
Contents: Spell.h

If you make use of this module PLEASE contact me so that I can let you know about updates as
soon as possible.

Full interface

All functions are in spellch3.dll
SPCHK_Version
SPCHK_CheckWord
SPCHK_GetValidLettersBlock
SPCHK_Options
CHECKWORD
CUSTDIC
Messages

Quick interface

All functions are in spelledt.dll
SPEDT_Version
SPEDT_CheckEdit
SPEDT_CheckEditCustom
SPEDT_CheckEditClip
SPEDT_CheckClipboard
SPEDT_CheckGlobal
SPEDT_CheckGlobalCustom
SPEDT_SetupBox
SPEDT_SetupBoxLimited
SPEDT_SetupCustom
SPEDT_GetParameter
SPEDT_SetParameter

Examples

Examples: MS Access
Examples: Visual Basic

Other information

Copyright
License
About the Author

If you have any problems, want extra information or think you have found a bug you can contact me at
spellchk@quinion.demon.co.uk

You might also be interested in my home page which is kept up to date with latest information on this
project.

http://clever.net/quinion/

SPCHK_CheckWord (2.00: Full interface)

#include spell.h

BOOL SPCHK_CheckWord(lpchkw)

LPCHECKWORD lpchkw /* address of initialisation data */

The SPCHK_CheckWord function performs spelling checking on the data supplied in lpcheckword.

Parameter Description

lpchkw Points to a CHECKWORD structure that contains information to perform a spelling
check.    This structure will be passed to any callback functions.

Returns

The return is only valid if a single word is being checked.    It is non zero if the word was found.    It is
zero if the word was not found.

Errors

Error handling is limited to the point of non-existence.    Errors will be trapped, but at the moment are
not passed back and instead a message is displayed to the user.    Every attempt has been made to
make these message understandable.

Comments

The exact way that this function works depends on the content of the CHECKWORD structure.

See Also

SPCHK_Options, CHECKWORD

 SPCHK_Version (2.40: Full interface)

#include spell.h

WORD SPCHK_Version(void)

Returns the version number of the loaded module.

Returns

The return gives the version number in the format

MajorVersion*100+MinorVersion

eg for version 3.00 the return would be 300

SPCHK_Options (2.00: Full interface)

#include spell.h

void SPCHK_Options(lpchkw)

LPCHECKWORD lpchkw /* address of initialisation data */

The SPCHK_Options function provides access to the options dialog box.

Parameter Description

lpchkw Points to a CHECKWORD structure that contains information to perform a spelling
check.    This structure will be passed to any callback functions.

Returns

Nothing.

Errors

Error handling is limited to the point of non-existence.    Errors will be trapped, but at the moment are
not passed back and instead a message is displayed to the user.    Every attempt has been made to
make these message understandable.

See Also

SPCHK_CheckWord, CHECKWORD

SPCHK_GetValidLettersBlock (3.00: Full interface)

#include spell.h

void SPCHK_GetValidLettersBlock(lpValidChars)

LPSTR lpValidChars /* address to copy valid chars data to */

The SPCHK_GetValidLettersBlock function copies a 256 byte data block for the current language
giving information on which letters will be checked by the program.

Parameter Description

lpValidChars Points to a 256 byte array to which the data will be copied.

Returns

Nothing.

Comments
Each byte of the array returned gives the status of the corresponding letter.

Parameter Description
0 Letter ignored.    Your program should not send words containing this letter
1 Completely valid, always checked.    Should be considered part of a word.
2 Punctuation.    Should be considered part of a word.
3 Other special character.    Should be considered part of a word.

CHECKWORD (3.00: Full interface)

#include spell.h

typedef struct {
WORD wSizeOfBlock;

HWND hWndParent,
hWndDlg;

DWORD CheckWordOptions;

char szLanguage[13];
HGLOBAL hCustomDics;
BYTE NumCustom;
BYTE CurCustom;

HFILE hDebugLog;

HINSTANCE hInstance;
DLGPROC fpMainHook;
DLGPROC fpOptionsHook;
LPSTR lpMainDlg;
LPSTR lpOptionsDlg;

DWORD dwCustData;
DWORD dwCustData2;

char ToCheck[MAXSPELL];
char Changed[MAXSPELL];
BOOL bCurWordChanged;

char PrevWord[MAXSPELL];
WORD wFunctionType;

BYTE CurPosCheck;
BYTE CurPosChanged;
char CurWord[MAXSPELL];

BYTE Reserved[26+MAXSPELL];
} CHECKWORD, FAR * LPCHECKWORD;

The CHECKWORD structure contains information that the spellchk dll requires to check a document.

Member Description

wSizeOfBlock Specifies the length of the structure in bytes.    This member is filled on input.

hWndParent Identifies the window that owns the dialog box. This member must be a valid
window handle.    This is the window that will receive notification and request
messages unless they are being sent to a hook (see later). This member is
filled on input.

hWndDlg Identifies the dialog window created. This member is filled on window creation.

CheckWordOptions Initialisation flags, a combination of the following values:

Value Meaning

CWO_ALLOWCHANGE
If a word is not found a dialog box will be display to ask what to do.   
If this flag is not specified then no box will be displayed.

CWO_AUTOSUGGEST
When the spell dialog box is displayed the program will automatically
display a list of suggested words.    Is set on input and output.

CWO_SUGGESTCUST
Look for suggestions in the custom dictionaries as well as the main
dictionary. Set on input and output.

CWO_NOOPTIONS
Hide the options box.

CWO_UNDO
Send UNDO information messages and UNDO requests.    If this flag
is not present then the undo button will be hidden.

CWO_NOHELP
Hide the help button.    If this message is not specified then help
requests will be sent.

CWO_USEMAINHOOK
Enables the hook function specified in the fpMainHook member.

CWO_USEOPTIONSHOOK
Enables the hook function specified in the fpOptionsHook member.

CWO_USECUSTOMMAINDLG
Causes the program to use the dialog box template identified by the
lpMainDlg member.

CWO_USECUSTOMOPTIONSDLG
Causes the program to use the dialog box template identified by the
lpOptionsDlg member.

CWO_SENDMSGTOMAINHOOK
Sends the following notification and request messages to the hook
function specified in the fpMainHook:

SPELL_GETNEXT
SPELL_WORDNOTFOUND
SPELL_WORDCHANGED
SPELL_CANUNDO
SPELL_STOREUNDO
SPELL_UNDOLAST
SPELL_HELPMAIN

Otherwise they are sent to hWndParent.

CWO_SENDMSGTOOPTIONSHOOK
Sends the following notification and request messages to the hook
function specified in the fpOptionsHook:

SPELL_GETCUSTOMDEFPATH
SPELL_HELPOPTIONS
SPELL_HELPEDITDIC

Otherwise they are sent to hWndParent.

CWO_CHECKMULTIPLE
The program will check a series of words obtained by sending out
SPELL_GETNEXT messages.    If this flag is not present then only the
word in ToCheck will be checked.

CWO_DONTUSEFULL

Do not check the main dictionary for words.    I can think of no good
reason for needing this, but it is here for completion.

CWO_USEASCIIACCENTS
Translate a", i", o~ to ä, ï, õ.

CWO_PUNCTUATIONCANBREAK
Let full stops, commas and other punctuation break words, useful for
text that contains taging, but disables checking for mistakes like failure
to put in breaks after punctuation.

CWO_DEBUGLOG
Log debug information in the file with the handle provided in
hDebugLog.

szLanguage The file name of the main dictionary to use.    If it is not specified then the first
available dictionary will be selected.    This member is filled on input and output.
The only exception to this is if CWO_DONTUSEFULL has been specified.

hCustomDics Handle of a block of global memory containing a series of CUSTDIC structures,
or hCustomDics can be set to 0 if no custom dictionaries are needed.    The
block of memory should be created with the GHND and GMEM_DDESHARE
flags.

NumCustom The number of custom dictionaries in the array to which hCustomDics is a
handle.

CurCustom Specified the currently selected index (into the array to which hCustomDics is
a handle) which words should be added to.    It should be a number in the range
0 to NumCustom-1.

hDebugLog File handle for the file to which debug information should be written.

hInstance Identifies the hInstance of the program/dll which contains the dialog box
resources pointed to by. lpMainDlg and lpOptionsDlg.

fpMainHook Pointer to a hook function to handle message to the Main dialog box. Only
required if the CWO_USEMAINHOOK flag is specified.    The function may also
handle other message if the CWO_SENDMSGTOMAINHOOK flag is specified.
See these two flags for details.

fpOptionsHook Pointer to a hook function to handle message to the Options dialog box. Only
required if the CWO_USEOPTIONSHOOK flag is specified.    The function may
also handle other message if the CWO_SENDMSGTOOPTIONSHOOK flag is
specified.    See these two flags for details.

lpMainDlg Pointer to a null-terminated string that specifies the name of the resource to be
used in preference to the default dialog box.    It must be present in the module
specified by hInstance.

lpOptionsDlg Pointer to a null-terminated string that specifies the name of the resource to be
used in preference to the default dialog box.    It must be present in the module
specified by hInstance.

dwCustData Custom data for use by your program.

dwCustData2 Custom data for use by your program.

ToCheck A null-terminated string giving the word to be checked.    It should be filled on
initialisation unless the CWO_CHECKMULTIPLE flag is specified in which case
it should be filled with the next word to check each time a SPELL_GETNEXT
message is received.

Changed If the word is changed by the use you program will be notified with a
SPELL_WORDCHANGED message.    The new word will be placed in this
buffer as a null-terminated string.

bCurWordChanged Is non zero if the current word has been changed.

PrevWord The last word that was checked.    This is used only to look for repeated words.
As a result checking for repeated words and be disabled using PrevWord[0]=0;
during each SPELL_GETNEXT.    You should disable repeated word checking
after a new line.

wFunctionType Records the type off error that was found

Value Meaning

WORD_NOTFOUND
Word was not found in any of the dictionaries.

WORD_REPEATED
Word was the same as the previous word (as recorded in PrevWord).

CurPosCheck The position of the letter after the last letter of CurWord in the ToCheck array.   
Change with caution.

CurPosChanged The position in the Changed array which has been reached.    For referance
only, this value will be ignored if changed.

CurWord The current word being checked the will be either the whole or a sub string of
the current ToCheck.

Reserved Private data used by the program.

See Also

SPCHK_CheckWord, SPCHK_Options, CUSTDIC

CUSTDIC (Full interface)

#include spell.h

typedef struct {
char DicFile[MAXPATH];
char DicTitle[MAXDICTITLE];
char DicLanguage[13];
BYTE Options;
BYTE Reserved[8];

} CUSTDIC, far * LPCUSTDIC;

The CUSTDIC structure contains information on a custom dictionary.

Member Description

DicFile Full file path and name of the custom dictionary.

DicTitle Title of the custom dictionary.

DicLanguage The filename of the language that this dictionary will be used with or 'all' to
specify that it will be used with all languages.

Options Initialisation flags, a combination of the following values:

Value Meaning

CD_READONLY
The dictionary is read-only. This flag is set on input and output.

CD_DISABLED
The dictionary is disabled. This flag is set on input and output.

CD_CHANGED
The custom dictionary has been changed.    This flag is set on output.

CD_BYLANGUAGE
The custom dictionary is disabled due to the language.

Private Private data used by the program.

See Also

SPCHK_CheckWord, SPCHK_Options, CUSTDIC

Messages (Full interface)

SPELL_GETNEXT Ask for the next word
SPELL_WORDNOTFOUND Notify word not found
SPELL_WORDREPEATED Notify word repeated (3.00)
SPELL_WORDCHANGED Notify word changed
SPELL_CANUNDO Ask if undo available
SPELL_STOREUNDO Provide undo information
SPELL_UNDOLAST Execute undo
SPELL_GETCUSTOMDEFPATH Ask for the default custom dictionary path
SPELL_LANGUAGECHANGED Notify that the user has change language (3.00)
SPELL_HELPMAIN User has requested help
SPELL_HELPOPTIONS User has requested help
SPELL_HELPEDITDIC User has requested help

SPELL_GETNEXT (Full interface)

SPELL_GETNEXT
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

This message is sent to request the next word.    The application should respond by filling the ToCheck
member of the CHECKWORD structure.

Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns

An application should return non zero if ToCheck has been filled or 0 to finish.

Example

This example sends 5 words to be checked one at a time.

LPCHECKWORD lpchkw;
WORD wIndex;
char Words[6][15]={"thiss",
 "poeple",
 "aggrivation",
 "enviromental",
 "wheight",
 "nohting"};

case SPELL_GETNEXT:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;
 wIndex = (WORD) lpchkw->dwCustData;

 // Have we done all the words?
 if (wIndex>5)
 return FALSE;

 // Copy over the word
 lstrcpy(lpCheckWord->ToCheck, Words[wIndex]);

 // Position for the next
 lpchkw->dwCustData;
 return TRUE;

SPELL_WORDNOTFOUND (Full interface)

SPELL_WORDNOTFOUND
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

This message is sent to inform the program that the word in ToCheck has not been found.

Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns

An application should return 0.

Example

Display a notice if a word is not found.

LPCHECKWORD lpchkw;
char Text[100];

case SPELL_WORDNOTFOUND:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Display the word not found
 wsprintf(Text, "The word '%s' was not found", lpchkw->ToCheck);
 MessageBox(hDlg, Text, "Test Word", MB_ICONHAND);
 return 0;

See Also

SPELL_WORDCHANGED

SPELL_WORDREPEATED (Full interface, 3.00)

SPELL_WORDREPEATED
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

This message is sent to inform the program that the word in ToCheck has not been found.

Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns

An application should return 0.

Example

Display a notice if a word is not found.

LPCHECKWORD lpchkw;
char Text[100];

case SPELL_WORDREPEATED:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Display the word not found
 wsprintf(Text, "The word '%s' is repeated", lpchkw->ToCheck);
 MessageBox(hDlg, Text, "Test Word", MB_ICONHAND);
 return 0;

See Also

SPELL_WORDCHANGED

SPELL_WORDCHANGED (Full interface)

SPELL_WORDCHANGED
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

This message is sent to inform the program that the word in ToCheck sound be changed to the word
in Changed.

Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns

An application should return 0.

Example

Display a notice if a word is changed.

LPCHECKWORD lpchkw;
char Text[100];

case SPELL_WORDCHANGED:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Display the word to be changed
 wsprintf(Text, "The word '%s' should be changed to %s",
 lpchkw->ToCheck, lpchkw->Changed);
 MessageBox(hDlg, Text, "Test Word", MB_ICONHAND);
 return 0;

See Also

SPELL_WORDNOTFOUND

SPELL_CANUNDO (Full interface)

SPELL_CANUNDO
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

This message is sent to ask the application if it can currently undo.

Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns

An application should return non zero if it can undo, 0 if it can't.

Example

Return the undo status.

static BOOL bCanUndo;

case SPELL_CANUNDO:
 // Just return the bUndo flag
 return bCanUndo;

See Also

SPELL_STOREUNDO, SPELL_UNDOLAST

SPELL_STOREUNDO (Full interface)

SPELL_STOREUNDO
wParam = (HUNDO)hUndo; /* handle to undo data */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

Inform the program that it should store an undo pointer.

Parameter Description

hUndo Handle to undo block (spellchk internal)
lpchkw Points to a CHECKWORD structure.

Returns

An application should return 0.

Example

Store the information needed to undo.

LPCHECKWORD lpchkw;
static BOOL bCanUndo;
static HUNDO hUndoHandle;
static WORD wUndoIndex;

case SPELL_STOREUNDO:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Yes we can now undo
 bCanUndo=TRUE;

 // Store the handle provided by spellchk
 hUndoHandle=(HUNDO)wParam;

 // Store the current word being checked
 wUndoIndex=lpchkw->dwCustData;
 return 0;

See Also

SPELL_CANUNDO, SPELL_UNDOLAST

SPELL_UNDOLAST (Full interface)

SPELL_UNDOLAST
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

The application should undo the last change it made (as a result of a SPELL_CHANGEWORD
message) and reposition its pointers so that the next SPELL_GETNEXT will return the undone word.

Parameter Description
lpchkw Points to a CHECKWORD structure.

Returns

An application should return non zero if it has repositioned for an undo else it should return 0.
The DWL_MSGRESULT of the spellchk dialog box should be set to the undo handle previously
supplied.

Example

LPCHECKWORD lpchkw;
static BOOL bCanUndo;
static HUNDO hUndoHandle;
static WORD wUndoIndex;

case SPELL_UNDOLAST:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Do the undo if we can - see the full example app for
 // more details
 if (bCanUndo)
 {
 // Reposition the index to restart at the pervious position
 lpchkw->dwCustData=wUndoIndex;

 // Store the undo handle in the dialog result register
 SetWindowLong(lpchkw->hWndDlg, DWL_MSGRESULT, hUndoHandle);

 // Since we have undone once we can't do it again
 bCanUndo=FALSE;

 // Return a positive answer
 return TRUE;
 }
 return FALSE;

See Also

SPELL_CANUNDO, SPELL_STOREUNDO

SPELL_GETCUSTOMDEFPATH (Full interface)

SPELL_GETCUSTOMDEFPATH
wParam = 0; /* not used */
lParam = (LPSTR) lppath; /* buffer for file path */

The application should copy the default file path for custom dictionaries into the buffer pointed to by
lParam.

Parameter Description
lppath Points to a string buffer.

Returns

An application should return non zero if it can supply a default directory, else it should return 0.

Example

Return a file path stored as a global string.

case SPELL_GETCUSTOMDEFPATH:
lstrcpy((LPSTR)lParam, g.szProgDir);
return TRUE;

SPELL_LANGUAGECHANGED (Full interface, 3.00)

SPELL_LANGUAGECHANGED
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */

Inform the program that the language has been changed.    You should reload the character validation
table if you use it.

Parameter Description
lpchkw Points to a CHECKWORD structure.

Returns
Is ignored.

Example
static BYTE CharTable[256];

case SPELL_LANGUAGECHANGED:
SPCHK_GetValidLettersBlock(LetterStates);
return TRUE;

SPELL_HELPMAIN (Full interface)

SPELL_HELPMAIN

The application should display help for the main window.

Parameters

This message has no parameters.

Returns

An application should return 0.

Example

Call winhelp.

case SPELL_HELPMAIN:
 WinHelp(hWnd, "spell.hlp", HELP_CONTEXT, HELP_SPELLMAIN);
 return 0;

SPELL_HELPOPTIONS (Full interface)

SPELL_HELPOPTIONS

The application should display help for the options window.

Parameters

This message has no parameters.

Returns

An application should return 0.

Example

Call winhelp.

case SPELL_HELPMAIN:
 WinHelp(hWnd, "spell.hlp", HELP_CONTEXT, HELP_SPELLOPTIONS);
 return 0;

SPELL_HELPEDITDIC (Full interface)

SPELL_HELPEDITDIC

The application should display help for the custom dictionary window.

Parameters

This message has no parameters.

Returns

An application should return 0.

Example

Call winhelp.

case SPELL_HELPMAIN:
 WinHelp(hWnd, "spell.hlp", HELP_CONTEXT, HELP_SPELLCUSTEDIT);
 return 0;

SPEDT_Version (2.40: Quick interface)

#include spell.h

WORD SPEDT_Version(void)

Returns the version number of the loaded module.

Returns

The return gives the version number in the format

MajorVersion*100+MinorVersion

eg for version 2.40 the return would be 240

SPEDT_CheckEdit (Quick interface)

#include spell.h

BOOL SPEDT_CheckEdit(hwndEdit)

HWND hwndEdit /* window handle of the edit box to check */

The SPEDT_CheckEdit function checks a windows edit box (or compatible) for spelling.

Parameter Description

hwndEdit Identifies the edit box to be checked.

Returns

Returns non zero if successful, otherwise it will return 0.

Comments

To be compatible the edit box should respond to the following edit box messages:
EM_GETLINE
EM_GETLINECOUNT
EM_LINEFROMCHAR
EM_LINEINDEX
EM_LINELENGTH
EM_REPLACESEL
EM_SETSEL

And should be aware that the bitwise operator:

ES_MULTILINE

is checked for in the style of the control using GetWindowLong(hwndEdit, GWL_STYLE)

See Also
SPEDT_CheckEditCustom, SPEDT_SetupBox, SPEDT_SetupCustom

SPEDT_CheckEditCustom (2.40: Quick interface)

#include spell.h

BOOL SPEDT_CheckEditCustom(hwndEdit, hInstance, lpDlgBox, lpOptBox)

HWND hwndEdit /* window handle of the edit box to check */
HINSTANCE hInstance /* hInstance of the module containing the Dlg template */
LPSTR lpDlgBox /* name of main dialog box template */
LPSTR lpOptBox /* name of options dialog box template */

The SPEDT_CheckEdit function checks a windows edit box (or compatible) for spelling.

Parameter Description

hwndEdit Identifies the edit box to be checked.

hInstance Specifies the module containing the dialog box templates.

lpDlgBox Must contain either a pointer to a string giving the dialog box resource name stored in
module hInstance or be NULL to use the default box.

lpOptBox Must contain either a pointer to a string giving the dialog box resource name stored in
module hInstance or be NULL to use the default box.    NOTE: This is the spellchk
default NOT spelledt default box.

Returns

Returns non zero if successful, otherwise it will return 0.

Comments

You should note that the dialog box templates MUST contain all the buttons and controls present in the
original box, but they may be hidden or moved out of the visible area.    The exception is the
KEYSELECT box, this MUST be removed in version 2.40 or 3.00.    3.01 will work either way.

To be compatible the edit box should respond to the following edit box messages:
EM_GETLINE
EM_GETLINECOUNT
EM_LINEFROMCHAR
EM_LINEINDEX
EM_LINELENGTH
EM_REPLACESEL
EM_SETSEL

And should be aware that the bitwise operator:

ES_MULTILINE

is checked for in the style of the control using GetWindowLong(hwndEdit, GWL_STYLE)

See Also
SPEDT_CheckEdit, SPEDT_SetupBox, SPEDT_SetupCustom

SPEDT_CheckEditClip (3.00: Quick interface)

#include spell.h

BOOL SPEDT_CheckEditClip(hwndEdit)

HWND hwndEdit /* window handle of the text box to check */

The SPEDT_CheckEditClip function checks a windows by copying the content to the clipboard
checking it there and then pasting it back.

Parameter Description

hwndEdit Identifies the edit box to be checked.

Returns

Returns non zero if successful, otherwise it will return 0.

Comments

There is a bug in the released version of spell 3.00 that makes this function unusable.    It is correctly
implemented in the 3.00 DEVELOPER dlls and will not be available until version 3.01 of the public dlls.
If you use this function you MUST provide the dlls with your program.

See Also
SPEDT_CheckEditCustom, SPEDT_SetupBox, SPEDT_SetupCustom

SPEDT_CheckClipboard (3.00: Quick interface)

#include spell.h

WORD SPEDT_CheckClipboard(hwndEdit)

HWND hwndEdit /* window handle of the text box to check */

The SPEDT_CheckClipboard function checks the current windows clipboard.

Parameter Description

hwndEdit Identifies the parent window that should be used with the 'Spell' box.

Returns

Returns a word of flag bits, multiple bits may be set:

Value Meaning

CHECKGLOBAL_UNRECOVERABLEERROR The program was unable to start

CHECKGLOBAL_FORMATNOTKNOWN The format specified in wType in unknown

CHECKGLOBAL_CHANGED The global memory block has been changed

CHECKGLOBAL_FINISHED The entire text was checked

Comments

This function is only implemented in the 3.00 DEVELOPER dlls and will not be available until version
3.01 of the public dlls.    If you use this function you MUST provide the dlls with your program.

See Also
SPEDT_CheckEditCustom, SPEDT_SetupBox, SPEDT_SetupCustom

SPEDT_CheckGlobal (3.00: Quick interface)

#include spell.h

WORD SPEDT_CheckGlobal(hwndEdit, lpToCheck, wType, hwndParent)

HWND hwndEdit /* window handle of the text box to check */
HGLOBAL far * lpToCheck /* global memory item containing text to check */
WORD wType /* type of data */
HWND hwndParent /* window to which progress/information messages are sent */

The SPEDT_CheckGlobal function checks a block of global memory, including formatting.

Parameter Description

hwndEdit Identifies the window that will be used as the parent window.

lpToCheck A far pointer to a handle to a block of global memory in the format identified by wType.

wType Type of data:

Value Meaning

'Rich Text Format'

'Rich Text' Text will be treated as formatted rich text.    The actual value
should be determined using RegisterClipboardFormat("Rich
Text Format") or RegisterClipboardFormat("Rich text")

HTML Text Format

HTML Format (3.01)

CF_HTML (3.01)

HTML (3.01) Text till be treated as HTML tagging text within <> will be
ignored, and commented text <!--        --> will be ignored.

CF_TEXT Treated as plain text

CF_OEMTEXT Text is converted to ANSI then processed.    The return data is
converted back.

hwndParent Window to which notification message will be sent. (3.01)

Returns

Returns a word of flag bits, multiple bits may be set:

Value Meaning

CHECKGLOBAL_UNRECOVERABLEERROR The program was unable to start

CHECKGLOBAL_FORMATNOTKNOWN The format specified in wType in unknown

CHECKGLOBAL_CHANGED The global memory block has been changed

CHECKGLOBAL_FINISHED The entire text was checked

Comments

Some clipboard formats will not be supported until 3.01.

See Also
SPEDT_CheckEditCustom, SPEDT_SetupBox, SPEDT_SetupCustom

SPEDT_CheckGlobalCustom (3.00: Quick interface)

#include spell.h

WORD SPEDT_CheckGlobalCustom(hwndEdit, lpToCheck, wType, hInstance, lpMainDlg,
lpOptionsDlg, hwndParent)

HWND hwndEdit /* window handle of the text box to check */
HGLOBAL far * lpToCheck /* global memory item containing text to check */
WORD wType /* type of data */
HINSTANCE hInstance /* module in which the two dialog box templates will be found */
LPSTR lpMainDlg /* pointer to the name of the dialog box to use for Main*/
LPSTR lpOptionsDlg /* pointer to the name of the dialog box to use for Options*/
HWND hwndParent /* window to which progress/information messages are sent */

The SPEDT_CheckGlobal function checks a block of global memory, including formatting.

Parameter Description

hwndEdit Identifies the window that will be used as the parent window.

lpToCheck A far pointer to a handle to a block of global memory in the format identified by wType.

wType Type of data:

Value Meaning

'Rich Text Format'

'Rich Text' Text will be treated as formatted rich text.    The actual value
should be determined using RegisterClipboardFormat("Rich
Text Format") or RegisterClipboardFormat("Rich text")

HTML Text Format

HTML Format (3.01)

CF_HTML (3.01)

HTML (3.01) Text till be treated as HTML tagging text within <> will be
ignored, and commented text <!--        --> will be ignored.

CF_TEXT Treated as plain text

CF_OEMTEXT Text is converted to ANSI then processed.    The return data is
converted back.

hInstance The hInstance of the module which contains the dialog box templates.

lpMainDlg Name of the dialog box contained in hInstance which will be used for the main spelling
box.

lpOptionsDlg Name of the dialog box contained in hInstance which will be used for the options
spelling box.    Can be ignored if the options box will not be accessible.

hwndParent Window to which notification message will be sent. (3.01)

Returns

Returns a word of flag bits, multiple bits may be set:

Value Meaning

CHECKGLOBAL_UNRECOVERABLEERROR The program was unable to start

CHECKGLOBAL_FORMATNOTKNOWN The format specified in wType in unknown

CHECKGLOBAL_CHANGED The global memory block has been changed

CHECKGLOBAL_FINISHED The entire text was checked

Comments

Some clipboard formats will not be supported until 3.01.        You should ensure that all the controls in
the dialog boxes are the same or exactly compatible to the ones in the original.    Controls should not
be deleted, although they can be moved outside the visible area or have their WS_VISABLE falg
removed.

See Also
SPEDT_CheckEditCustom, SPEDT_SetupBox, SPEDT_SetupCustom

SPEDT_SetupBox (Quick interface)

#include spell.h

void SPEDT_SetupBox(hwndParent)

HWND hwndParent /* Parent window */

The SPEDT_SetupBox function displays the setup box.

Parameter Description

hwndParent Identifies the parent window of the setup box.

Returns

Nothing.

Comments

Because of the way this interface works options are displayed as if the setup program that comes with
spell300.zip has been run.    This merely provides an interface to run it from within your own program.

See Also
SPEDT_CheckEditCustom, SPEDT_CheckEdit, SPEDT_SetupCustom

SPEDT_SetupBoxLimited (3.00: Quick interface)

#include spell.h

void SPEDT_SetupBoxLimited(hwndParent)

HWND hwndParent /* Parent window */

The SPEDT_SetupBoxLimited function displays the setup box as it is shown when the options button
is pressed during a check without all the configuration options..

Parameter Description

hwndParent Identifies the parent window of the setup box.

Returns

Nothing.

See Also
SPEDT_CheckEditCustom, SPEDT_CheckEdit, SPEDT_SetupCustom

SPEDT_SetupCustom (Quick interface)

#include spell.h

void SPEDT_SetupBox(hwndParent, hInstance, lpDlgBox)

HWND hwndParent /* Parent window */
HINSTANCE hInstance /* hInstance of the module containing the Dlg template */
LPSTR lpDlgBox /* name of main dialog box template */

The SPEDT_SetupBox function displays the setup box.

Parameter Description

hwndParent Identifies the parent window of the setup box.

hInstance Specifies the module containing the dialog box templates.

lpDlgBox Must contain either a pointer to a string giving the dialog box resource name stored in
module hInstance or be NULL to use the default box.    NOTE: This is the spellchk
default NOT spelledt default box.

Returns

Nothing.

Comments

This provides a method to partially customise the display of the setup box.    As yet there is no easy
way to add to the options, but they can now be removed if you do not want them to appear.    You
should note that the dialog box template MUST contain all the buttons and controls present in the
original box, but they may be hidden or moved out of the visible area,

See Also
SPEDT_CheckEditCustom, SPEDT_CheckEdit, SPEDT_SetupBox

SPEDT_GetParameter (Quick interface)

#include spell.h

BOOL SPEDT_GetParameter(wParam, lpData)

WORD wParam /* Identify the parameter to retrieve */
LPVOID lpData /* buffer in which the data will be placed */

Get the current settings of various spelledt parameters.

Parameter Description

wParam Identifies the particular parameter that will be retrieved.

Value Returns in lpData

SPEDT_LANGUAGE The filename of the current dictionary (string)

SPEDT_XPOS The current X position of the spell window, or
the position at which it will be created. (int)

SPEDT_YPOS The current Y position of the spell window, or
the position at which it will be created. (int)

SPEDT_STOREWINPOS Store the position of the spell window on exit.
(BOOL)

SPEDT_AUTOSUGGEST Auto suggest. (BOOL)

SPEDT_SUGGESTFROMCUSTOM Suggest from custom dictionaries. (BOOL)

SPEDT_ASCIITOANSI Use ASCII accents. (BOOL)

SPEDT_IGNORELINES The first byte returned is a Boolean flag
indicating if lines are being ignored.    The rest
of the returned data is a zero terminated string
giving the text that ignored lines should start
with.

SPEDT_DOAFTER After a check if:
0 Show message box
1 Beep
2 Do nothing

The return is an int.

SPEDT_ONPUNCTUATION A BOOL, indicates if punctuation can break
words.

SPEDT_DEBUG Debug is in operation (BOOL)

SPEDT_PROGRESSINDICATOR Show the progress indicator (BOOL)

lpData A pointer to the buffer in which the data will be placed.

Returns

Returns non zero if successful, otherwise it will return 0.

See Also
SPEDT_CheckEditCustom, SPEDT_CheckEdit, SPEDT_SetupBox

SPEDT_SetParameter (Quick interface)

#include spell.h

BOOL SPEDT_SetParameter(wParam, lpData)

WORD wParam /* Identify the parameter to retrieve */
LPVOID lpData /* buffer from which the data will be read */

Set various spelledt parameters.

Parameter Description

wParam Identifies the particular parameter that will be changed.

Value Returns in lpData

SPEDT_LANGUAGE The filename of the current dictionary (string)

SPEDT_XPOS The current X position of the spell window, or
the position at which it will be created. (int)

SPEDT_YPOS The current Y position of the spell window, or
the position at which it will be created. (int)

SPEDT_STOREWINPOS Store the position of the spell window on exit.
(BOOL)

SPEDT_AUTOSUGGEST Auto suggest. (BOOL)

SPEDT_SUGGESTFROMCUSTOM Suggest from custom dictionaries. (BOOL)

SPEDT_ASCIITOANSI Use ASCII accents. (BOOL)

SPEDT_IGNORELINES The first byte returned is a Boolean flag
indicating if lines are to be ignored.    The rest
of the returned data is a zero terminated string
giving the text that ignored lines should start
with.

SPEDT_DOAFTER After a check if:
0 Show message box
1 Beep
2 Do nothing

The value should be in the form of an int.

SPEDT_ONPUNCTUATION A BOOL, indicates if punctuation can break
words.

SPEDT_DEBUG Debug is in operation (BOOL)

SPEDT_PROGRESSINDICATOR Show the progress indicator (BOOL)

lpData A pointer to the buffer in which the data will be placed.

Returns

Returns non zero if successful, otherwise it will return 0.

See Also
SPEDT_CheckEditCustom, SPEDT_CheckEdit, SPEDT_SetupBox

Copyright and disclaimer

Spell checker for edit boxes has been written by and is copyright © 1995 by Brian Quinion. All rights
reserved.

Whilst every care has been taken in the compilation of this application, it is provided 'as is' and the
author shall not be held responsible for any error, omission or consequential loss.

Spell Checker for Edit Boxes is shareware.    It can be distributed freely with freeware software, please
arrange a license for commercial or shareware usage.

License information

I prefer to use a royalty system for licensing, it seems fairer to everyone (myself included).

Number of copies Cost per copy

50 - 99 £7

100 - 999 £4

1000 - 4999 £2

5000 + £1

At my discretion these fees may be reduced if the program is either being sold cheaply or has some
particular merit.    Contacting me for more information (Brian@quinion.demon.co.uk).

About the Author

I was a second year A level student at the Castle School, Thornbury, which is near Bristol in the UK.   
I'm now waiting for my results before going to University hopefully Software Engineering at Sheffield.   
I'm already a keen programmer.

Other than computers cycling, squash and juggling are my main hobbies.    I also read a fair bit of S.F.

Contact:

I can be contacted by Email at either:

Spellchk@quinion.demon.co.uk
Brian@quinion.demon.co.uk

By mail:

Brian Quinion
18 Pittville Close,
Thornbury,
BRISTOL
BS12 1SE
UK

If I am online I will probably be on IRC as Brique,    (yes I know, very unimaginative)

The latest information will be on my home page:

http://clever.net/quinion/

Examples: MS Access (Quick interface)

Function definitions

Declare Function SPEDT_CheckEdit Lib "SPELLEDT.DLL" (ByVal hWnd As Integer) As Integer

Declare Sub SPEDT_SetupBox Lib "SPELLEDT.DLL" (ByVal hWnd As Integer)

A couple of methods for adding spell checker to MS Access, the first thanks to John W. Dickerson, but
while you are free to thank him if it works, don't blame him if it does not!

I place event procedures on AfterUpdate, Enter, and on Exit of the control that I want to check.    I have
also placed a hidden field on the form that will hold text (the field is called "key" and the values can be
either "updated" or " " (blank)).    This field will let me know if the field has been updated or not.    Based
on whether or not the field has been updated, the code in the Exit event executes if Me![Key] =
"Updated".    In order to have the results returned to the screen after a spell check, I use a send keys to
send a tab so I will move to the next field.    Also, when I do the send keys that executes in the macro
named "Spell" I send a "shift tab tab" which will highlight the whole field so that the spell checker will
check the whole value of the field word by word.    This was kind of quirky to figure out, I just kept trying
different key combinations until it worked.    Also I have set the hot key to your spell checker as Ctrl F1,
which is reflected in the Spell Macro below.

Sub Trigger_AfterUpdate ()
        Me![Key] = "Updated"
End Sub

Sub Trigger_Enter ()
        Me![Key] = " "
End Sub

Sub Trigger_Exit (Cancel As Integer)
        If Me![Key] = "Updated" Then
                DoCmd RunMacro "Spell"
                Me![Key] = " "
                DoCmd RunMacro "Tab"
        End If
End Sub

Spell Macro contains...
SendKeys +{Tab}{Tab}^{F1},Yes

Tab Macro contains...
Sendkeys {Tab},Yes

Next my solution:

(Declarations)
Declare Function SPEDT_CheckEdit Lib "spelledt.dll" (ByVal HWnd As Integer) As Integer
Declare Function GetFocus Lib "user.exe" () As Integer
Dim TempText As String

Function CheckEdit ()
        Dim i As Integer

        If Len(TempText) = 0 Then
                i = SPEDT_CheckEdit(GetFocus())
                TempText = Screen.ActiveControl.Text
        End If
End Function

Function ExitEditBox ()
        If Len(TempText) > 0 Then
                Screen.ActiveControl.Text = TempText
                SendKeys "{ENTER}"
                TempText = ""
        End If
End Function

They should be setup on the edit control as:

AfterUpdate: =CheckEdit()
OnExit: =ExitEditBox()

Explanation:

When you hit return after editing the box the AfterUpdate function CheckEdit()
is called, which does the check and sets TempText to the new text.    Access
then resets the text and calls OnExit which seeing that there is text in
TempText resets the text in the edit box to the correct value, and in the
process gives itself back the focus.    It then send an ENTER key to quit the
edit box and this time since TempText contains text CheckEdit does not do a
check.    OnExit is called and although it changes the text it is the same as
the text already in it so no AfterUpdate message is sent and the function
finally drops through, resetting TempText on the way out!

Examples: Visual Basic (Quick interface)

Function definitions

Declare Function SPEDT_CheckEdit Lib "SPELLEDT.DLL" (ByVal hWnd As Integer) As Integer

Declare Sub SPEDT_SetupBox Lib "SPELLEDT.DLL" (ByVal hWnd As Integer)

To use the quick interface in Visual Basic, you need to include these in the declarations section of your
module.    If SPELLEDT.DLL is not in your \Windows directory, \Windows\System directory, or the
directory you ran the .EXE that calls SPELLEDT.DLL you need to change "SPELLEDT.DLL" in the
declaration to include the path of SPELLEDT.DLL.

Usage

To call the spell checker, use the following code:

i = SPEDT_CheckEdit(EditBox.hWnd)

'i' is an integer and 'EditBox' is the name of the text box you want to spell check.

To call the setup screen use:

call SPEDT_SetupBox(EditBox.hWnd)

See Also
SPEDT_CheckEdit, SPEDT_CheckEditCustom, SPEDT_CheckEdit, SPEDT_SetupBox

