

See Also

Object Type

Creating, Running, and Distributing Executable (.EXE) Files
Registering OLE Custom Controls

Trappable Errors for Windows 95 Custom Controls

Using Custom Properties Dialog Boxes
Visual Basic Custom Control Constants

Object Type

In Visual Basic, a control's object type is used with the TypeOf keyword in an If...Then...Else statement.
This is useful for creating a variable of that object type or determining the type of a control that is passed
as an argument to an event (for example, the source argument of the DragDrop event). For more
information on using a control's object type, search Help for the If keyword.

The object type, or class name, for each control is listed in the following table.

Control Object type
3D check box SSCheck

3D command button SSCommand
3D frame SSFrame

3D group push button SSRibbon
3D option button SSOption

3D panel SSPanel
Animated button AniPushButton
Communications MSComm
Data Outline DataOutline
Gauge Gauge
Graph Graph
ImageList ImageList
Key state MhState
ListView ListView
MAPI MapiSession, MapiMessages
Masked edit MaskEdBox
Multimedia MCI MMControl
Outline Outline
Picture clip PictureClip
ProgressBar ProgressBar
RichTextBox RichTextBox
Slider Slider

Spin button SpinButton
SSTab SSTab
StatusBar StatusBar
TabStrip TabStrip
ToolBar ToolBar
TreeView TreeView

Creating, Running, and Distributing Executable (.EXE) Files

To run your application under Microsoft Windows outside Visual Basic, create an executable (.EXE) file.
You can create executable files for applications that use custom controls the same way you do for any
other application. There are a few issues to consider, however, when running such an application.
See the following topics for more information.

Visual Basic Executable ((EXE) Files
Required Custom Control Files

Visual Basic Executable (.EXE) Files

A custom control file is a DLL that is accessed both by Visual Basic and applications created by using
Visual Basic. When you run an executable file that contains a custom control, the .OCX file associated
with it must be on your system's path or in the same directory as the .EXE file. Otherwise, the
application will not be able to find the code needed to create the control.

If a custom control can't be found, the Visual Basic run-time DLL generates the error message File
Not Found. To distribute an application that uses custom controls, it is recommended that your
installation procedure copy all required .OCX files into the user's Microsoft Windows \SYSTEM
subdirectory.

You can freely distribute any application you create with Visual Basic to any Microsoft Windows user.

(Visual Basic provides a Setup Wizard for writing your own application setups.) Users will need copies
of the following:

. The Visual Basic run-time file (VBRUN40016DLL or VBRUN40032.DLL).
. Any .OCX files.
" Additional DLLs as required by your application or by custom controls.

Required Custom Control Files

The files required by each custom control are listed in the following table.

Control

Required files

3D check box

3D command button

3D frame

3D group push button

3D option button
3D panel
Animated button
Communications
Gauge

Graph

ImageList
Key state

ListView
MAP| *

Masked edit
Multimedia MC] **
Outline

Picture clip

ProgressBar
RichEdit
Slider

Spin button

SSTab
StatusBar
TabStrip
Toolbar
Treeview

THREED16.0CX (16 bit)
THREED32.0CX (32 bit)

THREED16.0CX (16 bit)
THREED32.0CX (32 bit)

THREED16.0CX (16 bit)
THREED32.0CX (32 bit)

THREED16.0CX (16 bit)
THREED32.0CX (32 bit)

THREED16.0CX (16 bit)
THREED32.0CX (32 bit)

THREED16.0CX (16 bit)
THREED32.0CX (32 bit)

ANIBTN16.0CX (16 bit)
ANIBTN32.0CX (32 bit)

MSCOMM16.0CX (16 bit)
MSCOMM32.0CX (32 bit)

GAUGE16.0CX (16 bit)
GAUGE32.0XC (32 bit)

GRAPH16.0CX, GSW16.EXE,
GSWDLL16.DLL (16 bit)
GRAPH32.0CX, GSW32.EXE,
GSWDLL32.DLL (32 bit)

COMCTL.OCX (32 bit only)

KEYSTA16.0CX (16 bit)
KEYSTA32.0CX (32 bit)

COMCTL.OCX (32 bit only)

MSMAPI16.0CX (16 bit)
MSMAPI32.0CX (32 bit)

MSMASK16.0CX (16 bit)
MSMASK32.0CX (32 bit)

MCI16.0CX (16 bit)
MCI32.0CX (32 bit)

MSOUTL16.0CX (16 bit)
MSOUTL32.0CX (32 bit)

PICCLP16.0CX (16 bit)
PICCLP32.0CX (32 hit)

COMCTL.OCX (32 bit only)
RICHTX32.0CX (32 bit only)
COMCTL.OCX (32 bit only)

SPIN16.0CX (16 bit)
SPIN32.0CX (32 bit)

COMCTL.OCX (32 bit only)
COMCTL.OCX (32 bit only)
COMCTL.OCX (32 bit only)
COMCTL.OCX (32 bit only)
COMCTL.OCX (32 bit only)

* Microsoft Mail for Windows electronic mail system required.

** Multimedia PC required.

Registering OLE Custom Controls

When you install the Professional Edition, Visual Basic 4.0 automatically registers its OLE custom
controls in the system registry. You are then able to use the custom controls at design time to build
your applications.

If you plan to create a set-up program for your application, you'll need to include information on any OLE
custom controls in the SETUP.LST file. For more information, see chapter 30, "Distributing Your
Applications," in the Programmer's Guide.

The VB.LIC file, shipped in previous versions of Visual Basic, is not used for OLE Custom Controls.

Note Itis a violation of your license agreement to copy and distribute any information from the
Licenses section of the system registry.

Using Custom Properties Dialog Boxes

When setting the properties of a custom control, you may need or prefer to use the control's custom
properties dialog box. This dialog box provides an alternative to the list of properties in the Properties
window for setting control properties at design time.

Two Ways to Set Properties

The reason for the custom properties dialog box is that not all applications that use custom controls
provide a Properties window like the one in Visual Basic. The dialog box provides an interface for
setting key control properties regardless of the interface supplied by the hosting application.

For some control properties, you choose either of these two locations to set the property:

. The Properties window
" The custom properties dialog box

In some cases, the dialog box is the only way to set a property at design time. This is usually the
situation when the interface needed to set a property doesn't work inside the Properties window. For
example, assigning a series of images to an ImageL.ist control involves more than typing the name of a
file or choosing from a list.

Finding the Dialog Box

Not all custom controls provide a custom properties dialog box. To see whether a control provides this
dialog box, scroll the list of properties in the Properties Window to the top. If the list of properties
contains the name (Custom), then the control provides the dialog box.

Using the Dialog Box

After you choose the (Custom) entry in the Properties window, click the Properties button to display the
control's custom properties dialog box, often presented as a tabbed dialog box. Chose the tab that
contains the interface for setting the properties that you want to set.

After you make changes in one tab, you can often apply those changes immediately by clicking the
Apply button (if provided). You can click other tabs to set other properties as needed. To approve all
changes made in the dialog box, click the OK button. To return to the Properties window without
changing any property settings, click the Cancel button.

Documents the SetupWizard application. For information
about the Setup Toolkit, see the Visual Basic Help file.

Documents Visual Basic for Windows.

Documents the Data Access application.

Documents the Data Manager application.

Tutorials for learning to use Visual Basic for Windows.

Documents Microsoft Support Services.

Lists the applications written in Visual Basic that demonstrate
techniques discussed in the printed documentation.

Documents the custom controls provided with the
Professional Edition.

Documents the Crystal Reports application.

Documents the segmented hypergraphic editor for creating
hotspots within graphics for use in authoring Help files.

Documents the installation tools for ODBC.

Documents the ODBC driver for SQL Server databases.

Documents the VisData sample application.

Documents Windows functions as used in the C programming language.

Documents the Code Profiler add-in.

Documents Remote Automation, the Component Manager,
Remote Data Objects (RDO), and the RemoteData control
provided with the Enterprise Edition.

Documents the SourceSafe add-in for administrators.

Documents the SourceSafe add-in for users.

Text Files

Microsoft Visual Basic 4.0 includes additional information in the following files:

Text File Description

APILOD.TXT Describes how to use the API Text Viewer.

LABELS.TXT Contains information about mailing labels.

PACKING.LST Lists all files on the distribution disks provided with Visual Basic.

VBADLL.TXT Contains additional information about developing dynamic link libraries (DLLS) to
use with Visual Basic.

WIN31APLTXT Contains procedure, constant, and type declarations for 16-bit versions of Windows
API functions.

WIN32APLTXT Contains symbolic constants for 32-bit versions of Windows API functions.

WINMMSYS.TXT

Contains procedure, constant, and type declarations for Windows 3.1 multimedia
API functions.

x

3D Check Box Control
Properties Methods Events Constants Error Messages
Description

The 3D check box control emulates the standard Visual Basic check box control, which displays an
option that can be turned on or off. In addition, this control allows you to align three-dimensional text to
the right or left of the check box.

File Name
THREED16.0CX, THREED32.0CX

Class Name
SSCheck

Remarks

The 3D check box has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D check box on a form, the custom property settings for
the control are saved and used as a template for the next 3D check box that you create.

Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control. In Visual Basic, this control should be used on forms that
have the BackColor property set to light gray (&HOOCOCOCO0&).

Bound Properties

The 3D check box has three bound properties: DataChanged, DataField, and DataSource. This means
that it can be linked to a data control and display field values for the current record in the recordset.

The 3D check box can only be bound to a field that is of a boolean data type. The 3D check box control
can also write out values to the recordset.

When the value of the field referenced by the DataField property is read, it is converted to a Value
property value, if possible. If the field value is NULL, then the Value property is set to 2, which means
the check box is grayed.

For more information on using bound controls, refer to Chapter 22, "Accessing Databases With the Data
Control," in the Programmer's Guide.

Distribution Note When you create and distribute applications that use the 3D check box control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Wizard included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*Alignment Font

Caption *Font3D
Container FontBold
DataChanged Fontltalic
DataField FontName
DataSource FontSize
Draglcon FontStrikethru
DragMode FontUnderline
Enabled ForeColor

Value is the default value of the control.

HelpContextID

MousePointer

Parent

Tablndex
TabStop

Ta

To

Value

Visible
WhatsThisHelpID
Width

Ek

Note The Draglcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtIName property in Visual Basic 1.0.

The DataChanged, DataField, and DataSource properties are bound properties and are only available in

Visual Basic 3.0.

Events

All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

*Click GotFocus KeyUp MouseMove
DragDrop KeyDown LostFocus MouseUp
DragOver KeyPress MouseDown

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

Note The Drag and ZOrder methods are only available in Visual Basic.

(&

3D Command Button Control
Properties Methods Events Constants Error Messages

The 3D command button control emulates the standard Visual Basic command button control, which
performs a task when the user either clicks the button or presses a key. In addition, this control can
display a three-dimensional caption as well as a bitmap or icon. A variable bevel width allows the button
to appear raised off the screen.

File Name
THREED16.0CX, THREED32.0CX

Class Name
SSCommand

Remarks

The 3D command button has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D command button on a form, the custom property
settings for the control are saved and used as a template for the next 3D command button that you
create.

Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control. In Visual Basic, this control should be used on forms that have
the BackColor property set to light gray (&HOOCOCOCO0&).

Distribution Note When you create and distribute applications that use the 3D command button
control, you should install the appropriate file in the customer's Microsoft Windows \SYSTEM
subdirectory. The Setup Kit included with Visual Basic provides tools to help you write setup programs
that install your applications correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*AutoSize *Font3D hwnd *RoundedCorners
*BevelWidth FontBold Index Tablndex

Cancel Fontltalic Left TabStop

Caption FontName Mouselcon Tag

Container FontSize MousePointer Top

Default FontStrikethru Name Value

Draglcon FontUnderline Object Visible

DragMode ForeColor *Qutline WhatsThisHelpID
Enabled Height Parent Width

Font HelpContextID *Picture

Value is the default value of the control.

Note The Draglcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtIName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table.

Click GotFocus KeyUp MouseMove
DragDrop KeyDown LostFocus MouseUp
DragOver KeyPress MouseDown

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

Picture Property, 3D Command Button Control
Example

Specifies a bitmap or an icon to display on the command button. This property is write-only at design
time.

Syntax
[form.]CommandButton3d.Picture[= picture]
Remarks
The following table lists the Picture property settings for the 3D command button control.
Setting Description
(none) (Default) No picture.
(bitmap) or (icon) Designates a graphic to display. You can load the graphic from the Properties

window at design time.

In Visual Basic, you can load a graphic at design time from the Properties window. At run time, you can
set this property by using the LoadPicture function on a bitmap or icon, or you can use Clipboard
methods such as GetData, SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap
and vbCFDIB, as defined in the object library in the Object Browser.

If you set the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture function to save a graphic from a form or picture
box into a file.

Note This control can display bitmaps (.BMP) and icons (.ICO), but not Windows metafiles (WMF). At
run time, you can set the Picture property to any other object's Draglcon, Icon, Picture, or Image
property, or you can assign it the graphic returned by the LoadPicture function. You can only assign the
Picture property directly.

Data Type
Integer

Cloze | Copy I Print |
Picture Property Example, 3D Command Button Control

The following example pastes a bitmap from the Clipboard onto a command button. To try this example,
create a form with a command button, and then, in another application, copy a picture onto the
Clipboard, switch to Visual Basic, and run this example.

Note The picture must be on the Clipboard in bitmap form.

Private Sub Form Click ()
Const vbCFBitmap = 2
Command3Dl.Picture =

End Sub

Clipboard.GetData (vbCFBitmap)

&

3D Frame Control
Properties Methods Events Constants Error Messages

The 3D frame control emulates the standard Visual Basic frame control, which provides a graphical or
functional grouping of controls. The 3D frame control also allows the use of three-dimensional text (right,
left, or centered in the frame), and the frame itself can appear raised or inset.

File Name
THREED16.0CX, THREED32.0CX

Class Name
SSFrame

Remarks

The 3D frame has several custom properties that allow you to adjust the three-dimensional appearance
of the control. When you draw a 3D frame on a form, the custom property settings for the control are
saved and used as a template for the next 3D frame that you create.

Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control. In Visual Basic, this control should be used on forms that have
the BackColor property set to light gray (&HOOCOCOCO0&).

Distribution Note When you create and distribute applications that use the 3D frame control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*Alignment FontBold hwnd *ShadowColor

Caption Fontltalic Index *ShadowStyle

Container FontName Left Tabindex

Draglicon FontSize Mouselcon Tag

DragMode FontStrikethru MousePointer Top

Enabled FontUnderline Name Visible

Font ForeColor Object WhatsThisHelpl
D

*Font3D Height Parent Width

Caption is the default value of the control.

Note The Align, Draglcon, DragMode, HelpContextID, Index, and Parent properties are only available
in Visual Basic. The Name property is the same as the CtIName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table.

Click DragDrop MouseDown MouseUp
DblClick DragOver MouseMove

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Refresh ShowWhatsThis ZOrder
Move

Note The Drag and ZOrder methods are only available in Visual Basic.

ShadowsStyle Property, 3D Frame Control

Determines whether the frame appears inset or raised.

Syntax
[form.]JFrame3d.ShadowStyle[= color%]
Remarks
The following table lists the ShadowStyle property settings for the 3D frame control.
Setting Description
0 (Default) Inset. Frame appears inset into the form.
1 Raised. Frame appears raised off the form.
Data Type

Integer (Enumerated)

oo

3D Group Push Button Control
Properties Methods Events Constants Error Messages

The 3D group push button control is a push button that turns its state on and off when clicked. Individual
3D group push buttons can be used in groups to emulate the functionality of the tool bar in Microsoft
Excel spreadsheets or the ribbon in Microsoft Word for Windows word processing program. This control
has a Picture property to which a bitmap graphic can be assigned.

File Name
THREED16.0CX, THREED32.0CX

Class Name
SSRibbon

Remarks

The buttons on the 3D group push button control look similar to command buttons, but they behave
more like option buttons; that is, depressing one button within a button group automatically raises the
previously depressed button. You group buttons using the GroupNumber property. The GroupAllowAllUp
property also allows all 3D group push buttons in a group to be in the up position.

The button has three picture properties: PictureUp, PictureDn, and PictureDisabled. The PictureDisabled
property determines which graphic is displayed when the button is in the disabled state. You can specify
both PictureUp and PictureDn properties, or you can specify the up bitmap only, in which case the 3D
group push button will either dither, invert, or use the unchanged up bitmap when displaying the button
in the down position. You choose the type of change with the PictureDnChange property.

Note If the BevelWidth property is set to 1 or 2 rather than 0, the bitmap that you specify is only for
the area inside the bevels. The 3D group push button takes care of drawing the bevels and offsetting the
bitmap down and to the right when it is pressed. However, you may set the BevelWidth property to 0 and
incorporate the button shading for the up and down positions in your pictures.

Unlike most three-dimensional controls, the 3D group push button has a BackColor property. The
BackColor property defaults to light gray, but it can be changed to match the background color of the
bitmap that is placed on it. In this way a bitmap with a dominant background color can appear to be part
of the button. Note that the BackColor property only affects the area inside the 3D group push button's
beveled edges. The edges are always shaded with white and dark gray.

The 3D group push button has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D group push button on a form, the custom property
settings for the control are saved and used as a template for the next 3D group push button that you
create.

Distribution Note When you create and distribute applications that use the 3D group push button
control, you should install the appropriate file in the customer's Microsoft Windows \SYSTEM
subdirectory. The Setup Kit included with Visual Basic provides tools to help you write setup programs
that install your applications correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*AutoSize
BackColor
*BevelWidth
Container
Draglcon
DragMode
Enabled

*GroupAllowAllUp

Value is the default value of the control.

*GroupNumber
Height

Mouselcon
MousePointer

Name

Object

*Qutline

Parent
*PictureDisabled
*PictureDn
*PictureDnChange
*PictureUp

*RoundedCorners
Tablndex

Ta

To

Value

Visible
WhatsThisHelpID
Width

BB

Note

The Align, Draglcon, DragMode, HelpContextID, Index, and Parent properties are only available

in Visual Basic. Name is the same as the CtIName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

*Click DragOver MouseMove MouseUp
DragDrop MouseDown

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Move Refresh Zorder
ShowWhatsThis

Note The Drag and ZOrder methods are only available in Visual Basic.

GroupAllowAllUp Property, 3D Group Push Button Control

Determines whether all buttons in a logical group can be in the up position.

Syntax
[form.]GroupPushButton.GroupAllowAllUp[= {True | False}]
Remarks
The following table lists the GroupAllowAllUp property settings for the 3D group push button control.
Setting Description
True (Default) All buttons in the current logical group may be in the up position.
False At least one button in the current logical group must be depressed.

The setting of the GroupAllowAllUp property for a button in one group has no effect on any other group.

If the GroupAllowAllUp property is set to False, no check will be made by the 3D group push button
control to ensure that at least one button is depressed when the form on which the button resides is
loaded. It is up to you to set the initial state of the Value property for one of the buttons in the group to
True (depressed).

Note When the GroupAllowAllUp property is set for a button in a logical group, the GroupAllowAllUp
property is automatically set to the same value for all the other buttons in the group. Use the
GroupNumber property to create logical groups of 3D group push buttons.

Data Type
Integer (Boolean)

GroupNumber Property, 3D Group Push Button Control

Sets or returns the GroupNumber associated with the 3D group push button.

Syntax
[form.]GroupPushButton.GroupNumber| = group%]
Remarks
The following table lists the GroupNumber property settings for the 3D group push button control.
Setting Description
0 The button is not part of a logical grouping and as such can be turned on and off (by
means of code or a mouse click) independently of any other group push buttons on the
form.
1-99 (Default = 1) The button is a member of a logical grouping of 3D group push buttons (that

is, other buttons on the same form with the same GroupNumber property setting).

The GroupNumber property only has a grouping effect on buttons that are siblings, that is, buttons with
the same parent. For example, in Visual Basic, you could consider two buttons placed directly on a form
siblings, and you can use their GroupNumber property to group them. Then, if you place a third button in
a frame control on the same form, the third button would not be a sibling of the first two, even though
they are all on the same form.

This property defaults to 1, and all sibling buttons form a group.

If this property is set to 0, the button will operate independently. It will turn its state on or off when
clicked.

It is possible to set up multiple logical groups on a single form, frame, panel, or picture box by varying
the GroupNumber property. All siblings with the same GroupNumber will operate as a group.

Note There are two types of groups. The first type requires that at least one button in the group be
depressed (it operates like an option button group); the other type allows all buttons to be up. Refer to
the GroupAllowAllUp property for details.

Data Type
Integer

PictureDisabled Property, 3D Group Push Button Control

Specifies a bitmap to display on the 3D group push button when it is disabled. This property is write-only
at design time.

Syntax
[form.]GroupPushButton.PictureDisabled| = picture]
Remarks
The following table lists the PictureDisabled property settings for the 3D group push button control.
Setting Description
(none) (Default) No bitmap is specified for display when the button is disabled.
(bitmap) Designates a graphic to display on the button when it is disabled. You can load the

graphic from the Properties window at design time.

This graphic is only displayed if the 3D group push button is disabled, that is, its Enabled property is set
to False. Setting this property is optional. If you do not set this property, the button will display the
graphic specified for the PictureUp property.

In Visual Basic, you can load a graphic at design time from the Properties window. At run time, you can
set this property by using the LoadPicture function on a bitmap or, you can use Clipboard methods
such as GetData, SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap and
vbCFDIB, as defined in the Visual Basic (VB) object library in the Object Browser.

When setting the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture statement to save a graphic from a form or picture
box into a file.

Note At run time, you can set the Picture property to any other object's Picture or Image property, or
you can assign it the graphic returned by the LoadPicture function. The Picture property can only be
assigned directly.

Data Type
Integer

PictureDn Property, 3D Group Push Button Control

Specifies a bitmap to display on the button when it is in the depressed or down position. This property is
write-only at design time.

Syntax
[form.]GroupPushButton.PictureDn[= picture]
Remarks
The following table lists the PictureDn property settings for the 3D group push button control.
Setting Description
(none) (Default) No bitmap is specified for display when the button is down. When the button is

down, the PictureUp bitmap is displayed modified, as determined by the
PictureDnChange property.

(bitmap) Designates a graphic to display on the button when it is down. You can load the graphic
from the Properties window at design time.

This bitmap is displayed only if the button is in the down state; that is, the Value property is True. It is not
necessary to assign a bitmap to this property; if this property is set to none, the 3D group push button
automatically creates the bitmap to be displayed when the button is in the down position. See the
PictureDnChange property for an explanation of the options available when you want to have the 3D
group push button create the down bitmap.

If the BevelWidth property is set to 1 or 2 rather than 0, the bitmap that you specify is only for the area
inside the bevels. The 3D group push button takes care of drawing the bevels and offsetting the bitmap
down and to the right when it is pressed. However, you may set the BevelWidth property to 0 and
incorporate button shading for the up and down positions in your pictures.

You can load a graphic at design time from the Properties window. At run time, you can set this property
by using the LoadPicture function on a bitmap, or you can use Clipboard methods such as GetData,
SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap and vbCFDIB as defined in
the Visual Basic (VB) object library in the Object Browser.

When setting the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture statement to save a graphic from a form or picture
box into a file.

Note At run time, the Picture property can be set to any other object's Picture or Image property, or
you can assign it the graphic returned by the LoadPicture function. The Picture property can only be
assigned directly.

Data Type
Integer

PictureDnChange Property, 3D Group Push Button Control

Determines how the PictureUp bitmap is used to create the PictureDn bitmap if a PictureDn bitmap is
not specified.

Syntax
[form.]GroupPushButton.PictureDnChange| = setting%]
Remarks

The following table lists the PictureDnChange property settings for the 3D group push button control.

Setting Description

0 PictureUp bitmap unchanged.

1 (Default) Dither PictureUp bitmap. Create a copy of the up bitmap and change every other
pixel that is in the BackColor color to white. This has the effect of lightening that color (for
example, light gray will appear to be a lighter shade of gray).

2 Invert PictureUp bitmap.

When using setting 1 with large bitmaps, due to the overhead of dithering the bitmap, there is a slight
time lag the first time the button is pressed. If the time lag is unacceptable, use one of the other settings,
or specify a PictureDn bitmap.

Data Type
Integer (Enumerated)

PictureUp Property, 3D Group Push Button Control

Specifies a bitmap to display on the button when it is in the up position. This property is write-only at
design time.

Syntax
[form.]GroupPushButton.PictureUp| = picture]
Remarks
The following table lists the PictureUp property settings for the 3D group push button control.
Setting Description
(none) (Default) No bitmap is specified for display when the button is in the up position.
(bitmap) Designates a graphic to display on the button when it is up. You can load the graphic from

the Properties window at design time.

This bitmap is displayed if the button is in the up state; that is, the Value property is False. If the
PictureDn property is set to none, you can also use the PictureUp to create the bitmap to be displayed
when the button is in the down position. See the PictureDnChange property for an explanation of the
options available when you choose to have the 3D group push button create the down bitmap.

You can load a graphic at design time from the Properties window. At run time, you can set this property
by using the LoadPicture function on a bitmap, or you can use Clipboard methods such as GetData,
SetData, and GetFormat with the nontext Clipboard formats vbCFBitmap and vbCFDIB as defined in
the Visual Basic (VB) object library in the Object Browser.

When setting the Picture property at design time, the graphic is saved and loaded with the form. If you
create an executable file, the file contains the image. When you load a graphic at run time, the graphic is
not saved with the application. Use the SavePicture statement to save a graphic from a form or picture
box into a file.

Note At run time, you can set the Picture property to any other object's Picture or Image property, or
you can assign it the graphic returned by the LoadPicture function. The Picture property can only be
assigned directly.

Data Type
Integer

w

3D Option Button Control
Properties Methods Events Constants Error Messages

The 3D option button control emulates the standard Visual Basic option button control, which displays
an option that can be turned on or off. This control also allows you to align three-dimensional text to the
right or left of the option button.

File Name
THREED16.0CX, THREED32.0CX

Class Name
SSOption

Remarks

The 3D option button has several custom properties that allow you to adjust the three-dimensional
appearance of the control. When you draw a 3D option button on a form, the custom properties for the
control are remembered and used as a template for the next 3D option button that you create.

Since the three-dimensional gray scale look requires a background color of light gray, the BackColor
property is not available with this control. In Visual Basic, this control should be used on forms that have
the BackColor property set to light gray (&HOOCOCOCO0&).

Distribution Note \When you create and distribute applications that use the 3D option button control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*Alignment Fontltalic Index Tag

Caption FontName Left Top

Container FontSize Mouselcon Value

Draglcon FontStrikethru MousePainter Visible

DragMode FontUnderline Name WhatsThisHelplD
Enabled ForeColor Object Width

Font Height Parent

*Font3D HelpContextlD Tabindex

FontBold hwnd TabStop

Value is the default value of the control.

Note The Draglcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtIName property in Visual Basic 1.0.

Events

All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

*Click DragOver KeyDown KeyUp
*DblClick GotFocus KeyPress LostFocus
DragDrop

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

DbIClick Event, 3D Option Button Control

Occurs when the user presses and then releases a mouse button, then presses it again over an option

button. You can trigger the DbIClick event in code by setting the control's Value property to True.
Syntax

Private Sub OptionButton3d_DblClick (Value As Integer)

Remarks

This event is the same as the standard Visual Basic DblIClick event, except that the control's Value is
passed as an argument. When the option button is selected, Value = True. When it is not selected,
Value = False.

—

3D Panel Control
Properties Methods Events Constants Error Messages

You can use the 3D panel control to display plain or three-dimensional text on a three-dimensional
background, to group other controls on a three-dimensional background as an alternative to the frame
control, or to lend a three-dimensional appearance to standard controls such as list boxes, combo
boxes, scroll bars, and so on.

File Name
THREED16.0CX, THREED32.0CX

Class Name
SSPanel

Remarks

The 3D panel is a three-dimensional rectangular area of variable size that can be as large as the form
itself or just large enough to display a single line of text. It can present status information in a
dynamically colored circle or bar with or without showing percent. (See the FloodShowPct property.)

While you can create some dramatic effects with the 3D panel, the control only has four basic visual
properties: OuterBevel, InnerBevel, BevelWidth, and BorderWidth. By combining these properties in
different ways, you can generate interesting backgrounds for text and controls.

Unlike most 3D controls, the 3D panel has a BackColor property. It defaults to light gray but can be
changed to any color you choose. When used sparingly, the BackColor property can give presentation
panels additional impact without getting in the way of the form's usefulness.

Like frames, 3D panels can have other controls placed on them.

The 3D panel has several custom properties that allow you to adjust the three-dimensional appearance
of the control. When you draw a 3D panel on a form, the custom property settings for the control are
saved and used as a template for the next 3D panel that you create.

Bound Properties

The 3D panel has three bound properties: DataChanged, DataField, and DataSource. This means that it
can be linked to a data control and display field values for the current record in the recordset. The 3D
panel control can also write out values to the recordset.

When the value of the field referenced by the DataField property is read, it is converted to a Caption
property string, if possible. If the recordset is updatable, the string is converted to the data type of the
field.

For more information on using bound controls, refer to Chapter 22, "Accessing Databases With the Data
Control," in the Programmer's Guide.

Distribution Note \When you create and distribute applications that use the 3D panel control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Wizard included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

Align DataSource
*Alignment Draglcon
*AutoSize DragMode
BackColor Enabled
*Bevellnner *FloodColor
*BevelOuter *FloodPercent
*BevelWidth *FloodShowPct
*BorderWidth *FloodType
Container Font
DataChanged *Font3D
DataField FontBold
Fontltalic

Caption is the default value of the control.

FontName
FontSize

FontStrikethru
FontUnderline

ForeColor

Mouselcon
MousePointer
Name

Negotiate

Parent
*RoundedCorners
*ShadowColor
Tablndex

Tag

Top

Visible
WhatsThisHelplD
Width

Note The Draglcon, DragMode, HelpContextID, Index, and Parent properties are only available in
Visual Basic. The Name property is the same as the CtIName property in Visual Basic 1.0.

The DataChanged, DataField, and DataSource properties are bound properties and are only available in

Visual Basic 3.0.

Events
All of the events for this control are listed in the following table.

Click DragDrop MouseDown MouseUp
DblClick DragOver MouseMove

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Move Refresh Zorder
ShowWhatsThis

Note The Drag and ZOrder methods are only available in Visual Basic.

Bevellnner Property, 3D Panel Control

Determines the style of the inner bevel of the panel.

Syntax
[form.]Panel3d.Bevellnner| = setting%]
Remarks
The following table lists the Bevellnner property settings for the 3D panel control.
Setting Description
0 (Default) None. No inner bevel is drawn.
1 Inset. The inner bevel appears inset on the screen.
2 Raised. The inner bevel appears raised off the screen.

Use this property with the BevelOuter, BorderWidth, and BevelWidth properties.

Data Type
Integer (Enumerated)

BevelOuter Property, 3D Panel Control

Determines the style of the outer bevel of the panel.

Syntax
[form.]Panel3d.BevelOuter| = setting%]
Remarks
The following table lists the BevelOuter property settings for the 3D panel control.
Setting Description
0 None. No outer bevel is drawn.
1 Inset. The outer bevel appears inset on the screen.
2 (Default) Raised. The outer bevel appears raised off the screen.

Use this property with the Bevellnner, BorderWidth, and BevelWidth properties.

Data Type
Integer (Enumerated)

BorderWidth property, 3D Panel Control

Sets or returns the width of the border, which is the distance between the outer and inner bevels of the
panel.

Syntax
[form.]JPanel3d.BorderWidth[= width%)]

Remarks

The setting for this property determines the number of pixels between the inner and outer bevels that
surround the panel.

Border width can be set to a value between 0 and 30, inclusive.
Use this property in conjunction with the Bevellnner, BevelOuter, and BevelWidth properties.

Data Type
Integer

FloodColor Property, 3D Panel Control

Sets or returns the color used to paint the area inside the panel's inner bevel when the 3D panel is used
as a status or progress indicator (that is, when the FloodType property setting is other than none).

Syntax
[form.]JPanel3d.FloodColor[= coloré&]
Remarks
The FloodColor property has the same range of settings as standard Visual Basic color settings.
Setting Description
Normal RGB colors In Visual Basic, specified by using the Color palette, the RGB scheme, or

QBColor functions in code.

System default colors In Visual Basic, specified with system color constants listed in the object
library in the Object Browser.

Use this property with FloodPercent, FloodShowPct, and FloodType to cause the panel to display a
colored status bar indicating the degree of completion of a task.

At design time you can set this property by entering a hexadecimal value in the Settings box or by
clicking the three dots that appear at the right of the Settings box. Clicking this button displays a dialog
box that allows you to select a FloodColor setting from a palette of colors similar to the Visual Basic
Color Palette window.

Note The FloodColor property defaults to bright blue: RGB (0, 0, 255). The valid range for a normal
RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range equals 0; the lower
three bytes, from least to most significant, determine the amount of red, green, and blue, respectively.
The red, green, and blue components are each represented by a number between 0 and 255 (&HFF).

Data Type
Long

FloodPercent Property, 3D Panel Control
Example

Sets or returns the percentage of the painted area inside the panel's inner bevel when the panel is used
as a status or progress indicator (that is, FloodType property setting other than none). This property is
not available at design time.

Syntax
[form.]Panel3d.FloodPercent[= percent%)]

Remarks
The FloodPercent property can be set to an integer value between 0 and 100.
Use this property in conjunction with FloodColor, FloodShowPct, and FloodType to cause the panel to
display a colored status bar, indicating the degree of completion of a task.
Data Type
Integer

Cloze | Copy I Print |

FloodPercent Example, 3D Panel Control

Visual Basic Example

The following example shows how the FloodPercent property updates the display of a panel status bar.
Private Sub Commandl Click ()

Panel3dl.FloodPercent = 0

A}

Panel3dl.FloodType = 1 !

A}

Init status

Left to right

Do some long running process and update status bar at 10%

intervals.

For I%$ = 1 To 10
DoLongRunningProcess
Panel3dl.FloodPercent =

A}

IS * 10
a% = DoEvents /() ' Let Windows do other operations.
Next I%

End Sub

FloodShowPct Property, 3D Panel Control

Determines whether the current setting of the FloodPercent property will be displayed in the center of
the panel when the panel is used as a status or progress indicator (that is, FloodType property setting is
other than none).

Syntax
[form.]Panel3d.FloodShowPct[= {True | False}]

Remarks
The following table lists the FloodShowPct property settings for the 3D panel control.

Setting Description

True (Default) The current setting of the FloodPercent property will be displayed.

False The current setting of the FloodPercent property will not be displayed.
Data Type

Integer (Boolean)

FloodType Property, 3D Panel Control

Determines if and how the panel is used as a status or progress indicator.

Syntax
[form.]Panel3d.FloodType[= setting%]
Remarks
The following table lists the FloodType property settings for the 3D panel control.
Setting Description
0 (Default) None. Panel has no status bar capability and the caption (if any) is displayed.
1 Left to right. Panel will be painted in a color, which is specified by the FloodColor property,
from the left inner bevel to the right as the FloodPercent property increases.
2 Right to left. Panel will be painted in a color, which is specified by the FloodColor property,
from the right inner bevel to the left as the FloodPercent property increases.
3 Top to bottom. Panel will be painted in a color, which is specified by the FloodColor
property, from the top inner bevel downward as the FloodPercent property increases.
4 Bottom to top. Panel will be painted in a color, which is specified by the FloodColor
property, from the bottom inner bevel upward as the FloodPercent property increases.
5 Widening circle. Panel will be painted in a color, which is specified by the FloodColor

property, from the center outward in a widening circle as the FloodPercent property
increases.

Note If the FloodType setting is a value other than 0, the panel caption (if any) will not be displayed.

Data Type

Integer (Enumerated)

H .
Animated Button Control
Properties Methods Events Constants Error Messages

The animated button control is a flexible button control that allows you to use any icon, bitmap, or
metafile to define your own button controls. Control types include animated buttons, multistate buttons,
and animated check boxes.

File Name
ANIBTN16.0CX, ANIBTN32.0CX

Class Name
AniPushButton

Remarks

Each animated button can contain zero or more images and an optional text caption. An animated
button can be thought of as a series of frames that are displayed in sequence.

You can use the Picture property to load images into the animated button control. The Frame property
indicates which picture is currently accessible through the Picture property. In other words, the Frame
property is an index of the array of images in the control.

The images are displayed within the control's border. The default is to display the images in the center of
the control, but you can use the PictureXpos and PictureYpos properties to position the image within the
control. You can also use the PictDrawMode property to scale the image to the exact size of the control
or to adjust the control to the size of your image.

The Caption text can be displayed next to the images or on the images, depending on the TextPosition
property.

Distribution Note When you create and distribute applications that use the animated button control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Animation Cycles and Button Types
The following table shows how you can use frame sequences to implement various types of animated
buttons.
Button type Cycle Description

Animated 0 When the left mouse button is clicked, half of the frames are displayed
in order. When the button is released, the remaining frames are
displayed in order, returning to the first frame.

Multistate 1 Each frame specifies a particular state. When the left button is clicked,
it automatically switches to the next state and displays the appropriate
frame.

2-state animated 2 When the left button is clicked, frames are displayed in sequential order
until the middle frame appears, and the state is changed to 2 (that is,
checked).

When the button is clicked again, the remaining frames are displayed,
returning to the first frame. The state is changed back to 1.

Enhanced button 0 An animated button with only two frames.
Enhanced check box 1 A multistate button with two frames.

It is possible to pass Clipboard images directly into animated button frames. When loading frames, it is
also possible to pass Windows metafiles; images are scaled to the control and then converted into
bitmaps.

Note The animated button control is generally used to create small- to medium-sized buttons.
However, the control is capable of holding large bitmaps. Bitmaps and icons held in an animated button
control use few Windows resources. The data is stored in global memory in a private format and does

not use Windows bitmap or icon resource handles. The animated button control is a useful tool for
archiving bitmaps or icons.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

BackColor Font hwnd *SpecialOp
BorderStyle FontBold Index *Speed
Caption Fontltalic Left Tabindex
*CCBfileLoad FontName Mouselcon TabStop
*CCBfileSave FontSize MousePointer Tag
*ClearFirst FontStrikethru Name *TextPosition
*ClickFilter FontUnderline Object *TextXpos
Caption ForeColor Parent *TextYpos
*Cycle *Frame *PictDrawMode Top
Draglcon Height *Picture *Value
DragMode HelpContextID *PictureXpos Visible
Enabled *HideFocusBox *PictureYpos WhatsThisHelpID
Width

Value is the default value of the control.

Note The Name property is the same as the CtIName property in Visual Basic 1.0.

Events

All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

*Click DragOver KeyDown KeyUp
DragDrop GotFocus KeyPress LostFocus
Methods

All of the methods for this control are listed in the following table. For documentation of the methods not
unigue to this control, see Appendix A, "Standard Properties, Events, and Methods," in the Custom
Control Reference.

Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

CcCBfileLoad Property, Animated Button Control

Loads image and animated button property information from files previously saved with the CCBfileSave
property. This property is write-only.

Syntax
[form.JAniButton.CCBfileLoad = filename$

Remarks
All animated button files have the extension .CCB.

CCB files save only image information and animated button property information. Except for the
BorderStyle property, information for standard properties is not saved in these files. If you want to save
all of the information for an animated button control, place it on a form and save the form. In App Studio,
place the control on a dialog and save the dialog. You can also copy controls using the Clipboard.

You can type the name of the file directly or click the ellipsis (...) to the right of the Settings box to open a
CCBfileLoad dialog box.

Animated button CCB files are fully compatible with Desaware's Custom Control Factory and can be
used to transfer frame sequences to and from Custom Control Factory controls.

Data Type
String

CcCBfileSave Property, Animated Button Control

Saves information for an animated button control in a file. This property is write-only.

Syntax
[form.JAniButton.CCBfileSave = filename$

Remarks

The name of the CCB file to save is indicated by the placeholder filename$. All animated button files
have the extension .CCB.

You can save image and property information into CCB files that can then be distributed or used to build
a library of animated button controls. These files save only image and animated button property
information. Except for the BorderStyle property, information for standard properties is not saved in the
CCB files. If you want to save all of the information for an animated button control, place it on a form and
save the form. In App Studio, place the control on a dialog and save the dialog. You can also use the
Clipboard to copy controls.

You can type in the name of the file directly or click the ellipsis (...) to the right of the Settings box to
open a CCBfileSave dialog box.

Animated button CCB files are fully compatible with Desaware's Custom Control Factory and can be
used to transfer frame sequences to and from Custom Control Factory controls.

Data Type
String

ClearFirst Property, Animated Button Control

Determines whether the control is cleared between frames.

Syntax
[form.]AniButton.ClearFirst[= {True | False}]

Remarks
Normally, button controls are animated by drawing a new frame right on top of a previous frame. This
produces a smooth animation effect when either the image is stable or changes are gradual.
If you animate an image with large changes (for example, if an object is moving rapidly), an illusion of
tearing may occur when part of the old image and part of the new image are on the screen at the same
time.
Setting ClearFirst to True causes the control to be cleared between frames. This eliminates the tearing
effect; however, it does tend to cause increased flicker between frames. Try the control both ways to
determine which produces the best effect.

The following table lists the ClearFirst property settings for the animated button control.

Setting Description
False (Default) ClearFirst feature disabled.
True ClearFirst feature enabled.

Data Type

Integer (Boolean)

ClickFilter Property, Animated Button Control

Determines what part of the animated button control detects a mouse click.

Syntax
[form.]JAniButton.ClickFilter[= setting%]
Remarks
The following table lists the ClickFilter property settings for the animated button control.
Setting Description
0 (Default) Mouse clicks are detected anywhere in the control.
1 Mouse clicks must be on either the caption text or the actual image frame in order to be
detected.
2 Mouse clicks must be on the image frame in order to be detected.
3 Mouse clicks must be on the caption text in order to be detected.

All mouse clicks on parts of the window that are not specified will be ignored. The animated button
invokes a Click event when a mouse click is detected.

Data Type
Integer (Enumerated)

Cycle Property, Animated Button Control

Controls the animation cycle and differentiates between animated, multistate, and 2-state animated

buttons.

Syntax

[form.]JAniButton.Cycle[= setting%6]

Remarks

The following table lists the Cycle property settings for the animated button control.

Setting

Description

0

(Default) Plays one half of the frame sequence when the user chooses (clicks) the button.
Plays the rest of the frame sequence when the button is released. Returns to the first
frame.

Jumps to the next frame in the sequence when the button is released. Increments the
Value property at this time. This implements a one-frame-per-state multistate button.
Clicking the button when the button is set to the last frame (last state) causes the button
to return to the first frame (first state).

Plays one half of the frame sequence when the user chooses (clicks) the button for the
first time. This sets the Value property to 2 (from 1). When the button is clicked again, the
remaining frames will be played and the button will return to frame 1. At this time the
Value property will be set back to 1. This implements a 2-state animated button.

The Cycle property affects only the display sequence of images. The Click event occurs when the
mouse button is released. Pressing the SPACEBAR when a button has the focus causes the button to be
selected and released (as if it were clicked by the mouse).

Data Type

Integer (Enumerated)

Frame Property, Animated Button Control
Example

Indicates the current frame.

Syntax
[form.JAniButton.Frame[= setting%]

Remarks
The frame property has the following effects:

" The current frame is the frame displayed while in design mode.
" The current frame is the frame that can be accessed using the Picture property (in both design
and run modes under program control).
The Frame property has no effect on the appearance of the control at run time. It still can be set to
choose the frame to set or retrieve using the Picture property.

The Frame property can have the values one through the number of frames plus one. The argument
setting% is the number of the individual frame that is displayed in design mode and that can be
accessed in both design and run mode.

Data Type
Integer

Cloze | Copy I Print |
Frame Property Example, Animated Button Control

The following example shows how to determine the number of frames in an animated button control at
run time.

Private Sub Form Click ()

Dim a%, done%

' This will hold the frame number.

as = 1

' This flag tells us when done.

done% = 0

On Error GoTo foundprop

Do
' Buttons CtlName property here.
AniButtonl.frame = a%
' Done. a% contains the number of
' the frame that caused the error.
If done% Then Exit Do
a%s = a%$ + 1

Loop While - 1

' Calculate the actual number of images.

''a% - 1 is the empty trailing frame.
a%$ = a% - 1

Exit Sub

FoundProp:
done% = -1

Resume Next
End Sub

HideFocusBox Property, Animated Button Control

Normally, when an animated button has the focus, a dotted-line rectangle appears around the caption
(or around the image if no caption is present).

There are occasions, however, when the focus rectangle might interfere with the animation. To prevent
the focus rectangle from appearing, set this property to True.

Syntax
[form.]AniButton.HideFocusBox[= {True | False}]
Remarks
The following table lists the HideFocusBox property settings for the animated button control.
Setting Description
False (Default) Focus rectangle appears when the control has the focus.
True Focus rectangle is hidden when the control has the focus.
Data Type

Integer (Boolean)

PictDrawMode Property, Animated Button Control

Defines how the image frame is drawn within the control. It is possible for any given image frame
(bitmap or icon) to be smaller or larger than the control.

Syntax
[form.]AniButton.PictDrawMode[= setting%6]
Remarks
The following table lists the PictDrawMode property settings for the animated button control.
Setting Description
0 (Default) Positions the image according to the values in the PictureXpos and PictureYpos

properties and places the caption according to the TextPosition property value. These
properties control the X and Y position on a scale of 0 to 100.

1 Automatically controls the sizing mode. The animated button control is sized to fit the
largest image frame or the caption, whichever is largest.
2 Stretches the image to fit. The image frame is expanded or contracted to fill the current

size of the control. In this mode, the caption (if present) is always printed as if the
TextPosition property were set to 0 (that is, displayed on top of the image).

Data Type
Integer (Enumerated)

Picture Property, Animated Button Control

You can use this property to set and get the image frames in the control. In design mode, you can click
the ellipsis (...) to the right of the Settings box to open the Load Picture dialog box.

You can use this property to transfer images between forms and picture controls and the animated
button control. This is done by assignment in the same way that images can be transferred using the
Picture property in forms and picture controls. For example:

Form.Picture = Anibuttonl.Picture.

The image frame that is accessed with this property is always the image specified by the Frame
property.

PictureXpos Property, Animated Button Control

Controls the horizontal placement of the image in the control.

Syntax
[form.]JAniButton.PictureXpos| = setting%]

Remarks

The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the control. Thus, a value of 0 places the image at the upper-left
corner of the control; a value of 100 places it at the lower-right corner of the control. The default value is
50. Refer to the TextPosition property for details on how the behavior of this property may be modified
by the positioning of the caption.

Data Type
Integer

PictureYpos Property, Animated Button Control

Controls the vertical placement of the image in the control.

Syntax
[form.JAniButton.PictureYpos| = setting%]

Remarks

The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the control. Thus, a value of 0 places the image at the upper-left
corner of the control; a value of 100 places it at the lower-right corner of the control. The default value is
50. Refer to the TextPosition property for details on how the behavior of this property may be modified
by the positioning of the caption.

Data Type
Integer

SpecialOp Property, Animated Button Control

Triggers special operations on the part of the animated button control. A special operation is triggered by
assigning a value to this property at run time. This property is not available at design time and is write-
only at run time.

Syntax
[form.]AniButton.SpecialOp = setting%

Remarks
The following table lists the SpecialOp property settings for the animated button control.

Setting Description

1 Simulates a click. The control behaves exactly as if it had been clicked. The control
receives the focus and the form is activated if necessary. This option will not work if
the button's Enabled property is False. This option has no effect if the control's
Visible property is set to False.

Any other value No effect. No error is reported.

Data Type
Integer

Speed Property, Animated Button Control

Specifies the approximate delay, in milliseconds, between frames.

Syntax
[form.]JAniButton.Speed[= setting%]

Remarks
Enter a value between 0 and 32767, inclusive. The default value is 0.
Larger numbers slow down the animation speed, and using very large numbers with this property
significantly impacts system performance. For best results, choose values below 100.
Data Type
Integer

TextPosition Property, Animated Button Control

Controls the position of the caption in the control. By doing so, it also influences the position of the

image.
Syntax

[form.]JAniButton. TextPosition[= setting%]
Remarks

The following table lists the TextPosition property settings for the animated button control.

Setting Description

0 (Default) Caption is positioned within the control based on the TextXpos and TextYpos
properties. The image is positioned according to the PictDrawMode, PictureXpos, and
PictureYpos properties.

1 Image is placed at the left of the control. The TextXpos property positions the caption
within the space between the rightmost position of the image and the rightmost position of
the control. The vertical position is determined the same as when the TextPosition
property is 0.

2 Image is placed at the right of the control. The TextXpos property positions the caption
within the space between the leftmost position of the image and the leftmost position of
the control. The vertical position is determined the same as when the TextPosition
property is O.

3 Image is placed at the bottom of the control. The TextYpos property positions the caption
within the space between the top of the image and the top of the control. The horizontal
position is determined the same as when the TextPosition property is 0.

4 Image is placed at the top of the control. The TextYpos property positions the caption
within the space between the bottom of the image and the bottom of the control. The
horizontal position is determined the same as when the TextPosition property is 0.

Note When the PictDrawMode property is 2, the image and caption positions are the same as when

the TextPosition property is 0.

Data Type

Integer (Enumerated)

TextXpos Property, Animated Button Control

Controls the horizontal placement of the text caption.

Syntax

[form.]JAniButton. TextXpos| = setting%]

Remarks

The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the caption area in the control. Thus, a value of O places the
caption at the upper-left corner of the caption area; a value of 100 places it at the lower-right corner of
the caption area. The default value is 50.

The caption area refers to the part of the control reserved for the text caption. This depends on which
setting you use for the TextPosition property, as described in the following table.

Setting Description
0 Caption area is entire control. Caption overlays any images in the control.
1 Caption placed to the right of the image.
2 Caption placed to the left of the image.
3 Caption placed above the image.
4 Caption placed below the image.
Data Type

Integer (Enumerated)

TextYpos Property, Animated Button Control

Controls the vertical placement (TextYpos) of the text caption.

Syntax

[form.]JAniButton.TextYpos| = setting%]

Remarks

The value of this property can vary from 0 to 100, inclusive. The value represents the percentage
placement from the upper-left corner of the caption area in the control. Thus, a value of O places the
caption at the upper-left corner of the caption area; a value of 100 places it at the lower-right corner of
the caption area. The default value is 50.

The caption area refers to the part of the control reserved for the text caption. This depends on which
setting you use for the TextPosition property, as described in the following table.

Setting Description
0 Caption area is entire control. Caption overlays any images in the control.
1 Caption placed to the right of the image.
2 Caption placed to the left of the image.
3 Caption placed above the image.
4 Caption placed below the image.
Data Type

Integer (Enumerated)

Value Property, Animated Button Control

Indicates the state of a 2-state or multistate animated button. Refer to the Cycle property for how this
property works for the different button and animation modes.

Syntax
[form.]AniButton.Value[= setting%s]

Remarks

This property can be retrieved to determine the current frame number of an animated button control.
When the Cycle property is set to 1, you can use the Value property to specify the frame of the cycle you
want to display.

When the Value property of a control is changed, the display may not be updated until subsequent
events have occurred (such as the DoEvents() function).

Setting the Value property of a control does not cause a Click event to occur.

Data Type
Integer (Enumerated)

Click Event, Animated Button Control

Occurs when the user presses and then releases a mouse button over an animated button.

Syntax
Private Sub AniButton_Click ()

Remarks

This event is the same as the standard Visual Basic Click event, except that it is not generated when the
user presses Enter. You can use a KeyPress event to detect when the user presses Enter.

i ..
& Communications Control
Properties Events Functions Example Constants Error Messages

The communications control provides serial communications for your application by allowing the
transmission and reception of data through a serial port.

File Name
MSCOMM16.0CX, MSCOMM32.0CX

Class Name
MSComm

Remarks
The communications control provides the following two ways for handling communications:

. Event-driven communications is a very powerful method for handling serial port interactions. In
many situations you want to be notified the moment an event takes place, as when a character arrives or
a change occurs in the Carrier Detect (CD) or Request To Send (RTS) lines. In such cases, you would
use the communications control's OnComm event to trap and handle these communications events. The
OnComm event also detects and handles communications errors. For a list of all possible events and
communications errors, see the CommEvent property.
. You can also poll for events and errors by checking the value of the CommEvent property after
each critical function of your program. This may be preferable if your application is small and self-
contained. For example, if you are writing a simple phone dialer, it may not make sense to generate an
event after receiving every character, because the only characters you plan to receive are the OK
response from the modem.

Each communications control you use corresponds to one serial port. If you need to access more than

one serial port in your application, you must use more than one communications control. The port

address and interrupt address can be changed from the Windows Control Panel.

Although the communications control has many important properties, there are a few that you should be

familiar with first.

Properties Description

CommPort Sets and returns the communications port number.

Settings Sets and returns the baud rate, parity, data bits, and stop bits as a string.
PortOpen Sets and returns the state of a communications port. Also opens and closes a port.
Input Returns and removes characters from the receive buffer.

Output Writes a string of characters to the transmit buffer.

Distribution Note \When you create and distribute applications that use the communications control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Cloze | Copy I Print |

Communications Control Example
The following simple example shows how to perform basic serial port communications:

Private Sub Form Load ()

' Use COM1.

Comml .CommPort = 1

' 9600 baud, no parity, 8 data, and 1 stop bit.
Comml.Settings = "9600,N,8,1"

Tell the control to read entire buffer when Input is used.
Comml.InputLen = 0O
' Open the port.
Comml.PortOpen = True
' Send the attention command to the modem.
Comml.Output = "AT" + Chr$(13)
' Wait for data to come back to the serial port.
Do
Dummy = DoEvents ()
Loop Until Comml.InBufferCount >= 2
' Read the "OK" response data in the serial port.
InString$ = Comml.Input
' Close the serial port.
Comml.PortOpen = False
End Sub

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*Break *DSRTimeout Left *PortOpen
*CDHolding *DTREnable Name *RThreshold
*CDTimeout *Handshaking *NullDiscard *RTSEnable
*CommEvent *InBufferCount Object *Settings
*CommID *InBufferSize *QutBufferCount *SThreshold
*CommPort Index *QutBufferSize Tag
*CTSHolding *Input *Qutput Top
*CTSTimeout *InputLen Parent

*DSRHolding *Interval *ParityReplace

Input is the default value of the control.

Note The Name property is the same as the CtIName property in Visual Basic 1.0.

Events

All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

*OnComm
Functions

All of the functions for this control are listed in the following table. Functions that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*Comlinput *ComOutput

Break Property, Communications Control
Example

Sets or clears the break signal state. This property is not available at design time.

Syntax
[form.JMSComm.Break| = {True | False}]
Remarks
The following table lists the Break property settings for the communications control.
Setting Description
True Sets the break signal state.
False Clears the break signal state.

When set to True, the Break property sends a break signal. The break signal suspends character
transmission and places the transmission line in a break state until you set the Break property to False.

Typically, you set the break state for a short interval of time, and only if the device with which you are
communicating requires that a break signal be set.

Data Type
Integer (Boolean)

Cloze | Copy I Print |
Break Example, Communications Control

The following example shows how to send a break signal for a tenth of a second:

' Set the Break condition.
Comml .Break = True
' Set duration to 1/10 second.
Duration! = Timer + .1
' Wait for the duration to pass.
Do Until Timer > Duration!

Dummy = DoEvents ()
Loop
' Clear the Break condition.
Comml .Break = False

CDHolding Property, Communications Control

Determines whether the carrier is present by querying the state of the Carrier Detect (CD) line. Carrier
Detect is a signal sent from a modem to the attached computer to indicate that the modem is online.
This property is not available at design time and is read-only at run time.

Syntax
[form.]MSComm.CDHolding

Remarks
The following table lists the CDHolding property settings for the communications control.

Setting Description
True Carrier Detect line is high.
False Carrier Detect line is low.

When the Carrier Detect line is high (CDHolding = True) and the CDTimeout number of milliseconds has
passed, the communications control sets the CommEvent property to comCDTO (Carrier Detect
Timeout Error), and generates the OnComm event.

Note It is especially important to trap a loss of the carrier in a host application, such as a bulletin
board, because the caller can hang up (dropping the carrier) at any time.

The Carrier Detect is also known as the Receive Line Signal Detect (RLSD).
See the CDTimeout property for information on trapping this condition using the OnComm event.

Data Type
Integer (Boolean)

CDTimeout Property, Communications Control

Sets and returns the maximum amount of time (in milliseconds) that the control waits for the Carrier
Detect (CD) signal before timing out. This property indicates timing out by setting the CommEvent
property to comCDTO (Carrier Detect Timeout Error) and generating the OnComm event.

Syntax
[form.JMSComm.CDTimeout[= milliseconds&]

Remarks

Note The 32-hit version of this control (MSCOMM32.0CX) doesn't support this property.

When the Carrier Detect line is low (CDHolding = False) and CDTimeout number of milliseconds has
passed, the communications control sets the CommEvent property to comCDTO (Carrier Detect
Timeout Error) and generates the OnComm event.

Refer to the CDHolding property for more information on detecting the presence of a carrier.

Data Type
Long

CommEvent Property, Communications Control

Returns the most recent communication event or error. This property is not available at design time and
is read-only at run time.

Syntax
[form.JMSComm.CommEvent

Remarks

Although the OnComm event is generated whenever a communication error or event occurs, the
CommEvent property holds the numeric code for that error or event. To determine the actual error or
event that caused the OnComm event, you must reference the CommEvent property.

The code returned by the CommEvent property is one of the settings of the following communication
errors or events, as specified in the object library in the Object Browser.

Communications errors include the following settings.

Setting Value Description

comBreak 1001 A Break signal was received.

comCTSTO 1002 Clear To Send Timeout. The Clear To Send line was low for CTSTimeout
number of milliseconds while trying to transmit a character.

comDSRTO 1003 Data Set Ready Timeout. The Data Set Ready line was low for
DSRTimeout number of milliseconds while trying to transmit a character.

comFrame 1004 Framing Error. The hardware detected a framing error.

comOverrun 1006 Port Overrun. A character was not read from the hardware before the

next character arrived and was lost. If you get this error under Windows
version 3.0, decrease the value of the Interval property. For more details,
refer to the Interval property.

comCDTO 1007 Carrier Detect Timeout. The Carrier Detect line was low for CDTimeout
number of milliseconds while trying to transmit a character. Carrier
Detect is also known as the Receive Line Signal Detect (RLSD).

comRxOver 1008 Receive Buffer Overflow. There is no room in the receive buffer.

comRxParity 1009 Parity Error. The hardware detected a parity error.

comTxFull 1010 Transmit Buffer Full. The transmit buffer was full while trying to queue a
character.

Communications events include the following settings.

Setting Value Description

comEvSend 1 There are fewer than SThreshold number of characters in the transmit
buffer.

comEvReceive 2 Received RThreshold number of characters. This event is generated

continuously until you use the Input property to remove the data from the
receive buffer.

comEVCTS 3 Change in Clear To Send line.
comEVDSR 4 Change in Data Set Ready line. This event is only fired when DSR
changes from =1 to 0.
comEvCD 5 Change in Carrier Detect line.
comEvRing 6 Ring detected. Some UARTSs (universal asynchronous receiver-transmitters) may
not support this event.
cOmEVEOF 7 End Of File (ASCII character 26) character received.
Data Type

Integer

CommlID Property, Communications Control

Returns a handle that identifies the communications device. This property is not available at design time
and is read-only at run time.

Syntax
[form.JMSComm.CommID

Remarks
This is the value returned by the Windows APl OpenComm function and used by the internal
communications routines in the Windows API.

Data Type
Integer

CommPort Property, Communications Control

Sets and returns the communications port number.

Syntax
[form.JMSComm.CommPort[= portNumber%)]

Remarks

You can set portNumber to any number between 1 and 99 at design time (the default is 1). However, the
communications control generates error 68 (Device unavailable) if the port does not exist when you
attempt to open it with the PortOpen property.

Warning You must set the CommPort property before opening the port.

Data Type
Integer

CTSHolding Property, Communications Control

Determines whether you can send data by querying the state of the Clear To Send (CTS) line. Typically,
the Clear To Send signal is sent from a modem to the attached computer to indicate that transmission
can proceed. This property is not available at design time and is read-only at run time.

Syntax
[form.JMSComm.CTSHolding

Remarks
The following table lists the CTSHolding property settings for the communications control.

Setting Description
True Clear To Send line high.
False Clear To Send line low.

When the Clear To Send line is low (CTSHolding = False) and the CTSTimeout number of milliseconds
has passed, the communications control sets the CommEvent property to comCTSTO (Clear To Send
Timeout) and invokes the OnComm event.

The Clear To Send line is used in RTS/CTS (Request To Send/Clear To Send) hardware handshaking.
The CTSHolding property gives you a way to manually poll the Clear To Send line if you need to
determine its state.

For more information on handshaking protocols, see the Handshaking property.

Data Type
Integer (Boolean)

CTSTimeout Property, Communications Control

Sets and returns the number of milliseconds to wait for the Clear To Send signal before setting the
CommEvent property to comCTSTO and generating the OnComm event.

Syntax
[form.JMSComm.CTSTimeout[= milliseconds&]

Remarks

Note The 32-hit version of this control (MSCOMM32.0CX) doesn't support this property.

When the Clear To Send line is low (CTSHolding = False) and the CTSTimeout number of milliseconds
has passed, the communications control sets the CommEvent property to comCTSTO (Clear To Send
Timeout) and generates the OnComm event.

See the CTSHolding property, which gives you a means to manually poll the Clear To Send line.

Data Type
Long

DSRHolding Property, Communications Control

Determines the state of the Data Set Ready (DSR) line. Typically, the Data Set Ready signal is sent by a
modem to its attached computer to indicate that it is ready to operate. This property is not available at
design time.

Syntax
[form.JMSComm.DSRHolding[= setting]
Remarks
The following table lists the DSRHolding property settings for the communications control.
Setting Description
True Data Set Ready line high.
False Data Set Ready line low.

When the Data Set Ready line is high (DSRHolding = True) and the DSRTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to comDSRTO
(Data Set Ready Timeout) and invokes the OnComm event.

This property is useful when writing a Data Set Ready/Data Terminal Ready handshaking routine for a
Data Terminal Equipment (DTE) machine.

Data Type
Integer (Boolean)

DSRTimeout Property, Communications Control

Sets and returns the number of milliseconds to wait for the Data Set Ready (DSR) signal before setting
the CommEvent property to comDSRTO and generating the OnComm event.

Syntax
[form.JMSComm.DSRTimeout[= millisecondsé&]

Remarks

Note The 32-hit version of this control (MSCOMM32.0CX) doesn't support this property.

When the Data Set Ready line is high (DSRHolding = True) and the DSRTimeout number of
milliseconds has passed, the communications control sets the CommEvent property to comDSRTO
(Data Set Ready Timeout) and generates the OnComm event.

This property is useful when writing a Data Set Ready/Data Terminal Ready handshaking routine for a
DTE machine.

See the DSRHolding property, which allows you to manually poll the Data Set Ready line.

Data Type
Long

DTREnable Property, Communications Control

Determines whether to enable the Data Terminal Ready (DTR) line during communications. Typically,
the Data Terminal Ready signal is sent by a computer to its modem to indicate that the computer is
ready to accept incoming transmission.

Syntax
[form.]MSComm.DTREnable[= {True | False}]

Remarks
The following table lists the DTREnable property settings for the communications control.

Setting Description
True Enable the Data Terminal Ready line.
False (Default) Disable the Data Terminal Ready line.

When DTREnable is set to True, the Data Terminal Ready line is set to high (on) when the port is
opened, and low (off) when the port is closed. When DTREnable is set to False, the Data Terminal
Ready always remains low.

Note In most cases, setting the Data Terminal Ready line to low hangs up the telephone.

Data Type
Integer (Boolean)

Handshaking Property, Communications Control

Sets and returns the hardware handshaking protocol.

Syntax

[form.JMSComm.Handshaking[= protocol%)]

Remarks

Handshaking refers to the internal communications protocol by which data is transferred from the
hardware port to the receive buffer. When a character of data arrives at the serial port, the
communications device has to move it into the receive buffer so that your program can read it. If there is
no receive buffer and your program is expected to read every character directly from the hardware, you
will probably lose data because the characters can arrive very quickly.

A handshaking protocol insures that data is not lost due to a buffer overrun, in which case data arrives at
the port too quickly for the communications device to move the data into the receive buffer.

Valid protocols are listed in the following table.

Setting Value Description

comNone 0 (Default) No handshaking.

comXOnXOff 1 XON/XOFF handshaking.

COMRTS 2 RTS/CTS (Request To Send/Clear To Send) handshaking.

COMRTSXOnXOff 3 Both Request To Send and XON/XOFF handshaking.
Data Type

Integer

InBufferCount Property, Communications Control

Returns the number of characters waiting in the receive buffer. This property is not available at design
time.

Syntax
[form.JMSComm.InBufferCount[= count%b]

Remarks
InBufferCount refers to the number of characters that have been received by the modem and are waiting
in the receive buffer for you to take them out. You can clear the receive buffer by setting the
InBufferCount property to 0.

Note Do not confuse this property with the InBufferSize property — InBufferSize reflects the total size
of the receive buffer.

Data Type
Integer

InBufferSize Property, Communications Control

Sets and returns the size of the receive buffer in bytes.

Syntax
[form.JMSComm.InBufferSize[= numBytes%)]

Remarks

InBufferSize refers to the total size of the receive buffer. The default size is 1024 bytes. Do not confuse
this property with the InBufferCount property — InBufferCount reflects the number of characters
currently waiting in the receive buffer.

Note Note that the larger you make the receive buffer, the less memory you have available to your
application. However, if your buffer is too small, it runs the risk of overflowing unless handshaking is
used. As a general rule, start with a buffer size of 1024 bytes. If an overflow error occurs, increase the
buffer size to handle your application's transmission rate.

Data Type
Integer

Input Property, Communications Control
Example
Returns and removes a string of characters from the receive buffer. This property is not available at
design time and is read-only at run time.
Syntax
[form.JMSComm.Input

Remarks

The InputLen property determines the number of characters that are read by the Input property. Setting
InputLen to O causes the Input property to read the entire contents of the receive buffer.

Data Type
String

Cloze | Copy I Print |

Input Example, Communications Control
This example shows how to retrieve data from the receive buffer:

' Retrieve all available data.
Comml.InputLen = 0O

' Check for data.
If Comml.InBufferCount Then
' Read data.
InString$ = Comml.Input
End If

InputLen Property, Communications Control
Example

Sets and returns the number of characters the Input property reads from the receive buffer.

Syntax
[form.JMSComm.InputLen[= numChars%]

Remarks

The default value for the InputLen property is 0. Setting InputLen to 0 causes the communications
control to read the entire contents of the receive buffer when Input is used.

If InputLen characters are not available in the receive buffer, the Input property returns a zero-length
string (""). The user can optionally check the InBufferCount property to determine if the required number
of characters are present before using Input.

This property is useful when reading data from a machine whose output is formatted in fixed-length
blocks of data.

Data Type
Integer

Cloze | Copy I Print |

InputLen Example, Communications Control
This example shows how to read 10 characters of data:

\l

Specify a 10 character block of data.
Comml.InputLen = 10
' Read data.

CommData$ = Comml.Input

Interval Property, Communications Control

Sets the interval, in milliseconds, for polling the hardware port for data under Windows version 3.0.

Syntax
[form.JMSComm.Interval[= milliseconds&]

Remarks
The default value for the Interval property is 1000 (1 second).

You only need this property for applications that run under Windows graphical environment version 3.0,
because the communications control has to manually poll the hardware port for data at a given interval.
However, under Windows operating system version 3.1 this is not necessary, and you don't need to use
the Interval property.

Data Type
Long

NullDiscard Property, Communications Control

Determines whether null characters are transferred from the port to the receive buffer.

Syntax
[form.JMSComm.NullDiscard[= {True | False}]

Remarks
The following table lists the NullDiscard property settings for the communications control.
Setting Description
True Null characters are not transferred from the port to the receive buffer.
False (Default) Null characters are transferred from the port to the receive buffer.

A null character is defined as ASCII character 0, Chr$(0).

Data Type
Integer (Boolean)

OutBufferCount Property, Communications Control

Returns the number of characters waiting in the transmit buffer. You can also use it to clear the transmit
buffer. This property is not available at design time.

Syntax
[form.JMSComm.OutBufferCount[= 0]

Remarks
You can clear the transmit buffer by setting the OutBufferCount property to 0.

Note Do not confuse the OutBufferCount property with the OutBufferSize property = OutBufferSize
reflects the total size of the transmit buffer.

Data Type
Integer

OutBufferSize Property, Communications Control

Sets and returns the size, in characters, of the transmit buffer.

Syntax
[form.JMSComm.OutBufferSize[= NumBytes%)

Remarks

OutBufferSize refers to the total size of the transmit buffer. The default size is 512 bytes. Do not confuse
this property with the OutBufferCount property bmc emdash.bmp} OutBufferCount reflects the number of
bytes currently waiting in the transmit buffer.

Note The larger you make the transmit buffer, the less memory you have available to your application.
However, if your buffer is too small, you run the risk of overflowing unless you use handshaking. As a
general rule, start with a buffer size of 512 bytes. If an overflow error occurs, increase the buffer size to
handle your application's transmission rate.

Data Type
Integer

Output Property, Communications Control
Example

Writes a string of characters to the transmit buffer. This property is not available at design time.

Syntax
[form.JMSComm.Output| = outString$]

Data Type
String

Cloze | Copy I Print |
Output Example, Communications Control

The following example shows how to send every character the user types to the serial port:
Private Sub Form KeyPress (KeyAscii As Integer)

Comml.Output = Chr$ (KeyAscii)
End Sub

ParityReplace Property, Communications Control

Sets and returns the character that replaces an invalid character in the data stream when a parity error
occurs.

Syntax
[form.JMSComm.ParityReplace[= char$]

Remarks

The parity bit refers to a bit that is transmitted along with a specified number of data bits to provide a
small amount of error checking. When you use a parity bit, the communications control adds up all the
bits that are set (having a value of 1) in the data and tests the sum as being odd or even (according to
the parity setting used when the port was opened).

By default, the control uses a question mark (?) character for replacing invalid characters. Setting

ParityReplace to an empty string (") disables replacement of the character where the parity error

occurs. The OnComm event is still fired and the CommEvent property is set to comRXParity.
Data Type

String

PortOpen Property, Communications Control
Example

Sets and returns the state of the communications port (open or closed). This property is not available at
design time.

Syntax
[form.JMSComm.PortOpen[= {True | False}]
Remarks
The following table lists the PortOpen property settings for the communications control.
Setting Description
True Port is opened.
False Port is closed.

Setting the PortOpen property to True opens the port. Setting it to False closes the port and clears the
receive and transmit buffers. The communications control automatically closes the serial port when your
application is terminated.

Make sure that the CommPort property is set to a valid port number before opening the port. If the
CommPort property is set to an invalid port number when you try to open the port, the communications
control generates error 68 (Device unavailable).

In addition, your serial port device must support the Settings property. If the Settings property contains
communications settings that your hardware does not support, your hardware may not work correctly.

If either the DTREnNable or the RTSEnable properties is set to True before the port is opened, the
properties are set to False when the port is closed. Otherwise, the DTR and RTS lines remain in their
previous state.

Data Type
Integer (Boolean)

Cloze | Copy I Print |
PortOpen Example, Communications Control

The following example opens communications port number 1 at 2400 baud with no parity checking, 8
data bits, and 1 stop bit:

Comml.Settings = "2400,n,8,1"

Comml .CommPort = 1

Comml.PortOpen = True

RThreshold Property, Communications Control

Sets and returns the number of characters to receive before the communications control sets the
CommEvent property to comEvReceive and generates the OnComm event.

Syntax
[form.JMSComm.RThreshold[= numChars%]

Remarks

Setting the RThreshold property to 0 (the default) disables generating the OnComm event when
characters are received.

Setting RThreshold to 1, for example, causes the communications control to generate the OnComm
event every time a single character is placed in the receive buffer.

Data Type
Integer

RTSEnable Property, Communications Control

Determines whether to enable the Request To Send (RTS) line. Typically, the Request To Send signal
that requests permission to transmit data is sent from a computer to its attached modem.

Syntax
[form.JMSComm.RTSEnable[= {True | False}]
Remarks
The following table lists the RTSEnable property settings for the communications control.
Setting Description
True Enables the Request To Send line.
False (Default) Disables the Request To Send line.

When RTSEnable is set to True, the Request To Send line is set to high (on) when the port is opened,
and low (off) when the port is closed.

The Request To Send line is used in RTS/CTS hardware handshaking. The RTSEnable property allows
you to manually poll the Request To Send line if you need to determine its state.

For more information on handshaking protocols, see the Handshaking property.

Data Type
Integer (Boolean)

Settings Property, Communications Control
Example

Sets and returns the baud rate, parity, data bit, and stop bit parameters.
Syntax
[form.JMSComm.Settings[= paramString$]

Remarks

If paramString$ is not valid when the port is opened, the communications control generates error 380
(Invalid property value).

ParamString$ is composed of four settings and has the following format:
"BBBB, P, D, S"

Where BBBB is the baud rate, P is the parity, D is the number of data bits, and S is the number of stop
bits. The default value of paramString$ is:

"9600,N,8,1"

The following table lists the valid baud rates.
Setting

110

300

600

1200

2400

9600 (Default)
14400

19200

38400 (reserved)
56000 (reserved)
128000 (reserved)
256000 (reserved)

The following table describes the valid parity values.

Setting Description

E Even

M Mark

N (Default) None
o] Odd

S Space

The following table lists the valid data bit values.
Setting

4

5

6

7

8 (Default)

The following table lists the valid stop bit values.
Setting

1 (Default)

15
2

Data Type
String

Cloze | Copy I Print |
Settings Example, Communications Control

The following example sets the control's port to communicate at 2400 baud with no parity checking, 8
data bits, and 1 stop bit:

Comml.Settings = "2400,N,8,1"

SThreshold Property, Communications Control

Sets and returns the minimum number of characters allowable in the transmit buffer before the
communications control sets the CommEvent property to comEvSend and generates the OnComm
event.

Syntax
[form.JMSComm.SThreshold[= numChars%]

Remarks

Setting the SThreshold property to O (the default) disables generating the OnComm event for data
transmission events. Setting the SThreshold property to 1 causes the communications control to
generate the OnComm event when the transmit buffer is completely empty.

If the number of characters in the transmit buffer is less than numChars%, the CommEvent property is
set to comEvSend, and the OnComm event is generated. The comEvSend event is only fired once,
when the number of characters crosses the SThreshold. For example, if SThreshold equals five, the
comEvSend event occurs only when the number of characters drops from five to four in the output
gueue. If there are never more than SThreshold characters in the output queue, the event is never fired.

Data Type
Integer

OnComm Event, Communications Control
Example
The OnComm event is generated whenever the value of the CommEvent property changes, indicating
that either a communications event or an error occurred.
Syntax
Private Sub MSComm_OnComm ()

Remarks

The CommEvent property contains the numeric code of the actual error or event that generated the
OnComm event. Note that setting the RThreshold or SThreshold properties to 0 disables trapping for the
comEvReceive and comEvSend events, respectively.

Cloze | Copy I Print |

OnComm Event Example, Communications Control

The following example shows how to handle communications errors and events. You can insert code to
handle a particular error or event after its Case statement.

Private Sub Comm OnComm ()
Select Case Comml.CommEvent

' Errors
Case comBreak ' A Break was received.
' Code to handle a BREAK goes here.
Case comCDTO ' CD (RLSD) Timeout.
Case comCTSTO ' CTS Timeout.
Case comDSRTO ' DSR Timeout.
Case comFrame ' Framing Error
Case comOverrun ' Data Lost.
Case comRxOver ' Receive buffer overflow.
Case comRxParity ' Parity Error.
Case comTxFull ' Transmit buffer full.
' Events
Case comEvCD ' Change in the CD line.
Case comEVCTS ' Change in the CTS line.
Case comEVDSR ' Change in the DSR line.
Case comEvVRing ' Change in the Ring Indicator.
Case comEvReceive ' Received RThreshold # of chars.
Case comEvSend ' There are SThreshold number of
' characters in the transmit buffer.
End Select

End Sub

Comlinput Function, Communications Control

Returns and removes a string of characters from the receive buffer.

Syntax
Comlnput(ByVal hWnd As Integer, I[pData As Any, ByVal cbData As Integer) As Integer
Parameter Type Description
hwnd HWND Window handle of the control.
InData LPSTR Long pointer to the start of the data buffer.
cbData int The length of [pData in bytes.
Remarks

This function is equivalent to the Input property.

In Visual Basic 1.0, the Input and Output properties are defined as HSZ (null-terminated string) data
types. This means that if an application attempts to retrieve a string with an embedded Null character
from the receive buffer, the resulting string is truncated at the embedded Null character. The ComInput
function can retrieve strings from the receive buffer that have embedded Null characters.

Return Value
Number of bytes received.

ComOutput Function, Communications Control

Writes a string of characters to the transmit buffer.

Syntax
ComOutput(ByVal hWnd As Integer, [pData As Any, ByVal cbData As Integer) As Integer
Parameter Type Description
hwnd HWND Window handle of the control.
InData LPSTR Long pointer to the start of the data buffer.
cbData int The length of [pData in bytes.
Remarks

This function is equivalent to the Output property.

In Visual Basic 1.0, the Input and Output properties are defined as HSZ (null-terminated string) data
types. This means that if an application attempts to send a string with an embedded Null character to the
transmit buffer, the resulting string is truncated at the embedded Null character. The ComOutput
function can send strings to the transmit buffer that have embedded Null characters.

Return Value
Number of bytes sent.

E

Gauge Control
Properties Methods Events Constants

The gauge control creates user-defined gauges with a choice of linear (filled) or needle styles.
File Name

GAUGE16.0CX, GAUGE32.0CX
Class Name

Gauge
Remarks

This control is useful for thermometers, fuel gauges, percent-complete indicators, or any other type of
analog gauge.

Note When you use bitmaps or icons in the gauge control and specify those bitmaps in the Picture
property at design time, the bitmaps become a part of your form. This means you do not have to
distribute them separately. On the other hand, if you use LoadPicture to add bitmaps or icons at run
time, then the bitmaps must be present at run time.

The Style property defines the type of gauge to be displayed. The default setting is 0 (horizontal linear).

The control's fill area is defined by the InnerTop, InnerBottom, InnerRight, and InnerLeft properties. The
default values for these properties create a fill area that covers most of the control. Therefore, when you
define a bitmap for the control, only the edges of the bitmap are displayed. To display the bitmap, either
set the Style property to 2 or 3 (semicircular or full needle, respectively) or resize the fill area of the
control.

When the Style property is either 0 or 1 (indicating a linear gauge), the BackColor and ForeColor
properties define the colors of the fill area. The Min, Max, and Value properties determine how the colors
are used to fill this area. For example, if Min is 0, Max is 100, and Value is 25, then 25% of the fill area
will be drawn with the ForeColor, and 75% will be drawn with the BackColor.

Distribution Note When you create and distribute applications that use the gauge control, you should
install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The Setup Kit
included with Visual Basic provides tools to help you write setup programs that install your applications
correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

AutoSize Index MousePainter Tag

*BackColor *InnerBottom Name Top

Container *InnerLeft *NeedleWidth *Value

Draglcon *InnerRight Object Visible
DragMode *InnerTop Parent WhatsThisHelplD
Enabled Left *Picture *Width
*ForeColor *Max *Style hwnd

*Height *Min Tablndex

HelpContextlD Mouselcon TabStop

Value is the default value of the control.

Note Name is the equivalent of the CtIName property in Visual Basic 1.0.

Events

All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

*Change DragOver KeyUp MouseUp
Click GotFocus LostFocus
DblClick KeyDown MouseDown
DragDrop KeyPress MouseMove
Methods
All of the methods for this control are listed in the following table.
Drag Refresh ZOrder
Move SetFocus ShowWhatsThis

BackColor Property, Gauge Control

Sets or returns the color used to erase the area created by the InnerTop, InnerLeft, InnerBottom, and
InnerRight properties.

Syntax
[form.]JGauge.BackColor[= color&]
Remarks

BackColor has no effect on gauges with Style = 2 (semicircular needle), or Style = 3 (full needle) when
you assign the control's Picture property to a bitmap.

Data Type
Long

ForeColor Property, Gauge Control

Sets the color used to fill the area defined by the InnerTop, InnerLeft, InnerBottom, and InnerRight
properties.

Syntax
[form.]Gauge.ForeColor[= color&]
Remarks
This property only affects gauges with Style = 0 or 1 (horizontal bar or vertical bar, respectively).

Data Type
Long

Height, Width Properties, Gauge Control

Determines the height and width of the gauge control.
Syntax
[form.]Gauge.Height[= setting%]
[form.]Gauge . Width[= setting%]
Remarks
You cannot resize a gauge control unless the AutoSize property is set to False.

Data Type
Integer

InnerBottom Property, Gauge Control

Sets or returns the distance from the bottom edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerBottom[= pixels%6]

Remarks

This property, expressed in terms of pixels, must be greater than zero. InnerBottom is relative to the
bottom edge of the control.

Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

InnerLeft Property, Gauge Control

Sets or returns the distance from the left edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerLeft[= pixels%)]

Remarks

This property, expressed in terms of pixels, must be greater than zero. InnerLeft is relative to the Top
property of the control.

Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

InnerRight Property, Gauge Control

Sets or returns the distance from the right edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerRight[= pixels%]

Remarks

This property, expressed in terms of pixels, must be greater than zero. InnerRight is relative to the right
edge of the control.

Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

InnerTop Property, Gauge Control

Sets or returns the distance from the top edge of the gauge control used to display the changeable
portion of the gauge.

Syntax
[form.]Gauge.InnerTop[= pixels%)]

Remarks
This property, expressed in terms of pixels, must be greater than zero. InnerTop is relative to the Top
property.
Needle gauges adjust the needle within this area, while fill gauges completely blot out this area to fill the
proportionate parts with two colors.

Data Type
Integer

Max Property, Gauge Control

An integer value (0= 32767) that sets or returns the maximum number that the Value property can take
on. The default value is 100.

Syntax
[form.]Gauge.Max[= setting%]

Remarks

If you attempt to set the Value property to a value greater than the Max property, it is adjusted to the
value of the Max property.

Data Type
Integer

Min Property, Gauge Control

An integer value (0= 32767) that sets or returns the minimum number that the Value property can take
on. The default value is zero.

Syntax
[form.]Gauge.Min[= setting%6]

Remarks
If you attempt to set the Value property to a value less than the Min property, it is adjusted to the value of
the Min property.

Data Type
Integer

NeedleWidth Property, Gauge Control

Sets or returns the width, in pixels, of the needle on needle-style gauges. The range is 0 to 32767.

Syntax
[form.]Gauge.NeedleWidth[= width%6]

Data Type
Integer

Picture Property, Gauge Control

Specifies a bitmap to display on the gauge.

Syntax
[form.]Gauge.Picture[= picture]
Remarks
The following table lists the Picture property settings for the gauge control.
Setting Description
(none) (Default) No bitmap specified for the gauge.
(bitmap) Designates a graphic to display on the gauge. You can load the graphic from the

Properties window at design time.

Several bitmaps for the gauge control are located in the \BITMAPS\GAUGE subdirectory. The style you
choose for a gauge must be compatible with the bitmap or the graphic will not be drawn properly.

Note This control can display bitmap (.BMP) and icon (.ICO) files.

You can load a graphic at design time from the Properties window. When you set the Picture property at
design time, the graphic is saved and loaded with the form. If you create an executable file, the .EXE file
contains the image.

You can set this property at run time by using the LoadPicture function on a bitmap or icon, or you can
use Clipboard methods such as GetData, SetData, and GetFormat with the nontext Clipboard formats
vbCFBitmap and vbCFDIB, as defined in the object library in the Object Browser. When you load a
graphic at run time, the graphic is not saved with the application. Use the SavePicture statement to
save a graphic from a form or picture box into a file.

Note At run time, either you can set the Picture property to any other object's Picture or Image
property, or you can assign it the graphic returned by the LoadPicture function. You can only assign the
Picture property directly.

Data Type
Integer

Style Property, Gauge Control

Sets or returns the type of gauge.

Syntax
[form.]Gauge.Style[= setting%]
Remarks
The following table lists the Style property settings for the gauge control.
Setting Description
0 (Default) Horizontal linear gauge with fill.
1 Vertical gauge with fill.
2 Semicircular needle gauge.
3 Full circle needle gauge.

The semicircular needle gauge places the needle base in the bottom center of the area defined by the
Innerportion properties. The needle length is calculated so that the needle is never drawn outside of this
area. When Value = Min, the needle will point 90 degrees to the left. When Value = Max, the needle will
point 90 degrees to the right. When Value = (Min + Max)/2, the needle points straight up.

The full-circle needle gauge places the needle base in the center of the area defined by the Innerportion
properties. The needle length is calculated so that the needle will never be drawn outside of this area.
When Value = Min or Value = Max, the needle points 90 degrees to the left. Setting the Value property
between Min and Max will point the needle to a proportionate point on the circle, moving clockwise.

Data Type
Integer (Enumerated)

Value Property, Gauge Control

Sets or returns the current position of the gauge. See the Style property for more details.

Syntax
[form.]Gauge.Value[= setting%s]

Remarks

If you attempt to set the Value property to a value less than the Min property, it is adjusted to the value of
the Min property. If you attempt to set the Value property to a value greater than the Max property, it is
adjusted to the value of the Max property.

Data Type
Integer

Change Event, Gauge Control

Occurs when the control's Value property changes.

Syntax
Private Sub Gauge_Change()

L. Graph Control

See Also Properties Methods Events Constants Error Messages

The graph control allows you to design graphs interactively on your forms. At run time, you can send
new data to the graphs and draw them, print them, copy them onto the Clipboard, or change their styles
and shapes. The following is a typical graph control:

File Name

GRAPH16.0CX, GRAPH32.0CX

Class Name
Graph

Remarks

The graph control acts as a link between your application and the Graphics Server graphing and
charting library.

At design time, the graph control has an automatic redraw capability. Every time you change a property,
the control redraws the graph so that you can see the effects of the change. You can enter data for the
graph either at design time or at run time. At run time, when graph is given new data and style options, it
combines these new values with your design-time values.

As a design aid, the graph control automatically generates random data at design time to give you an
idea of what your graph will look like.

Distribution Note When you create and distribute applications that use the graph control, you should
install the appropriate files in the customer's Microsoft Windows \SYSTEM subdirectory. The Setup Kit
included with Visual Basic provides tools to help you write setup programs that install your applications
correctly.

See Also

Property Types and Arrays
Graph Control Extended Version
Graph Types and Negative Values

Property Types and Arrays, Graph Control
Example

The following table describes array properties for the graph control.

Property Description

GraphData Values to be graphed (this is a two-dimensional array when there are multiple data
sets).

ColorData Colors of bars, pie slices, lines, and so on.

ExtraData Extra style options (for example, which pie slices to explode).

LabelText Labels.

LegendText Legends.

PatternData Pattern and line styles.

SymbolData Symbols for lines, legends, and so on.
XPosData X-variable data for scatter graphs.

Array properties are controlled through two simple properties: ThisSet and ThisPoint. ThisSet is the
index for the data you entered with the GraphData property. ThisPoint references the individual data
points for the set specified by the ThisSet property. Both have a minimum value of 1.

For example, if you set ThisSet to 1, ThisPoint to 5, and LabelText to "Friday," the fifth label of the first
data set is set to the text string "Friday."

The Autolnc property, when set to 1 (on), automatically increments ThisPoint and ThisSet every time you
enter an array property value.

At run time, when you dynamically create a new instance of a control array, you must reassign all data
associated with array properties.

The overall dimensions of the arrays are determined by the properties NumSets and NumPoints.
ThisSet and ThisPoint cannot exceed NumSets and NumPaoints, respectively, and the Autolnc property
functions monitor their current values. NumSets and NumPoints also determine what the graphs look
like. For example, if you want to graph three data sets, each containing ten points, set NumSets to 3 and
NumPoints to 10, and then enter the GraphData values.

DataReset is another property associated with arrays. It allows you to clear all the data held in any or all
of the array properties. For example, if you haven't set any LabelText strings, the graph control labels
your graph 1, 2, 3, and so on. Deleting all your labels individually would have the effect of displaying no
labels (that is, labels exist but they are all null). Using DataReset sets the LabelText strings back to their
original numeric values of 1, 2, 3, and so on.

Property Types and Arrays Example, Graph Control

At design time, to enter a data set of five points, set the Autolnc property to 1 (on), select the GraphData
property in the Properties window, and enter the following five values, pressing ENTER between each
number. For example:

10 ENTER
9 ENTER
8 ENTER
7 ENTER
6 ENTER

Other information about graphs, such as labels and legends, can be entered in the same manner.
To change the values of a graph at run time, you write code. The following two examples would cause
the same property value changes as in the previous example:

A}

Example 1

Graphl.AutoInc = 1
Graphl.GraphData =
Graphl.GraphData =
Graphl.GraphData =
Graphl.GraphData =
Graphl.GraphData =
Graphl.DrawMode = 2

oy 1 00 WO

Example 2
Graphl.AutoInc = 1
For I =1 To 5
Graphl.GraphData = 11 ® i%
Next I%
Graphl.DrawMode = 2

Graph Types and Negative Values, Graph Control

Certain graph types cannot handle negative data meaningfully. They are the following:

Pie charts (2D & 3D).

Stacked Bar graphs.

Gantt charts.

Area graphs.

Polar graphs.
For these graphs, negative data is forced to a positive number, however the data is not permanently
changed. Changing to a graph type for which negative values are meaningful restores the original data.

Properties

The following table lists the properties for this control. Properties that apply only to this control, or that
require special consideration, are marked with an asterisk (*).

*Autolnc *Foreground *LegendStyle TabStop
*Background *GraphCaption *LegendText Tag
BorderStyle *GraphData *LineStats *ThickLines
*BottomTitle *GraphStyle Name *ThisPoint
*ColorData *GraphTitle *NumPoints *ThisSet
Container *GraphType *NumSets *TickEvery
*CtlVersion *GridStyle Object *Ticks
*DataReset Height *Palette Top
Draglcon HelpContextlD Parent Visible
DragMode hwnd *PatternData WhatsThisHelplD
*DrawMode *ImageFile *PatternedLines Width
*DrawsStyle Index *Picture *XPosData
Enabled *IndexStyle *PrintStyle *YAXxisMax
*ExtraData *LabelEvery *QuickData *YAXisMin
*FontFamily *Labels *RandomData *YAXisPos
*FontSize *LabelText *SeeThru *YAXisStyle
*FontStyle Left *SymbolData *YAXisTicks
*FontUse *LeftTitle Tablndex

QuickData is the default value of the control.

Note Name is equivalent to the CtIName property in Visual Basic 1.0.

Events
All of the events for this control are listed in the following table.

Click DragOver KeyPress MouseDown
DblClick GotFocus KeyUp MouseMove
DragDrop KeyDown LostFocus MouseUp
Methods
All of the methods for this control are listed in the following table.
Drag Refresh SetFocus ShowWhatsThis
ZOrder

Autolnc Property, Graph Control
Example
Allows the properties specific to arrays to be set without manually incrementing the ThisPoint counter
from ThisPaint = 1 to ThisPoint = NumPaints.

When NumSets > 1, Autolnc goes through all the points and sets them consecutively from ThisPoint = 1
to ThisPoint = NumPoints and from ThisSet = 1 to ThisSet = NumSets.

Syntax
[form.]Graph.Autolnc[= setting%]
Remarks
The following table lists the Autolnc property settings for the graph control.
Setting Description
0 Off
1 (Default) On

When Autolnc is set to a new value (0 or 1), ThisPoint and ThisSet are both reinitialized to 1.
If you set the Autolnc property to 1 (on), when you switch from setting one of the array properties to
setting a different one, both ThisPoint and ThisSet are reinitialized to 1.

Autolnc only changes ThisPoint and ThisSet when you set data values. When you get or use data
values, ThisPoint and ThisSet are unaffected.

The Autolnc property works for all the properties specific to arrays:

ColorData
ExtraData
GraphData
LabelText
LegendText
PatternData
SymbolData
XPosData

Data Type
Integer

Autolnc Example, Graph Control

Graphl.ThisSet = 1
For I% = 1 to Graphl.NumSets
Graphl.ThisPoint = 1
For J% = 1 to Graphl.NumPoints
Graphl.GraphData = J%*I%
If Graphl.ThisPoint < Graphl.NumPoints Then
Graphl.ThisPoint Graphl.ThisPoint + 1
End If
Next J%
If Graphl.ThisSet < Graphl.NumSets Then
Graphl.ThisSet = Graphl.ThisSet + 1
End If
Next I%
Graphl.DrawMode = 2

Using the Autolnc property, the preceding code may be rewritten as:
Graphl.AutoInc = 1
For I% = 1 To (Graphl.NumSets * Graphl.NumPoints)

Graphl.GraphData = Graphl.ThisPoint * Graphl.ThisSet
Next I%

Graphl.DrawMode = 2

It is not possible to use ThisPoint or ThisSet as counters in For statements. Visual Basic does not allow
it.

Background Property, Graph Control

Selects the background color of the graph.

Syntax

[form.]Graph.Background[= color%s]
Remarks

The following table lists the Background property settings for the graph control.

Setting Description

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 Light gray

8 Dark gray

9 Light blue

10 Light green

11 Light cyan

12 Light red

13 Light magenta

14 Yellow

15 (Default) White

When you change the background color, the colors for the components of the graph are automatically
selected. However, you may change the Foreground and the ColorData properties.

Data Type
Integer (Enumerated)

BottomTitle Property, Graph Control
Example

Places the text string that you provide at the bottom of the graph, parallel to the horizontal axis.

Syntax
[form.]Graph.BottomTitle[= string$]

Remarks
This property is ignored for Pie charts.

Data Type
String

BottomTitle Example, Graph Control

The following code places the title, "Title," at the bottom of a graph (Graph1) when you click a command
button and no title currently exists. If the BottomTitle property does have a value, when you click the
command button, the title will become blank. To try this example, paste the code into the Declarations
section of a form that contains a command button and a graph.

Private Sub Commandl Click ()
Graphl.RandomData = 1

If Graphl.BottomTitle = "" Then
Graphl.BottomTitle = "Title"
Else
Graphl.BottomTitle = ""
End If

Graphl.DrawMode = 2
End Sub

ColorData Property, Graph Control

Selects the colors for each of the data sets on the graph. For pie charts and for bar graphs with
NumSets = 1, you should specify a color for each point rather than for each set.

Syntax
[form.]Graph.ColorData[= setting%s]
Remarks
The following table lists the ColorData property settings for the graph control.
Setting Description
0 (Default) Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 Light gray
8 Dark gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Yellow
15 White

Once you select one color, colors should be selected for all sets or they are shown in black.
Since this is an array property, the array element is determined by the current value of the ThisPoint
property.
When you enter data, you can use the Autolnc property. If you set the Autolnc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

CtlVersion Property, Graph Control

Gives the current release of your graph control. This property is read-only.
Syntax
[form.]Graph.CtlVersion

Data Type
String

DataReset Property, Graph Control

Allows you to remove any or all of the array information that has been supplied to the graph control.

Syntax

[form.]Graph.DataReset[= setting%]
Remarks

The following table lists the DataReset property settings for the graph control.

Setting Description

0 (Default) None

1 GraphData

2 ColorData

3 ExtraData

4 LabelText

5 LegendText

6 PatternData

7 SymbolData

8 XPosData

9 All Data

The All Data option resets all the data and text arrays.
When you reset an array, you reset it to the original empty state. All properties are set to their default
values.
Data Type
Integer (Enumerated)

DrawMode Property, Graph Control

Defines the drawing mode for the graph control.

Syntax

[form.]Graph.DrawMode[= mode %]
Remarks

The following table lists the DrawMode property settings for the graph control.

Setting Description

0 No Action

1 Clear

2 Draw

3 Blit

4 Copy

5 Print

6 Write

DrawMode property values 0 through 3 are recorded when a graph is saved to disk. These values
remain the same between design mode and run mode. DrawMode property values 4, 5, and 6 are
transient values that trigger the specified actions.

At design time, when you change a property value, the graph is automatically redrawn to show the effect
of the change. At run time, the graph is only redrawn when you set DrawMode to 2 (Draw) or 3 (Blit).
This allows you to change as many property values as you want before displaying the graph. However,
when the form containing a graph is first displayed, the graph is automatically displayed according to the
current DrawMode value.

Setting Action

0 The control is left blank; the graph will not appear. When you want the graph to appear,
reset DrawMode to 2.

1 No graph is drawn, but the background of the control is set to the color specified by the
Background property. If there is graph caption text, it is displayed in the center of the
control.

2 (Default) At design time, this redraws your graph every time you change a property. At
run time, resetting DrawMode to 2 causes the graph to be redrawn.

3 There is a brief pause, and then the graph appears all at once. In this mode, the Graphics
Server builds a hidden bitmap of the graph and then displays it using the Windows API
BitBlit function. This mode is useful if you want to draw a graph, update it with new data,
and then instantaneously display the updated graph.

4 The image of the graph is copied onto the Clipboard in either bitmap or metafile format. If
DrawMode is set to 3 (Blit), it is in bitmap format; otherwise, it is in metafile format.

5 A high-quality image of the graph can be printed without the form. For more information,
see the PrintStyle property.

6 The image of the graph is written to disk as a bitmap (.BMP) or metafile (WMF). For this
option to work, the ImageFile property must be set to provide a name for the file. If
DrawMode is set to 3 (Blit), a bitmap is created; otherwise, a metafile is created.

Data Type

Integer (Enumerated)

DrawStyle Property, Graph Control

If the setting is monochrome, this property sets the background to white and all colors to black. If no
PatternData, SymbolData, or GraphStyle properties have been set, DrawStyle supplies default patterns
and symbols.

Syntax
[form.]Graph.DrawStyle[= style%]
Remarks
The following table lists the DrawStyle property settings for the graph control.
Setting Description
0 Monochrome
1 (Default) Color
Data Type

Integer (Enumerated)

ExtraData Property, Graph Control
Example
The ExtraData property has two purposes:

" To explode pie chart segment(s).
" To specify the color of the sides of a three-dimensional bar chart.

Syntax
[form.]Graph.ExtraData[= setting%)

Remarks
The ExtraData property settings for pie charts are listed in the following table.
Setting Description

0 (Default) Not exploded
1 Exploded

Note With pie charts, when the Autolnc property is set to 1, setting the ExtraData property cycles
automatically through the set of pie slices, exploding each slice in turn. To explode a single slice, set
Autolnc to 0, set the ThisPoint property to the datapoint you wish to explode, and finally set the
ExtraData property to 1.

For three-dimensional bar charts, the ExtraData property settings are described in the following table.
Setting Description

(Default) Black

Blue

Green

Cyan

Red

Magenta

Brown

Light gray

Dark gray

Light blue

Light green

Light cyan

Light red

Light magenta

Yellow

15 White

Since this is an array property, the array element you set is determined by the current value of the
ThisPoint property.

When you enter data, you can use the Autolnc property. If you set the Autolnc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented.

© 0o ~NOO Ol WNPEFO

e e i
A W NPFPO

Data Type
Integer (Enumerated)

ExtraData Example, Graph Control

The following code explodes the segments from the center of a three-dimensional pie chart. To try this
example, paste the code into the Form_Load event procedure of a form that contains a graph (Graphl).

Private Sub Form Load ()

For I% =1 to 4
Graphl.GraphData = I%

Next I%
ThisPoint = 2
Graphl.ExtraData = 1
ThisPoint = 4
Graphl.ExtraData
Graphl.DrawMode = 2
Graphl.GraphType = 2

End Sub

Il
i

FontFamily Property, Graph Control

Selects the font family in which the text specified by the FontUse property is displayed.

Syntax
[form.]Graph.FontFamily[= setting%]
Remarks
The following table lists the FontFamily property settings for the graph control.
Setting Description
0 (Default) Roman
1 Swiss
2 Modern

The graph control specifies font families rather than type faces to avoid having to list all the available

fonts, which may vary from one computer to another. A font of the requested generic type (Roman,

Swiss, or Modern) is always available, regardless of the Windows configuration used on your computer.
Data Type

Integer (Enumerated)

FontSize Property, Graph Control

Determines the approximate font size in which the text specified by the FontUse property is displayed.

Syntax
[form.]Graph.FontSize[= setting%]
Remarks

Enter a value between 50 and 500, inclusive. This value is the percentage of the system font size. The
default depends on the setting of the FontUse property.

FontUse setting FontSize default
0 (graph title) 200%
1 (other titles) 150%
2 (labels) 100%
3 (legend) 100%

FontSize acts as a starting point rather than an absolute setting; the text is reduced, if necessary, to fit
into the available space.

Data Type
Integer

FontStyle Property, Graph Control

Determines the style in which the text specified by the FontUse property is displayed.
Syntax

[form.]Graph.FontStyle[= setting%]
Remarks

The following table lists the FontStyle property settings for the graph control.

Setting Description

(Default)

Italic

Bold

Bold italic
Underlined
Underlined italic
Underlined bold

7 Underlined bold italic

Data Type
Integer (Enumerated)

o Ul WNPFE O

FontUse Property, Graph Control

Determines to which text on a graph you will apply the settings for the FontFamily, FontSize, and
FontStyle properties.

Syntax
[form.]Graph.FontUse[= setting%]
Remarks
The following table lists the FontUse property settings for the graph control.
Setting Description
0 (Default) Graph title
1 Other titles
2 Labels
3 Legend
4 All text

After you select a text type using FontUse, select the font family, size, and style for that type by setting
the FontFamily, FontSize, and FontStyle properties. You can use setting 4 (all text) to make all of your
text look alike. For example, you can set all text to display as Swiss family, size 200%, and bold. You
can then reuse the FontUse property to change one or more specific text types; for example, you might
make all legends bold and underlined.

Note At design time, the values displayed in the Properties window for the font family, size, and style
are shown for the graph title only.

Data Type

Integer (Enumerated)

Foreground Property, Graph Control

Sets the color of titles, labels, legends, and axes.

Syntax

[form.]Graph.Foreground[= setting%]
Remarks

The following table lists the Foreground property settings for the graph control.

Setting Description

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Brown

7 Light gray

8 Dark gray

9 Light blue

10 Light green

11 Light cyan

12 Light red

13 Light magenta

14 Yellow

15 White

16 (Default) Auto black/white

The graph control automatically uses black or white as its foreground default color. Depending on the
background color set, it picks the color that gives the best contrast.

The ColorData property determines the colors of bars, pie slices, and so on.

Data Type
Integer (Enumerated)

GraphCaption Property, Graph Control

Example

Accepts a single line of text that is displayed when DrawMode = 1 (Clear).
Syntax

[form.]Graph.GraphCaption[= caption$]
Remarks

The colors of the text and the background can be selected using the Foreground and Background
properties.

Data Type
String

GraphCaption Example, Graph Control
The following code displays the text, "Graphics Server," as the caption for Graphl.

Graphl.GraphCaption = "Graphics Server"
Graphl.DrawMode = 1

GraphData Property, Graph Control
Example

Sets the data to be graphed.

Syntax
[form.]Graph.GraphData[= data!]

Remarks

Since this is a two-dimensional array property, the array element you set is determined by the current
value of the ThisPoint and ThisSet properties.

When you enter data, you can use the Autolnc property. If you set the Autolnc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented. When it reaches its
maximum value (NumPoints), the ThisSet counter is incremented, and ThisPoint is reset to 1. If ThisSet
reaches its maximum value (NumsSets), it is also reset to 1.

Data Type
Single

GraphData Example, Graph Control

The following code draws the data sets for a bar graph. The data sets are specified by the NumSets
property, and the number of points per data set is specified by the NumPoints property. To try this
example, paste this code into the Form_Load event procedure of a form that contains a graph (Graphl).

Private Sub Form Load ()
Graphl.ThisSet = 1
For I% = 1 to Graphl.NumSets
Graphl.ThisPoint = 1
For J% = 1 to Graphl.NumPoints
Graphl.GraphData = J%*I%
If Graphl.ThisPoint < Graphl.NumPoints Then
Graphl.ThisPoint Graphl.ThisPoint + 1
End If
Next J%
If Graphl.ThisSet < Graphl.NumSets Then
Graphl.ThisSet = Graphl.ThisSet + 1
End If
Next I%
Graphl.DrawMode = 2
Graphl.DrawMode = 4
End Sub

Using the Autolnc property, the preceding code may be rewritten as:

Graphl.AutoInc = 1

For I% = 1 To (Graphl.NumSets * Graphl.NumPoints)
Graphl.GraphData = Graphl.ThisPoint * Graphl.ThisSet

Next I%

Graphl.DrawMode = 2

Graphl.DrawMode 4

GraphStyle Property, Graph Control

Sets the characteristics of each type of graph.

Syntax
[form.]Graph.GraphStyle[= type%]
Remarks
The following table describes the GraphStyle property settings for each type of graph.
Graph type GraphStyle setting Notes
2D and 3D 0 (Default) Lines join If LabelText values are set, then
pie labels to pie those labels are used; otherwise,
1 No label lines the numerical value is used as a
label.

2 Colored labels
3 Colored labels

without lines

4 % Labels

5 % Labels without
lines

6 % Colored labels
7 % Colored labels

without lines
2D bar 0 (Default) Vertical If NumSets = 1, then each bar

bars, clustered if has a different color. If NumSets >
NumSets > 1 1, then each data set is a different

1 Horizontal color.

2 Stacked

3 Horizontal
stacked

4 Stacked %
5 Horizontal

stacked%
3D bar As preceding, plus:
6 Z-clustered Z-clustered means that the data
7 Horizontal Z- points for successive sets are
clustered drawn in front of the previous one.
This gives an illusion of depth.
Gantt 0 (Default) Adjacent
bars
1 Spaced bars Spaced bars have a gap of one
bar's width between successive
bars.
Line, Log/Lin, O (Default) Lines You can create thick or patterned
and polar 1 Symbols lines by setting the ThickLine or
> Sticks PatternLine property to 1 (on).
3 Sticks and
symbols
4 Lines
5 Lines and
symbols

6 Lines and sticks
7 Lines and sticks

Area 0
1
2
Scatter 0
HLC 0
1
2
3
Data Type

Integer (Enumerated)

and symbols

(Default) Stack the
data sets

Absolute

Percentage

(Default) Symbols
only

(Default) High,
low, and close
bars

No close bar
No high-low bars
No bars

Absolute uses absolute values
from Y = 0 (so values can be
hidden).

Percentage shows the sets as a
percentage of the total.

Scatter graphs require XPosData
to be present.

ThickLines may be used.

GraphTitle Property, Graph Control
Example
Places a text string above the graph.

Syntax
[form.]Graph.GraphTitle[= title$]

Remarks
A graph title cannot contain more than 80 characters.
A graph title may not be displayed if it is too long to fit on a graph. When this occurs, increase the width
of the graph to display the graph title.
Data Type
String

n
GraphTitle Example, Graph Control

The following code places the title, "Title," at the top of a graph (Graph1) when you click a command
button and no title currently exists. If the GraphTitle property does have a value, when you click the
command button, the title will become blank. To try this example, paste the code into the Declarations
section of a form that contains a command button and a graph.

Private Sub Commandl Click ()
Graphl.RandomData = 1

If Graphl.GraphTitle = "" Then
Graphl.GraphTitle = "Title"
Else
Graphl.GraphTitle = ""
End If

Graphl.DrawMode = 2
End Sub

GraphType Property, Graph Control

Specifies the type of graph. For illustrations of the different types of graphs, see the Custom Control
Reference.

Syntax

[form.]Graph.GraphType[= setting%]
Remarks

The following table lists the GraphType property settings for the graph control.

Setting Description

0 None

1 2D pie

2 3D pie

3 (Default) 2D bar

4 3D bar

5 Gantt

6 Line

7 Log/Lin

8 Area

9 Scatter

10 Polar

11 HLC

For each graph type there are many style options. For more information, see the GraphStyle property.

Data Type
Integer (Enumerated)

GridStyle Property, Graph Control

Places reference grids on the graph axes. For illustrations showing each style of grid, see the Custom
Control Reference.

Syntax
[form.]Graph.GridStyle[= setting%]
The following table lists the GridStyle property settings for the graph control.

Setting Description

0 (Default) None
1 Horizontal

2 Vertical

3 Both

For polar graphs, the horizontal axes are concentric circles, and the vertical axes are radial lines
(spokes).

Data Type
Integer (Enumerated)

ImageFile Property, Graph Control

Sets a file name to which the bitmap or metafile is written when DrawMode is set to 6. If a path is not
specified, the current directory is used.

Syntax
[form.]Graph.ImageFile[= filename$]

Remarks

The appropriate extension (.BMP or .WMF) is appended automatically. If you set DrawMode to 3 (Blit), a
bitmap is created; otherwise, a metafile is created.

Note You cannot use this property to create a 256-color bitmap.

Data Type
String

IndexStyle Property, Graph Control
Examplel Example2
Sets the data array index style.

Syntax
[form.]Graph.IndexStyle[= setting%]
Remarks
The following table lists the IndexStyle property settings for the graph control.
Setting Description
0 (Default) Standard. One-dimensional arrays are accessed through the ThisPoint property.
1 Enhanced. One-dimensional arrays are accessed through the IndexStyle property.
When IndexStyle = 1, the graph control's arrays are accessed as described in the following table.
Array Properties used
GraphData ThisSet and ThisPoint (two-dimensional array).
ColorData ThisSet or ThisPoint.
ExtraData ThisSet or ThisPoint.
LabelText ThisPoint.
LegendText ThisSet or ThisPoint.
PatternData ThisSet or ThisPoint.
SymbolData ThisSet.
XPosData ThisSet and ThisPoint (two-dimensional array).

If the current graph type is a pie chart or a single-data-set bar graph, ThisPoint is used. For any other
graph types, ThisSet is used. Pie charts and single-data-set bar graphs use ThisPoint because they
display legends per point rather than per data set.

Note If the Autolnc property is on, the IndexStyle setting does not matter because Autolnc increments
ThisSet and ThisPoint correctly irrespective of the IndexStyle setting. Also, once data arrays have been
created, graphs are drawn in the normal way, regardless of the IndexStyle property.

Data Type
Integer (Enumerated)

IndexStyle Example 1, Graph Control

Graphl.GraphType = 6
Graphl.IndexStyle =1

For 1% = 1 To Graphl.NumSets
Graphl.ThisSet = 1%
For 3% = 1 To Graphl.NumPoints
Graphl.ThisPoint = 3%

' Line graph.
' Enhanced index style.

Graphl.GraphData = your data value
Graphl.XPosData = your data value

Next

Next

For i% = 1 to Graphl.NumSets
Graphl.ThisSet = 1% ' Use ThisSet as index.
Graphl.LegendText = "Data set" + Str$(i%)
Graphl.ExtraData = your data value
Graphl.ColorData = your data value
Graphl.PatternData = your data value
Graphl.SymbolData = your data value

Next

For i% = 1 To Graphl.NumPoints
Graphl.ThisPoint = i%
Graphl.LabelText = "Data point" = Str$(i%)

Next

Graphl.DrawMode = 2

IndexStyle Example 2, Graph Control

Graphl.GraphType = 6 ' Line graph.

Graphl.IndexStyle = 0 ' Standard index style.

For 1% = 1 to Graphl.NumSets

Graphl.ThisSet = 1%

For 3% = 1 To Graphl.NumPoints
Graphl.ThisPoint = 3%
Graphl.GraphData = your data value
Graphl.XPosData = your data value

Next

Next

For i% = 1 to Graphl.NumSets
Graphl.ThisPoint = i% ' Use ThisPoint as
Graphl.LegendText = "Legend" + Str$(i%)
Graphl.ExtraData your data value
Graphl.ColorData = your data value
Graphl.PatternData = your data value
Graphl.SymbolData = your data value

Next

For i% = 1 To Graphl.NumPoints
Graphl.ThisPoint = i%
Graphl.LabelText = "Label" = Str$(i%)

Next

Graphl.DrawMode = 2

index.

LabelEvery Property, Graph Control

Determines the frequency of labels displayed on the X axis.

Syntax
[form.]Graph.LabelEvery[= frequency%]

Remarks
Enter a value between 1 (the default) and 1000, inclusive.
For example, suppose you have a graph with five points and the LabelText property is set to "Jan,"
"Feb," "Mar," "Apr," and "May." If the LabelEvery property is set to 1, all five labels are displayed. If it is
set to 2, "Jan," "Mar," and "May" (the first, third, and fifth labels) are displayed. Finally, if LabelEvery is
set to 3, only "Jan" and "Apr" (the first and fourth labels) are displayed.

Note The LabelEvery property only affects the graph control when the XPosData property is not set.
Therefore, LabelEvery never affects scatter diagrams, which always use XPosData.

Data Type
Integer

Labels Property, Graph Control

Determines if labels are displayed along the graph's X and Y axes. For pie charts, this property
determines if labels are displayed.

Syntax
[form.]Graph.Labels[= setting%]
Remarks
The following table lists the Labels property settings for the graph control.
Setting Description
0 (Default) Off
1 On
2 X labels displayed
3 Y labels displayed

You can display the labels for the X and Y axes separately. This property operates independently of the
Ticks property.

Data Type
Integer (Enumerated)

LabelText Property, Graph Control

Allows label text to be entered. For illustrations of this property, see the Custom Control Reference.

Syntax
[form.]Graph.LabelText[= label$]

Remarks
If no text has been entered, the labels show the value of the ThisPoint property for all graphs except pie
charts, which show the magnitude of the slices.
Since this is an array property, the array element you set is determined by the current value of the
ThisPoint property.
When entering text, you may use the Autolnc property. If you set the Autolnc property to 1 (on), every
time you set a new string, the ThisPoint counter is automatically incremented.
The LabelText property cannot contain more than 80 characters.
Label text may not be displayed if it is too long to fit on a graph.

Data Type
String

LeftTitle Property, Graph Control
Example
Places the text string that you provide to the left of the vertical axis.

Syntax
[form.]Graph.LeftTitle[= title$]

Remarks
This property is ignored for pie charts.
A left title cannot contain more than 80 characters.
A left title may not be displayed if it is too long to fit on a graph. When this occurs, increase the width of
the graph to display the left title.
Data Type
String

LeftTitle Example, Graph Control

The following code places the title, "Title," to the left of the vertical axis of a graph (Graphl) when you
click a command button and LeftTitle currently has no value. If the LeftTitle property does contain a text
string, when you click the command button, the title will become blank. To try this example, paste the
code into the Declarations section of a form that contains a command button and a graph.

Private Sub Commandl Click ()

If Graphl.LeftTitle = "" Then
Graphl.LeftTitle = "Title"
Else
Graphl.LeftTitle = ""
End If

Graphl.DrawMode = 2
End Sub

LegendStyle Property, Graph Control

Gives the option of coloring the text you enter as legends (LegendText property). This color is in addition
to the colored symbols or patterns.

Syntax
[form.]Graph.LegendStyle[= setting%]
Remarks
The following table lists the LegendStyle property settings for the graph control.
Setting Description
0 Monochrome
1 Color
Data Type

Integer (Enumerated)

LegendText Property, Graph Control

Allows you to enter text for legends.

Syntax
[form.]Graph.LegendText[= text$]

Remarks

There should be one text string for each data set. Pie charts and bar graphs with only one data set
should have a string for each data point.

Since this is an array property, the array element is determined by the current value of the ThisPoint
property.

When entering text, you can use the Autolnc property. If you set the Autolnc property to 1 (on), every
time you set a new string, the ThisPoint counter is automatically incremented.

The LegendText property cannot contain more than 80 characters.
Legend text may not be displayed if it is too long to fit on a graph. When this occurs, increase the width
of the graph to display the legend text.
Data Type
String

LineStats Property, Graph Control

Allows statistics lines to be superimposed on the graph. This property is valid for line or log/lin graphs
only.

Syntax
[form.]Graph.LineStats[= setting%]
Remarks
The following table lists the LineStats property settings for the graph control.
Setting Description
0 None.
1 Mean.
2 MinMax.
3 Mean and MinMax.
4 StdDev.
5 StdDev and Mean.
6 StdDev and MinMax.
7 StdDev and MinMax and Mean.
8 BestFit.
9 BestFit and Mean.
10 BestFit and MinMax.
11 BestFit and MinMax and Mean.
12 BestFit and StdDev.
13 BestFit and StdDev and Mean.
14 BestFit and StdDev and MinMax.
15 All.
Data Type

Integer (Enumerated)

NumPoints Property, Graph Control

Specifies the number of data points in each data set.
Syntax
[form.]Graph.NumPoints[= points%]
Remarks
The minimum value of NumPoints is 2. The default value for this property is 5.

The product of (NumPoints x NumSets) cannot be greater than 3800.
NumPoints can be changed at any time.

If NumPoints is less than the number of data items you have, excess array data is discarded. If
NumPoints is greater than the number of data items you have, additional null-value data is created.

Data Type
Integer

NumSets Property, Graph Control

Specifies the number of data sets to be graphed.
Syntax

[form.]Graph.NumSets| = sets%]
Remarks

The minimum value for NumSets is 1. The default value for this property is 1.

The product of (NumPoints x NumSets) cannot be greater than 3800.
NumSets can be changed at any time.

If NumSets is less than the number of sets of data you have, any excess array data is discarded. If
NumSets is greater than the number of data sets, additional null-value data is created.

Note Pie charts only use the first data set, even if NumSets > 1.

Data Type
Integer

Palette Property, Graph Control

Allows you to select a specific set of palette colors.

Syntax
[form.]Graph.Palette [= setting%]
Remarks
The following table lists the Palette property settings for the graph control.
Setting Description
0 (Default) Solid
1 Pastel (dithered)
2 Grayscale (dithered)

If the Palette property is set to 1, the color values for the graph change from solid colors to dithered
pastel colors. If the Palette property is set to 2, the color values for the graph are changed to the nearest
dithered shade of gray equivalent.

Data Type
Integer (Enumerated)

PatternData Property, Graph Control

Selects a pattern for solid fills, a line pattern for patterned lines, or a line width (in pixels) for thick lines.

Syntax
[form.]Graph.PatternData[= pattern%]

Remarks
The PatternData property settings are illustrated in the following figure.

Pattern data values range from 0 to 31. Select one pattern per data set or one pattern per point for pie or
bar charts with NumSets = 1.

For illustrations of the PatternData property settings, see the Custom Control Reference.

Since this is an array property, the array element you set is determined by the current value of the
ThisPoint property.

When you enter data, you can use the Autolnc property. If you set the Autolnc property to 1 (on), every
time you set a new value, the ThisPoint counter is automatically incremented.

Note Fill patterns 8 through 15 do not exist.

Data Type
Integer (Enumerated)

PatternedLines Property, Graph Control

Sets the style of the lines connecting the data points.

Syntax
[form.]Graph.PatternedLines[= setting%]
Remarks
The following table lists the PatternedLines property settings for the graph control.
Setting Description
0 (Default) Off
1 On

When you set the PatternedLines property to 1 (on), the graph is plotted with dotted lines of pattern 1,
unless a different PatternData has been set. For information on different pattern styles, see the
PatternData property.

Data Type
Integer

Picture Property, Graph Control
Example
Passes a graph image directly to a picture control. This property is not available at design time and is
read-only at run time.
Syntax
[form.]Graph.Picture

Data Type
Integer

n
Picture Example, Graph Control
The following code puts a copy of the graph currently displayed in Graphl into Picturel.

Picturel.Picture = Graphl.Picture

If Picturel has a different aspect ratio from Graph1l, the graph image is stretched or compressed
accordingly.

PrintStyle Property, Graph Control

Selects the print style options when printing the control (DrawMode = 5).

Syntax
[form.]Graph.PrintStyle[= style%]
Remarks
The following table lists the PrintStyle property settings for the Graph control.
Setting Description
0 (Default) Monochrome
1 Color
2 Monochrome with border
3 Color with border

The default option temporarily converts the DrawStyle to Monochrome (0) before printing. If you are
using a color printer, or have a printer capable of printing gray scales, set PrintStyle = 1.

If you use these options with DrawMode = 5, the graph is printed with the best resolution of your printer.
No bitmap is generated.

Data Type
Integer (Enumerated)

QuickData Property, Graph Control
Example
Sets or returns all the data in the GraphData array in a single operation. This property is not available at
design time.
Syntax
[form.]Graph.QuickData[= data$]

Remarks

To assign values to the GraphData array, set this property to a string that contains tab-delimited,
numeric values.

To create the string, separate each point in the data set with a tab character (Chr$(9)), and each data set
by a CR+LF (Chr$(13) + Chr$(10)).

This property is useful when exchanging data between the graph control and the grid control. The format
required by QuickData is the same format used by the grid control's Clip property. In Visual Basic, you
assign a grid's data to a GraphData array with a single line of code:

Graphl.QuickData = Gridl.Clip

Note When using QuickData to set the GraphData array, NumPoints and NumSets are automatically
set according to the number of points and sets within the QuickData string.

If the format of the QuickData string is incorrect (for example, the data sets do not contain the same
number of points), an error will occur. GraphData, NumPoints, and NumSets will not be set.

QuickData must always contain at least one data set with at least two points.

Data Type
Integer

QuickData Example, Graph Control

Dim T As String
Dim CL As String
Dim MyDataString As String

T = Chr$(9)
CRLF = Chr$(13) + Chr$(10)
MyDataString = "11" + T + "12" + T + "13" + CRLF + "21" + T + "22" + T + "23"

+ CRLF + "31" + T + "32" + T + "33" + CRLF
Graphl.QuickData = MyDataString

RandomData Property, Graph Control

If you set the RandomData property to 1 (on), it generates random data to be graphed. This is mainly
useful at design time, when you want to see how the graph will appear at run time.

Syntax
[form.]Graph.RandomData[= setting%]
Remarks
The following table lists the RandomData property settings for the graph control.
Setting Description
0 Off
1 (Default) On

Random numbers that are generated are never negative. To see the effect of negative values, enter your
own data.

Note The RandomData property is automatically set to 0 (off) if GraphData values are present. You
can override the GraphData values by setting the RandomData property to 1 (on). Setting it to 0 (off)
again reinstates the GraphData values. Using DataReset with GraphData (or all data) sets the
RandombData property back to 1 (on).

Data Type
Integer

SeeThru Property, Graph Control
Example

If you set the SeeThru property to 1 (on), the graph background is not cleared. Instead, whatever was
there before you inserted the graph will show through. You can create special effects by drawing a graph
over a picture control containing a bitmap. This property is available at run time only.

Syntax
[form.]Graph.SeeThru[= setting%]
Remarks
The following table lists the SeeThru property settings for the graph control.
Setting Description
0 (Default) Off
1 On

To function correctly, some programming is necessary. Otherwise, the graph cannot be redrawn if it is
covered and then uncovered by another window.

Note See-through graphs do not work when DrawMode = 3 (Blit).

Data Type
Integer

SeeThru Example, Graph Control

Create a picture (Picturel), and then create a graph (Graphl), not as a child of the picture, but directly
on your form. Move the graph over the top of the picture, making sure the graph does not entirely cover
the picture. Leave a narrow border all the way around to ensure the picture receives paint messages.
The BorderStyle should be set to None, or a black line will appear around the area of the graph.

When the picture (Picturel) receives a paint message, it refreshes both itself and the graph (Graphl),
ensuring that the graph is still on top of the picture with the picture showing through. The flag is
necessary to prevent entering the loop again. The Paint event is triggered by Picturel.Refresh.

Dim Flag As Integer

Private Sub Form Load ()

Flag = 0
Graphl.SeeThru = 1
End Sub

Private Sub Picturel Paint ()
If Flag 1 Then
Flag 0
Picturel.Refresh
Graphl.Refresh
Else
Flag =1
End If
End Sub

SymbolData Property, Graph Control

Selects symbols to be used for line, log/lin, scatter, and polar graphs.

Syntax

[form.]Graph.SymbolData[= symbol%]
Remarks

The following table describes the settings for the SymbolData property

Setting Description

0 Cross (+)

1 Cross (X)

2 Triangle (up)

3 Solid Triangle (up)

4 Triangle (down)

5 Solid Triangle (down)

6 Square

7 Solid Square

8 Diamond

9 Solid Diamond

You should select one symbol per data set. The default setting is O.

Since this is an array property, the array element you set is determined by the current value of the

ThisPoint property.

When you enter data, you can use the Autolnc property. If you set the Autolnc property to 1 (on), every

time you set a new value, the ThisPoint counter is automatically incremented.

Data Type
Integer (Enumerated)

ThickLines Property, Graph Control

Sets the width of the lines. For illustrations, see the Custom Control Reference.

Syntax
[form.]Graph.ThickLines[= setting%]
Remarks
The following table lists the ThickLines property settings for the graph control.
Setting Description
0 (Default) Off
1 On

When the ThickLines property is set to 1 (on), 3-pixel m thick lines are drawn, unless a PatternData
property is set. If DrawStyle = 0 (Monochrome), line widths between 2 and 7 pixels (depending on the
PatternData property setting) are selected.

Data Type
Integer

ThisPoint Property, Graph Control
Example

Sets the current point number manually so that a particular data point can be changed.
Syntax

[form.]Graph.ThisPoint[= point%]
Remarks

The property settings for ThisPoint are from 1 to NumPoints. Setting ThisPoint overrides the Autolnc
setting.

Data Type
Integer

ThisPoint Example, Graph Control

The following code draws a 3D bar graph with 1 data set and 5 points. To try this example, paste this
code into the Form_Load event procedure of a form that contains a graph (Graph1).

Private Sub Form Load ()
Graphl.NumPoints =
Graphl.NumSets = 1
Graphl.AutoInc = 1
For I =1 to 5

Graphl.GraphData = 1i%
Next I%
Graphl.ThisPoint = 3
Graphl.GraphData = 10
Graphl.GraphType =
Graphl.DrawMode = 2
End Sub

(
5

|
N

ThisSet Property, Graph Control
Example

Allows you to manually control the current set number so that a particular data set can be changed.
Syntax

[form.]Graph.ThisSet[= set%]
Remarks

The property settings for ThisSet are from 1 to NumSets. Setting ThisSet overrides the Autolnc setting.
This allows you to address any individual data point when you have multiple data sets.

Data Type
Integer

ThisSet Example, Graph Control

The following code draws a 3D bar graph with 3 data sets with 5 points in each set. To try this example,
paste this code into the Form_Load event procedure of a form that contains a graph (Graphl).

Private Sub Form Load ()
Graphl.NumPoints = 5
Graphl.NumSets = 3
Graphl.AutoInc = 1
For I%$ = 1 To Graphl.NumPoints * Graphl.NumSets
Graphl.GraphData = 5
Next I%
Graphl.ThisSet = 2
Graphl.ThisPoint = 3
Graphl.GraphData
Graphl.GraphType =
Graphl.DrawMode = 2
End Sub

[
N
o

TickEvery Property, Graph Control

Determines the interval between tick marks on the X axis. The TickEvery value specifies that the tick
mark represents n data points, where n is a value in the range 1 to 1000. The default value for this
property is 1.

Syntax
[form.]Graph.TickEvery[= interval%]

Remarks

This property is ignored when the XPosData property is set. This means that the TickEvery property
never has any effect on scatter graphs, which always have XPosData property values.

If the NumPoints property is less than TickEvery, the X axis of your graph is extended to the value of
TickEvery. Also, since there must always be an integral number of ticks, the X axis will be extended to a
multiple of TickEvery, if necessary. For example, if NumPoints = 127 and TickEvery = 50, then the X axis
is extended to 150.

Data Type
Integer

Ticks Property, Graph Control

Determines whether axis ticks are displayed.

Syntax
[form.]Graph.Ticks| = setting%]

Remarks
You can turn ticks on and off separately for the X and Y axes.

This property operates independently of the Labels property. Ticks has no affect on a three-dimensional
graph drawn with a cage affect.

The following table lists the Ticks property settings for the graph control.

Setting Description
0 (Default) Off
1 On
2 X ticks
3 Y ticks

Data Type

Integer (Enumerated)

XPosData Property, Graph Control
Example
Gives an independent X value for a graph.

Syntax
[form.]Graph.XPosData[= xvalue!]

Remarks
The property setting for XPosData is any real number.
This property can be set for all graph types except pie and Gantt charts.

Since this is a two-dimensional array property, the array element you set is determined by the current
value of the ThisSet and ThisPoint properties.

When you enter data, you can use the Autolnc property. If you set the Autolnc property to 1 (on), every
time you set a new value, the ThisSet and ThisPoint counters are automatically incremented.

If you have multiple sets of GraphData, but only one set of XPosData, the graph control automatically
applies the single set of XPosData to each set of GraphData.

Data Type
Single

XPosData Example, Graph Control

Sub Form Load
Dim I%, J%
Graphl.AutoInc =
Graphl.NumPoints
Graphl.NumSets =
For I =1 To 2
Graphl.ThisSet = I%
For J% = 1 To 10
Graphl.ThisPoint = J%
If I% = 1 Then Graphl.GraphData = 5 = J%
If I$ = 2 Then Graphl.GraphData = J% ® 5
Graphl.XPosData = J%
Next J%
Next I%
Graphl.DrawMode = 2

10

N o

YAxisMax, YAxisMin Properties, Graph Control

Specifies the maximum Y-axis value (YAxisMax) and minimum Y-axis value (YAxisMin) on your graph.

Syntax
[form.]Graph.YAXxisMax[= max/]
[form.]Graph.YAxisMin[= min/]
Remarks
The property settings for YAxisMax and YAxisMin are any real numbers.
These properties are used in combination with YAxisTicks and only take affect when YAxisStyle = 2
(user-defined). For more information, see the YAXxisStyle property.
Data Type
Single

YAxisPos Property, Graph Control

Specifies the position of the Y axis on your graph.

Syntax
[form.]Graph.YAXisPos[= position%]
Remarks
The following table lists the YAxisPos property settings for the graph control.
Setting Description
0 (Default) Y axis is positioned automatically according to your XPosData values. When the

values are all positive, the Y axis appears at the leftmost edge of the graph. If the values
are all negative, the Y axis appears on the rightmost edge of the graph.

1 Left.
2 Right.

Data Type
Integer (Enumerated)

YAXxisStyle Property, Graph Control

Specifies the method used to scale and range the Y axis on your graph.

Syntax
[form.]Graph.YAXxisStyle[= style%)]
Remarks
The following table lists the YAxisStyle property settings for the graph control.
Setting Description
0 (Default) Y-axis range is calculated automatically based on the data to be graphed. The

maximum Y-axis value is greater than or equal to the maximum data value. The minimum
axis value is 0, or, if the data includes negative values, it is less than or equal to the
minimum data value. The Y axis, therefore, always includes the 0 origin.

1 Variable origin. The maximum Y-axis value is equal to or greater than the maximum data
value. The minimum Y-axis value is less than or equal to the minimum data value,
whether the data includes negative values or not. The Y axis, therefore, may not include
the O origin.

2 User-defined origin. The YAxisMax, YAxisMin, and YAXxisTicks properties work together to
control the range.

The variable origin style is useful when you are graphing data with a small variation around a nonzero

value. If you use the default style, the variation may not be visible.

Use the user-defined style when you want to present the data in a certain way. For example, to create a

series of comparable graphs, you might set the Y-axis range from 1000 to +1000, even though the data

values for some graphs are all positive.

Caution If your data exceeds the limits of the Y-axis range, the graph is drawn outside of the axes
bounds and can result in strange effects.

YAXxisTicks specifies the number of ticks from the origin to the greater of the YAxisMax and YAxisMin
values, regardless of sign. Because there must always be an integral number of ticks on an axis, the
graph will sometimes override the YAxisMin value or YAxisMax value.

In this example, YAxisMax has the greater value: YAxisMax = 300, YAxisMin = 10, and YAXxisTicks = 3.
The graph places ticks 100 units apart, and the YAxisMin value displayed is 100.

In this example, YAxisMin has the greater value (even though it is negative): YAxisMax = 10, YAxisMin =
300, and YAxisTicks = 3. The YAxisMax value displayed is 100.

Data Type
Integer (Enumerated)

YAXxisTicks Property, Graph Control

Specifies the number of ticks on the Y axis of your graph.

Syntax
[form.]Graph.YAXisTicks| = ticks%]

Remarks
Enter a value between 1 (default) and 100, inclusive.
YAXxisTicks works in combination with YAxisMax and YAxisMin and is only used when YAxisStyle = 2
(user-defined). For more information, see the YAxisStyle property.
Data Type
Integer

Graph Control Extended Version
See Also

The extended version of the Graph control includes the following addition features:

Rotating graphs

Hot events for drill-down
Combo graphs

Curve fitting

More graph types
Extended customization

For more information on the extended version of the Graph control in the Graphics Server Developers
Kit, please complete this form and mail or fax it to one of the publishers below.

USA & International Germany & Austria UK & rest of Europe
Pinnacle Publishing Inc heilerSoftware Bits Per Second Ltd
PO Box 888, Kent, Mittlerer Pfad 5 14 Regent Hill, Brighton,
WA 98035-0888, USA 70499 Stuttgart Sussex BN1 3ED, UK
Tel: 206/251-1900 Germany Tel: 01273 727119
Fax: 206/251-5057 Tel: 0711 139840 Fax: 01273 731925

Fax: 0711 8666301

NAME

COMPANY

ADDRESS

FAX

PHONE

See Also
Graph Control

> Key State Control

Properties Methods Events Constants

You can use the key state control to display or modify the CAPS LOCK, NUM LOCK, INS and SCROLL LOCK
keyboard states.

File Name
KEYSTA16.0CX, KEYSTA32.0CX

Class Name
mhState

Remarks
Key state sets or returns the state of certain keys on your keyboard. The Style property determines
which key the control affects. At run time, you turn a key on and off by setting the Value property to True
and False, respectively. The user can also change the state of a key at run time by clicking a key state
control.
The first 16 controls automatically update their appearance when the user presses the corresponding
key. If you create more than 16 controls, the subsequent controls will be visible, however, their
appearance will not be updated when the key is pressed.

Distribution Note \When you create and distribute applications that use the key state control, you
should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Kit included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk(*).

AutoSize HelpContextID
BackColor Index
Container Left

Draglicon Mouselcon
DragMode MousePointer
Enabled Name

*Height Object

Value is the default value of the control.

Parent *Value

*Style Visible

Tablndex WhatsThisHelpID
TabStop *Width

Tag

*Timerlnterval

Top

Note

The Name property is equivalent to the CtIName property in Visual Basic 1.0.

Events

All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk(*).

*Change GotFocus KeyPress LostFocus
Click KeyDown KeyUp
Methods
All of the methods for this control are listed in the following table.
Move SetFocus ZOrder
Refresh ShowWhatsThis

Height, Width Properties, Key State Control

Determine the height and width of the key state control.

Syntax
[form.]Keystate.Height[= setting%]
[form.]Keystate.Width[= setting%]

Remarks
You cannot resize a key state control unless the AutoSize property is set to False.

Data Type
Integer

Style Property, Key State Control

Determines which keyboard state is associated with the key state control.

Syntax
[form.]Keystate.Style[= setting%s]
Remarks
The following table lists the Style property settings for the key state control.
Setting Description
0 (Default) Capitals lock
1 Number lock
2 Insert state
3 Scroll lock
Data Type

Integer (Enumerated)

Timerinterval Property, Key State Control

Sets or returns the current timer interval setting for all key state controls. The default is 1000
milliseconds.

Syntax
[form.]Keystate. TimerInterval[= milliseconds%]

Remarks

This property determines the interval at which the key state is checked. If you are having performance
problems, try setting TimerInterval to a higher value.

Only one timer operates all key state controls. If you change the Timerinterval for one control, you are
changing it for all of them.

The Timerinterval property cannot be set to a negative value.

Data Type
Long

Value Property, Key State Control

Sets or returns the current state for the key defined in the Style property. The Value property returns the
lock state of the key, not the pressed state. This property is not available at design time.

Syntax
[form.]Keystate.Value[= {True | False}]
Remarks
The following table lists the Value property settings for the key state control.
Setting Description
False Key state is off (for example, caps Lock is off).
True Key state is on (for example, caps Lock is on).
Data Type

Integer (Boolean)

Change Event, Key State Control

Occurs when the Value property changes.

Syntax
Private Sub Keystate Change ()

= MAPI Session Control

Properties Methods Constants Error Messages

The messaging application program interface (MAPI) controls allow you to create a mail-enabled Visual
Basic MAPI application. There are two MAPI custom controls, MAPI session and MAPI messages. The
MAPI session control establishes a MAPI session, and then the MAPI messages control allows the user
to perform a variety of messaging system functions.

The MAPI controls are invisible at run time. In addition, there are no events for the controls. To use
them, you must specify the appropriate methods.

For these controls to work, MAPI services must be present. MAPI services are provided in MAPI
compliant electronic mail systems using Windows version 3.0 or later.

The MAPI session control establishes a messaging session.

File Name
MSMAPI16.0CX, MSMAPI32.0CX

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control or require special consideration when used with it, are marked with an asterisk (*).

*Action Name *SessionID
*DownloadMail *NewSession Tag
Index Object Top
Left Parent *UserName
*LogonUlI *Password

Methods
All of the methods for this control are listed in the following table.
SignOff SignOn

Action Property (MAPI Session Control)

Determines what action is performed when the MAPI session control is invoked. This property is not
available at design time. Setting the Action value at run time invokes the control. The Action property is
write-only at run time.

Note The Action property is included for compatibility with earlier versions of Visual Basic. For
additional functionality, use the new methods listed in the Methods table for the MAPI Session control.

Syntax
[form.JMapiSession.Action[= setting%]
Remarks

This property is used to select between signing on and signing off from a messaging session. When
signing on, a session handle is returned and stored in the SessionID property.

The Action property settings are:
Setting Description

SighOn Logs user into the account specified by the UserName and Password properties and
provides a session handle to the underlying message subsystem. The session handle is
stored in the SessionID property.

Depending on the value of the NewSession property, the session handle may refer to a
newly created session or an existing session.

SignhOff Ends the messaging session and signs the user off the specified account.

Data Type
Integer (Enumerated)

DownloadMail Property

Specifies whether new messages are downloaded from the mail server for the designated user.

Syntax
[form.]MapiSession.DownloadMail[= {True | False}]
Remarks
The DownloadMail property settings are:
Setting Description
True (Default) All new messages from the mail server are forced to the user's Inbox during the
sign-on process. A progress indicator is displayed until the message download is
complete.
False New messages on the server are not forced to the user's Inbox immediately, but are

downloaded at the time interval set by the user.

This property can be set to True when you want to access the user's complete set of messages when
signing on. However, processing time may increase as a result.

Data Type
Integer (Boolean)

LogonUI Property

Specifies whether or not a dialog box is provided for sign-on.

Syntax
[form.]MapiSession.LogonUI[= {True | False}]
Remarks
The LogonUl property settings are:
Setting Description
True (Default) A dialog box prompts new users for their user name and password (unless a
valid messaging session already exists see the NewSession property for more
information).
False No dialog box is displayed.

The False setting is useful when you want to begin a mail session without user intervention, and you
already have the account name and password for the user. If insufficient or incorrect values are
provided, however, an error is generated.

Data Type
Integer (Boolean)

NewSession Property

Specifies whether a new mail session should be established, even if a valid session currently exists.

Syntax
[form.]MapiSession.NewSession[= {True | False}]
Remarks
The NewSession property settings are:
Setting Description
True A new messaging session is established, regardless of whether a valid session already
exists.
False (Default) Use the existing session established by the user.
Data Type

Integer (Boolean)

Password Property (MAPI Sessions Control)

Specifies the account password associated with the UserName property.
Syntax
[form.]MapiSession.Password[= string$|

Remarks
An empty string in this property indicates that a sign-on dialog box with an empty password field should
be generated. The default is an empty string.

Data Type
String

SessionID Property (MAPI Sessions Control)

Stores the current messaging session handle. This property is not available at design time, and is read
only at run time.

Syntax
[form.]MapiSession.SessionIlD

Remarks

This property is set when you specify the SignOn method. The SessionID property contains the unique
messaging session handle. The default is 0.

Use this property to set the SessionID property of the MAPI messages control.
Data Type
Long

UserName Property

Specifies the account user name.

Syntax
[form.]MapiSession.UserName[= string$]

Remarks
This property contains the name of the user account desired for sign-on or sign-off. If the LogonUl
property is True, an empty string in the UserName property indicates that a sign-on dialog box with an
empty name field should be generated. The default is an empty string.

Data Type
String

SignOff Method

Ends the messaging session and signs the user off from the account specified by the UserName and
Password properties.

Syntax
[form.JMapiSession.SignOff

SignOn Method

Logs the user into the account specified by the UserName and Password properties, and provides a
session handle to the underlying message subsystem.

Syntax
[form.]MapiSession.SignOn

Remarks

The session handle is stored in the SessionID property. Depending on the value of the NewSession
property, the session handle may refer to a newly created session or an existing session.

= MAPI Messages Control

Properties Methods Constants Error Messages

The messaging application program interface (MAPI) controls allow you to create a mail-enabled Visual
Basic MAPI application. There are two MAPI custom controls, MAPI session and MAPI messages. The
MAPI session control establishes a MAPI session, and then the MAPI messages control allows the user
to perform a variety of messaging system functions.

The MAPI controls are invisible at run time. In addition, there are no events for the controls. To use
them, you must specify the appropriate methods.

For these controls to work, MAPI services must be present. MAPI services are provided in MAPI
compliant electronic mail systems using Windows version 3.0 or later.

The MAPI messages control performs a variety of messaging system functions after a messaging session
is established with the MAPI session control.

Class Name
MapiMessages

Remarks
With the MAPI messages control, you can:

Access messages currently in the Inbox.

Compose a new message.

Add and delete message recipients and attachments.

Send messages (with or without a supporting user interface).

Save, copy, and delete messages.

Display the Address Book dialog box.

Display the Details dialog box.

Access attachments, including Object Linking and Embedding (OLE) attachments.
Resolve a recipient name during addressing.

Perform reply, reply-all, and forward actions on messages.

Most of the properties of the MAPI messages control can be categorized into four functional areas:
address book, file attachment, message, and recipient properties. The file attachment, message, and
recipient properties are controlled by the Attachmentindex, Msgindex, and Reciplndex properties,
respectively.

For example, as the index value changes in the Msgindex property, all other message, file attachment,
and recipient properties change to reflect the characteristics of the specified message. The set of
message and recipient properties works the same way. The address book properties specify the
appearance of the address book dialog box.

Message Buffers

When using the MAPI messages control, you need to keep track of two buffers, the compose buffer and
the read buffer. The read buffer is made up of an indexed set of messages fetched from a user's Inbox.
The Msgindex property is used to access individual messages within this set, starting with a value of 0
for the first message and incrementing by one for each message through the end of the set.

The message set is built using the Fetch method. The set includes all messages of type FetchMsgType
and is sorted as specified by the FetchSorted property. Previously read messages can be included or
left out of the message set with the FetchUnreadOnly property. Messages in the read buffer can't be
altered by the user, but can be copied to the compose buffer for alteration.

Messages can be created or edited in the compose buffer. The compose buffer is the active buffer when
the Msglndex property is set to -1. Many of the messaging actions are valid only within the compose
buffer, such as sending messages, sending messages with a dialog box, saving messages, or deleting
recipients and attachments.

Refer to the object library in the Object Browser for property and error constants for the control.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control or require special consideration when used with it, are marked with an asterisk (*). (Note that the
list order is alphabetic from top to bottom, then left to right.)

*Action *FetchUnreadOnly *MsgType
*AddressCaption Index Name
*AddressEditFieldCount *MsgConversationlD Object
*AddressLabel *MsgCount Parent
*AddressMadifiable *MsgDateReceived *RecipAddress
*AddressResolveUl *MsglD *RecipCount
*AttachmentCount *Msglndex *RecipDisplayName
*Attachmentindex *MsgNoteText *Reciplndex
*AttachmentName *MsgOrigAddress *RecipType
*AttachmentPathName *MsgOrigDisplayName *SessionlD
*AttachmentPosition *MsgRead Tag
*AttachmentType *MsgReceiptRequested Top
*FetchMsgType *MsgSent
*FetchSorted *MsgSubject

Methods

All of the methods for this control are listed in the following table. (Note that the list order is alphabetic
from top to bottom, then left to right.)

Compose Forward Save
Copy Reply Send
Delete ReplyAll Show
Fetch ResolveName

Action Property (MAPI Message Control)

Determines what action is performed when the MAPI messages control is invoked. This property is not
available at design time. Setting the Action value at run time invokes the control. This property is write-
only at run time.

Note The Action property is included for compatibility with earlier versions of Visual Basic. For
additional functionality, use the new methods listed in the Methods table for the MAPI Messages control.

Syntax
[form.JMapiMessages.Action| = setting%]

Remarks

The following table lists the Action property settings from Visual Basic 3.0 and the corresponding new
methods in Visual Basic 4.0.

Action property setting (VB3) Corresponding method (VB4)
MESSAGE_FETCH Fetch method
MESSAGE_SENDDLG Send method
MESSAGE_SEND Send method
MESSAGE_SAVEMSG Save method
MESSAGE_COPY Copy method
MESSAGE_COMPOSE Compose method
MESSAGE_REPLY Reply method

MESSAGE_REPLYALL ReplyAll method

MESSAGE_FORWARD
MESSAGE_DELETE
MESSAGE_SHOWADBOOK
MESSAGE_SHOWDETAILS
MESSAGE_RESOLVENAME
RECIPIENT_DELETE
ATTACHMENT_DELETE

Data Type
Integer

Forward method
Delete method

Show method

Show method
ResolveName method
Delete method

Delete method

AddressCaption Property

Specifies the caption appearing at the top of the Address Book dialog box when the Show method is
specified with the details argument missing or set to False.

Syntax

[form.]MapiMessages.AddressCaption[= string$]
Remarks

If this property is a null or empty string, the default value of the Address Book is used.
Data Type

String

AddressEditFieldCount Property

Specifies the number of edit controls available to the user in the Address Book dialog box when the
Show method is specified with the details argument missing or set to False.

Syntax

[form.]MapiMessages.AddressEditFieldCount[= setting%]

Remarks

The AddressEditFieldCount property settings are:

Setting Description

0 No edit controls; only browsing is allowed.

1 (Default) Only the To edit control should be present in the dialog box.

2 The To and CC (copy) edit controls should be present in the dialog box.

3 The To, CC (copy), and BCC (blind copy) edit controls should be present in the dialog
box.

4 Only those edit controls supported by the messaging system should be present in the

dialog box.

For example, if AddressEditFieldCount is 3, the user can select from the To, CC, and BCC edit controls
in the Address Book dialog box. The AddressEditFieldCount is adjusted so that it is equal to at least the
minimum number of edit controls required by the recipient set.

Data Type

Integer (Enumerated)

AddressLabel Property

Specifies the appearance of the To edit control in the Address Book when the Show method is specified
with the details argument missing or set to False.

Syntax
[form.]MapiMessages.AddressLabel[= string$]

Remarks
This property is normally ignored and should contain an empty string to use the default label "To."
However, when the AddressEditFieldCount property is set to 1, the user has the option of explicitly
specifying another label (providing the number of editing controls required by the recipient set equals 1).
Data Type
String

AddressModifiable Property

Specifies whether the Address Book can be modified.

Syntax

[form.]MapiMessages.AddressModifiable[= {True | False}]
Remarks

The AddressModifiable property settings are:

Setting Description

True The user is allowed to modify their personal address book.

False (Default) The user is not allowed to modify their personal address book.
Data Type

Integer (Boolean)

AddressResolveUl Property

Specifies whether a dialog box is displayed for recipient name resolution during addressing when the
ResolveName method is specified.

Syntax

[form.]MapiMessages.AddressResolveUl[= {True | False}]
Remarks

The AddressResolveUl property settings are:

Setting Description
True A dialog box is displayed with names that closely match the intended recipient's name.
False (Default) No dialog box is displayed for ambiguous names. An error occurs if no potential

matches are found (no matches is not an ambiguous situation).

Data Type
Integer (Boolean)

AttachmentCount Property

Specifies the total number of attachments associated with the currently indexed message. This property
is not available at design time, and is read-only at run time.

Syntax
[form.JMapiMessages.AttachmentCount

Remarks
The default value is 0. The value of AttachmentCount depends on the number of attachments in the
current indexed message.

Data Type
Long

Attachmentindex Property

Sets the currently indexed attachment. This property is not available at design time.

Syntax
[form.JMapiMessages.Attachmentindex[= index%]

Remarks
Specifies an index number to identify a particular message attachment. The index number in this
property determines the values in the AttachmentFileName, AttachmentPathName, AttachmentPosition,
and AttachmentType properties. The attachment identified by the Attachmentindex property is called the
currently indexed attachment. The value of Attachmentindex can range from O (the default) to
AttachmentCount -1.

To add a new attachment, set the Attachmentindex to a value greater than or equal to the current
attachment count while in the compose buffer (Msgindex = -1). The AttachmentCount property is
updated automatically to reflect the implied new number of attachments.

For example, if the current AttachmentCount property has the value 3, setting the Attachmentindex
property to 4 adds 2 new attachments and increases the AttachmentCount property to 5.

To delete an existing attachment, specify the Delete method with the object parameter set to 2.
Attachments can be added or deleted only when the Msgindex property is set to -1.

Data Type
Long

AttachmentName Property

Specifies the name of the currently indexed attachment file. This property is not available at design time.
It is read-only unless Msgindex is set to -1.

Syntax
[form.]MapiMessages.AttachmentName[= string$]

Remarks

The file name specified is the file name seen by the recipients of the currently indexed message. If
AttachmentFileName is an empty string, the file name from the AttachmentPathName property is used.

If the attachment is an OLE object, AttachmentFileName contains the class name of the object, for
example, "Microsoft Excel Worksheet."

Attachments in the read buffer are deleted when a subsequent fetch action occurs. The value of
AttachmentName depends on the currently indexed message as selected by the Attachmentindex
property.

Data Type
String

AttachmentPathName Property

Specifies the full path name of the currently indexed attachment. This property is not available at design
time. It is read-only unless Msgindex is setto -1.

Syntax
[form.]MapiMessages.AttachmentPathName[= string$]

Remarks

If you attempt to send a message with an empty string for a path name, an error results. Attachments in
the read buffer are deleted when a subsequent fetch action occurs. Attachments in the compose buffer
need to be manually deleted. The value of AttachmentPathName depends on the currently indexed
message, as selected by the Attachmentindex property.

Data Type
String

AttachmentPosition Property

Specifies the position of the currently indexed attachment within the message body. This property is not
available at design time. It is read-only unless Msgindex is setto -1.

Syntax
[form.JMapiMessages.AttachmentPosition[= position&]

Remarks

To determine where an attachment is placed, count the characters in the message body and decide
which character position you wish to replace with the attachment. The character count at that position
should be used for the AttachmentPosition value.

For example, in a message body that is five-characters long, you could place an attachment at the end
of the message by setting AttachmentPosition equal to 4. (The message body occupies character
positions 0 to 4.)

You can't place two attachments in the same position within the same message. In addition, you can't
place an attachment beyond the end of the message body.

The value of AttachmentPosition depends on the currently indexed message, as selected by the
Attachmentindex property.

Data Type
Long

AttachmentType Property

Specifies the type of the currently indexed file attachment. This property is not available at design time.
Itis read-only unless Msgindex is setto -1.

Syntax

[form.]MapiMessages.AttachmentType[= type%]
Remarks

The AttachmentType property settings are:

Setting Description

Data The attachment is a data file.

EOLE The attachment is an embedded OLE object.

SOLE The attachment is a static OLE object.

The value of AttachmentType depends on the currently indexed message, as selected by the
Attachmentindex property.

Data Type
Integer (Enumerated)

FetchMsgType Property
Specifies the message type to populate the message set.

Syntax
[form.]MapiMessages.FetchMsgType[= string$]

Remarks
This property determines which message types are added to the message set when the Fetch method
is specified. A null or empty string in this property specifies an interpersonal message type (IPM), which
is the default.

Data Type
String

FetchSorted Property

Specifies the message order when populating the message set with messages from the Inbox.

Syntax
[form.JMapiMessages.FetchSorted[= {True | False}]
Remarks
The FetchSorted property settings are:
Setting Description
True Messages are added to the message set in the order they were received (first in, first out).
False (Default) Messages are added in the sort order as specified by the user's Inbox.
Data Type

Integer (Boolean)

FetchUnreadOnly Property

Determines whether to restrict the messages in the message set to unread messages only.

Syntax
[form.]MapiMessages.FetchUnreadOnly[= {True | False}]
Remarks
The FetchUnreadOnly property settings are:
Setting Description
True (Default) Only unread messages of the type specified in the FetchMsgType property are
added to the message set.
False All messages of the proper type in the Inbox are added.
Data Type

Integer (Boolean)

MsgConversationID Property

Specifies the conversation thread identification value for the currently indexed message. It is read-only
unless Msglindex is set to 1.

Syntax
[form.]MapiMessages.MsgConversationID[= string$]

Remarks

A conversation thread is used to identify a set of messages beginning with the original message and
including all the subsequent replies. Identical conversation IDs indicate that the messages are part of
the same thread. New messages are assigned an ID by the message system. The value of
MsgConversationID depends on the currently indexed message, as selected by the Msglndex property.

Data Type
String

MsgCount Property

Indicates the total number of messages present in the message set during the current messaging
session. This property is not available at design time, and is read-only at run time.

Syntax
[form.JMapiMessages.MsgCount

Remarks

This property is used to get a current count of the messages in the message set. The default value is 0.
This property is reset each time a fetch action is performed.

Data Type
Long

MsgDateReceived Property

Specifies the date on which the currently indexed message was received. This property is not available
at design time and is read-only at run time.

Syntax
[form.JMapiMessages.MsgDateReceived

Remarks
The format for this property is YYYY/MM/DD HH:MM. Hours are measured on a standard 24-hour base.
The value of MsgDateReceived is set by the message system and depends on the currently indexed
message, as selected by the Msglndex property.

Data Type
String

MsgID Property

Specifies the string identifier of the currently indexed message. This property is not available at design
time and is read-only at run time.

Syntax
[form.JMapl/iMessages.MsgID

Remarks
The message-identifier string is a system-specific, nonprintable, 64-character string used to uniquely
identify a message. The value of MsgID depends on the currently indexed message, as selected by the
Msglndex property.

Data Type
String

Msgindex Property

Specifies the index number of the currently indexed message. This property is not available at design
time.

Syntax
[form.JMapiMessages.Msglndex[= index&]

Remarks

The Msgindex property determines the values of all the other message-related properties of the MAPI
messages control. The index humber can range from -1 to MsgCount -1.

Note Changing the Msgindex property also changes the entire set of attachments and recipients.

The message identified by the Msgindex property is called the currently indexed message. When this
index is changed, all of the other message properties change to reflect the characteristics of the indexed
message. A value of -1 signifies a message being built in the compose buffer in other words, an
outgoing message.

Data Type
Long

MsgNoteText Property

Specifies the text body of the message. This property is not available at design time. It is read-only
unless Msglindex is set to 1.

Syntax
[form.]MapiMessages.MsgNoteText[= string$]

Remarks

This property consists of the entire textual portion of the message body (minus any attachments). An
empty string indicates no text.

For inbound messages, each paragraph is terminated with a carriage return-line feed pair (0x0d0Oa). For
outbound messages, paragraphs can be delimited with a carriage return 0x0d), line feed 0x0a), or a
carriage return-line feed pair (0x0d0Oa). The value of MsgNoteText depends on the currently indexed
message, as selected by the Msgindex property.

Data Type
String

MsgOrigAddress Property

Indicates the mail address of the originator of the currently indexed message. This property is not
available at design time and is read-only at run time. The messaging system sets this property for you
when sending a message.

Syntax
[form.]MapiMessages.MsgOrigAddress

Remarks

The value of MsgOrigAddress depends on the currently indexed message as selected by the Msgindex
property. The value is null in the compose buffer.

Data Type
String

MsgOrigDisplayName Property
Specifies the originator's name for the currently indexed message. This property is not available at
design time and is read-only at run time. The messaging system sets this property for you.
Syntax
[form.JMapiMessages.MsgOrigDisplayName

Remarks
The name in this property is the originator's name, as displayed in the message header. The value of
MsgOrigDisplayName depends on the currently indexed message, as selected by the Msgindex
property. The value is null in the compose buffer.

Data Type
String

MsgRead Property

Indicates whether the message has already been read. This property is not available at design time and
is read-only at run time.

Syntax
[form.JMapiMessages.MsgRead
Remarks
The MsgRead property settings are:
Setting Description
True The currently indexed message has already been read by the user.
False (Default) The message remains unread.

The value of MsgRead depends on the currently indexed message, as selected by the Msgindex
property. The message is marked as read when the note text or any of the attachment information is
accessed. However, accessing header information does not mark the message as read.

Data Type
Integer (Boolean)

MsgReceiptRequested Property

Specifies whether a return receipt is requested for the currently indexed message. This property is not
available at design time.

Syntax
[form.]MapiMessages.MsgReceiptRequested| = {True | False}]
Remarks
The MsgReceiptRequested property settings are:
Setting Description
True A receipt notification is returned to the sender when the recipient opens the message.
False (Default) No return receipt is generated.

The value of MsgReceiptRequested depends on the currently indexed message, as selected by the
Msglindex property.

Data Type
Integer (Boolean)

MsgSent Property

Specifies whether the currently indexed message has already been sent to the mail server for
distribution. This property is not available at design time and is read-only at run time. The messaging
system sets this property for you when sending a message.

Syntax
[form.]MapiMessages.MsgSent
Remarks
The MsgSent property settings are:
Setting Description
True The currently indexed message has already been submitted to the mail server as an
outgoing message.
False The currently indexed message has not yet been delivered to the server.

The value of MsgSent depends on the currently indexed message, as selected by the Msgindex
property.

Data Type
Integer (Boolean)

MsgSubject Property

Specifies the subject line for the currently indexed message as displayed in the message header. This
property is not available at design time. It is read-only unless Msgindex is setto -1.

Syntax
[form.]MapiMessages.MsgSubject[= string$]

Remarks
The value of MsgSubject depends on the currently indexed message, as selected by the Msglindex
property. MsgSubiject is limited to 64 characters, including the null character.

Data Type
String

MsgType Property

Specifies the type of the currently indexed message. This property is not available at design time. It is
read-only unless Msgindex is setto -1.

Syntax
[form.JMapiMessages.MsgType[= string$]

Remarks

The MsgType property is for use by applications other than interpersonal mail (IPM message type). Not
all mail systems support message types that are not IPM and may not provide (or may ignore) this
parameter.

A null or empty string indicates an IPM message type. The value of MsgType depends on the currently
indexed message, as selected by the Msglndex property. This property is not meant for use as a filter to
isolate messages by sender, receipt time, and other categories.

Data Type
String

RecipAddress Property

Specifies the electronic mail address of the currently indexed recipient. This property is not available at
design time. It is read-only unless Msgindex is setto -1.

Syntax
[form.]MapiMessages.RecipAddress| = string$]

Remarks
The value of RecipAddress depends on the currently indexed recipient, as selected by the Reciplndex
property.

Data Type
String

RecipCount Property

Specifies the total number of recipients for the currently indexed message. This property is not available
at design time, and is read-only at run time.

Syntax
[form.JMapiMessages.RecipCount

Remarks

The default value is 0. The value of RecipCount depends on the currently indexed message, as selected
by the Msgindex property.

Data Type
Long

RecipDisplayName Property

Specifies the name of the currently indexed recipient. This property is not available at design time. It is
read-only unless Msgindex is setto -1.

Syntax
[form.]MapiMessages.RecipDisplayName][= string$]

Remarks
The name in this property is the recipient's name, as displayed in the message header. The value of
RecipDisplayName depends on the currently indexed message, as selected by the Recipindex property.
The ResolveName method uses the recipient name as it is stored here.

Data Type
String

RecipIindex Property

Sets the currently indexed recipient. This property is not available at design time.

Syntax
[form.JMapiMessages.Reciplndex[= index&]

Remarks

Specifies an index number to identify a particular message recipient. The index number in this property
determines the values in the RecipAddress, RecipCount, RecipDisplayName, and RecipType properties.

The recipient identified by the Reciplndex property is called the currently indexed recipient. The value of
RecipIndex can range from O (the default) to RecipCount -1. When in the read buffer with Recipindex set
to -1, values of the other recipient properties show message originator information. The default setting is
0.

To add a new recipient, set the Reciplndex to a value greater than or equal to the current recipient count
while in the compose buffer. The RecipCount property is updated automatically to reflect the implied new
number of recipients. For example, if the current RecipCount property has the value 3, setting the
Reciplndex property to 4 adds 2 new recipients and increases the RecipCount property to 5.

To delete an existing recipient, specify the Delete method with the object parameter set to 1. Recipients
can be added or deleted only when the Msgindex property is set to -1.

Data Type
Long

RecipType Property

Specifies the type of the currently indexed recipient. This property is not available at design time. It is
read-only unless Msgindex is set to -1.

Syntax
[form.]MapiMessages.RecipType[= setting%]
Remarks
The RecipType property settings are:
Setting Description
OrigList The message originator.
ToList The recipient is a primary recipient.
CclList The recipient is a copy recipient.
BcclList The recipient is a blind copy recipient.

The value of RecipType depends on the currently indexed message, as selected by the Reciplndex
property. You cannot set the recipient type to 0 (the message system uses a value of 0 to indicate the
message originator.)

Data Type
Integer

SessionID Property (MAPI Messages Control)

Stores the current messaging session handle. This property is not available at design time.

Syntax
[form.JMapiMessages.SessionID[= handle&]

Remarks

This property contains the messaging session handle returned by the SessionlID property of the MAPI
session control. To associate the MAPI messages control with a valid messaging session, set this
property to the SessionID of a MAPI session control that was successfully signed on.

Data Type
Long

Compose Method

Composes a message.

Syntax
[form.JMapiMessages.Compose

Remarks
This method clears all the components of the compose buffer, and sets the Msglindex property to -1.

Copy Method

Copies the currently indexed message to the compose buffer.

Syntax
[form.JMapiMessages.Copy

Remarks
This method sets the Msglndex property to -1.

Delete Method

Deletes a message, recipient, or attachment.

Syntax
[form.]MapiMessages.Delete [object As Integer]
Remarks

The values for object and their corresponding actions are:

Value Description

Missing or O Deletes all components of the currently indexed message, reduces the MsgCount
property by 1, and decrements the index number by 1 for each message that follows
the deleted message.

If the deleted message was the last message in the set, this method decrements the
Msglindex property by 1.

1 Deletes the currently indexed recipient. Automatically reduces the RecipCount
property by 1, and decrements the index number by 1 for each recipient that follows
the deleted recipient.

If the deleted recipient was the last recipient in the set, this method decrements the
Reciplndex property by 1.
2 Deletes the currently indexed attachment. Automatically reduces the AttachmentCount

property by 1, and decrements the index by 1 for each attachment that follows the
deleted attachment.

If the deleted attachment was the last attachment in the set, this method decrements
the Attachmentindex by 1.

Fetch Method

Creates a message set from selected messages in the Inbox.
Syntax
[form.]MapiMessages.Fetch
Remarks
The message set includes all messages in the Inbox which are of the types specifed by the

FetchMsgType property. They are sorted as specified by the FetchSorted property. If the
FetchUnreadOnly property is set to True, only unread messages are included in the message set.

Any attachment files in the read buffer are deleted when a subsequent fetch action occurs.

Forward Method

Forwards a message.
Syntax
[form.JMapiMessages.Forward

Remarks

This method copies the currently indexed message to the compose buffer as a forwarded message and
adds FW: to the beginning of the Subject line. It also sets the Msgindex property to -1.

Reply Method

Replies to a message.

Syntax
[form.]MapiMessages.Reply

Remarks

This method copies the currently indexed message to the compose buffer and adds RE: to the beginning
of the Subject line. It also sets the Msglindex property to -1.

The currently indexed message originator becomes the outgoing message recipient.

ReplyAll Method

Replies to all message recipients.

Syntax
[form.JMapiMessages.ReplyAll

Remarks

This method copies the currently indexed message to the compose buffer and adds RE: to the beginning
of the Subject line. It also sets the Msglindex property to -1.

The message is sent to the currently indexed message originator and to all To: and CC: recipients.

ResolveName Method

Resolves the name of the currently indexed recipient.

Syntax
[form.JMapiMessages.ResolveName

Remarks

This method searches the address book for a match on the currently indexed recipient name. If no
match is found, an error is returned. It does not provide additional resolution of the message originator's
name or address.

The AddressResolveUl property determines whether to display a dialog box to resolve ambiguous
names.

This method may cause the RecipType property to change.

Save Method

Saves the message currently in the compose buffer (with Msgindex = -1).

Syntax
[form.JMapiMessages.Save

Send Method

Sends a message.

Syntax
[form.]MapiMessages.Send [dialog As Integer]
Remarks
The values for dialog and their corresponding actions are:
Value Description
True Sends a message inside a dialog box. Prompts the user for the various

False or missing

components of the message and submits the message to the mail server for
delivery.

All message properties associated with the message being built in the compose
buffer form the basis for the message dialog box. However, changes made in the
dialog box do not alter information in the compose buffer.

Submits the outgoing message to the mail server without displaying a dialog box.
An error occurs if you attempt to send a message with no recipients or with
missing attachment path names.

Show Method

Displays the mail Address Book dialog box or the details of the currently indexed recipient.

Syntax
[form.]MapiMessages.Show [details As Integer]
Remarks
The values for details and their corresponding actions are:
Value Description
True Displays a dialog box that shows the details of the currently indexed recipient.

The amount of information presented in the dialog box is determined by the
message system. As a minimum, it contains the display hame and address of the
recipient.

False or missing Displays the mail Address Book dialog box. You can use the address book to
create or modify a recipient set. Any changes to the address book outside of the
compose buffer are not saved.

2

Masked Edit Control

Properties Methods Events Constants

The masked edit control provides restricted data input as well as formatted data output. This control
supplies visual cues about the type of data being entered or displayed. This is what the control looks like
as an icon in the Toolbox:

2

File Name
MSMASK16.0CX, MSMASK32.0CX

Class Name
MaskEdBox

Remarks

The masked edit control generally behaves as a standard text box control with enhancements for
optional masked input and formatted output. If you don't use an input mask, the masked edit control
behaves much like a standard text box, except for its dynamic data exchange (DDE) capability.

If you define an input mask using the Mask property, each character position in the masked edit control
maps to either a placeholder of a specified type or a literal character. Literal characters, or literals, give
visual cues about the type of data being used. For example, the parentheses surrounding the area code
of a telephone number are literals: (206).

If you attempt to enter a character that conflicts with the input mask, the control generates a
ValidationError event. The input mask prevents you from entering invalid characters into the control.

The masked edit control has three bound properties: DataChanged, DataField, and DataSource. This
means that it can be linked to a data control and display field values for the current record in the
recordset. The masked edit control can also write out values to the recordset.

When the value of the field referenced by the DataField property is read, it is converted to a Text
property string, if possible. If the recordset is updatable, the string is converted to the data type of the
field.

To clear the Text property when you have a mask defined, you first need to set the Mask property to an
empty string, and then the Text property to an empty string:

MaskedEditl.Mask = ""
MaskedEditl.Text = ""

When you define an input mask, the masked edit control behaves differently from the standard text box.
The insertion point automatically skips over literals as you enter data or move the insertion point.

When you insert or delete a character, all nonliteral characters to the right of the insertion point are
shifted, as necessary. If shifting these characters leads to a validation error, the insertion or deletion is
prevented, and a ValidationError event is triggered.

Suppose the Mask property is defined as "?###", and the current value of the Text property is "A12." If
you attempt to insert the letter "B" before the letter "A," the "A" would shift to the right. Since the second
value of the input mask requires a number, the letter "A" would cause the control to generate a
ValidationError event.

The masked edit control also validates the values of the Text property at run time. If you set the Text
property so that it conflicts with the input mask, the control generates a run-time error.

You may select text in the same way as for a standard text box control. When selected text is deleted,
the control attempts to shift the remaining characters to the right of the selection. However, any
remaining character that might cause a validation error during this shift is deleted, and no ValidationError
event is generated.

Normally, when a selection in the masked edit control is copied onto the Clipboard, the entire selection,
including literals, is transferred onto the Clipboard. You can use the ClipMode property to transfer only
user-entered data onto the Clipboard literal characters that are part of the input mask are not copied.

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration when used with it, are marked with an asterisk (*).

*AllowPrompt Enabled HideSelection SelLength
Appearance Font hWnd SelStart
*AutoTab FontBold Index *SelText
BackColor Fontltalic Left Tabindex
BorderStyle FontName *Mask TabStop
*ClipMode FontSize *MaxLength Tag
*ClipText FontStrikethru Mouselcon *Text
Container *FontUnderline MousePointer Top
DataChanged ForeColor Name Visible
DataField *Format Object WhatsThisHelpID
DataSource *FormattedText Parent Width
Draglcon Height *PromptChar

DragMode HelpContextID *Promptinclude

Text is the default value of the control

Events
All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

Change GotFocus KeyUp

DragDrop KeyDown LostFocus

DragOver KeyPress *ValidationError
Methods

All of the methods for this control are listed in the following table.

Drag Refresh ShowWhatsThis

Move SetFocus ZOrder

AllowPrompt Property

Determines whether or not the prompt character is a valid input character.

Syntax
[form.JMaskedEdit. AllowPrompt [= {True | False}]
Remarks
The AllowPrompt property settings are as follows:
Setting Description
False (Default) The prompt character is not a valid input character. A ValidationError event is
triggered if you enter the prompt character.
True The prompt character is a valid input character.

For example, suppose you have defined a prompt character of 0, and you want the masked edit control
to accept any five digits from 0 to 9. You specify a mask of #####. If the AllowPrompt property is False
and you enter 0, a ValidationError event occurs. If AllowPrompt is set to True, you can enter O as a valid
input character.

Data Type
Integer (Boolean)

AutoTab Property

Determines whether or not the next control in the tab order receives the focus as soon as the Text
property of the masked edit control is filled with valid data. The Mask property determines whether the
values in the Text property are valid.

Syntax
[form.]MaskedEdit. AutoTab[= {True | False}]

Remarks

Automatic tabbing occurs only if all the characters defined by the Mask property are entered into the
control, the characters are valid, and the AutoTab property is set to True.

Setting Description

False (Default) AutoTab is not on. A ValidationError event occurs when you enter more
characters than are defined by the input mask.

True AutoTab is on. When you enter all the characters defined by the input mask, focus goes to

the next control in the tab sequence, and all subsequent characters entered are handled
by the next control.

The masked edit control is considered filled when you enter the last valid character in the control,
regardless of where the character is in the input mask. This property has no effect if the Mask property is
set to the empty string ().

Data Type
Integer (Boolean)

ClipMode Property

Determines whether to include or exclude the literal characters in the input mask when doing a cut or
copy command.

Syntax
[form.]MaskedEdit.ClipMode [= setting%]
Remarks

The following table lists the ClipMode property settings for the masked edit control.
Setting Description

0 (Default) Include literals on a cut or copy command.

1 Exclude literals on a cut or copy command.

This property has no effect if the Mask property is set to the empty string ("").
Data Type

Integer (Enumerated)

ClipText Property

Returns the text in the masked edit control, excluding literal characters of the input mask. This property
is not available at design time and is read-only at run time.

Syntax
[form.JMaskedEdit.ClipText

Remarks
This property acts the same as the SelText property when the Mask property is set to the empty string
(IIII).

Data Type
String

FontUnderline Property

The masked edit control uses an underline character as a placeholder for user input. Under normal
behavior, the underline character disappears when the user enters a valid character. If this property is
set to True, characters entered in the control remain underlined.

Syntax
[form.]MaskedEdit.FontUnderline[= {True | False}]

Remarks
The following table lists the FontUnderline property settings for the masked edit control.

Setting Description
False (Default) Underlined characters in the control disappear when you enter a valid character.
True Entered characters are underlined.

Data Type

Integer (Boolean)

Format Property

Specifies the format for displaying and printing numbers, dates, times, and text.

Syntax
[form.]MaskedEdit.Format [= posformat$; negformat$; zeroformat$; nullformat$]
Parameter Description
posformat$ Expression used to display positive values.
negformat$ Expression used to display negative values.
zeroformat$ Expression used to display zero values.
nullformat$ Expression used to display null or empty values.
Remarks

The Format property defines the format expressions used to display the contents of the control. You can
use the same format expressions as defined by the Visual Basic Format$ function, with the exception
that named formats ("On/Off") can't be used.

This property can have from one to four parameters separated by semicolons. If one of the parameters
is not specified, the format specified by the first parameter is used. If multiple parameters appear, the
appropriate number of separators must be used. For example, to specify posformat$ and nullformat$,
use the syntax

[form.]MaskedEdit.Format = posformat$;;; nullformat$

The following table shows a number of standard formats available to the user; however, any valid
Format$ expression may be defined.

Data type Value Description

Number (Default) Empty string General Numeric format. Displays
as entered.

Number $#,##0.00;($#,##0.00) Currency format. Uses thousands

separator; displays negative
numbers enclosed in parentheses.

Number 0 Fixed number format. Displays at
least one digit.

Number #,##0 Commas format. Uses commas as
thousands separator.

Number 0% Percent format. Multiplies value by
100 and appends a percent sign.

Number 0.00E+00 Scientific format. Uses standard
scientific notation.

Date/Time (Default) ¢ General Date and Time format.
Displays date, time, or both.

Date/Time dddddd Long Date format. Same as the

Long Date setting in the
International section of the
Microsoft Windows Control Panel.
Example: Tuesday, May 26, 1992.

Date/Time dd-mmm-yy Medium Date format. Example: 26-
May-92.
Date/Time ddddd Short Date format. Same as the

Short Date setting in the
International section of the
Microsoft Windows Control Panel.
Example: 5/26/92.

Date/Time ttttt Long Time format. Same as the
Time setting in the International

Data Type
String

Date/Time

Date/Time

hh:mm AM/PM

hh:mm

section of the Microsoft Windows
Control Panel. Example: 05:36:17
AM.

Medium Time format. Example:
05:36 AM.

Short Time format. Example:
05:36.

FormattedText Property

This is identical to the string displayed in the masked edit control when the control doesn't have the
focus. This property is read-only at run time.

Syntax
[form.JMaskedEdit. FormattedText

Remarks

If the Format property is equal to the empty string ("), this property is identical to the Text property,
except that it is read-only. If the HideSelection property is set to False, the control doesn't display the
formatted text when it doesn't have the focus. However, the formatted text is still available through this

property.
Data Type
String

Mask Property

Determines the input mask for the control.

Syntax
[form.]MaskedEdit. Mask [= string$]

Remarks

You can define input masks at both design time and run time. However, the following standard,
predefined input masks are available at design time.

Mask Description

Null String (Default) No mask. Acts like a standard text box.
H#HE-2?2?-HH Medium date (US). Example: 20-May-92
HHt-HHE-HH Short date (US). Example: 05-20-92

HEHH 27 Medium time. Example: 05:36 AM

HH HH Short time. Example: 17:23

The input mask can consist of the following characters.

Mask character Description

Digit placeholder.

Decimal placeholder. The actual character used is the one specified as the
decimal placeholder in your international settings. This character is treated as a
literal for masking purposes.

, Thousands separator. The actual character used is the one specified as the
thousands separator in your international settings. This character is treated as a
literal for masking purposes.

Time separator. The actual character used is the one specified as the time
separator in your international settings. This character is treated as a literal for
masking purposes.

/ Date separator. The actual character used is the one specified as the date
separator in your international settings. This character is treated as a literal for
masking purposes.

\ Treat the next character in the mask string as a literal. This allows you to include
the '#, '&', 'A’, and '?' characters in the mask. This character is treated as a literal
for masking purposes.

& Character placeholder. Valid values for this placeholder are ANSI characters in
the following ranges: 32-126 and 128-255.

> Convert all the characters that follow to uppercase.

< Convert all the characters that follow to lowercase.

>

Alphanumeric character placeholder (entry required). For example:a z, A
Z,or0O 9.

Alphanumeric character placeholder (entry optional).

Digit placeholder (entry optional). For example: 0 9.

Character or space placeholder (entry optional).

Letter placeholder. For example:a zorA Z.

Literal All other symbols are displayed as literals; that is, as themselves.

WO ©

When the value of the Mask property is an empty string ("), the control behaves like a standard text box
control. When an input mask is defined, underscores appear beneath every placeholder in the mask.
You can only replace a placeholder with a character that is of the same type as the one specified in the
input mask. If you enter an invalid character, the masked edit control rejects the character and generates
a ValidationError event.

Note When you define an input mask for the masked edit control and you tab to another control, the

ValidationError event is generated if there are any invalid characters in the masked edit control.

Data Type
String

MaxLength Property

Sets or returns the maximum length of the masked edit control.

Syntax
[form.]MaskedEdit.MaxLength [= setting%]

Remarks

The masked edit field can have a maximum of 64 characters (the valid range for this property is 1 to 64).
The default value is set to 64 characters, including literal characters in the input mask.

If the user enters characters beyond the specified maximum length, the control generates a beep.

Data Type
Integer

PromptChar Property

Sets or returns the character used to prompt a user for input.

Syntax
[form.JMaskedEdit.PromptChar [= char$]

Remarks

The underscore character "_" is the default character value for the property. The PromptChar property
can only be set to exactly one character.

Use the Promptinclude property to specify whether prompt characters are contained in the Text property.

Data Type
String

Promptinclude Property

Specifies whether prompt characters are contained in the Text property value. Use the PromptChar
property to change the value of the prompt character.

Syntax
[form.JMaskedEdit.Promptinclude [= { True | False }]

Remarks
The following table lists the Promptinclude property settings for the masked edit control.
Setting Description
False The value of the Text property does not contain any prompt character.
True (Default) The value of the Text property contains prompt characters, if any.

If the masked edit control is bound to a data control, the Promptinclude property affects how the data
control reads the bound Text property. If Promptinclude is False, the data control ignores any literals or
prompt characters in the Text property. In this mode, the value that the data control retrieves from the
masked edit control is equivalent to the value of the ClipText property.

If Promptinclude is True, the data control uses the value of the Text property as the data value to store.
Data Type
Integer (Boolean)

SelText Property (Masked Edit Control)

Sets or returns the text contained in the control.

Syntax
[form.]MaskedEdit.SelText[= string$]

Remarks

If an input mask is not defined for the masked edit control, the SelText property behaves like the
standard SelText property for the text box control.

If an input mask is defined and there is selected text in the masked edit control, the SelText property
returns a text string. Depending on the value of the ClipMode property, not all the characters in the
selected text are returned. If ClipMode is on, literal characters don't appear in the returned string.

When the SelText property is set, the masked edit control behaves as if text was pasted from the

Clipboard. This means that each character in string$ is entered into the control as if the user typed it in.
Data Type

String

Text Property (MaskedEdit Control)

Sets or returns the text contained in the control. This property is not available at design time.
Syntax

[form.JMaskedEdit. Text[= string$]
Remarks

This property sets and retrieves the text in the masked edit control, including literal characters and
underscores that are part of the input mask. When setting the text property, the string$ value must match
the characters in the input mask exactly, including literal characters and underscores.

Note The ClipMode property setting has no effect on the value of the Text property.

The SelText property provides an easier way of setting the text in the masked edit control.

Data Type
Variant

ValidationError Event

Occurs when the masked edit field receives invalid input, as determined by the input mask.

Syntax
Private Sub ctlname_ValidationError(InvalidText As String; StartPosition As Integer)

Remarks

InvalidText is the value of the Text property, including the invalid character. This means that any
placeholders and literal characters used in the input mask are included in InvalidText.

StartPosition is the position in InvalidText where the error occurred (the first invalid character).

E Multimedia MCI Control

See Also Properties Methods Events Constants Error Messages

The multimedia MCI control manages the recording and playback of multimedia files on Media Control
Interface (MCI) devices. Conceptually, this control is a set of push buttons that issues MCI commands to
devices such as audio boards, MIDI sequencers, CD-ROM drives, audio CD players, videodisc players,
and videotape recorders and players. The MCI control also supports the playback of Video for Windows
(*.AVI) files.

When you add the multimedia MCI control to a form at design time, the control appears on the form as
follows:

The buttons are defined as Prev, Next, Play, Pause, Back, Step, Stop, Record, and Eject, respectively.

File Name
MCI16.0CX, MCI32.0CX

Class Name
MMControl

Remarks

Your application should already have the MCI device open and the appropriate buttons in the multimedia
MCI control enabled by the time the user chooses a button from the multimedia MCI control. In Visual
Basic, place the MCI Open command in the Form_Load event.

When you intend to record audio with the multimedia MCI control, open a new file. This action ensures
that the data file containing the recorded sound will be in a format compatible with your system's
recording capabilities. Also, issue the MCI Save command before closing the MCI device to store the
recorded data in the file.

The multimedia MCI control is programmable in several ways:

. The control can be visible or invisible at run time.
" You can augment or completely redefine the functionality of the buttons in the control.
" You can control multiple devices in a form.

If you want to use the buttons in the multimedia MCI control, set the Visible and Enabled properties to
True. If you do not want to use the buttons in the control, but want to use the multimedia MCI control for
its multimedia functionality, set the Visible and Enabled properties to False. An application can control
MCI devices with or without user interaction.

The events (button definitions) of the multimedia MCI control are programmable. You can augment or
completely redefine the functionality of these buttons by developing code for the button events.

The MCI extensions support multiple instances of the multimedia MCI control in a single form to provide
concurrent control of several MCI devices. You use one control per device.

Distribution Note \When you create and distribute applications that use the multimedia MCI control,
you should install the appropriate file in the customer's Microsoft Windows \SYSTEM subdirectory. The
Setup Wizard included with Visual Basic provides tools to help you write setup programs that install your
applications correctly.

See Also
Multimedia MCI

Examples

Multimedia MCI

Multimedia MCI consists of a set of high-level, device-independent commands that control audio and
visual peripherals. The first MCI command you issue is the Open command. This command opens the
specified MCI device and identifies the file that will play on the device or be recorded by the device.
(Some devices, such as CDAudio, VCR, and videodisc, do not use files and do not require file names.)

Once the device is open, you can issue any of the other MCI commands (Prev, Next, Pause, and so on).
The Close command is the last MCI command you issue for the device, returning it to the available pool
of system resources. The Close command also closes the data file associated with the device.

For a list of the MCI commands supported by the multimedia MCI control, see the Command property.
For additional information on multimedia MCI, refer to either the Microsoft Multimedia Development Kit
Programmer's Workbook or the Microsoft Windows Software Development Kit Multimedia Programmer's
Reference.

Examples, Multimedia MCI Control
Visual Basic Example

The following example illustrates the procedure used to open an MCI device with a compatible data file.
By placing this code in the Form_Load procedure, your application can use the multimedia MCI control
"as is" to play, record, and rewind the multimedia file GONG.WAV. To try this example, first create a form
with a multimedia MCI control.

Private Sub Form Load ()
' Set properties needed by MCI to open.
Forml.MMControll.Notify = FALSE
Forml.MMControll.Wait = TRUE
Forml .MMControll.Shareable = FALSE
Forml.MMControll.DeviceType = "WaveAudio"
Forml .MMControll.FileName = "C:\WINDOWS\MMDATA\GONG.WAV"

' Open the MCI WaveAudio device.
Forml.MMControll.Command = "Open"
End Sub

To properly manage multimedia resources, you should close those MCI devices that are open before
exiting your application. You can place the following statement in the Form_Unload procedure to close
an open MCI device before exiting from the form containing the multimedia MCI custom control.

Private Sub Form Unload (Cancel As Integer)
MMControll.Command = "Close"
End Sub

Properties

All of the properties for this control are listed in the following table. Properties that apply only to this
control, or that require special consideration, when used with it, are marked with an asterisk (*).
Properties beginning with Button are defined for each of the nine individual buttons in the multimedia
MCI control.

*AutoEnable *Error Name *TimeFormat
BorderStyle *ErrorMessage *Notify *To
*ButtonEnabled *FileName *NotifyMessage Top
*ButtonVisible *Frames *NotifyValue *Track
*CanEject *From Object *TrackLength
*CanPlay Height *Qrientation *TrackPosition
*CanRecord HelpContextlD Parent *Tracks
*CanStep hwnd *Position *Updatelnterval
*Command *hWndDisplay *RecordMode *UsesWindows
Container Index *Shareable *Visible
*DevicelD Left *Silent *Wait
*DeviceType *Length *Start WhatsThisHelplD
Draglcon *Mode Tablndex Width
DragMode Mouselcon TabStop

*Enabled MousePointer Tag

Note The Draglcon, DragMode, HelpContextlD, and Index properties are only available in Visual
Basic. The Name property is the equivalent of the CtIName property in Visual Basic 1.0.

Events

All of the events for this control are listed in the following table. Events that apply only to this control, or
that require special consideration when used with it, are marked with an asterisk (*).

Several of the following events are defined for each of the nine individual buttons in the multimedia MCI
control. Events defined separately for all nine buttons are described under a heading beginning with
Button.

*ButtonClick *ButtonGotFocus *Done DragOver
*ButtonCompleted *ButtonlLostFocus DragDrop *StatusUpdate

Note The DragDrop and DragOver events are only available in Visual Basic.

Methods
All of the methods for this control are listed in the following table.

Drag Refresh ShowWhatsThis
Move SetFocus ZOrder

Note The Drag, SetFocus, and ZOrder methods are only available in Visual Basic.

AutoEnable Property, Multimedia MCI Control

Determines if the multimedia MCI control can automatically enable or disable individual buttons in the
control. If the AutoEnable property is set to True, the multimedia MCI control enables those buttons that
are appropriate for the current mode of the specified MCI device type. This property also disables those
buttons that the current mode of the MCI device does not support.

Syntax
[form.JMMControl.AutoEnable[= {True | False}]

Remarks

The effect of the AutoEnable property is superseded by the Enabled property. The AutoEnable property
can automatically enable or disable individual buttons in the control when the multimedia MCI control is
enabled (Enabled property set to True). When the Enabled property is False, keyboard and mouse run-
time access to the multimedia MCI control are turned off, regardless of the AutoEnable property setting.

The following table lists the AutoEnable property settings for the multimedia MCI control.

Setting Description

False Does not enable or disable buttons. The program controls the states of the buttons by
setting the Enabled and ButtonEnabled properties.

True (Default) Enables buttons whose functions are available and disables buttons whose

functions are not.

The following tables show how the MCI mode settings are reflected in the control's property settings.
Play mode

Record mode

Pause mode

Stop mode

Open mode
Seek or Not Ready modes

The effect of the AutoEnable property supersedes the effects of ButtonEnabled properties. When the
Enabled and AutoEnable properties are both True, the ButtonEnable properties are not used.

Data Type
Integer (Boolean)

Play mode
*Button is enabled if the operation is supported by the open MCI device.
Button Status

Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Disabled
Prev Enabled
Record* Disabled
Step* Enabled

Stop Enabled

Record mode
*Button is enabled if the operation is supported by the open MCI device.
Button Status

Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Disabled
Prev Enabled
Record* Disabled
Step* Enabled

Stop Enabled

Pause mode
*Button is enabled if the operation is supported by the open MCI device.

Button Status

Back* Enabled
Eject* Enabled
Next Enabled
Pause Enabled
Play* Enabled
Prev Enabled
Record* Enabled
Step* Enabled

Stop Enabled

Stop mode

Button Status

Back* Enabled
Eject* Enabled
Next Enabled
Pause Disabled
Play* Enabled
Prev Enabled
Record* Enabled
Step* Enabled
Stop Disabled

Open mode
*Button is enabled if the operation is supported by the open MCI device.

Button Status

Back* Disabled
Eject* Enabled
Next Disabled
Pause Disabled
Play* Disabled
Prev Disabled
Record* Disabled
Step* Disabled

Stop Disabled

Seek or Not Ready modes
*Button is enabled if the operation is supported by the open MCI device.

Button Status

Back* Disabled
Eject* Disabled
Next Disabled
Pause Disabled
Play* Disabled
Prev Disabled
Record* Disabled
Step* Disabled

Stop Disabled

ButtonEnabled Property, Multimedia MCI Control

Determines if a button in the control is enabled or disabled (dimmed).

Syntax
[form.JMMControl.ButtonEnabled[= {True | False}]

Remarks

The effects of the ButtonEnabled properties are superseded by the Enabled and AutoEnable properties.
Individual ButtonEnabled properties enable or disable the associated buttons in the multimedia MCI
control when the multimedia MCI control is enabled (Enabled property set to True) and the AutoEnable
property is turned off (set to False).

For this property, Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record,
Step, or Stop.

The following table lists the ButtonEnabled property settings for the multimedia MCI control.

Setting Description
False (Default) Disables (dims) the button specified by Button. This button's function is not
available in the control.
True Enables the button specified by Button. This button's function is available in the control.
Data Type

Integer (Boolean)

ButtonVisible Property, Multimedia MCI Control

Determines if the specified button is displayed in the control.

Syntax
[form.JMMControl.ButtonVisible[= {True | False}]

Remarks

The effects of the ButtonVisible properties are superseded by the Visible property. Individual
ButtonVisible properties display and hide the associated buttons in the multimedia MCI control when the
multimedia MCI control is visible (Visible property set to True). If the multimedia MCI control is invisible,
these properties are not used.

For this property, Button may be any of the following: Back, Eject, Next, Pause, Play, Prev, Record,
Step, or Stop.

The following table lists the ButtonVisible property settings for the multimedia MCI control.

Setting Description
False Does not display the button specified by Button. This button's function is not available in
the control.
True (Default) Displays the button specified by Button.
Data Type

Integer (Boolean)

CanEject Property, Multimedia MCI Control

Determines if the open MCI device can eject its media. This property is not available at design time and
is read-only at run time.

Syntax
[form.JMMControl.CanEject
Remarks
The following table lists the CanEject property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot eject its media.
True The device can eject its media.

The value of CanEject is retrieved using MCl_GETDEVCAPS during the processing of an Open
command.

Data Type
Integer (Boolean)

CanPlay Property, Multimedia MCI Control

Determines if the open MCI device can play. This property is not available at design time and is read-
only at run time.

Syntax
[form.JMMControl.CanPlay
Remarks
The following table lists the CanPlay property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot play.
True The device can play.

The value of CanPlay is retrieved using MCI_GETDEVCAPS during the processing of an Open
command.

Data Type
Integer (Boolean)

CanRecord Property, Multimedia MCI Control

Determines if the open MCI device can record. This property is not available at design time and is read-
only at run time.

Syntax
[form.JMMControl.CanRecord
Remarks
The following table lists the CanRecord property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot record.
True The device can record.

The value of CanRecord is retrieved using MCI_GETDEVCAPS during the processing of an Open
command.

Data Type
Integer (Boolean)

CanStep Property, Multimedia MCI Control

Determines if the open MCI device can step a frame at a time. This property is not available at design
time and is read-only at run time.

Syntax
[form.JMMControl.CanStep
Remarks
The following table lists the CanStep property settings for the multimedia MCI control.
Setting Description
False (Default) The device cannot step a frame at a time.
True The device can step a frame at a time.

Currently only MMMovie, Overlay, and VCR MCI devices can step a frame at a time. Because there is
no way to check whether a device can step, programs set the value of this property by checking if the
device type is MMMovie, Overlay, or VCR during the processing of an Open command.

Data Type
Integer (Boolean)

Command Property, Multimedia MCI Control

Specifies an MCI command to execute. This property is not available at design time.

Syntax

[form.JMMControl.Command[= cmdstring$]

Remarks

The cmdstring$ argument gives the name of the MCI command to execute: Open, Close, Play, Pause,
Stop, Back, Step, Prev, Next, Seek, Record, Eject, Sound, or Save. The command is executed
immediately, and the error code is stored in the Error property.

The following table describes each command and lists the properties it uses. If a property is not set,

either a default value is used (shown in parentheses following the property name), or the property is not
used at all (if no default value is shown).

Command

Description/Properties used

Open

Close

Play

Pause

Stop

Back

Step

Prev

Next

Opens a device using the MCI_OPEN command.
Notify (False)
Wait (True)
Shareable
DeviceType
FileName
Closes a device using the MCI_CLOSE command.
Notify (False)
Wait (True)
Plays a device using the MCI_PLAY command.
Notify (True)
Wait (False)
From
To
Pauses playing or recording using the MCI_PLAY command. If executed while the device
is paused, tries to resume playing or recording using the MCI_RESUME command.
Notify (False)
Wait (True)
Stops playing or recording using the MCI_STOP command.
Notify (False)
Wait (True)
Steps backwards using the MCI_STEP command.
Notify (False)
Wait (True)
Frames
Steps forwards using the MCI_STEP command.
Notify (False)
Wait (True)
Frames
Goes to the beginning of the current track using the Seek command. If executed within
three seconds of the previous Prev command, goes to the beginning of the previous track
or to the beginning of the first track if at the first track.
Notify (False)
Wait (True)
Goes to the beginning of the next track (if at last track, goes to beginning of last track)
using the Seek command.
Notify (False)
Wait (True)

Seek

Record

Eject

Sound

Save

Data Type
String

If not playing, seeks a position using the MCI_SEEK command. If playing, continues
playing from the given position using the MCI_PLAY command.

Notify (False)

Wait (True)

To
Records using the MCI_RECORD command.

Notify (True)
Wait (False)
From
To
RecordMode (OInsert)
Ejects media using the MCI_SET command.
Notify (False)
Wait (True)
Plays a sound using the MClI_SOUND command.
Notify (False)
Wait (False)
FileName
Saves an open file using the MCI_SAVE command.
Notify (False)
Wait (True)
FileName

Dev