in a control array.    You can use a DblClick event
procedure for an implied action, such as double-clicking an icon to open a window or document.    You
can also use this type of procedure to carry out multiple steps with a single action, such as double-
clicking to select an item in a list box and to close the dialog box.
For those objects that receive Mouse events, the events occur in this order: MouseDown, Click,
MouseUp, and DblClick.
If DblClick doesn't occur within the system's double-click time limit, the object recognizes another Click
event.    The double-click time limit may vary because the user can set the double-click speed in the
Control Panel.    When you're attaching procedures for these related events, be sure that their actions
don't conflict.    Controls that don't receive DblClick events may receive two clicks instead of a DblClick.

Note      To distinguish between the left, right, and middle mouse buttons, use the MouseDown and
MouseUp events.

See Also
Click Event
MouseDown, MouseUp Events

Refresh Method (Custom Controls)

Forces a complete repaint of a control.

Syntax
object.Refresh

The object placeholder represents an object expression that evaluates to a 3D check box, 3D command
button, 3D frame, 3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph,
Key state, ListView, Masked edit, Multimedia MCI, Outline, RichTextBox, Slider, Spin button, StatusBar,
TabStrip, Toolbar or TreeView control.

Remarks
For example, you can use the Refresh method to:

Update the contents of a file-system list box, such as a TreeView control.
Update the data structures of a ListView control.

Generally, painting a control is handled automatically while no events are occurring.    However, there
may be situations where you want the control updated immediately.    For example, if you use a file list
box, a directory list box, or a drive list box to show the current status of the directory structure, you can
use Refresh to update the list whenever a change is made to the directory structure.

SetFocus Method (Custom Controls)
See Also

Moves the focus to the specified control.

Syntax
object.SetFocus

The object placeholder represents an object expression that evaluates to a 3D check box, 3D command
button, 3D option button, Animated button, Gauge, Graph, Key state, ListView, Masked edit, Multimedia
MCI, Outline, RichTextBox, Slider, SSTab, TabStrip or TreeView control.

Remarks
The object must be a control that can receive the focus.    After invoking the SetFocus method, any user
input is directed to the specified control.
You can only move the focus to a visible control.    Because controls on a form aren't visible until the
form's Load event has finished, you can't use the SetFocus method to move the focus to the form being
loaded in its own Load event unless you first use the Show method to show the form before the
Form_Load event procedure is finished.
You also can't move the focus to a control if the Enabled property is set to False.    If the Enabled
property has been set to False at design time, you must first set it to True before it can receive the focus
using the SetFocus method.

See Also
Enabled Property

Trappable Errors for Windows 95 Custom Controls
See Also

The following table lists the trappable errors for the Windows 95 custom controls.

Error Message
Number Explanation
35600 Index out of bounds.
35601 Element not found.
35602 Key is not unique in collection.
35603 Invalid key.
35605 This item's control has been deleted.
35606 Control's collection has been modified.
35607 Required argument is missing.
35609 Property not accessible at design time.
35610 Invalid object.
35611 Property is read-only if image list contains images.
35613 ImageList must be initialized before it can be used.
35614 This would introduce a cycle.
35615 All images in list must be same size.
35616 Maximum Panels Exceeded.
35617 Image cannot be removed while another control is bound to this ImageList.
35618 Overlay parameter must identify one of the first 16 images in the ImageList.

See Also
ImageList Control
ListView Control
ProgressBar Control
RichTextBox Control
Slider Control
SSTab Control
StatusBar Control
TabStrip Control
Toolbar Control
TreeView Control

Clear Method (Outline Control)

Clears the contents of the Outline control.

Syntax
object.Clear

Drag Method (Custom Controls)
See Also

Begins, ends, or cancels a drag operation on any object except the ImageList control.    Doesn't support
named arguments.

Syntax
object.Drag action

The Drag method syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph, Key
state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider,
Spin button, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

action Optional.    A constant or value that specifies the action to perform, as described in
Settings.    If action is omitted, the default is to begin dragging the object.

Settings
The settings for action are:

Constant Value Description
vbCancel 0 Cancel drag operation.
vbBeginDrag 1 Begin dragging object.
vbEndDrag 2 End dragging and drop object.

Remarks
These constants are listed in the object library in the Object Browser.
Using the Drag method to control a drag-and-drop operation is required only when the DragMode
property of the object is set to Manual (0).    However, you can use Drag on an object whose DragMode
property is set to Automatic (1 or vbAutomatic).
If you want the mouse pointer to change shape while the object is being dragged, use either the
DragIcon or MousePointer property.    The MousePointer property is only used if no DragIcon is
specified.

See Also
DragIcon Property
DragMode Property
MousePointer Property

Move Method (Custom Controls)
See Also

Moves a control.    Doesn't support named arguments.

Syntax
object.Move left, top, width, height

The Move method syntax has these parts:

Part Description
object Optional. An object expression that evaluates to a 3D check box, 3D command button, 3D

frame, 3D group push button, 3D option button, 3D panel, Animated button, Gauge,
Graph, Key state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, Slider,
Spin button, RichTextBox, TabStrip, or Toolbar control.    If object is omitted, the form with
the focus is assumed to be object.

left Required.    Single-precision value indicating the horizontal coordinate (x-axis) for the left
edge of object.

top Optional.    Single-precision value indicating the vertical coordinate (y-axis) for the top
edge of object.

width Optional.    Single-precision value indicating the new width of object.
height Optional.    Single-precision value indicating the new height of object.

Remarks
Only the left argument is required.    However, to specify any other arguments, you must specify all
arguments that appear in the syntax before the argument you want to specify.    For example, you can't
specify width without specifying left and top.    Any trailing arguments that are unspecified remain
unchanged.
The 3D panel, ProgressBar, StatusBar, and ToolBar controls can be moved only when their Align
properties are set to 0 (None).

See Also
Align Property

ZOrder Method (Custom Controls)

Places a specified control at the front or back of the z-order within its graphical level.    Doesn't support
named arguments.

Syntax
object.ZOrder position

The ZOrder method syntax has these parts:

Part Description
object Optional.    An object expression that evaluates to a 3D check box, 3D command button,

3D frame, 3D group push button, 3D option button, 3D panel, Animated button, Gauge,
Graph, Key state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, Slider,
Spin button, RichTextBox, SSTab, TabStrip, Toolbar, or TreeView control.    If object is
omitted, the form with the focus is assumed to be object.

position Optional.    Integer indicating the position of object relative to other instances of the same
object.    If position is 0 or omitted, object is positioned at the front of the z-order.    If
position is 1, object is positioned at the back of the z-order.

Remarks
The z-order of objects can be set at design time by choosing the Bring To Front or Send To Back menu
command from the Edit menu.

Item Method (Custom Controls)
See Also Example

Returns a specific item of a collection object by position, index, or key.

Syntax
object.Item(index)

The Item method syntax has these parts:

Part Description
object An object expression that evaluates to one of the following collections:    Buttons,

ColumnHeaders, ListImages, ListItems, Nodes, Panels, Tabs.
index An integer or unique string that specifies a member of the collection.    The integer must

be a number from 1 to the value of the collection's Count property.    The string must
correspond to the key specified when the member was added to the collection.

Remarks
If the value provided as index does not match any existing member of the collection, an error occurs.
The Item method is the default method for a collection.    Therefore, the following lines of code are
equivalent:

Print MyCollection.Item(1)
Print MyCollection(1)

See Also
Count Property
Key Property

Item Method Example

This example adds several panels to a StatusBar control and uses the Item method to access the
Index and Enabled properties of the control.    To try the example, place a StatusBar control on a form
and paste the code into the form's Declarations section.    Run the example and click on the form.

Private Sub Form_Load()
Dim sbrX As Panel ' Create a Panel object variable.
Dim I As Integer ' Create an integer variable as counter.

For I = 1 to 6 ' Create 6 Panel objects.
Set sbrX = StatusBar1.Panels.Add() ' Create a Panel.
sbrX.Style = I ' Use I to set the style of the panel.

Next I
StatusBar1.Panels.Remove 1 ' Remove first, default Panel.

End Sub

Private Sub Form_Click()
Dim I As Integer ' Counter variable.
Dim strX As String ' String variable to contain a message.
For I = 1 to Statusbar1.Panels.Count

strX = strX & StatusBar1.Panels.Item(I).Index & ": "
' The previous line is equivalent to this:
' strX = StrX & StatusBar1.Panels(I).Index & ": "

strX = strX & StatusBar1.Panels.Item(I).Enabled & Chr(10)
' The previous line is equivalent to this:
' strX = StrX & StatusBar1.Panels(I).Enabled & Chr(10)

StatusBar1.Panels.Item.(I).Width = Form1.Width / 6
' The previous line is equivalent to this:
' Statusbar1.Panels(I).Width = Form1.Width / 6

Next I
' Display the result.
MsgBox strX

End Sub

BackColor, ForeColor Properties (Custom Controls)

BackColor
returns or sets the background color of an object.

ForeColor
returns or sets the foreground color used to display text and graphics in an object.

Syntax
object.BackColor [= color]
object.ForeColor [= color]

The BackColor and ForeColor property syntaxes have these parts:

Part Description
object An object expression that evaluates to one of the following controls: 3D panel, Animated

button, ListView, Masked edit, Outline, SSTab, or Spin button control.
BackColor property only: 3D group push button, ImageList, Key state, or RichTextBox
control.
ForeColor property only: 3D check box, 3D command button, 3D frame, 3D option
button, or Multimedia MCI control.

color A value or constant that determines the background or foreground colors of an object, as
described in Settings.

Settings
Visual Basic uses the Microsoft Windows operating environment red-green-blue (RGB) color scheme.   
The settings for color are:

Setting Description
Normal RGB colors Colors specified by using the Color palette or by using the RGB or QBColor

functions in code.
System default colors Colors specified by system color constants listed in the object library in the

Object Browser.    The Windows operating environment substitutes the user's
choices as specified in the Control Panel settings.

At design time, the default settings are:

BackColor
the system default color specified by the constant vbWindowBackground.

ForeColor
the system default color specified by the constant vbWindowText.

Remarks
The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of a number in
this range equals 0; the lower 3 bytes, from least to most significant byte, determine the amount of red,
green, and blue, respectively.    The red, green, and blue components are each represented by a number
between 0 and 255 (&HFF).    If the high byte isn't 0, Visual Basic uses the system colors, as defined in
the user's Control Panel settings and by constants listed in the object library in the Object Browser.
To display text in the Windows operating environment, both the text and background colors must be
solid.    If the text or background colors you've selected aren't displayed, one of the selected colors may
be dithered that is, comprised of up to three different-colored pixels.    If you choose a dithered color for
either the text or background, the nearest solid color will be substituted.
For the ImageList control, before drawing a masked image on a solid-color background, you should use
the BackColor property to set the background color of the ImageList to the same color as the
destination.    This eliminates the need to create transparent areas in the image and enables images to
be displayed simply by retrieving the image with the Item method, resulting in a significant increase in
performance.

BorderStyle Property (Custom Contols)

Returns or sets the border style for an object.

Syntax

object.BorderStyle [= value]

The BorderStyle property syntax has these parts:

Part Description
object An object expression that evaluates to an Animated button, Graph, ListView, Masked edit,

Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Toolbar, or TreeView control.
value A value or constant that determines the border style, as described in Settings.

Settings
The settings for value are:

Constant Value Description
ccNone 0 (Default) No border or border-related elements.
ccFixedSingle 1 Fixed single.    Except for the ProgressBar control, can include Control-

menu box, title bar, Maximize button, and Minimize button.    Resizable
only using Maximize and Minimize buttons.

Note      The cc prefix refers to the Windows 95 controls: ListView, ProgressBar, RichTextBox, Slider,
Toolbar, and TreeView.    For the other controls, prefixes for the settings change with the specific control
or group of controls.    However, the description remains the same unless indicated.

Remarks
Setting BorderStyle for a ProgressBar control decreases the size of the chunks the control displays.

FontBold, FontItalic, FontStrikethru, FontUnderline Properties (Custom Controls)
See Also

Return or set font styles in the following formats: Bold, Italic, Strikethru, and Underline.

Note      The FontBold, FontItalic, FontStrikethru, and FontUnderline properties are included for
compatibility with earlier versions of Visual Basic.    For additional functionality, use the new Font object
properties.

Syntax
object.FontBold [= boolean]
object.FontItalic [= boolean]
object.FontStrikethru [= boolean]
object.FontUnderline [= boolean]

The FontBold, FontItalic, FontStrikethru, and FontUnderline properties syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D option button, 3D panel, Animated button, Masked edit, or Outline control.
boolean A Boolean expression specifying the font style, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default for FontBold) Turns on the formatting in that style.
False Turns off the formatting in that style.

Remarks
Use these font properties to format text, either at design time using the Properties window or at run time
using code.    Font changes take effect on the screen immediately.

Note      Fonts available in Visual Basic vary depending on your system configuration, display devices,
and printing devices.    Font-related properties can be set only to values for which actual fonts exist.
In general, you should change the FontName property before you set size and style attributes with the
FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties.    However, when you
set TrueType fonts to smaller than 8 points, you should set the point size with the FontSize property,
then set the FontName property, and finally set the size again with the FontSize property.    The
Microsoft Windows operating environment uses a different font for TrueType fonts that are smaller than
8 points.

See Also
Font Property
FontName Property
FontSize Property

FontName Property (Custom Control)
See Also

Returns or sets the font used to display text in a control or in a run-time drawing or printing operation.

Note      The FontName property is included for compatibility with earlier versions of Visual Basic.    For
additional functionality, use the new Font object properties.

Syntax
object.FontName [= font]

The FontName property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D option button, 3D panel, Animated button, Masked edit, or Outline control.
font A string expression specifying the font name to use.

Remarks
The default for this property is determined by the system.    Fonts available with Visual Basic vary
depending on your system configuration, display devices, and printing devices.    Font-related properties
can be set only to values for which fonts exist.
In general, you should change FontName before setting size and style attributes with the FontSize,
FontBold, FontItalic, FontStrikethru, and FontUnderline properties.

Note      At run time, you can get information on fonts available to the system through the FontCount and
Fonts properties.

See Also
Font Property
FontBold , FontItalic , FontStrikethru , FontUnderline Properties
FontSize Property

FontSize Property (Custom Control)
See Also

Returns or sets the size of the font to be used for text displayed in a control or in a run-time drawing or
printing operation.

Note      The FontSize property is included for compatibility with earlier versions of Visual Basic.    For
additional functionality, use the new Font object properties.

Syntax
object.FontSize [= points]

The FontSize property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D option button, 3D panel, Animated button, Masked edit, or Outline control.
points A numeric expression specifying the font size to use, in points.

Remarks
Use this property to format text in the font size you want.    The default is determined by the system.    To
change the default, specify the size of the font in points.
The maximum value for FontSize is 2160 points.

Note      Fonts available with Visual Basic vary depending on your system configuration, display devices,
and printing devices.    Font-related properties can be set only to values for which fonts exist.
In general, you should change the FontName property before you set size and style attributes with the
FontSize, FontBold, FontItalic, FontStrikethru, and FontUnderline properties.    However, when you
set TrueType fonts to smaller than 8 points, you should set the point size with the FontSize property,
then set the FontName property, and finally set the size again with the FontSize property.    The
Microsoft Windows operating environment uses a different font for TrueType fonts that are smaller than
8 points.

See Also
Font Property
FontBold , FontItalic , FontStrikethru , FontUnderline Properties
FontName Property

Height, Width Properties (Custom Controls)
See Also

Return or set the dimensions of an object.

Syntax
object.Height [= number]
object.Width [= number]

The Height and Width properties syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button 3D panel, Animated button, Graph, ListView,
Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Spin button,
SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.    Also applies to a Button object
of a Toolbar control, ListItem object of a ListView control or Tab object of a TabStrip
control.
An object expression that evaluates to a Key state control, and a ColumnHeader object of
a ListView control for the Width property only.

number A numeric expression specifying the dimensions of an object.    Measurements are from
the center of the object's border so that objects with different border widths align correctly.
These properties use the scale units of the object's container.

Remarks
The values for these properties change as the object is resized.    Maximum limits of these properties for
all objects are system-dependent.
Use the Height, Width, Left, and Top properties for operations or calculations based on an object's total
area, such as sizing or moving the object. For the TabStrip control, use the ClientLeft, ClientTop,
ClientHeight, and ClientWidth properties for operations or calculations based on an object's internal
area, such as drawing or moving objects within another object.
For ListItem objects in the ListView control, the Height, Width, Left, and Top properties are read-only
in List and Report views.
For a Tab object in a TabStrip control, the Height and Width properties are read-only and always reflect
the current height and width of each tab.    These properties, along with Left and Top, are useful if you
want to return the coordinates of the active tab in order to cover it with another object, such as a
PictureBox control.

See Also
ClientHeight , ClientWidth , ClientLeft , ClientTop Properties
Left , Top Properties
View Property

Left, Top Properties (Custom Controls)
See Also

Left
returns or sets the distance between the internal left edge of an object and the left edge of its container.

Top
returns or sets the distance between the internal top edge of an object and the top edge of its container.

Syntax
object.Left [= number]
object.Top [= number]

The Left and Top properties syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button 3D panel, Animated button, Gauge, Graph, Key
state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider,
Spin button, SSTab, StatusBar, TabStrip, Toolbar or TreeView control.    Also applies to a
Button object of a Toolbar control, ListItem object of a ListView control or Tab object of a
TabStrip control.
An object expression that evaluates to ColumnHeader objects of a ListView control or a
Panel object of a StatusBar control for the Left property only.

number A numeric expression specifying distance.

Remarks
The Left and Top properties are measured in units whose size depends on the coordinate system of the
object's container.    The values for these properties change as the object is moved by the user or by
code.
For both properties, you can specify a single-precision number.
Use the Left, Top, Height, and Width properties for operations based on an object's external
dimensions, such as moving or resizing.
For a ListItem object in a ListView control, the Left and Top properties are read-only in List and Report
views.    They are read/write in Icon and SmallIcon views.    For ColumnHeader objects, the Left
property is read-only.
For a Tab object in a TabStrip control, the Left and Top properties are read-only and always reflect the
current position of each tab.    These properties, along with Height and Width, are useful if you want to
return the coordinates of the active tab in order to cover it with another object, such as a PictureBox
control.

See Also
Height , Width Properties
View Property

ListCount Property (Outline Control)
See Also

Returns the number of items in the list portion of a control.

Syntax
object.ListCount

The object placeholder represents an object expression that evaluates to an Outline control.

Remarks
If no item is selected, the ListIndex property value is 1.    The first item in the list is ListIndex = 0, and
ListCount is always one more than the largest ListIndex value.

See Also
ListIndex Property (Outline Control)

ListIndex Property (Outline Control)
See Also

Returns or sets the index of the currently selected item in the control.    Not available at design time.

Syntax
object.ListIndex [= index]

The ListIndex property syntax has these parts:

Part Description
object An object expression that evaluates to an Outline control.
index A numeric expression specifying the index of the current item, as described in Settings.

Settings
The settings for index are:

Setting Description

1 Indicates no item is currently selected.
n A number indicating the index of the currently selected item.

Remarks
The first item in the list is ListIndex is equal to 0, and ListCount is always one more than the largest
ListIndex value.

See Also
ListCount Property (Outline Control)

TabIndex Property (Custom Controls)
See Also

Returns or sets the tab order of an object within its parent form.

Syntax
object.TabIndex [= index]

The TabIndex property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button 3D panel, Animated button, Gauge, Graph, Key
state, Masked edit, Multimedia MCI, Outline, ListView, ProgressBar, RichTextBox, Slider,
Spin button, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

index An integer from 0 to (n 1), where n is the number of controls on the form that have a
TabIndex property.    Assigning a TabIndex value of less than 0 generates an error.

Remarks
By default, Visual Basic assigns a tab order to controls as you draw them on a form.    Each new control
is placed last in the tab order.    If you change the value of a control's TabIndex property to adjust the
default tab order, Visual Basic automatically renumbers the TabIndex of other controls to reflect
insertions and deletions.    You can make changes at design time using the Properties window or at run
time in code.
All controls except menus and timers are included in the tab order.    At run time, invisible or disabled
controls remain in the tab order but are skipped during tabbing.
The TabIndex property isn't affected by the ZOrder method.

See Also
ZOrder Method

Tag Property (Custom Controls)

Returns or sets any extra data needed for your program.    Unlike other properties, the value of the Tag
property isn't used by Visual Basic; you can use this property to identify objects.

Syntax
object.Tag [= expression]

The Tag property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button 3D panel, Animated button, Communications,
Gauge, Graph, ImageList, Key state, ListView, MAPI session, MAPI message, Masked
edit, Multimedia MCI, Outline, Picture clip, ProgressBar, RichTextBox, Slider, Spin button,
SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.    Also applies to a Button object
of a Toolbar control, ColumnHeader object of a ListView control, ListItem object of a
ListView control, Node object of a TreeView control, or Tab object of a TabStrip control.

expression A string expression identifying the object.    The default is a zero-length string ("").

Remarks
The Tag property is a user-defined property.
You can use this property to assign an identification string to an object without affecting any of its other
property settings or causing side effects.    The Tag property is useful when you need to check the
identity of a control that is passed as a variable to a procedure.

Visible Property (Custom Controls)

Returns or sets a value indicating whether an object is visible or hidden.

Syntax
object.Visible [= boolean]

The Visible property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button 3D panel, Animated button, Gauge, Graph, Key
state, ListView, Masked edit, Outline, ProgressBar, RichTextBox, Slider, Spin button,
SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.    Also applies to a Button object
of a Toolbar control, or Node object of a TreeView control, or Panel object of a StatusBar
control.

boolean A Boolean expression specifying whether the object is visible or hidden, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Object is visible.
False Object is hidden.

Remarks
To hide an object at start up, set the Visible property to False at design time.    Setting this property in
code enables you to hide and later redisplay a control at run time in response to a particular event.

Picture Property (Custom Controls)
See Also

Returns or sets a graphic to be displayed in a control.

Syntax
object.Picture [= picture]

The Picture property syntax has these parts:

Part Description
object An object expression that evaluates to a ListImage or Panel object.
picture A string expression specifying a file containing a graphic, as described in Settings.

Settings
The settings for picture are:

Setting Description
(None) (Default) No picture.
(Bitmap, icon) Specifies a graphic.    At run time, you can also set this property using the

LoadPicture function on a bitmap or icon.

Remarks
At design time, you can transfer a graphic with the Clipboard using the Copy, Cut, and Paste
commands on the Edit menu.    At run time, you can use Clipboard methods such as GetData, SetData,
and GetFormat with the nontext Clipboard constants vbCFBitmap, vbCFMetafile, and vbCFDIB, which
are listed in the object library in the Object Browser.
When setting the Picture property at design time, the graphic is saved and loaded with the form.    If you
create an executable file, the file contains the image.    When you load a graphic at run time, the graphic
isn't saved with the application.    Use the SavePicture statement to save a graphic from a form or
picture box into a file.

Note      At run time, the Picture property can be set to any other object's DragIcon, Icon, Image, or
Picture property, or you can assign it the graphic returned by the LoadPicture function.

See Also
Add Method (ListImages Collection)
Add Method (Panels Collection)
DragIcon Property
Icon Property
Image Property
ImageList Control
ListImage Object, ListImages Collection
Panel Object, Panels Collection

Icon Property (Custom Controls)
See Also

Returns the icon displayed when a form is minimized at run time.

Syntax
object.Icon

The object placeholder represents an object expression that evaluates to a Form object.

Remarks
Use this property to specify an icon for any form that the user can minimize at run time.
For example, you can assign a unique icon to a form to indicate the form's function.    Specify the icon by
loading it using the Properties window at design time.    The file you load must have the .ICO filename
extension and format.    If you don't specify an icon, the Visual Basic default icon for forms is used.
You can use the Visual Basic Icon Library (in the ICONS subdirectory) as a source for icons.    When you
create an executable file, you can assign an icon to the application by using the Icon property of any
form in that application.

Note      To see a form's icon, the form must be minimized and the BorderStyle property must be set to 1
(ccFixedSingle).
At run time, you can assign an object's Icon property to another object's DragIcon or Icon property.   
You can also assign an icon returned by the LoadPicture function.    Using LoadPicture without an
argument assigns an empty (null) icon to the form, which enables you to draw on the icon at run time.

See Also
BorderStyle Property
DragIcon Property
Icon Property

Cancel Property (3D Command Button Control)
See Also

Returns or sets a value indicating whether a command button is the Cancel button on a form.

Syntax
object.Cancel [= boolean]

The Cancel property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D command button control.
boolean A Boolean expression specifying whether the object is the Cancel button, as described in

Settings.

Settings
The settings for boolean are:

Setting Description
True The 3D command button control is the Cancel button.
False (Default) The 3D command button control isn't the Cancel button.

Remarks
Use the Cancel property to give the user the option of canceling uncommitted changes and returning
the form to its previous state.
Only one 3D command button control on a form can be the Cancel button.    When the Cancel property
is set to True for one command button, it's automatically set to False for all other command buttons on
the form.    When a 3D command button control's Cancel property setting is True and the form is the
active form, the user can choose the command button by clicking it, pressing the ESC key, or pressing
ENTER when the button has the focus.

 See Also
Default Property
KeyDown, KeyUp Events
KeyPress Event

Align Property (Custom Controls)
See Also

Returns or sets a value that determines whether an object is displayed in any size anywhere on a form
or whether it's displayed at the top, bottom, left, or right of the form and is automatically sized to fit the
form's width.

Syntax
object.Align [= integer]

The Align property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D panel, ProgressBar, StatusBar, or Toolbar

control.
integer An integer specifying how an object is displayed, as described in Settings.

Settings
The settings for integer are:

Setting Description
0 (Default) None.    Size and location can be set at design time or in code.
1 Top.    Object is at the top of the form, and its width is equal to the form's ScaleWidth

property setting.
2 Bottom.    Object is at the bottom of the form, and its width is equal to the form's

ScaleWidth property setting.
3 Left.    Object is at the left of the form, and its width is equal to the form's ScaleWidth

property setting.
4 Right.    Object is at the right of the form, and its width is equal to the form's ScaleWidth

property setting.

Remarks
You can use the Align property to quickly create a toolbar or status bar at the top or bottom of a form.   
As a user changes the size of the form, an object with Align set to 1 or 2 automatically resizes to fit the
width of the form.

See Also
Negotiate Property

AutoSize Property (Custom Controls)

Returns or sets a value that determines whether a control is automatically resized to display its entire
contents.

Syntax
object.AutoSize [= boolean]

The AutoSize property syntax has these parts:

Part Description
object An object expression that evaluates to the Gauge and Key state controls.
boolean A Boolean expression specifying whether the control is resized, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Automatically resizes the control to display its entire contents.
False (Default) Keeps the size of the control constant.    Contents are clipped when they exceed

the area of the control.

DragIcon Property (Custom Controls)
See Also

Returns or sets the icon to be displayed as the pointer in a drag-and-drop operation.

Syntax
object.DragIcon [= icon]

The DragIcon property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph, Key
state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, Spin button,
RichTextBox, Slider, StatusBar, SSTab, TabStrip, Toolbar, or TreeView control.

icon Any code reference that returns a valid icon, such as a reference to a form's icon
(Form1.Icon), a reference to another control's DragIcon property (Text1.DragIcon),
or the LoadPicture function, as described in Settings.

Settings
The settings for icon are:

Setting Description
(none) (Default) An arrow pointer inside a rectangle.
Icon A custom mouse pointer.    You specify the icon by setting it using the Properties window

at design time.    You can also use the LoadPicture function at run time.    The file you
load must have the .ICO filename extension and format.

Remarks
You can use the DragIcon property to provide visual feedback during a drag-and-drop operation for
example, to indicate that the source control is over an appropriate target.    DragIcon takes effect when
the user initiates a drag-and-drop operation.    Typically, you set DragIcon as part of a MouseDown or
DragOver event procedure.

Note      At run time, the DragIcon property can be set to any object's DragIcon or Icon property, or you
can assign it an icon returned by the LoadPicture function.

See Also
Drag Method
DragOver Event
Icon Property
MouseDown, MouseUp Events

DragMode Property (Custom Controls)
See Also

Returns or sets a value that determines whether manual or automatic drag mode is used for a drag-and-
drop operation.

Syntax
object.DragMode [= number]

The DragMode property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph, Key
state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, Spin button,
RichTextBox, Slider, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

number An integer specifying the drag mode, as described in Settings.

Settings
The settings for number are:

Setting Description
0 (Default) Manual.    Requires using the Drag method to initiate a drag-and-drop operation

on the source control.
1 Automatic.    Clicking the source control automatically initiates a drag-and-drop operation.

Remarks
When DragMode is set to 1 (Automatic), the control doesn't respond as usual to mouse events.    Use
the 0 (Manual) setting to determine when a drag-and-drop operation begins or ends.    You can use this
setting to initiate a drag-and-drop operation in response to a keyboard or menu command or to enable a
source control to recognize a MouseDown event prior to a drag-and-drop operation.
Clicking while the mouse pointer is over a target object or form during a drag-and-drop operation
generates a DragDrop event for the target object.    This ends the drag-and-drop operation.    A drag-and-
drop operation may also generate a DragOver event.

Note      While a control is being dragged, it can't recognize other user-initiated mouse or keyboard
events (KeyDown, KeyPress or KeyUp, MouseDown, MouseMove, or MouseUp).    However, the control
can receive events initiated by code or by a DDE link.

See Also
Drag Method
DragDrop Event
DragOver Event
KeyDown, KeyUp Events
KeyPress Event
MouseDown, MouseUp Events
MouseMove Event

hWnd Property (Custom Controls)

Returns a handle to a control.

Syntax
object.hWnd

The object placeholder represents an object expression that evaluates to a 3D check box, 3D command
button, 3D frame, 3D group push button, 3D option button, 3D panel, Animated button, Gauge, Graph,
Key state, ListView, Masked edit, Multimedia MCI, Outline, Picture clip, ProgressBar, RichTextBox,
Slider, Spin button, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

Remarks
The Microsoft Windows operating environment identifies each control in an application by assigning it a
handle, or hWnd.    The hWnd property is used with Windows API calls.    Many Windows operating
environment functions require the hWnd of the active window as an argument.

Note      Because the value of this property can change while a program is running, never store the
hWnd value in a variable.

ItemData Property (Outline Control)

Returns or sets a specific number for each item in an Outline control.    Not available at design time.

Syntax
object.ItemData(index) [= number]

The ItemData property syntax has these parts:

Part Description
object An object expression that evaluates to an Outline control.
index The number of a specific item in the control.
number The number to be associated with the specified item.

Remarks
This property is an array of long integer values with the same number of items as a control's List
property.    You can use the numbers associated with each item to identify the items in code.

Note      When you insert an item into a list with the AddItem method, an item is automatically inserted in
the ItemData array as well.    However, the value isn't reinitialized to zero; it retains the value that was in
that position before you added the item to the list.    When you use the ItemData property, be sure to set
its value when adding new items to a list.

See Also
AddItem Method
List Property

Locked Property (RichTextBox Control)
See Also

Returns or sets a value indicating whether the contents in a RichTextBox control can be edited.

Syntax
object.Locked [= boolean]

The Locked property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
boolean A Boolean expression specifying whether the contents of the control can be edited, as

described in Settings.

Settings
The settings for boolean are:

Setting Description
True You can scroll and highlight the text in the control, but you can't edit it.    The program can

still modify the text by changing the Text property.
False (Default)    You can edit the text in the control.

See Also
Text Property

Default Property (3D command button)
See Also

Returns or sets a value that determines which 3D command button control is the default command
button on a form.

Syntax
object.Default [= boolean]

The Default property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D command button control.
boolean A Boolean expression specifying whether the command button is the default, as described

in Settings.

Settings
The settings for boolean are:

Setting Description
True The 3D command button is the default command button.
False (Default) The 3D command button isn't the default command button.

Remarks
Only one command button on a form can be the default command button.    When Default is set to True
for one command button, it's automatically set to False for all other command buttons on the form.   
When the command button's Default property setting is True and its parent form is active, the user can
choose the command button (invoking its Click event) by pressing ENTER.    Any other control with the
focus doesn't receive a keyboard event (KeyDown, KeyPress, or KeyUp) for the ENTER key unless the
user has moved the focus to another command button on the same form.    In this case, pressing ENTER
chooses the command button that has the focus instead of the default command button.
For a form or dialog box that supports an irreversible action such as a delete operation, make the
Cancel button the default command button by setting its Default property to True.

See Also
Cancel Property
KeyDown, KeyUp Events
KeyPress Event

MousePointer Property (Custom Controls)
See Also

Returns or sets a value indicating the type of mouse pointer displayed when the mouse is over a
particular part of an object at run time.

Syntax
object.MousePointer [= value]

The MousePointer property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Gauge, Key state,
ListView, Masked edit, Multimedia MCI, Outline, ProgressBar, RichTextBox, Slider, Spin
button, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

value A value or constant specifying the type of mouse pointer displayed, as described in
Settings.

Settings
The settings for value are (for all controls except RichTextBox):

Constant Value Description
ccDefault 0 (Default) Shape determined by the object.
ccArrow 1 Arrow.
ccCross 2 Cross (cross-hair pointer).
ccIbeam 3 I Beam.
ccIcon 4 Icon (small square within a square).
ccSize 5 Size (four-pointed arrow pointing north, south, east, and west).
ccSizeNESW 6 Size NE SW (double arrow pointing northeast and southwest).
ccSizeNS 7 Size N S (double arrow pointing north and south).
ccSizeNWSE 8 Size NW, SE (double arrow pointing northwest and southeast).
ccSizeEW 9 Size E W (double arrow pointing east and west).
ccUpArrow 10 Up Arrow.
ccHourglass 11 Hourglass (wait).
ccNoDrop 12 No Drop.
ccArrowHourglass 13 Arrow and hourglass. (Only available in 32-bit Visual Basic.)
ccArrowQuestion 14 Arrow and question mark. (Only available in 32-bit Visual Basic.)
ccSizeAll 15 Size all. (Only available in 32-bit Visual Basic.)
ccCustom 99 Custom icon specified by the MouseIcon property.

Remarks
You can use this property when you want to indicate changes in functionality as the mouse pointer
passes over controls on a form or dialog box.    The Hourglass setting (11) is useful for indicating that the
user should wait for a process or operation to finish.

Note      If your application doesn't call the DoEvents function and isn't a 32-bit application, it overrides
all MousePointer settings for all controls and other applications.    If your application calls DoEvents, the
MousePointer property may temporarily change when over a custom control.
The cc prefix refers to the Windows 95 controls. Prefixes for the settings change with the specific
control or group of controls.    However, the description remains the same unless indicated.

See Also
DragIcon Property
MouseIcon Property
MouseMove Event
RichTextBox Control Constants

SelLength, SelStart, SelText Properties (Custom Controls)
See Also

SelLength
returns or sets the number of characters selected.

SelStart
returns or sets the starting point of text selected; indicates the position of the insertion point if no text is

selected.
SelText

returns or sets the string containing the currently selected text; consists of a zero-length string ("") if no
characters are selected.

These properties aren't available at design time.

Syntax
object.SelLength [= number]
object.SelStart [= index]
object.SelText [= value]

The SelLength, SelStart, and SelText property syntaxes have these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.

SelLength and SelStart properties only: Masked edit or Slider control.
number A numeric expression specifying the number of characters selected.
index A numeric expression specifying the starting point of the selected text.
value A string expression containing the selected text.

Remarks
Use these properties for tasks such as setting the insertion point, establishing an insertion range,
selecting substrings in a control, or clearing text.    Used in conjunction with the Clipboard object, these
properties are useful for copy, cut, and paste operations.
When working with these properties:

Setting SelLength less than 0 causes a run-time error.
Setting SelStart greater than the text length sets the property to the existing text length; changing

SelStart changes the selection to an insertion point and sets SelLength to 0.
Setting SelText to a new value sets SelLength to 0 and replaces the selected text with the new

string.

See Also
SelText Property(Masked edit)
Text Property

TabStop Property (Custom Controls)
See Also

Returns or sets a value indicating whether a user can use the TAB key to give the focus to an object.

Syntax
object.TabStop [= boolean]

The TabStop property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D option

button, Animated button, Gauge, Graph, Key state, ListView, Masked edit, Multimedia
MCI, Outline, RichTextBox, Slider, SSTab, TabStrip, or TreeView control.

boolean A Boolean expression specifying whether the object is a tab stop, as described in
Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Designates the object as a tab stop.
False Bypasses the object when the user is tabbing, although the object still holds its place in

the actual tab order, as determined by the TabIndex property.

Remarks
This property enables you to add or remove a control from the tab order on a form. For example, if
you're using a PictureBox control to draw a graphic, set its TabStop property to False, so the user can't
tab to the PictureBox.

See Also
TabIndex Property

MouseIcon Property (Custom Controls)
See Also

Sets a custom mouse icon.

Syntax
object.MouseIcon = LoadPicture(pathname)
object.MouseIcon = picture

The MouseIcon property syntax has these parts:

Part Description
object An object expression that evaluates to one of the following controls: 3D check box, 3D

command button, 3D frame, 3D group push button, 3D option button, 3D panel, Animated
button, Gauge, Key status, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar,
RichTextBox, Slider, Spin button, StatusBar, SSTab, TabStrip, ToolBar or TreeView.

pathname A string expression specifying the path and filename of the file containing the custom icon.
picture An object expression that evaluates to a Picture, most commonly the Picture property

from a Form object, PictureBox control, or Image control.

Remarks
The MouseIcon property provides a custom icon that is used when the MousePointer property is set to
99.
Although Visual Basic 4.0 does not create cursor (.CUR) files, you can use the MouseIcon property to
load either cursor or icon files.    This provides your program with easy access to custom cursors of any
size, with any desired hot spot location.    The 32-bit version of Visual Basic does not load animated
cursor (.ANI) files, even though 32-bit versions of Windows support these cursors.

See Also
DragIcon Property
Icon Property
MousePointer Property
Picture Property

MaxLength Property (RichTextBox Control)
See Also

Returns or sets a value indicating whether there is a maximum number of characters a RichTextBox
control can hold and, if so, specifies the maximum number of characters.

Syntax
object.MaxLength [= integer]

The MaxLength property syntax has these parts:

Part Description
object An object expression that evaluates to a RichTextBox control.
integer An integer specifying the maximum number of characters a user can enter in the control.

The default for the MaxLength property is 0, indicating no maximum other than that
created by memory constraints on the user's system.    Any number greater than 0
indicates the maximum number of characters.

Remarks
Use the MaxLength property to limit the number of characters a user can enter in a RichTextBox.
If text that exceeds the MaxLength property setting is assigned to a RichTextBox from code, no error
occurs; however, only the maximum number of characters is assigned to the Text property, and extra
characters are truncated.    Changing this property doesn't affect the current contents of a RichTextBox,
but will affect any subsequent changes to the contents.

See Also
MultiLine Property
Text Property

MultiLine Property (RichTextBox Control)
See Also

Returns or sets a value indicating whether a RichTextBox control can accept and display multiple lines
of text.    Read-only at run time.

Syntax
object.MultiLine

The object placeholder represents an object expression that evaluates to a RichTextBox control.

Settings
The MultiLine property settings are:

Setting Description
True Allows multiple lines of text.
False (Default) Ignores carriage returns and restricts data to a single line.

Remarks
A multiple-line RichTextBox control wraps text as the user types text extending beyond the text box.
You can also add scroll bars to a larger RichTextBox control using the ScrollBars property.    If no
HScrollBar control (horizontal scroll bar) is specified, the text in a multiple-line RichTextBox
automatically wraps.

Note      On a form with no default button, pressing ENTER in a multiple-line RichTextBox control moves
the focus to the next line.    If a default button exists, you must press CTRL+ENTER to move to the next
line.

See Also
ScrollBars Property

Appearance Property (Custom Controls)
See Also

Returns or sets the paint style of a control on a Form object at run time.    Read-only at run time.

Syntax
[object].Appearance

The object placeholder represents an object expression that evaluates to a ListView, Masked edit,
ProgressBar, RichTextBox, or TreeView control.

Settings
The Appearance property settings are:

Setting Description
0 Flat.    Paints controls and forms with without visual effects.
1 (Default) 3D.    Paints controls with three-dimensional effects.

Remarks
If set to 1 at design time, the Appearance property draws the control with three-dimensional effects.
Setting the Appearance property to 1 also causes the form and its controls to have their BackColor
property set to the color selected for Button Face in the Color option of the operating system's Control
Panel.

See Also
BackColor , ForeColor Properties

ScrollBars Property (RichTextBox Control)
See Also

Returns or sets a value indicating whether a RichTextBox control has horizontal or vertical scroll bars.   
Read-only at run time.

Syntax
object.ScrollBars

The object placeholder represents an object expression that evaluates to a RichTextBox control.

Settings
The ScrollBars property settings are:

Constant Value Description
rtfNone 0 (Default) No scroll bars shown.
rtfHorizontal 1 Horizontal scroll bar only.
rtfVertical 2 Vertical scroll bar only.
rtfBoth 3 Both horizontal and vertical scroll bars shown.

Remarks
For a RichTextBox control with setting 1 (Horizontal), 2 (Vertical), or 3 (Both), you must set the
MultiLine property to True.
At run time, the Microsoft Windows operating environment automatically implements a standard
keyboard interface to allow navigation in RichTextBox controls with the arrow keys (UP ARROW, DOWN
ARROW, LEFT ARROW, and RIGHT ARROW), the HOME and END keys, and so on.
Scroll bars are displayed only if the contents of the RichTextBox extend beyond the control's borders.   
If ScrollBars is set to False, the control won't have scroll bars, regardless of its contents.

See Also
MultiLine Property

Caption Property (Custom Controls)
See Also

Returns or sets the caption for an object.    For the SSTab control, returns or sets the caption for the
active tab.

Syntax
object.Caption [= string]

The Caption property syntax has these parts:

Part Description
object An object expression that evaluates to a Button or Tab object, or to a 3D check box, 3D

command button, 3D frame, 3D option button, 3D panel, Animated button, or SSTab
control.

string A string expression that evaluates to the text displayed as the caption.

Remarks
When you create a new object, its default caption is the default Name property setting.    This default
caption includes the object name and an integer, such as Tab1.    For a more descriptive label, set the
Caption property.
You can use the Caption property to assign an access key to a control.    In the caption, include an
ampersand (&) immediately preceding the character you want to designate as an access key.    The
character is underlined.    Press ALT plus the underlined character to move the focus to that control.    To
include an ampersand in a caption without creating an access key, include two ampersands (&&).    A
single ampersand is displayed in the caption and no characters are underlined.
When using the SSTab control, you can use the Caption property at design time to set the
TabCaption() property to the tab specified by the Tab property.

See Also
Name Property
Tab Property (SSTab Control)
TabCaption Property

Enabled Property (Custom Controls)

Returns or sets a value that determines whether an object can respond to user-generated events.

Syntax
object.Enabled [= boolean]

The Enabled property syntax has these parts:

Part Description
object An object expression that evaluates to a Button or Panel object, or to a 3D check box, 3D

command button, 3D frame, 3D group push button, 3D option button, 3D panel, Animated
button, Gauge, Graph, Key state, ListView, Masked edit, Outline, ProgressBar,
RichTextBox, Slider, Spin button, Status Bar, SSTab, TabStrip, Toolbar, or TreeView
control.

boolean A Boolean expression specifying whether object can respond to user-generated events,
as described in Settings.

Settings
The settings for boolean are:

Setting Description
True (Default) Allows object to respond to events.
False Prevents object from responding to events.

Remarks
The Enabled property allows objects to be enabled or disabled at run time.    For example, you can
disable objects that don't apply to the current state of the application.

Font Property (Custom Controls)

Returns a Font object.

Syntax
object.Font

The object placeholder represents an object expression that evaluates to a 3D check box, 3D command
button, 3D frame, 3D option button, 3D panel, Animated button, ListView, Masked edit, Outline,
RichTextBox, SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

Remarks
Use the Font property of an object to identify a specific Font object whose properties you want to use.
For example, the following code changes the Bold property setting of a Font object identified by the
Font property of a TextBox object:
txtFirstName.Font.Bold = True

HelpContextID Property (Custom Controls)

Returns or sets an associated context number for an object.    Used to provide context-sensitive Help for
your application.

Syntax
object.HelpContextID [= number]

The HelpContextID property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D option

button, Animated button, Gauge, Graph, Key state, ListView, Masked edit, Multimedia
MCI, Outline, RichTextBox, Slider, Spin button, SSTab, TabStrip, or TreeView control.    If
object is omitted, the form associated with the active form module is assumed to be
object.

number A numeric expression specifying the context number of the Help topic associated with
object, as described in Settings.

Settings
The settings for number are:

Setting Description
0 (Default) No context number specified.
> 0 An integer specifying a valid context number.

Remarks
For context-sensitive Help on an object in your application, you must assign the same context number to
both object and to the associated Help topic when you compile your Help file.
If you've created a Microsoft Windows operating environment Help file for your application and set the
application's HelpFile property, when a user presses the F1 key, Visual Basic automatically calls Help
and searches for the topic identified by the current context number.
The current context number is the value of HelpContextID for the object that has the focus.    If
HelpContextID is set to 0, then Visual Basic looks in the HelpContextID of the object's container, then
that object's container, and so on.    If a nonzero current context number can't be found, the F1 key is
ignored.

Note      Building a Help file requires the Microsoft Windows Help Compiler, which is included with the
Visual Basic Professional Edition.

Index Property (Control Array)
See Also

Returns or sets the number that uniquely identifies a control in a control array.    Available only if the
control is part of a control array.

Syntax
object[(number)].Index

The Index property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Communications,
Gauge, Graph, ImageList, Key state, ListView, MAPI Session, MAPI Messages, Masked
edit, Multimedia MCI, Outline, Picture clip, ProgressBar, RichTextBox, Slider, Spin button,
SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

number A numeric expression that evaluates to an integer that identifies an individual control
within a control array, as described in Settings.

Settings
The settings for number are:

Setting Description
No value (Default) Not part of a control array.
0 to 32,767 Part of an array.    Specifies an integer greater than or equal to 0 that identifies a control

within a control array.    All controls in a control array have the same Name property.   
Visual Basic automatically assigns the next integer available within the control array.

Remarks
Because control array elements share the same Name property setting, you must use the Index
property in code to specify a particular control in the array.    Index must appear as an integer (or a
numeric expression evaluating to an integer) in parentheses next to the control array name for example,
MyButtons(3).    You can also use the Tag property setting to distinguish one control from another
within a control array.

When a control in the array recognizes that an event has occurred, Visual Basic calls the control array's
event procedure and passes the applicable Index setting as an additional argument.    This property is
also used when you create controls dynamically at run time with the Load statement or remove them with
the Unload statement.

Although Visual Basic assigns, by default, the next integer available as the value of Index for a new
control in a control array, you can override this assigned value and skip integers.    You can also set
Index to an integer other than 0 for the first control in the array.    If you reference an Index value in code
that doesn't identify one of the controls in a control array, a Visual Basic run-time error occurs.

Note      To remove a control from a control array, change the control's Name property setting, and delete
the control's Index property setting.

See Also
Name Property
Tag Property

Name Property (Custom Controls)
See Also

Returns the name used in code to identify an object.

Syntax
object.Name

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Communications,
Gauge, Graph, ImageList, Key state, ListView, MAPI Session, MAPI Messages, Masked
edit, Multimedia MCI, Outline, Picture clip, ProgressBar, RichTextBox, Slider, Spin button,
SSTab, StatusBar, TabStrip, ToolBar, or TreeView control.

Remarks
The default name for new objects is the kind of object plus a unique integer.    For example, the first new
ListView control is ListView1, a new ProgressBar control is ProgressBar1, and the third ImageList
control you create on a form is ImageList3.
An object's Name property must start with a letter and can be a maximum of 40 characters.    It can
include numbers and underlined (_) characters but can't include punctuation or spaces.
You can create an array of controls of the same type by setting the Name property to the same value.   
For example, when you set the name of all option buttons in a group to MyOpt, Visual Basic assigns
unique values to the Index property of each control to distinguish it from others in the array.    Two
controls of different types can't share the same name.

Note      Although Visual Basic often uses the Name property setting as the default value for the Caption
and Text properties, changing one of these properties doesn't affect the others.

See Also
Caption Property
Caption Property (Tab Object)
Text Property
Text Property (Masked Edit Control)

Parent Property (Custom Controls)

Returns the form on which a control is located.

Syntax
object.Parent

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Communications,
Graph, Gauge, ImageList, Key state, ListView, MAPI Messages, MAPI Session, Masked
edit, Multimedia MCI, Outline, Picture clip, ProgressBar, RichTextBox, Slider, Spin button,
SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

Remarks
Use the Parent property to access the properties, methods, or controls of a control's parent form, for
example:

MyButton.Parent.MousePointer = 4

The Parent property is useful in an application in which you pass controls as arguments.    For example,
you could pass a control variable to a general procedure in a module, and use the Parent property to
access its parent form.

Count Property (Custom Controls)
See Also

Returns the number of members in a collection.

Syntax
object.Count

The object qualifier is an object expression that evaluates to one of the following collections:    Buttons,
ColumnHeaders, ListImages, ListItems, Nodes, Panels, Tabs.

Remarks
The Count property is associated with the collection and not the control itself.    For example, to get a
count of the Tab objects in a Tabs collection in a TabStrip control, use the following code:
'To count the number of tabs.
x = TabStrip1.Tabs.Count

See Also
Add Method (Buttons Collection)
Add Method (ColumnHeaders Collection)
Add Method (ListImages Collection)
Add Method (ListItems Collection)
Add Method (Nodes Collection)
Add Method (Panels Collection)
Add Method (Tabs Collection)
Item Method
Remove Method

Object Property (Custom Controls)

Returns a reference to a property or method of a custom control that has the same name as a property
or method automatically extended to the control by Visual Basic.

Syntax
object.Object[.property | .method]

The Object property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Communications,
Graph, Gauge, ImageList, Key state, ListView, MAPI Messages, MAPI Session, Masked
edit, Multimedia MCI, Outline, Picture clip, ProgressBar, RichTextBox, Slider, Spin button,
SSTab, StatusBar, TabStrip, Toolbar, or TreeView control.

property Property of the custom control that is identical to the name of a Visual Basic-supplied
property.

method Method of the custom control that is identical to the name of a Visual Basic-supplied
method.

Remarks
The Object property returns the value of the property or method specified.
Visual Basic supplies a standard set of properties and methods to all custom controls in a Visual Basic
project.    It is possible for a custom control to define a property or method which has the same name as
one of these standard properties or methods.    When this occurs, Visual Basic automatically uses the
property or method it supplies instead of the one with the same name defined in the custom control.   
The Object property allows you to bypass the standard property or method supplied by Visual Basic and
use the identically named property or method defined in the custom control.
For example, the Tag property is a property supplied to all custom controls in a Visual Basic project.    If
a custom control in a project has the name ctlDemo, and you access the Tag property using this
syntax:
ctlDemo.Tag

Visual Basic automatically uses the Tag property it supplies.    However, if the custom control defines its
own Tag property and you want to access that property, use the Object property in this syntax:
ctlDemo.Object.Tag

Visual Basic automatically extends some or all of the following properties and methods to custom
controls in a Visual Basic project:

Properties
Align DragIcon LinkMode TabIndex
Cancel DragMode LinkItem TabStop
Container Enabled LinkTimeout Tag
DataChanged Height LinkTopic Top
DataField HelpContextID Name Visible
DataSource Index Negotiate WhatsThisHelpID
Default Left Parent Width

Methods
Drag LinkRequest SetFocus
LinkExecute LinkSend ShowWhatsThis
LinkPoke Move ZOrder

If you use a property or method of a custom control and don't get the behavior you expect, see if the
property or method has the same name as one of those shown in the preceding list.    If the names

match, check the documentation provided with the custom control to see if the behavior matches that of
the property or method supplied by Visual Basic.    If the behaviors aren't identical, you may need to use
the Object property to access the custom control feature you want.

Container Property (Custom Controls)
Example

Returns or sets the container of a control on a Form.    Not available at design time.

Syntax
Set object.Container [= container]

The Container property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D command button, 3D frame,

3D group push button, 3D option button, 3D panel, Animated button, Communications,
Graph, Gauge, Key state, ListView, Masked edit, Multimedia MCI, Outline, ProgressBar,
RichTextBox, Slider, Spin button, SSTab, StatusBar, TabStrip, Toolbar, or TreeView
control.

container An object expression that evaluates to an object that can serve as a container for other
controls, as described in Remarks.

Remarks
The following custom controls can contain other controls:

3D frame control.
3D panel control.

Container Property (Custom Controls) Example

This example demonstrates moving a CommandButton control from container to container on a Form
object.    To try this example, put these controls on the Form 3D frame, 3D panel, and
CommandButton

then run the example.

Private Sub Form_Click()
Static intX As Integer
Select Case intX

Case 0
Set Command1.Container = SSPanel1
Command1.Top= 0
Command1.Left= 0

Case 1
Set Command1.Container = SSFrame1
Command1.Top= 0
Command1.Left= 0

Case 2
Set Command1.Container = Form1
Command1.Top= 0
Command1.Left= 0

End Select
intX = intX + 1

End Sub

Negotiate Property (Custom Controls)
See Also

Sets a value that determines whether a control that can be aligned is displayed when an active object on
the form displays one or more toolbars.    Not available at run time.

Settings
The Negotiate property settings are:

Setting Description
True If the control is aligned within the form (the Align property is set to a nonzero value), the

control remains visible when an active object on the form displays a toolbar.
False (Default) The control isn't displayed when an active object on the form displays a toolbar.

The toolbar of the active object is displayed in place of the control.

Remarks
The Negotiate property exists for all controls with an Align property.

 See Also
Align Property

DataChanged Property (Custom Controls)
See Also

Returns or sets a value indicating that the data in the bound control has been changed by some process
other than that of retrieving data from the current record.    Not available at design time.

Syntax
object.DataChanged [= value]

The DataChanged property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D panel, Masked edit, or

RichTextBox control.
value A Boolean expression that indicates whether data has changed, as described in Settings.

Settings
The settings for value are:

Setting Description
True The data currently in the control isn't the same as in the current record.
False (Default) The data currently in the control, if any, is the same as the data in the current

record.

Remarks
When a Data control moves from record to record, it passes data from fields in the current record to
controls bound to the specific field or the entire record.    As data is displayed in the bound controls, the
DataChanged property is set to False.    If the user or any other operation changes the value in the
bound control, the DataChanged property is set to True.    Simply moving to another record doesn't
affect the DataChanged property.
When the Data control starts to move to a different record, the Validate event occurs.    If DataChanged
is True for any bound control, the Data control automatically invokes the Edit and Update methods to
post the changes to the database.
If you don't wish to save changes from a bound control to the database, you can set the DataChanged
property to False in the Validate event.
Inspect the value of the DataChanged property in your code for a control's Change event to avoid a
cascading event.    This applies to both bound and unbound controls.

See Also
DataField Property
DataSource Property

DataField Property (Custom Controls)
See Also

Returns or sets a value that binds a control to a field in the current record.

Syntax
object.DataField [= value]

The DataField property syntax has these parts:

Part Description
object An object expression that evaluates to a 3D check box, 3D panel, Masked edit, or

RichTextBox control.
value A string expression that evaluates to the name of one of the fields in the Recordset object

specified by a Data control's RecordSource and DatabaseName properties.

Remarks
Bound controls provide access to specific data in your database.    Bound controls that manage a single
field typically display the value of a specific field in the current record.    The DataSource property of a
bound control specifies a valid Data control name, and the DataField property specifies a valid field
name in the Recordset object created by the Data control.    Together, these properties specify what
data appears in the bound control.
When you use a QueryDef object or SQL statement that returns the results of an expression, the field
name is automatically generated by the Microsoft Jet database engine.    For example, when you code
an SQL aggregate function or an expression in your SQL query, unless you alias the aggregate fields
using an AS clause, the field names are automatically generated.    Generally, the expression field name
is Expr1 followed by a three-character number starting with 000.    The first expression returned would be
named Expr1000.
It's recommended that you code your SQL queries to alias expression columns as shown below:
Data1.RecordSource = "Select AVG(Sales) " _

& " AS AverageSales From SalesTable"
MyText.DataField = "AverageSales"
MyText.DataSource = Data1
Data1.Refresh

Note      Make sure the DataField property setting is valid for each bound control.    If you change the
setting of a Data control's RecordSource property and then use Refresh, the Recordset identifies the
new object.    This may invalidate the DataField settings of bound controls and produce a trappable
error.

See Also
DataChanged Property
DataSource Property

DataSource Property (Custom Controls)
See Also

Sets a value that specifies the Data control through which the current control is bound to a database.   
Not available at run time.
The DataSource property applies to the 3D check box, 3D panel, Masked edit, and RichTextBox
controls.

Remarks
To bind a control to a field in a database at run time, you must specify a Data control in the DataSource
property at design time using the Properties window.
To complete the connection with a field in the Recordset managed by the Data control, you must also
provide the name of a Field object in the DataField property.    Unlike the DataField    property, the
DataSource property setting isn't available at run time.

See Also
DataChanged Property
DataField Property

Alignment Property, 3DControls

Sets or returns the alignment of text in a 3D check box, 3D frame, 3D option button, or 3D panel control.

Syntax
[form.]Object.Alignment[= setting%]

Remarks
For the 3D check box control, the Alignment property settings are:

Setting Description
0 (Default) Caption appears to the right of the check box.
1 Caption appears to the left of the check box.

For the 3D frame control, the Alignment property settings are:

Setting Description
0 (Default) Caption appears left-justified within the top bar.
1 Caption appears right-justified within the top bar.
2 Caption appears centered within the top bar.

For the 3D option button control, the Alignment property settings are:

Setting Description
0 (Default) Caption appears to the right of the option button.
1 Caption appears to the left of the option button.

For the 3D panel control, the Alignment property settings are:

Setting Description
0 Caption appears left-justified at the top of the panel.
1 Caption appears left-justified in the middle of the panel.
2 Caption appears left-justified at the bottom of the panel.
3 Caption appears right-justified at the top of the panel.
4 Caption appears right-justified in the middle of the panel.
5 Caption appears right-justified at the bottom of the panel.
6 Caption appears centered at the top of the panel.
7 (Default) Caption appears centered in the middle of the panel.
8 Caption appears centered at the bottom of the panel.

Data Type
Integer (Enumerated)

AutoSize Property, 3D Controls

Determines how a control is sized to its picture or other contents.    Applies to the 3D command button,
3D group push button, and 3D panel controls.

Syntax
[form.]Object.AutoSize[= setting%]

Remarks
For the 3D command button control, the AutoSize property settings are:

Setting Description
0 (Default) No automatic sizing takes place.
1 Adjusts the picture size to the command button.    This setting will shrink the picture to fit

the size of the button.    This option has no effect if the picture is an icon or if there is a
caption specified for the command button.

2 Adjusts the command button size to the picture.    This setting will resize the button to
exactly fit the size of the picture.    This option has no effect if there is a caption specified
for the command button.

For the 3D group push button control, the AutoSize property settings are:

Setting Description
0 No automatic sizing takes place.
1 Adjusts the picture size to the command button.    This will stretch or shrink the bitmap to

fit the size of the button.
2 (Default) Adjusts the button size to the picture.    This will resize the button to exactly fit the

size of the picture.

For the 3D panel control, the AutoSize property settings are:

Setting Description
0 (Default) No automatic sizing takes place.
1 AutoSize panel width sized to caption.    This setting adjusts the width of the panel to fit

the caption within its inner bevel.    The panel height remains unchanged.    With this
setting, the caption is displayed as a single line, regardless of its length.

2 AutoSize panel height sized to caption.    This setting adjusts the height of the panel to fit
the caption within its inner bevel.    The panel width remains unchanged.    With this
setting, the caption may be displayed on multiple lines if it does not fit within the current
width of the panel.

3 AutoSize child sized to panel.    If a single control has been placed on the panel, this
setting resizes the child control to fit exactly within the panel's inner bevel.    This setting
has no effect if there are no child controls, more than one child control, or if the panel has
no bevels.    This setting gives a three-dimensional look to standard controls such as list
boxes and scroll bars.    Note that if the child control has a fixed dimension (that is, the
height of a combo box or drive box is fixed), that dimension of the panel is adjusted to fit it
instead.

Data Type
Integer (Enumerated)

BevelWidth Property, 3D Controls

Sets or returns the height, width, or three-dimensional shadow effect of the bevel for the 3D command
button, 3D group push button, and 3D panel controls.

Syntax
[form.]Object.BevelWidth[= width%]

Remarks
For the 3D command button control, this property determines the number of pixels used to draw the
bevel that surrounds the command button.    The bevel width can be set to a value between 0 and 10,
inclusive.
For the 3D group push button, this property determines the height of the three-dimensional shadow
effect setting the number of pixels used to draw the bevel that surrounds the button.    The bevel width
can be set to a value between 0 and 2, inclusive.
For the 3D panel control, this property determines the number of pixels used to draw the inner and outer
bevels that surround the panel.    Bevel width can be set to a value between 0 and 30, inclusive.    Use
this property in conjunction with the BevelInner, BevelOuter, and BorderWidth properties.

Data Type
Integer

Click Event, 3D Controls

Occurs when the user presses and then releases a mouse button over a control.    You can trigger the
Click event in code by setting the control's Value property to True.    Applies to the 3D checkbox, 3D
group push button, 3D Option button, and 3D panel controls.

Syntax
Private Sub Object_Click (Value As Integer)

Remarks
This is the same as the standard Visual Basic Click event, except that the control's Value is passed as
an argument.    When the user selects the control, or when it is in the down position, Value = True.   
When the user does not select the control, or when it is in the up position, Value = False.
For the 3D checkbox control, the Click event is also generated when you change the Value property.   
For example, the following code will generate the Click event every time the form is clicked:
Private Sub Form_Click()

' The Click event will be generated whenever the Value
' property changes.
SSCheck1.Value = Abs(SSCheck1.Value)-1

End Sub

Outline Property, 3D Controls

Determines whether the control is displayed with a 1-pixel black border around its outer edge.    Applies
to the 3D command button, 3D group push button, and 3D panel controls.

Syntax
[form.]Object.Outline[= {True | False}]

Remarks
The following table lists the Outline property settings.

Setting Description
True (Default) A 1-pixel black border is drawn around the control.
False No border is drawn.

Data Type
Integer (Boolean)

Rounded Corners Property, 3D Controls

Determines whether the control is displayed with rounded corners.    Applies to the 3D command button,
3D group push button, and 3D panel controls.

Syntax
[form.]Object.RoundedCorners[= {True | False}]

Remarks
The following table lists the RoundedCorners property settings.

Setting Description
True (Default) The button's outline appears rounded (the four corner pixels are not drawn).
False The button's outline appears square.

Note      This property has no effect when the Outline property is False.

Data Type
Integer (Boolean)

ShadowColor Property, 3D Controls

Sets or returns the color used to draw the dark shading lines that make up the control.    Applies to the
3D frame and 3D panel controls.

Syntax
[form.]Object.ShadowColor[= setting%]

Remarks
The following table lists the ShadowColor property settings.

Setting Description
0 (Default) Dark gray
1 Black

The dark gray setting looks good in most situations.    If you would like the control to have a crisper look,
or if you want to be consistent with another ShadowColor property setting the same form, choose setting
1 (black).

Data Type
Integer (Enumerated)

Font3D Property, 3D Controls

Sets or returns the three-dimensional style of a 3D check box, 3D command button, 3D frame, 3D option
button, or 3D panel control.

Syntax
[form.]Object.Font3D[= setting%]

Remarks
The following table lists the Font3D property settings for the 3D controls.

Setting Description
0 (Default) No shading.    Caption is displayed flat (not three-dimensional).
1 Raised with light shading.    Caption appears raised off the screen.
2 Raised with heavy shading.    Caption appears more raised.
3 Inset with light shading.    Caption appears inset on the screen.
4 Inset with heavy shading.    Caption appears more inset.

The Font3D property works with all the other Font properties.    Settings 2 and 4 (heavy shading) look
best with larger, bolder fonts.

Data Type
Integer (Enumerated)

