
Table of Contents

Acknowledgements Importing RTF Files
Alias Section Importing Text Files
Authorable Button Inserting
Browse Sequences, Creating Inserting Bitmaps/Pictures
Build Tag Manager Introduction
Building Your Help File Keyword Management
Calling WinHelp() Macros, Working with
Calling WinHelp Version 4.0 Macro Reference
Compiler Errors 3.1 Managing Topic Text
Compiler Errors 95 Multimedia with Winhelp
Compiler Options Navigator
Creating Reports On Line Help
Defining Help Windows Options, Building
Embedded Video (AVI) Paragarph Styles
Environment Options Project Files and Winhelp()
File Functions Project Management
Getting Started SHED.EXE
Glossary Wizard Spell Checker
Help Compiler Notes Testing and Navigating
The Help Magician Window Tools
Help Topics Browser Web Authoring
Help Wizard Working with Keywords

Introduction

The Help Magician has revolutionized the way Windows help systems are created. A highly specialized
WYSIWYG editor includes embedded functions for every aspect of developing a Windows help file:

· A true WYSIWYG help system development environment that emulates WinHelp and allows you
to test your help system as you develop.

· Convert help files to manuals.
· Convert manuals to help files.
· Creating Jumps and Popups is as simple as selecting the link word or phrase and clicking on the

appropriate menu item, toolbar icon, or pressing the hot key.
· Define paragraph tags for your help system including spacing before, after and in between lines;

select left, right or centered justification; force word wrapping; set indentation and tabs typeface,
size, boldness, underline, strikethru and color.

· Load and save pre-defined paragraph styles.
· Perform spell checking on your help system text.
· Include the most popular graphics file formats in your help system with character, left, or right

justification.
· Create numbered or bulleted lists with numbers, letters, or other characters.
· Create non-scrolling regions.
· Browse sequences can be created, with multiple groups, by selecting the desired page titles and,

with the use of a special table, the sequence can be arranged or re-arranged to your liking. Topics
will be browsed, in the compiled help system, in the order in which they appear in the table.
Topics can always be added or deleted.

· The editor performs dynamic syntax checking to ensure an accurate compiled help system.
· Cut, copy, paste, find, find next, find previous, replace with verify, and replace all.
· Import and export ASCII and RTF files, including optional special formatting for the Help

Magician.
· Jump to or pop up topics in secondary windows.
· Adjust the size, positioning, colors and initial attributes of all windows.
· Select the character set used in the final help system.
· Create macro definitions that contain one or more help macros and assign them to hotspots,

individual topics or to be run at startup.
· Create user-defined macros and use them in your help file.
· Create your own special effects, such as sound, video, animation, custom help buttons,

glossaries, and more!
· Easily add buttons to WinHelp's standard buttons with Help Magician's Create Button function .
· Scan Visual Basic source and write a complete help system shell for your application.
· Single button automatic Glossary creation.

The Help Magician provides a new level of organization and functionality to the creation of Windows help
systems:

· No knowledge of Windows help files is necessary - the Help Magician handles the entire project
for you, transparently. The Help Magician writes the RTF file and the project file (.HPJ), complete
with map. It will also write the #define file for C programmers.

· Printouts/reports for the entire help file, browse sequences, context relationships, a link list, and
more.

· The RTF file, written by the Help Magician, can be read into Word for Windows or other word
processors that support RTF files.

· Dynamic browse sequence ordering.
· Edit, test, write RTF files, compile, and call WINHELP.EXE all from the Help Magician's

environment.
· Call SHED.EXE, Bitmap Magician, Word for Windows and Paintbrush from the Help Magician's

menus.
· Automatic help build directory and date and time stamp maintenance.
· Maintain separate configurations for different help systems.
· Select help compiler options and set the help system index page from a simple form.
· All functions are available with the mouse or the keyboard using the assigned hot keys.
· Keywords are entered in drop down boxes on the main form.
· Automatic prevention of duplicate topic titles and context numbers.
· Quick backup menu option.
· Full project management allows multiple help developers on a network to be working on the same

help project without interfering with each other.

Another help system application required 18 minutes to generate a help file from a 4000 word document.
It takes the Help Magician only seconds to write the RTF file from the same document. Combine this with
the WYSIWYG development environment and you have the fastest, most efficient    help development
system available.

Speed, organization, and ease of use are the trademarks of the Help Magician. All combined into a highly
professional application, the Help Magician will increase the productivity of the professional and provide
professional help systems for first time users. The Help Magician works with all Windows development
languages and environments.

The development environment emulates WinHelp so that you can test your help file as you develop.    No
need to compile!

The Search mode duplicates the Winhelp functions that will be available to the end user when viewing the
help system from your application.

HLPMAGIC

HLPMAGIC.HLP, the Help Magician's own help file was created in the Help Magician. Some of the
capabilities of the Help Magician are demonstrated in the help system. More of the features are
demonstrated in the DEMO400.HLP file. The source for this help file is installed to the \SOURCE sub
directory of the Help Magician directory.

See Also
Function Keys
Keyboard
System Requirements
Technical Info
Version 4.0 - New Features

Acknowledgements

Thanks to the following people for their contribution to the development of the Help Magician:

Harald Zoschke (Zoschke Data GmbH - Germany) for his assistance in the Beta testing of the Help
Magician and for the publication of the German version of the program.

Don Lambert (Software Interphase, Inc.) -    for the development of the Project Management portion of
the program.

Jeff Bennet (Bennet-Tech Information Systems) - for the development of and assistance in the
implementation of the Alltext WYSIWYG control used as the editor in the Help Magician.

Statech Software for the development of the RTF translator, HTML translator, Macro Editor and the
Manual to Help Conversion feature.

Anne Selder for her invaluable assistance Beta testing the Project Management portion of the Help
Magician.

Debbie Heberger for the assistance in the development of this help file and the manual.

Thanks,
Robert B. Heberger

Version 4.0 - New Features

(1) Help Wizard
The Help Wizard is a utility that works in conjunction with the Help Magician to guide you through the
creation of a help file and assist you with any specific functionality of the Help Magician.

(2) Win95 Contents Editor
WinHelp version 4.0 offers a new approach to navigating Help files. The contents and search functions
have been combined into a single "Help Topics" dialog box. The Help Magician Contents Editor allows the
help author to create a "contents file" that will be used to create the Contents, Index and Full Text Search
tabs featured in the Help Topics dialog box.

(3) Help Topics Browser
The Help Topics Browser in Help Magician Pro 95 emulates the WinHelp 95 Help Topics Browser Window
that contains the Contents Tab, Index Tab, and the Find Tab.

(4) Authorable Buttons
The Authorable Button feature allows help authors to create and insert user-defined buttons into the help
text that can execute WinHelp macros.

(5) Embedded AVI
The Embedded AVI feature allows help authors to embed AVI video segments into the body of a Help
topic.

(6) New Multiple Help Support
Three types of Help have their own instance of WinHelp:

· Program-invoked Help.
· Context-sensitive Help.
· Training card Help.

In addition to these three specific types, any number of instances of help may be run either by running
WinHelp directly or through its association with the .HLP extension.

(7) Support for Transparent Bitmaps
Bitmaps can now be transparent againsta background. WinHelp replaces any white pixels in the bitmaps
with the background color of the topic window.

(8) Default Topic Window Attributes
The help author can now specify default attributes such as position, size and color for any topic in the
help file.

(9) Enhanced Secondary Window Support
Secondary windows now have the following features:

· Configurable button bar.
· Up to 255 window definitions allowed per project.
· Up to nine secondary windows may be dispayed at the same time, in addition to the main window.
· The Back button now works for secondary windows.
· Auto-size feature lets author allow window to size to text for "best-fit" of window on screen.

(10) New Macro Features

· Twenty-six new macros have been added to the list of WinHelp macros. Some older macros have

been obsoleted and removed from the list.
· The Keyword Macro feature allows the help author to assign a list of macros to a keyword so that

when the end user selects the keyword from the Index Tab, the macros will execute.
· Macros may be assigned to a window definition so that when a topic is displayed in that window,

the macros will execute.

(11) New Topic Linking Features
The "Jump to Keyword" feature allows the help author to provide jumps to multiple topics based on
keywords rather than specific context strings. These jumps are resolved when the user clicks on them
instead of when the file is compiled. The are several distinct advantages to this approach:

· Inter-file jumps can be created for Help files that may change after the original jump was created.
· Inter-file jumps can be planned for Help files that might not exist until after the program is

released.
· The help author can setup inter-file jumps for Help files that might not be supported amongst

various versions of the program.
· Keyword jumps can span multiple help files.

(12) New Font Handling Features
The following features have been added:

· The help author can now set the default fonts for text used in the Contents tab, Index tab, and the
Topics Found dialog box.

· The language to base keyword sorting order upon can be specified to ensure that a help file
created in one language will display the keywords correctly in any other language version of
Windows.

· Greater character support has been added for features such as smart quotes.
· Automatic localization of quotes has been added to properly display quotation marks for several

European countries.

(13) New Compiling and Testing Features
Several new features have been added to aid in debugging help file flow and interaction. These features
include:

· A new Help Author mode to allow live debugging of compiled help files.
· Several new ways to launch WinHelp from the Help Magician to simulate various end-user

conditions.
· New error reporting features to get a more or less detailed view of the compiler processes.
· New macros to test and compare different help files in a variety of ways.
· Missing bitmaps are reported by the compiler with greater detail.
· Help file compression may be optimized using various compression methods such as Hall and

Zeck.
· Full Text Search options may be set for best performance versus space considerations.

(14) New Help to HTML Page Creation Support
Now Internet authors can create HTML pages directly from their Help files. No need to buy another editor
and go through unnecessary conversions to create HTML files from your Help files. The Help Magician
will generate them for you. Help Magician Pro 95 automatically converts help topic pages to individual
HTML files, bitmaps to GIFs, and SHG files to GIFs with Maps. It also supports links from text to URLs.

(15) New Options for Building Help Files

(16) Assign macros to execute once a keyword is selected from the Index Tab

(17) New Visual Help Window designer with support for Windows 95 help

(18) Full-featured Keyword Management using a Keyword Database

(19) Long Filenames support for Windows 95

(20) Enhanced Project Management to include keywords across a project

(21) Support for Visual Basic 4 in the VB Source Code Scanner

(22) Supports all versions of Windows and Windows Help in one complete
package

(23) Supports 256-color and higher bitmaps for Windows 95

System Requirements

Windows Version

Help Magician Pro 95 supports Windows 3.1, WFWG 3.11, Windows 95, and Windows NT. The Microsoft
Help Compiler 3.1 (HC31.EXE) will generate Windows 3.1 help files from RTF files generated by Help
Magician. Windows 3.1 help files are displayable by Windows 95 and Windows NT. To take advantage of
the newer Windows 95 help features, you will need to use Microsoft's Help Compiler for Windows
(HCW.EXE). Both compilers come with Help Magician.

Memory

The Help Magician requires a system with at least a 486 processor and at least two free megabytes of
memory which means that the system should be equipped with at least eight megabytes of memory.
Performance and help system size will be dependent on the capabilities of the host system.

Extended version of the Windows Help Compiler (the latest versions for Windows 3.1) require at least
500K of conventional memory    to compile an RTF file.

Help Compiler

A copy of the Windows Help Compiler, installed with the Help Magician, is required to compile the RTF file
written by the Help Magician into a WinHelp readable file.

Microsoft Help Compiler version 4.0 (HCW.EXE and HCRTF.EXE)
Microsoft Windows Help version 4.0 (WINHELP.EXE)

The Microsoft WordPad program that comes with Windows95 is not suitable for creating topic (.RTF)
files.

SHED

SHED.EXE, installed with the Help Magician, is required to create segmented hypergraphics or multiple
hot spots on a bitmap.

Keyboard

Alt 0-9 Place font styles 10-19 Ctrl N New File
Alt C Edit Context Number Ctrl O Open File
Alt I Edit Context String Ctrl P Create a Popup
Alt P Page Number Ctrl PgDn Goto next page
Alt T Topic Title Ctrl PgUp Goto previous page
Alt W Keywords Ctrl Q Goto Bookmark
Ctrl 0-9 Place font styles 0-9 Ctrl S Save current help file
Ctrl A Save As Ctrl T Paragraph Tag
Ctrl Alt End Goto last page Ctrl U Multimedia
Ctrl Alt Home Goto first page Ctrl V View/Modify Links
Ctrl Alt N Goto nonscrolling region Ctrl W Help Wizard
Ctrl Alt S Goto Scrolling Region Ctrl X Exit the Help Magician
Ctrl B Inserts Bitmap/Picture Ctrl Y Load Styles
Ctrl D Delete Links Ctrl Z Insert a new page
Ctrl E Saves Styles Del Cut selected text
Ctrl F Character Formatting End Goto end of line
Ctrl G Deletes current page Home Goto beginning of line
Ctrl I Paragraph Formatting Ins Insert/Overwrite Mode
Ctrl Ins Copy selected text PgDn Moves down one screen
Ctrl J Create a Jump PgUp Moves up one screen
Ctrl K Set Bookmark Shift Ins Paste text
Ctrl L Define Styles

See Also

Function Keys

Function Keys
 
Alt F2 Goto Next Image F6 Write RTF
Ctrl F3 Find F7 Run Compiler
Ctrl F4 Goto Context String F8 Rebuild All
Ctrl F5 Goto Paragraph Style F9 Call WINHELP.EXE
Ctrl F6 Goto next paragraph style Shift Ctrl F2 Goto Next Mid Topic
Ctrl F7 Call SHED.EXE Shift Ctrl F3 Replace
Ctrl F8 Call Paint Brush Shift Ctrl F4 Goto Context Number
Ctrl F9 Call Bitmap Magician Shift Ctrl F9 Spell Check
Ctrl F11 Annotations Shift F2 Goto Next Popup
F1 Help Shift F3 Find Previous
F12 Navigator Shift F4 Assign macro to project
F2 Goto Next Jump Shift F5 Assign macro to a topic
F3 Find Next Shift F6 Save Macro definitions
F4 Goto Title Shift F7 Load Macro definitions
F5 Create macro definitions Shift F8 View link list

See Also

Keyboard

Technical Info

Paths

All files, pertinent to the current help system, should be in the 'ROOT' directory with the exception of
bitmaps and multimedia elements, which may reside in separate directories (the paths must be specified
in the Bitmap Paths field in the Paths form). 'ROOT' does not mean the root directory of the default drive,
but the 'ROOT' directory for the build, as described in the help compiler documentation. Essentially, the
'ROOT' directory for a help file can be any directory on your drive that contains the necessary files (such
as .HLX and .RTF) to build the help system. The 'ROOT' directory is set to the directory you choose,
when you open or save a help file from the File Menu. Also, the bitmap directories can be called out in the
Options Menu, under Paths.    If you are using the project management feature of Help Magician, all
project member files (hlx, rtf, bitmaps, multimedia files) MUST be located in the same directory, otherwise
access to these files wouldn't be possible across a network.

Files

The Help Magician writes one main file to maintain each help system, with an .HLX extension. This file
contains all of the text you have entered into your help file and a database of the Jumps, Popups,
Bitmaps, Fonts, Browse Sequences, etc. for your help system. Several other database support files
are written to store keywords and help project information. These files have the following
extensions: .ISD, .ISF and .ISM. The file written for the help compiler is an RTF (Rich Text Format) file
and has a .RTF extension. It can be read into a word processor that is capable of reading RTF files.

 Note that not all word processors that provide RTF capabilities write RTF files completely
compatible with the Windows help compiler. Microsoft Word for Windows (versions 1.0, 2.0, 6.0, and 7.0)
was the only word processor we tested that wrote RTF files that were completely compatible with the
Windows help compiler.

In version 2.5 of the Help Magician, support for Lotus Ami' Pro was added.

A project file is also written for the Windows Help compiler, with a .HPJ extension. The compiled help file
has the standard Windows help file extension, .HLP. The compiler will generate a phrase-table file with
the extension, .PH if the compression option is selected.

Defined paragraph tags can be saved for use with other help files. The default extension for these files
is .STY.

The file extension for a help file saved with the File/Backup option is .HLK.

Archive files created under project management will have an extension of .HZP. They are industry
compatible "ZIP" files.

Up to ten previous versions of an HLX file can be automatically saved (Options/Environment Options/File
Save). The extensions for these files are H01, H02, etc.

Defined macro definitions can be saved for use with other help files. The default extension for these files
is .HLM.

 WinHelp 4.0 creates an index file with an extension of .GID the first time a Help file is
viewed.    This index file is used by WinHelp to quickly display the Contents tab in the Help Topics dialog
box. This file should be deleted when a new Contents file is created so that WinHelp can create a
new .GID file. This can be accomplished in several ways:

· Inform the user to delete the GID files before installing an update to the Help system.
· Instruct the installation program to delete the appropriate GID files during an upgrade.
· Instruct the installation program to immediately run WinHelp with a special switch to regenerate

the GID file(s).

Standard macro prototypes are stored in a file called "MACPROTO.HLD". This file should not be
modified by the novice!

Pages/Topics

The actual number of topics is limited by available memory.

Getting Started

This information provided here is a excerpt from the "Getting Started" manual. With the assistance of the
Help Wizard, you may not need the "Getting Started" manual or the "Users Manual".

When you first run the Help Magician Pro 95 application, a window will pop up over the main window. This
window is the Help Wizard.

The Help Wizard will begin at the Introduction category. Please read the Introduction and, at the end of
the Introduction, elect to view the Tutorial category. In the Tutorial, the Help Wizard will build a simple
help file, performing all the steps for you. You will learn something about help files, the Help Magician and
see how simple it is to create a help file in the Help Magician.

The Help Wizard will also give you a "tour" of most of the forms used in the program and "assist" you in
the use of these forms as you create your own help file simply by selecting the appropriate sub menu
from the Category menu.

When you're ready to create your own help file, the Help Wizard will guide you through all the steps
necessary to setup a new help file.

Let the Help Wizard assist and guide you through all of the functions in the Help Magician so that you
can create a professional help file in a minimal amount of time.

The Help Magician Window

Click on the desired area of the Help Magician Form for specific Help

Scrolling & Nonscrolling Regions

Scrolling and nonscrolling regions are displayed in the Help Magician's editor just as they will be seen
when the compiled help file is viewed with WinHelp. The nonscrolling region does not move as the user
scrolls through the text in the lower, scrolling region.

Nonscrolling regions are converted from previous versions of the Help Magician. To create a nonscrolling
region in a topic, select the Format menu and click on Nonscrolling Region. Click on Nonscrolling
Region to delete an existing nonscrolling region.

To move between the two regions, click on the region or press Ctrl+S to move to the scrolling region or
Ctrl+N to move to the nonscrolling region.

Tool Bar

Overview

The Tool Bar provides quick access to functions from the File Menu, the Format menu, the Links menu,
and access to complete on line help. Each of these functions is described in detail in the appropriate
topic.

File Commands

The    Open button brings up a file dialog to open a Help Magician source file on disk. In Project
mode, it brings up the Project Management form, from which you can open a source file that is a member
of a project.

The Save button saves the current source file to disk.

The New button clears the current source and initializes for a new source file.

The Print button prints the current help text and graphics. Other report and print functions are
available from the Filemenu.

 Edit Commands

The Edit tool buttons provide quick access to standard Cut, Copy, and Paste functions.

Format Commands

Character formatting commands include Bold, Italic, and Underline.

Paragraph formatting commands include left justify, center justify, and right justify.

Link Commands

The Bitmap button is used to insert any one of the supported graphics file formats into the editor.

The Jump and Popup

 buttons are used to establish a link from the selected word or phrase to another topic or macro.

The Multimedia button is used to include multimedia elements in your help file.

 The Add Button

 button is used to insert an authorable button into the text portion of a help topic. This button is
displayed only if the Help compiler version option is set to Win95 in Compiler Options.

 The Embedded Avi

 button is used to insert embedded video (AVI) files into the text portion of a help topic. This button is
displayed only if the Help compiler version option is set to Win95 in Compiler Options.

The Delete button deletes the link associated with the word or phrase at the cursor.

The View button brings up the appropriate form to modify the link associated with the word or phrase
at the cursor.

Paragraph Formatting

The Paragraph button brings up the paragraph formatting form and operates on the current or selected
paragraphs.

Help

The Help button calls the Help Magician's own on line help system.

Pressing the right mouse button in the editor, when text is highlighted, pops up the Editor Menu.

The functions available from this menu are duplicates of menu and toolbar functions and are provided as
a convenience at the cursor location.

Utility Area

 The Windows 3.1 Utility Area is shown here.
 

 The Windows 95 Utility Area is shown here.

Windows 3.1 vs Windows 95

The difference in the Utility Area between the versions of Windows is found at the right end of the Utility
Area.

In Windows 3.10 mode, there are five buttons: Browse, Search, Back, History, and Links. These buttons
are replaced with a drop down box in Windows 95. This drop down box is used to select the Topic
Window for the current topic. This is the (default) window in which the topic will be displayed unless
otherwise specified by the secondary window in a jump.

The functions available to the five buttons that have been replaced are still available from the WinHelp
bar and the Links menu.

Keywords

The Keywords drop down box displays the first keyword of each help topic as you page up or down. Click
on the arrow to the right of the drop down box, or press Alt Up Arrow, to display all of the keywords for the
current page. A new keyword can be entered, at any time. Make sure you press Enter after typing in a
new keyword into the text box. Delete keywords by highlighting the desired keyword in the drop down
listbox and pressing the delete key. Click anywhere in the editor or press the Esc key to return to the
editor. To take advantage of full keyword management in Help Magician Pro 95, see Keyword
Management under the Links menu.

 Keywords are used by the search function of the Windows 3.1 Help system. Assign
keywords to topics that are a reference to the topic by association. Use synonyms, whenever possible,
and attempt to lead the user to the topic with associated words or phrases.

 In the Windows 95 Help system, keywords are used slightly differently than in the
Windows 3.1 Help System. They are now displayed in the Index tab of the Help Topics dialog
box, which combined the contents and search functions under one dialog window. They are also
used in linking topics by using the jump to keyword functionality. This alleviates the use of
context strings and allows the end user to select from a list of possible topics to jump to. The

basic principle has not changed, however, which was to associate topics with common words
and phrases to make them easier to find.

 For more information see Keyword Management.

Keyword List

Clicking on the Keyword List button to the left of the Keywords drop down box will pop up a table of
Keywords already used in the help file. This is useful if a keyword is used on a number of pages and you
aren't sure how it was phrased or spelled.

Double click on the Keyword you want to add or click on the Accept button and the Keyword will be added
to the Keywords drop down box.

This functionality is provided as a convenience on the main form. A more comprehensive utility, Keyword
Management, is available from the Links menu.

Context Strings

The Context String text box, to the right of the button in the Utility Area, is used to enter a Context
String for the current topic. When creating hot spots out of bitmaps with the SHED editor, context strings
are required for the various parts of the bitmap that are sectioned off.    If you are using project
management while developing your help file, the context string you enter is stored into a project database
at the time of saving your file.    The project manager prevents other users from using your context string if
they are also working on the same help file.

 Context strings are referred to as Topic ID's in the Windows 95 environment. For
sake of clarity, we will refer to them as context strings throughout this manual.

Temporary Context String

When you start a new file or add a new page, a temporary Context String is assigned to each topic
consisting of the Unique File ID for the file (created from the system time and date, MMDDHHMM) and a
four character representation of the page number when possible.

 Mapping

Context Strings are normally constructed from the topic title or are imported along with an RTF file.
Spaces are replaced with underscores and other illegal characters are re-mapped (Context Strings).

Uses

Normally, it isn't necessary to alter Context Strings. However, when editing a Bitmap with SHED.EXE, you
will need the name of the Context String associated with the topic, or page, to be linked. A complete
printout of the Context Strings is available by selecting Context Relations from the File/Print Menu. A
description of how the Context Strings are constructed from the topic titles is provided on the Context
String page. Help on SHED.EXE is available on SHED.EXE page.

 You can create a link to several topics by using the jump to keyword feature.

Include Files

 Another use for Context Strings would be for compatibility with symbolic references to help topics in an
Include file, specified in the [MAP] section of the project (.HPJ) file. (The Help Magician writes the .HPJ
file every time it writes the RTF file.) In this case, you may want to edit the Context Strings so that the
references match those in your Include file. If this method is used, the name of the Include file must be
entered in the Context String Map text box in the Compiler form available from the Options Menu. Select

"Use Existing File" from the three map file options. If a Context String Map file name is provided and the
"Use Existing File" option is selected, the Help Magician will enter the file name in the [MAP] section of
the project file each time the help file is compiled.

Auto Context String

Clicking on the button will cause the Help Magician to automatically construct a Context String from
the topic title and enter it into the Context String text box. You will have to confirm the replacement of the
current Context String.
 
Context Numbers

Context numbers can be assigned to help pages, or topics, to provide a context sensitivity link between
the help system and your application. For instance, if you wanted to provide help for a certain menu item,
there would be a help topic page created for that menu item with a unique context number assigned to it.
Your application would call WINHELP and pass the context number for help on the menu item.

The editor will not accept duplicate context numbers for different topics. The title page (or index page), as
selected in Compiler Options, must have a Context Number. If a Context Number is not assigned at
design time, the Help Magician will assign the next available Context Number in order to build the help
system.    If you are using project management while developing your help file, the context number you
enter is stored into a project database at the time of saving your file.    The project manager prevents other
users from using your context number if they are also working on the same help file.

Auto Context Number

If the Context Number text box is empty, clicking on the button will cause the Help Magician to
automatically enter a Context Number. The number entered will be one greater than the highest Context
Number in the help file.

Pressing the Esc key will restore the original contents of the Context Number text box and return focus to
the editor.

Renumber All Context Numbers

The Context Numbers for the entire file can be entered or renumbered by selecting Renumber Context
#'s... from the Tools menu. The purpose of this function is to eliminate the need to manually enter context
numbers for all topics and/or to reorder the context numbers sequentially. Use this option only if you
haven't already established context sensitivity between your application and the help file.

Browse

Clicking on the Browse button will bring up the Browse Group Definitions window. See
Creating Browse Sequences for information on Browse Sequences.

Search

Clicking on the Search button brings up a replica of the Search dialog used by
WinHelp.

Back

Clicking on the Back button returns the editor to the topic from which a link was
executed.

History

Clicking on the History button pops up a replica of the History window used by
WinHelp. The last 40 topics viewed are listed. Double click on a topic to go to that page in the editor.

Links From

Clicking on the Links From button pops up a form displaying the links from other
topics to the current topic.

See Also
Context Strings
Unreferenced Topics

Status Bar

Page Number

The text box in the lower left hand corner of the main window is continuously updated to reflect the
current page number. A page number may also be entered into this text box to 'go to' any page. If a page
number greater than the number of pages in the help file is entered, the editor will display the last page in
the file.    Be sure to press the Enter key after entering a page number to go to.

Title

The text box after the button is continuously updated to reflect the title of the current page, topic, or
opitonal hotspot link data (provided option for this is turned on in Environment Options). You can edit the
title by tabbing to or clicking on the text box. Titles can contain any ASCII characters except colons.

Auto Title

Clicking on the Auto Title button will cause the Help Magician to copy the contents of the Title text
box to the top of the current page, automatically creating the topic heading from the title. If a paragraph
style (Define Styles) named "Topic Heading" has been defined, the paragraph style will be assigned to the
text.

Pressing the Esc key will restore the original contents of the Title text box and return focus to the editor.

Paragraph Style Display/Select

The Paragraph Style label displays the paragraph style assigned to the paragraph at the current text
cursor. Paragraph styles can be assigned by clicking on this label or by selecting Paragraph Tag from the
Format menu.

Typeface Display/Select

The Typeface label displays the typeface of the character at the current text cursor position. The typeface
can be changed by clicking on this label or by selecting Character from the Format menu.

Font Size Display/Select

The Font Size label displays the font size of the character at the current text cursor position. The font size
can be changed by clicking on this label or by selecting Character from the Format menu.

Insert/Overwrite Mode

The Insert/Overwrite Mode label displays the current typing mode. Clicking on this label toggles between
insert and overwrite. In insert mode, characters to the right of the cursor are moved to the right as you
type. In overwrite mode, typing replaces characters to the right of the cursor. The typing mode can also be
changed by pressing the Insert key.

Page Up

The Page Up button causes the editor to display the previous page, if there is one. You can also
display the previous page by pressing the Ctrl PgUp key combination.

Page Down

The Page Down button causes the editor to display the next page in the help file, if there is one.
You can also display the next page by pressing the Ctrl PgDn key combination. The Page Down button is
also used to create a new page. If you press Page Down on the last page of the help file, the editor
creates a new page with a temporary title consisting of the Unique File ID for the file (created from the
system time and date, MMDDHHMM) and a four character representation of the page number when
possible. The page is not considered edited and will not be saved with the help file until the page has
been edited. Another new page cannot be created until the most recent new page has been edited.

See Also
Define Styles

Environment Options

The Environment Options dialog is available from the Options Menu, Environment Options sub menu.   
The Environment Options dialog contains nine categories: Partial Font Boundary, File Save, Display,
Image Import, HLX Conversion, Word Delimiter, Keyboard, Mouse, and Tab Ruler.

 

Click on the desired tab of the Environment Options bitmap for specific Help

Partial Font Boundary

 

The Partial Font Boundary to style conversion option determines how font markers in older HLX files are
interpreted. When possible individual font and paragraph formatting in Help Magician versions prior to 3.0
are converted to paragraph tags for use in 3.0/3.1. A paragraph is considered to have font formatting only
if the font markers completely encompass the paragraph.

File Save

The File Save option specifies the number of HLX files to automatically back up. The range is one through
ten. Click on the up arrow to increase the value and the down arrow to decrease it.

Display

Display

Winhelp Bar

This option determines whether the WinHelp Bar is displayed. If selected, the standard WinHelp Bar is
displayed just above the editor window.

Link Target

If this option is selected, The "target" topic for the link under the cursor is displayed in the Status Bar at
the bottom of the main window.

The page number is displayed in the page number text box preceded by a ">" symbol to distinguish it
from the current page number.

The title of the target topic is displayed in the title text box preceded by one or more letters and a ">"
symbol.

J> Jump
P> Popup
JF> Jump to another help file
PF> Popup to another help file
M> Jump to a macro
JS> Jump to another source file
PS> Popup to another source file
C> Jump to a mid topic Context String
JK> Jump to a keyword
JU> Jump to URL Address

Quick Help

This option determines whether the Quick Help on the main form is displayed as the mouse cursor is
passed over the controls on the form. If Quick Help is enabled, a small yellow window appears near the

control with a word or phrase that identifies the control.

Nonscroll

Minimize Non Scrolling Region...

When the Minimize Non Scrolling Region when Scrolling Region has focus option is checked, the
nonscrolling region of the editor will be reduced to one line to provide the maximum amout of editor space
for the scrolling region.

Image Import
 

Display Images Less Than

This setting determines the maximum size of the images that will be actually displayed in the Editor and
those that will be referenced by file name.    The settings are from 0 to 1024k, and 16k increments.    The
setting is used when reading older HLX files, importing RTF files, and when entering bitmaps into the
Editor, from the Edit menu or the Bitmap button on the toolbar.    The larger this value, the longer it will
take the editor to display the bitmap.

Display Image

Stores the image in memory and in the HLX file. This method uses the most memory and disk space but
provides the fastest display of the image in the editor.

Display Filename

Stores the filename only in memory and in the HLX file. This method uses the least memory and disk
space of all the display options.

Link to File

Stores only the the image filename in memory and in the HLX but displays the image in the editor. This
method is a compromise between the two methods described above.

HLX Conversion

Apply Paragraph Formatting

Since most of the text in the Help file will be default or normal style, you may or may not want the
paragraph formatting to be applied to the paragraphs as they are assigned.    If the applied paragraph
formatting to default help text is unchecked only the font attributes will be assigned to the paragraphs as
the normal or default style is assigned.    If this box is checked, both font and paragraph formatting will be
assigned to the paragraphs.

Word Delimiter

The Word Delimiter option determines how the Help Magician finds the beginning and end of    a word of
phrase when establishing a jump or a Popup.    If the punctuation option is selected, the Help Magician
will search from the current cursor position backward and forward until it finds a space or punctuation
character and highlight that portion of the word or phrase.    If    the space option is selected the Help
Magician will search backward and forward until a space is found and highlight that portion of the word or
phrase.    If the selected text option is selected the user must highlight the portion of the word or phrase
that will be used as the jump or Popup text.    A warning will be issued if this option is selected and no text
is highlighted at the time a jump or a Popup is established.

Keyboard Configuration

Keyboard Configuration

There are two possible keyboard configurations provided to maintain compatibility with earlier versions of
the Help Magician and to offer the option to use the new standard keystrokes for cut, copy and paste.

Configuration 1 maintains compatibility with earlier versions of the Help Magician:
Cut = Del
Copy = Ctrl+Ins
Paste = Shift+Ins
View/Modify = Ctrl+V
Exit = Ctrl+X

Configuration 2 provides compatibility with the new cut, copy, and paste keystrokes:
Cut = Ctrl+X
Copy = Ctrl+C
Paste = Ctrl+V
View/Modify = Ctrl+M
Exit = Ctrl+R

Mouse

Right Mouse Button

By default, the right mouse button is used to quickly bring up the appropriate form to modify a hot link or
the attributes of an included image. The Ignore Right Mouse Button option is provided to avoid conflicts
with certain mouse drivers that provide right mouse button functionality such as left button double click.

Tab Ruler

Default Tab Spacing Tick Color

The default tab spacing for a paragraph is displayed at the lower edge of the tab ruler. Three lines make
up the ticks. By default, the outer lines are black and the inner line is white. This option allows setting the
colors of the lines for better visibility on some monitors.

Warnings

Warnings

The Warnings tab is provided to select the level of warnings regarding hot spots and image fields.

Hot spots and image fields must be separated by at least one space. Image fields cannot be modified in
the editor. Their attributes must be modified from the Links menu, View/Modify (right mouse button) sub
menu.

 The Esc key will detach the cursor from a hot spot or image field.

By default, warnings are issued when you attempt to type (including the Return key) inside one of these
fields. On hot spots, you have the option to edit the text, detach the cursor from the hot spot, or to cancel.
On image fields, you can only select OK and the cursor will be detached from the image field.

If you become proficient at maintaining a space between these fields, select the Expert option to
eliminate the warnings associated with them.

Program Start

Display tips when program starts

If this option is checked, the Help Magician Tips form pops up every time the program is started.

The Window shown below displays a useful hint about the Help Magician or help systems in general.

Show Wizard when program starts

If this option is checked, the Help Wizard pops up every time the program is started.

Restore Window size and position

If this option is checked, the Help Magician's main window will be displayed at its location when the
program was last terminated. The size last of the window will also be restored.

Context Numbers

This option will show Context Numbers in the Context Numbers box just above the editor as decimal, C-
style hexadecimal, or Basic-Style hexadecimal.

Managing Topic Text

Cut, Copy, Paste, Delete

The Help Magician Pro 95 Edit menu is shown here.

Click on the desired area of the Edit Menu for specific Help

Cut Text
Select Cut to delete selected text from the editor. Text is selected in the standard Windows manner, by
pressing the left mouse button and dragging the mouse cursor over the desired text or, using the
keyboard, holding the Shift key while moving the cursor over the desired text.

The hot keys, Shift+Del & Del or Ctrl+X (depending on the Environment Options settings), can be used to
Cut selected text.    Any text cut is copied to the clipboard.

Adding Text Using Other Windows Applications

You can use the paste command to add text from other sources using the DDE (Dynamic Data Exchange)
capabilities of Windows. Copy the text from another application, switch to the Help Magician, place the
cursor at the desired insertion point and paste the text.

Copy Text
Copying text is accomplished exactly the same as Cutting text except that the text is not removed from
the editor.

The hot keys, Ctrl+Ins or Ctrl+C (depending on the Environment Options settings), can be used to copy
selected text.    Selected text is copied to the clipboard.

Paste Text
Paste will insert the text in the clipboard, if any, at the current cursor position. If text is highlighted, it will
be replaced by the pasted text. A message box will notify you if the clipboard does not contain any text.

The hot keys, Shift+Ins or Ctrl+V (depending on the Environment Options settings), can be used copy
selected text.

Delete Text
The Delete key removes text from the editor without copying it to the clipboard.

Sort Paragraphs
This function will sort paragraphs alphabetically. Select the paragraphs to be sorted by highlighting them
(highlighting need not be precise) and select the Sort Paragraphs function.

Find

Find

Selecting Find from the Edit Menu will bring up the Find dialog.

Find What

The search text can be part or all of a word and it can be case sensitive or case insensitive, depending on
the options selected below.

Whole Word

Click on the Whole Word check box if you want to limit the text found to a complete word, with a space or
punctuation mark on either side. If the Whole Word box is not checked, the search text can be included in,
or part of, a word.

Beginning of File

Click on the Beginning check box if you want to start the search from the beginning of the file instead of
the current cursor position.

Current Topic

Selecting Current Topic will limit the search to the current help page, or topic.

All Topics

Selecting All Topics will cause the search to be performed on all help pages from the current page
forward.

Insensitive

During a case insensitive search, the search text will be compared with the text being searched without
regard for case. Both are converted to upper case before comparison.

Sensitive

In a case sensitive search, the text must match exactly, with regard to the case of each letter in the
search text, entered in the Find What text box.

Find Next

Find Next will find the next occurrence of the search text, based on the arguments previously entered in
the Find form. The search begins at the cursor and ends at the bottom of the last page. The search will

not wrap to the beginning of the help file. If Find Next is selected and there has not been an initial search,
the Find form will pop up.

Find Previous

Find Previous will find the previous occurrence of the search text. If there has not been an initial search,
no action will be taken. The search begins at the cursor and ends at the top of the first page in the help
file. The search will not wrap.

Replace

Replace

Because there are more options, Replace uses a different form than Find. In addition to the Find form,
you must enter a replacement text string. Also, there are options to verify each replacement or to replace
all occurrences. If you select verify, you will have the option, at each occurrence, to replace the text, leave
the text as is, or to cancel the search and replace. In verify mode, Replace begins at the current cursor
position on the current page. It does not wrap to the beginning of the file.

Verify

This option will cause the Help Magician to stop on every occurrence of the search text and request
confirmation before replacing.

Replace All

This option will cause the Help Magician to scan the either the current topic or the entire help file,
depending upon whether the Current Topic or All Topics option is chosen, and replace all occurrences of
the search text, based on the Case Sensitivity and Whole Word options. The editor will return to the page
you were editing when Replace is complete.

Unlink Cursor
As with any word processor, typing in the Help Magician's editor continues with the same font and
paragraph attributes as the previous text. When a hot link is established, the attributes for the text are
automatically set in the editor.

For example, if the text is green and underlined, in the case of a Jump, you don't want to continue to type
with these attributes for normal text. If the cursor is just to the right of the hot link, you will continue to type
with these attributes and the text will become part of the hot link. The same is true for an image field.

The Insert/Overwrite indicator, in the bottom right corner of the main window, displays the status of the
cursor relative to hot spots and image fields. If the indicator is red, the cursor is inside of an image field. If
the indicator is green, the cursor is inside of a hotspot. If the indicator is yellow, the cursor is inside both
fields.

Selecting the Unlink Cursor sub menu or pressing the Esc key will detach the cursor from the hot link or
image field and its attributes.

Convert to Hard Spaces
When Center or Right aligned tabs are used, the spaces in the text must be hard spaces. A hard space
can be entered from the keyboard with the Shift+Space key combination.

If text has already been entered, the spaces can be converted to hard spaces by highlighting the text and
selecting Convert to Hard Spaces from the Edit menu.

Goto

Goto...

The Goto... sub menu offers ten options. You can goto a Topic by page, title, Context String, or Context
Number. You can goto the next Jump, Popup, Mid Topic Context String, or unresolved hot link. You can
also goto the next occurrence of a paragraph style. You can also goto a page by entering the page
number in the text box to the right of the Page: label, in the Status Bar.

Goto Page

When you select the Goto Page sub menu, the text cursor moves to the text box in the lower right hand
corner of the screen and the current page number is highlighted. Enter the number of the page that you
want to go to, press Return and the editor will display the selected page. If the page number entered is
greater than the number of pages in the file, the editor will display the last page.

 A shortcut to the Goto Page sub menu would be to click in the page text box with the left mouse
button.

Goto Title

When you select Goto Title from the Goto... sub menu, a form will pop up with a table of the topic titles in
your help system. Double click on the title to goto that topic or select the title and click on Accept. You can
preview any topic by highlighting the title and clicking on the Preview button.

Goto Context String

When you select Goto Context String from the Goto... sub menu, a form will pop up with a table of the
Context Strings in your help system. Double click on the desired Context String or select the Context
String and click on the Accept button. You can preview any topic by highlighting the Context String and
clicking on the Preview button.
 

 Reminder: Context Strings are refered to as Topics ID's in Win95 environment.

Goto Context Number

When you select Goto Context Number from the Goto... sub menu, the Page: text box will receive the
focus and the cursor will be preceded by the letter 'C'. Enter the context number and press return and, if
the context number exists on any page, the editor will goto that page.

 The letter 'C' can be entered in the Page text box at any time to goto a page by context number.

Goto Jump, Popup, Mid Topic, Unresolved

You can goto the next hot link by selecting the Jump, Popup, Mid Topic, or Unresolved sub menu. A beep
will sound if there are no more links of the selected type.

The purpose of the Unresolved sub menu is to locate unresolved links caused by importing an RTF where
the destination for a hot link was not available.

Goto Paragraph Style/Next Paragraph Style

You can locate occurrences of paragraph styles throughout the help file by selecting these options from
the Edit/Goto menu. After selecting the paragraph style, the goto Next Paragraph Style with locate
successive occurrences of the style.

Goto Next Image

Goto Next Image will go to the next occurrence of an embedded image, an image filename, or a link to file
image.

Insert Page
Insert Page will insert a page, at the current page number, moving all pages, from this page number,
forward one page. The new, inserted page, will have the same attributes as a new page that is created by
clicking on ^PgDn while on the last page. The title will be Temp Title plus the page number.

Delete Page
This will delete an entire page from the current help file. If there are links in the text on this page, they
also will be deleted. If other pages are linked to the page to be deleted, the pointers to this page will be
deleted and the links will be converted to "unresolved" in the database. If the last page is deleted and was
the Help Index Page, then the first page will default to the new Index Page, otherwise the new Help Index
Page will be the next consecutive page.

Bookmarks
You can set and goto any one of ten bookmarks anywhere in the help file. Press and hold the Ctrl key and
press the "K" key to set a bookmark. Press and hold the Ctrl key and press the "Q" key to goto a
bookmark.

Inserting Special Characters

You can insert special characters from symbol or other decorative fonts by selecting Special Character
from the Insert menu to bring up the Special Character form. This is the same form used to define
characters for bulleted paragraph formatting.

Special Character Form

Ten characters are displayed at the top of the form with the ASCII value of each character above the
sample. You can scroll through the characters by moving the horizontal scroll bar with the mouse.

The currently selected character is displayed in a label in the center of the form, to the right of the ASCII
value text box. Clicking on one of the ten characters at the top of the form selects that character.

You can also enter an ASCII value (0 - 255) in the text box to the left of the selected character label to
select a character.

Select Font

Click on the Select Font button to set the typeface, point size, style, effects, and color for the character.

Done

When you have set all the attributes for the character, click on OK. The character will be inserted into the
editor at the current cursor location.

Inserting a Horizontal Rule
The horizontal rule is included for use with WEB page authoring but it can be used in a help system just
as well. Click on the Insert menu, Horizontal Rule sub menu and the rule will be inserted into the editor
at the current cursor location.

Paragraph Styles

Defining Styles

Define Styles

Selecting Define Styles brings up the Font Style Definition window. The figure shows the default list of
defined styles. Up to 600 paragraph styles can be defined for the Help system.
 
Default Font

The first style on the list is the default paragraph style for the entire help system. All text will be viewed in
this style unless it is specifically marked as another style. The Default Help Text style cannot be deleted
and the name cannot be changed. As you cursor through the list, or click on a style name, a sample of the
actual font is displayed at the bottom of the window.

Other Defaults

Other Paragraph Styles are provided. They may be re-defined or deleted as desired.

Delete

Clicking on the Delete button will remove the currently highlighted font style from the list of defined font
styles. The Default Help Text style cannot be deleted.

Style Name

To change the style name, tab to or click on the Defined Style Name text box and edit the name.

Explicit Re-assignment

This check box is not enabled until a style has been changed. Checking this box causes the re-
assignment of fonts to ignore exceptions to the existing style. See the note below.

 When a style is assigned, an effort is made to preserve embedded exceptions to the
existing style such as a bold or italic word or color assigned to a word or phrase. If you would rather that
the entire paragraph be re-formatted according to the selected style, click on the style with the right
mouse button or press Shift+Return.

When assigning styles with the hot keys (Ctrl+0-9 and Alt+0-9) add the Shift key to the hot key for explicit
re-formatting.

See Also
Alignment
Applying Styles
Borders
Bullets
Character Formatting
Defaults
Indents
Load/Save Styles
Merge Styles
Modify Character Attributes
Paragraph Formatting
Spacing
Tabs

 

Modify Character Attributes

Modify Character Attributes

To modify the character attributes of a defined style, click on the Character button or double click on the
style name in the list box. This will bring up the Select Font Properties window.

Font Face

The list of typefaces provided in the list box include all of the screen fonts on your system.

Font Style

Select whether you want the font to be Regular, Italic, Bold, or Bold Italic.

Font Size

The point sizes available for the selected Font are listed in the Size list box.

Effects

Check the appropriate box in the Effects frame for Strikeout or Underline.

Font Color

Select the font color from the 16 colors in the drop down box.

Modify Paragraph Attributes

To modify the paragraph attributes of a paragraph style, click on the

Paragraph button. This will bring up the Paragraph Formatting form.

Indents
 

Left Indent

To indent a paragraph from the left margin, enter the desired indentation in the Indent text box labeled
"Left" and click on OK.

Right Indent

To indent a paragraph from the right margin, enter the desired indentation in the Indent text box labeled
"Right" and click on OK.

 Hanging Indent

To produce a hanging indent, set both the Left and First indents. The Left indent applies to the entire
paragraph and the First indent applies only to the first line.

The First indent will be a negative number to move the first line of the paragraph back towards the left
margin relative to the indentation of the entire paragraph. Use the Sample window on the right side of the
Paragraph formatting form to visualize the effect of the settings.

Delimiter

There must be a delimiter between the Left justified text and the hanging indent text. If a single word
numbered listing or hanging indent is created, a space will serve as the delimiter. If multiple words are
used, the delimiter must be a Tab character.

During the writing of the RTF file, you will receive a warning message for every line that is missing a
proper delimiter. This is not fatal, however, just select OK and the RTF writer will continue.

Numbered Lists

Numbered Lists can be created with hanging indent paragraphs. Enter a Tab character after the number.

1 Item one.
2. Item two.
3) Item three.
A.) Item A

Words

Numbered lists can also be created using words or phrases in place of the number character. If words are
used, the rules are the same as for lists with numbers. If phrases are used, there can be spaces between
words but the indent must be separated from the phrase by a Tab character.

 In order to produce indented non-numbered paragraphs after a numbered paragraph, you
may intentionally leave out the number before the delimiter to achieve this effect:

1. TAB    This is an example of the first
paragraph that is word wrapped.

TAB This is the next paragraph with
 no numbers or text before
 the space or tab delimiter.

2. TAB    This is the next paragraph with
a delimiter.

Bullets

To create a bulleted paragraph style, check the Bulleted Listing box by clicking on it with the mouse. This
enables the Bullet

selection button     . Click on the Bullet selection button to bring up the Paragraph Bullet form.

Paragraph Bullet Form

Ten characters are displayed at the top of the form with the ASCII value of each character above the
sample. You can scroll through the characters by moving the horizontal scroll bar with the mouse.

The currently selected character is displayed in a label in the center of the form, to the right of the ASCII
value text box. Clicking on one of the ten characters at the top of the form selects that character.

You can also enter an ASCII value (0 - 255) in the text box to the left of the selected character label to
select a character.

Select Font

Click on the Select Font button to set the typeface, point size, style, effects, and color for the bullet.

Done

When you have set all the attributes for the bullet, click on OK. When you return to the Paragraph form,
the selected bullet will be displayed on the Bullet selection button.

Borders

Borders Tab

Click on the Borders tab to access the paragraph border attributes.

Border Type

Click on the appropriate radio button to select the border type. The Border Style options will not be
available until a Border Type has been selected.

Border Style

Click on the radio button for the type of border. Click on OK to accept your choices.

Spacing

Spacing Tab

Click on the Spacing tab to access the paragraph spacing attributes.

Before Paragraph

Click on the up or down arrows to the right of the Before Paragraph text box to increment or decrement
the line spacing before the paragraph or enter the value into the text box (up to 2 decimals). The sample
window on the right side of the form reflects the value entered.

After Paragraph

Click on the up or down arrows to the right of the After Paragraph text box to increment or decrement the
line spacing after the paragraph or enter the value into the text box (up to 2 decimals). The sample
window on the right side of the form reflects the value entered.

Between Lines

Click on the up or down arrows to the right of the Between Lines text box to increment or decrement the
spacing between lines or enter the value into the text box (up to 2 decimals). The sample window on the
right side of the form reflects the value entered.

Alignment

Alignment Tab

Click on the Spacing tab to access the alignment attributes.

Alignment

Click on the appropriate radio button to set the alignment for the paragraph text.

Pagination

Check the Force word wrap off check box to eliminate word wrapping of the text in the paragraph when
viewed with WinHelp. If the width of the WinHelp window is less than the width of the paragraph, the text
will have to be scrolled to be viewed.

Check the Non-scrolling region check box to define the paragraph as a non-scrolling region, or banner.
Styles defined with this attribute must be at the top of the topic and there cannot be any type of
paragraphs defined above a non-scrolling region paragraph. When viewed with WinHelp, this area will
remain in place and will not scroll as the rest of the text in the window is scrolled.

Tabs

Setting Tabs
To set tabs for a paragraph, select the "Tabs" button. This brings up the Set Tab Spacing form.

Set tabs by setting a tab alignment of Left, Right or Center; typing in a tab position, in inches, in the text
box and selecting the Enter key on the keyboard. Duplicate tabs will be ignored as well as tabs greater
than eight inches. To delete a tab or all tabs, select the tab and select "Delete tab" or 'Delete All' button,
respectively. To set the default tab positions to something other than half an inch, change the setting in
the "Default tab spacing:" text box. Select Accept to return to the Paragraph form. If tabs have been set
the color of the Tabs button will change from black to red.

Defaults

Pressing the Defaults button will restore all of the paragraph attributes to their default settings.

Load/Save Styles

Save Styles

You can save your Font Style definitions to a file, to be used in other help files. Select Save Styles from
the Format Menu and assign the file a name in the file form. The default extension for styles is .STY.

Load Styles

When you start a new help file, you can load styles that were defined for another help system. The file
form will prompt for files with the default extension for styles .STY. You can only load defined styles in a
new help file.

See Also
Merge Styles

Merge Styles

Font Styles, defined in another help file can be merged with the Font Styles in the current help file.

As each Style is read in from the Paragraph Style (.STY) file, its attributes are compared with the
attributes of the Font Styles in the current help file. Font Styles with duplicate attributes will not be
merged.

Font Styles with duplicate Style names but different attributes will be merged and the Style name will be
appended with a -A, -B, etc. as necessary.

Applying Styles

Selecting Paragraphs

To apply a paragraph style to a paragraph, the cursor can be any where in the text and highlighting is not
necessary for single paragraphs. If more than one paragraph is to be formatted, highlight from anywhere
in the first paragraph to anywhere in the last paragraph. The Help Magician automatically finds the
beginning and end of paragraphs.    A carriage return is considered to be the end of a paragraph.

Defined Style List

The list of Defined Paragraph Styles can be accessed from the Format menu, Paragraph Tag sub menu
or by clicking on the style label in the Status Bar at the bottom of the main window.

Select Style

Select the style for the paragraph or paragraphs by clicking on the desired style or by moving to the
desired style with the cursor keys and pressing Return.

 When a style is assigned, an effort is made to preserve embedded exceptions to the
existing style such as a bold or italic word or color assigned to a word or phrase. If you would rather that
the entire paragraph be re-formatted according to the selected style, click on the style with the right
mouse button or press Shift+Return.

When assigning styles with the hot keys (Ctrl+0-9 and Alt+0-9) add the Shift key to the hot key for explicit
re-formatting.

Paragraph Formatting
Paragraph formatting can be applied independent of the paragraph styles. Select the paragraph or
paragraphs just as you would to apply a style and select Paragraph from the Format menu.

Select the attributes for the paragraph in the Paragraph form and click on OK to apply the formatting.

Character Formatting
Character formatting can be applied independent of the paragraph styles. Select the text to be formatted
by highlighting it with the mouse and select Character from the Format menu.

Select the attributes for the text in the Font dialog and click on OK to apply the formatting.

Spell Checking

Spell Check

The Spell Check option will check the spelling in your help text from the current page, at the current
cursor position, to the end of the file.

Replace Options

The Replace Options window pops up when a Spell Check session is initiated. The page number being
scanned is displayed after the Spell checking page: label.

Word not found:

If the spell checked finds a misspelled word, it is displayed after the Word not found: label on the Replace
Options form. Note that in the tutorial file shipped with the Help Magician, the word "occurrence" is
misspelled.

Ignore

Press the Ignore button to ignore this single occurrence of the word.

Ignore All

The Ignore All option will cause the spell checker to ignore this and all successive occurrences of the
word.

Change

Pressing the Change button replaces the misspelled word in the editor with the word in the text box above
the suggested words list box. When you click on a word in the suggested words list box, it is copied into
the text box. You may also type your own replacement for the misspelled word in the text box.

Change All

The Change All option will replace the misspelled word and all successive occurrences of the word.

Add

This will add word after the Word not found: label to the "User Dictionary". This and all successive
occurrences of the word will be ignored.

User Dictionary

The User Dictionary is named "DICT.U" and can be found in your Windows directory. If you need to
remove words from the dictionary, edit the file with an ASCII editor. The words in the User Dictionary must

be upper case first letter and separated by commas. The last word must be followed by a comma.

Jumps and Popups

Jump

Select Jump from the Marker Menu to set up a Jump, or link, between the selected word or phrase and
another help topic in the current help file, a topic in another help file, or a macro. When you select Jump,
the Jump Destination form will pop up. There are options for the display of the Jump text, secondary
windows, and the Scope of the Jump, all explained in detail in the following sections. Some of the options
on the form are enabled and disabled depending on the Jump Destination option selected.

Destination

Locator

There is a text box above the list box used to display help topics and macros. It is used to quickly locate
items in the list by typing some of the characters in the help topic or macro. The list will automatically
scroll to the item most closely matching the entry in the text box.

Another Topic

To establish a Jump to another topic in the same help file, select the topic from the list box labeled, Select
Help Topic and click on the Accept button. In the compiled help system, the user will Jump to the selected
page when they click on the word or phrase. The current page is not included in the list because it would
not be a valid Jump link.

Another Help File

To Jump to a topic in another help file, first select the Other Help File radio button. This will enable the
Help File and Context String text boxes and the Browse button. Enter the name of the help file in the Help
File text box and the enter the Context String of the topic to Jump to in the Context String text box. If
necessary, refer to a copy of the Context Relations printout for the other help file.

Macro

To Jump to a macro, first select the Defined Macro radio button. Note that this button will read "No Macros
available" and will not be enabled if macros have not yet been defined. (Defining Macros)

If there are macros to select from, they will be displayed in the same list box used to display topic titles.
The caption above the list box will be replaced with Select Macro to Run.

Other Source

If you are using multiple files to build your help system, you will want to use Jumps and Popups to Other
Source to combine the functionality of the individual files. Click on the Other Source radio button and
enter the Context String for the topic in any of the other source files. If necessary, refer to a copy of the
Context Relations printout for the other source file. When compiled, the Jump will be linked to that topic in
the other source file (Multiple Files).

Keyword

To jump to a keyword, first select the Keyword radio button. If keywords have been defined, they will be
displayed in the list box used to display topic title. Select a keyword from the list.

When the end user selects a jump that is linked to a keyword, the topic that had the keyword assigned to
it will be displayed. If more than one topic had the keyword assigned, a list of the topics will be displayed
for the user to select from.

Besides offering a list of topics to jump to, the Jump to Keyword feature also allows help authors to easily
include future updates, like new topics, without having to redistribute a potentially large help system. To
accomplish this, the help author can add new topics to a separate help file and assign them keywords
that were used in the original help system. When the update is completed, the new topics will be
automatically linked into the old system via the keyword jumps. If the original help file is planned out
carefully, future expansion can be less painful than before.

The help author should distribute an updated contents file (.CNT) with the new help file. To complete the
upgrade the user's configuration file (.GID) needs to be updated as well. To accomplish this, the user can
be instructed to delete their old configuration file or the help author's installation program can call WinHelp
with the -g option. This will instruct WinHelp to force an update on the user's configuration file.

Refer to the section on Working with Keywords for more information on keywords in general.

Web Site URL

When this destination is selected, you will be required to enter a URL Address as the target for the jump.
Enter the address exactly as you would in your net browser (http://www.whatever.com/web_page/).

If you have previously entered web addresses, they will be displayed in the listbox.

Display

Display Options

The manner in which the Jump text is displayed in the compiled help file can be controlled with the three
radio button in the Display Options frame. Normally, a Jump is green underlined text. This option is
selected with the Color and Underline radio button.

To display the Jump text without color, select the No Color radio button. To display the Jump text without
the color or the underline, select the No Color or Underline radio button.

Scope

Scope

When you establish a Jump of any type, you can set the link for the currently selected word or phrase, for
one occurrence of the selected text on every page, or for every occurrence of the text in the help file. This
eliminates the need to find and mark text throughout the help file.

Display Window

If you want the Jump to be displayed in a window other than the Main window, check the Display Window
check box. Select the window for the Jump from a list of defined windows in the drop down box to the
right of the Display Window check box.

To force a Jump from a secondary window back to the Main window, check the Display Window check
box and select the Main Window.

If no other windows have been defined, the only window in the list will be Main (Defining Help Windows).

If you've selected Jump to a URL, this option will be disabled.

Segmented Hypergraphics

Not only can pictures be used as jumps or Popups but portions of the them can be defined as Jumps and
Popups to various topics. One obvious use for this feature would be to display an entire menu from the
application and, clicking on a menu item would display information about that particular menu item. This
type of image hypertext is known as segmented hypergraphics, or hot spots.

Each of the items in the sample menu could be defined as a Jump or a Popup to another topic. This
requires the use of SHED.EXE, Microsoft's Segmented Hypergraphics Editor, supplied with Help
Magician Pro, Windows SDK, and the Visual Basic 2.0/3.0    professional version.

 Popup
 
Selecting Popup will establish a link between the selected word or phrase and another help topic in the
current help file, a topic in another help file or a macro. A Popup is used primarily for definitions of words
or as an explanation of a phrase. When run under WINHELP.EXE, the contents of the linked topic will be
displayed in a window which pops up over the current help topic. The user will not Jump to the selected
topic page.

When you select Popup, the Popup Destination form will pop up. There are options for the display of the
Popup text, secondary windows, and the Scope of the Popup. Some of the options on the form are
enabled and disabled depending on the Popup Destination option selected. The options are the same as
the options for Jumps except that you cannot Popup to a secondary window. See the Jump section earlier
in this topic for more information.

SHED Files

When editing a Bitmap with SHED.EXE, you will need the name of context strings associated with the

topic, or page, to be linked. A complete printout of the context strings is available by selecting Context
Relations from the File/View Menu. A description of how the context strings are constructed from the topic
titles is provided in Context Strings is further explained in SHED.EXE.

See Also
Add Button
Context Relations
Creating Browse Sequences
Define Macros
Defining Help Windows
Delete
Embedded Video (AVI)
Links From
Mid Topic Jump
Multimedia With WinHelp
Multiple Files
Unreferenced Topics
View/Modify
Working with Keywords

Unreferenced Topics

Selecting Unreferenced Topics from the Links menu will initiate a scan of the relationships of all the
topics in the current source file.

Every topic will be cross referenced for calls from other topics in the form of Jumps and Popups or from
Shed files. Links to Mid Topic Context Strings will be included in the scan.

If unreferenced topics are found, they will be displayed in a text box at the end of the scan. Press the
Print button for a hard copy of the list.

Multimedia with WinHelp

Multimedia

The Help Magician automates the use of audio (.WAV), midi (.MID), video (.AVI), and movie (.MMM) files
in your help system. Selecting Multimedia from the Marker Menu or pressing the Multi button in the tool
bar pops up the Multimedia dialog.

Media Type

Select the media type by pressing the corresponding radio button. The caption above the text box and the
default extension in the filename text box will change to reflect the type of file.

Add To

Select the type of link to be established for this Multimedia element.

Selected Text: has the same effect as a    the Multimedia element will be played when the user clicks on
the text in the compiled help system.

Current Topic: has the same effect as a topic macro in that the Multimedia element will be played when
the user selects the current topic in the compiled help system.

Project: has the same effect as a project macro in that the Multimedia element will be played when the
help system is first called.

Window Style

Select the type of window to be used when displaying a video multimedia element. A Popup window will
not have a border or system menu.
 
Stop Play

Put an X in the 'Stop Play' check box if you want a "Close" macro to be created along with the other
related macros for the current multimedia element. This macro can later be linked to a close text/button of

your choice using the Jump to Macro capabilities of the Jump dialog.

Macros

When a multimedia element is linked, the Help Magician writes several macros and adds them to the
existing macros, if any.

Project Macro

If a Project Macro does not exist, one is created to register the function(s) necessary to support the
selected multimedia element.

Macro Names

The play and close macro definitions are created by adding the prefix "Play" to the filename of the media
element to be played, without the file extension. If duplicate filenames exist, the filename will be
appended with a three character representation of the next available numeric suffix for the filename.

Wave

The following line is added to the project macro if wave files will be played in the help system.

RegisterRoutine("MMSYSTEM", "sndPlaySound", "Si")

A play macro definition is created for each multimedia element used. It uses a call to the sndPlaySound
function in MMSYSTEM.DLL.

sndPlaySound(`DRIVE:\PATH\WAVEFILE.WAV',0)

MCI

Video (.AVI), Movie (.MMM), and Midi (.MID) files are all played with the use of MCI calls. The following
line is added to the project macro if MCI files will be played in the help system.

RegisterRoutine("MMSYSTEM", "mciExecute", "S")

Play w/ Stop

Typically, the following four macros would be included in a macro definition written to play a Video (.AVI)
file if the "Create 'Stop Play Macro' check box is checked:

IfThen(IsMark("AVI000"),'mciExecute ("Close AVI000")')
mciExecute("Open DRIVE:\PATH:\AVIFILE.AVI alias AVI000 type AVIVideo style Popup")
mciExecute("Play AVI000")
SaveMark("AVI000")

Close

The following macro would be written to the Close macro.

IfThen(IsMark("AVI000"),'mciExecute("Close AVI000");DeleteMark("AVI000")')

This macro can later be linked to a close text/button of your choice using the Jump to Macro capabilities
of the Jump dialog.

 Microsoft Video for Windows or the Video for Windows runtime module is required to play
AVI files.

Alias's

Alias's are created for use in the MCI open statement. The alias is created by using a three character

prefix for the media type (AVI, MMM, WAV, MID) and a three character suffix representing the next
available numeric value for the media type.

SaveMark

The string used in the "SaveMark" and "IfThen(IsMark..." macros is exactly the same string as the alias.
These macros are used to avoid errors caused by opening an MCI event that is already open or closing
an MCI event that is already closed.

Play w/o Stop

Typically, the following three macros would be included in a macro definition written to play a Video (.AVI)
file if the "Create 'Stop Play Macro' check box is unchecked:

mciExecute("Open DRIVE:\PATH\AVIFILE.AVI alias AVI000 type AVIVideo style Popup")
mciExecute("Play AVI000 wait")
mciExecute("Close AVI000")

The "wait" statement causes the multimedia element to be played in its entirety before control is returned
to the help system.

Filename

Enter the filename for the Multimedia element or press the Browse button as described below.

Browse

Pressing the Browse button will pop up a file dialog which can be used to select the filename for any of
the Multimedia elements. The default extension is already set for the type of Multimedia element selected
in the Media Type frame.

Preview

When a filename has been entered, the Multimedia element can be "previewed" by pressing the Preview
button.

Audio: requires a sound board and drivers or a PC Speaker driver.

Midi Sequence: requires a sound board and drivers.

Video: requires Microsoft Video for Windows drivers supplied with Microsoft Video for Windows or the
Microsoft Video for Windows runtime module.

Animation: requires drivers supplied with Microsoft Multimedia Development Kit or Microsoft Viewer 2
Development Kit.

Accept

Pressing the Accept button will place Jump Markers around the selected text, if the Selected Text option is
chosen. The Status label in the Status Bar will reflect the type of link.

 Multimedia elements can also be previewed in the editor by double clicking on the hot
spot that references the multimedia element. All multimedia elements included in the macro definition will
be played. Click in the Paragraph Style frame ("Click to Stop"), on the Main Menu, or anywhere in the
editor to stop the process.

Mid Topic Jump

Overview

Mid Topic Jumps are used to display a topic at a particular line in the topic. When jumped to in WinHelp,
the topic text is scrolled to the line that contains the Mid Topic Context String. WinHelp will not, however,
scroll the topic past the viewable area of the window and Mid Topic Jumps near the end of the text will not
be scrolled to the top of the window.

Implementing

Select Mid Topic Jump from the Links menu. Enter the Context String in the form that pops up.
Remember that Context Strings cannot contain spaces and many other characters. See Context Strings
for a description of the mapping of illegal characters.

To create a Jump to this Mid Topic position, select Jump from the Links menu and click on the Mid Topic
radio button on the Destination tab on the Jump form. Select the Context String from the list and select
Accept.

Embedded Video (AVI)

 This is a Windows 95 feature only.

The term "Embedded Video" means that the window that displays the video file is positioned in the topic
during design and will be displayed at that location when viewed with WinHelp rather than displaying the
video in a separate window.

To embed a video (AVI) file into your help system, select Embedded Video (AVI) from the Links menu.
This will pop up the Embedded Video form.

Embedded Video Options

First, select the options for the multimedia control window that is created.

EXTERNAL Keeps the file outside of the Help file.
NOPLAYBAR No playbar is shown (useful for auto-play and repeat).
NOMENU No menu button is shown if there is a playbar.
REPEAT The file automatically repeats when play is done.
PLAY The file automatically plays when shown.

Next, select the orientation.

Character The window acts like a character of text.
Left Margin The window will be at the left margin and text on the same line will wrap around on the
right side of the window.
Right Margin    The window will be at the right margin and text on the same line will wrap around on the
left side of the window.

Next, select the editor display option for the Help Magician editor. These options are the same as the
options for an image.

Embed Frame

Select the Embed Frame option to include the image of the first frame of the AVI file in memory and in the
HLX (Help Magician source) file. This method produces the fastest load and display but uses the most
memory and disk space.

Show Filename

When the Show Filename option is selected, the image will not be displayed in the editor, it will not be
stored in memory, and it will not be stored in the HLX file. The image filename will be displayed in the
editor in red text. The compiled help file will show the image, however.

Link to File

The Link to File option provides the best combination of performance, memory conservation, and disk
space usage. The data for the image is not stored in the HLX file and the data for images is only stored in
memory when the topic containing the image is displayed. Images for other topics are not kept in memory.

Video (AVI) Filename

Enter the filename of the AVI file to embed. Use the Browse button to use a file dialog to locate the file on
your system.

Preview

Pressing the Preview button will play the AVI file. It will be displayed in a separate window but it will 'play'
just as it will in the compiled help file.

Authorable Button

 Windows 95 Only

An Authorable Button gives the help author the ability to define a button in the help text by supplying the
caption for the button and the functionality when the button is pressed. An Authorable Button could be
used to do something as simple as calling the "About" dialog or something more interesting such as
playing a multimedia element. All the capabilities of macros are at your dispsal for use with these buttons.

To add an authorable button to your help text, click on the Links menu, Authorable Button or click on
the image of teh button in the toolbar. This will invoke the Authorable Button dialog.

Enter the Caption

Type the caption you want on the button in the textbox below the "Button Caption" label. The button
changes as you type to reflect the actual appearance of the button when viewed with WinHelp.

Select a Macro

Select the macro definition to be executed when the user presses the button. The list is taken from the
currently defined macros in the help system. See Macros, Working with for detailed information on
macros.

Accept

When you have defined the button, click on the Accept button and an image of the button will be inserted
into the editor.

View/Modify

The View/Modify function, available from the Links menu, allows modification of a Jump, Popup, Mid
Topic Jump, or an embedded image.

Shortcuts to the View/Modify function include the Ctrl+V key combination and clicking on the link with the
right mouse button.

Delete

The Delete function, available from the Links menu, deletes any of the links used by the Help Magician.
In the case of an embedded image, the image is also removed.

Inserting

Click on the desired area of the Insert Menu for specific Help

Inserting Bitmaps/Pictures

The Help Magician supports BMP, GIF, ICO, PCX, SHG, TGA, TIF, and WMF graphics file formats.

To insert a picture into you help text, select Insert Bitmap/Picture from the Insert menu or click

on the Bitmap button in the Toolbar (Windows 3.1 mode).

 This brings up a special file import dialog with image preview capabilities..

List Files of Type:

Select the type of image files to list by clicking on the down arrow under the List Files of Type: label and
clicking on the desired file type.

Auto / Manual Display

Clicking on the Auto/Manual button toggles the state of the button. In Auto mode, the images will be
displayed in the sample window as they are selected in the file list box. In Manual mode, they will not be
displayed as they are selected in the file list box.

 Note that the images in the sample window are stretched or reduced to fit the window
and do not represent the actual size of the image.

Preview

When an image is selected in the file list box, it may be previewed in its actual size by pressing the
Preview button, which brings up the image viewer.

Picture Options

When you have selected the image, the Picture Options form will appear.

Color Depth

 If the image to be inserted is detected as having a color depth of 256 colors, the Help
Magician will automatically insert the image as an embedded window (Windows 3.1 only). This is done
through the use of the HMEW2.DLL, supplied with the Help Magician.

 If embedded windows are used in your help system, HMEW2.DLL must be shipped with
the compiled help file and installed to the WINDOWS directory (Windows 3.1 only).    In addition, all your
256-color image files must be shipped and installed in the same directory as your compiled help file.   
Another option to get around using the HMEW2.DLL is to use Microsoft's Help Compiler version 3.10.505
(Extended).    This version supports the inclusion of 256-color images directly in the HLP file without
needing a DLL.    However, we found this version of the compiler to have quirks, and thus have not
shipped it with Help Magician.    You can get this version off our BBS.    You can try it and if it works for you
then use it.

 All color depths are supported by the Windows 95 help compiler and the use of a DLL to
display the image is not necessary.

Orientation

Select the orientation of the image by clicking on the appropriate radio button. When character orientation
is selected, the image will act as any other character in the text. It will flow with the text and wrap when
necessary. Left and right orientation will cause the image to stay at the left or right margin regardless of
the flow of the text.
 
The editor will not display left and right aligned bitmaps as such but they will be properly aligned when the
help file is compiled.

Storage

When Normal storage is selected, the data for the image is stored only once in the compiled help file
even if the image is used many times. This can result in a slightly slower display time but it reduces the
size of the compiled help file.

When Inline storage is selected, the data for the image is stored for each occurrence of the image in the
compiled help file. This method produces a faster display of the image but results in a larger compiled
help file.

When Embedded is selected, the image will be displayed in an embedded window in the topic. This is
used primarily for 256 color bitmaps.

The Include in Baggage section is used to force the compiler to store the bitmaps in the baggage section
of the Help file.

Editor Display Option

Select the Show Picture option to include the image data in memory and in the HLX (Help Magician
source) file. This method produces the fastest load and display but uses the most memory and disk
space.

When the Show Filename option is selected, the image will not be displayed in the editor, it will not be
stored in memory, and it will not be stored in the HLX file. The image filename will be displayed in the
editor in red text.    The compiled help file will show the image, however.

The Link to File option provides the best combination of performance, memory conservation, and disk
space usage. The data for the image is not stored in the HLX file and the data for images is only stored in
memory when the topic containing the image is displayed. Images for other topics are not kept in memory.

Cannot Display Image

If a link to file image is not available (in one of the bitmap directories as specified in Options/Paths/Bitmap

Directories) when the topic that contains that image is displayed, a bitmap will be
temporarily displayed.

If you compile the source without the images available, you will get warnungs from the help compiler.

The images will be properly displayed and compiled when they become available.

Transparent Bitmap Option

 Select the Transparent Bitmap option if you want the bitmap to be transparent in your
help file.    A transparent bitmap will have any color WHITE changed to the background color of the
WinHelp window the bitmap is displayed in.

 A "local" bitmap is created in memory from Shed (SHG) files for display in the editor.   
Note that double clicking on a SHG image file will bring up the View SHG form listing all the context
strings referenced in the SHG image and an option to launch the SHED editor.

Bitmap files (.bmp) are created, in the 'ROOT' or working directory, from GIF, ICO, PCX, TGA, and TIF
files to be sent to the Help Compiler.

Pre-Defined Bitmaps

 When using the Windows 95 help compiler, ten bitmaps are provided by the compiler for
use in your help system. Selecting the Insert Menu, Pre-Defined Bitmap, will pop up a form from which
you can select one of the pre-defined bitmaps.

To select a bitmap, either click on the bitmap or its name and click on Accept or double click on the
bitmap or its description.

The bitmaps do not need to exist in any directory in order to use them. However, if a bitmap with the
same name does exist in the build ROOT directory or in any of the designated bitmap directories, it will be
used instead of the compiler's internal bitmap.

Embed Window

The Help Magician supports the embedded window feature of WinHelp. The embedded window feature
allows users to place a window inside a topic in their help file that can be controlled by programs written
for this purpose. These programs, called "DLL's", can be purchased from software vendors or created by
the more experienced user.

 If embedded windows are used in your help system, HMEW.DLL must be shipped with the
compiled help file and installed to the WINDOWS directory. Any bitmaps displayed with HMEW.DLL must
also be shipped with the help system.

Some of the types of things that can be done with an embedded window are animation (sequential
display of    several bitmaps), display of lists of information read from external data files like phonebooks
or file names, and display of 256 color bitmaps.

To use this feature you will need the dollowing information about the particular DLL you are using:

· The name of the DLL, i.e. "HMEW.DLL"
· The name of the window class, i.e. "ewBitmap"
· A list of arguments that the DLL needs to run.

This information should be found in the documentation supplied by the manufacturer of the DLL that you
are using.

To insert an embedded window into your help text, select Embedded Window from the Edit menu. This
brings up the embedded window dialog.

Placement

Select the orientation of the embedded window by clicking on the appropriate radio button. When
character orientation is selected, the embedded window will act as any other character in the text. It will
flow with the text and wrap when necessary. Left and right orientation will cause the embedded window to
stay at the left or right margin regardless of the flow of the text.

The editor will not display left and right aligned embedded windows as such but they will be properly
aligned when the help file is compiled.

DLL Name

Enter the name of the DLL that you intend to control the embedded window. This information should be
found in the documentation supplied by the manufacturer of the DLL that you are using. You may use the
BROWSE button to search for a DLL on your disk.

Class Name

Enter the class name from the documentation provided by the DLL manufacturer.

DLL Data

Enter the data or list of arguments required by the particular DLL that you are using. This information can
be found in the documentation supplied by the manufacturer. Please separate the arguments by spaces:
do not use commas to separate arguments.

When you have finished entering all of the above information, select Accept to create the embedded
window or Cancel to abandon the changes.

After creating an embedded window, a picture of a box will be put into the Editor to remind you that you
have placed an embedded window there. The words "Embedded" will be displayed followed by a single
letter indicating which type of placement you chose (Character, Left or Right). After this the name of the
DLL will be displayed in the box.

You may modify the embedded window information at any time by clicking on the box with the right
mouse button.

Restore Page
This function restores current topic text to the state of the page when last paged to, until paging to
another topic, or using any of the following functions:

Find/Replace, Spell Check, Build, One Page Preview, VB Help Wizard, Save File/Backup, or Setup
Browse.

Working with Keywords

Keyword Management and WinHelp Keyword Simulation

Overview

Keywords play a very important role in the development of any help file. Keyword entries make up the
Index of your help file. The Index is often overlooked by many help authors. A quality help file should
contain a well constructed index; thus you should put a lot of thought into creating your Index.

Help Magician Pro 95 offers a database approach to managing keywords in your help file. You can view,
work, and print the keyword database in either of two ways: by a list of keywords with their associated
topics or by a list of topics and their associated keywords. In addition, Help Magician Pro 95 simulates
WinHelp keyword/topic access during the testing of your help file.

The WinHelp 3.1 Index

The WinHelp 3.1 Index screen is shown below. The user selects one of the keywords in the keyword list
or types a word or a phrase in the text box above the list of keywords. When the user selects a keyword,
a list of topics that are associated with that keyword appear in the Topics Found box. The user then clicks
on one of these topics to display the topic. Microsoft found that users were confused by this interface and
redesigned it for Windows 95.

Help Magician Pro 95 simulates the WinHelp 3.1 Search dialog provided that you've selected Windows
3.1 compiler mode (see Options...Compiler...Compiler Tab). To simulate the WinHelp 3.1 Search dialog in
Help Magician Pro 95, click on the Search button in the WinHelp button bar just above the editor (if it's not
visible, turn it on by selecting Options...Environment Options...Display Tab). You must have created some
keywords in Help Magician prior to using this feature.

The WinHelp 95 Index

The WinHelp 95 Index screen is shown below. Its user interface resembles a print index. This index can
contain subentries (called "Related Keywords" in Help Magician) under main entries (called "Keywords" in
Help Magician). Related Keywords are shown indented under Keywords, both in the keyword database

and in the WinHelp 95 simulated Index Tab in Help Magician Pro 95.

Help Magician Pro 95 simulates the Help Topics browser provided that you've selected Windows 95
compiler mode (see Options...Compiler...Compiler Tab). It functions just like the WinHelp 95 Index Tab. To
simulate the WinHelp 95 Index in Help Magician Pro 95, click on the Index button in the WinHelp button
bar just above the editor (if it's not visible, turn it on by selecting Options...Environment Options...Display
Tab). Once the Help Topics browser shows, click on the Index Tab to view the Keywords. You must have
created some keywords in Help Magician prior to using this feature.

See Also
Keyword Management
The Keyword Management Screen

Keyword Mangement

Help Magician Pro 95 provides a dual database approach to managing keywords within a single help
source file or multiple source files (project). Either way is completely transparent to the help author. When
you create a new source file (hlx) or project file (hmp), Help Magician Pro 95 creates two databases:
topics and keywords. The keyword database contains all the keyword information and cross-references to
the topic database. The topic database contains topic information and any cross-references to the
keyword database. The keyword database uses three files with the filenames *.ksd, *.ksf, and *.ksm. The
* represents the first 8 characters of the hlx or hmp filename. By contrast, the topic database also uses
three files with the filenames *.isd, *.isf, and *.ism. The * represents the first 8 characters of the hlx or hmp
filename. Thus, both the keyword and topic databases are related to one another. All database files are
stored in the same directory as the HLX or HMP files AND SHOULD NOT BE MOVED SEPARATELY.

Whenever you save your work, Help Magician Pro 95 saves a copy of the keyword information specific to
your source file within the HLX file. Thus if something should happen to the keyword database, it is
possible to reconstruct it from the data contained in the HLX file.

Help Magician Pro 95 offers two ways of working with keywords. The first way allows you to add and
delete keywords related to a specific topic you are currently working on. They can be added and deleted
through a drop down box that appears on the left just above the editing window. The second way is to use
the keyword database manager, available from the Links Menu. The first way is very simple and doesn't
offer the ability to create related keywords, whereas the second way is very powerful.

Using the Keyword Drop Down Box on the Editor

Keywords

The Keywords drop down box, located just above the editor window on the left) displays the first keyword
of each help topic as you page up or down. Click on the arrow to the right of the drop down box, or press
Alt Up Arrow, to display all of the keywords for the current page. A new keyword can be entered, at any
time. Make sure you press the enter key after each keyword entered. Delete keywords by highlighting the
desired keyword in the list and pressing the delete key. Click anywhere in the editor or press the Esc key
to return to the editor.

Keyword List

Clicking on the Keyword List button    to the left of the Keywords drop down box will pop up a
table of Keywords already used in the help file. This is useful if a keyword is used on a number of pages
and you aren't sure how it was phrased or spelled.

Double click on the Keyword you want to add or click on the Accept button and the Keyword will be added
to the Keywords drop down box.

See Also
The Keyword Management Screen

Macro Keyword Associations
View by Keywords with Topics Mode
View by Topics with Keywords Mode
Working with Keywords

The Keyword Management Screen

Selecting the menu Link...Keyword Management will bring up the following screen

There are two modes that the Keyword Management screen will function: Keywords with associated
topics and Topics with associated keywords. Selecting View By...Keywords with Topics provides all the
functionality within the Keyword Management screen. You can add and delete keywords, make related
keywords (i.e. make a keyword a subentry in your index), adding and deleting topic associations from
keywords, and modify which table (Normal, Hidden, or Alternate) that the keyword gets put in. Selecting
View By...Topics with Keywords provides limited functionality including Adding and Deleting Keywords.
From this mode you cannot Add or Delete Topics, because the topics that are shown are all the topics for
the entire project (including multiple file spans).

In the View By Keywords with Topics mode, the left listbox shows all the keywords currently defined
throughout your help project and the right listbox will show the list of topics that are associated with a
SELECTED keyword in the keyword list. The filename in parentheses (next to the topic in the listbox) is
the file where the topic resides. Any defined Related Keywords will appear in the keyword listbox properly
indented under its parent.

In the View By Topics with Keywords mode, the right listbox shows a list of all the available topics within
your help project and the left listbox will show a list of keywords that are associated with a SELECTED
topic in the topic list. If there are no keywords associated with a selected topic, then the listbox will be
empty. In this mode, you cannot tell what are main keywords and what are related keywords.

Navigating the Lists

For each list, there is a text box located above the list. Typing characters in the text box will cause the
listbox to scroll to the next nearest match within the text box.

Keyword Tables

Help Magician Pro 95 supports three keyword tables: Normal, Hidden, and Alternate. Normal keywords
appear in the Index Tab and can be referenced with the Klink macros ("Jump to Keyword" functionality
within Help Magician). Normal keywords are the most often used. Hidden keywords do not appear in the
Index Tab but are available with the Alink macros (again, "Jump to Keyword" in Help Magician). Hidden
keywords are useful for those topics that you do not want to appear in the Index Tab. Note that Alink and
Klink macros ("Jump to Keywords") functionality are available only for Windows 95. Alternate keywords
are rarely used by help authors, but can be specified in the call to WinHelp. Help Magician defaults to the
letter M for the alternate keyword table.    You do have the option of using other letters other than M for
each Alternate keyword.    To change the alternate keyword table "M" to another table, simply click on the
"M" (or any other letter that may be there) and enter the letter in the textbox.

 Tip: the Jump to Keyword function in Help Magician Pro 95 spares you from having to
deal with Alink and Klink macro programming! (See Jumps and Popups).

See Also
Keyword Management
View by Keywords with Topics Mode
View by Topics with Keywords Mode
Working with Keywords

View by Keywords with Topics Mode

Adding Keywords

1. To Add a keyword to the keyword database, click on Add Keyword...
2. The Add Keyword screen will appear. Type in a new keyword, then select an existing topic to assign the
keyword to. Then select which keyword table to include the keyword in.

Notes:
You cannot add keywords to the database if you do not choose a topic to assign it to.
You can preview a topic if it exists in your current source file.

Deleting Keywords

1. To delete a keyword, select it from the keyword list and click on Delete Keyword. Doing this will delete
the keyword and all topic associations from the database.

Renaming Keywords

1. To rename a keyword, select it from the keyword list and click on Rename Keyword. Any changes you
make to the keyword name becomes permanent to the keyword database, even if you do not save your
help source file.

Adding Topics to Keyword List

1. Select (or highlight) a keyword from the keyword list.
2. Click on Add Topics...
3. The "Add Topics" screen will appear. Simply select the topic you want to be associated with your
keyword. Click on Accept.
4. The added topic will be displayed in the topics list box.

Deleting Topics from Keyword List

1. To delete a topic associated with a selected keyword, click on Delete Topic. Once all the topics
associated with a keyword have been deleted, the keyword is removed from the database.

Previewing Topics in Keyword List

1. You can preview any topic that exists in your currently opened HLX source file by selecting a topic from
the topic list and clicking on Preview Topic.

Making a Related Keyword (or subentry)

1. To make a keyword a Related keyword (or subentry in the WinHelp Index), select it in the keyword list,
then click on Make Related.
2. Next choose which keyword you want to be its parent.
3. The keyword will appear indented under the "parent" keyword.
Note: This function results in instant permanent changes to the keyword database.

Moving a Related Keyword to another Keyword

1. If you want to move a related keyword to another keyword parent, select the Related Keyword and click
on Move Related.
2. Next, from the popup keyword list, select the new parent.
Note: This function results in instant permanent changes to the keyword database.

Printing a List of Keywords and Associated Topics to Printer

1. To print an alphabetical list of keywords and their associated topics to the printer, make sure you have
View By...Keywords with Topics mode selected.
2. Then click on Print...

See Also
Keyword Management
The Keyword Management Screen
View by Topics with Keywords Mode
Working with Keywords

View by Topics with Keywords Mode

Adding Keywords to a Topic

1. To add a keyword to a topic, select the topic you want to add the keyword to and click on Add
Keyword...
2. Then when the Add Keyword screen appears, type in the keyword and click on Accept.

Deleting Keywords from a Topic

1. To delete a keyword from a topic, select the topic in the topic list.
2. When a list of keywords appear in the left listbox, select the keyword in that list.
3. Then click on Delete Keyword.
Note: If the keyword is tied to any other topics, it is not removed from the database until there are no
more topics assigned to that keyword.

Renaming Keywords

1. To rename a keyword, select the topic in the topic list.
2. When a list of keywords appear in the left listbox, select the keyword in that list.
3. Then click on Rename Keyword.
4. Type in the new keyword name.

Previewing Topics

1. You can preview any topic that exists in your currently opened HLX source file by selecting a topic from
the topic list and clicking on Preview Topic.

Printing a List of Topics and Associated Keywords to Printer

1. To print an alphabetical list of topics and their associated keywords to the printer, make sure you have
View By...Topics with Keywords mode selected.
2. Then click on Print...

 What Happens if the Keyword or Topic Database Becomes Problematic?

There may be an occasion whereby the Topic Database becomes out of sync with the Keyword database
(could happen during a power failure). If this occurs, you will notice a keyword reference in the drop down
box may not match the keyword in the database. Simply click on Align Databases and Help Magician will
scan the Keyword database for topic references and rebuild the topic database with the referenced
keywords.

Exiting the Keyword Database Screen

To exit Keyword Management, simply click on the Close button. Any adding or deleting changes made to
the database will not become permanent until you save your file.

Technical Notes About the Databases

Help Magician Pro's Keyword Database has been designed to work for both single file and multiple file
project management. As such, a few facts should be noted.

(1) When a keyword is added to the topic database, a commit flag is set and the keyword is temporarily
added to the database. When you quit Help Magician without saving, the keywords are removed next
time you come back into the file. Likewise, if you save your work, the keywords are "committed" to the
database permanently.

(2) When a keyword is deleted, the a delete flag is set within the database. If you quit Help Magician
without saving, the delete flag is removed from the database next time you open the file and the keyword
is not deleted. Likewise, if you save your work, the keyword is permanently removed from the database.

(3) If you rename a keyword, Make Related, or Move Related, the changes are permanent.

(4) A copy of the database (related to the specific file you're working on) is written to the HLX file when
you save. This allows the database to be reconstructed, should you ever have to. When Help Magician
opens the file you want to work on, it checks to see if a keyword database exists. If it doesn't, it is
automatically constructed. Thus, if you wanted Help Magician to reconstruct the databases, just delete the
three related keyword database files (*.ksf, *.ksm, and *.ksd). A word of caution, if the topic database ever
becomes corrupted before you save, improper information may be written to the HLX file regarding
keywords, thus a successful reconstruction of the keyword database isn't possible.

(5) In Project Management mode, the Topic Database is the same database as the Project Database
mentioned in the topic on Project Management.

See Also
Keyword Management
The Keyword Management Screen
View by Keywords with Topics Mode
Working with Keywords

Alternate (Multiple) Keywords

Alternate keyword tables enable a program to look up topics that are defined in alternate keyword tables.
This feature can be used to provide context sensitive help on words in an editor, for instance. The
Alternate Keyword form is available from the Build menu. Add and delete Alternate keywords in the same
manner as described for Keywords.

Multiple List

Clicking on the Multiple Keyword List button to the left of the Multiple Keywords drop down box
will pop up a table of Multiple Keywords already used in the help file. This is useful if a Multiple Keyword
is used on a number of pages and you aren't sure how it was phrased or spelled.

Double click on the Multiple Keyword you want to add or click on the Accept button and the Multiple
Keyword will be added to the Multiple Keywords drop down box.

Alias Section

Project [ALIAS] Section Dialog

The Project [ALIAS] Section Dialog is available from the Build Menu, Alias Section sub menu.

Write to Project File

A check box is provided to determine whether the Alias information is written to the Project file. This
provides a means to store the information without writing it to the Project. When the box is checked, the
information will be written to the Project file.

Enter the Alias information as described below.

 Do not include the [ALIAS] header in the text.

Syntax

[ALIAS]
context_string=alias context string

The [ALIAS] section associates one set of context strings with an alternate set of context strings. The
alias strings correspond to context strings assigned to topics in the # footnotes of the Help file. This
section is optional; however, if it is included, it must precede the [MAP] section in the Help project file.

Parameters

context_string
Specifies the application ID or other context ID that you want to reassign.

alias context string
Specifies the context string that appears in the # footnote of the topic you want Help to recognize. An
alias context string has the same form and follows the same conventions as standard context string. That
is, it is not case-sensitive and may contain the alphabetic characters A through Z, the numeric characters

0 through 9, and the period (.) and underscore (_) characters.

Comments

Because context strings must be unique for each topic and cannot be used for any other topic in the Help
project, the [ALIAS] section provides a way to remap context strings that are no longer used or invalid.
For example, suppose the application defines a context ID for each field in a dialog box, but your Help file
only provides one topic for all the fields. You can use the [ALIAS] section to map all the application
context IDs to your one Help topic. In this way, no matter which field the user has selected in the dialog
box, Help will display your Help topic when the user requests context-sensitive Help.
You can also use the [ALIAS] section to combine Help topics without recoding your files. For example, if
you create a topic that replaces the information in three other topics, you could manually search through
your files for invalid cross-references to the deleted topics. The easier approach, however, would be to
use the [ALIAS] section to assign the name of the new topic to the deleted topics.

You can use alias names in the [MAP] section of the Help project file. If you do, however, the [ALIAS]
section must precede the [MAP] section.

Example

The following example creates several aliases within an [ALIAS] section:
 

 Do not include the [ALIAS] header in the text.

[ALIAS]
sm_key=key_shrtcuts
cc_key=key_shrtcuts
st_key=key_shrtcuts ;combined into keyboard shortcuts topic
 clskey=us_dlog_bxs
maakey=us_dlog_bxs ;covered in using dialog boxes topic
chk_key=dlogprts
drp_key=dlogprts
lst_key=dlogprts
opt_key=dlogprts
tbx_key=dlogprts ;combined into parts of dialog box topic
frmtxt=edittxt
wrptxt=edittxt
seltxt=edittxt ;covered in editing text topic

Creating Browse Sequences

Browse

Clicking on the Browse button will bring up the Browse Group Definitions window.

Add Group

When first entering Browse groups, click on the red Add button below the Groups list box. Type in the
desired name of the group and select Accept. Keep group names simple but descriptive. Browse groups
define a section of topics, or help pages, that will be displayed as the Browse buttons (<< and >>) are
pressed while viewing a Windows Help file. These should be topics that are directly related to each other
and maintain a degree of continuity while browsing. This allows the user to view related topics without the
need to initiate a new search or to return to the Contents page.

Input Form

The Input form is used here to add a Browse group.

Add Topics

Once a Browse group name has been entered, you can add the titles of help topics to the Titles list box.
When you press this Add button, a list of titles, taken from the current help file, appears. Titles already
belonging to a Browse group do not appear in the list because a topic can belong to only one Browse
group. Highlight the desired title and select Accept or double click on the title. The title will be added to
the end of list box.

To find an existing topic, enter the topic name or at least the first few characters into the locator fields
above the topic list box. The list is alphabetically sorted so as you type each character the next closest
match will be displayed in the Browse Group list box.

Rename

To rename a Browse Group, highlight the desired Browse Group name and click on the Rename button or
double click on the Browse Group name. A dialog will Popup with the current name to be edited or
replaced.

Input Form

This Input form is used here to rename a Browse group.

Browse Order

Titles will be Browsed in the order in which they appear in the Titles list box. There are two ways to re-
arrange the order of the titles. One is accomplished with the keyboard and the other is done with the
mouse. To move a title with the keyboard, highlight the title to be moved, activate the Move button with
the hot key if a mouse is not available, cursor to the new position, and activate the Move button again,
which has been renamed to Done, and the title is moved to the new position.

To move a title with the mouse, click on the Move button, grab the title with the mouse cursor (press the
left mouse button), drag the title to the desired new position, and release the mouse button.

Delete

Browse groups or titles contained in Browse groups can be deleted at any time by highlighting the desired
entry and pressing the Delete button under the corresponding list box.

Locators

There are text boxes above the list boxes used to display the groups and titles. They used to quickly
locate items in the list by typing some of the characters in the help group or title. The list will automatically
scroll to the item most closely matching the entry in the text box.

Defining Help Windows

The method by which Help Windows is designed is greatly improved over previous versions of Help
Magician. The newest version offers Visual Help Window design as well as support for all the options for
Windows 95 help.

Overview

WinHelp provides three kinds of help windows to display topics in: main windows, secondary windows,
and popup windows. Windows 95 allows more flexibility in controlling the use of windows than does
Windows 3.1.

Popup Windows

Popup windows are very specific windows that popup next to the hotspot you are clicking on. You cannot
alter the size or position of a popup window, nor can you define buttons, menus, or non-scrolling regions.
Popup windows are generally used for short descriptions or definitions. To make a popup window within
Help Magician, simply define a hotspot as a "popup". Popup hotspot text will generally appear as green
dotted-underlined text. When you test a hotspot that is a popup, Help Magician will show that topic on its
own page, rather than show it in a popup window. When viewing the compiled help file, the popup will
show up normally.

Main Windows

Main windows normally feature a menu bar and below the menu bar, a toolbar. In Windows 3.1, the
toolbar contains the buttons Contents, Search, Back, History, and optional Browse buttons. In Windows
95, the toolbar typically contains Help Topics, Back, Print, and optional Browse buttons. There can be only
one main window in WinHelp. By default all help topics are displayed in the main window. In Windows 95
and Help Magician Pro 95, you can define a "default" main or secondary window for each topic.

Secondary Windows

Secondary Windows in Windows 3.1 were limiting and could have only 5 defined secondary windows and
only one could be displayed. In Windows 95, you can define up to 255 secondary windows and up to 9
can be displayed at one time. You can define scrolling and non-scrolling windows as well as background
colors. In Windows 95, secondary windows can have button bars just like the main window. They can also
be made to autosize based on the length of the topic being displayed in them. You typically would use
secondary windows to augment the information contained in the main help window.

Visual Layout

Help Magician Pro allows you to visually layout your main and secondary windows relative to each other
on the screen. You can modify window attributes such as colors, window title (which appears at the top of
the help window), position, and buttons (Windows 95 only). To define help windows in Help Magician,
click on the Options menu and then click on Windows. The following Help Window Specifications screen
will appear.

Click on the desired area of the Window Definitions Bitmap for specific Help

General Tab

A list of defined windows will appear in the Defined Windows list. There will always be a "main" window.
The "main" window cannot be deleted or renamed.

If you are working with multiple files within Project Management in Help Magician, all windows defined in
the project will appear in this list. Be careful when deleting or altering windows because that action may
affect other members of the project. If another user on the network opens a project member file, the
specifications you define here will be available to the other users. In Project Management mode, all
window specifications are stored in the HMP file in the [WINDOWS] section (you should not need to
modify this section manually).

More or Less

The Help Window Specifications window can be collapsed or expanded to full size. You would collapse
the window to make room on your screen while visually resizing and positioning your defined help
windows. For convenience, the Help Window Specifications window will always appear on top of other
windows.

To collapse the Help Window Specification window, click on the Less button. To expand the Help Window
Specification window, click on the More button. The More/Less button is a toggle button and will change
according to the state of the Help Specifications Window.

Adding a New Secondary Window Definition

1.    Click on the Add button.
2.    You will be prompted for a new window name. Enter it here and click on Accept.
3.    The new defined window will appear in the Defined Windows list.
4.    Now you can setup window attributes such as title, position, colors, buttons, etc.

Deleting a Secondary Window Definition

1.    To delete a window definition, click on a defined window name in the Defined Windows list.
2.    Click on the Delete button.

3.    Confirm that you do want to delete the window definition.

Notes about deleting windows
A.    You cannot delete the main window.
B.    Be careful when deleting windows in multiple file Project Management mode. Your action could affect
other members of the project.

Renaming a Secondary Window Definition

If you make a mistake in defining a secondary window name, use the rename feature to change its name.
1.    To rename an already defined secondary window, click on its definition name in the Defined Windows
list.
2.    Click on the Rename button.
3.    You will be prompted to type in a new name. Click on Accept.

Showing the Defined Windows on the Screen

When designing windows for your help file, you can view what the windows look like in relation to each
other and the entire screen. When you show a window, you can also position and resize it (see section
below). Like WinHelp, Help Magician Pro 95 will only show the windows that you're allowed to see (1
main and 1 secondary for WinHelp 3.1, or 1 main and up to 9 secondary for WinHelp 95).

1.    To show a window, click on a defined window name in the Defined Windows list.
2.    Click on Show.
3.    To Show Multiple windows, hold down the Ctrl key then click on the windows you wish to show in the
Defined Windows list. Then click on the Show Mult button. Help Magician will display all your selected
windows.

The Hide and Show commands have no effect upon the final compiled help file. These commands are for
your convenience in designing your windows.

Hiding Defined Windows

1.    To hide a window, click on a shown window listed in the Defined Windows list.
2.    Click on the Hide button (if no window is shown, there will not be a Hide button, instead there will be a
Show button).
OR
1.    Double-click on the shown window's icon in the upper left corner of the window.
To hide all the shown windows, click on Hide All.
The Hide and Show commands have no effect upon the final compiled help file. These commands are for
your convenience in designing your windows.

Setting the Window Title (Caption)

You can specify the text that appears at the top of each window that is shown in WinHelp. This area is
known as the Window Title.
1.    To set the Window Title, select the window you want to put a title in from the Defined Windows list.
2.    Click on the General Tab.
3.    Type in the Window Title in the "Title (Caption):" textbox and press Enter.

Another menu option in Help Magician allows you to set the title of the main window. It is called the Help
System Title and it's in the Options...Appearance menu. The Help System Title there is the same as the
Main Window Caption here.

See Also
Buttons Tab
Colors Tab
Macros Tab
Position Tab

Position Tab

Setting the Window Size and Position

The size and position parameters tell WinHelp where to display the window when it is initially displayed.
There are two ways you can set a window's size and position. The first is to manually enter screen
coordinates and the other is to visually lay out the window. There may be times where you want a
secondary window to appear right next to the main window. The trick here is to show both windows, then
move them close together.

Manually entering coordinates
1.    Click on the window you wish to modify size and position in the Defined Windows list.
2.    Click on the Position tab.
3.    Enter screen coordinates in the appropriate textboxes, followed by the Enter key for each textbox.
The maximum value is 1023 and the minimum value is 0. The values could be in "help units" or pixels,
depending on the state of the "Adjust for screen resolution" checkbox (see below). With this checkbox
checked, a window that takes up the entire screen would have Top and Left coordinates 0 and Height and
Width coordinates 1023, regardless of the resolution of your screen.
4.    If the window is shown, the window will move to the new coordinates or be resized.

The Adjust for screen resolution option should be checked for normal use. This tells WinHelp to use
the coordinates as a percentage of screen size. Thus, if you create a window that is 512x512 help units,
then it will always occupy one-half of the screen, regardless of the user's screen resolution. If you need
precise pixel control over your help window, make sure the "Adjust for screen resolution" checkbox is
unchecked, then the values in the textboxes will be in pixels. Precise pixel control is useful in situations
where you've created a bitmap for a lower resolution display and you want to display it in a help window
on a higher resolution display. When the Adjust for screen resolution is checked, there would be white
space around the right side/lower part of the bitmap in the help window on a higher resolution display.
With precise pixel control, the window size is kept at an absolute value and is not resized on a higher
resolution display.

Note that in WinHelp, text and bitmaps are not sized within the help window, just the window itself.

Visually laying out the Windows
1.    Click on the desired window in the Defined Windows list.
2.    Click on the Show button.
3.    Optionally show another window if you want to move them in relation to each other.
4. Optionally click on the Position tab to view the coordinates of the window you're moving/resizing.
5.    Now, with the mouse, resize and/or move the window just like you would with any other Windows
window.
6.    If the window you're moving is selected in the Defined Windows list and you clicked on the Position
tab, it will show the updated coordinates after you're done moving/resizing the window.

Note that you can also change the background color of the window by double-clicking the mouse inside
the non-scrolling or scrolling area of the window.

See Also
Buttons Tab
Colors Tab
General Tab
Macros Tab

Colors Tab

Setting the Window Background Colors

Each window in WinHelp contains two areas: the non-scrolling region and the scrolling region. The
scrolling region is where you display your topic and this area can be scrolled if your topic is larger than
the window height. The non-scrolling area is above the scrolling area and is used for displaying banners,
logos, headlines, or whatever. This area is fixed and does not scroll.

You can set the background colors for each of these two areas. When choosing colors there is an
important issue to consider when you're developing a help file that will run on both 16-color standard VGA
systems and 256-color Super VGA systems. It is recommended that you stick with the basic 16 colors,
otherwise a color from the 256-color palette will appear dithered on systems that can display only 16
colors. Dithered backgrounds make the text very hard to read. If you know that your help file will only be
displayed on 256 color systems, indulge yourself!

 Tip: You can set a non-scrolling region within a topic by selecting Non-Scrolling Region
from the Format menu on the main Help Magician screen.

1.    To set the background colors, click on the window in the Defined Windows list.
2.    Click on the Colors tab.
3.    Double-click on either the Non-scrolling region or scrolling region color box. You will be shown the
color palette dialog below.
OR
1.    If you have a help window shown, you can change the color of either the non-scrolling or scrolling
region by double-clicking inside the desired region in the window. You will be shown the color palette
dialog below.

Select a color and click on OK.

Other Window Settings

There are some other settings that are available for help windows. They are available within the General
tab.

Comments

This field is for the help author only and will not be used in the final compiled help file.

Apply (Main Only)

Clicking this option will tell the help system to use the settings you make here for the main window. If you
do not check this option, WinHelp will use the last known help window size and position (stored in
[Windows Help] section in win.ini). The Apply option works with the main window only.

Maximize Window on Startup

This feature will cause the window to fill the entire screen when it first appears. If the user "normalizes"
the window, the sizing specified in the Position tab will be used.

Auto Size Window Height to Text

A very useful feature that causes WinHelp to automatically resize the secondary window height to fit all
the text in it. Autosizing is not available for the main window. You cannot have midtopic jumps to
secondary windows that are set for autosizing. If you do, the jumps become ineffective.

Stay On Top

This option causes the window to stay on top, regardless if you switch to another application. You should
avoid using large windows with the feature because it takes over the screen.

See Also
Buttons Tab
General Tab
Macros Tab
Position Tab

Buttons Tab

Defining Buttons for the Help Window

 (Windows 95 feature only)

The Buttons tab allows you to set up the default button bar that will appear on the selected window when
it is initially displayed. In WinHelp 95, secondary windows may have button bars. There are two button
types that can be defined for each window-standard and custom. Standard button types are pre-defined
buttons that perform pre-defined functions. Custom buttons are buttons that you can define and can be
made to execute any of the WinHelp macros. At least one standard button must be defined before you
can define any custom buttons. Up to 22 buttons can be defined per window. Click on No Default Buttons
to disable displaying all default buttons for the currently selected window.

Defining Standard Buttons for a Selected Window
1.    Select a defined window in the Defined Windows list.
2.    Click on the Buttons tab.
3.    Click on the button options you want in your help window.

Defining Custom Buttons for a Selected Window
1.    Select a defined window in the Defined Windows list.
2.    Click on the Buttons tab.
3.    Make sure you have at least one of the eight standard buttons checked.
4.    The listbox in the Custom Buttons frame contains all the custom buttons defined for the selected
window. If you click on one of the buttons in the list, the macro assigned to that button will be shown in the
status bar at the bottom of the form. To delete a defined button, highlight the button in the list and click on
Delete. To Edit an existing button, click on the button to edit and then click on Edit... To add a custom
button, click on Add Button. An Add or Edit operation will bring up the Create Button dialog box:

5.    Enter a button id for the button. It can be anything you want to name it. If you were to use any of the
WinHelp macros that would affect this button at runtime (DestroyButton, DisableButton, or EnableButton),
the parameter for these macros would require the button id. If you did nothing with the macros, then the
button would be enabled all the time.
6.    Enter the caption for the button, i.e. the text that would appear inside the button. You should keep
your text as small as possible, like a single word.
7.    Select a macro to execute when the button is pressed at runtime. You must have previously defined a
macro set using the Macros...Define Macros option from the main menu. The "Macro to Execute" option
allows you to choose from the macro definition list in Help Magician. Each macro definition can contain
one or more WinHelp Macros. You cannot select a WinHelp macro directly for the "Macro to Execute"
option.
8.    Click on Accept and you'll return to the Window Definition dialog. To add more buttons, repeat steps
4-8 as necessary.

See Also
Colors Tab
General Tab
Macros Tab
Position Tab

Macros Tab

Defining a Macro to be Executed when the Window is Displayed

 (Windows 95 feature only)
The Macros Tab allows you to assign Macro Definitions to a window. These macros will be executed
before the window is initially displayed. Clicking on the Macros tab will show the following information.

Defining a Window Specific Macro
1.    You must have previously defined a macro to be executed by using the Macros...Define Macros
command on the main menu. See Macros, Working with on how to do this.
2.    Select a defined window from the Defined Windows List.
3.    Click on the Macros tab.
4.    Choose one of your previously defined macros from the macro drop-down list.
Note: You can type any comments about this macro in the Comments field. It will not be displayed in the
compiled help file.

Make sure you select a window from the list box before setting any attributes. Failure to do so will result in
the currently select window being modified, rather than the intended window.

Using the Defined Windows Within Your Help File

There are many ways you can reference and use these windows within your help file. They can be used
as part of a Jump Destination to force a topic to appear in it; they can be used as part of the Link
Destination in a SHED file (or segmented hotspot graphic); they can be used as a default window for
each help topic; or they can be used as part of the call to WinHelp.

Referencing a Window in a Jump Destination
When you define a hotspot jump, there is an option on the Jump Options screen that allows you to define
which window will be used to display the topic. You can select from any of the windows you've defined by
the methods in this section. If you don't select any windows for the jump, the default window ("main") is
used. If you've selected a window for that hotspot jump, the topic will appear in the selected window when
the user clicks on the hotspot. (See Jumps and Popups).

Referencing a Window in a SHED file
When you define multiple hotspots on a bitmap graphic using Microsoft's SHED editor, you can specify
which window the topic will appear in. In the hotspot attributes dialog, select Type "Jump", Attribute
"Invisible", and enter the Context String of the topic you want to display. After the Context String text, add
">windowname", where windowname is the name of one of the defined windows in your help file (do not
type the quotation marks after the context string text!). For example, if the Context String of the topic you
want to display is "Company Directory" and the Window you want to display that topic in is called
"Directory", you would enter the following text in the Context String box: Company Directory>Directory

 Referencing a Window as a Default Window for each Help Topic
When Help Magician is placed into Windows 95 support mode, the Utility bar supports the selection of a
default help window for each topic that is shown in the editor. All the windows defined by the methods in
this section are available in the combo box at the right, just above the editor. Simply select the Window
you want this topic to be displayed in when it is shown.

Referencing a Window in a Call to WinHelp
For Advanced Programmers Only. The WinHelp API call has a feature that allows you to specify a window
for a help topic to be displayed. Its reference syntax is basically the same as the reference in the SHED

discussion above. When you pass the name of the help file to WinHelp, you can add the ">windowname"
suffix to that string.

For example: CALL WINHELP(hWnd, "myhelp.hlp>secwin", 0, 0) displays the contents page of
myhelp.hlp in a secondary window called "secwin".

Specifying a Default Window Type for All Topics

 (Windows 95 feature only)
You can specify which window to use as the default window when it is opened from the Context, Index,
and Find tabs. You can set the ":Base filename.hlp>window" option in the .CNT file. For an easier way to
set this, see the Default Help File and Default Help Window options in Software Interphase's WinHelp '95
Contents Editor package.

See Also
Buttons Tab
Colors Tab
General Tab
Position Tab

 

Macros, Working with

 

Click on the desired area of the Macros Menu for specific Help

Macros

The Macros menu allows you to perform maintenance on macros that can be used in Jumps, Popups,
Topics and the Project.

Note:    If you are defining macros in Project Management mode, any macros you create, modify, or
delete will affect other members of the project- so be careful what you do!

The user has the ability to use pre-defined macros (prototypes) to manipulate and control the Windows
Help System. The macros allow control of the Help System menu items and buttons and even creation of
new buttons.

For example, a glossary button may be added to the Help System main menu which displays a glossary
in a secondary window. For instance, this could be accomplished by using the CreateButton macro that
would create the glossary button and place it on the Windows Help main menu at run-time. The button
itself could be defined to call a JumpID macro that would display a glossary topic in a secondary window.
The programming possibilities are vast.

See Also
Macro Form Definitions
Step by Step
Macro/Keyword Associations

Define Macros

Define Macros

Selecting Define Macros from the menu displays the Macro Assignments form. This form provides all the
functions necessary to create, modify, and maintain macros for your help system.

 26 new macros have been added for WinHelp 4.0. Definitions for these macros can be
found in the Help Magician's on line help system under Macro Reference.

Step by Step

A. Create a Macro Definition.

1. Select the Definitions button.
2. Select Add from the menu.
3. Enter a name for the Macro Definition (ex. "Play_Music")
4. Select the Accept button.

B. Create Macros and add them to the Definition.

1. Create a macro in the Editor using one of the following ways:

 · Copy a macro Prototype to the Editor by double clicking on it or using the Prototypes menu.
· Copy an existing Macro from the Macros list to the Editor using the Macros menu.
· Turn Syntax Checking off and enter a macro from scratch (not advised for novices).

2. Edit the macro in the Editor.

· Click on or move over each argument, if they exist, and either edit the argument or use the Hints
button to choose a value from a list of options.

3. Add the macro to the Macros list using one of the ways below:

· Select the Add Macro to List button.
· Select the Editor button and then Add Macro to List.
· Type Ctrl-W.

See Also
Macro Form Controls

Macro Form Controls

Click on the desired area of the Macro Definintion Form for specific Help

Definitions Button

Add

Each macro or group of macros must be assigned a name or unique identifier called a "Macro Definition".
This is accomplished by selecting the Definitions button and then the Add menu item. A form will appear
allowing you to enter a new Macro Definition. Enter the definition and click on the Accept button. After
adding a Definition, macros may be added by editing a macro prototype or creating a new macro from
scratch.

Delete

Removes a Definition from the Definitions list box. Highlight a Definition and select this menu item.

Rename

Allows editing a Definition name. Duplicate names are not allowed.

Copy

Duplicates a Definition and its associated macros. You will be prompted for a name for the new definition.

Definitions List
The definitions list box contains the names of the macro definitions used by the Help Magician. Each
definition can contain one or more macros. To add a definition, click on the Definitions button and select
Add from the menu.

Locator Fields
There are text boxes above the list boxes used to display Definitions or Macros, respectively. They are
used to quickly locate items in the list by typing some of the characters in the Definition or Macro. The list
will automatically scroll to the item most closely matching the entry in the text box.

Macros Button

Copy To New Macro / Copy To Editor

Copies the currently selected macro to the Editor. Once in the Editor, the macro may be modified and
added to the list. If syntax checking is turned on, the macro will be validated before placing it into the
Editor.

If there is a macro already in    the Editor, a sub menu can be displayed that allows you to choose a
position to place the currently selected macro into the Editor. If syntax checking is turned on, the macro
will be validated before placing it into the Editor. The insertion options are listed below:

At Beginning - Chains the macro before the text in the Editor.

Append to End - Chains the macro after the text in the Editor.

Replace All - Replaces all the text in the editor.

Before Argument - Chains the macro before the currently selected argument.

After Argument - Chains the macro after the currently selected argument.

Replace Argument - Replaces the currently selected argument with the macro.

Current Position - Inserts the macro into the current cursor position in the Editor text. (only
available if syntax checking is turned off)

Delete

Removes the currently selected macro from the list.

Edit

Allows you to modify the currently selected macro in the Editor. Prompts you before erasing the contents
of the Editor. Select Done to update the current macro with the edits or Cancel to abort any changes.

Move

Allows you to change the execution order by repositioning the macros in the list. To move a macro, drag it
with the mouse to the desired position. Alternatively, you may select the macro and then this menu item
and then use the arrow keys to re-position it. When you are done select either Done or Cancel.

Macro List
Located just below the Macros button, this is a list of macros that are assigned to the currently highlighted
Definition. The macros will be executed in the order that they appear in the list. There are several ways to
add a macro to the list:

1. Create a macro by editing a Prototype and then add it to the list.
2. Create a macro from scratch by turning off Syntax Checking and then add it to the list.
3. Copy an existing macro to the Editor and then add it back to the list.
4. Copy an existing macro to the Editor, modify it and then add it back to the list.

Help button
Displays help for creating and maintaining macros in the Help Magician. Context sensitive help is
available for each function on the form by selecting the item and pressing F1 function key.

Exit Button
Select the Exit button to return to the main form of the Help Magician. Any changes will be accepted and
can be permanently saved by typing Ctrl+S or selecting Save from the Help Magician main form File
menu. If you are using macros in a project, the macros will be stored in a HMP file and be made available
to all other project members.    Make sure that the macros you edit will not affect other project members.

Editor Button
Click on the Editor Button for specific help

Copy
Copies the currently highlighted text to the Clipboard. Markers and special characters will not be copied,
however.

Paste
Pastes the current contents of the Clipboard to the current cursor position in the Editor. Markers and
special characters will not be pasted, however. This feature is only available when syntax checking is
turned off.

Clear All
The Clear All button removes all text from the Editor.

Clear Argument
The Clear Arg button removes the currently selected argument within the macro in the Editor.

Add to Definition
Adds the macro in the Editor to the Macros list for the currently selected Definition. If no definitions exist,
an error message will be displayed.

Editor
The macro editor is where you will edit the arguments in a macro. With Syntax Checking on, the editor will
not allow an editing error. Hints are available for the standard arguments.

Macro Status Indicators
The Macro Status Indicators are located just to the right of the Macros button.

Level

Displays the current argument nesting level. There are a maximum of five levels of macro nesting.

Arg

Displays the current relative argument position within the current macro level.

Syntax Checking
The Syntax Checking check box is located just to the right of the Status Indicators.

This feature forces syntax checking on the currently edited macro or macros. If a macro from an existing
Definition is edited, the macro will be syntax checked before being place into the Editor. If there are
syntax errors then the macro will still be placed in the Editor and syntax checking will be turned off.

To create or edit a macro "free hand", which is not advised, simply turn off syntax checking and perform
any modifications manually. When completed, please turn syntax checking on to validate the macro
before adding it to a Definition. This will save development time by catching any syntax errors before
compiling the file and producing potentially ambiguous and confusing errors.

Paste operations are not allowed with syntax checking enabled.

Prototypes Button

Insert at Beginning

Chains the currently selected Prototype before the text in the Editor.

Append to End

Chains the currently selected Prototype after the text in the Editor.

Edit Prototype

Places the currently selected Prototype into the Editor.

Insert Before Arg

Chains the Prototype before the currently selected macro argument in the Editor.

Insert After Arg

Chains the Prototype after the currently selected macro argument in the Editor.

Replace Arg

Replaces the currently selected macro argument in the Editor with the Prototype.
 
Current Position

Places the Prototype into the current cursor position in Editor.

· To quickly add a Prototype to the Editor, double click on the desired Prototype.
· To chain a Prototype before a macro in the Editor, place the cursor on the macro name, before

the first left parenthesis "(", and then double click on the Prototype.
· To chain after a macro in the Editor, position the cursor after the macro's name, after the left

parenthesis, and then double click on the Prototype..
· To replace a macro argument in the Editor with a Prototype, position the cursor anywhere

between the markers enclosing the argument, and then double click on the Prototype. If the
argument is a macro that contains other macros as arguments, place the cursor on the macro's
name before the left parenthesis and double click.

See Also
Macro Reference

Prototypes List
The Prototypes List, located just below the Prototypes button, contains the standard WinHelp macros and
macros necessary to play multimedia files. These macros contain arguments that will be replaced with the
appropriate data when edited in the macro editor, described later.

Edit Prototype / Replace All

Places the currently selected Prototype into the Editor. If the menu displays "Replace All" then the entire
contents of the Editor will be replaced with the currently selected Prototype.

Hints / Macro Ref
The Hints button provides lists of options for macro arguments in the Editor. Syntax checking must be
turned on to enable this function. When selected this button can provide a list of valid options for certain
arguments, such as "filename", "menu-id", "acckey" and so on. To use this feature simple select the
desired option from the list and select Accept. The option will replace the previous argument contents, if
any existed.

When the Prototypes list box has the focus, the Hints button label is changed to "Macro Ref". Clicking on
this button calls the Help Magician's on line help system with complete help for all the macros in the
Prototypes list.

Display Macros
Use Short Names

This feature controls the display of the Macro Prototypes in the following manner:

Long Names Displays full macro name.
Short Names Displays abbreviated macro name (useful for combined macros where the 255

character limitation is a factor).
Descriptions Displays a description of the macro.

 WinHelp 4.0 will internally change all long name macros into their short names during the
compilation process.

Help Label
The label at the bottom of the Macro window displays "quick help", and hints on macro arguments.

Project Macros

Project Macros

A macro definition that contains one or more macros may be assigned to run automatically when the
finished help system is loaded via WinHelp. For example, you may wish to do this to create new buttons
upon startup of the Help system. This is accomplished by assigning the macro definition to the project in
Project Macros under the Macros main menu item. The Select Project Macro form will appear allowing
you to select a macro definition that you previously created in the Macro Definitions form, and assigning it
to the project by choosing the Accept button. To remove a previously assigned macro definition, simply
select the Remove button and then Accept.

Topic Macros
Macro definitions may be assigned to a help topic so that the macro or macros that are assigned to the
macro definition will be executed anytime the help topic is displayed in WinHelp. Note that in WinHelp,
topic macros are executed before the actual text is displayed in the WinHelp window.    To assign a macro
definition to a help topic, simply display the help topic in the Help Magician main form and select Topic
Macros from the Macros main menu list. The Select Topic Macro form will appear allowing you to select or
remove a macro definition, previously created in the Macro Definitions form, from the list.

Save Macros
You can load macro definitions that were defined for another help system and save the set defined for
your current system to be shared with other projects. The file form will prompt for files with the default
extension for styles .HLM.

Load Macros
You can load macro definitions that were defined for another help system and save the set defined for
your current system to be shared with other projects. The file form will prompt for files with the default
extension for styles .HLM.

 To merge other macro definitions from another Help Magician project into your current
project, simply load the .HLM file using the Load macro definitions procedure described above. Any
duplicate macro definitions will be ignored and not loaded.

Macro/Keyword Associations

 WinHelp 4.0 allows help authors to associate keywords and macros to extend the
programming capabilities of the Help search system. The basic idea is to allow selected macros to run
after a user has selected an Index entry (i.e. a keyword) from the Index dialog box and have the macros
complete execution before the destination topic is displayed. This feature allows the Help author more
control over the manner in which certain topics are displayed and also provides a way of possibly
introducing a topic with multimedia effects or running a utility program, a wizard or a DLL.

To associate a macro with a keyword or keywords, you must first create some macro definitions using the
macro editor. Then you will need to add keywords to your topics. After you have done this, select the
Macros main menu item, then Keyword Macro submenu item. The Macro / Keyword Associations window
should appear as is below, but without the items in the lists.

 Since one macro definition can have potentially many keywords associated with it, this
form is set up so that selecting a definition will display the keywords mapped to it. This method greatly
simplifies managing the list.

Keywords

Select the Add button to add a keyword to the Keywords list. To remove a keyword from the list, select the
keyword and then the Remove button.

Macro Definitions

First select the keyword you wish to associate a macro with, then select the Add button to add a macro
definition to the list. The Select Macro Definition dialog box will be displayed as seen below. Select a
macro from the list and then click on the Accept key or hit Enter. The macro should be added to the list.

To automate the association process, several keywords may be associated to one macro definition.
Simply select several keywords and then select a macro definition to associate them with. To remove a
macro definition from the list, select the definition and then the Remove button. Any keyword associations
will be removed as well.

Title in Topics Found dialog box

An Index entry, or keyword, may be associated with several topics and consequently will display the
Topics Found dialog box after the Index entry is selected. The title that is displayed in the Topics Found
dialog box can be entered in this text box. Every association can have its own title by selecting a macro
definition then entering a title for the dialog box.

Create Button

 The Create Button feature is used in Windows 3.1 only. Buttons can only be added to
the Main window in Windows 3.1.

 For the creating buttons under Windows 95 mode, see Defining Help Windows, Buttons
Tab.

The Create Buttons form provides an easier, higher level way to add buttons to the help project than the
Macro Assignments form.

These buttons are displayed just below the main menu along with the standard buttons, Contents,
Search, Back, History, and the browse buttons, when the help system is viewed with WinHelp.Exe.

Button Id

Enter an unique name, or ID for the button in the Button Id field. This name is used internally by
WinHelp.Exe and in low level macro programming.

Button Caption

Enter the caption that will appear on the button when the help system is viewed with WinHelp.Exe.

Macro to Execute

Select the macro to be executed when the button is pressed from the list of macros in the drop down
box. In keeping with the simplicity of the Create Button form, the macros selected for this list box are
limited to macros that do not require arguments or additional information.

More complex button macros may be added in the Macro Assignments form.

Defined Buttons

All of the buttons you have created will be listed in the Defined Buttons list box. Clicking on a defined
button updates the display of the individual fields for that button. You can edit the fields for any of the
defined buttons when the button is selected.

Add

To add a button to the list, fill in the fields as described above and press the Add button.

Delete

To delete a button from the list, highlight the entry in the Defined Buttons list box and press the Delete
button.

Update

To change the definition of a button, edit the fields and press the Update button.

Help

Displays the Help Magicians help file beginning at the Create Button page.

Close

When you are finished creating or editing buttons for the help system, press the Close button. All entries
will be recorded in the Macro database.

Integrated Test Mode

Introduction

The Help Magician's Integrated Test Mode is an invaluable, time saving tool in the development of your
help system. You can instantaneously test the help file without the need to write the RTF file or to compile
the RTF file with the Windows help compiler. Jumps to other topics, Jumps to secondary windows, Jumps
to macros, Jumps to other help files, Popups, Browse sequences, and keyword links can all be tested in
Test Mode.

The Editor

Jumps and Popups are displayed in the editor exactly as they will appear when the compiled help file is
viewed with WinHelp. When the mouse cursor is moved over a link, the cursor changes to a hand, just as
it would in WinHelp. Double clicking on the link will cause the editor to "Jump" to that topic.

Utility Help Buttons

The Utility Help Buttons, found in the Utility Area, provide the Search, Back, and History functions. They
also provide access to the Browse and Links From forms.

SHED (SHG) File

If an image in the editor is a representation of an SHED file (Segmented Hypergraphics file created with
SHED.EXE), double clicking on the image will display a table of the hot links contained in the file. The hot
links can be Jumps, Popups, or macros.

The Help Magician does not distinguish between the hot link types contained in an SHG file. If the help
topic title exists, double clicking on the hot link name or clicking the accept button will cause the Help
Magician to jump to that page. An error message will be displayed if the title does not exist in the current
help source file. If the title exists, the Help Magician will jump to the page and History window and Back
button will be updated.

Clicking on the SHED button will launch the SHED editor.    Any changes to the image hotspots will be
reflected next time you double-click on the SHED image file.

 Multimedia elements can be previewed in the editor by double clicking on the hot spot
that references the multimedia element. All multimedia elements included in the macro definition will be
played. Click in the Paragraph Style frame ("Click to Stop"), on the Main Menu, or anywhere in the editor
to stop the process.

See Also

 WinHelp Bar

WinHelp Bar

 The WinHelp button bar, located just above the editor, provides the same functionality
found in the button bar when a help file is viewed with WinHelp. The display of the WinHelp Bar is
optional and can be set in Environment Options available from the Options menu.

 This is the Windows 95 WinHelp Bar.

Contents

 The Contents button displays the Contents or Index page of the help file as defined in
Compiler Options.

Topics

 When you click on the Topics button, you have a choice. You can either click on yes or
no. If you click on yes, a simple CNT file will be created for you. If you click on no, you will be brought to
the Contents Editor.

Search

 The Search function works exactly like the Search function in WINHELP.EXE.

The upper list box contains all of the keywords in the help system. As you enter text into the text box,
above the keyword list box, the highlighted bar moves to the keyword that matches the text entered. As
you delete characters, the process reverses.

Keyword

You can select a keyword by highlighting the entry in the keyword list box and clicking on the Show Topics
button or by double clicking on the keyword entry itself.

Topics

When you have selected a keyword, the titles of the pages linked to the keyword appear in the Topics list
box. Select the topic by double clicking on it or by clicking on the Goto button. The selected help topic will
be displayed and History and Back will be updated.

Index

 Provides a comprehensive index to the topics in one or more Help files. The index is the
list of keywords that you specify for each topic. A user can scroll to the desired keyword either by clicking
the scroll arrows or by typing the word. If more than one topic is associated with the keyword, WinHelp
displays the Topics Found dialog box that lists the associated topics. WinHelp version 4.0 now supports
second level index entries and can combine the keywords from multiple Help files.

The Index tab replaces the Search dialog box in WinHelp version 3.1.

Back

 The Back button will only be enabled if there are topics in the Back buffer. When you
press the Back button, the help system will back up or retrace the steps you took to get to the current
topic until the first topic has been reached. At that point, the Back button will again be disabled. The Back
buffer will store the last 100 help topics.

History

 Clicking on the History button will pop up a window containing a list of the topics you
have visited. A total of 40 (actually 41, including the Contents page) will be stored in reverse order. The
most recent topics are listed first. Double clicking on a topic causes the help system to display that topic.
Clicking anywhere else on the form, or pressing the Esc key, closes the History window.

Print

 The Print button allows you to print the document that is currently open.

Browse

 The Browse Left and Browse Right Browse buttons will be enabled and disabled to reflect
the ability to Browse in either direction based on the Browse sequences set up in the Browse function
while designing the help system.

Testing and Navigating

Button Bar, Contents Tab, Index Tab, & Find Tab

Overview

Help Magician Pro 95 allows you to test your help file and offers many ways to navigate around your help
file as you are developing it. Some ways simulate the way WinHelp works and other ways are unique to
Help Magician Pro. Certain navigational aids within Help Magician Pro 95 will be available depending on
what platform you are developing your help file for (i.e. Windows 3.x, Windows NT, or Windows 95).
These navigational aids are discussed below. Note that when you navigate to a different topic, that topic
will be shown in the Help Magician's editor window, regardless if the topic is a popup or is destined to be
displayed in a secondary window.

Built-in Test Mode

Help Magician's integrated test mode is an invaluable, time-saving tool in the development of your help
system. You can simultaneously test the help file as you are developing it without the need to write the
RTF file or to compile the RTF file with the Windows help compiler. Jumps to other topics, jumps to
secondary windows, jumps to macros, jumps to other help files, popups, browse sequences, multimedia
objects, and keyword links can all be tested as you are developing.

When you create a jump or popup link within the editor, the link will appear the same in the editor as in
the final compiled help file. When you move the mouse over a link, the mouse cursor changes to a hand,
just as it would in WinHelp. Double-clicking on the link will cause the editor to "jump" to that topic. You can
return to where you started from by clicking on the "back" button in the WinHelp Bar just above the editor.
If the WinHelp Bar is not shown in the editor, you can enable it by setting the WinHelp Bar checkbox in
menu Options...Environment Options in the Display Tab.

Goto ...

The Goto function is unique to Help Magician and offers a quick way to go to a topic by supplying certain
information. You can "Goto" a topic by page number, topic title, context string, or context number. You can
also goto the next jump, popup, mid topic context string, or unresolved hot link. You can also go to the
next occurrence of a paragraph style or graphic image. The Goto option is available in the Edit...Goto
Menu and is discussed more in depth in Managing Topic Text. A shortcoming of the goto method is that it
is not visual in nature.

Visual Navigational Aids

Help Magician Pro offers several visual navigational aids. In WinHelp 3.x emulation mode, the WinHelp
button bar is available, complete with the Contents, Search, Back, History, and Browse buttons. In
WinHelp 95 emulation mode, the functionality of the Contents Tab, Index Tab, and Find Tab is available.
In addition, Help Magician Pro 95 has a special feature, the LinkMap Navigator, which displays all your
hot links graphically in a hierarchical tree.

WinHelp 3.x Emulation - WinHelp Button Bar

The WinHelp button bar, located just above the editor, provides the same functionality found in the button
bar when a help file is viewed with WinHelp in Windows 3.x. The display of the WinHelp Bar is optional
and can be set in Environment Options available from the Options menu.

Click on the desired button of the Windows 3.X button bar bitmap for specific Help

See Also
Help Topics Browser
Utility Help Buttons

Contents
The Contents button displays the Contents or Index page of the help file as defined in Options...Compiler
Options...Index. For any help file, the Contents page must be set and that topic must have a context
number defined (usually 1).

Search

The Search function works exactly like the Search function in WINHELP.EXE.

The upper list box contains all of the keywords in the help system. As you enter text into the text box,
above the keyword list box, the highlighted bar moves to the keyword that matches the text entered. As
you delete characters, the process reverses.

Keyword

You can select a keyword by highlighting the entry in the keyword list box and clicking on the Show Topics
button or by double clicking on the keyword entry itself.

Topics

When you have selected a keyword, the titles of the pages linked to the keyword appear in the Topics list
box. Select the topic by double clicking on it or by clicking on the Goto button. The selected help topic will
be displayed and History and Back will be updated.

Back
The Back button will only be enabled if there are topics in the Back buffer. When you press the Back
button, the help system will back up or retrace the steps you took to get to the current topic until the first
topic has been reached. At that point, the Back button will again be disabled. The Back buffer will store
the last 100 help topics.

History
Clicking on the History button will pop up a window containing a list of the topics you have visited. A total
of 40 (actually 41, including the Contents page) will be stored in reverse order. The most recent topics are
listed first. Double clicking on a topic causes the help system to display that topic. Clicking anywhere else
on the form, or pressing the Esc key, closes the History window.

Browse
The Browse Left {ewc hmew2,ewBitmap2,BRWSLEFT.BMP} and Browse Right {ewc
hmew2,ewBitmap2,BRWSRGHT.BMP} Browse buttons will be enabled and disabled to reflect the ability
to Browse in either direction based on the Browse sequences set up in the Browse function while
designing the help system.

Utility Help Buttons

The Utility Help Buttons, found in the Utility Area, provide the Search, Back, and History functions. They
also provide access to the Browse and Links From forms.    In Windows 95 support mode, Help Magician
replaces these buttons with a default window definition for each topic.

SHED (SHG) File

If an image in the editor is a representation of an SHED file (Segmented Hypergraphics file created with
SHED.EXE), double clicking on the image will display a table of the hot links contained in the file. The hot
links can be Jumps, Popups, or macros.

The Help Magician does not distinguish between the hot link types contained in an SHG file. If the help
topic title exists, double clicking on the hot link name or clicking the accept button will cause the Help
Magician to jump to that page. An error message will be displayed if the title does not exist in the current
help source file. If the title exists, the Help Magician will jump to the page and History window and Back
button will be updated.

Clicking on the SHED button will launch the SHED editor. Any changes to the image hotspots will be
reflected next time you double-click on the SHED image file.

Creating Reports

Print

Selecting the Print sub menu from the File menu brings up the Print dialog.

Select the range of help topic pages to be printed, the print quality, the number of copies, and click on OK
to print the selected topics. Text and graphics will be printed approximately the way they appear in the
editor.

See Also

Browse Sequences
Links
View

View

There are three options available from the File ... View menu: Context Relations, Links, and Browse
Sequences.

Context Relations

Selecting Context Relations will bring up the Context Listing form.

Display

The Context Listing form can be re-sized and/or maximized to fit more information in the window. The
vertical dividers cam be moved with the mouse to expand or contract any of the fields.

Sort Order

The listing can be sorted by Context String, Context Number, Title, or Page number.

Print

Click on the Print button to send a copy of the current listing to the default printer.

Links

Selecting Links will bring up the View Links form.

Report File

The Context Relations report function will write a file in Windows Write format for viewing/printing with
WRITE.EXE.

Page Start / Page End

Enter the range of pages to include in the Context Listing report.

Include Destination Context String

Check this box to include the destination Context String for Jumps and Popups in the report.

Include Destination Page Number

Check this box to include the destination page number for Jumps and Popups in the report.

Delete File After Viewing

If this box is checked, the temporary file will be deleted when you close Windows Write and return to the
Help Magician. The temporary file is constructed from the help source filename. The last two characters
of the filename are replaced or appended, as necessary with the characters, "VL" and the extension
is .WRI. For instance, the report file for TUTOR.HLX would be TUTORVL.WRI.

Browse Sequences
 
Selecting Browse Sequences will bring up the View Browse form.

Include Contexts

If this option is checked, the Context String and Context Number of the related topic will be included in
parenthesis after the topic title.

Include Related Page Number

If this option is checked, the page number of the related topic will be included in parenthesis after the
topic title.

Delete File After Viewing

If this box is checked, the temporary file will be deleted when you close Windows Write and return to the
Help Magician. The temporary file is constructed from the help source filename. The last two characters
of the filename are replaced or appended, as necessary with the characters, "VB" and the extension
is .WRI. For instance, the report file for TUTOR.HLX would be TUTORVB.WRI.

See Also

Print
 

Auto TOC
The Auto TOC will generate a Table of Contents from all of the titles in the current help file. The table will
be placed at the top of the current page. All of the entries will have the jumps to their respective topics
assigned.

Default titles, those beginning with "T_" will not be included in the table.

Capture Image

The Capture Image tool will capture of an entire screen, a selected window, or a selected area of the
screen and automatically insert the saved image into the Help Magician's editor.

Help Magician Window

The Help Magician's main window will be minimized while the Capture tool is in use.

Capture

Screen

When the Screen option is selected, the entire screen will be captured. Note that this will be an extremely
large bitmap.

Window

The Capture Image tool defaults to Window as the area to be captured. As the mouse is moved around
the screen, a frame is drawn around the window under the mouse cursor. To select a window to capture,
move the cursor to the window and click on it with the left mouse button. Note that the Capture and Insert
buttons will not be enabled until a window has been selected.

As the mouse cursor is moved, the Window ID and some or all of the Window text is displayed in a frame
at the top of the Capture image form.

Selected Area

To capture a selected region of the screen, select the Selected Area option, move the mouse cursor to
the top left corner of the desired area, hold down the left mouse button, drag the cursor to the bottom right
corner of the desired area, and release the mouse button. Note that the Capture and Insert buttons will
not be enabled until an area has been selected.

As the mouse cursor is moved, the X and Y coordinates of the cursor are displayed in a frame at the top
of the Capture image form.

Save

Select the color depth for the saved image. By default, the image will be saved in the color depth of the
host system but images with a color depth of more than 256 colors are not supported by the help compiler
or the Capture tool so you will have to save the image as 16 or 256 colors.

Controls

Capture Button

When the area to be captured has been defined, click on the Capture button. A file dialog will prompt for a
filename for the bitmap. Enter the filename and click on OK. The image has been saved to disk.

Insert Button

Click on the Insert button to insert the image into the Help Magician's editor. The Help Magician's main
window will be restored to its previous state and the Image Options dialog will pop up. Select the image
options and click on OK. The image will be inserted into the editor. If the image was saved with 256
colors, the image will automatically be inserted as an embedded window.

 If embedded windows are used in your help system, HMEW2.DLL must be shipped with
the compiled help file and installed to the WINDOWS directory. Any bitmaps displayed with HMEW.DLL
must also be shipped with the help system.

Close Button

Click on the Close button to close the Capture tool without capturing or saving an image.

Navigator

The Navigator is a useful tool to view the tree structure of your help file and to traverse the help file with
the use of the graphical representation of the file.

Selecting Navigator from the Tools menu will bring up the Navigator form.
 
The Topic Title column displays all of the titles in the current help source file. The Links column displays
all of the Jumps and Popups on that page. The type of link is displayed as an icon, shown later.

The form can be re-sized to fit more information in the window and the sizing and positioning is saved in
the Help Magician's INI file so that the settings are duplicated when you use the Navigator again.

Scroll through the list of titles and select the topic to go to by clicking on the Goto button or double clicking
on the title itself.

Click on the Options menu to drop down the Navigator Options sub menus.

Options

Click on the desired area of the Options Menu for specific Help

Legend

The type of link, in the Links cloumn is displayed as an icon.

Close on Selection
Click on this sub menu to toggle the state of the option. When there is a check mark before the menu
item, it is in effect. When this option is selected, the Navigator window will close when you goto a title by
clicking on the Goto button or by double clicking on the title in the list box.

Reset on Selection
Click on this sub menu to toggle the state of the option. When there is a check mark before the
highlighted bar to the menu item, it is in effect. When this option is selected, the Navigator will reset the
highlighted bar, in the Topic Title column, to the title selected in the Links column when you goto a title by
clicking on the Goto button or by double clicking on the title in the list box.

Contents Page
Selecting this sub menu will cause the editor to display the Contents (or Index) page of the help file.

On Top
Click on this sub menu to toggle the state of the option. When there is a check mark before the menu
item, it is in effect. Checking this sub menu will keep the Navigator window on top of the Help Magicians
main window at all times.

Convert Images

You can convert the display state of all of the images on a page or in the entire help file. Convert Images
is available from the Tools menu.

Display Image

Stores the image in memory and in the HLX file. This method uses the most memory and disk space but
provides the fastest display of the image in the editor.

Display Filename

Stores the filename only in memory and in the HLX file. This method uses the least memory and disk
space of all the display options.

Link to File

Stores only the the image filename in memory and in the HLX but displays the image in the editor. This
method is a compromise between the two methods described above.

Glossary Wizard

The Auto Glossary function, available from the Tools menu, will automatically generate a Glossary shell
in the last page of the current help file.

Support Files

Auto Glossary uses A-Z.SHG and CLOSE.BMP, both installed in the Help Magician \SOURCE directory.
Both of these files must be in your help build 'ROOT' directory or in one of the paths listed in the Bitmap
Directories on the Paths form. If your help source file is part of a project, then these files must exist in the
same directory as your help source file.    If these bitmaps are not available, you will get error messages
when compiling. Copy these files to one of the appropriate directories before using the glossary wizard.

Glossary Topic

A topic will be created on the last page of the current help file. If a topic with the title or Context String,
"Glossary" already exists, the Auto Glossary function will abort. If created, this topic will contain a
Paragraph Marker (non-scrolling region), a Jump to a macro that will close the Glossary window, the A-
Z.SHG file, and mid-topic Jumps for the letters A through Z.

Macros

The macros that will be created for the glossary:

Definition: Glossary_Close
Macro: CloseWindow("Glossary")
This is the macro that will close the Glossary window when the Close button is pressed.

Definition: HM_ProjectMacros:
Macro: CreateButton("Glossary_btn", "&Glossary", "JumpId(`THISFILE>Glossary', 'Glossary')")

This is the macro that creates the "Glossary" button on the main help window and opens the Glossary
window when pressed.

Duplicate Macro definitions/macros

If the definitions/macros already exist, they will not be duplicated. The existing macros will be used.

Secondary Window

A secondary window called "Glossary" will be created, if it does not already exist. This is the window that
will display the Glossary. The attributes of this window can be changed at any time in the Help Window
Specifications form, available from the "Options" menu.

Fonts

Two paragraph styles are added to the defined styles: Glossary Heading and Glossary Letters, if they do
not already exist. These paragraph styles can be changed at any time in the "Define Font Styles" form
available from the Format menu.

Adding Glossary Items

When the Glossary has been written, you can add items under the appropriate letters. Typically, these
Glossary items would be Popups. Create a page for the contents of each definition and then establish a
Popup link to this page from the Marker Menu or toolbar.

Scrolling

Note that WinHelp will not scroll the Glossary topic when near the bottom of the page unless there is
more text than can be displayed in the window. With an empty Glossary, pressing the Z button will cause
the display to start at about the letter V.

VB Help Wizard

Select VB Help Wizard from the Tools menu to access the Help Wizard form.

Scan VB Source

This function will scan all of the source files in a Visual Basic make file (.MAK) and create a help file shell
in the Help Magician based on the HelpContextID properties assigned to the forms and controls in the
source.

ALL OF THE FILES INCLUDED IN THE VISUAL BASIC MAKE FILE MUST HAVE BEEN "SAVED AS
TEXT".

 The titles, headings, and context strings will be no more coherent to your audience than
the names assigned to them in the properties form in Visual Basic design mode. For this reason, assign
names to the controls that will make sense to those reading your help file.

Control Name Parsing:

There are two control naming conventions that will be specially parsed by the VB Source Scanner.

Upper Case Convention

If control names are constructed from multiple words, with the first character of each word in upper case,
a space will be inserted before each upper case character. The control name "ExitButton" will appear as
"Exit Button" in the help file. The disadvantage to this method is that control names with repetitive upper
case characters may not produce desirable results.

Underscore Convention

If control names are constructed from multiple words and the words are separated with underscore
characters, the underscores will be replaced with spaces. The control name "Exit_Button" will appear as
"Exit Button" in the help file. This naming convention provides the most flexibility and gives more control
over the resulting help file title, etc.

Duplicate HelpContextID's

If HelpContextID's are duplicated throughout the Visual Basic source, the Table of Contents entry and the
title for the topic will be taken from the first occurrence of the HelpContextID and subsequent occurrences
will be appended to the topic header, separated with a comma and a space.

There are two sub menus available from the Scan VB Source menu: Entire File and Merge.

The Entire File option will write a entire new file from the VB source and the Merge option will create new
topics for controls with HelpContextID's not already existing in the current help file.

Creating or Merging help from VB Source:

Step 1

Select the desired sub menu depending on whether you're creating a new help file or merging help with
an existing file.

Step 2

When the "Scan Visual Basic Source" form appears, select from the available options:

Control Name

If the Control Name radio button is selected (default), the topic titles, heading, and context strings for the
topics will be created from the control name as it appears in the properties form in Visual Basic.

Control Caption

If the Control Caption radio button is selected, the topic titles, heading, and context strings for the topics
will be created from the control caption as it appears in the properties form in Visual Basic. If the control
does not have a caption, the control name will be used.

Form Prefix

If the Form Prefix check box is checked, the form name or caption, depending on the Control
Name/Control Caption selection, will precede each topic title, heading, and context string, separated with
a space, a dash, and another space (Form - Control).

Table of Contents

If this check box is checked a table of contents will be generated on the first page of the help file. The title,
heading, and context string will be "Contents". A Jump will be created for every topic that is written to the
file.

Context Strings

If this box is checked, Context Strings will be written to each page of the help file.

Fonts

The font used for the "Glossary" heading will be font definition #1, "Topic Heading" by default. The font
used for the alphabetical headings will be font definition #1, "Emphasized Help Text", by default.

Step 3

Press the "Make File" button to select the Visual Basic make file to use.

Step 4

View the three list boxes on the right side of the form. They contain all of the topics that will be written to
the help file shell.

Step 5

Press the "Write Help" or "Merge Help" button, depending on the mode selected from the "Scan VB

Source" menu. Focus will be returned to the Help Magician editor with the new, or modified, help file in
memory.

Step 6

Review the help file with the test facilities of the Help Magician and/or print out the Context Relations,
available from the File/Print menu.

Step 7

Save the file. If you selected the "Merge" sub menu, you will be required to perform a "Save As...".
Compile the help file (Build/Rebuild All) and view it with WinHelp (Build/Call Winhelp).

Build Tag Manager

Select Build Tags from the Build menu to access the Build Tag Manager form.

Build Tag Overview

The BUILD option determines which topics containing build tags are included or excluded in a build.    This
is useful for conditionally compiling a help file.    For example, you may be developing a help file that will
be used    for both the demo and full release version of your software.    Use this option only if you've
created build tags in your topic files.    The BUILD option has the following syntax:

BUILD = expression

Expression is a logical statement that specifies which build tags to include or exclude.    The tags must be
included in the [BUILDTAGS] section, which is described later in the topic.    The statement can include
any of the following symbols, listed in order of importance.

() Parentheses
& AND operator
| OR operator
~ NOT operator
tag Build tag

The compiler evaluates each expression from left to right using the following order:

Expressions with parentheses are evaluated first.
Expressions with a NOT operator (~) are evaluated next.
Expressions with a logical AND operator (&) are evaluated next.
Expressions with a logical OR operator (|) are evaluated last.

For example, if you created build tags named FINAL, INCOMPLETE, and BETA in a topic file, you could
include any one of the BUILD expressions listed in the [OPTIONS] section.

BUILD = BETA Topic that have the BETA build tag and topics with no
build tags.

BUILD = INCOMPLETE & BETA Topics that have both the INCOMPLETE and BETA build
tags, plus topics that have no build tags.

BUILD = INCOMPLETE | BETA Topics that have the INCOMPLETE or BETA build tags,
plus topics that have no build tags.

BUILD = (INCOMPLETE | BETA) & FINAL Topics that have either the INCOMPLETE or BETA build
tag and also have the FINAL build tag.

BUILD = ~ FINAL Topics that don't have a FINAL tag and topics with no
tags at all.

Using the Build Tag Manager

Build Tags (Edit)

The text box under the label, Build Tags (Edit) is used to enter new Build Tags or to rename existing ones.

To add a Build Tag, type the desired Build Tag name and press Return. The new Build Tag will be inserted
into the list box.

To rename a Build Tag, select the name in the list, then click on the text box above the list. Edit the name
and press the Rename button. The new Build Tag will replace the old name in the list box.

Delete

To delete a Build Tag from the list, select the Build Tag by highlighting it in the list box and press the
Delete button.

Assigned to Topic(s) (Locator)

The text box under this label is used to quickly locate items in the list by typing some of the characters in
the help topic or macro. The list will automatically scroll to the item most closely matching the entry in the
text box.
 
Topic List Box

This list box contains the titles of all the topics in your help file.

Mode

Select the appropriate radio button to assign Build Tags to topics or to view the current assignments.
 
Direction Indicator

The Direction Indicator (shown in assign mode) displays the direction of the link(s) between the
Build Tag list box and the Topic Title list box in "View Assignments" mode.

Click in Build Tag List Box

When the indicator is pointing to the right topics are highlighted that have the selected tag
assigned to them.

Click in Topic Title List Box

When the indicator is pointing to the left Build Tags are highlighted that are assigned to the

selected topic.

Assign Tags

The Assign Tags button assigns the tag(s) selected in the Build Tag list box to the title(s) selected
in the Topic Title list box.

Remove Tags

The Remove Tags button removes the assignment of the tag(s) selected in the Build Tag list box
from the title(s) selected in the Topic Title list box.

Use Build Expression

Check this check box to use the selected Build Expression in the build of the help file. If this box is
unchecked, the Build Expression will have no effect during the build.

Build Expression List

Up to ten Build Expressions can be stored with the source and any one of them can be active. Click on
the up or down arrows on

the spin button to enter, edit, or select the desired Build Expression. The number of the Build
Expression is displayed in the label above the spin button.

Build Expression Editor

The text box below the Use Build Expression check box is used to edit Build Expressions.

 The "BUILD=" will be added during the build process. Don't include this in the editor.
Enter only the expression.

Build Expression Buttons

 Inserts the And symbol '&' with the appropriate spacing into the editor.

 Inserts the Or symbol '|' with the appropriate spacing into the editor.

 Inserts the Not symbol '~' with the appropriate spacing into the editor.

 Insert the single Build Tag selected in the Build Tag list box into the editor. This button can
only be selected if a single Build Tag is selected in the Build Tag list box.

 Insert two Build Tags, in parenthesis, separated with the And symbol '&' into the editor
with the appropriate spacing (BETA & FINAL). This button can only be selected if two Build Tags are
selected in the Build Tag list box.

 Insert two Build Tags, in parenthesis, separated with the Or symbol '|' into the editor with
the appropriate spacing (BETA | FINAL). This button can only be selected if two Build Tags are selected in
the Build Tag list box.

Build Options

Click on the desired area of the Options Menu for specific Help

The Options Menu allows you to customize parts of the Help Magician and your Help file as well.

Display History Window...
When in Windows 95 compiler mode (Compiler Options, Compiler Tab), the History button is not in the
WinHelp bar but it is available from the Options menu just as it would be when viewing the file with
WinHelp.

Paths

Selecting the Paths sub menu option displays the Paths form. Type in the full path and name, where
required, in the text field or type in the word "None" to signify no path.

Compiler Path

Enter the full drive, and path, to your Windows help compiler. The path defaults to C:\HMPRO30\ upon
installing Help Magician but it can be changed at any time. The Compiler Path is stored in the
HLPMAGIC.INI file. This is a change from previous versions of the Help Magician that stored the compiler
path in each help file.

Important

If a help compiler name is included with the path (both the filename and .EXE), it will be used in place of
the HC.EXE or HC31.EXE which is set by the Version radio boxes for versions 3.0 and 3.1 respectively.
This provision accommodates help compilers whose executable name is unknown at the time of this
writing (such as HCP.EXE found on Compuserve).

Word Processor

Enter the full drive, path, and filename to the word processor that you will use to view the RTF files
generated by the Help Magician. This path is stored in the HLPMAGIC.INI file which is read when you
open the Help Magician and written when you close it. "See Call Word Processor" later for more detailed
information.

SHED

Enter the full drive, path, and filename to the SHED (Segmented Hypergraphics Editor) that you will use

to modify bitmaps to use as hotspots in your help file. The path defaults to C:\HMPRO30\ upon installing
Help Magician but it can be changed at any time. This path is stored in the HLPMAGIC.INI file which is
read when you open the Help Magician and written when you close it. Refer to "Help System Overview"
and SHED.EXE, for more detailed information.

Bitmap Magician

Enter the full drive, path, and filename to the Bitmap Magician    that you will use to modify font families to
you're own specifications. This path is stored in the HLPMAGIC.INI file which is read when you open the
Help Magician and written when you close it.

Bitmap Directories

Type the paths to any bitmaps used in your Help file in the drop down box. Add as many paths as you
need. The Help compiler will search these directories for the bitmaps used in your Help file. Please do not
include literal root directory paths, i.e. "C:\" as this can cause the Help compiler to malfunction.    Note:    If
you are developing a help file with other team developers on a network, you should make sure all the
bitmaps will be available in the same directory as your current help source and project files (.hlx
and .hmp).    If you leave the bitmap directories blank, the current help source directory will be used in
locating the bitmaps.

Browse Button

Pressing the Browse button will pop up a file dialog to automate the entry of the path and/or filename for
the current field.

WhereIs Button

Pressing the WhereIs button will pop up the WhereIs dialog. This dialog will search the selected drive for
files matching the specified criteria. The criteria is automatically entered for each of the fields but can be
edited, if necessary.

If file(s) are found, highlight the desired filename in the list and it will be entered into the appropriate field
in the Paths form.

See Also
Call Word Processor

Compiler Options

Selecting the Compiler sub menu option displays the Compiler Options window. The Compiler Options
form allows setting various help compiler options along with the RTF (Rich Text Format) version that the
Help Magician generates for the compiler.

 The Win31 Compiler Options form is shown here.

 The Win95 Compiler Options form is shown here.

Click on the desired tab of the Compiler Options bitmap for specific Help

Compiler

 The Windows 3.1 and the Windows 95 Compiler Options, Compiler Tab is shown here.

Compiler Tab

Setting the help compiler version enables/disables certain Help Magician features not available in older
versions of the Windows Help Compiler. For instance, version 3.1 supports macros, which are not
available in the 3.0 version.

Warning Tab

 The Win31 Compiler Options, Warning Tab is shown here.

This option sets the level of error message reporting the compiler displays during the build process.
Select Severe to display only critical errors, Intermediate for an intermediate level of warnings and All to
see all errors reported by the compiler.

RTF Tab

 

 The Windows 3.1 and the Windows 95 Compiler Options, RTF Tab is shown here.

This feature lets you choose which version of Word for Windows the RTF file is compatible with. This is
useful when exporting a Help Magician RTF file to Word for Windows. There are three versions of Word
supported: version 2.0, 6.0 and 7.0.

Baggage Tab

 The Win31 Compiler Options, Baggage Tab is shown here.

Put an X in the check boxes next to the types of files you want included in the [BAGGAGE] section of the
project file. This will include the code from the selected multimedia elements into the compiled help file
and the individual multimedia elements will not have to be shipped with the help system.

Compresstion Tab

 The Win95 Compiler Options, Compresstion Tab is shown here.

This option instructs the compiler to compress the compiled help file to make it smaller. This feature is
useful when the help file is large, has many sparse paragraphs of text and recurring phrases, and
contains bitmaps. You may select from several different types of compression to match the style of help
file you are building.

None

Select this to turn off compression.

Best Possible

The help compiler determines the optimal compression.

Maximum

Instructs the help compiler to make the help compiler as small as possible.

Custom

Allows you to mix and match compression levels.

Hall - if this box is checked, the compiler uses Hall compression, which is more effective than Phrase
compression for files that are greater than 100K in size. If you use this type of compression, your Help
file will compile more quickly than if Phrase compression without an existing phrase file is used. Hall
compression is more effective when used with Zeck compression. If you intend to ultimately compress
your help file with a utility such as PKZIP for distribution purposes, then the utility may achieve higher
compression if only Hall compression is used.

Zeck - if this box is checked, the compiler uses Zeck compression. When used with Hall the greatest

effective compression can be attained. You can use Zeck compression by itself to reduce compile
time, but doing so will increase the size of the compiled Help file.

Phrase - if this box is checked, the compiler uses Phrase compression, which is more effective than
Hall compression for files that are less than 100K in size. The compiler creates a phrase table file with
a .PH extension if one does not already exist in the ROOT directory. This will decrease the compile
time significantly if little has changed between compiles. Because the phrase table file speeds up the
time to compile the Help file when little text has been changed since the last rebuild, you may want to
keep the .PH file around between compiles. Check the "Use Old File" box to instruct the compiler to
use the old phrase table file. To achieve maximum compression before a build, you will need to delete
the .PH file before compiling the Help file. Note that Phrase compression cannot be used with Hall
compression.

If you are embedding graphics, you may want to try various compression settings for better results.

Map Tab

 

 The Windows 3.1 and the Windows 95 Compiler Options, Map Tab is shown here.

This option lets you specify where the context string map will be generated. Select "Put in Project File"
to have the map included in the Help Project (.HPJ) File. Select "Write #include File" to have the Help
Magician create a separate 'C' style #include file. The include file will be written any time an RTF is
generated for the compiler. Select "Use Existing File" to have the Help Magician use a separate #include
file. For the last option, you must enter the #include file name into the "Context String Map File" text box.
See Visual C Support for detailed information on establishing context sensitivity between Visual C and the
Help Magician.

Project Management Notes

If your help source file is a member of a multiple file project, the Put in Project File option will be disabled.
If you choose the Use Existing File option, then just enter the name of the Context String Map file. Your
existing map file should be located in the same directory as your project file (.hmp).

Index Tab

 

 The Windows 3.1 and the Windows 95 Compiler Options, Index Tab is shown here.

The Index Page option sets the topic that will be first displayed when Windows Help is called and when
the "Contents" button is selected in Windows Help. If a page is not selected, the Help Magician will use
page one as the help index page.

Project Management note

You MUST set the Index Page when doing a multiple file Project.

Fonts Tab

 The Win95 Compiler Options, Fonts Tab is shown here.

Default Text Character Set

Use this drop down box to select the character set that will be used for the fonts in the compiled Help file.

WinHelp Dialog Boxes

Set the font name, size and character set for the dialog boxes used by WinHelp for you Help file.

Sorting Tab

 The Win95 Compiler Options, Sorting Tab is shown here.

Language to base sorting on

If you intend to use a language other than English in your Help file, set that language here. This
information is used when sorting keywords in the index.

When sorting keywords, ignore

Check the "Non-spacing marks" to ignore spacing and "Symbols"    to ignore symbols.

Index Entries Separators

Enter the character used to separate keywords in an entry (for example, "keywords, entering") and the
character used to separate keywords in a list. If this option is not used the default comma, semicolon and
colon are used.

Text Search

 The Win95 Compiler Options, Text Search Tab is shown here.

In this section you may instruct the compiler to generate an index file for WinHelp to use when the end
user requests full-text searching from the Find tab in the Help Topics dialog box. This is useful if the help
file is large and the index might take a considerable amount of time to create. The index file would need to
be included with the Help file at the time it is distributed. You may select from several options to instruct
the compiler what to include in the text search.

Misc Tab (3.1)

 The Win31 Copmiler Options, Misc Tab is shown here.

Compress Help File

Select this option to force the Help Compiler to compress the help file. The compiler uses two forms of
compression: block and key-phrase. Block compression compresses the topic data into pre-defined units
known as blocks. Key-phrase compression combines duplicate phrases found within the RTF file. If the
"Use Old Key Phrase File" is not selected, the compiler creates a phrase-table file with the .PH extension.
The .PH file can speed up the compression process when little text has changed since the last
compilation, so you might want to keep the phrase file if you compile the same Help file several times with
compression. To do this, select the "Use Old Key Phrase File" option. However, you will get maximum
compression if you don't use this option.

Use Old Key Phrase File

When selected, this option forces the compiler to use an old key phrase file, if one exists, otherwise one
will be created. If this option is not selected, the compiler will recreate the key phrase file each time the
Help file is built.

Optimize for CDROM

Select this option to instruct the compiler to optimize the Help file for maximum performance when
accessed on a CDROM.

Language Sort Order

Use this option to set the sorting order for keywords in the Search dialog box. There are only two options
currently available: English and Scandinavian.

Character Set

Use this option to select which character set to use for the final help system. The options are: ANSI, Apple
Macintosh, OEM (code page 437), International English (code page 850), and Windows character sets.

Misc (95)

 The Windows 95 Compiler Options, Misc Tab is shown here.

Optimize for CDROM

Select this option to instruct the compiler to optimize the Help file for maximum performance when
accessed on a CDROM.

Display Notes

Select this option to have the compiler display note-level error messages while compiling. Note-level error
messages are informational messages to the Help author.

Ignore These Errors

Enter any error message numbers here that you want the compiler to ignore during a build. Key in an
error number in the text box and click on the Add Error button to add it to the list. To delete an error
number from the list, simply select it in the list and click on the Delete Error button.

Appearance

Selecting the Appearance sub menu item displays the Appearance Options window. The Appearance
option is used to set how certain aspects of the final help system will be displayed. Specifically, the icon
that will be displayed when the help system is minimized can be defined as well as the copyright notice
that is displayed in the About window, the help system title and the character set.

Icon Filename

The icon file name refers to the bitmap that will be displayed as the icon when the help file being
displayed with WinHelp is minimized.

Copyright Notice

The text entered here will be displayed as the copyright notice in the About window in the help system.   
Note that you cannot change any other text in the About box (limitation set by Microsoft).

Help System Title

The text entered here will be displayed at the top of the help window when the help system is viewed with
WINHELP.EXE.

Citation

The citation text is appended to the end of any text that is copied through WinHelp.    A citation may
contain a copyright, warning, or whatever message you want.

Building Your Help File

Click on the desired area of the Build Menu for specific Help

Build Menu

The Build main menu item selections allows you to build your Help Magician help system into a Windows
Help file and view it. Several other options are provided to give you greater control over the build process.

Write RTF for Compiler
This option will write the RTF file, needed by the Windows help compiler, to the 'ROOT' directory for the
current help build. If the help file has not been saved since the last edit, you will have the option to save it.
You will be informed if the RTF file is up to date and the Help Magician will not rewrite the file if it is
current. You can over-ride time and date stamp checking by selecting Rebuild All from the Build Menu.

 If an Index Page has not been selected, then a warning message will appear indicating
that page #1 of your help file will be used as a default index. Select OK to continue or Cancel to return to
the editor.

If there are missing delimiters within numbered indents, warning messages will be displayed as well.
Select OK to continue or Cancel to return to the editor.

Run Compiler

Calls the Windows help compiler, in the path specified in the Compiler Path option (this can be edited by
selecting the Options Menu and choosing Paths...). If the current help file has not been saved since the
last edit, you will have the option to save it. If the RTF file needs to be updated, you will have the option to
update it at this point. To prevent a mismatch between the help file and the compiled help system, the
Help Magician will not compile the files until all of the components are up to date. Again, you will be
informed if the help system is up to date and, if so, it will not be re-compiled. You can over-ride time and
date stamp checking by selecting Rebuild All from the Build Menu.

Messages

In version 3.0 of the Windows help compiler, the output messages are directed to a file and the Help
Magician displays the contents of the file in a window when compilation is complete. In version 3.1, the
ERRORLOG option is used in the project file and the file is displayed in a window when compilation is
complete. This allows scrolling back and forth through the messages instead of trying to view them as
they scroll by on the screen. The messages can be sent to the default printer by clicking on the Print
button.

 Version 3.00b of the Windows help compiler does not support redirection or the use of
the ERRORLOG option. Therefore, it is not possible to display the messages in a window.

Rebuild All
Rebuilds all files in the current help system without regard for the time and date stamp on the files.

One Page Preview
This option allows you to pick one topic page and compile it quickly for viewing in Windows Help. All
hotspots are referenced to a single page especially created for the one page preview process, so that
those individual topics need not be compiled.    To use this option, display the desired page in the Help
Magician's editor and select "One Page Preview" from the Build menu. The compiler will be invoked to
compile the page. Note: no compiler errors will be reported during this stage. When compilation is
complete, WINHELP.EXE will be called to display the single topic.

View Compiler Messages
This sub menu will display the messages from the Help Compiler during the last build, if any. If there has
not been a build, the sub menu will be grayed out and cannot be selected.

Build Context Spy

Selecting the Build Context Spy sub menu brings up a form to enter the range of Context Numbers to
include in the Context Spy help file.

Overview

A Context Spy help file can be used to determine the Context Numbers accessed by an application calling
WinHelp to display specific help topics. This information can then be used to establish context sensitivity
between the application and the help system.

Help File Name

The name of the Context Spy help file must be the same as the name of the help file called by the
application and must be accessible to WinHelp in the path or working directory. If necessary, rename the
original help to save it from being overwritten by the Context Spy help file and to prevent it from being
accessed by WinHelp instead of the Context Spy help file.

When the calling application accesses the help file, a WinHelp window will appear as seen in the sample
bitmap below. In this case, the calling application used Context Number 762 when it called WinHelp.

Update Context Numbers
The sub menu is only available if "External Map" is selected in the Compiler Options form, Map tab.
Selecting this sub menu will update the relationship between the context numbers and context strings as
provided by the external map file.

An automatic update is performed when the file is compiled and it is only necessary to use this function if
changes have been made to the context numbers and/or context strings in the file in memory or in the
external map file.

Multiple Files

The Multiple Files function of the Help Magician has been maintained in the Pro version for compatibility
with earlier versions of the Help Magician. Project Management is much more powerful than Multiple File
build and it is recommended that Multiple File projects be converted to Project Management projects.

See Project Management for detailed information on converting and maintaining Projects.

The Help Magician can compile and build a help system from multiple source files provided that all the
information is written to the project file at the time of the build.

Step One

Open each of the files to be included in the build and select Compiler from the Options Menu. Click on the
Write #include File radio button and press the Accept button. Select Write RTF from the Build Menu. This
will write the RTF file and the context string map.

Step Two

Select one of the files to be the Master source file and load it into the Help Magician.

Step Three

Select Multiple Files from the Build Menu. Add the names of the RTF files that will be included in the build
in the text box under the [FILES] label. Do not add the RTF file name for the Master file.

Step Four

Add the names of the map files that will be included in the build into the text box under the [MAP] label.
Do not add the Map file name for the Master file.

The #include and the <> symbols will be added to the map file name and written to the project file when
the file is compiled.

Step Five

Compile the Master help file and all of the files listed in the [FILES] Section will be included in the build.

 Context Numbers and Context Strings may not be duplicated between multiple source
files that will be combined into one help system.

Assign a range of Context Numbers for each of the members of the build.

One method that would ensure that all Context Strings were unique between the source file would be to
assign a prefix for all Context Strings for each of the members of the build.

The Help Magician does not validate duplication of Context Strings or Context Numbers between multiple
source files. You will receive error messages from the help compiler if there are duplicates.

A large file can be split into two or more files using the Save Range function.

 If you export an RTF file to Word for Windows and change the file, the Help Magician
detects the fact that the file was changed and asks if you want to re-import the file when you return. If the
file is a member of a Multiple File build, press No. Use the Import RTF / Include Project sub menu
available from the File Menu to re-import the file.

Team Help

You can use the Multiple Files capabilities of the Help Magician to build a help system as a team effort.

Each member of the team would be assigned a specific section of the complete help system and would
write their individual sections maintaining unique Context Numbers and Context Strings as described
above.

Networks

Microsoft's help compiler will not cross a network drive to compile a source file. If any of the source files
are on network drives, copy them to a local drive before compiling, preferably the directory that contains
the Master file (described above). Be sure that the path for the RTF file and the map file are accurate in
the Multiple Files form.

See Also
Project Management

Call Word Processor

Select Call Word Processor to invoke the Word Processor specified in the Path options form window, with
the RTF file pertaining to the current help file.

 The file can be read back into the Help Magician as an RTF file with a few precautions
and exceptions. The user should be aware that not all word processor features are supported by the Help
Compiler or the Help Magician and may consequently be ignored. See the section on Importing RTF files
and RTF Technical Specifications.

 Note that the specification in the Paths option form must include the complete drive, path, and
executable filename, such as:

C:\WINWORD\WINWORD.EXE.

Your word processor must be able to accept a filename with a .RTF extension as a command line
argument. If it does not, load your word processor and read in the RTF file by selecting the appropriate
options from the File Menu.

If the word processor is open at the time and a copy of the file is one of the windows, the word processor
may open a second version of the RTF file. To avoid this, either close the windows containing the RTF file
or close the word processor each time you return to the Help Magician.

See Also
Importing RTF Files
RTF Technical Specifications

Call WINHELP.EXE

 This will call WINHELP.EXE and display the compiled help system as your end users will
view it. The Help Index will be displayed. If you have recently re-compiled the help system, you may
encounter a "Help File Changed" message from Windows Help. Select OK and then select Call WINHELP
again.

WinHelp Options

 This will display the Call Help form illustrated below. There are several ways of calling
WinHelp 4.0 in Win95 and they are all available from the Call Help form.

Help File

The currently loaded HLX filename should appear here with an HLP extension. You may change the
name in the text box to another help file or search for one using the Browse button. Simply click in the text
box, select the Browse button and choose a help file using the file directory dialog.

Help Topic

If any help topics have had context numbers assigned, they will appear in the Help Topic drop down box.
Select one of the help topics to have WinHelp display it when called.

Open Help File As

The Call Help dialog can simulate a call to WinHelp from an application, a training card, as a popup
window or as a stand alone application.

· Select the Normal radio button to call WinHelp as if it were a stand alone application (i.e. run by
double-clicking an icon).

· Select the Popup radio button to call WinHelp as if it were called from an application as a popup
window.

· Select the Training Card radio button to call WinHelp as if it were called from an application
running the training cards feature.

· Select the Context Sensitive radio button to simulate calling WinHelp from an application using
context sensitive help (i.e. using Context Numbers).

Auto Display Next Topic

Use this feature to view consecutively mapped topics. After the Help file is displayed, you may see the
next mapped topic by repeatedly selecting the View Help button.

View Help

Select this button to view the Help file.

Select the Done button to close the Call Help dialog window.

File Functions

Single File Development vs. Project Management

If you will be maintaining a single source file, use the menu functions New File, Open File, Save File, and
Save File As.    If you plan on developing a help system with multiple source files and/or working on a
team development effort on a network, use the project management functions New Project, Open Project,
Save Project As, Project Management, and Close Project.    If you do develop a single file, you can add it
to a multiple file project later using the Project Management functions. However, once a single file has
been added to a project, it can no longer be edited as a single file.

Click on the desired area of the File Menu for specific Help

New File
Select New from the File Menu to start a new help file. All the information from the previous file, if any, will
be erased. If the previous help was edited but not saved, you will be warned and you will have the option
to save the file before the information is erased. Editing begins at page one. The file name will be
DEFAULT.HLX.    Note that Help Magician will not let you save a file with the name DEFAULT.HLX so you
should use Save As and give it a name.

 If Project Management is active, New File will close the project and set up a new single
file build. Select Project Management, New File to open a new file under the current project.

ROOT Directory Philosophy

The 'ROOT' directory for the current help system is any directory that you choose to open a help source
file from or save a help source file to. This directory will be recorded in the help project file and all files
pertaining to the current help file must be in this directory. Bitmaps must also be included unless the
directories are entered in the Bitmap Directories list box in the Paths form found under the Options Menu.

Open File
Select Open to read in an existing help file with a .HLX extension. All of the keywords, Jumps, Popups,
defined fonts, etc. that were saved with the file will be read in with the help text. The 'ROOT' directory for
the current help build will be set to the directory from which you load the help file.

The last directory accessed for a .HLX file is stored in the HLPMAGIC.INI file and is restored when the
Help Magician is run.    If you are opening an older Help Magician file prior to version 3.0, the file will be
converted to the new format.

 If Project Management is active, Open File will close the project and set up a single file
build. Select Project Management, and double-click on one of the listed files in the File Selection listbox to
open a file under the current project.

Save File
Save will save the current help file without asking for a file name unless a file name has not yet been
established. The default file name, DEFAULT.HLX, is not considered to be a designated file name and
you will be asked to provide a file name if you select Save from the File Menu. The 'ROOT' directory for
the current help build will be set to the directory to which you save the help file.    When in Project
Management mode, Save File will save the currently opened source file to disk as a member of the
project.

Save File As

Save As gives you the option of specifying a file name for the current help file before saving. As described
in Save, above, Save As will be called if a file name has not yet been assigned to the current help file.
You can also use Save As to save a help file under a different file name than the name that is currently
assigned to the file.    Note that if you are using Help Magician in Project Management Mode, a newly
saved file will added to the project member list (see Project Management on adding files).

The last directory accessed for a .HLX file is stored in the HLPMAGIC.INI file and is restored when the
Help Magician is run. When using Save As in Project Management mode, the new filename you give to
the source file will be updated in the File Selection listbox on the Project Management form.

Extension

The file extension for a Help Magician file must be .HLX. If you enter an extension other than .HLX, it will
be changed to .HLX when saved.

More Info

See the section on Importing Text, later in the Help file, for a more detailed explanation of the format of
text files to be imported into the Help Magician.

Save Range

The Save Range function allows you to save a range of pages to split a large file into two or more files.

You can then use the Multiple File capabilities of the Help Magician to build a help system from more than
one file.

Range

Enter the starting and ending pages in the Save Range form and press Accept. A Save Range operation
always functions as a Save As... and you will be required to enter a name for the file to be saved.

Convert Links to "Other Source"

Check this box to convert internal links to external links, referenced by Context String rather than by topic
number, so that the links will be effective when the file(s) are included in a multiple file build or a project.
Links referencing pages included in the saved range will not be converted.

See Also
Building Your Help File
Importing Text Files
Multiple Files
Project Management

Backup
The Backup sub menu has two sub options, Backup and Restore. Backup will write a backup copy of the
current help file with the same file name and a .HLK extension.    If you should lose a copy of your original
HLX file, simply rename the backup HLK to HLX. Restore will restore a source file with the .HLK
extension.

Import
Import RTF

The Help Magician will read RTF files generated by Word for Windows, Ami' Pro or Word Perfect for
Windows version 6.0a.

Import Text

ASCII text can be imported in the Help Magician. The text can be written out from a word processor but
some formatting is required before it can be read into the Help Magician.

See
Importing RTF Files
Importing Text Files

Export

Selecting Export from the File menu brings up the Export Form.

File Type

Export Text

The current help file can be exported as ASCII text without formatting. This is provided so that the help file
can be read into a word processor that does not read RTF files. This special formatted file can be read
back into the Help Magician, but none of the formatting will be retained.

Text With Header

The title, keywords, multiple keywords, context number, Browse group and the topics included in the
Browse group will be written to the file before the help text on every page. Each section is preceded by a
header (\Title:, \Keywords:, \Multiple Keywords:, \Context Number:, and \Browse:). The keywords and
multiple keywords are separated with commas. The Browse group is separated from the included topics
by a colon. See Importing Text Files for more information.

Text Without Header

Without the header, only the caption, Title: and the title are included for each page.

RTF

The Export RTF option will write an RTF file for the purpose of importing into a word processor.

HTML

The Export HTML option will write an Hyper Text Markup Language (HTML) file compatible with version
2.0 of the HTML specification. This file type is used for Internet World Wide Web documents. The
filename will have a .HTM extension.

RTF Export Options

If the Omit Help Formatting Information check box is checked, the help formatting such as the hyperlinks

for Jumps and Popups will not be written to the RTF file. The resulting RTF file is more suitable for
converting a help file to a manual.

If the Omit Bitmaps check box is checked, the images in the help source file will not be written to the
RTF file.

RTF Compatibility

Select the RTF Compatibility for your word processor, Word for Windows 2.0/6.0/7.0, Ami' Pro, or Word
Perfect for Windows.

See Also
Importing Text Files

Exit
This will exit the Help Magician and return control to Windows. You will be warned if the current file has
been edited since the last save and you will have the option of saving it before exiting, or to cancel the
exit and return to the editor.

Project Management Overview

What is Project Management?

Project Management is a feature of the Help Magician that helps you manage all the multiple source files
within a help project.    It takes care of handling clashes of context strings, context numbers, and topic
titles across all members of a project.    Entire projects can be archived, copied, moved, or deleted.   
Context relations for the entire project can be viewed or printed.    Project Management is an excellent
option if you are doing multiple file help authoring or doing team/workgroup development on a network.

Why use Project Management?

Project Management is so much more powerful than the Multiple Files feature on previous versions of
Help Magician.    For single help authors, managing multiple source files is easier.    No need to keep track
of a "master file" by entering associated RTF or MAP files.    For simultaneous team development work on
a network, Project Management makes sure that each help author doesn't interfere with each other or
duplicate the context strings, context ids, and topic titles of other project members.    This checking takes
place instantly as the help author enters a context string, context number, or topic title.

Storing your Project-Related Files

It is highly recommended that you create a unique directory for each unique help development project
that you work on with the Help Magician. This directory becomes the "build" directory for the project file
and project management.    You can use the file manager in Windows to create this unique directory.    A
single directory containing ALL project-related files (.hlx source files, bitmaps, shed files, and multimedia)
is especially needed for team/workgroup development on a network.

Doing a Build with Project Management

It's simple to make a final help file with Project Management.
1.    Open a project file.
2.    Make sure all .rtf and .h files are up to date (see status in File Selection Listbox).    If they're not, open
each source file and select Build...Write RTF for Compiler option or use the Build All button to
automatically do this procedure.
3.    Open the source file that you want to be your master file.    It should contain your contents page.
4.    From the Build Menu, select Rebuild All.

The following File menu items deal with project management.

 

Click on the desired area of the menu for specific help.

See Also
File Selection Listbox

New Project
Selecting New Project will clear the editor and prompt you for the new project's filename.    If one exists by
the name you select, you will be asked if you wish to overwrite it.    Next, the Project Management Form
will appear.    The next step is adding an existing HLX file to the project, creating a new HLX file, or
importing existing text into a new HLX file. Refer to the section below for more options on this form.

This command sets Help Magician into Project Management Mode.

 Tech Tip: All project-level information such as the individual component files (.hlx) that
you add to the project, window and compiler definitions, macros, and external file references are stored in
the project file (with an extension of .hmp).    A database containing fields for context numbers, context
strings, and topic titles for the entire project is also created.    The database uses the files with
the .isd, .isf, and .ism extensions.

Open Project
Choosing Open Project will bring up a file dialog box with a list of existing project files (with a .hmp
extension).    After selecting an existing project to open, you will be presented with the Project
Management Form.    Refer to the section below for more options on this form.

This command sets Help Magician into Project Management Mode.

 When you open a project file, other users on the network will not be able to use the
Global Project commands Delete or Move from the Project Management Form.

Save Project As
The Save Project As option allows you to save the currently opened project file (.hmp) under a different
name.    The 3 database files (.isd, .isf, and .ism) are also saved under the new name.    The Save Project
As option will not allow you to save the project file to a different directory.    Use the Project Management
Form's Global Copy or Global Move commands to accomplish this.

Close Project
Selecting this menu item will close the current project file and clear the editor.    If you have work in the
editor that has not been saved, you will first be prompted if you wish to save your work.

Closing a Project file sets Help Magician back into Single File Mode.

UnArchive Project File
The option allows you to unarchive a Help Magician project file and all its components (stored in a .HZP
file) to a subdirectory you choose.    When the file is unarchived, the new subdirectory becomes the
current help file "ROOT" directory for the build.    All references to paths are converted to the new
subdirectory after unarchiving.

You can archive a project file by clicking on the Archive button in the Project Management Form.

Archiving is a handy way of backing up your entire project into a single compressed file for moving to a
different machine.    All the project-related files are stored in a HZP file, which has the same structure as
the industry standard ZIP compression format. The archive and unarchive features of the Help Magician
require a support program ARCHIVE.EXE to exist in the same directory as HLPMAGIC.EXE - the Help
Magician program.

Project Management

Selecting New Project, Open Project, or Project Management menu option will bring up the Project
Management form.    Here you can add files to the project; delete them from the project; globally move,
copy, or delete files; archive files; view and print context relations of all member files; and refresh the
project database of all context strings, context numbers, and topic titles.    The Project Management form
is shown below.    Click on the preferred area for more information.

Click on the desired area of the    Project Management form for specific Help

See Also

Project Management Overview

File Selection Listbox

The File Selection Listbox provides a list of Help Magician source files (.hlx) that are part of the currently
opened project. Double-click on one of the source files to edit it.    Files may be added to this list by
clicking on Add File, New File, or Import.    Files may be removed from this list by highlighting the file and
clicking on Remove.    The current directory of the Project is displayed just above the File Selection
Listbox.

The listbox contains other information relative to the individual source file:

File ID is a number that the project manager assigns to the file when the file is added to the list.    This
number is unique and is never duplicated, even if the source file is removed.    All references in the
database to this file is done internally through this file id.

Status reports the status of the current file.    One of three file status modes could be shown.    "Avail" if
the file is available for editing.    "In Use Locally" if the file is currently being edited on your system.    "In
Use Remotely" if the file is currently being edited by someone else on the network.

.rtf reports the status on the companion RTF file that is needed for the final project build.    A "Yes" will be
shown if the RTF file exists and is up to date (ready for the final project build).    An "Old" status will be
shown if the RTF file does exist, but is older than the source file.    A "No" will be shown if an RTF file
doesn't exist.    If "Old" or "No" is displayed, you should open the source file and select Write RTF for
Compiler under the Build menu when you are ready to build your final help file.    Executing this function
will also update the MAP file.

.h reports the status of the companion MAP file that is needed for the final project build. A "Yes" will be
shown if the MAP file exists and is up to date (ready for the final project build).    An "Old" status will be
shown if the MAP file does exist, but is older than the source file.    A "No" will be shown if a MAP file
doesn't exist.    A "???" will be shown if the MAP file is an external file defined in Options...Compiler...Map.
The project manager doesn't know in this case if the file is up to date.

View HMP
Views the contents of the HMP file, when in project mode.

Build All
This feature loads each HLX file in the list one at a time and writes the RTF file for the compiler for each
HLX file. This is useful when you have a lot of HLX files to rebuild and want to automate the process.

Open
Opens a currently selected source file member of the project for editing.    You could also double-click on
a file in the File Selection Listbox to open it.    When you are editing this file, other users on the network
cannot access this file.    Note that you can only edit one source file member at a time, if it's available.   
When you open a source file member, any other one that may be in the editor will be closed and the new
one will be opened.

Close
Closes the current source file member that you are editing and clears the editor.    Note that you cannot
close someone else's file.    Closing the file also makes it available to other help authors in a network
environment.

Add File

Add File brings up a file dialog box prompting you for a Help Magician source file (.hlx) that will be added
to the project.    If you select a file that exists in another path that is different from the current project's
path, the file will be moved to the current project's path and tagged as a member of a project.    Once a file
has been added to a project, it cannot be edited as a single file.

The project manager requires that all source file members of a project (.hlx) be in the same directory as
the project file (.hmp).    If the project is part of a team development effort on a network, all bitmaps and
multimedia files need to be copied into the current project's path, so that everyone on the network will
have access to these files- independent of the workstation's drive/path assignments.

When a source file is added to a project, all context string/context number/topic title references are added
to the project database.    If any duplicates to other members of the project are found, a report is
generated which you can view or print.

In addition, the project manager scans the source file and extracts certain project information that will be
added to the project file (.hmp).    This information includes main and secondary window info, macros,
compiler settings, and external files.    Only new information is added to the project file (nothing is
replaced).    For example, if you have two secondary windows named "Glossary" and "Contents" in your
source file and the project file already has "Contents" defined, only the configuration for the "Glossary"
secondary window will be added to the project file.    Thus, if you are adding files to the project, pick the
first file that contains the project settings that you want to use.

Any files that are added to the project, will all share the same project information described in the
previous paragraph.    Any additions or deletions to this project information will affect other members of the
project.    Help Magician menu options that affect project information are Options...Paths (Bitmap
Directories only), Options...Appearance, Options...Compiler, Options...Windows, and Macros.

New File
Selecting the New File button prepares the editor for a new file. If you had a modified source file in the
editor, you will be asked if you wish to save it.    All the project information discussed in Add File above (if
any) becomes instantly available.    Once the New File is "Saved File As", it is then added to the project
file following the same procedure as Add File above.

Import
Clicking on the Import button brings up the Import Form.    See topic on Importing for further information
on this form.    Once a file is imported and Saved As, it is then added to the project file following the same
procedure as Add File above.

See Also
Import

Remove
Remove removes a currently selected source file in the File Selection listbox from the project.    Any
references to the file in the project database are also removed.    You will be given an option to delete the
source file from disk.    Note that you cannot remove a file if it is currently in use.    This command is
password protected (see Statistics (Project) for setting password).

See Also
Statistics (Project)

Move
Move will move a currently selected source file to another directory of choice.    The new full path will be
displayed in the File Selection listbox.    Note that if you are doing a team development effort, this file will
no longer be available to other team members on the network (because it will be located in a directory
different from the project's path).    This command is password protected (see Statistics (Project) for
setting password).

See Also
Statistics(Project)

Copy
Copy will copy a currently selected source file to another directory of choice.    The new full path will be
displayed in the File Selection listbox.    Note that if you are doing a team development effort, this file will
no longer be available to other team members on the network (because it will be located in a directory
different from the project's path).    This command is password protected (see Statistics (Project) for
setting password).

See Also
Statistics (Project)

Xref
Xref scans all source file members of the project and refreshes the project database of all context strings,
context numbers, and topic titles.    It will find duplicates and produce a duplication report which you can
view and print.    You may need to do this if the database gets corrupted (through power failure or
whatever) or you get DB errors.    Note that this command cannot be executed if any of the project source
file members is in use.

Delete
Clicking on delete will give you a choice of globally deleting the project file and optionally all its related
files.    Delete is one of those powerful commands that could be dangerous in the wrong hands- thus it can
be password protected (see Statistics (Project) for setting password).

See Also
Statistics (Project)

Move
Move will globally move the project file and all its related files to another path.    This command is
password protected (see Statistics (Project) for setting password).

See also
Statistics (Project)

Copy
Copy will globally copy the project file and all its related files to another path.    This command is password
protected (see Statistics (Project) for setting password).

See Also
Statistics (Project)

Archive
Archiving is a handy way of backing up your entire project into a single compressed file for moving to a
different machine.    All the project-related files are stored in a HZP file, which has the same structure as
the industry standard ZIP compression format. The archive and unarchive features of the Help Magician
require a support program ARCHIVE.EXE to exist in the same directory as HLPMAGIC.EXE - the Help
Magician program.

Statistics (Project)

The Statistics button allows you to set project-level textual information.    It will also allow you to set the
Supervisor password, which controls access to project moving, copying, and deleting.

Title

Title of the project.

Last Saved

Contains the date of the last time Project file (.hmp) was updated.

Manager

The name of the person managing the help project.

Comments

Any textual comments about the help project.

Number of Files

Reports the total number of files associated with the help project.

Total Size

Click on this button to calculate the total size of all the files associated with the help project.

Change Project Password

Click on this button to change the Supervisor password.    If a password is already defined, you will be
prompted for the old password.    The password controls access to project-level copy, move, and delete
functions.

Help to Manual
Selecting this sub menu brings up the Export form with the options set for Help To Manual.

If the Omit Help Formatting Information check box is checked, the help formatting such as the hyperlinks
for Jumps and Popups will not be written to the RTF file. The resulting RTF file is more suitable for
converting a help file to a manual.

Statistics (File)
The Statistics dialog displays the title of the help file, the date and time of the last save, the author,
comments, the number of pages and the word count, if desired.

Context List (project management form)

The context list option reports a listing of all context strings, context numbers (ids), and topic titles for the
entire project.    You can view the database in any sorted order.    You can also print the contents of the
database in any sorted order.

File List

The File List button reports a list of all associated files to a help project.    It will list project source files,
database files, bitmaps, and multimedia files.    You have the option of printing this list to a printer.

Manual to Help Conversion

The Manual To Help conversion function, available from the "Files" menu, allows you to create a help file
from a manual or documentation. The manual must be created in a word processor such as Word for
Windows or AmiPro and saved in Rich Text Format (RTF). By placing special "Import Commands" in the
document, you can control how your manual will be converted to a help file.

How to Pass Project Options

When you convert a manual or document you might want to specify more advanced help system features
such as secondary windows, macro definitions, copyright notices, etc. This can be accomplished by
running the Help Magician, defining the appropriate options using the menus, and saving the file with the
same name as your manual with a .HLX extension. It's that simple. When you convert your manual, you
will have the option to enter a source for project options - enter the name of the file you saved in the Help
Magician. The converter will use the options you selected in your "dummy" help file.

Keeping the Help File Updated

After conversion you should overwrite the dummy file with the converted file. From that point on everytime
you update your manual and wish to recreate the help file, simply specify the old help file name for the
Project Options Source. Any changes you might have made to the project options will automatically be re-
used in the new help system.

Table of Contents (TOC) Options

If you have a Table of Contents in your document, you have the option of converting it to a main
"contents" topic, where each TOC entry will be converted to a jump to its respective topic. The "Use
Existing TOC" is selected by default.

If your document does not have a TOC, you may choose to create a main contents topic    from scratch by
selecting "Create TOC from Styles". You must first enter the name of your document, previously saved in
RTF format, in the "RTF Filename" text box. You may use the Browse button to search for your document.

After you have done this, select "TOPIC" from the Function list and then select a style or styles from the
Style list that you want the Help Magician to recognize as topic headings. Every time one of the selected
styles is encountered during the conversion process, a new topic will be created. and entered into the
main contents topic.
 
You may choose to ignore any TOC and not have a    main contents topic created by selecting "Don't
create TOC".

Import Commands

If you have entered special import commands into your manual or document, you may tell the Help
Magician to ignore those commands by selecting "Ignore Commands". See "Formatting Import
Commands" for more information.

Ignoring Section and Hard Page Breaks

These features can be used when you have defined your own page breaks using the RTF Import
Commands and wish to ignore any section and hard page breaks in the manual.

Removing Unused Styles

This feature is useful when there are alot of unused styles defined in the manual you are converting and
you don't wish to have them added to the styles list in the Help Magician.

Converting Unresolved Hotspots

You can have the Help Magician convert unresolved hotpots that it finds to "Other Source" rather than
leaving the hotspot unresolved.

Converting Index Entries

If you created an index in your manual and defined index entries throughout the text, you may have the
Help Magician convert these entries into keywords. As the Help Magician finds index entries it will add the
text to the list of keywords for the page the entries appear on.

Read Styles From RTF

The Manual to Help converter can take advantage of styles you have created in your document by
converting the text they mark into topics, hotspots, TOC, or glossary entries.

RTF Filename

Enter the name of your document. It should have been previously saved in RTF format from your word
processor.

Browse

Pressing the Browse button will pop up a file dialog to automate the entry of the path and    filename for
the current field.

Project Options Source

Enter the name of a Help Magician file (.HLX) that will be the source of the Help system project options.
Refer to the section above on "How to Save Project Options".

See Also

Formatting Import Commands

Formatting Import Commands

You can control the conversion of your document into a help system by inserting special Import
Commands in your document. You can simply type a command into your document using the format
described below and then format the command as invisible or hidden text. These commands will not be
displayed when the manual is printed and they can be hidden while viewing the document in your word
processor by selecting the appropriate options from the menus. Each command has a short hand form
you may use for ease of entry. Do not embed or group these commands inside one another. They may be
concatenated one after the other as long as each command is complete and is paired with its
corresponding ending command, if it needs one.

The commands and their respective functions are listed below:

[OMITPAGE] or [OPG]
Place this command at the top of any page you do not want in your help file.

[OMITSECTION] or [OS]
Place this command at the top of any section you do not want in your help file. Sections are
defined in Microsoft Word using section breaks instead of page breaks.

[OMITPARAGAPH] or [OP]
Place this command at the beginning of any paragraph you do not want in your help file.
 
[BROWSEGROUP    groupname:sequence] or [BG groupname:sequence]
Place this command at the top of any topic that you wish to assign to a browse group.
Enter the group name and then the sequence number separated by a colon. Do not place any
spaces between the colon and the group name or sequence. The sequence should be a
decimal number, unique for the topic it is assigned and contain leading zeros to make it three
digits long. You may only assign one browse group command per topic.

Examples:
[BROWSEGROUP commands:020]
[BG edit:012]

[KEYWORDS    keyword1;keyword2;]    or    [KW keyword1;keyword2;]
Place this command at the top of any topic that you wish to assign keywords. Separate keywords as
show with semicolons. Each keyword must have a terminating semicolon. Note spaces are not required
between keywords and semicolons.

Examples:
[KEYWORDS    Making Entries; Editing Keys; Editing;]
[KW Making Entries;Editing Keys;Editing;]

[MULTIKEYWORDS    keyword1;keyword2;] or [MK keyword1;keyword2;]
Place this command at the top of any topic that you wish to assign multiple keywords. Separate keywords
as show with semicolons. Each keyword must have a terminating semicolon. Note spaces are not
required between keywords and semicolons.

Examples:
[MULTIKEYWORDS Keyboard layout;]
[MK    Keyboard layout; Keys; Atl-A;]

[BUILDTAGS tag1;tag2;] or [BT tag1;tag2;]

Place this command at the top of a topic that you want to assign build tags. Separate build tags as show
with semicolons. Each buildtag must have a terminating semicolon. Note spaces are not required
between tags and semicolons.

 there is a limit of 16,383 build tags total.

[JUMPTOPIC secwin fmtcmd title] or [JT secwin fmtcmd title]
The JUMPTOPIC and ENDJUMP commands are used together in pairs to mark text as a hypertext jump
hotspot. Place the JUMPTOPIC command at the beginning of a text segment that you want to be a jump
hotspot. The following fields are mandatory except for the secwin field, which may be omitted:

"secwin" field:
Enter a secondary window name in the "secwin" field to display the topic in or leave it blank to display the
topic in the main window. The secondary window must be defined in the project options using the method
described above in the "How to Pass Project Options" section.

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"title" field:
Enter the title of the topic in the "title" field that will be displayed when the hotspot is selected by the user.

Examples:
The solenoid is a [JUMPTOPIC NONE Electrical Parts]electromechanical[ENDJUMP] device.
[JT bluewin NONE Sale Types]Periodic[EJ] sales dropped in the third quarter.
Using the [JT NOCOLOR Main Topic]Help Magician[EJ] is easy and fun.

[JUMPMACRO fmtcmd macdefn] or [JM fmtcmd macdefn]
The JUMPMACRO and ENDJUMP commands are used together in pairs to mark text as a hypertext
macro jump hotspot. Place the JUMPMACRO command at the beginning of a text segment that you want
to be a jump hotspot to a macro. The following fields are mandatory except for the secwin field, which
may be omitted:

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"macdefn" field:
Enter the name of a Macro Definition that was defined using the method described in the "How to Pass
Project Options" section. The macro(s) defined in the macro definition will be executed when the hotspot
is selected by the user.

Examples:
The solenoid is a [JUMPMACRO NORMAL PlayAudio]electromechanical[ENDJUMP] device.
[JM NONE ShowAbout]Periodic[EJ] sales dropped in the third quarter.
Using the [JM NOCOLOR AddButton]Help Magician[EJ] is easy and fun.

 PlayAudio, ShowAbout and AddButton are examples of macro definitions. A macro
definition is a user created name in the Help Magician for a group of macros or just one macro that
control the WinHelp environment. Refer to the section on Help Macros for more information on controlling
help files with macros.

[JUMPFILE secwin fmtcmd filename contextstring] or [JF secwin fmtcmd filename contextstring]
The JUMPFILE and ENDJUMP commands are used together in pairs to mark text as a hypertext jump to
another help file. Place the JUMPFILE command at the beginning of a text segment that you want to be a
jump hotspot to another help file. The following fields are mandatory except for the secwin field, which
may be omitted:

"secwin" field:
Enter a secondary window name in the "secwin" field to display the topic in or leave it blank to display the
topic in the main window. The secondary window must be defined in the project options using the method
described above in the "How to Pass Project Options" section.

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"filename" field:
Enter the DOS filename of the help file that you want the hotspot to jump to.

We advise not entering a path with the filename to avoid forcing end users of the help system to have
specific paths on their systems. For example if you specified a path such a D:\HELP\MYHELP.HLP, and
the user did not have a "D": drive on their system, WinHelp would report an error and the user would not
be able to correct the situation. Try to avoid using hard coded paths in help systems.

"contextstring" field:
Enter the context string associated with the topic in the help file that you are jumping to.

Examples:
Solenoids are [JUMPFILE NORMAL solenoid.hlp Solenoids] electromechanical [ENDJUMP] devices.
[JF NONE schedule.hlp Period]Periodic[EJ] sales dropped in the third quarter.
The [JF helpwin NOCOLOR hlpmagic.hlp Contents]Help Magician[EJ] is easy and fun.

[JUMPSOURCE secwin fmtcmd contextstring] or [JS secwin fmtcmd contextstring]
The JUMPSOURCE and ENDJUMP commands are used together in pairs to mark text as a hypertext
jump to another source file within a multiple file build. Place the JUMPSOURCE command at the
beginning of a text segment that you want to be a jump hotspot to another topic in a multiple file build.
The following fields are mandatory except for the secwin field, which may be omitted:

"secwin" field:
Enter a secondary window name in the "secwin" field to display the topic in or leave it blank to display the
topic in the main window. The secondary window must be defined in the project options using the method
described above in the "How to Pass Project Options" section.

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"contextstring" field:
Enter the context string associated with the topic in the help file within the build that you are jumping to.

Examples:
Tires are [JUMPSOURCE NORMAL Tires]round[ENDJUMP] wheels.
[JS NONE Period]Periodic[EJ] sales dropped in the third quarter.
The [JS helpwin NOCOLOR Contents]Help Magician[EJ] is easy and fun.

[JUMPMIDTOPIC secwin fmtcmd contextstring] or [JMT secwin fmtcmd contextstring]
The JUMPMIDTOPIC and ENDJUMP commands are used together in pairs to mark text as a hypertext
jump to a specified point in another topic. That point is defined by setting a MIDTOPIC command in the
destination topic at the position you want to jump to. Place the JUMPMIDTOPIC command at the
beginning of a text segment that you want to be a jump hotspot to that position. The following fields are
mandatory except for the secwin field, which may be omitted:

"secwin" field:
Enter a secondary window name in the "secwin" field to display the topic in or leave it blank to display the
topic in the main window. The secondary window must be defined in the project options using the method
described above in the "How to Pass Project Options" section.

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field or leave it blank to default to NORMAL mode:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"contextstring" field:
Enter the context string that entered in the CONTEXTSTRING command in the topic that you want to
jump to.

Examples:
The solenoid is a [JUMPMIDTOPIC NORMAL Electrical Parts] electromechanical [ENDJUMP] device.
[JMT bluewin NONE Sale Types]Periodic[EJ] sales dropped in the third quarter.
Using the [JMT NOCOLOR Main Topic]Help Magician[EJ] is easy and fun.

[ENDJUMP] or [EJ]
Used with the JUMPTOPIC, JUMPMACRO, JUMPFILE, JUMPSOURCE and JUMPMIDTOPIC command
to mark text as a jump hotspot. Place this command at the end of a text segment you want to become a
jump.

Examples:
The editor keys may be used to [JUMPTOPIC NONE Editor]edit[ENDJUMP] text in the window.
By selecting the [JT redwin NORMAL Keys]edit key[EJ], text can be formatted by the user.

[POPUPTOPIC fmtcmd title] or [PT fmtcmd title]
The POPUPTOPIC and ENDPOPUP commands are used together in pairs to mark text as a hypertext
popup hotspot. Place the POPUPTOPIC command at the beginning of a text segment that you want to be
a popup hotspot.

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"title" field:
Enter the title of the topic in the "title" field that will be displayed when the hotspot is selected by the user.

Examples:
The solenoid is a [POPUPTOPIC NORMAL Electrical Parts] electromechanical [ENDPOPUP] device.
[PT NONE Sale Types]Periodic[EP] sales dropped in the third quarter.

[POPUPFILE fmtcmd filename contextstring] or [PF fmtcmd filename contextstring]
The POPUPFILE and ENDPOPUP commands are used together in pairs to mark text as a hypertext
popup to another help file. Place the POPUPFILE command at the beginning of a text segment that you
want to be a popup hotspot to another help file.

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"filename" field:
Enter the DOS filename of the help file that you want the hotspot to popup.

We advise not entering a path with the filename to avoid forcing end users of the help system to have
specific paths on their systems. For example if you specified a path such a D:\HELP\MYHELP.HLP, and
the user did not have a "D:" drive on their system, WinHelp would report an error and the user would not
be able to correct the situation. Try to avoid using hard coded paths in help systems.

"contextstring" field:
Enter the context string associated with the topic in the help file that you want to popup.

 Examples:
The solenoid is a [POPUPFILE NORMAL Solenoids]electromechanical[ENDPOPUP] device.
[PF NONE Period]Periodic[EP] sales dropped in the third quarter.
Using the [PF NOCOLOR Contents]Help Magician[EP] is easy and fun.

[POPUPSOURCE secwin fmtcmd contextstring] or [PS secwin fmtcmd contextstring]
The POPUPSOURCE and ENDPOPUP commands are used together in pairs to mark text as a hypertext
popup to another source file within a multiple file build. Place the POPUPSOURCE command at the
beginning of a text segment that you want to be a popup hotspot to another topic in a multiple file build.

"fmtcmd" field:
To format the way the hotspot will appear in the help file, enter one of the following options in the
"fmtcmd" field:

NORMAL Display hotspot with color and underlining.
NOCOLOR Hotspot will appear with underline only. No color will be displayed.
NONE Hotspot will not be formatted. No color or underlining will appear.

"contextstring" field:
Enter the context string associated with the topic in the help file within the build that you are popuping to.

Examples:
The solenoid is a [POPUPSOURCE NORMAL Electrical_Parts] electromechanical [ENDPOPUP] device.
[PS bluewin NONE SaleTypes]Periodic[EP] sales dropped in the third quarter.
Using the [PS NOCOLOR Main_Topic]Help Magician[EP] is easy and fun.

[ENDPOPUP] or [EP]
Used with the POPUPTOPIC, POPUPFILE and POPUPSOURCE command to mark text as a popup
hotspot. Place this command at the end of a text segment you want to become a popup.

Examples:
The editor keys are used to [POPUPTOPIC NORMAL Editor]edit[ENDPOPUP] text in the window.
By selecting the [PT redwin NOCOLOR Keys]edit key[EP], text can be formatted by the user.

[CONTEXTSTRING contextstring] or [CS    contextstring]
Place the CONTEXSTRING command at the top of a topic to assign it a context string. This is useful
when using popups or jumps to other sources. Do not use this command for mid topic jumps, rather use
the MIDTOPIC command to assign a context string to mark a specific position in a topic.

[TOPICTITLE title] or [TT title]
Place the TOPICTITLE command at the top of a topic to assign it a title. This command is ignored by the
converter if you are generating a table of contents and the topic has a title generated for it automatically.
Use this command to specify a title for a topic that otherwise would not have one generated from styles or
needs a specific title to go with the keywords and see in the WinHelp search dialog.

[MIDTOPIC contextstring] or [MT    contextstring]
Place the MIDTOPIC command at a desired position in a topic to assign it a mid-topic context string. This
is useful when using    the mid-topic jump command, JUMPMIDTOPIC.

Example:
....
[MT Glossary_J]J
James
Jackson
Jones

[MT Glossary_K]K
Karlan
Kraft
...

[GLOSSARYSTART] or [GS]
The GLOSSARYSTART and GLOSSARYEND commands are used together in pairs to mark text as an
entry into a glossary topic. Place the GLOSSARYSTART command at the beginning of a text segment
that you want to be an entry into the glossary. The text will appear in the glossary exactly as it appears in
the document. No hotspot will be generated for the entry.

[GLOSSARYEND] or [GE]
Used with the GLOSSARYSTART commands to mark text as an entry into a glossary topic. Place this
command at the end of a text segment you want to become an entry into the glossary.

Examples:
[GS]Anchors are devices that help prevent a vessel from drifting.[GE]

Turn on your [GS2 tubes]CRT - Cathode Ray Tube[GE] and wait for it to come on.

[GLOSSARYSTART1 title] or [GS1 title]
The GLOSSARYSTART1 and GLOSSARYEND commands are used to mark a word or phrase in your
document that you want to appear in the glossary as a popup to another topic. Place the
GLOSSARYSTART1 command at the beginning of a word or phrase that you want to become a popup in
the glossary. Enter the title of the topic that you wish to popup from the glossary.

Example:
John used a [GS1 Spade Definition]spade[GE] to dig up the garden.

[GLOSSARYSTART2 title] or [GS2 title]
The GLOSSARYSTART2 and GLOSSARYEND commands are used to mark a word or phrase in your
document that you want to appear in the glossary as a jump to another topic. Place the
GLOSSARYSTART2 command at the beginning of a word or phrase that you want to become a jump in
the glossary. Enter the title of the topic that you wish to "jump to".

Example:
Carla used a [GS2 Back Hoe Definition]back hoe[GE] to dig a hole in the road.

[GLOSSARYSTART3 definition] or [GS3 definition]
The GLOSSARYSTART3 and GLOSSARYEND commands are used to mark a word or phrase in your
document that you want to appear in the glossary as a popup to a topic that will be created containing the
definition your entered in the command. Place the GLOSSARYSTART3 command at the beginning of a
word or phrase that you want to become a popup in the glossary. Enter the definition text that you wish to
popup from the glossary. A topic will be created containing the definition you entered.

Examples:
The user should enter his [GS3 employee identification number]EID[GE] in the box.
Place the flat portion of the [GS3 A scanner used by technicians]HandiScan[GE] on the unit to be tested.

The glossary topic will have a picture of the letters A through Z that are actually mid-topic jumps to
respective areas further down the page. The page consists of 26 areas each marked with a letter of the
alphabet. As the Manual To Help converter finds a piece of text marked with glossary commands, it will
make a copy of the text and place it in the appropriate area in the glossary topic. The converter will use
the first letter of the text to determine where to place the text in the glossary. If GS1, GS2 or GS3 are
used, then the converter will make the appropriate hotspot    on the text. A topic will be created in the case
of GS3 containing the user entered definition text.

· Use the GS and GE commands when you have plain text to be included in the glossary. No
hotspots will be generated for the text.

    ·Use the GS1 and GE commands when you have a word or phrase that you want included in the
glossary as a popup to an existing topic.

· Use the GS2 and GE commands when you have a word or phrase that you want included in the
glossary as a jump to an existing topic.

· Use the GS3 and GE commands when you have a word or phrase that you want included in the
glossary as a popup to another topic that will be created for you with a definition you supply.

Tools

 The Tools menu for Win95 is shown here.

Click on the desired area of the Tools Menu for specific Help

Tools

When you select one of the tools from the Tools Menu, the particular program is run independently of the
Help Magician. This allows you to remain in the Help Magician and run one or more tools at the same
time.

Renumber Context #'s (Numbers)
This function will renumber all of the in the current help source file. If Context Numbers already exist, you
will be warned that they will be overwritten. A dialog will ask for the base value from which to start
numbering. Context Numbers will begin at the base value and continue sequentially to the end of the file.

SHED.EXE
SHED is an acronym for Segmented Hypergraphics Editor. SHED is used to create hotspots within
bitmaps.    Refer to SED.EXE for more information.

Paintbrush
Paintbrush is a popular Windows application that allows you to create and edit bitmaps for use in the Help
Magician and SHED.

Bitmap Magician
The Bitmap Magician is a program that allows you to modify font families to you're own specifications.   
With the Bitmap Magician you can convert special and decorative fonts to bitmaps for use within the help
system. You can create customized bullets and superscripted/subscripted text. The Bitmap Magician is
installed with the Help Magician and an icon is included in the Help Magician Pro program group.

Sound Recorder
This sub menu item will call the Windows sound recorder which you can use to record wave (.WAV) files
to be played in your help system.

Context Reference

Selecting the Context Reference sub menu will call the HM Context Reference executable. This utility can
also be called from its icon in the Help Magician Pro program group.

The purpose of the Context Reference utility is to view the Context Strings in any HLX file on disk. This is
particularly useful when working in SHED.EXE as a reference to the Context Strings to be linked to
Jumps and Popups to be entered into the Attributes dialog.

Browse

When the Context Reference utility is first called, a file selection dialog will pop up from which you will
select the HLX file to read. At any other time, press the Browse button to bring up the file selection dialog.

 The selected HLX file must have been saved with version 3.0 or later of the Help
Magician. If it was not, a message will inform you that the file was not indexed.

Preview

Press the Preview button to view the topic that is highlighted in the list box.

Copy

The Copy button will copy the Context String to the Clipboard for pasting into the Attributes dialog in
SHED.EXE.

Help

On-line help for the Context Reference utility.

Exit

Close the Context Reference utility.

User Defined...
Select the User Defined sub menu to add your own tools to the Tools menu. A file selection dialog will pop
up from which you will select the executable (.EXE) to add to the menu. When the file has been added to
the menu, you will be able to invoke the program by clicking on its sub menu.

When prompted, enter the window title bar text, as it will appear when the program is executed. This is
the text at the top of the window, usually the program name, sometimes followed by the filename of the
file currently being worked on. For example, Word for Windows title bar contains "Microsoft Word -
FILENAME.DOC". In this instance, "Microsoft Word" should be entered as the title bar text because it is
the only consistent part of the text.

The title bar text is used to look for an instance of the program in the task list to avoid invoking another
instance of the program. If found, the current instance of the program will be activated.

To delete a user defined tool from the Tools menu, press and hold the Ctrl key while clicking on the sub
menu.

Help Topics Browser

Help Magician Pro 95 emulates the WinHelp 95 Help Topics Browser Window that contains the Contents
Tab, Index Tab, and the Find Tab. To show the Help Topics browser window, simply click on the "Help
Topics" button on the WinHelp Button Bar just above the Help Magician's editor. The WinHelp 95 Help
Topics Browser window containing the Contents Tab, Index Tab, and Find Tab, will appear. Note that if
you are in WinHelp 3.x emulation, then the "Contents" button will take you to the contents page of your
help file and not show the special WinHelp 95 Help Topics browser window.

Click on the desired button of the Help Topics Browser bitmap for specific Help

WinHelp 95 Contents Tab

During development of your help file, Help Magician Pro 95 can display the Contents File (.CNT) in a
special Help Topics window the same way WinHelp 95 does. The CNT file is a companion file for
Windows 95 help that defines how topics will appear in this Help Topics browser window (Contents Tab
portion). Books containing topics are shown in a hierarchical tree or outline format.

The CNT file can be created with our WinHelp 95 Contents Editor utility. This utility allows you to create
books, and drag-and-drop topics into books, as well as visually rearrange your contents file. The WinHelp
95 Contents Editor utility can be run at any time from the Tools...WinHelp 95 Contents Editor menu.

The CNT file should exist in the same directory as the Help Magician source (HLX) files.

If no CNT file exists when the Contents Tab is shown, you will have the option of allowing Help Magician
Pro to create a CNT file that simply lists all the topics in the order they appear in the Help Magician Pro
editor, or running the WinHelp 95 Contents Editor for more advanced CNT authoring.    If you let Help
Magician create the simple CNT file, without using the WinHelp 95 Contents Editor, the CNT file will be
created and the Help Topics Browser window will appear.

 Tip: It is recommended that you develop the CNT file after you've outlined the structure of
your help file and created the topic pages. The WinHelp 95 Contents Editor gives you the option of
importing existing topics from a Help Magician single source file (.hlx) or a project source file (.hmp)-
which contain multiple .hlx files.

Navigating using the Contents Tab

Once the Contents Tab is displayed, you can click on books to open them and show other books or
topics. To show a topic (listed in the Contents Tab) in the Help Magician's editor window, double-click on a
topic or select the topic and click on the Display button. To print a topic, select the topic and click on the
Print button. The topic will be displayed or printed provided that the topic exists in the currently opened
source file. The Help Topics browser window will stay open and on top until you close it.

Note: Any topic printed from Help Magician may not look exactly like the way the topic would be printed
from WinHelp 95, because of some limitations within the print handler in one of the 3rd party controls that
Help Magician uses for printing.

See Also
Find Tab
Index Tab

WinHelp 95 Index Tab

The Index Tab replaces the Search dialog box in WinHelp 3.1. It provides a comprehensive index to the
topics in one or more Help files. The index contains a list of keywords that you specify for each topic. A
user can scroll to the desired keyword either by clicking the scroll arrows or by typing the word. If more
than one topic is associated with the keyword, WinHelp (and Help Magician simulated Help Topics dialog)
displays the Topics Found dialog box that lists the associated topics. WinHelp 95 and Help Magician Pro
95 now supports second level index entries.

 Tip: You can use Help Magician Pro's powerful Keyword Management feature to create
keywords for the Index Tab. Access it from the Links...Keyword Management menu. For more information,
see the section on Keyword Management.

Using Help Magician Pro's Simulated Index Tab

The Index Tab in Help Magician works the same way it does in WinHelp 95. The keywords will be read
from Help Magician's internal keyword database and displayed in the keyword list. Any related keywords
(subentries) will be displayed indented under a listed keyword. You can search the keyword list by typing
the first few letters of the word in the textbox at the top of the Index Tab. As you type, the keyword with
the closest match will be highlighted in the keyword list. Click on Display to view the topics that are
associated with the selected keyword. From that topic list, you can select a topic and then click on Display
to display the topic in the Help Magician editor (provided it is a topic that is already part of your opened
source file).

See Also
Contents Tab
Find Tab

WinHelp 95 Find Tab

Help Magician Pro simulates most of the functionality of the Find Tab in the Help Topics window in
Windows 95. When you click on the Find Tab, the Find Tab window will appear.

Using Help Magician Pro's Find Tab

Follow the instructions on the Find Tab form. Start by entering the word(s) you want to search for in the
textbox at the top. You can clear your typing by pressing Clear. Each time you enter text in the textbox,
your entry will be added to the list. To select one of your past entries, click on the down arrow and select
an entry.

Next click on the Find Now button. This may take a while depending on the size of your currently opened
help file. Once Help Magician finishes scanning the text on all your help pages, a list of topics where the
text was found will appear in the listbox. To go to that topic, simply double click on the topic, or highlight
the topic and click on the Display button. You can print a selected topic by clicking on the Print button.

Help Magician supports some of the methods that WinHelp 95 uses to do full text search. You can search
for a word, phrase, partial word, or group of words appearing in a topic. You can even tell Help Magician
to treat lowercase and uppercase letters the same.

See Also
Contents Tab
Index Tab

On Line Help

Click on the desired area of the Help Menu for specific Help

Help on Help
Calls the Microsoft Help on Help file with instructions on how to use Windows help files.

Contents
Clicking on the Contents sub menu will display the Help Magician's own help system, at the table of
Contents page. From this page, you can get more information on any topic by clicking on the desired
word or phrase. You can also select Search to search for help on a topic by keyword.

Search
Selecting Search from the Help Menu will bring up the help system in search mode.

Keyboard
Selecting Keyboard from the Help Menu will bring up the help system with keyboard definitions as the
current topic.

About
Clicking on the About sub menu will display the application logo, the Windows operating mode, the
amount of free memory available to Windows, and the version number of the Help Magician.

Help Wizard

The Help Wizard will help familiarize you with help systems in general, it will help familiarize you with the
Help Magician, and it will assist you with almost any of the functions used to create a help system.

Categories

If you are new to help systems or to the Help Magician, the Introduction, the Tutorial, and the New
Help File categories will be of particular interest.

The Tutorial walks you through the creation of a simple help file and does all of the work for you. You can
quickly learn some of the basics while the help system is being created.

The New Help File category will step you through setting up all of the necessary components of a help
system.

After the categories described above, there are two basic types of categories, Tours and Assist
categories.

The Tour categories display the selected form and explain all of its controls.

The Assist categories actually walk you through the process of the selected feature while you fill in the
information for your own help system.

 The Help Wizard is interactive and user friendly and requires little explanation. When you
begin to use it, it will become apparent that no further documentation is necessary to complete the
selected function.

Level

Novice vs Expert

In Novice mode, the Help Wizard displays more explanatory information than in Expert mode. If you are
already familiar with help systems, the Expert mode is probably more appropriate for you. If you are new
to help systems, the Novice mode will provide more information and guidance.

Options

Show Wizard at Startup

By default, the Help Wizard pops up when the Help Magician is started. You can turn this feature off by
unchecking the Show Wizard at Startup sub menu, available from the Options menu.

Sound

A sound is generated when the Help Wizard types for you. You can turn off this feature by unchecking the
Sound sub menu.

Quick Help

A small window is displayed when the cursor is moved over the five toolbar buttons with a description of
the functionality of the button. You can turn off this feature by unchecking the Quick Help sub menu.

Cursor Speed

As the Help Wizard demonstrates a feature, it moves the mouse cursor to the location of the control
being discussed. There are many factors involved in the determination of the speed of the cursor in
addition to personal preference.

To adjust the speed, select the Options menu, Cursor Speed sub menu and click on the desired speed,
from one (slowest) to six (fastest).

Windows Version

The Help Wizard will display information and provide assistance based on the version of Windows on
your system and the Compiler Version as selected on the Compiler Options form.

Importing Text Files

Import Text

ASCII text can be imported in the Help Magician. The text can be written out from a word processor but
some formatting is required before it can be read into the Help Magician. Select the Import sub menu
from the file menu. This will bring up the Import form. On the Import form, click on the Text (.TXT) radio
button.

Import Option

Select whether the imported text will replace the current file or be appended to the end of the file.

DDE

Note that text can also be "pasted" into the editor with DDE (Dynamic Data Exchange). While the new
Windows standard keystrokes for DDE are Ctrl X, Ctrl C, and Ctrl V for Cut, Copy and Paste, the Help
Magician uses Shift Del, Ctrl Ins, and Shift Ins respectively. See Environment Options for alternate
keyboard configuration for Cut, Copy, and Paste.

Page Breaks

When a word processor file is exported as text, there are no hard page breaks. The Help Magician needs
hard page breaks to determine where on help topic ends and another begins.

If you write out an ASCII file from the Help Magician, using Save As Text, each page begins with the
heading, Title:. The Help Magician considers this to be a page break and will begin a new topic.
Optionally, you can enter the sequence, \Page, or a literal character 12, into your ASCII file as a page
delimiter. If no page break is included in the ASCII file, the Help Magician will try to place all of the text
into the first page, probably resulting in an "out of string space" error.

Formatting

Other formatting can be used to facilitate importing ASCII files into the Help Magician. If an ASCII file is
formatted in the same manner as the Help Magician's Save As Text command, the information following
the headers (\Title:, \Keywords:, \Multiple \Keywords:, \Context Number:, and \Browse:) will be written to
their appropriate positions in the help file database as if they had been entered from the Help Magician.

The headers must be at the left margin with no characters, spaces, or tabs before the header.

TUTOR.TXT

The Tutorial file, TUTOR.HLX, was Saved As Text as TUTOR.TXT. The following example listing of the
third page, in bold type, shows the exact format of the text file:

\Title: Cutting Text
\Keywords: Clipboard, Cut, Edit
\Multiple Keywords:
\Context Number: 0
\Browse: Edit: Cutting Text, Copying Text, Pasting Text

Cutting Text

Select the text to be cut by holding the left mouse button and dragging over the text. Then select Cut from
the Edit Menu or press Shift Del. The text is cut to the Windows Clipboard.

Conversions

Most word processors can save a file in ASCII, or text only format. To convert a word processor document
to a Help Magician file, modify a version of the document, save the document as text, and import it into
the Help Magician with the Import Text function available from the File Menu (or Project Management's
Import button). Be sure to include one of the page break delimiters (described earlier in Page Breaks) in
the text file. You can include any of the other headers shown in the TUTOR.TXT file above or import the
text file and enter the information in the Help Magician's editor.

Keep Returns

If possible, don't word wrap the lines in the text file with hard returns. This will cause lines of fixed length
in the Windows help system, defeating the automatic word wrapping done by WINHELP.EXE. The Keep
Returns option will import the text file exactly as it was written.

If you don't want certain paragraphs to word wrap, select the Define Styles sub menu from the Format
menu and define a style for this purpose. Click on the alignment tab on the Paragraph form and check
the Force word wrap off check box.

Delete Returns

If hard returns are present, select the Delete Returns option from the Import Text Menu. This will remove
all hard returns except those at paragraphs, or double spaced lines.

See Also

Environment Options

Importing RTF Files

Overview

The Help Magician will read RTF files generated by Word for Windows, Ami' Pro or Word Perfect for
Windows version 6.0a. When we mention a "word processor" we mean specifically Word for Windows,
Ami Pro or Word Perfect for Windows version 6.0a.

Backup

It is important that you backup up your RTF file before reading it into the Help Magician and writing it out
again. Because of the filtering that is necessary to import the RTF file into the Help Magician, the file will
be changed.

Exporting

To export an RTF from Word for Windows, select "Save As..." from the File Menu. Click on the drop down
box labeled "Save File as Type:" and select "Rich Text Format (*.rtf)". Change the file extension
to .RTF in the "File Name:" box. This distinguishes the file from a Word for Windows .DOC file and
makes it easier to import into the Help Magician because the default extension expected is .RTF. Follow
the same type of procedures for    Ami Pro and Word Perfect for Windows.

Importing

To import an RTF file into the Help Magician, select Import from the File Menu. The file extension defaults
to .RTF. Under "RTF Import Options", select a source of the help project options. You may choose a to
read them from a WinHelp project file (.HPJ), a Help Magician file (.HLX) or just read the RTF file only.

The default path for the Help Magician will not be changed to the path from which the RTF file was
imported. When you import an RTF file and save the Help Magician's file, you can select another path as
the 'ROOT' path for the help build so that the original RTF file will not be overwritten when you build the
help system.

The Help Magician will read RTF files generated by Word for Windows, Lotus' Ami Pro, or WordPerfect for
Windows. RTF files written by the Help Magician can be read into Word for Windows, edited, and read
back into the Help Magician.

Merging RTF Files

If you have several RTF files that you would like to import into the Help Magician as a single source file,
merge the files in Word for Windows before importing. The files can be merged as .DOC files or RTF files.
Merge the files as follows:

1. Open the first file in Word for Windows.
2. Place the cursor at the end of the file.
3. Select the Insert menu and the File sub menu. Select the file to be merged (select the file type if the

file is not in Word format) and click on OK.
4. Repeat for all files to be merged.

RTF Import Options

Much of the information that the Help Magician maintains for a help system is not contained in the RTF
file written for the help compiler. These "Project Options" include the Compiler Options, the Appearance
Options, the bitmap directories, macros, and window definitions.

If an RTF file was exported from the Help Magician, this information can be retrieved from either the
project file (.HPJ) or the Help Magician source file (.HLX).

Read from HLX

Use this option to read the "Project Options" from the HLX file from which the RTF file was written.

Read from HPJ

Use this option to read the "Project Options" from the HPJ file for the help system.

Read RTF Only

Use this option if this is a first time import and neither an HLX or a .HPJ file exist or to ignore the "Project
Options".

Default Path

The default path for the Help Magician will not be changed to the path from which the RTF file was
imported. When you import an RTF file and save the Help Magician's file, you should select another path
as the 'ROOT' path for the help build so that the original RTF file will not be overwritten when you build
the help system.

Filter

The Help Magician supports most of the RTF commands supported by the Windows help compiler.
Commands not supported will be filtered out and written to a report file consisting of the same name as
the RTF file, with a .RPT extension, for your reference. Any errors that occur during the importing will also
be written to this file.

Unsupported Commands

Most of the commands listed in the report file as Unsupported Commands are filtered out because they
are not necessary to the help compiler. The Help Magician supports almost all of the RTF commands that
are supported by the help compiler.

Origin

There are some differences in the way the RTF file is handled depending on the origin of the help file. In
older versions of    The Help Magician,    additional fields were written into the footnotes, that are not used
by the help compiler. The Help Magician uses this information when the RTF file is read back in. The
following paragraphs describe the differences.

Word Processor Files

Help files originally written in Word for Windows, Ami Pro or Word Perfect for Windows will be read in and
the help file specific data, such as Titles, Browse Sequences, Context Strings, etc. will be stored in the
Help Magician's database.

Context #'s

Since Context Numbers are not actually part of the help file, but are included in the project file or an
include file, help files originating in a word processor will not contain Context Numbers. If the help file
originated in word processor, you will have to enter the Context Numbers in the Help Magician.

If the help file originated in an older version of the Help Magician, the Context Numbers would have been
written to an additional footnote field and will be read in and properly stored by the Help Magician.

Context $'s

The Help Magician generates new Context Strings for every topic. If you enter Context Strings in the
context string footnote field, in a word processor, they will be used by the Help Magician instead of
constructing new Context Strings.

Titles

The Help Magician requires that every page have a title. When pages are read in from an RTF file, if a
page does not have a title, a title is created for the page. The temporary title is constructed from a unique

ID assigned to the help file when is is created.

Font Colors

If the file originated in another word processor other than Word for Windows, colors will be re-mapped to
Word for Windows colors.

Browse

If Browse Sequences originated in a word processor, the sequence numbers don't necessarily have to be
sequential, they can be incremented by any value. When imported into the Help Magician, they will be
renumbered so that they are sequential. If the help file originated in an older version of the Help Magician,
the sequence numbers will already be sequential.

Version 3.1

While importing an RTF file, if the Help Magician detects codes specific to features supported only by
Windows 3.1, the Help compiler version, stored in the Compiler Options, will be set to version 3.1.

 Likewise, if the Help Magician detects codes specific to features supported only by
Windows 95, the Help compiler version will be set to version 4.0.

See Also
Manual to Help Conversion

RTF Technical Specifications

RTF Format

The Help Magician's RTF Reader supports both Word for Windows, Ami Pro and Word Perfect for
Windows (version 6.0a) RTF formats at this time. When we mention "a word processor" we mean
specifically Word for Windows, Ami Pro or Word Perfect for Windows version 6.0a. If you are a Word
Perfect for Windows user we strongly recommend upgrading to version 6.0a because of the greatly
improved RTF converter. We cannot guarantee that the Help Magician will properly import RTF files
created in earlier versions of Word Perfect for Windows.

The Compiler Options Menu offers an option to select the version of Word for Windows RTF file written by
the Help Magician. The option defaults to version 2.0, however the user may choose between versions
1.0, 2.0, 6.0 and 7.0.

 Select version 2.0 to write RTF files compatible with Ami Pro and Word Perfect for
Windows version 6.0a.

Version 4.0

The RTF Reader performs both WinHelp 3.1 and WinHelp 4.0 syntax checking.

Warnings

There are potential translation problems converting back and forth from Word for Windows versions 1.0,
2.0 and 6.0 RTF formats. The RTF formats sometimes get garbled and may become unreadable by the
RTF Reader.

Also, Word Perfect RTF file format is drastically different than Word for Windows and Ami Pro.
Consequently these word processors cannot reliably read each other's RTF files.

Word Perfect for Windows v6.0 and v6.0a has a bug where bullets are not written to their RTF files.

Errors

RTF Reader errors, unsupported features and unknown or unsupported RTF commands will be written to
a report file using the original filename with ".RPT" extension.

Unsupported Commands

Most of the commands listed in the report file as Unsupported Commands are filtered out because they
are not necessary to the help compiler. The Help Magician supports almost all RTF commands that are
supported by the help compiler.

Critical errors will be displayed on screen as well as written to the report file.

Any invalid references in the original RTF by hot links (jumps or popups) to non-existent topics and/or
context strings will be ignored to the extent that an unresolved hot link will be created..

Browse

Browse sequences that have been formatted as text instead of numbers will be converted to numbered
sequences and the original text will be lost. Please format browse sequences numerically if initial
development is done in a word processor. Also, numerically formatted browse sequences will be
renumbered sequentially and the original numbers will not be saved.

Browse sequences created in Word for Windows with no group title, i.e. "null list browse sequences", will
be assigned to a group entitled "Null" by the RTF Reader.

Fonts

The fonts used in Word for Windows RTF will be converted to Help Magician Styles and put in a table. If a
table already exists for the project, it will be used and any additional font styles discovered will be added
to the table.

 Macros

The macros used in a word processor RTF will be converted to Help Magician Macro Definitions and put
into a table. If a table already exists for the project, it will be used and any additional macro definitions
discovered will be added to the table.

ROOT

Please keep all associated files for a particular project in the 'ROOT' directory, with the exception of
bitmaps, which may be stored in the 'BMROOT' directory. This includes font style files, bitmaps (if
possible) and all the Help Magician created files (HLX, etc.).

Formatting

Please use one continuous underline, double underline or strikeout formatting for popups and jumps,
respectively, in Word for Windows. Breaking up the formatting for hot links may cause problems in
translation from Word for Windows versions 1.0, 2.0, 6.0 and 7.0 conversion process. Likewise, fonts
should be treated in the same way.

Please do not format help text and footnotes ACROSS pages in a word processor.

Context $'s

The Help Magician handles Context Strings invisibly to the user. If Context Strings are created in the Help
Magician, they are created from the topic title. However, in version 1.1 and later, when they are included
in a footnote, they are read into the Help Magician and preserved.

Duplicate context string names will be adjusted by renaming one with a "_000" tagged onto the end of the
string, where the actual number used refers to the particular help page the context string references.

Missing Context Strings will be constructed using the unique file ID created when the file is imported.
Duplicates will be adjusted using the aforementioned procedure.

Titles

Missing help page titles will be constructed using the unique file ID created when the file is imported.

Hot Links

Improperly formatted hot links, i.e. jumps, popups, etc., will be ignored by the RTF Reader and will appear
as they did in the original document.

 Version

The RTF Reader will detect the appropriate version of the Help Compiler to be used for the file being
read. It is up to the user to verify the Help Compiler version selected in Compiler Options.

Web Authoring

HTML Export Options

The Help Magician allows you to create pages that can be displayed on the Internet's World Wide Web
(WWW). This is a particularly useful feature for Help authors who wish to display their Help files on the
Internet. This can be accomplished by using the Help Magician to convert their Help system into an HTML
format, which is the standard format for viewing information on the Internet by using one of the many Web
browsers such as Netscape Navigator, Spry Mosaic, Microsoft Internet Explorer or Chameleon's
Websurfer.

In order to display HTML pages (sometimes referred to as "home pages" or "web pages") on the Internet,
most people have a company that provides Internet access, typically called an Internet Service Provider
(ISP), to house their web pages for them. To do this you will need to find out what type of web server your
ISP is running. This is important if you want to convert the SHED bitmaps in your Help system to image
maps, which are dependent upon the type of web server they will used with. Certain web servers require
specific formats for image map files. Some examples of web servers are CERN, Apache, NCSA, and
WebSite.

Another consideration in creating web pages from your Help system is to determine what version of
HTML    you wish to support. When the Internet was first becoming popular, web browsers supported
version 1.0 of HTML. Very few text formatting features were supported in version 1.0 so version 2.0 was
released which supported more features. Version 2.0 became the standard for all browsers at that time
and now version 3.2 is the popular version. Unfortunately (or fortunately depending on your view of the
subject), Netscape Corporation decided to add features that were not supported in the 2.0 HTML
specification. But that caused problems for people using browsers that didn’t understand the new HTML
codes in that they couldn't properly view some of the pages intended to be viewed by the    Netscape
browser. These extra features became known as the Netscape Extensions.

To solve this dilemma many web page authors create their pages using the HTML 2.0 specification so
that the greatest cross section of web browsers can view their pages as they intended to be viewed. Most
pages that were intended to viewed by Netscape browsers are labeled with "This page can be best
viewed with Netscape". Microsoft’s "Internet Explorer" has followed in the footsteps of Netscape's
"Netscape Navigator" and supports all of the features of the Netscape HTML extensions. The Help
Magician allows you to select which version of HTML you wish to use to create your web pages with.

 Note: You may wish to use the built in HTML styles that are provided with the Help
Magician. You must, however, include these styles before editing your help file.

Click on the desired tab of the HTML Export Options bitmap for specific Help

Versions

Versions

Sets the version level of the HTML code and compatibility of the image map file to a particular server.

HTML Support

As previously discussed, this options allows you to select which version of HTML that will be used to
create web pages from your help file. Remember that not all web browsers support the Netscape
extensions.

Image Map File Version

To have all SHED bitmaps in your Help system converted to mapped images in HTML pages, select the
type of web server your web pages will be used with. You will need to contact your Internet Service
Provider or your system administrator for this information. The choices are: NCSA, CERN, or Apache. If
you don't know this information, you can try NCSA as a test.

The CSIM options stands for "Client Side Image Map" which means that the user's browser interprets the
image map, not the web server. The Help Magician will place the map information in the HTML pages it
creates and the user’s browser will be required to display the image map properly. This feature is
supported by most newer browsers and web servers.

Default URL:

Enter a valid URL such as "http:\\www.server.com\index.html" to be displayed when the user selects an
area in the image that has not been mapped. This feature is optional.

Image File Path:

Enter a valid path where the images will be stored on the server. This path will be added to all images so
that the web server can locate them. This feature is optional if the images are stored with the HTML files.

See Also
Browser Tab
Colors Tab
Display Tab
Files Tab
Fonts Tab
Footer Tab
Header Tab
Styles Tab

Styles

Styles

The HTML specification provides for six default styles and several ad hoc styles that you can take
advantage of using Help Magician’s style mapping utility. To map a style you have used in your help file to
an HTML style, select the HTML style first and then the corresponding paragraph style on the right hand
list box. Any paragraphs in your help file that are formatted using this style, will be converted to the HTML
style. You will probably need to view the results in your browser to get comfortable with the way HTML
styles are displayed versus help styles in WinHelp.

 NOTE: Not all browsers display HTML pages in the same manner. On top of that,
each browser can be reconfigured by the end user to display fonts and styles using their preferences. In
other words, what you see in your browser might not and probably will not be what the end users see in
their browsers. The rule of thumb is to use HTML styles and headers sparingly.

See Also

Browser Tab
Colors Tab
Display Tab
Files Tab
Fonts Tab
Footer Tab
Header Tab
Versions Tab

Files

HTML Files

Enter the path where you want the HTML files to be written. Use the Browse button to search for an
existing path on your system.

Export to which Directory

Enter a valid path on your computer where you wish to store the HTML files generated from your help
system. You may use the Browse button to search for a path on one of your drives.

 The Help Magician marks the HTML files it writes to disk with a comment in the header
section of each file. This is done as an added measure of protection to prevent the Help Magician from
overwriting files from other sources. If the Help Magician attempts to overwrite an index file for instance, a
warning message will be displayed if the file isn’t recognized with the Help Magician comment mark.

Filename for Index Page

Enter a valid filename (usually "index.htm") for the Index Page of your web pages. The Index Page is
equivalent to the Contents Page in the help system.

See Also
Browser Tab
Colors Tab
Display Tab
Fonts Tab
Footer Tab
Header Tab
Styles Tab
Versions Tab

Browser

Web Browser Location

Enter the path and name of your web browser on your computer. You may also include command line
switches if your browser requires them. Refer to the manual for your web browser for more information.
You may use the Browse button to search for your browser on your system.

Command Line Switches

Enter any command line switches that your web browser may require to start up. Refer to your Web
Browser’s documentation or help files for more information.

Windows Task List Entry Description

Enter the text that appears in the Windows task list when the browser is running. This will help prevent
multiple versions of the browser from being executed each time the Web browser is called. A sample will
be entered for you after you enter a web browser location. You can modify this field to match the text in
the Windows task list if the sample text needs changing.

Calling Your Web Browser

To call your web Browser from the Help Magician, select the Web main menu item and then the Call Web
Browser sub menu item. If you haven't already entered a path and filename for your web browser in the
Web Options form (mentioned above), then you will be prompted to do so before continuing:

After selecting your web browser using the file dialog, you will be prompted to enter the text that appears
on the Windows task bar. This will help prevent multiple instances of the web browser from executing:

Once you have completed this procedure, you will not be prompted for this information again. You can
change your web browser in the Web Options dialog.

The next window displayed will be the one that you should normally see after selecting Call Web Browser
menu item:

Start Up File

Select the file that you want to be displayed in your browser after it starts up. Choose "None" to have no
file loaded at startup, "Index" to load the index file, "Current Topic" to display the HTML file that
corresponds to the current file, and "Other File" to display the HTML file of your choice. Click on the
Browse button to search for a particular file via a file dialog. Click on Accept when you have finished

selecting an option and call your web browser.

See Also
Colors Tab
Display Tab
Files Tab
Fonts Tab
Footer Tab
Header Tab
Styles Tab
Versions Tab

Fonts

Fonts

Font size support was introduced with Netscape’s HTML extensions. There are seven font sizes defined
in the document. The Help Magician allows you to map the fonts sizes you have used in your Help file to
each of the seven font sizes used by the Netscape extensions. Some default values have been entered
for you to start with.

To change a font size, pick a HTML font size, say Size 1, and enter a number into the adjacent text box.
Enter only one number. In the example in font size 8 has been entered for HTML size 1. The Help
Magician will automatically map the number entered and all sizes smaller to HTML font size 1. Likewise,
the Help Magician will map all font sizes greater than 8 up to and including size 10 to HTML font size 2.
There are seven predefined font sizes used in HTML pages. You have the option of specifying a range of
help font sizes to convert to each HTML font size. The Help Magician defaults to the following
conversions:

Help Font Size Range HTML Font Size
up to 8 point Size 1
more than 8 up to 12 point Size 2
more than 12 up to 14 point Size 3
more than 14 up to 20 point Size 4
more than 20 up to 26 point Size 5
more than 26 up to 36 point Size 6
greater than 36 point Size 7

To exclude an HTML font size, enter a zero into the text box to the left of it.

See Also
Browser Tab
Colors Tab

Display Tab
Files Tab
Footer Tab
Header Tab
Styles Tab
Versions Tab

Display

Display

The Display tab allows you to control the appearance of the HTML pages. Any options set on this tab are
applied to all HTML pages.

Display Nonscrolling Regions in HTML Document

Select this option to include any nonscrolling regions you have defined in your help file in your HTML files.
The default is to include nonscrolling regions in the HTML documents.

Use Paragraph Tags Instead of    Line Break Tags

Some browsers ignore paragraphs that are defined by line break tags in the HTML code. Select this
option to use paragraph tags instead of line break tags for optimal display in browsers with this symptom.
You may need to experiment with this option to suit your needs.

Add Keywords to Each Page for Search Engines

Select this option to have the keywords that are assigned to each Help topic added to its corresponding
HTML page. The Help Magician will create a special META HTML tag that lists the keywords in the
heading of each HTML document. This will allow most search engines to use    these documents in
searches performed on your server or over the Internet. You may wish to discuss this option with your
Internet provider or system administrator. The default is not to include the keywords.

Tiled Background Image Filename

Enter the filename of a GIF file to be displayed in the background of the HTML documents. The image will
be "tiled" or copied over the whole background of the page. Use the Browse button to search for a
specific file via a file dialog. This is a relatively new feature and might not be displayed properly on older
versions of some browsers.

See Also
Browser Tab
Colors Tab
Files Tab
Fonts Tab
Footer Tab
Header Tab
Styles Tab
Versions Tab

Colors

Colors

The colors of the text and background that appears in the HTML page when viewed in a web browser can
be modified to better match a color scheme you have chosen for your HTML web pages. The colors
selected apply to all web pages written with the Help Magician.

Text

Check the box to override the default color (black) of normal text. Select the Change button or double
click over the bar to the left of the check box to select a different color from a color palette.

Links

Check the box to override the default color (blue) of text that represents a link to another document.
Select the Change button or double click over the bar to the left of the check box to select a different color
from a color palette.

Visited Links

Check the box to override the default color (purple) of a link that has been previously selected. Select the
Change button or double click over the bar to the left of the check box to select a different color from a
color palette.

Activated Links

Check the box to override the default color (red) of a link that is being activated (clicked on with a mouse).
Select the Change button or double click over the bar to the left of the check box to select a different color
from a color palette. To test the change, click and hold down the left mouse button over one of the color
bars to the left of the Links" or "Visited Links"
check boxes.

Background

Check the box to override the default background color (gray). Select the Change button or double click
over the bottom region of the outlined box to the left of the check box to select a different color from a
color palette.

See Also
Browser Tab
Display Tab
Files Tab
Fonts Tab
Footer Tab
Header Tab
Styles Tab
Versions Tab

Header

Header

Check the box to place text at the top of every HTML document written by the Help Magician. Enter the
header text in the white text box. This can be used for welcome messages, company information, etc.

See Also
Browser Tab
Colors Tab
Display Tab
Files Tab
Fonts Tab
Footer Tab
Styles Tab
Versions Tab

Footer

Footer

Check the box to place a text at the bottom of every HTML document written by the Help Magician. Enter
the footer text in the white text box. This can be used for salutations, copyright notices, etc.

See Also
Browser Tab
Colors Tab
Display Tab
Files Tab
Fonts Tab
Header Tab
Styles Tab
Versions Tab

Help Compiler Notes

Symbol Font

The Windows help compiler 3.0 does not support the Symbol font. (Problem ID: WIN9101004, Microsoft
Knowledge Base).

The Symbol font problem was fixed in version 3.00b.

Extended

The newest versions of the Help Compilers for Windows 3.1 require extended or expanded memory. The
actual file name for these compilers varies but they can be identified when executed. The word
"(extended)" is displayed after the version number. This compiler cannot be run from Windows in
Standard mode. An earlier version of the help compiler must be used if you are running Windows in
Standard mode.    The most reliable help compiler, at the time of this printing, is version 3.10.504
(extended), which is included with the Help Magician.

Root Directory

The Help Compiler apparently does not support the use of 'ROOT' or 'BMROOT' directories that are the
drive root directory, i.e. "C:\" or "D:\". This will generate a compiler error and should be avoided.

Out of Memory

If you get out of memory errors while trying to compile your help file, make sure you haven't exceeded the
limits below.    Also, a version of the Help Compiler (HCP.EXE), which was built on top of Phar Lap's DOS
extender, makes use of extended memory that is provided by a VCPI or DPMI-compatible memory
manager.    This version is included with the Help Magician for use with Windows 3.1.

Help Compiler Limits for HC31.EXE

The following is a list of limitations published in the Microsoft Developer's CD ROM:

Maximum Paragraph Size (including embedded bitmaps) = about 32,000 bytes
Maximum string length for topic title = 127 characters
Maximum topics per RTF source file = about 32,700
Maximum topics per help file = 42 million
Maximum by-reference bitmaps per help file = 32,767
Maximum help file size = 2 gigabytes
Maximum keywords per help file = limited only by file size
Maximum keyword length = 255 bytes
Maximum topics per keyword = 32,767
Maximum topics in Search dialog box = 400
Maximum browse sequence length = limited by number of topics
Maximum bookmarks per help file = limited by file size
Maximum annotations per topics = 1
Maximum annotations per help file = 32,767
Maximum history list length = 40 topics
Maximum text that can be copied to clipboard = limited by available RAM
Maximum macro length = 255
Main windows per topic = 1
Secondary window types per topic = 5

Help Compiler Limits for HCW.EXE

 The following is a list of limitations published in the Microsoft Developer's CD ROM:

Project Files and WinHelp()

The Help Magician, when requested to write an RTF, will also create a project file (.HPJ) required by the
Windows help compiler. This file contains information to provide the help compiler with various options
selected in the Options main menu. The options that appear in the project file depend upon the compiler
version selected in Compiler, Appearance and Windows options menus. As a help author, you do not
need to be concerned with the contents of the HPJ file. Help Magician takes care of this for you. The text
presented here is for informational purposes. The following is a sample listing of a typical WinHelp 3.1
project file, titled MYHELP.HPJ, created from a help file titled MYHELP:

[OPTIONS]
COMPRESS = FALSE
INDEX = Help_Topic_One
MULTIKEY = M
ROOT = C:\HC\MYHELP
BMROOT=C:\MYBMPS
TITLE = MyHelp
WARNING = 3

[FILES]
MYHELP.RTF

[BAGGAGE]
AVIFILE.AVI
MIDIFILE.MID
SOUND.WAV
MOVIE.MMM

[BITMAPS]
FLOWER.BMP
CLOWN.BMP

[CONFIG]
BrowseButtons()
[MAP]
Help_Topic_One 1        ;Help Topic One
Help_Topic_Two 2        ;Help Topic Two
Help_Topic_Three        45    ;Help Topic Three

[WINDOWS]
main="MyHelp",(123,123,256,256),0,(0,0,255),(255,0,0),1

The [OPTIONS] section sets various compiler options selected from the Project Options Menu in the
editor. The TITLE option sets the title of the help system for your application. MULTIKEY sets an internal
parameter for the Help Compiler to properly interpret multiple keywords in the RTF file.

The [FILES] section specifies the name of the RTF file to be compiled into the Windows Help Resource
file, MYHELP.HLP in this case.

The [BAGGAGE] section will contain the file names of any of the multimedia elements used in the help
system if the corresponding check box was checked on the Multimedia form. When the file names are
included in the [BAGGAGE] section, the code from the media element is included in the compiled help
file. This will result in a longer compile time and the help file will be larger but you won't have to ship the
individual media element files with the compiled help system

The [BITMAPS] section specifies bitmaps included by your help system. If the complete path is not
included with the filename (in the help file) they must be in the ROOT path or the path must appear in the
Bitmap Paths list in the Paths menu under the Options main menu selection, or warning messages will be
generated by the compiler indicating that the bitmaps could not be found in the ROOT path or bitmap
paths. If the path is included with the file name, the path and file name will be included in the project file.

The [ALIAS] section will be written to the Project file if the information is entered in the Project [ALIAS]
Section, available from the Build Menu, Alias Section sub menu. See Alias Section for more information.

The [MAP] section is where each page and its context number (one will be assigned if the context
number is blank) will be mapped to a context string that the compiler uses internally. These context
numbers can be used to employ context sensitive help from your application and also "segmented
hypergraphics". The context strings are generated by Help Magician and are simply the topic titles with all
non-alphanumeric characters mapped to valid characters acceptable to the Help Compiler (see Context
Strings). The original page titles will be added as a comment at the end of each line using a semicolon
delimiter.

If you specified a Context String Map File in the Compiler option form, only the Map file name will be
included here as "#include <filename.ext>" and a standard 'C' header file will be generated with "#define"
statements for the context strings and numbers, if you selected "Write #define File". You may also specify
an external existing #define file by selecting "Use Existing File" in the Compiler Options form, and
specifying a file name in the Map File text box.

Word for Windows Users: You need not worry about creating context strings anymore! The Help
Magician takes care of context strings for you internally. You now only need the context number that you
assigned to each topic page in the help file and use it in your calls to WINHELP from your application.
Context strings are available for use in the SHED utility to edit bitmaps for hypergraphics, however. A
complete printout of the context strings is available by selecting Context Relations from the File/Print
Menu.

For example, if you would like the user to have context sensitive help available on a topic called "Edit" in
your application program, create a help page for "Edit" in your help file and assign it a context number of
your own desire. In your application program, you can call WINHELP() API procedure using the context
number as the data argument and HELP_CONTEXT as the WINHELP command to access the "Edit"
help topic immediately.

For more information on calling WINHELP() from your application, programming your application for help
or using the SHED utility, refer to Microsoft's Help Compiler Guide and the SDK 3.1 documentation.

See Also
Context Strings

Context Strings

Context strings are used by the Help Compiler to uniquely identify each topic in the help file. The Help
Magician automatically generates context strings for you by using the topic heading of each page and
converting it to an acceptable format. Context strings may only contain numbers, letters, periods and/or
underscore characters. Since topic headings may include any ANSI character, invalid characters must be
mapped to valid ones. This is done internally by the Help Magician using the following table:

 Context Strings are now refered to as Topic ID's in the Windows 95 environment.

Invalid Valid Invalid Valid Invalid Valid
! A , L \ b
" B - M] c
C / O ^ d
$ D : P ` f
% E ; Q { g
& F < R | h
' G = S } i
(H > T ~ j
) I ? U space _
* J @ V
+ K [a

A complete printout of the context strings is available by selecting View Context Relations from the File
Menu. Context strings can be used for setting up segmented hypergraphics using the SHED utility
provided by Microsoft. The Context String is entered in the Attributes dialogue of the SHED editor,
available from the Edit/Attributes menu.

WARNING:      Since the context strings are derived from the topic titles, if the topic title is changed, the
reference to the Context String must be changed using SHED.EXE.

SHED.EXE

Hot Spots

The Windows Help Magician supports multiple hot spots, as provided for by the help compiler for version
3.1 of Windows.

SHED

SHED.EXE, Microsoft's HotSpot Editor, is supplied with The Microsoft Software Development Kit (SDK),
Visual Basic 2.0/3.0 professional version, and the Help Magician.

In SHED.EXE, import the .BMP file to be converted and define the desired hot spots by holding the left
mouse button and 'dragging' to outline the hot spot area. Select Attributes from the Edit Menu and enter
the Context String associated with the page to be linked. Save the file with a .SHG extension.

In the Help Magician, insert the .SHG file, where the Bitmap is to be placed, in the editor. During
compilation, the help compiler will make the appropriate links from the SHG file, using the Context Strings
as a reference.

The Context Strings, associated with each page can be printed from Help Magician's File View...Context
Relations menu. The Context Strings are also listed in the project (.HPJ) file, generated by the Help
Magician.

The Help Magician constructs Context Strings from the topic titles. If there are no illegal characters in the
title, the only change from the title is that spaces are replaced with an underscore (Context Strings).
Remember that, as the title is changed, the Context String is also changed and any references to the
original Context String, in SHED.EXE, must also be changed.

See Also
Context Strings

Calling WinHelp()

C Language

 The following is an extract from Microsoft's help file for Quick C for Windows 3.1:

Syntax

BOOL    WinHelp(hWnd, lpHelpFile, wCommand, dwData)

This function invokes the Windows Help application and passes optional data indicating the nature of the
help requested by the application. The application specifies the name and, where required, the directory
path of the help file which the Help application is to display.

Parameter Description

hWnd

HWND type. Identifies the window requesting help.

LpHelpFile

LPSTR type. Points to a null-terminated string containing the directory path, if needed, and the name of
the help file which the Help application is to display.

WCommand

WORD type. Specifies the type of help requested. It may be any one of the following values:

Value Meaning

HELP_CONTEXT Displays help for a particular context identified by a 32-bit unsigned integer value
in dwData.

HELP_HELPONHELP Displays help for using the help application itself. If the wCommand parameter is
set to HELP_HELPONHELP, WinHelp ignores the lpHelpFile and dwData parameters.

HELP_INDEX Displays the index of the specified help file. An application should use this value only for
help files with a single index. It should not use this value with HELP_SETINDEX.

HELP_KEY Displays help for a particular key word identified by a string pointed to by dwData.

HELP_MULTIKEY Displays help for a key word in an alternate keyword table.

HELP_QUIT Notifies the help application that the specified help file is no longer in use.

HELP_SETINDEX Sets the context specified by the dwData parameter as the current index for the
help file specified by the lpHelpFile parameter. This index remains current until the user accesses a
different help file. To help ensure that the correct index remains set, the application should call WinHelp
with wCommand set to HELP_SETINDEX (with dwData specifying the corresponding context identifier)
following each call to WinHelp with wCommand set to HELP_CONTEXT. An application should use this
value only for help files with more than one index. It should not use this value with HELP_INDEX.

DwData

DWORD type. Specifies the context or key word of the help requested. If wCommand is
HELP_CONTEXT, dwData is a 32-bit unsigned integer containing a context-identifier number. If

wCommand is HELP_KEY, dwData is a long pointer to a null-terminated string that contains a key word
identifying the help topic. If wCommand is HELP_MULTIKEY, dwData is a long pointer to a
MULTIKEYHELP data structure. Otherwise, dwData is ignored and should be set to NULL.

Return Value

The return value specifies the outcome of the function. It is TRUE if the function was successful.
Otherwise it is FALSE.

Comments

The application must call WinHelp with wCommand set to HELP_QUIT before closing the window that
requested the help. The Help application will not actually terminate until all applications that have
requested help have called WinHelp with wCommand set to HELP_QUIT.

See Also
Examples
HELP Context ID Property
Visual Basic

Calling WinHelp Version 4.0

 The following is an extract from Microsoft's help file for Help Workshop for Windows 95:

Syntax

BOOL WinHelp(HWND hwnd, LPCTSTR lpszHelpFile, UINT fuCommand, DWORD dwData)
The WinHelp function starts Windows Help (WINHELP.EXE) and passes additional data indicating the
nature of the help requested by the program.

Parameter Description

hwnd

Handle of the window requesting Help. The WinHelp function uses this handle to keep track of which
programs have requested Help. If fuCommand specifies HELP_CONTEXTMENU or HELP_WM_HELP,
hwnd identifies the control requesting Help.

lpszHelpFile

Address of a null-terminated string containing the path, if necessary, and the name of the Help file that
WinHelp is to display.

The filename may be followed by an angle bracket (>) and the name of a secondary window if the topic is
to be displayed in a secondary window rather than in the primary window. The name of the secondary
window must have been defined previously in the [WINDOWS] section of the Help Project (.HPJ) file.

fuCommand

Type of help requested. For a list of possible values and how they affect the value to place in the dwData
parameter, see the Comments section.

dwData

Additional data. The value used depends on the value of the fuCommand parameter. For a list of possible
values, see the Comments section.

Return Value

If successful, the return value is TRUE; otherwise, it is FALSE.

Comments

The program specifies the name and, where required, the directory path of the Help file to display.

Before closing the window that requested Help, the program must call WinHelp with the fuCommand
parameter set to HELP_QUIT. Until all programs have done this, WinHelp will not terminate. Note that
calling WinHelp with the HELP_QUIT command is not necessary if you used the
HELP_CONTEXTPOPUP command to start Help.

See Also
Calling WinHelp()
#defines list
Examples
FuCommand Parameters
HELP Context ID Property
The HELPINFO Structure
The HELPWININFO Structure
The MULTIKEYHELP Structure

The WM TCARD Message
Visual Basic

FuCommand Parameters

The following table shows the possible values for the fuCommand parameter and the corresponding
formats of the dwData parameter:

fuCommand Action dwData

HELP_COMMAND Runs a Help macro or macro string. Address of a string that specifies the
name of the Help macro(s) to run. If the string
specifies multiple macro names, the names must be
separated by colons or semicolons. You must use the
short form of the macro name for some Macros
because WinHelp does not support the long name.

HELP_CONTENTS Displays the topic specified by the Ignored; set to 0.
Contents option in the [OPTIONS]
section of the .HPJ file. This
command is for backward
compatibility. New programs
should provide a .CNT file and use
the HELP_FINDER command.

HELP_CONTEXT Displays the topic identified by the Unsigned long integer specified context
identifer defined containing the context in the
[MAP] section of the .HPJ file. identifier for the topic.
HELP_CONTEXTMENU Displays the Help menu for the Address of an array of double word pairs.
The first double word selected window, and then in each pair is a control identifier, and the
second is a context displays (in a pop-up window) number for a topic.

topic    for the selected control.
HELP_CONTEXTPOPUP Displays, in a pop-up window, Unsigned long integer containing the
context identifier for a the topic identified by the specified topic.

context identifier defined in the
[MAP] section of the .HPJ file.

HELP_FINDER Displays the Help Topics dialog Ignored; set to 0.
box.

HELP_FORCEFILE Ensures that WinHelp is Ignored; set to 0.
displaying the correct Help file. If
the incorrect Help file is being
displayed, WinHelp opens the
correct one; otherwise, there is
no action.

HELP_HELPONHELP Displays Help on how to use Ignored; set to 0.
WinHelp, if the WINHLP32.HLP
file is available.

HELP_INDEX Displays the topic specified by Ignored; set to 0.
the CONTENTS option in the
[OPTIONS] section of the .HPJ
file. This command is for
backward compatibility. New
programs should provide a .CNT
file and use the HELP_FINDER
command.

HELP_KEY Displays the topic in the keyword Address of a keyword string. Multiple
keywords must be table that matches the specified separated by semi-colons.

keyword, if there is an exact match.
If there is more than one match,
this command displays the

Topics Found list box.
HELP_MULTIKEY Displays the topic specified by Address of a MULTIKEYHELP structure
 a keyword in an alternative that specifies a table

keyword table. footnote character and a keyword.
HELP_PARTIALKEY Displays the topic in the keyword Address of a keyword table
that matches the specified string. Multiple keywords keyword if there is an exact match.

must be separaed by If there is more than one match, semi-
colons.

this command displays the Topics
Found dialog box. To display the
Index without passing a keyword,
you should use a pointer to an
empty string.

HELP_QUIT Informs the WinHelp program that Ignored; set to 0.
it is no longer needed. If no other
programs have asked for Help,
Windows closes the WinHelp
program.

HELP_SETCONTENTS Specifies the Contents topic. Unsigned long integer The
WinHelp program displays containing the context this topic when the user clicks

identifier for the Contents the Contents button if the Help topic.
file does not have an associated
.CNT file.

HELP_SETPOPUP_POS Sets the position of the Address of a POINTS
subsequent pop-up window. structure. The pop-up
window is positioned as if the mouse cursor were at
the specified point when the pop-up window is
invoked.

HELP_SETWINPOS Displays the Help window, if it is Address of a
minimized or in memory, and sets HELPWININFO structure its size

and position as specified. that specifies the size and position of either a primary
or secondary Help window.

HELP_TCARD Indicates that a command is for a Depends on the command training
card instance of the with which the flag is WinHelp program. A program

combined.
combines the HELP_TCARD flag
with other commands by using the
bitwise OR operator.

HELP_WM_HELP Displays, in a pop-up window, the Address of an array of topic for
the control identified by double word pairs. The first hwnd. double word in each pair is

a control identifier, and the
second is a context identifier for a topic.

See Also
Calling WinHelp()
Calling WinHelp Version 4.0
#defines list
Examples
HELP Context ID Property
The HELPINFO Structure
The HELPWININFO Structure
The MULTIKEYHELP Structure
The WM TCARD Message
Visual Basic

#defines list

Comments

The following table shows the complete list of #defines for WinHelp commands.

wCommand Hexadecimal value
#define HELP_CONTEXT 0x0001
#define HELP_QUIT 0x0002
#define HELP_INDEX 0x0003 (Windows Help version 3.0)
#define HELP_CONTENTS 0x0003
#define HELP_HELPONHELP 0x0004
#define HELP_SETINDEX 0x0005 (Windows Help version 3.0)
#define HELP_SETCONTENTS 0x0005
#define HELP_CONTEXTPOPUP 0x0008
#define HELP_FORCEFILE 0x0009
#define HELP_KEY 0x0101
#define HELP_COMMAND 0x0102
#define HELP_POPUPID 0x0104
#define HELP_PARTIALKEY 0x0105
#define HELP_CLOSEWINDOW 0x0107
#define HELP_CONTEXTNOFOCUS 0x0108
#define HELP_MULTIKEY 0x0201
#define HELP_SETWINPOS 0x0203

The following values may also be used, however, since they are not in windows.h, you must add them to
your own header file:

wCommand Hexadecimal value
#define HELP_FORCE_GID 0x000e
#define HELP_TAB 0x000f

fuCommand Action dwData
HELP_FORCE_GID Changes to the .GID file Ignored; set to 0.

associated with the help file
passed in as the lpszHelpFile
parameter.

HELP_TAB Opens the Help Topics dialog Zero-based index of the box, displaying
the specified extensible tab to display (0 extensible tab. is the first tab, 1 the
second, etc.).

See Also

Calling WinHelp()
Calling WinHelp Version 4.0
Examples
FuCommand Parameters
HELP Context ID Property
The HELPINFO Structure
The HELPWININFO Structure
The MULTIKEYHELP Structure
The WM TCARD Message
Visual Basic

The HELPWININFO Structure

typedef struct {        // hwi

int      wStructSize;
int      x;
int      y;
int      dx;
int      dy;
int      wMax;
TCHAR rgchMember[2];

} HELPWININFO;

The HELPWININFO structure contains the size and position of either a primary or a secondary Help
window.

Parameter Description
wStructSize Size of this structure, in bytes.
x X-coordinate of the upper left
corner of the window, in screen coordinates.
y Y-coordinate of the upper left
corner of the window, in screen coordinates.
dx Width of the window, in pixels.
dy Height of the window, in pixels.
wMax Value specifying how to show the
window. This member must be one of these values:

Value Meaning
SW_HIDE Hides the window and passes
activation to another window.
SW_MINIMIZE Minimizes the specified window and
activates the top-level window in the Z order.
SW_RESTORE Same as SW_SHOWNORMAL.
SW_SHOW Activates a window and displays it in
its current size and position.
SW_SHOWMAXIMIZED Activates the window and displays it
as a maximized window.
SW_SHOWMINIMIZED Activates the window and displays it
as an icon.
SW_SHOWMINNOACTIVE Displays the window as an icon. The
window that is currently active remains active.

SW_SHOWNA Displays the window in its current
state. The window that is currently active remains active.
SW_SHOWNOACTIVATE Displays a window in its most recent
size and position. The window that is currently active remains active.
SW_SHOWNORMAL Activates and displays the window.
Whether the window is minimized or maximized, Windows restores it

to its original size and position.
rgchMember Name of the window.

Comments

WinHelp divides the display into 1024 units in both the x- and y-directions. To create a secondary window
that fills the upper left quadrant of the display, for example, a program would specify zero for the x and y
members and 512 for the dx and dy members.

A program can set the size and position information by calling the WinHelp function with the
HELP_SETWINPOS value.

Training Card Help

Using training card help, an application can display a sequence of instructions to guide the user through
the steps of a task. A training card typically consists of text that explains a particular step and authorable
buttons associated with TCard macros that allow the user to tell the application what to do next. Training
cards may only be displayed in secondary windows and must not contain hot links to other topics in the
help file.

An application initiates the training card instance of Windows Help by calling the WinHelp function and
specifying the HELP_TCARD command in combination with another command such as
HELP_CONTEXT. Subsequently, when the user clicks an authorable button in the training card, clicks a
hot spot assigned to the TCard macro, or closes the training card, Windows Help notifies the application
by sending it a WM_TCARD message. The wParam parameter identifies the button or user action, and
the lParam parameter contains additional data, the meaning of which depends on the value of wParam.

See Also

Calling WinHelp()
Calling WinHelp Version 4.0
#defines list
Examples
FuCommand Parameters
HELP Context ID Property
The HELPINFO Structure
The MULTIKEYHELP Structure
The WM TCARD Message
Visual Basic

The MULTIKEYHELP Structure

typedef struct tagMULTIKEYHELP { // mkh
DWORD mkSize;
BYTE    mkKeylist;
TCHAR szKeyphrase[1];

} MULTIKEYHELP;

The MULTIKEYHELP structure specifies a keyword table and an associated keyword to be used by the
WinHelp program.

Parameter Description
mkSize Size of this structure, in bytes.
mkKeylist A single character that identifies the
keyword table to search.
szKeyphrase A null-terminated text string that
specifies the keyword to locate in the keyword table.

The WM_HELP message:

lphi = (LPHELPINFO) lParam;

The WM_HELP message is sent whenever the user presses the F1 key.

Parameter Description
lphi Address of a HELPINFO structure that
contains information about the menu item, control, dialog box, or

window for which Help is requested.

Default Action

The DefWindowProc function passes WM_HELP to the parent window of a child window, or to the owner
of a top-level window.

Comments

If a menu is active when F1 is pressed, WM_HELP is sent to the window associated with the menu.
Otherwise, WM_HELP is sent to the window that has the keyboard focus. If no window has the keyboard
focus, WM_HELP is sent to the currently active window.

See Also
Calling WinHelp()
Calling WinHelp Version 4.0
#defines list
Examples
FuCommand Parameters
HELP Context ID Property
The HELPINFO Structure
The HELPWININFO Structure
The WM TCARD Message
Visual Basic

The HELPINFO Structure

typedef    struct    tagHELPINFO {    // hi
UINT      cbSize;
int        iContextType
int        iCtrlId;
HANDLE hItemHandle;
DWORD    dwContextId;
POINT    MousePos;

} HELPINFO, FAR *LPHELPINFO;

The HELPINFO structure contains information about an item for which context-sensitive Help has been
requested.

Parameter Description
cbSize Size of this structure, in bytes.
iContextType Type of context for which Help is
requested. This member can be one of these values:

Value Meaning
HELPINFO_MENUITEM Help requested for a menu item.
HELPINFO_WINDOW Help requested for a control or window.
iCtrlld Identifier of the window or control if the
iContextType parameter is HELPINFO_WINDOW, or identifier of

the menu item if the iContextType
parameter is HELPINFO_MENUITEM.
hItemHandle Identifier of the child window or control
if iContextType is HELPINFO_WINDOW,

or identifier of the associated menu if iContextType
is HELPINFO_MENUITEM.
dwContextId Help context identifier of the window or
control.
MousePos A POINT structure that contains the screen

coordinates of the mouse cursor. This parameter is useful for
providing Help based on the position

of the mouse cursor.

See Also
Calling WinHelp()
Calling WinHelp Version 4.0
#defines list
Examples
FuCommand Parameters
HELP Context ID Property
The HELPWININFO Structure
The MULTIKEYHELP Structure
The WM TCARD Message
Visual Basic

The WM TCARD Message

idAction = wParam;            // user action
dwActionData = lParam;    // action data

The WM_TCARD message is sent to a program that has initiated a training card with the WinHelp
program.

Parameter Description
idAction Value of wParam. Indicates the action
that the user has taken. This parameter can be one of the following

values:

Value Meaning
IDABORT The user clicked an authorable Abort
button.
IDCANCEL The user clicked an authorable
Cancel button.
IDCLOSE The user closed the training card.
IDHELP The user clicked an authorable Help
button.
IDIGNORE The user clicked an authorable Ignore
button.
IDOK The user clicked an authorable OK button.
IDNO The user clicked an authorable No button.
IDRETRY The user clicked an authorable Retry
button.
IDYES The user clicked an authorable Yes button.

 HELP_TCARD_DATA The user clicked an authorable button.
The lParam parameter contains a long integer specified by the

Help author.
HELP_TCARD_NEXT The user clicked an authorable Next
button.
HELP_TCARD_OTHER_CALLER Another program has requested training

cards.
 dwActionData Value of lParam. If idAction specifies

HELP_TCARD_DATA, this parameter is a long integer specified by the
Help author. Otherwise, this parameter is zero.

Return Value

The return value is ignored; use zero.

Comments

The message informs the program when the user clicks an authorable button or hotspot that runs the
TCard macro. A program initiates a training card by specifying the HELP_TCARD command in a call to
the WinHelp function.

WinHelp can run only one training card at a time. If another program requests a training card, the
program currently using training cards receives a WM_TCARD message with wParam ==
HELP_TCARD_OTHER_CALLER. The program receiving this message should either terminate the
training card (HELP_QUIT | HELP_TCARD), or the next time it gets the focus, it should call WinHelp with
a HELP_FORCEFILE | HELP_TCARD command.

See Also

Calling WinHelp()
Calling WinHelp Version 4.0
#define list
Examples
FuCommand Parameters
HELP Context ID Property
The HELPINFO Structure
The HELPWININFO Structure
The MULTIKEYHELP Structure
Visual Basic

Visual Basic

Declaration

To call WINHELP.EXE from a Visual Basic application, first declare the API function in the global module
of your source:

Declare Function WinHelp Lib "User" (ByVal hWnd As Integer, ByVal lpHelpFile As String, ByVal
wCommand As Integer, dwData As Any) As Integer

Enter the declaration on one line. Do not enter carriage returns.

Constants

Paste CONSTANT.TXT into your global module, or enter the following lines:

'Help Constants
Global Const HELP_CONTEXT = &H1

'Display topic in ulTopic
Global Const HELP_QUIT = &H2

'Terminate help
Global Const HELP_INDEX = &H3

'Display index
Global Const HELP_CONTENTS = &H3
Global Const HELP_HELPONHELP = &H4

'Display help on using help
Global Const HELP_SETINDEX = &H5

'Set the current Index for multi index help
Global Const HELP_SETCONTENTS = &H5
Global Const HELP_CONTEXTPOPUP = &H8
Global Const HELP_FORCEFILE = &H9
Global Const HELP_KEY = &H101

'Display topic for keyword in offabData
Global Const HELP_COMMAND = &H102
Global Const HELP_PARTIALKEY = &H105

'call the search engine in WinHelp

 The comments are shown here on the line following the declarations because of space constraints. They
can follow the declaration, on the same line.

See Also
Calling WinHelp()
Calling WinHelp Version 4.0
#define list
Examples
FuCommand Parameters
HELP Context ID Property
The HELPINFO Structure
The HELPWININFO Structure
The MULTIKEYHELP Structure
The WM TCard Structure

Examples

Contents

To call your help system, opening with the contents page (the calls are shown on two lines because of
space constraints - enter the calls on one line in your code):

dwData& = 1 'Assumes Contents page 1
ReturnValue% = WinHelp(hWnd, "myhelp.hlp", HELP_CONTEXT, ByVal dwData&)

Specific Topic

To call a specific topic in the help file:

dwData& = 58 'Specific Topic Context Number
ReturnValue% = WinHelp(hWnd, "myhelp.hlp", HELP_CONTEXT, ByVal dwData&)

Help on Help

To call the help file, provided by Microsoft, that gives the end user help on using help systems:

ReturnValue% = WinHelp(hWnd, "myhelp.hlp", HELP_PARTIALKEY, ByVal dwData&)

Close

To close the help system, before closing the window that requested the help:

ReturnValue% = WinHelp(hWnd, "myhelp.hlp", HELP_QUIT, ByVal dwData&)

See Also
Calling WinHelp()
Calling WinHelp Version 4.0
#define list
FuCommand Parameters
HELP Context ID Property
The HELPINFO Structure
The HELPWININFO Structure
The MULTIKEYHELP Structure
The WM TCard Structure
Visual Basic

HELP Context ID Property

VB 2.0/3.0

Visual Basic version 2.0/3.0 has a built in mechanism to employ the use of context sensitive help.

Help File

To make use of the built in help file functions, you must first declare the name of the help file for the
application:

App.HelpFile = "myhelp.hlp"

Place this declaration in the Form_Load procedure of your main form.

Context ID

In Visual Basic version 2.0/3.0, most controls have a HelpContextID property. To make use of the built in
context sensitivity, set the HelpContextID property of each control to the Context Number of the page that
provides help on that control.

When the user presses the F1 key, the help system will be called, with the appropriate page displayed. If
no Context ID is assigned to the active control, the help system will start with the index page.

Constants

Constants can be declared, assigning the value of the Context Number to a string descriptor. Search
Visual Basic's help on the word HelpContextID for more information.

See Also
Calling WinHelp()
Calling WinHelp Version 4.0
#define list
Examples
FuCommand Parameters
The HELPINFO Structure
The HELPWININFO Structure
The MULTIKEYHELP Structure
The WM TCard Structure
Visual Basic

Compiler Errors 3.1

 The following compiler errors are for Help compiler version 3.1 and earlier.

Message Type of errors Message Type of errors
numbers numbers

1019-1536 Source file errors 2771-2932 Other options errors
2010 Project file errors 3011-3178 Build tag footnote and expression errors
2030-2214 Syntax errors 3511-3652 Macro errors
2273-2331 General section errors 4011-4196 Context string errors
2341-2372 ALIAS and MAP section errors 4211-4312 Footnote errors
2391-2501 WINDOWS section errors 4331-4393 Topic title errors
2511-2532 OPTIONS section errors 4412-4452 Keyword errors
2550-2570 Root option errors 4471-4492 Build tag errors
2591-2632 Font range option errors 4551 Entry macro errors
2651-2672 Forcefont errors 4616-4813 Topic file errors
2691-2752 Multikey errors 5035-5115 Miscellaneous errors

Source File Errors

1019 Project file extension cannot be .HLP or .PH.

You cannot specify a project file with an .HLP or .PH extension. Project files must use the .HPJ
extension.
Rename the Help project file and then recompile.

1030 File name exceeds limit of 259 characters.
The combined length of the path and file name is more than the MS-DOS limit of 259 characters.
Shorten the path and then recompile.

1079 Out of file handles.
The Help Compiler does not have enough available file handles to continue the build.

1100 Cannot open file filename: permission denied.
You do not have the required file privileges to open the requested file.

1150 Cannot overwrite file filename.
The Help file cannot overwrite the specified file because the file has a read-only attribute.
Rename the Help project file or change the read-only attribute.

1170 File filename is a directory.
A subdirectory in the Help project root directory has the same name as the requested Help file.
This is a MS-DOS file error.
Move or rename the subdirectory and then recompile.

1190 Cannot use reserved MS-DOS file filename.
A file has been referred to by a reserved MS-DOS name such as COM1, LPT2, or PRN. This is a
MS-DOS file error.
Rename the file and then recompile.

1230 File filename not found.
The specified file could not be found or is unreadable. This is a MS-DOS file error or an out-of-
memory condition.
Check to see if the file exists and also check the amount of available memory.

1292 File filename is not a valid bitmap.
The specified bitmap file could not be found or is not in a recognizable bitmap format. This is a
MS-DOS file error or an out-of-memory condition.
Check to see if the file exists, and if it does, check its format. If necessary, save the file again in
your paint or draw program, and then recompile.

1319 Disk full.
The Help file could not be written to disk.
Create more space on the destination disk and then recompile.

1513 Bitmap name filename duplicated.
The [BITMAPS] section contains duplicate bitmap names. The Help Compiler uses the first
occurrence of the name.
Rename the duplicate bitmap file names and then recompile.

1536 Not enough memory to check and compress bitmap filename.
The specified bitmaps cannot be compressed because of insufficient memory. If any of the
specified bitmaps are segmented hypergraphics, the context strings stored in them are not
checked for validity during the build.

Project File Errors

2010 Include statements nested more than 5 deep.

The #include statement on the specified line has exceeded the maximum of five include levels.
Do not nest #include statements more than 5 deep.

Syntax Errors

2030 Comment starting at line linenumber of file filename unclosed at end of file.

The Help Compiler has unexpectedly come to the end of the Help project file. There may be an
open comment in the .HPJ file or in an included file.

2050 Invalid #include syntax.
The correct #include syntax is as follows:
#include <filename>
Correct the syntax and then recompile.

2091 Bracket missing from section heading [sectionname].
The right bracket (]) is missing from the specified section heading.
Insert the bracket and then recompile.

2111 Section heading missing.
The section heading on the specified line is not complete. This error is also reported if the first
entry in the Help project file is not a section heading.

2131 Invalid OPTIONS syntax: option=value' expected.
Check the syntax of the options in the [OPTIONS] section.

2141 Invalid ALIAS syntax: context=context' expected.
Check the syntax of the entries in the [ALIAS] section.

2151 Incomplete line in [sectionname] section.
The entry on the specified line is incomplete. The Help Compiler skips the line.

2171 Unrecognized text.
 There is unrecognizable text following valid text.
The Help Compiler ignores the line.

2191 Section heading [sectionname] unrecognized.
A section heading that is not supported by the Help Compiler has been used.
The Help Compiler ignores the line.

2214 Line in .HPJ file exceeds length limit of 2047 characters.
There is a line in the .HPJ file that exceeds the maximum length of 2047 characters.

General Section Errors

2273 [OPTIONS] should precede [FILES] and [BITMAPS] for all options to take effect.

It is recommended that the [OPTIONS] section be the first section of the .HPJ file so that all the
options will take effect. Also, if the ERRORLOG option is used, it should be the first line in the
[OPTIONS] section.

2291 Section sectionname previously defined.
A duplicate section has been found in the Help project file.
The Help Compiler ignores the lines under the duplicated section and continues from the next
valid section heading.

2305 No valid files in [FILES] section.
The file section is either empty or contains only invalid files.

2322 Context string context_name cannot be used as alias string.
A context string that has been assigned an alias cannot be used later as an alias for another
context string. That is, you cannot map a = b and then c = a in the [ALIAS] section.
The Help Compiler ignores the attempted reassignment on this line.

2331 Context number already used in [MAP] section.
The context number on the specified line in the Help project file was previously mapped to a
different context string.
The Help Compiler ignores the line.

ALIAS and MAP Section Errors

2341 Invalid or missing context string.

The specified line is missing a context string before an equal sign.
2351 Invalid context identification number.

The context number on the specified line is empty or contains invalid characters.
2362 Context string context_name already assigned an alias.

A context string can only have one alias. That is, you cannot map a = b and then a = c in the
[ALIAS] section. The specified context string has already been assigned an alias in the [ALIAS]
section.
The Help Compiler ignores the attempted reassignment on this line.

2372 Alias string aliasname already assigned.
You can't alias an alias. An alias string cannot, in turn, be assigned another alias. That is, you
cannot map a = b and then b = c in the [ALIAS] section.
The Help Compiler ignores the attempted reassignment on this line.

WINDOWS Section Errors
 
2391 Limit of 6 window definitions exceeded.

The maximum number of window definitions is one main window definition and five secondary
window definitions.

2401 Window maximization state can assume any of ten different values.
0 SW_HIDE Hides the window and passes activation to another window.
1 SW_SHOWNORMAL Activates and displays a window. If the window is minimized or

maximized, Windows restores it fo its original size and position.
2 SW_SHOWMINIMIZED Activates the window and displays it as an icon
3 SW_SHOW Activates the window and displays it as a maximized window.
4 SW_SHOWNOACTIVATE Display's at it's most recent size and position. The window that is

currently active remains active.
5 SW_SHOW Activates a window and displays it in it's current size and position.
6 SW_MINIMIZE Minimizes the specified window and activates the top-level window

in the window-manager's list.
7 SW_SHOWMINOACTIVE Displays the window as iconic. The window that is currently active

remaing active.
8 SW_SHOW Displays the window in it's current state. The window that is

currently active remains active.
9 SW_RESTORE Same as SW_SHOWNORMAL
The value of the fMax variable in the window attribute specification in the .HPJ file is invalid.
Correct the entry and then recompile.

2411 Invalid syntax in window color.
The correct syntax for the text and background color is: .mono (rrr, ggg, bbb).endmono.
Correct the syntax and then recompile. For information on setting the window color, please see
"Defining Help Windows" in the Help Compiler Guide, "Building your Help File."

2421 Invalid window position.
The correct syntax to indicate the predefined window position is: .mono (x, y, DX, dy).endmono.
The Help Compiler ignores this line, and the window does not have a predefined position.
For more information, please see "Defining Help Windows" in the Help Compiler Guide, "Building
your Help File."

2431 Missing quote in window caption.
The value of the caption attribute for the window definition in the .HPJ file is not enclosed in
quotation marks.
Correct the syntax and then recompile.

 2441 Window name windowname is too long.
The window name exceeds the maximum length of 8 characters.

2451 Window position value out of range 01023.
One or more of the window position coordinates (X, Y, X + dX, or [Y+dY]) exceed the maximum
position value of 1023.

2461 Window name missing.
The window specification in the .HPJ file is missing the window name.

2471 Invalid syntax in [WINDOWS] section.
The entry for a main or secondary window is incorrect.
The Help Compiler ignores the window entry.
Check the window entry syntax and then recompile.

2481 Secondary window position required.
The X, Y, dX, and dY entries for the secondary window definitions must be specified in the .HPJ
file.

2491 Duplicate window name windowname.
There are duplicate window names in the .HPJ file.
Check the uniqueness of each member name and then recompile.

2501 Window caption windowcaption exceeds limit of 50 characters.

The caption for the window exceeds the limit of 50 characters.

OPTIONS Section Errors

2511 Unrecognized option optionname in [OPTIONS] section.

An option has been used that is not supported by the compiler.
The Help Compiler skips this line.

2532 Option optionname previously defined.
The specified option has been defined on a previous line.
The Help Compiler ignores the attempted redefinition.

Root Option Errors

2550 Invalid path pathname in optionname option.

The Help Compiler cannot find the path specified by the ROOT option.
The Help Compiler uses the current working directory.

2570 Path in optionname option exceeds number of characters.
The path specified by the ROOT option exceeds the MS-DOS maximum limit.
The Help Compiler ignores the path and uses the current working directory.

Font Range Option Errors

2591 Invalid MAPFONTSIZE option.

The font range syntax is invalid.
The correct syntax is m[-n]:p.

2612 Maximum of 5 font ranges exceeded.
The maximum number of font ranges that can be specified is five.
The Help Compiler ignores any additional ranges.

2632 Current font range overlaps previously defined range.
A font size range overlaps a previously defined mapping.
The Help Compiler ignores the second mapping.
Adjust one or both of the font ranges to remove any overlaps.

Forcefont Errors

2651 Font name exceeds limit of 20 characters.

Font names cannot exceed 20 characters.
The Help Compiler ignores this line.

2672 Unrecognized font name fontname in FORCEFONT option.
The Help Compiler has encountered a font name that it does not support.
The Help Compiler ignores the font name and uses the default Helvetica font.

Multikey Errors

2691 Invalid MULTIKEY syntax.

The Help Compiler does not recognize the syntax used in a MULTIKEY option. The valid syntax
is MULTIKEY = char, where char is any capital letter other than "K."

2711 Maximum of 5 keyword tables exceeded.
The limit of five keyword tables has been exceeded.
The Help Compiler ignores the additional tables.
Reduce the number of tables and then recompile.

2732 Character already used.
A character used for indicating the keyword table (MULTIKEY = char) was previously used.
The Help Compiler ignores the entry.

2752 Characters K' and k' cannot be used.
These characters are reserved for Help's normal keyword table.
Choose another character, and then recompile.

Other Options Errors
 
2771 REPORT option must be ON' or OFF'.

The REPORT option must be either True, 1, ON, YES, False, 0, OFF, or NO. Correct the entry
and then recompile.

2811 OLDKEYPHRASE option must be ON' or OFF'.
The OLDKEYPHRASE option must be either True, 1, ON, YES, False, 0, OFF, or NO.
Correct the entry and then recompile.

2832 COMPRESS option must be OFF', MEDIUM' or HIGH'.
The COMPRESS option must be either 1, YES, ON, True, HIGH, MEDIUM, 0, NO, OFF, or
False.
Correct the entry and then recompile.

2842 OPTCDROM option must be TRUE' or FALSE'.
The OPTCDROM option must be either True or False.
The Help Compiler defaults to False.
Correct the entry and then recompile.

2852 Invalid TITLE option.
The TITLE option defines a string that is empty or contains more than 32 characters.
The Help Compiler truncates the title.

2872 Invalid LANGUAGE option.
You have specified an ordering that is not supported by the compiler.
The Help Compiler defaults to U.S. sort ordering.

2893 Warning option must be 1, 2, or 3.
The warning reporting level can be set only to 1, 2, or 3.
The Help Compiler defaults to full reporting (level 3).

2911 Invalid icon file filename.
The Help Compiler cannot find the icon file specified in the ICON option, or the file is not a valid
icon file.

2932 Copyright string exceeds limit of 50 characters.
The maximum length of the copyright string in the About box is 50 characters.
The Help Compiler truncates the string.

Build Tag Footnote and Expression Errors

3011 Maximum of 32 build tags exceeded.

The maximum number of build tags that can be defined is 32.
The Help Compiler ignores the additional tags.

3031 Build tag length exceeds 32 characters.
The build tag on the specified line exceeds the maximum of 32 characters.
The Help Compiler skips this entry.

3051 Build tag tagname contains invalid characters.
Build tags can contain only alphanumeric characters or the underscore (_) character.
The Help Compiler skips this line.

3076 [BUILDTAGS] section missing.
The BUILD option declared a conditional build, but there is no [BUILDTAGS] section in the Help
project file.
The Help Compiler includes all topics in the build.

3096 Build expression too complex.
The build expression has too many expressions ("~", "|" or "&") or is too deeply nested.

3116 Invalid build expression.
The syntax used on the specified line of the build expression contains one or more logical or
syntax errors.

3133 Duplicate build tag in [BUILDTAGS] section.
A build tag in the [BUILDTAGS] section has been repeated unnecessarily.

3152 Build tag tagname not defined in [BUILDTAGS] section.
The specified build tag has been assigned to a topic, but not declared in the Help project file.
The Help Compiler ignores the tag for the topic.

3178 Build expression missing from project file.
The topics have build tags, but there is no BUILD = expression in the .HPJ file.
The Help Compiler includes all topics in the build.

Macro Errors
 
3511 Macro macrostring exceeds limit of 254 characters.

The macro string exceeds the maximum limit of 254 characters.
3532 Undefined function in macro macroname.

The specified macro is not on the list of macros supported by the compiler, nor is it specified in
the RegisterRoutine().
The Help Compiler nonetheless passes the macro to the .HLP file.

3552 Undefined variable in macro macroname.
The macro contains a variable that is not recognized by the compiler.

3571 Wrong number of parameters to function in macro macroname.
There are too many or too few parameters in the macro.

3591 Syntax error in macro macroname.
The syntax of the macro is invalid.

3611 Function parameter type mismatch in macro macroname.
There is a type mismatch (string or numeric) in the function call.

 3631 Bad macro prototype.
The prototype string passed to RegisterRoutine is invalid.

3652 Empty macro string.
The "!" footnote or a hidden text starting with "!" does not contain a macro.

Context String Errors

4011 Context string contextname already used.

The specified context string was previously assigned to another topic.
The Help Compiler ignores the latter string, and the topic has no identifier.

4031 Invalid context string contextname.
The context string footnote contains non-alphanumeric characters or is empty.
The Help Compiler does not assign the topic an identifier.

4056 Unresolved context string specified in CONTENTS option.
The Contents topic defined in the Help project file could not be found.
The Help Compiler uses the first topic in the build as the Contents.

4072 Context string exceeds limit of 255 characters.
 The context string hidden text cannot exceed 255 characters.
The Help Compiler ignores the string.

4098 Context string(s) in [MAP] section not defined in any topic.
The Help Compiler cannot find a context string listed in the [MAP] section in any of the topics in
the build.
The Help Compiler ignores the entry.

4113 Unresolved jump or pop-up contextname.
The specified topic contains a context string that identifies a nonexistent topic.
Check the topic for spelling errors in the context string, and also check to see if the requested
topic is included in the build.

4131 Hash conflict between contextname and contextname.
The hash algorithm has generated the same hash value for both of the listed context strings.
Change either of the context strings and then recompile.

4151 Invalid secondary window name windowname.
The window name for the secondary window is "main" or another disallowed member name.

4171 Cannot use secondary window with pop-up.
The hidden text defining the pop-up identifier contains a secondary window name.

4196 Jumps and lookups not verified.
Due to the low memory conditions, the build is continued without the jump and keyword validity
verification.

Footnote Errors

4211 Footnote text exceeds limit of 1023 characters.

 The footnote text cannot exceed the limit of 1023 characters.
The Help Compiler ignores the footnote.

4231 Footnote text missing.
The specified topic contains a footnote that has no characters.

4251 Browse sequence not in first paragraph.
The browse-sequence footnote is not in the first paragraph of the topic.
The Help Compiler ignores the browse sequence.

 4272 Empty browse sequence string.
The browse-sequence footnote for the specified topic contains no sequence characters.

4292 Missing sequence number.
 A browse-sequence number ends in a colon (:) for the specified topic.
Remove the colon, or enter a "minor" sequence number and then recompile.

4312 Browse sequence already defined.
There is already a browse-sequence footnote for the specified topic.
The Help Compiler ignores the latter sequence.

Topic Title Errors

4331 Title not in first paragraph.

The title footnote ($) is not in the first paragraph of the topic.
The topic will not have a topic title string.

4352 Empty title string.
The title footnote for the specified topic contains no characters.
The Help Compiler does not assign the topic a title.

4372 Title defined more than once.
There is more than one title footnote in the specified topic.
The Help Compiler uses the first title string.

4393 Title exceeds limit of 128 characters.
The title for the specified topic exceeds the limit of 128 characters.
The Help Compiler ignores the additional characters.

Keyword Errors

4412 Keyword string exceeds limit of 255 characters.

The keyword string exceeds the maximum limit of 255 characters.
4433 Empty keyword string.

There are no characters in the keyword footnote.
4452 Keyword(s) defined without title.

The topic has a keyword assigned to it, but no title.
The topic will appear as ">>Untitled Topic<<" in the history list and in the keyword search dialog.

Build Tag Errors

4471 Build tag footnote not at beginning of topic.

The build tag footnote marker, if used, has to be the first character in the topic.
4492 Build tag exceeds limit of 32 characters.

A build tag for the specified topic exceeds the maximum of 32 characters.
The Help Compiler ignores the tag for the topic.

Entry Macro Errors

4551 Entry macro not in first paragraph.

The "!" footnote (for running a macro) is not in the first paragraph of the topic.
The Help Compiler ignores the macro.

Topic File Errors

4616 File filename is not a valid RTF topic file.

The specified file is not an RTF file.
Check to make sure that you have saved the topic file as RTF from your word processor.

4639 Error in file filename at byte offset 0x%lX.
The specified file contains unrecognized RTF at that byte offset.
This message should not appear if you are using Microsoft Word for Windows, Microsoft Word for
MS-DOS, or Microsoft Word for the Macintosh..
Check the RTF syntax and then recompile. If you are using Microsoft Word for the Macintosh,
transfer the file to the PC again, and then recompile.

4649 File filename contains more than 32767 topics.
The maximum number of topics allowed in one RTF file is 32767.

4652 Table formatting too complex.
The Help Compiler encountered a table with borders, shading, or right justification.
Remove the unsupported formatting and then recompile.

4662 Side-by-side paragraph formatting not supported.
The side-by-side paragraph formatting is not supported in WinHelp in Windows version 3.1. The
Help Compiler ignores the side-by-side text.
If you are using WinHelp in Windows 3.1, use the table feature.

4671 Table contains more than 32 columns.
The maximum number of columns in one table is 32. Some word processors may have different
limits for the number of columns supported.

4680 Font fontname in file filename not in RTF font table.
A font not defined in the RTF header has been entered into the topic.
The Help Compiler uses the default system font.

4692 Unrecognized graphic format.
The Help Compiler supports only Windows bitmaps and metafiles.
The Help Compiler ignores the graphic.
Make sure that you have not used Macintosh picture formats.

4733 Hidden page break.
The page break was found as a part of the hidden text. A page break formatted as hidden text will
not separate two topics.

4753 Hidden paragraph.
A paragraph marker was found in the hidden text.
The Help Compiler ignores the paragraph marker.

4763 Hidden carriage return.
A carriage return was found in the hidden text.
The Help Compiler ignores the carriage return.

4774 Paragraph exceeds limit of 64K.
A single paragraph has more than 64K of text or 64K of graphics.

4792 Nonscrolling region defined after scrolling region.
A paragraph that was authored as "keep with next" is not the first paragraph in the topic.
The Help Compiler ignores the "keep with next" attribute, and the paragraph is treated as regular
text and will be part of the regular topic text.

4813 Nonscrolling region crosses page boundary.
The "keep with next" paragraph formatting crosses a page break boundary.

Miscellaneous Errors

5035 File filename not created.

There are no topics to compile, or the build expression is False for all topics.
The Help Compiler does not create a Help file.

5059 Not enough memory to build Help file.
To free up memory, unload any unneeded applications, device drivers, and memory-resident
programs.

5075 Help Compiler corrupted. Please reinstall HC31.EXE.
The virus checking code has detected a corruption in the Help Compiler.
Reinstall the Help Compiler from the original source disk.

5098 Using old key-phrase table.
Maximum compression can only result by deleting the .PH file before each recompilation of the
Help topics or by setting the OLDKEYPHRASE option to 0.

5115 Write failed.
Write to disk failed.
Contact Microsoft Product Support Services.

Compiler Errors 95

 The following compiler errors are for Help compiler version 4.0 and later.

Message Type of errors
numbers

1000-1024 Notes
3000-3079 Warnings
3080-4014 Warnings 2
5000-6008 Errors

Notes

1000 Note: A keyword footnote has been specified without a keyword.

Problem: There are no characters in the keyword footnote in the topic (.rtf) files.
Result: Help Workshop ignores the keyword footnote. If there are no additional keyword
footnotes, the topic will be inaccessible from the Index tab in the Help Topics dialog box.
Solution: Add one or more keywords to the keyword footnote, and then recompile.

1001 Note: The keyword [] is already defined in this topic.

Problem: The same keyword has be defined more than once in a topic.
Result: Help Compiler ignores the duplicate keyword.
Solution: Open the topic and remove the duplicate.

1002 Note: Using existing phrase table: [].

Problem: Help Compiler found an existing phrase (.ph) table for the Help file you are building,
and the project (.hpj) file does not specify not to use the table.
Result: Help Compiler uses the phrase table that was generated from an earlier build instead of
creating a new table.
Solution: To achieve the best phrase compression when compiling your Help file, you must
delete the old key-phrase table before each recompilation, or clear the "Use old phrase file"
option in the Compression tab in the Options dialog box of Help Magician.

1003 Note: A paragraph mark is formatted as a hidden character.

Problem: A paragraph mark has been formatted as hidden text. This often occurs when a hotspot
is the last word in a paragraph.
Result: Help Compiler ignores the paragraph mark, so the two paragraphs will run together.
Solution: Reformat the paragraph marker as plain text in the topic file, and then recompile.

1004 Note: A previous instance of [] does not contain [].

Problem: A {bmx} command specifying only one resolution version of a bitmap is followed later in
the topic files by a {bmx} command specifying that version plus one or more additional versions.
Result: WinHelp will treat the earlier single-resolution command as if it were the same as the
command specifying multiple resolutions.
Solution: Replace the single resolution command with a copy of the multiple-resolution
command.

1005 Note: [] is not an unsigned number for the macro []. The sign will be ignored.

Problem: The parameter for this macro should be unsigned, but the number has been prefixed
with a minus character.
Result: Help Compiler will remove the minus sign when it creates the Help file.
Solution: Remove the minus sign from the macro definition, and then recompile.

1006 Note: The ExecProgram macro has been used instead of ExecFile.

Problem: The ExecProgram macro has been used.
Result: The ExecProgram macro ignores the restricted programs that can be set in Windows 95.
It will not search the registry from programs, so some programs cannot be launched with this
command.

Solution: Replace instances of ExecProgram macro commands with ExecFile macro commands,
and then recompile.

1007 Note: The include tag [] has been specified in the [EXCLUDE] section.

Problem: You have specified the same tag in the [EXCLUDE] section as you have in the
[INCLUDE] section.
Result: Help Compiler ignores the tag in the [EXCLUDE] section.
Solution: Remove the tag from either the [EXCLUDE] or the [INCLUDE] section.

1008 Note: Ignoring the transparent flag on the monochrome bitmap [].

Problem: The transparent flag has been specified for a monochrome bitmap. It may only be used
with a 16-color bitmap.
Result: Help Compiler ignores the flag.
Solution: Remove the transparent flag.

1009 Note: The map entry for [] has text after the number: [].

Problem: Text occurs after the numeric value specified in a map entry.
Result: Help Compiler ignores the text following the number in the entry.
Solution: Use Help Magician to make sure the map entry is correctly entered in the project file.
(Comments must be preceded by a semicolon, which Help Magician adds automatically.)
Recompile after making any changes.

1010 Note: The following mapped topic IDs are not used in any topic: [].

Problem: Entries appear in the [MAP] section for which you have no topics.
Result: If a program tries to use these mapped IDs, WinHelp will display an error message.
Solution: Check the listed entries to make sure they were not mistyped. Remove any IDs that
are not actually used, and add topics for those that are.

1011 Note: The right-justified table row style is not supported.

Problem: A table style has been specified that WinHelp does not support.
Result: Help Compiler ignores the style.
Solution: Remove the right-justified style.

1012 Note: Table cell borders are not supported.

Problem: A table format has been specified that WinHelp does not support.
Result: Help Compiler ignores table cell borders.
Solution: Remove table cell borders in the topic file(s), and then recompile.

1013 Note: The "[]" section is missing a right bracket.

Problem: A section in your project file begins with a left bracket, but does not end with a right
bracket.
Result: Help Compiler ignores the section heading on this line. The following lines will be
processed as if they are part of the previous section which may result in errors.
Solution: Insert the right section heading bracket or remove the line entirely, and then recompile.

1014 Note: The multikey value [] has already been defined.

Problem: A character used for indicating an alternate keyword table has been used already.

Result: Help Compiler ignores the duplicate keyword table assignment on this line in the project
file.
Solution: Remove the duplicate character, and then recompile.

1015 Note: A page break is formatted as a hidden character.

Problem: A page break has been formatted as hidden text.
Result: Help Compiler ignores the page break. If the page break was used to separate two
topics, the topics will appear as one.
Solution: Reformat the page break in the topic file as plain text, and then recompile.

1016 Note: A carriage return is formatted as a hidden character.

Problem: A carriage return has been formatted as hidden text.
Result: Help Compiler ignores the carriage return and does not create a new line.
Solution: Reformat the carriage return in the topic file as plain text, and then recompile.

1017 Note: A nonscrolling region crosses a page break.

Problem: The Keep With Next paragraph formatting used for specifying a non-scrolling region
crosses a page break boundary.
Result: The topic beginning with the page break will have a nonscrolling region, whether or not
one is intended.
Solution: Remove the Keep With Next paragraph formatting from the page break, and then
recompile.

1019 Note: The Language option is obsolete. It should be replaced with the LCID option.

Problem: The LANGUAGE option has been used. This option has been made obsolete by the
LCID option which should be used instead.
Result: Help Compiler will attempt to convert the LANGUAGE option into an appropriate LCID
option.
Solution: Check the Compiler version in the Compiler Options dialog. If the problem persists, call
technical support.

1024 Note: The [] option has been specified more than once.

Problem: The same option has been specified more than once.
Result: Help Compiler uses the last definition for the option and ignores the others.
Solution: Rebuild help file. If problem persists, call technical support.

Warnings (3000-3079)

3000 Warning: The keyword [] is longer than [] characters.

Problem: A single keyword exceeds 255 characters.
Result: Help Compiler ignores the keyword.
Solution: Check for a missing semicolon or shorten the length of the keyword string, and then
recompile.

3001 Warning: The file [] does not contain a valid icon.

Problem: You have specified an icon using the ICON option in the [OPTIONS] section of your
project file, however, the file does not contain a valid icon image.
Result: Help Compiler ignores icon.
Solution: Since WinHelp 4.0 doesn't use the icon anyway, simply remove the ICON option from
your project file and recompile..

3002 Warning: [] is a number but should be a string for the macro [].

Problem: The parameter for the should be a string, but it starts with a numeric character.
Result: Help Compiler ignores the rest of the macro. WinHelp will not be able to run the macro.
Solution: If the parameter really is a string that begins with a number, then you must place the
string in quotations marks (`').

3003 Warning: The macro name [] is invalid.

Problem: Help Compiler does not recognize the macro you have entered.
Result: WinHelp may not be able to run the macro.
Solution: If you meant to use a WinHelp macro, confirm that you have spelled it correctly. Note
that macro names are always entered in English no matter what language the text of the topic file
is in. If the macro is supplied by a dynamic-link library (DLL), make certain you have registered
the macro name using the RegisterRoutine macro in the [CONFIG] section of your project file.

3004 Warning: The variable used in the macro [] does not match the macro's argument type.

Problem: You have used a string for a numeric parameter or a number for a string parameter.
Result: WinHelp will not be able to run the macro.
Solution: Replace the incorrect parameter types, and then recompile. If the macro is defined in a
custom dynamic-link library (DLL), check the RegisterRoutine macro in the project file for the
correct parameter types.

3005 Warning: The macro variable [] is undefined.

Problem: The specified macro contains a variable that is not recognized by Help Compiler.
Result: Help Compiler ignores the rest of the macro. WinHelp will not be able to run the macro.
Solution: Replace incorrect variables, and then recompile.
The following is a list of valid macro variables:

· hwndContext
· hwndApp
· qchPath
· qError
· TopicNo
· hfs
· coForeground

· coBackground

3006 Warning: Missing comma in authorable button command.

Problem: You have specified a íbutton ý command without specifying a comma followed by the
macro to run when the button is clicked.
Result: Help Compiler ignores the button command.
Solution: Look up the íbutton ý command in Related Topics and correct the syntax.

3007 Warning: [] is an invalid display-state parameter for the macro [].

Problem: A non-supported display state has been specified for a macro that launches a program.
Result: Help Compiler ignores the rest of the macro. WinHelp may not be able to run the macro.
Solution: Look up the macro in the Related Topics, and use one of the documented display
states.

3008 Warning: Missing double quotation mark in macro [].

Problem: There is an unmatched double quotation mark in the macro.
Result: Help Compiler ignores the rest of the macro. WinHelp cannot run the macro.
Solution: Edit the macro with syntax checking turned off and then recompile.

3009 Warning: Missing end quotation mark (') in macro [].

Problem: A start quotation mark has been specified without an end quotation mark.
Result: Help Compiler ignores the rest of the macro. WinHelp cannot run the macro.
Solution: Turn off syntax checking, add the missing single quotation mark to the macro definition
and then recompile.

3010 Warning: The macro name [] is undefined.

Problem: The macro name you have used is not a valid WinHelp macro and has not been
defined by a RegisterRoutine macro.
Result: Help Compiler ignores the rest of the macro. WinHelp cannot run the macro.
Solution: If this is a macro that calls a dynamic-link library (DLL) function, add the
RegisterRoutine macro to the project file that defines this function name. Otherwise, you have
probably misspelled the macro name.

3011 Warning: The accelerator [] has already been added.

Problem: The accelerator you have used in the AddAccelerator macro has already been used.
Result: Help Compiler ignores the rest of the macro. You may get a syntax error if WinHelp tries
to run the macro.
Solution: Use another accelerator key. Using the same format for accelerators will help avoid
duplication. For example, 'A', 65, and 0x41 are all the same accelerator.

3012 Warning: The macro [] does not include a window name.

Problem: The macro requires a window name, and you have not specified one.
Result: Help Compiler ignores the rest of the macro. WinHelp cannot run the macro.
Solution: Supply the window name in the macro.

3013 Error: [] is not a valid numeric parameter for the macro [].

Problem: The parameter for the specified macro can only be a numeric value or a macro that

returns a numeric value, and you have specified a string. Some macros accept a limited type of
string parameter in place of a number, but if you do not use one of those values, you get an error.
Result: Help Compiler ignores the rest of the macro. WinHelp cannot run the macro.
Solution: Change the macro parameter in the topic file to a numeric value, and then recompile.

3014 Warning: Window name [] has already been used.

Problem: The same window type has been specified more than once in the [WINDOWS] section
of the project file.
Result: Only the first definition of the window is used.
Solution: Check for a duplicate window definition in the Windows section of the Options menu
item. Make the correction, and then recompile. If the problem persists, call technical support.

3015 Warning: This window position is invalid: [].

Problem: An invalid window position has been used. The window position in a window definition
consists of four numbers that define the window's location on the screen and its width and height.
The four numbers must be given in WinHelp's 1024-by-1024 coordinate system, and they must
be enclosed in parentheses and separated by commas.
Result: Help Compiler ignores the window definition.
Solution: Adjust the position as necessary using the Windows Definition option.

3016 Warning: Invalid syntax for authorable button: [].

Problem: The syntax you have used for an authorable button is invalid.
Result: Help Compiler ignores the íbuttoný statement.
Solution: Correct the syntax, and then recompile. Typically the problem occurs by leaving out a
comma before the macro definition. The correct syntax for an authorable button is:
íbutton button name, macro()ý

3017 Warning: Topic ID for [] macro contains invalid characters: [].

Problem: There is an invalid character in the topic ID.
Result: Help Compiler ignores the rest of the macro. WinHelp cannot run the macro.
Solution: Replace the invalid characters in the topic ID, and then recompile.

3018 Warning: In the project file, an #include statement is specified without a filename.

Problem: An #include line has been specified in the project file, but the line did not include a
filename.
Result: Help Compiler ignores the #include line.
Solution: Either delete the line or add a correct filename to the statement, and then recompile.

3019 Warning: Missing quotation mark or parenthesis in the macro [].

Problem: There is an unmatched quotation mark or parenthesis.
Result: Help Compiler ignores the rest of the macro. WinHelp cannot run the macro.
Solution: Add the missing quotation or right parenthesis to the macro definition in the topic file
and then recompile.

3021 Warning: Cannot find the bitmap [].

Problem: Help Compiler is unable to find the bitmap you have specified.
Result: Help Compiler creates a temporary bitmap containing the filename of the missing bitmap.
Solution: If the bitmap name is valid, add the path it is contained in to the list of bitmap paths

(under the Options menu item in the Paths dialog).

3022 Warning: The bitmap [] has already been used as a non-transparent bitmap.

Problem: A bitmap cannot be transparent in one instance and non-transparent in another.
Result: The bitmap will always be displayed as non-transparent.
Solution: Change either bitmap command so that they are both transparent or both non-
transparent. Alternatively, you can create a new file for a bitmap.

3023 Warning: The bitmap [] has already been used as a transparent bitmap.

Problem: A bitmap cannot be transparent in one instance and non-transparent in another.
Result: The bitmap will always be displayed as transparent.
Solution: Change either bitmap command so that they are both transparent or both non-
transparent. Alternatively, you can create a new file for a bitmap.

3024 Warning: The window name [] contains more than eight characters and has been
truncated to [].

Problem: The window name is too long.
Result: Help Compiler truncates the name to 8 characters. If this results in a duplicate window
name, you will get another warning message.
Solution: Verify the window caption in the Window Definitions dialog under the Options menu
item and then recompile the project file. If the problem persists, call technical support.

3025 Warning: Jump to undefined topic ID: [].

Problem: No topic has been defined with the topic ID specified in the hotspot.
Result: WinHelp displays the "Topic not found" error message when the user chooses a hotspot
with the unresolved topic ID.
Solution: Check for spelling errors in the hotspot topic ID.

3026 Warning: The topic ID [] has already been defined in topic [] in file [].

Problem: Another topic exists with an identical topic ID.
Result: Help Compiler ignores the duplicate topic ID, so the duplicate topic has no identifier.
Solution: Change the duplicate topic ID so that it is unique, and then recompile.

3027 Warning: The following alias line does not contain an '=' character separating the topic
IDs: [].

Problem: An invalid line has been entered in the [ALIAS] section of the project file.
Result: Help Compiler ignores the alias.
Solution: Make the correction in the Help Magician and then recompile. If the problem persists,
call technical support.

3028 Warning: The bitmap file [] is corrupted.

Problem: Either the file is corrupt, or it has not been saved as an uncompressed bitmap (.bmp)
file.
Result: Help Compiler ignores this bitmap, and WinHelp displays the "Unable to display picture"
message in the topic instead of the bitmap.
Solution: Replace the bitmap file with one that is not corrupt, or remove the bitmap reference in
the topic file.

      3029 Warning: The file format of the bitmap file [] is unrecognized or unsupported.

Problem: Either the file is corrupt, or it has not been saved as an uncompressed bitmap (.bmp)
file.
Result: Help Compiler ignores this bitmap, and WinHelp displays the "Unable to display picture"
message in the topic instead of the bitmap.
Solution: Convert the bitmap to a supported format, and then recompile.

3031 Warning: Help Compiler does not support compressed BMP files: [].

Problem: The bitmap was saved with RLE compression.
Result: Help Compiler ignores this bitmap, and WinHelp displays the "Unable to display picture"
message in the topic instead of the bitmap.
Solution: Save the bitmap without compression.

3032 Warning: The bitmap file [] is truncated.

Problem: The size of the bitmap does not match the size of the file. The bitmap file is corrupt.
Result: Help Compiler ignores this bitmap, and WinHelp displays the "Unable to display picture"
message in the topic instead of the bitmap.
Solution: Resave or recreate the specified bitmap file.

3033 Warning: The topic ID [] contains invalid characters.

Problem: There is an invalid character in the topic ID footnote.
Result: Help Compiler does not assign an identifier to the topic.
Solution: In the topic file, change the characters in the topic ID so that it is valid, and then
recompile.

3034 Warning: Invalid parameter for TCard macro: [].

Problem: The parameter specified for the TCard macro is invalid.
Result: Help Compiler ignores the macro, and WinHelp returns an error when it tries to run the
macro.
Solution: Correct the invalid TCard macro definition in the topic file, and then recompile.

3035 Warning: Map entry does not specify a numeric value: [].

Problem: Help Compiler expected a numeric value, and encountered text instead.
Result: Help Compiler ignores the entry.
Solution: Change the entry to a numeric value.

3037 Warning: The map value for [] is the same as the map value for [].

Problem: A context number in the [MAP] section of the project (.hpj) file was previously mapped
to a different topic ID.
Result: Help Compiler ignores the line with the duplicate context number.
Solution: Verify that all context numbers in the project file are unique. Remove or reassign any
duplicate context numbers, and then recompile.

3038 Warning: The following topic IDs were not defined in the [MAP] section of the project file.

Problem: Help Compiler cannot find the specified topic IDs listed in the [MAP] section of the
project (.hpj) file.
Result: Help Compiler ignores the lines in the project file. If the program uses that number in the

WinHelp function, WinHelp displays the "Help topic not found" error message.
Solution: Verify that all topic IDs listed in the [MAP] section of the project file are assigned to
topics included in the build and that the topic IDs are spelled correctly. Then recompile the project
file.

3041 Warning: The phrase file [] exceeds 64K. Phrase compression turned off.

Problem: The phrase file is invalid and cannot be used.
Result: Help Compiler cannot perform phrase compression on the Help file.
Solution: Delete the phrase file, and then recompile. If the problem still occurs, switch to Hall or
Maximum compression.

3042 Warning: The copyright string exceeds 255 characters. It has been truncated to the
following: [].

Problem: The copyright string is too long.
Result: Help Compiler truncates the copyright string at 255 characters.
Solution: In Help Magician, edit the text in the Copyright information box on the Appearance
dialog under the Options menu item, and then recompile.

3043 Warning: The title string exceeds 127 characters. It has been truncated to the following: [].

Problem: The title string is too long.
Result: Help Compiler truncates the title string.
Solution: In Help Magician, edit the text in the Help Title box on the Appearance dialog under the
Options menu item, and then recompile.

3044 Warning: Hotspot exceeds [] characters: [].

Problem: The hidden text portion of the hotspot is too large.
Result: Help Compiler does not make the selected text or graphic a hotspot.
Solution: Shorten the hotspot in the topic file, and then recompile.

3045 Warning: Footnote exceeds [] characters: [].

Problem: The footnote is too large.
Result: Help Compiler ignores the footnote.
Solution: Reduce the length of the footnote text in the topic file, and then recompile. For some
footnotes, such as the K-footnote, you can use several smaller footnotes instead of one larger
footnote.

3046 Warning: The [] file is not an RTF (Rich Text Format) file. It appears to have been saved as
a Microsoft Word document.

Problem: You have saved the topic file in Word format instead of RTF format.
Result: Help Compiler ignores the file.
Solution: Save the document as a Rich-Text Format file, and then recompile.

3047 Warning: No name was specified for the bitmap command.

Problem: The bitmap command ({bmc}, {bml}, or {bmr}) was specified in a topic without a bitmap
filename.
Result: Help Compiler ignores the bitmap command.
Solution: In the topic file, specify a bitmap file to include, or remove the bitmap command. Then
recompile.

3048 Warning: Nonscrolling region is defined after scrolling region.

Problem: The Keep With Next attribute was applied to a paragraph after a paragraph that did not
have this attribute.
Result: Help Compiler ignores the Keep With Next attribute; the paragraph is treated as plain text
and is displayed as part of the topic text displayed in the scrolling region of the topic.
Solution: Set the Keep With Next attribute for the first paragraph in the topic if you want a
nonscrolling region, and remove the Keep With Next attribute from following paragraphs. Then
recompile the Help file.

3049 Warning: Invalid topic IDs in hypergraphic: [].

Problem: A topic ID in the shed file contains invalid characters.
Result: The hotspot is not active in the Help file.
Solution: Edit the hypergraphic and ensure that the topic IDs for the hotspots are valid and
spelled correctly, and then recompile.

3050 Warning: Missing topic IDs in hypergraphic: [].

Problem: A hotspot was specified in the shed file, but no actual topic ID was specified.
Result: The hotspot is not active in the compiled Help file.
Solution: Edit the hypergraphic and ensure that each hotspot calls a valid topic ID, and then
recompile.

3051 Warning: Cannot jump to window []. No windows have been defined in the project file.

Problem: There is no [WINDOWS] section in the project file, so you cannot jump to any window
type other than main.
Result: The hotspot is not active in the Help file.
Solution: Use Help Magician to define the specified secondary window, and then recompile.

3052 Warning: The window name [] has not been defined in the project file.

Problem: You have attempted to display a topic in a window type that has not been defined in
your project file.
Result: The hotspot is not active in the Help file.
Solution: Use Help Magician to define the specified secondary window, and then recompile.

3053 Warning: The project file contains more than 255 window definitions.

Problem: You have defined more than 255 window types in your project file.
Result: Help Compiler ignores the additional window definitions. If you attempt to jump to a topic
in one of the window definitions beyond the first 255, you will get an error message about the
window type not being defined.
Solution: Remove the extra window definitions from the project file, and then recompile.

3054 Warning: Build tag contains invalid characters. The following is invalid: [].

Problem: A build tag in the [BUILDTAGS] section contains something other than a alphanumeric
character or the underscore (_) character.
Result: Help Compiler ignores the line containing invalid characters.
Solution: Edit the build tag so that it contains only valid characters. Make any necessary
changes in topics containing the specified build tag, and then recompile. Alternatively, specify the
build tags to include/exclude in the Build Tags tab of the Options dialog box. This form of

including/excluding topics places no restrictions on the characters, length, or number of build
tags, and does not use the [BUILDTAGS] section.

3055 Warning: The build tag [] has already been used.

Problem: The build tag in the [BUILDTAGS] section of your project file has already been declared
previously in the same section.
Result: Help Compiler uses the first build tag and ignores the duplicate build tag.
Solution: Remove (or rename) the duplicate build tags in the project file, and then recompile.

3056 Warning: The window name [] in the macro [] contains more than eight characters and
has been truncated to [].

Problem: The window name you have specified in the macro is invalid due to its length.
Result: Help Compiler ignores the window definition in this macro.
Solution: Specify a valid window name in the macro, and then recompile.

3057 Warning: A hotspot is defined with a macro (using !), but the macro is not specified.

Problem: You started a hotspot with a '!' character, but did not follow it with a macro.
Result: Help Compiler ignores the macro call from the hotspot.
Solution: Specify a valid macro in the hotspot, or remove the '!' character from the hotspot
definition. Make certain that all text from the '!' to the end of the macro is marked as hidden.

3058 Warning: Topic ID for hotspot contains invalid characters: [].

Problem: An invalid topic ID has been used in a hotspot.
Result: The hotspot is not active in the Help file.
Solution: Correct the topic ID and recompile.

3059 Warning: A hotspot is specified without a macro or topic ID.

Problem: A hotspot was specified without specifying either a topic ID or a macro.
Result: The hotspot is not active in the Help file.
Solution: Edit the hotspot in the topic file and ensure that the topic ID or macro for the hotspot is
valid, spelled correctly, and styled as hidden text. Then recompile.

3060 Warning: Window name is specified for a pop-up jump.

Problem: You have specified a window name in a pop-up hotspot.
Result: The hotspot is not active in the Help file.
Solution: Remove the right angle bracket and secondary window name from the pop-up hotspot,
or change the single underline to double underline (for a topic jump). Then recompile the project
file.

3062 Warning: Window definition is missing an '=' character: [].

Problem: The window definition in the [WINDOWS] section is invalid.
Result: Help Compiler ignores the line.
Solution: Use Help Magician to edit the window definition, and then recompile.

3063 Warning: Window definition does not contain anything after the '=' character: [].

Problem: The window definition in the [WINDOWS] section is invalid.
Result: Help Compiler ignores the line.

Solution: Use Help Magician to edit the window definition, and then recompile.

3064 Warning: Window name is not defined before the '=' character: [].

Problem: The window definition in the [WINDOWS] section is invalid.
Result: Help Compiler ignores the line.
Solution: Use Help Magician to edit the window definition, and then recompile.

3065 Warning: A closing quotation mark () is missing in window caption: [].

Problem: The window definition in the [WINDOWS] section is invalid.
Result: Help Compiler ignores the window definition.
Solution: Use Help Magician to edit the window definition, and then recompile.

3066 Warning: Window caption contains more than 50 characters: [].

Problem: The window definition in the [WINDOWS] section contains a title that is too long.
Result: Help Compiler ignores the window definition.
Solution: Use Help Magician to edit the window definition, and then recompile.

3067 Warning: The [] command in the [OPTIONS] section of the project file does not specify a
value after the '=' character.

Problem: You have specified an invalid command in the [OPTIONS] section of your project file.
Result: Help Compiler ignores the line.
Solution: Use Help Magician to edit the option, and then recompile.

3068 Warning: The following line in the [OPTIONS] section of the project file does not contain
an '=' character: [].

Problem: You have specified an invalid command in the [OPTIONS] section of your project file.
Result: Help Compiler ignores the line.
Solution: Use Help Magician to edit the option, and then recompile.

3069 Warning: The [] option in the [OPTIONS] section of the project file is not recognized.

Problem: You have specified an invalid command in the [OPTIONS] section of your project file.
Result: Help Compiler ignores the line.
Solution: Use Help Magician to edit the option, and then recompile.

3070 Warning: the major browse string exceeds 50 characters: [].

Problem: The name to the left of the colon in a browse footnote contains too many characters.
Result: Help Compiler truncates the string to 50 characters. The browse sequence may be
affected.
Solution: Shorten the browse string.

3071 Warning: One or more browse sequences are set, but browse buttons are not enabled in
any window.

Problem: You have specified a browse footnote, but none of the windows defined for the Help file
contains browse buttons.
Result: The browse information is stored in the Help file (taking up space) but the information can
never be accessed by the user.
Solution: Either add browse buttons or remove all browse footnotes.

3072 Warning: The macro [] does not include a control panel name.

Problem: The macro expected a control panel name, but you didn'
t specify one.
Result: Help Compiler ignores the ControlPanel macro.
Solution: Specify a control panel name in the topic file macro, and then recompile.

3073 Warning: No section is defined for the line: [].

Problem: The section heading on the specified line is not complete, or the first entry in the
project (.hpj) file is not a section heading.
Result: Help Compiler ignores the section heading on this line and all succeeding lines until it
encounters a valid section heading.
Solution: Edit the specified section in the project file. Then recompile the project file.

3074 Warning: The [] section is not recognized by this version of Help Compiler.

Problem: Your project file contains a section that Help Compiler does not recognize.
Result: Help Compiler ignores the section heading.
Solution: Verify that the section headings in the project file are valid and spelled correctly, and
then recompile.

3075 Warning: The [] section does not follow the [OPTIONS] section in the project file.

Problem: You have specified a section that requires the [OPTIONS] section before you have
specified the [OPTIONS] section.
Result: Help Compiler may not be able to find some files, or the files may be compiled incorrectly.
Solution: Call technical support.

3079 Warning: The alias string [] has already been aliased [].
 
Problem: A topic ID can have only one alias.
Result: Help Compiler ignores this line.
Solution: Use Help Magician to correct the alias string mapping, and then recompile.

Warnings (3080-4014)

3080 Warning: The string [] has already been aliased [].

Problem: An alias string cannot be assigned another alias.
Result: Help Compiler ignores this line.
Solution: Use Help Magician to correct the alias string mapping, and then recompile.

3081 Warning: Both alias and topic ID are identical: [].

Problem: The alias is the same as the topic ID.
Result: Help Compiler ignores this line.
Solution: Use Help Magician to correct the alias string mapping, and then recompile.

3082 Warning: The map number [] is not a valid number: [].

Problem: A context number in the [MAP] section of the project (.hpj) file contains invalid
characters.
Result: Help Compiler ignores this line.
Solution: Use Help Magician to correct the mapping, and then recompile.

3083 Warning: Invalid syntax for window color: [].

Problem: The syntax specified for the windows color in the [WINDOWS] section of your project
file is invalid.
Result: Help Compiler ignores the window definition.
Solution: Use Help Magician to edit the window definition, and then recompile.

3084 Warning: Invalid window syntax: [].

Problem: The syntax you have specified for the window in the [WINDOWS] section of your
project file is invalid.
Result: Help Compiler ignores the invalid window definition.
Solution: Use Help Magician to edit the window definition, and then recompile.

3086 Warning: Window position is out of range: [].

Problem: One or more of the window position coordinates exceed the limit of 1024.
Result: Help Compiler ignores the invalid window definition.
Solution: Use Help Magician to edit the window definition, and then recompile.

3087 Warning: The following filename exceeds 259 characters: [].

Problem: You have specified a filename that contains too many characters.
Result: Help Compiler ignores the specified file.
Solution: Shorten the filename. Then recompile the project file.

3088 Warning: More than 20 font ranges are mapped.

Problem: You have specified too many font ranges.
Result: Help Compiler ignores additional font ranges.
Solution: Remove the excess ranges, and then recompile. Alternatively, remove the font ranges
and instead use the font substitution in the Fonts tab of the Compiler Options dialog box in Help
Magician.

3089 Warning: Invalid font range: [].

Problem: The font range is invalid.
Result: Help Compiler ignores the option.
Solution: Edit the font range, and then recompile. Alternatively, remove the font ranges and
instead use the font substitution in the Fonts tab of the Compiler Options dialog box in Help
Magician.

3090 Warning: Current font range overlaps previously defined range: [].

Problem: Two or more font ranges overlap each other.
Result: Help Compiler uses the first range and ignores the second mapping.
Solution: Edit the font range, and then recompile. Alternatively, remove the font ranges and
instead use the font substitution in the Fonts tab of the Compiler Options dialog box in Help
Magician.

3091 Warning: Unrecognized forced font name: [].

Problem: You have tried to force all font names to an invalid font.
Result: Help Compiler ignores the font name and uses the default MS Sans Serif font.
Solution: Change the font name in the project file to a supported font, and then recompile.
Alternatively, remove the font ranges and instead use the font substitution in the Fonts tab of the
Compiler Options dialog box in Help Magician.

3092 Warning: This version of the project file is not supported by this Help compiler.

Problem: The project file was created with a more recent version of Help Compiler than you are
currently using.
Result: Help Compiler may remove options or sections.
Solution: Get a more recent version of Help Compiler.

3093 Warning: Keyword type is not a letter or number. [] is invalid.

Problem: An invalid character has been used for the MULTIKEY option.
Result: Help Compiler ignores the attempted keyword table assignment on this line.
Solution: Edit the MULTIKEY option in the project file, and then recompile.

3094 Warning: More than three keyword types (besides 'K' and 'A') defined.

Problem: More than three keywords have been defined using the MULTIKEY option.
Result: Help Compiler ignores the additional keyword types.
Solution: Remove the extra MULTIKEY options from the project file, and then recompile.

3095 Warning: Multikey values of 'K' or 'A' cannot be defined.

Problem: The MULTIKEY option has been used to specify either '
K' or 'A' as a multikey value. These characters are reserved by Help Compiler and WinHelp.
Result: Help Compiler ignores the attempted keyword table assignment on this line.
Solution: Edit the MULTIKEY option in the project file, and then recompile.

3096 Warning: The font name [] is longer than 31 characters.

Problem: The font name is invalid because it is too long.
Result: Help Compiler ignores the option on this line.

Solution: Use Help Magician to shorten the font name, and then recompile.

3097 Warning: The [BUILDTAGS] section is missing from the project file.

Problem: A BUILD option was specified in the project file, but no [BUILDTAGS] section was
specified.
Result: Help Compiler includes all topics in the build.
Solution: Add a build section to the project file, and then recompile. Alternatively, specify the
topics to include or exclude using the Build Tags Option dialog box of Help Magician.

3098 Warning: Invalid build tag expression.

Problem: The BUILD option specifies an invalid expression.
Result: Help Compiler ignores the line with the invalid expression.
Solution: Edit the build tags in the project file, and then recompile. Alternatively, specify the
topics to include or exclude using the Build Tags Option dialog box of Help Magician.

3099 Warning: Build expression too complex.

Problem: The build expression in the project (.hpj) file has too many expressions or is nested too
deeply.
Result: Help Compiler includes all topics in the build.
Solution: Edit the build expression in the project file, and then recompile. Alternatively, specify
the topics to include or exclude using the Build Tags Option dialog box of Help Magician.

3101 Warning: Unknown build error.

Problem: Help Compiler was not able to interpret the BUILD option correctly.
Result: Help Compiler includes all topics in the build.
Solution: Edit the build expression in the project file, and then recompile. Alternatively, specify
the topics to include or exclude using the Build Tags Option dialog box of Help Magician.

3102 Warning: No macro is specified for the entry macro footnote.

Problem: You have specified an entry macro footnote, but the footnote did not contain any
macros.
Result: Help Compiler ignores the entry macro footnote.
Solution: Add a macro to the entry macro footnote or remove the footnote marker. Then
recompile the Help file.

3103 Warning: The entry macro footnote does not precede text.

Problem: The entry macro footnote was specified after text was specified for the topic.
Result: Help Compiler ignores the entry macro footnote.
Solution: Move the entry macro footnote to the beginning of the topic, and then recompile.

3104 Warning: The topic ID footnote (#) does not specify a topic ID.

Problem: You have a specified a topic ID footnote that does not contain any characters.
Result: Help Compiler does not assign the topic an identifier.
Solution: Add a valid topic ID to the footnote, and then recompile.

3105 Warning: The minor browse string exceeds 50 characters: [].

Problem: The browse string to the right of the colon is larger than 50 characters.

Result: Help Compiler truncates the string which may affect the browse sequence itself.
Solution: Shorten the browse string in the appropriate topics.

3106 Warning: Browse footnote (+) does not appear before any text.

Problem: The browse sequence footnote (+) does not precede the first paragraph of the topic.
Result: Help Compiler ignores the browse sequence footnote.
Solution: Move the browse sequence footnote so that is at the beginning of the topic, and then
recompile.

3107 Warning: A browse sequence has already been defined for this topic.

Problem: The browse sequence footnote (+) has been specified twice in the same topic.
Result: Help Compiler uses the first browse sequence footnote and ignores the duplicate
footnote.
Solution: Remove the duplicate browse sequence footnote from the topic, and then recompile.

3108 Warning: The title footnote ($) does not appear before any text.

Problem: The title footnote    does not precede the first paragraph of the topic.
Result: Help Compiler ignores the title footnote, and the topic does not have any title.
Solution: Move the title footnote to the beginning of the topic, and then recompile.

3109 Warning: The title footnote ($) does not contain any text.

Problem: A title footnote was specified that does not contain any text.
Result: Help Compiler ignores the title footnote, and the topic does not have any title.
Solution: Add a title string next to the topic title footnote, and then recompile.

3110 Warning: A title has already been defined for this topic.

Problem: A title footnote has already been specified for the topic.
Result: Help Compiler uses the first title footnote and ignores the duplicate title footnote.
Solution: Remove the second title footnote from the topic, and then recompile.

3111 Warning: This topic contains keywords but no title.

Problem: One or more keywords have been specified for the topic, but a title footnote was not
specified.
Result: If no title is specified for the topic, and the keyword appears in more than one topic
(including other Help files), WinHelp will display "Untitled topic #n" in the Topics Found dialog box.
Solution: If this is not a pop-up topic, add a title using the title footnote ($), and then recompile. If
the topic will only be displayed in a pop-up window, remove the keyword footnotes.

3112 Warning: The build footnote (*) is not the first footnote in the topic.

Problem: The build footnote does not precede all other text and footnotes in the topic.
Result: Help Compiler ignores the build tag footnote, and the topic is not assigned a build tag.
Solution: Move the build tag footnote to the very beginning of the topic, before any other
footnotes, and then recompile.

3113 Warning: Build tag is longer than 32 characters: [].

Problem: The build tag is too long when used in conjunction with the BUILD option in the project
file.

Result: Help Compiler ignores the build tag assigned to the topic.
Solution: Shorten the build tag to 32 or fewer characters, and then recompile. Alternatively,
specify the build tags to include/exclude in the Build Tags tab of the Options dialog box. This form
of including/excluding topics places no restrictions on the characters, length, or number of build
tags.

3114 Warning: The bitmap [] has been used as part of another {bmx} command.

Problem: Two {bmx} commands that specify bitmaps for multiple color depths have a bitmap in
common but are otherwise different or in a different order.
Result: WinHelp will treat the shared bitmap files as separate files, and this effectively doubles
the space required for each of the specified bitmaps.
Solution: Make sure that bitmap commands that are intended to be identical include the same
bitmaps in the same order.

3116 Warning: Table has more than [] columns.

Problem: The table has more columns than WinHelp is able to display.
Result: Help Compiler treats the additional columns as one table cell.
Solution: Reduce the number of table columns, and then recompile.

3117 Warning: Side-by-side paragraphs are not supported.

Problem: Side-by-side paragraph formatting has been used.
Result: Help Compiler ignores the side-by-side paragraph formatting.
Solution: Convert the side-by-side paragraphs to a table or a tabbed paragraph, and then
recompile.

3118 Warning: Unrecognized RTF (Rich Text Format) graphics format.

Problem: An embedded bitmap contains a format that Help Compiler does not recognize. Help
Compiler supports only Windows bitmaps (.bmp), Windows device-independent bitmaps (.dib),
and Windows metafiles (.wmf)
Result: Help Compiler ignores the specified graphic.
Solution: Convert the graphic to a supported format, and then recompile.

3119 Warning: Hash conflict between [] and []. One of these topic IDs must be changed.

Problem: The hash algorithm used by Help Compiler to convert a topic ID into an internal
number that WinHelp uses, has generated the same hash value for both of the listed topic IDs.
Result: WinHelp displays the topic with the first topic ID whenever the user chooses a hotspot
containing either topic ID.
Solution: Change one of the specified topic IDs, and then recompile.

3120 Warning: The LANGUAGE option [] is not supported.

Problem: The LANGUAGE option has been specified. This option is no longer supported.
Result: Help Compiler uses the default English (U.S.) sorting order.
Solution: Call technical support.

3121 Warning: Invalid version of Ftsrch.dll.

Problem: The version of Ftsrch.dll on your system is invalid.
Result: Neither Hall nor Maximum compression can be used and no index file is created for full
text search.

Solution: Reinstall Ftsrch.dll from your Windows 95 or Windows NT installation disks, and then
recompile.

3123 Warning: Missing '=' character in REPLACE option: [].

Problem: The syntax for the REPLACE option is invalid.
Result: Help Compiler ignores the entire option.
Solution: Call technical support.

3124 Warning: The TMP folder [] is invalid.

Problem: The folder name is invalid.
Result: Help Compiler uses the default folder for temporary files.
Solution: Use the Paths dialog box under the Options menu item to edit the folder name.

3126 Warning: The window (>) footnote does not appear after the topic ID (#) footnote.

Problem: The window footnote was placed before the topic ID footnote.
Result: Help Compiler ignores the window footnote.
Solution: Reposition the window footnote after the topic ID footnote, and then recompile.

4001 Warning: Cannot find or load Ftsrch.dll.
 
Problem: Help Compiler cannot find the Ftsrch.dll file.
Result: Neither Maximum nor Hall compression can be used and no index file is created for full
text search.
Solution: Reinstall Ftsrch.dll from your Windows 95 or Windows NT installation disks, and then
recompile.

4002 Warning: The RTF file [] is corrupted at offset [].

Problem: Help Compiler encountered an error while processing the topic (.rtf) file. This problem
can occur when the number of opening and closing braces don't match, when the end of the file is
reached before all columns of a table have been specified, or when the number specified for an
RTF token is invalid.
Result: Help Compiler ignores the rest of the topic file.
Solution: Open the file and save it again as Rich Text Format (RTF), and then recompile. If the
problem persists, look for errors in the topic file.

4003 Warning: An error occurred attempting to read the file [].

Problem: Help Compiler can not read the specified file. Another program may have locked the
file, or if the file is on a network, the network may be down.
Result: Help Compiler ignores the file.
Solution: Check file and its path. Correct errors, and then recompile.

4004 Warning: File is not an RTF (Rich Text Format) file.

Problem: The specified file has not been saved as an RTF file.
Result: Help Compiler ignores the file.
Solution: Resave the file as RTF, and then recompile.

4005 Warning: The [] Help file has not been created.

Either there are no topics to compile, or the build expression is incorrect for all topics.

Problem: Help Compiler reached the end of all topic files without encountering any text.
Result: Help Compiler does not create a Help file.
Solution: Confirm that you have specified at least one topic file that contains text. If all topic
contain build tags, you must specify at least one build tag to include (use the Build Tags Option
dialog box of Help Magician).

4006 Warning: The folder [] specified for the [] option does not exist.

Problem: A nonexistent folder has been specified. Either the folder name was specified
incorrectly, or it points to a network location that does not (currently) exist.
Result: Help Compiler uses the current working folder.
Solution: Use Help Magician to correct the folder name for the specified option, and then
recompile.

4007 Warning: The [] option [] is not a valid value.

Problem: The value specified for the option is invalid.
Result: Help Compiler ignored the option.
Solution: Call technical support.

4008 Warning: Cannot find or load Ftsrch.dll. Hall compression turned off.

Problem: Help Compiler either cannot find the Ftsrch.dll file, or it is out of date or corrupted.
Result: Neither Maximum nor Hall compression can be used and no index file is created for full
text search.
Solution: Reinstall Ftsrch.dll from Windows 95 or Windows NT installation disks, and then
recompile.

4009 Warning: The topic ID specified in the project file as the default topic does not exist.

Problem: You have specified a default topic ID in the project file, but none of your topics contains
that topic ID.
Result: Help Compiler uses the first topic in the build as the default topic.
Solution: Verify that the topic ID exists in the desired topic and that it is spelled correctly, and that
the topic file is included in the [FILES] section of the project file, and then recompile.

4010 Warning: There are more opening braces than closing braces.

Problem: When Help Compiler reached the end of the file, the number of opening and closing
braces did not match.
Result: The Help file may be corrupt.
Solution: Load and resave the topic (.rtf) file, and then recompile. If the problem persists, you will
need to edit the topic file directly.

4011 Warning: There are 20 opening braces without intervening closing braces.

Problem: More opening braces without matching closing braces have been encountered than
should ever occur in a normal topic (.rtf) file.
Result: The rest of the file is ignored.
Solution: Load and resave the topic file, and then recompile. If the problem persists, you will
need to edit the topic file directly.

4012 Warning: The full-text search index cannot be created because neither Phrase nor Hall
compression has been selected.

Problem: In order to create a full-text search index, you must compile with either Maximum or
Hall compression.
Result: Help Compiler is unable to generate an full-text search (.fts) index file.
Solution: Edit the Compression Options in the Compiler Options dialog under the Options menu
item and recompile.

4013 Warning: Invalid default font number in []. Using [] as the default font.

Problem: The RTF token \deff specifies as a default font a font number that is not defined in the
\fonttbl section.
Result: Help Compiler will ignore the specification and use the first font declared in the \fonttbl
section as the default font.
Solution: In the topic (.rtf) file change the number after the \deff token to specify a font declared
in the \fonttbl section. Then recompile.

4014 Warning: There is text after the closing brace in the RTF file.

Problem: Help Compiler encountered the closing brace that should signify the end of the topic
(.rtf) file, and then encountered additional text.
Result: Help Compiler adds the text to the Help file, but the text cannot be accessed.
Solution: In the raw topic file, move or delete the text after the closing brace, and then recompile.

Errors

5000 Error: The filename [] is too long.

Problem: The specified filename is too long.
Result: The Help file is not created.
Solution: Use Help Magician to shorten the path, and then recompile.

5001 Error: File is a folder, not a file.

Problem: You have specified a filename, but the name specified is actually a folder.
Result: The Help file is not created.
Solution: Move or rename the folder or the file, and then recompile.

5002 Error: The text for the button in the CreateButton macro is too long.

Problem: You have specified more than 96 characters in the CreateButton macro.
Result: The Help file is not created.
Solution: Reduce to 96 or less the number of characters in the CreateButton macro, and then
recompile.

5003 Error: Permission to open the file [] is denied. Another program has probably locked the
file.

Problem: You do not have the required file privileges to open the requested file. This can happen
if the file has been opened by another program. For example, if WinHelp has the Help file open,
Help Compiler is not be able to write to that Help file.
Result: The Help file is not created.
Solution: If the file has been loaded in another program, switch to that program and either close
the file or close the program. If you are trying to write a file to a networked drive, make certain you
have write permission on that server.

5005 Error: The file [] cannot be found.

Problem: The specified file cannot be located.
Result: The Help file is not created.
Solution: Verify that you have specified the correct filename and that the file exists in the correct
folder. Then recompile the project file.

5006 Error: Invalid RTF tokens for a table.

Problem: A \row command appeared before a \cell command in the topic (.rtf) file.
Result: The Help file is not created.
Solution: Change the order of commands in the topic file, and then recompile.

5007 Error: Invalid use of the WinHelp menu [] in the [] macro..

Problem: You have attempted to use a standard WinHelp menu ID.
Result: The Help file is not created.
Solution: Use a menu ID created with a call to the ExtInsertItem, ExtInsertMenu, or InsertMenu
macros.

5009 Error: [] does not contain a comma separating the parameters in the macro [].

Problem: Either a parameter has been left out of the macro or parameters are not separated with
a comma.
Result: The Help file is not created.
Solution: Add the missing comma or parameter to the macro in the topic file, and then recompile.

5010 Error: [] is an invalid parameter for the macro [].

Problem: You cannot use a standard WinHelp menu as a parameter for this macro.
Result: The Help file is not created.
Solution: Use the name of your own custom menu.

5011 Error: Cannot open the file [].

Problem: The file cannot be opened. This can occur when another program has the file locked,
or the file is on a network and the network is down.
Result: The Help file is not created.
Solution: If another program has the file open, close the file. In some cases, it may be necessary
to close the program.

5012 Error: Too many nested #include files. Cannot include the file [].

Problem: A file specified in a #include statement can contain an included file which can in turn
contain an included file, up to five levels. This limit has been exceeded.
Result: The Help file is not created.
Solution: Merge the contents of the deepest #include file into its parent, and then recompile.

5013 Error: Invalid DBCS escape sequence: [].

Problem: The DBCS character is invalid.
Result: The Help file is not created.
Solution: If this is not a DBCS topic file, change the language of the Help file. Otherwise you will
need to use a different word that does not use this DBCS character.

6000 Error: Help Compiler is out of memory. If you have any other programs running, close
them and try compiling again.

Problem: There is insufficient memory and swap file space.
Result: The Help file is not created.
Solution: If you are running Windows 95, increase the amount of hard disk space available on
the drive Windows is installed on. Otherwise, increase the size of your permanent swap file.

6001 Error: Out of disk space writing to the temporary file []. Free up disk space on this drive or
change your TMP environment variable.

Problem: There is insufficient space on the drive where Help Compiler is creating temporary files.
Result: The Help file is not created.
Solution: Either free space on the specified drive, or tell Help Magician to create temporary files
on a different drive (or network connection).

6002 Error: An error occurred while reading the file [].

Problem: Help Compiler was not able to read the file. The file may be corrupt.
Result: The Help file is not created.
Solution: Confirm that the file is valid, replacing    if not. If the file appears to be valid, run
scandisk to verify that your hard disk does not have problems.

6003 Error: Out of file handles. Increase the FILES= line in CONFIG.SYS.

Problem: There are not enough file handles available.
Result: The Help file is not created.
Solution: If possible, increase the FILES setting in the CONFIG.SYS file on your computer to
FILES=50 or greater. Reboot your computer, then recompile.

6004 Error: The file [] is a read-only file.

Problem: Help Compiler cannot write to the specified file.
Result: The Help file is not created.
Solution: Change the file's read-only attribute if you want Help Magician to overwrite the file.
Otherwise, rename the file and try again to compile the project file.

6005 Error: [] is a folder, not a file.

Problem: The name you have specified for a file is actually a folder.
Result: The Help file is not created.
Solution: Move or rename the folder or the Help file, and then recompile.

6006 Error: [] is a device name and cannot be used as a filename.

Problem: The name you have specified for a file is a device.
Result: The Help file is not created.
Solution: Change the name to a file, not a device, and then recompile.

6007 Error: Cannot write to the file [].

Problem: An error occurred while Help Compiler was writing to a file.
Result: The Help file is not created.
Solution: Run scandisk to fix any problems on your hard drive. Or trying compiling on a different
drive or network connection.

6008 Error: No files have been specified in the [FILES] section of the project file.

Problem: The [FILES] section of your project file did not specify any files.
Result: The Help file is not created.
Solution: Call technical support.

 Glossary

A
 Alignment
AVI

B
Baggage
Bitmap
BMROOT
Browse
Browse definition
Browse group
Browse sequence
Build
Build Tags
Bulleted List

C
Context Number
Context-Sensitive Help
Context-Sensitive Topic
Context String

D
Default Font

E
Environment Options

F
File Extensions
Font
Font Attributes

G
Glossary

H
Help Compiler
Help Editor
Help File
Help System
Help Topic
Hot Link
Hot Spot
Hypergraphic

I

Index Page

J
Jump

K
Keyword

L
Link
Line Spacing

M
Macro
Macro Definition
Macro Definitions File (.HLM)
Map
Multiple Keywords

N
Numbered List

O
 Options

P
Phrase Table
Popup
Project
Project Macro

 Q
Quick Button

R
ROOT Directory
RTF

S
Secondary Window
Segmented Hypergraphics
Status Bar

T
Test Mode
Topic
Topic Heading
Topic Macro
Topic ID

U

Utility Area

V
VB Help Wizard

W
Web Authoring
WinHelp.Exe
WMF

X

Y

Z

Bitmap
A bitmap is an array of bits where one or more bits corresponds to each display pixel. It is a graphic
image or picture stored as a series of numbers.

BMROOT
The directory list where one or more of the bitmaps used in the Help Magician may be stored.

Browse
The function in Windows Help to move back and forth between related topics.

Browse Definition
A browse group or groups that have been assigned user defined titles and have had the topics in each
group logically ordered by the user.

Browse Group
A series of related topics that are assigned to a user defined name and will be used as a browse
sequence when run in Windows Help.

Browse Sequence
A user defined ordered group of topics that will be used for browsing related topics in the final Windows
Help system.

Build
The automated process of creating a help file. The steps include creating an RTF file from the help text
file, compiling the RTF file into a .HLP file and reporting any errors that occurred during compilation.

Bulleted List
An indented list of sentences that have bullets (black marks) at the beginning each paragraph. Used to
attract attention to important points, outline a list, etc.

Context Number
A number that the user may assign to help topics that they want to call directly from their application as
context-sensitive help.

Context-Sensitive Help
The ability in the user's application to directly call a specific help topic.

Context-Sensitive Topic
A help topic that has a context number assigned to it and is intended by the user to be called from their
application.

Context String
A unique alphanumeric string that is assigned to every help topic created in the Help Magician. Context
strings are noew refered to as Topic ID's in the Windows 95 environment.

File Extensions
The various DOS file extensions that are used in this program are:

.BMP Bitmap file.

.CNT A Windows 95 Contents file.

.ICO Icon file.

.HLD Help Magician macro prototypes file.

.HLK Help Magician backup file extension.

.HLM Help Magician macro definitions file.

.HLP The standard Windows Help file.

.HLS Help Magician database of font styles.

.HLX Help Magician text file.

.HMP Help Magician Project file for Project Management Mode.

.HPJ Help Magician project file.

.HTM An HTML file for use in Web Authoring.

.INI Help Magician configuration file, created during installation.

.ISD, .ISM, .ISF, .ISL Topic/Project Database files.

.KSD, .KSM, .KSF, .KSL Keyword Database files.

.PH Phrase-table created during compile time with the COMPRESS option on.

.RPT Help Magician RTF error report file. Created while importing an RTF file.

.RTF Rich Text Format. Help compiler requires this to create a help file.

.SHG Hypergraphics file produced by the SHED utility.

Font
An assortment of characters all of one size and type, i.e. "Helvetica, 12 point, bold, italic, blue".

Font Attributes
Typeface, size, boldness, color, italic.

Help Compiler
A compiler supplied by Microsoft that will produce a Windows Help file (.HLP) from an RTF file.

Help Editor
A specialized text editor that provides features to create a Windows Help file and test the final help
system.    The Help Magician is considered to be a Help editor or Help Authoring Tool.

Help File
When referred to as a help file, this refers to the Help Magicians .HLX editor file. When referred to as a
Windows help file, this refers to the Windows .HLP file.

Help System
A compiled help file, with a .HLP extension, viewed with WINHELP.EXE.

Help Topic
A user defined help subject that, when viewed in the Windows Help system, will aid the end user in
understanding a particular subject    or subjects pertaining to the application.

Hot Link
A Jump or Popup that could be a word, phrase or bitmap in the final help system. The word or phrase will
be underlined for Jumps, dotted underlined for Popups, and colored green in the final Windows Help
system. Hot Link bitmaps, or hyper-graphics are only supported in Windows Help 3.1.

Hot Spot
A portion of a bitmap that is defined as a hot link.

Hypergraphic
A hot link that is a bitmap. This is accomplished by entering a bitmap in the editor and then selecting the
bitmap and creating a Jump or Popup markers from the Markers menu. This is a feature of Windows Help
3.1.

Index Page
The user defined "table of contents" or index page for Windows Help. This option can be set in Compiler
Options.

Jump
A link between a word or phrase in one topic to a different help topic.    In Windows Help, all Jumps will be
green and underlined and when selected will display or "Jump" to another help topic.

Keyword
A word or phrase that is intended to aide the end user in finding help on a particular topic or topics. Each
topic in the editor may have one or more keywords assigned to it that describe the subject material of that
topic. Keywords are used by Windows Help during a Search and are listed for the user to quickly locate a
general subject and then list the available related help topics.

Macro
A sort of "mini program" that executes in WinHelp and can control or 'program' the WinHelp environment.

Macro Definition
The name or identifier assigned to one or more macros.    A group of macros.

Macro Definitions File (.HLM)
A file created by the Help Magician that contains macro definitions that may be used in other Help
Magician projects.

Map
The part of the Project File where the context strings for each topic are listed with their corresponding
context numbers. This is useful for designing applications requiring context-sensitive help and/or Hot
Spots.

Multiple Keywords
Treat these the same as keywords except that they are used for alternate keyword lists. One possible
example might be used in an editor where topics other than your own would be looked up.

Numbered List
An indented list of sentences that may have combinations of numbers or letters at the beginning each
paragraph. Used to create a list of important points or subjects, outlining, etc.

Phrase Table
A file (.PH) that the help compiler generates when compressing a help file.    It contains a table of
duplicate phrases found throughout the help file.

Popup
A link between a word or phrase in one topic to a definition of that word or phrase. The definition should
reside in its own separate help page, but does not require a context number since it would never be
called directly for context-sensitive help.    In Windows Help, all Popups will be green and dotted
underlined, and when selected will display or "Popup" the definition for the highlighted word or phrase.

Project
Each separate help system will be viewed as a "project". A project file will be generated when an RTF file
is created and used to provide option settings, file and path names, etc. to the help compiler. See Project
Files and WinHelp() for more details on the Project File.

Project Macro
A macro definition that has been assigned to the whole project. The macros assigned to the macro
definition will be executed in order upon loading the help system via WinHelp.

ROOT Directory
The path where all the help files can be found, with the exception of bitmaps, which may be located in the
BMROOT directories.

RTF
Rich Text Format. The format of the intermediate file that the Help Magician creates for the help compiler
to generate the Windows Help file.

Secondary Window
A Help window that can be displayed in WinHelp to show topics other than the ones displayed in the
WinHelp main window. Only one secondary window may be displayed at a time.

Segmented Hypergraphics
Another name for a bitmap that has had several Hot Spots assigned to various areas of itself. This is the
same as a hypergraphic bitmap, with the difference being several areas of one bitmap can represent
different Jumps or Popups. These are created in the SHED bitmap editor supplied by Microsoft and is a
feature of Windows Help 3.1.

Status Bar
The region directly below the text window in the Help Magician where various status' are displayed. For
instance the current font style that the cursor is position over in the help text is displayed here.

Test Mode
Simulates the Windows Help system within the Help Magician without having to compile the help file.

Topic
Any discrete unit of information, such as a topic screen, a conceptual description, a set of instructions, a
keyboard display, a glossary definition, a list of Jumps, a picture, etc.    Within the Help Magician, a topic is
also considered a page.

Topic Heading
This is the Title of the topic page. The topic headings or titles are used for reference in Jumps, Popups,
etc. The context strings are internally built from these titles.

Topic Macro
A macro definition that has been assigned to a particular topic. The macros assigned to the macro
definition will be executed in order anytime the topic is displayed in WinHelp.

Utility Area
This is the region above the main window in the Help Magician bar where the user may input keywords,
multiple keywords, context numbers, etc.

WINHELP.EXE
The Windows Help system program, supplied by Microsoft with all copies of Windows 3.x. The user may
call WinHelp() routine from the Help Magician to view the compiled Windows Help file, just like it would be
from their own application.

Alignment
A paragraph property that determines the let, right, or center justification of the text.

AVI
A Microsoft video file.

Baggage
A term used to specify whether the contents of audio and/or video files should be embedded into the
compiled help file or referenced externally.

Build Tags
Words assigned to topics that will be referenced by a Build Expression to determine if topics are to be
included in the build.

Default Font
The font characteristics of text that is not assigned a paragraph tag (or style) or other character
formatting.

Environment Options
Options specific to the environment of the Help Magician and its user interface.

Glossary
This Window! A list of terms with Popups supplying the definitions.

Options
In the Help Magician, the Options menu provides dialogs to set preferences for the help file and the Help
Magician environment.

VB Help Wizard
A Help Magician utility that reads VB source code and creates a help file shell.

WMF
A form of graphic image, Windows Meta File.

Link
A term referring to the link between two topics where one topic Jumps or Pops up to another topic.

Line Spacing
A paragraph property that refers to the spacing before, between, and after lines of text.

Quick Button
The Create Button option available from the Macros menu.

Topic ID
See context string.

Web Authoring
Writing pages for display on the Internet.

Rabbit Bitmap
Courtesy of Harald Zoschke

 Topic Map
¨ Table of Contents

 ̈ Introduction
· Function Keys
· Keyboard
· System Requirements
· Technical Info
· Version 4.0 - New Features

 ̈ Getting Started

¨ Acknowledgements

 ̈ Alternate Keywords

 ̈ Appearance Options

 ̈ Authorable Button

 ̈ Build Tag Manager

 ̈ Building Your Help File
· Build Context Spy
· Call WINHELP.EXE
· One Page Preview
· Project [ALIAS] Section
· Rebuild All
· Run Compiler
· View Compiler Messages
· Write RTF for Compiler

 ̈ Call Word Processor
· Importing RTF Files
· RTF Technical Specifications

 ̈ Calling WinHelp()
· Examples
· HELP Context ID Property
· Visual Basic

 ̈ Calling WinHelp Version 4.0
· #defines
· fuCommand Parameters
· The HELPINFO Structure
· The HELPWININFO Structure
· The MULTIKEYHELP Structure
· The WM TCARD Message

 ̈ Character Attributes
· Alignment
· Borders
· Indents
· Load/Save Styles
· Merge Styles
· Spacing
· Tabs

 ̈ Compiler Errors 3.1
· ALIAS and MAP Section Errors
· Build Tag Errors
· Build Tag Footnote and Expression Errors
· Context String Errors
· Entry Macro Errors
· Font Range Option Errors
· Footnote Errors
· Forcefont Errors
· General Section Errors
· Keyword Errors
· Macro Errors
· Miscellaneous Errors
· Multikey Errors
· OPTIONS Section Errors
· Other Options Errors
· Project File Errors
· Root Option Errors
· Source File Errors
· Syntax Errors
· Topic File Errors
· Topic Title Errors
· WINDOWS Section Errors

 ̈ Compiler Errors 95
· Notes
· Warnings
· Warnings 2
· Errors

¨ Compiler Options
· Baggage
· Compiler
· Compression
· Fonts
· Index
· Map
· Misc 3.1
· Misc 95
· RTF
· Sorting
· Text Search
· Warning

 ̈ Convert Images

 ̈ Creating Browse Sequences

 ̈ Creating Reports
· View
· Links
· Browse Sequences

 ̈ Defining Help Windows

· Buttons Tab
· Colors Tab
· General Tab
· Macros Tab
· Position Tab
· Jumps and Popups
· Paragraph Styles

 ̈ Embed Window

 ̈ Environment Options
· Context Numbers
· Display
· File Conversion
· File Save
· HLX Conversion
· Image Import
· Keyboard Options
· Mouse
· Tab Ruler
· Tips
· Warnings
· Word Delimiter

 ̈ File Functions
· Backup
· Exit
· Export
· Import
· New File
· Open File
· Project Management
· Save File
· Save File As
· Statistics (File)

 ̈ Glossary Wizard

 ̈ Help Compiler Notes

 ̈ Help Magician Window

 ̈ Help Topics Browser
· Contents Tab
· Find Tab
· Index Tab

¨ Help Wizard

 ̈ Importing RTF Files
· Manual to Help Conversion
· RTF Technical Specification

 ̈ Importing Text Files
· Environment Options

 ̈ Inserting Bitmaps/Pictures

 ̈ Integrated Test Mode
· WinHelp Bar

 ̈ Jumps and Popups
· Context Relations
· Creating Browse Sequences
· Defining Help Windows
· Delete
· Links From
· Mid Topic Jump
· Multiple Files
· Multimedia with WinHelp
· Unreferenced Topics
· View/Modify

¨ Keyword Management
· The Keyword Management Screen
· View by Keywords with Topics Mode
· View by Topics with Keywords Mode
· Working with Keywords

 ̈ Macros, Creating
· Create Button
· Define Macros
· Load Macros
· Macro Form Controls
· Macro/Keyword Association
· Project Macros
· Save Macros
· Topic Macros

 ̈ Macro Form Controls
· Definitions List
· Display Macros
· Editor
· Editor Button
· Editor Menu Add to Def
· Editor Menu Clear All
· Editor Menu Clear Arg
· Editor Menu Copy
· Editor Menu Paste
· Exit Button
· Help Button
· Help Label
· Hints/Macro Ref
· Locator Fields
· Macros Button
· Macro Definitions
· Macro List
· Macro Status Indicators
· Protoypes Button
· Prototypes List
· Syntax Checking

 ̈ Macro Reference

 ̈ Managing Topic Text
· Bookmarks
· Convert to Hard Spaces
· Copying Text
· Cutting Text
· Delete Page
· Deleting Text
· Find
· Goto
· Insert Page
· Pasting Text
· Replace
· Unlink Cursor

¨ Manual to Help Conversion
· Formatting Import Commands

 ̈ Mid Topic Jump
· Context Strings

    ̈ Multimedia with WinHelp

 ̈ Multiple Files
· Save File As Range

 ̈ Navigator
· Close on Selection
· Contents Page
· On Top
· Reset on Selection

 ̈ On Line Help
· Help About
· Help Contents
· Help Keyboard
· Help on Help
· Help Search
· Help Wizard

 ̈ Options
· Display History Window...

 ̈ Paragraph Styles
· Alignment
· Applying Styles
· Borders
· Bullets
· Character Formatting
· Defaults
· Indents
· Load/Save Styles
· Merge Styles
· Modify Character Attributes
· Paragraph Formatting

· Spacing
· Tabs

 ̈ Path Options
· Call Word Processor

 ̈ Project Files and WinHelp()
· Context Strings

¨ Project Management
· Close Project
· File Selection Listbox
· New Project
· Open Project
· Project Add File
· Project Archive
· Project Close
· Project Context List
· Project Copy
· Project Delete
· Project File List
· Project Global Copy
· Project Global Move
· Project Import
· Project Management Overview
· Project Move
· Project New
· Project Open
· Project Remove
· Project View HMP
· Project XRef
· Save Project As
· Statistics (Project)
· UnArchive Project File

 ̈ Restore Page

 ̈ SHED.EXE
· Context Strings

    ̈ Spell Checking

 ̈ Status Bar
· Defining Styles

 ¨ Testing and Navigating

 ̈ Tool Bar

 ̈ Tools
· Auto TOC
· Bitmap Magician
· Capture Image
· Context Reference
· Convert Images
· Navigator
· Paintbrush

· Renumber Context #'s (Numbers)
· Sound Recorder
· Tools SHED.EXE
· User Defined...

 ̈ Utility Area
· Context Relations
· Context Strings
· SHED.EXE
· Unreferenced Topics

 ̈ VB Help Wizard

¨ Web Authoring
· Browser
· Colors
· Display
· Files
· Fonts
· Footer
· Header
· Styles
· Versions

¨ Working with Keywords
· Keyword Management
· The Keyword Management Screen

Visual C Support

Visual C

From the MFC Tech Notes #28:

The best way to add Help to your application is to check the "Context Sensitive Help" option in
AppWizard's Options dialog before creating your application. That way AppWizard automatically adds the
necessary message map entries to your CWinApp-derived class to support Help.

If you have already created your application without Help support and now wish to add it, see Chapter 10
of the Class Library User's Guide.

Build Application

When you build your application for the first time, Visual C will create a number of files to be used to build
a help system. It will generate two RTF files (typically AFXCORE.RTF and AFXPRINT.RTF) that contain
generic text for standard menus, etc., a .HPJ (help project) file, and bitmaps of the controls on the toolbar.

Prepare RTF files for import into the Help Magician

If you have a version of the Help Magician less than 3.0, perform the following steps to prepare the RTF
files for import:

1. Open each of the RTF files in MS Word for Windows (if you want your help source to be in a single
file, merge the RTF files in Word for Windows).

2. Locate each table and put the cursor on the table.
3. From the Table menu, click on Select Table.
4. From the Table menu, click on Convert Table to Text (select the Tabs option).
5. Save each file in RTF format.

Context Sensitivity

Visual C uses two header files for the Context Sensitive mapping between your application and the help
file: \mfc\include\afxhelp.hm and \yourapp\hlp\yourapp.hm.

The header file, yourapp.hm must be updated each time the controls in your application are changed.
Visual C writes a batch file called makehelp.bat that rewrites yourapp.hm and compiles the help file.
The path where makehm.exe resides must be in your DOS path or you can edit the batch file and enter
the path before each occurrence of makehm.

Note: to avoid the compilation of your help file while creating or updating yourapp.hm, comment out the
line in makehelp.bat that calls the help compiler:

REM hc31 yourapp.hpj

Help Magician

Version

You must have version 3.00.030 or later of the Help Magician for full support for Visual C.

Root Directory

References to the Root directory in this document (as defined by Microsoft) refer to the directory that
contains the source files, the project file, the RTF files, etc. for the help system. This is also the directory

to which the compiled help file will be written.

Build Type

Select one of the build types described below:
A) Single File Build
B) Multiple File Build
C) Project Management

Build Type C, Project Management describes selecting a Root directory and copying files to that directory
before building a help system. The same strategy can be applied to Build Types A and B. If you don't want
to build your help system in your Visual C directories, select a Root directory and copy the necessary file
to that directory before proceeding with the instructions for the selected Build Type.

 A) Single File Build
Follow these instructions if you merged the RTF files in Word for Windows:

1. Import the combined RTF file into the Help Magician. From the File menu, select Import. On the
Import form select RTF as the File Type. Under Import Options, select Replace Current File, and
under RTF Import Options, select Read from HPJ. When the file dialog appears, select the hpj file
in your Visual C application sub directory.

When the RTF file has been imported, the map filenames will automatically be entered into the
Compiler Options.

2. Save the file as an HLX file with the File/Save File As/New File sub menu. Rename the file as

desired in the Save File As dialog. This will become the name of your compiled help system.

3. Edit the file as needed and select Rebuild All from the Build menu to compile the help file.

B) Multiple File Build
Follow these instructions if you did not merge the RTF files in Word for Windows:

1. Import afxprint.rtf file into the Help Magician. From the File menu, select Import. On the Import form
select RTF as the File Type. Under Import Options, select Replace Current File, and under RTF
Import Options, select Read from HPJ. When the file dialog appears, select the hpj file in your
Visual C application sub directory.

When the RTF file has been imported, the map filenames will automatically be entered into the
Compiler Options.

2. Save the file as an HLX file with the File/Save File As/New File sub menu. Rename the file as

desired in the Save File As dialog.

3. Write the RTF file by selecting Write RTF for Compiler from the Build menu.

4. Import afxcore.rtf into the Help Magician as described for afxprint above.

5. From the Build menu, select Multiple Files. Enter afxprint.rtf into the Files list box by clicking on the
Add button and selecting the file with the file dialog. You will not need to enter a map file in the [MAP]
section because you will be using the external maps generated by Visual C.

6. Save the file as an hlx file with the File/Save File As/New File sub menu. Rename the file as desired

in the Save File As dialog. This is the "Master" file in the Multiple File build and will become the
name of your compiled help system.

7. Edit the files as needed and select Rebuild All from the Build menu to compile the help file. Note
that the RTF file must be written for the secondary file(s), afxprint in this case, before compiling the
help system from the Master file.

C) Project Management
Follow these instructions if you did not merge the RTF files in Word for Windows and you want to use the
Project Management features of the Help Magician:

1. Select a Root directory on your system for all of the help related files.

2. Copy the following files to the Root directory:

\yourapp\yourapp.hpj
\yourapp\hlp\afxcore.rtf
\yourapp\hlp\afxprint.rtf
\yourapp\hlp\yourapp.hm
\yourapp\hlp*.bmp
\visualc\mfc\include\afxhelp.hm

3. From the File menu, select New Project. In the file dialog, select your help build Root directory

described in step one. Enter a valid filename as the name of the project, with a .hmp extension.

4. On the Project Management dialog, click on the Import button. Set File Type to Rich Text Format
(.RTF), and select Read from HPJ under RTF Import Options and click on Accept. In the file dialog,
select afxcore.rtf from your Root directory. When the second file dialog appears, select the
yourapp.hpj from your Root directory. Add the file to the project when prompted.

5. Repeat the steps above for afxprint.rtf.

6. Click on the Done button.

7. Select Write RTF for Compiler from the Build menu. Answer Yes to overwrite the existing RTF file.

8. Select Project Management from the File menu. Select afxcore.hlx in the file list and click on the
Open button.

9. Edit the files as needed and select Rebuild All from the Build menu to compile the help file. Note
that the RTF file must be written for members of the project, not currently in use, before compiling the
help system from the Master file. The Project Management dialog shows the status of all the
members of the project.

Notes

In the project file (.hpj) that Visual C writes, Compression is set to True. This results in a smaller help file
but it takes much longer to compile. You may want to turn Compression off (Options menu, Compiler
Options, Misc tab, Compress Help File) while developing the help file and turn it on again for final
compile.

The first page in afxprint, as generated by Visual C, is blank. After importing the file(s) into the Help
Magician, you can delete this page, if desired, by selecting Delete Page from the Edit menu.

Help Magician Macro Reference

About
AddAccelerator (AA)
Annotate
AppendItem
Back
BookMarkDefine
BookMarkMore
BrowseButtons
ChangeButtonBinding (CBB)
ChangeItemBinding (CIB)
CheckItem (CI)
CloseWindow
Contents
CopyDialog
CopyTopic
CreateButton (CB)
DeleteItem
DeleteMark
DestroyButton
DisableButton (DB)
DisableItem (DI)
EnableButton (EB)
EnableItem (EI)
ExecProgram (EP)
Exit
ExtAbleItem
ExtInsertItem
ExtInsertMenu
FileOpen
FloatingMenu
FocusWindow
GoToMark
HelpOn
HelpOnTop
History
IfThen
IfThenElse
InsertItem
InsertMenu
IsMark
JumpContents
JumpContext (JC)
JumpHelpOn
JumpId (JI)
JumpKeyWord (JK)
mciExecute
Next
Not
PopupContext (PC)
PopupId (PI)
PositionWindow (PW)
Prev

Print
PrinterSetup
RegisterRoutine (RR)
RemoveAccelerator (RA)
ResetMenu
SaveMark
Search
SetContents
SetHelpOnFile
sndPlaySound
UncheckItem (UI)

About

This macro displays the About dialog box (same as the About command on the Help menu).

Syntax

About()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

AddAccelerator (AA)

This macro assigns a Help macro to a shortcut key (or key combination) so that the macro is run when
the user presses the shortcut key(s).

Syntax

AddAccelerator(key, shift-state, "macro")

Parameters

Argument Definition

key The Windows virtual-key value. For a list of these keys, select the Acc Keys hints button.

shift-state A number specifying the combination of ALT, SHIFT, and CTRL keys used with the shortcut
key: 0 (none), 1 (SHIFT), 2 (CTRL), 3 (SHIFT+CTRL), 4 (ALT), 5 (ALT+SHIFT), 6
(ALT+CTRL), or 7 (ALT+SHIFT+CTRL).

macro The Help macro or macro string that is run when the user presses the shortcut key(s). The
macro must appear in quotation marks. Multiple macros in a string must be separated by
semicolons (;).

Example

The following macro starts the Windows Notepad program (provided in Windows version 3.1) when the
user presses ALT+SHIFT+CTRL+F4:

AddAccelerator(0x73, 7, "ExecProgram(`notepad.exe', 1)")

Comments

The Help macro that is run by AddAccelerator might not work in secondary windows, or its use may be
discouraged if the macro it runs is prohibited or discouraged in secondary windows. Check the usage
notes for the macro before using AddAccelerator to run it in a secondary window.

Use RemoveAccelerator to remove an assigned accelerator key.

Annotate

This macro displays the Annotation dialog box (same as the Annotate command on the Edit menu).

Syntax

Annotate()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

If the Annotate macro is run from a pop-up window, the annotation is attached to the topic that contains
the hot spot to the pop-up window.

AppendItem

This macro appends a menu item to the end of a menu you create with the InsertMenu macro.

Syntax

AppendItem("menu-id", "item-id", "item-name", "macro")

Parameters

Argument Definition

menu-id Name used in the InsertMenu macro to create the menu. This name must appear in
quotation marks. The new item is appended to this menu.

item-id Name that WinHelp uses internally to identify the menu item. This name is case-sensitive
and must appear in quotation marks. Use this name in DisableItem, EnableItem,
DeleteItem, ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or
remove the item, or change the operations that the item performs in certain topics.

item-name Name that WinHelp displays on the menu for the item. This name is case-sensitive and
must appear in quotation marks. Within the quotation marks, place an ampersand (&)
before the character used as the macro's keyboard access key.

macro Help macro or macro string that is run when the user chooses the menu item. The name
must appear in quotation marks. Multiple macros in a string must be separated by
semicolons (;).

Example

The following macro appends a menu item labeled "Index" to a menu that has an identifier "mnu_cards":

AppendItem("mnu_cards", "mnu_index", "&Index", "JI(`index.hlp', `index_topic')")

Choosing the menu item causes a jump to a topic with the context string "index_topic" in the INDEX.HLP
file.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message, "Unable to add item", and
ignores the macro.

Back

This macro displays the previous topic in the Back list. The Back list includes the last 40 topics the user
has displayed since starting WinHelp.

Syntax

Back()

Parameters

None

Comments

WinHelp ignores this macro if it is run in a secondary window.
If the Back macro is run when the Back list is empty, WinHelp takes no action.

BookmarkDefine

This macro displays the Define dialog box (same as the Define command on the Bookmark menu).

Syntax

BookmarkDefine()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

If the BookmarkDefine macro is run from a pop-up window, the bookmark is attached to the topic that
invoked the pop-up window.

BookmarkMore

This macro displays the More dialog box (same as the More command on the Bookmark menu). The
More command appears on the Bookmark menu if the user has defined more than nine bookmarks.

Syntax

BookmarkMore()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

BrowseButtons

This macro adds the Browse Back (<<) and Browse Forward (>>) buttons to the toolbar in WinHelp.

Syntax

BrowseButtons()

Parameters

None

Example

The following macros in the Project Macro Definition cause the Notepad button to appear immediately
before the two browse buttons on the toolbar:

CreateButton("&Notepad", "ExecProgram(`notepad', 0)")
BrowseButtons()

Comments

WinHelp ignores this macro if it is run in a secondary window.

If the BrowseButtons macro is used with one or more CreateButton macros Project Macro Definition, the
order of the browse buttons on the WinHelp toolbar is determined by the order of the BrowseButtons
macro in relation to the other macros listed in the Project Macro Definition.

Note:

WinHelp version 3.1 doesn't automatically provide Browse Forward (>>) and Browse Back (<<) buttons.
The Help Magician will automatically insert the BrowseButtons macro into the Project Macro Definition if
you have created browse sequences.

ChangeButtonBinding (CBB)

This macro assigns a Help macro to a Help button.

Syntax

ChangeButtonBinding("button-id", "button-macro")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro or, for a standard Help
button, one of the following predefined button identifiers: btn_contents (Contents),
btn_search (Search), btn_back (Back), btn_history (History), btn_previous (<<), or
btn_next (>>). The button identifier must appear in quotation marks.

button-macro Help macro run when the user chooses the button. The macro must appear in
quotation marks.

Example

The following macro changes the function of the Contents button so that choosing it causes a jump to the
Table of Contents topic (identified by the context string "dict_contents") in the DICT.HLP file:

ChangeButtonBinding("btn_contents", "JumpId(`dict.hlp', `dict_contents')")

Comments

WinHelp ignores this macro if it is run in a secondary window.

ChangeItemBinding (CIB)

This macro assigns a Help macro to an item that you add to a WinHelp menu using the AppendItem
macro.

Syntax

ChangeItemBinding("item-id", "item-macro")

Parameters

Argument Definition

item-id Identifier assigned to the item in the AppendItem macro. The item identifier must appear
in quotation marks.

item-macro Help macro that is run when the user selects the item. The macro must appear in
quotation marks.

Example

The following macro changes the menu item identified by "time_item" so that it starts the Windows Clock
program:

ChangeItemBinding("time_item", "ExecProgram(`clock', 0)")

Comments

WinHelp ignores this macro if it is run in a secondary window.

CheckItem (CI)

This macro places a check mark beside a menu item added to a Help menu using the AppendItem
macro.

Syntax

CheckItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the item in the AppendItem macro. The item identifier must appear
in quotation marks.

Example

The following macro places a checkmark beside the menu item named "syntax-item":

CheckItem("syntax-item")

Comments

Use the UncheckItem macro to clear the checkmark.
WinHelp ignores this macro if it is run in a secondary window.

CloseWindow

This macro closes the specified window, which is either the main WinHelp window or a secondary
window.

Syntax

CloseWindow("window-name")

Parameters

Argument Definition

window-name The name of the window to close. The name "main" is reserved for the primary Help
window. For secondary windows, the window name must be defined in the Help
Windows Specifications form under the Options menu. This name must appear in
quotation marks.

Example

The following macro closes the secondary window "keys":

CloseWindow("keys")

Comments

The secondary windows names can also be found in the [WINDOWS] section of the project (.HPJ) file.
The project file is created every time the RTF file is written in the Help Magician.
If the window does not exist, WinHelp ignores the macro.

Contents

This macro displays the contents topic in the current Help file. The contents topic can be set in the
Compiler Options form under the Options menu.

Syntax

Contents()

Parameters

None

Comments

The contents topic is defaulted to the first topic in the help file. If multiple files are used, the contents topic
will come from the main help file.

CopyDialog

This macro displays the Copy dialog box (same as the Copy command on the Edit menu).

Syntax

CopyDialog()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

CopyTopic

This macro copies all the text in the currently displayed topic onto the Windows Clipboard.

Syntax

CopyTopic()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

This macro copies text only; it does not copy bitmaps or any other images in the Help topic.
A copyright notice can be set in the Appearance form under the Options menu.

CreateButton (CB)

This macro adds a new button to the WinHelp toolbar.

Syntax

CreateButton("button-id", "caption", "macro")

Parameters

Argument Definition

button-id Name that WinHelp uses internally to identify the button. This name must appear in
quotation marks. Use this name in the DisableButton or DestroyButton macro if you want
to remove or disable the button, or in the ChangeButtonBinding macro if you want to
change the Help macro that the Name that WinHelp uses internally to identify the button.
This name must appear in quotation marks. Use this name in the DisableButton or
DestroyButton macro if you want to remove or disable the button, or in the
ChangeButtonBinding macro if you want to change the Help macro that the button runs in
certain topics.

caption The text that appears on the button. This caption must appear in quotation marks. To
designate a letter as a keyboard access key for this button, place an ampersand (&) before
a letter in this text. The button caption is case-sensitive and can contain up to 29
characters, beyond which the caption is clipped.

macro Help macro or macro string that is run when the user chooses the button. The macro must
appear in quotation marks. Multiple macros in a macro string must be separated by
semicolons (;).

Example

The following macro creates a new button labeled "Order Info" that jumps to a topic with the context string
"orderform" in the BUYPROG.HLP file when the button is chosen:

CreateButton("btn_order", "&Order Info", "JumpId(`buyprog.hlp', `orderform')")

Comments

WinHelp ignores this macro if it is run in a secondary window.

WinHelp allows a maximum of 16 authored buttons. It allows a total of 22 buttons, including the standard
browse buttons, on the toolbar.

If the BrowseButtons macro is used with one or more CreateButton macros in the Project Macro
Definition, the order of the browse buttons on the WinHelp toolbar is determined by where the
BrowseButtons macro is listed in relation to the other macros in the Project Macro Definition. The button
order may be changed in the Macro Editor form available from the Define Macros menu item under the
Macros menu.

DeleteItem

This macro removes a menu item that was added using the AppendItem macro.

Syntax

DeleteItem("item-id")

Parameters

Argument Definition

item-id The item identifier string used in the AppendItem macro. The item identifier must appear in
quotation marks.

Example

The following macro removes the menu item "Tools" appended in the example for the AppendItem macro:

DeleteItem("mnu_tools")

Comments

WinHelp ignores this macro if it is run in a secondary window.

DeleteMark

This macro removes a text marker added with the SaveMark macro.

Syntax

DeleteMark("marker-text")

Parameters

Argument Definition

marker-text Marker text specified in the SaveMark macro. The marker text must appear in quotation
marks.

Example

The following macro removes the marker "Saving Money" from the Financial Help file:

DeleteMark("Saving Money")

Comments

If the marker does not exist when the DeleteMark macro is run, WinHelp displays a "Topic not found" error
message.

DestroyButton

This macro removes a button added with the CreateButton macro.

Syntax

DestroyButton("button-id")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro. The button identifier must
appear in quotation marks. The button identifier cannot duplicate an identifier used for one
of the standard Help buttons. (See the ChangeButtonBinding macro for a list of these
identifiers.)

Comments

WinHelp ignores this macro if it is run in a secondary window.

DisableButton (DB)

This macro disables and dims a button added with the CreateButton macro.

Syntax

DisableButton("button-id")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro. The button identifier appears
in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

A button disabled by the DisableButton macro cannot be used in the topic until an EnableButton macro is
run.

DisableItem (DI)

This macro disables and dims a menu item added with the AppendItem macro.

Syntax

DisableItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the menu item in the AppendItem macro. The item identifier must
appear in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

A menu item disabled by the DisableItem macro cannot be used in the topic until an EnableItem macro is
run.

EnableButton (EB)

This macro re-enables a button disabled with the DisableButton macro.

Syntax

EnableButton("button-id")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro. The button identifier must
appear in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

EnableItem (EI)

This macro re-enables a menu item disabled with the DisableItem macro.

Syntax

EnableItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the menu item in the AppendItem macro. The item identifier must
appear in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

ExecProgram (EP)

This macro runs a Windows-based application.

Syntax

ExecProgram("command-line", display-state)

Parameters

Argument Definition

command-line Command line for the application to be executed. The command line must appear in
quotation marks. WinHelp searches for this application in the current directory,
followed by the Windows directory, the user's path, and the directory of the currently
displayed Help file.

display-state A value indicating how the application is shown when executed. A value of 0 indicates
normal, 1 indicates minimized, and 2 indicates maximized. For a complete list of
display states, select the "Display" hints button.

Example

The following macro runs the Windows Clock program in its normal window size:

ExecProgram("clock.exe", 0)

Exit

This macro exits the WinHelp application (same as the Exit command on the File menu).

Syntax

Exit()

Parameters

None

ExtAbleItem

This macro enables or disables an existing menu item. It is functionally equivalent to the combination of
the EnableItem and DisableItem macros.

Syntax

ExtAbleItem("item-id", enabled-state)

Parameters

Argument Definition

item-id Identifier assigned to the menu item in the AppendItem or ExtInsertItem macros. The item
identifier must appear in quotation marks.

enabled-state An integer specifying the initial state of the menu item. Use a '0' to enable the item and '1'
to disable the item.

Example

The following macro disables the menu item "mnu_tools":

ExtAbleItem("mnu_tools", 1)

Comments

WinHelp ignores this macro if it is run in a secondary window.

ExtInsertItem

This macro functions identically to the InsertItem macro with one exception: it has an extra argument to
enable or disable the item on startup.

Syntax

ExtInsertItem("menu-id", "item-id", "item-name", "macro", position, enabled-state)

Parameters

Argument Definition

menu-id Either a standard WinHelp menu name or the name used in the InsertMenu macro to
create the menu. Standard menu names are mnu_file (File menu), mnu_edit (Edit
menu), mnu_bookmark (Bookmark menu), and mnu_helpon (Help menu). The menu
identifier must appear in quotation marks. The new item is inserted into this menu.

item-id Name that WinHelp uses internally to identify the menu item. The item identifier must
appear in quotation marks. Use this name in DisableItem, EnableItem, DeleteItem,
ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or remove the
item, or change the operations that the item performs in certain topics.

item-name Name that WinHelp displays on the menu for the item. This name is case-sensitive and
must appear in quotation marks. Within the quotation marks, place an ampersand (&)
before the character used for the item's keyboard access key.

macro Help macro or macro string that is run when the user chooses the menu item. The
macro must appear in quotation marks. Multiple macros in a string must be separated
by semicolons (;).

position An integer specifying the position in the menu where the new item will appear. Position
0 is the first or topmost position in the menu.

enabled-state An integer specifying the initial state of the menu item. Use a '0' to enable the item and
'1' to disable the item.

Example

The following macro inserts a menu item labeled "Tools" as the third item (0,1,2) on a menu that has an
identifier "mnu_books":

ExtInsertItem("mnu_books", "mnu_tools", "&Tools", "JI(`tools.hlp', `first_topic')", 3, 0)

Selecting the menu item causes a jump to a topic with the context string "first_topic" in the TOOLS.HLP
file.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message Unable to add item and
ignores the macro.

Use "mnu_main" for the menu-id to place an item directly on the WinHelp main menu bar.

Use "mnu_floating" to place an item in the floating menu. Remember to execute the FloatingMenu()
macro to enable    the floating menu option.

ExtInsertMenu

This macro functions similarily to the InsertMenu macro with a couple of enhancements:

1. It has an extra argument to allow placing the menu under other menus as a sub-menu.
2. It has an extra argument to enable or disable the item on startup.

Syntax

ExtInsertMenu("parentmenu-id", "submenu-id", "submenu-name", submenu-position, enabled-state)

Parameters

Argument Definition

parentmenu-id Either a standard WinHelp menu name or the name used in the InsertMenu
macro to create the menu. Standard menu names are . The menu identifier must appear in
quotation marks. The new item is inserted into this menu. If "mnu_main" is used, the menu
will be inserted into WinHelp's main menu bar.

submenu-id Name that WinHelp uses internally to identify the submenu item. The item identifier must
appear in quotation marks. Use this name in DisableItem, EnableItem, DeleteItem,
ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or remove the
item, or change the operations that the item performs in certain topics.

submenu-name Name that WinHelp displays on the submenu for the item. This name is case-
sensitive and must appear in quotation marks. Within the quotation marks, place an
ampersand (&) before the character used for the submenu's keyboard access key.

submenu-position An integer specifying the position in the parent menu where the new submenu
will appear. Position 0 is the first or topmost position in the parent menu.

enabled-state An integer specifying the initial state of the menu item. Use a '0' to enable the item and '1'
to disable the item.

Example #1

The following macro inserts a submenu item labeled "Tools" as the third item (0, 1, 2) on a parent menu
that has an identifier "mnu_books":

ExtInsertMenu("mnu_books", "mnu_tools", "&Tools", 2, 0)

Example #2

The following macro inserts a menu labeled "Charts" as the second item (0, 1) on WinHelp's main menu:

ExtInsertMenu("mnu_main", "mnu_chts", "&Charts", 1, 0)

Example #3

The following macros insert a submenu labeled "File" as the first item on WinHelp's floating menu and
adds four menu items to it:

ExtInsertMenu("mnu_floating", "mnu_ffile", "&File", 0, 0)
AppendItem("mnu_ffile", "itm_file1", "&Open", "FileOpen()")
AppendItem("mnu_ffile", "itm_file2", "&Print Topic", "Print()")
AppendItem("mnu_ffile", "itm_file3", "P&rint Setup...", "PrinterSetup()")
AppendItem("mnu_ffile", "itm_file4", "&Exit", "Exit()")

To see this example function, click the right mouse button to display the floating menu.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message Unable to add menu and
ignores the macro.

Use "mnu_main" for the menu-id to place a menu directly on the WinHelp main menu bar.

Use "mnu_floating" to place a sub-menu in the floating menu. Remember to execute the FloatingMenu()
macro to enable    the floating menu option.

FileOpen

This macro displays the Open dialog box (same as the Open command on the File menu).

Syntax

FileOpen()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

FloatingMenu

This macro displays the floating menu, providing items have been added to it.

Syntax

FloatingMenu()

Parameters

None

Comments

Menu items should be added to the floating menu before calling this macro.

Typically the user would click the right mouse button to display the floating menu, but this macro provides
the help author (you) a way to display it from a button or a hotspot, for example.

Example

The following macros insert a submenu labeled "File" as the first item on WinHelp's floating menu and
adds four menu items to it:

ExtInsertMenu("mnu_floating", "mnu_ffile", "&File", 0, 0)
AppendItem("mnu_ffile", "itm_file1", "&Open", "FileOpen()")
AppendItem("mnu_ffile", "itm_file2", "&Print Topic", "Print()")
AppendItem("mnu_ffile", "itm_file3", "P&rint Setup...", "PrinterSetup()")
AppendItem("mnu_ffile", "itm_file4", "&Exit", "Exit()")
Floatingmenu()

Click the right mouse button to see an example of the floating menu.

FocusWindow

This macro changes the focus to the specified window, which is either the main WinHelp window or a
secondary window.

Syntax

FocusWindow("window-name")

Parameters

Argument Definition

window-name The name of the window to have the focus. The name "main" is reserved for the
primary Help window. For secondary windows, the window name must be defined in
the Help Windows Specifications form under the Options menu. This name must
appear in quotation marks.

Example

The following macro changes the focus to the secondary window "glossary":

FocusWindow("glossary")

Comments

If the window does not exist, WinHelp ignores the macro.

GoToMark

This macro jumps to a marker set with the SaveMark macro.

Syntax

GoToMark("marker-text")

Parameters

Argument Definition

marker-text Marker text specified in the SaveMark macro. The marker text must appear in quotation
marks.

Example

The following macro jumps to the marker "Saving Money" in the Financial Help file:

GoToMark("Saving Money")

HAnimateCommand

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HAudioCommand

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HAudioDialog

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HDisplayBitmap

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HelpOn

This macro displays the Using Help file for the WinHelp application (same as the Using Help command on
the Help menu).

Syntax

HelpOn()

Parameters

None

HelpOnTop

This macro forces the Help window to always stay on top of other applications so that it is always visible.

Syntax

HelpOnTop()

Parameters

None

Comments

Use of this macro with the main window is discouraged. To set the "on top" feature for the main window,
check the "Always On Top" menu item off the Help menu in WinHelp. Windows Help dows not provide a
way to monitor the state of the "on top" feature so it is up to the user to track the status of it.

History

This macro displays the Windows Help History window, which shows the last 40 topics the user has
viewed since opening a Help file in WinHelp. It has the same effect as choosing the History button on the
WinHelp toolbar.

Syntax

History()

Parameters

None

Comments

WinHelp ignores this macro if it is run in a secondary window.

IfThen

This macro runs a Help macro if a given marker exists. It uses the IsMark macro to make the test.

Syntax

IfThen(IsMark("marker-text"), "macro")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The marker text must appear in quotation marks.

macro The Help macro or macro string that is run if the marker exists. The macro must appear in
quotation marks. Multiple macros in a macro string must be separated by semicolons (;).

Example

The following macro jumps to the topic with the context string "bal_chk" if a marker named "Balance
Checkbook" has been set by the SaveMark macro:

IfThen(IsMark("Balance Checkbook"), "JI(`finance.hlp', `bal_chk')")

IfThenElse

This macro runs one of two Help macros, provided a marker exists. It uses the IsMark macro to make the
test.

Syntax

IfThenElse(IsMark("marker-text"), "macro1", "macro2")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The marker text must appear in quotation
marks.

macro1, macro2 WinHelp runs macro1 if the marker exists and macro2 if it does not. Both macros
must appear in quotation marks. Multiple macros in either macro string must be
separated by semicolons (;).

Example

The following macro jumps to the topic with the context string "bal_chk" if a marker named "Balance
Checkbook" has been set by the SaveMark macro. If the marker does not exist, it jumps to the contents
screen for the FINANCE.HLP file:

IfThenElse(IsMark("Balance Checkbook"), "JI(`finance.hlp', `bal_chk')","JumpContents(`FINANCE.HLP')")

InsertItem

This macro inserts a menu item at a given position on an existing menu. The menu can be either one you
create with the InsertMenu macro or one of the standard WinHelp menus.

Syntax

InsertItem("menu-id", "item-id", "item-name", "macro", position)

Parameters

Argument Definition

menu-id Either a standard WinHelp menu name or the name used in the InsertMenu macro to
create the menu. Standard menu names are mnu_file (File menu), mnu_edit (Edit menu),
mnu_bookmark (Bookmark menu), and mnu_helpon (Help menu). The menu identifier
must appear in quotation marks. The new item is inserted into this menu.

item-id Name that WinHelp uses internally to identify the menu item. The item identifier must
appear in quotation marks. Use this name in DisableItem, EnableItem, DeleteItem,
ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or remove the
item, or change the operations that the item performs in certain topics.

item-name Name that WinHelp displays on the menu for the item. This name is case-sensitive and
must appear in quotation marks. Within the quotation marks, place an ampersand (&)
before the character used for the item's keyboard access key.

macro Help macro or macro string that is run when the user chooses the menu item. The macro
must appear in quotation marks. Multiple macros in a string must be separated by
semicolons (;).

position An integer specifying the position in the menu where the new item will appear. Position 0
is the first or topmost position in the menu.

Example

The following macro inserts a menu item labeled "Tools" as the third item on a menu that has an identifier
"mnu_books":

InsertItem("mnu_books", "mnu_tools", "&Tools", "JI(`tools.hlp', `first_topic')", 3)

Selecting the menu item causes a jump to a topic with the context string "first_topic" in the TOOLS.HLP
file.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message Unable to add item and
ignores the macro.

InsertMenu

This macro adds a new menu to the WinHelp menu bar.

Syntax

InsertMenu("menu-id", "menu-name", menu-position)

Parameters

Argument Definition

menu-id Name that WinHelp uses internally to identify the menu. The menu identifier must
appear in quotation marks. Use this identifier in the AppendItem macro to add
commands to the menu.

menu-name Name for the menu that WinHelp displays on the menu bar. This name is case-
sensitive and must appear in quotation marks. Within the quotation marks, place an
ampersand (&) before the character used for the menu's keyboard access key.

menu-position Number telling WinHelp which position on the menu bar the new menu name will
have. Positions are numbered from left to right, with position 0 being the leftmost
menu.

Example

The following macro adds a menu named "Utilities" to WinHelp:

InsertMenu("menu_util", "&Utilities", 3)

The label "Utilities" appears as the fourth menu on the WinHelp menu bar. The user presses ALT+U to
display the menu and its commands.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menus are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message "Unable to add menu" and
ignores the macro.

IsMark

This macro determines whether a marker set by the SaveMark macro exists. It is used as a parameter to
the conditional macros IfThen and IfThenElse.

Syntax

IsMark("marker-text")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The IsMark macro returns a True value if the
mark exists and a False value if it does not. The marker text must appear in quotation
marks.

Example

The following macro jumps to the topic with the context string "bal_chk" if a marker named "Balance
Checkbook" has been set by the SaveMark macro:

IfThen(IsMark("Balance Checkbook"), "JI(`finance.hlp', `bal_chk')")

Comments

The Not macro can be used to reverse the results of the IsMark macro.

JumpContents

This macro jumps to the contents topic of a specified Help file. The contents topic can be set in the
Compiler Options form under the Options menu.

Syntax

JumpContents("filename")

Parameters

Argument Definition

filename The name of the destination file for the jump. The file name must appear in quotation
marks. If WinHelp cannot find this file, it displays an error message and does not perform
the jump.

Example

The following macro jumps to the contents topic of the PROGMAN.HLP file:

JumpContents("PROGMAN.HLP")

Comments

If the CONTENTS option is not specified, WinHelp jumps to the first topic in the Help file.
WinHelp ignores this macro if it is run in a secondary window.
Use the word "THISFILE" to refer to the current help file.

JumpContext (JC)

This macro jumps to a topic identified by a context number. The context number must be entered in the
"Context #" field in the Help Magician.

Syntax

JumpContext("filename", context-number)

Parameters

Argument Definition

filename The name of the destination file for the jump. The file name must appear in quotation
marks. If WinHelp cannot find this file, it displays an error message and does not
perform the jump.

context-number Context number of the topic in the destination file. The context number must
assigned for the topic to be recognized. If the context number does not exist or
cannot be found, WinHelp jumps to the contents topic or the first topic in the file
instead, and displays an error message.

Example

The following macro jumps to the topic mapped to the context number 1501 in the PROGMAN.HLP file:

JumpContext("PROGMAN.HLP", 1501)

Comments

Use the word "THISFILE" to refer to the current help file.

JumpHelpOn

This macro jumps to the contents topic of the "Using Help" file. The "Using Help" file is either the default
WINHELP.HLP file or the Help file designated by the SetHelpOnFile macro.

Syntax

JumpHelpOn()

Parameters

None

Example

The following macro jumps to the contents topic of the designated Using Help file:

JumpHelpOn()

Comments

If WinHelp cannot find the specified Help file, it displays an error message and does not perform the
jump.

JumpId (JI)

This macro jumps to the topic with the specified context string in the Help file.

Syntax

JumpId("filename", "context-string")

Parameters

Argument Definition

filename Name of the Help file (.HLP) containing the context string. The file name must appear
in quotation marks. If WinHelp does not find this file, it displays an error message and
does not perform the jump.

context-string Context string of the topic in the destination file. The context string must appear in
quotation marks. If the context string does not exist, WinHelp jumps to the contents
topic for that file instead.

Example

The following macro jumps to a topic with "second_topic" as its context string in the Help file
SECOND.HLP:

JumpId("second.hlp", "second_topic")

Comments

Use the word "THISFILE" to refer to the current help file.

JumpKeyword (JK)

This macro opens the indicated Help file (.HLP), searches through the keyword table, and displays the
first topic containing the keyword specified in the macro.

Syntax

JumpKeyword("filename", "keyword")

Parameters

Argument Definition

filename The name of the .HLP file that contains the desired keyword table. The file name must
appear in quotation marks. If this file does not exist, WinHelp displays an error message
and does not perform the jump.

keyword The keyword that the macro searches for. The keyword must appear in quotation marks. If
WinHelp finds more than one match, it displays the first matched topic. If it does not find
any matches, it displays a "Not a keyword" message and the contents topic of the
destination file.

Example

The following macro opens the first topic that has "hands" as an index keyword in the Help file
CLOCK.HLP:

JumpKeyword("clock.hlp", "hands")

Comments

Use the word "THISFILE" to refer to the current help file.
WinHelp searches through the 'K' keyword table, the default table that the Help Magician generates.
Multiple keyword tables are ignored.

mciExecute

Basic Commands

The following list summarizes the basic commands. The use of these messages by a device is optional.

Command Description

load Recalls data from a disk file.
pause Pauses playing or recording.
play Starts transmitting output data.
record Starts recording input data.
resume Resumes playing or recording on a paused device.
save Saves data to a disk file.
seek Seeks forward or backward.
set Sets the operating state of the device.
status Obtains status information about the device. The status command is also listed in the

group of required commands. In the basic group, options are added for devices that use
linear media with identifiable positions.

stop Stops playing or recording.

Comments

If a driver supports a basic command, it must also support a standard set of options for the command.

This is not a standard WinHelp macro and needs to be registered using the RegisterRoutine macro
should you be creating the project file manually.

Next
This macro displays the next topic in the browse sequence for the Help file. It has the same effect as
choosing the Browse Forward (>>) button.

Syntax

Next()

Parameters

None

Comments

If the current topic is the last of a browse sequence, this macro does nothing.

WinHelp ignores this macro if it is run in a secondary window.

Not

This macro reverses the True or False result returned by the IsMark macro. It is used with the IsMark
macro as a parameter to the conditional macros IfThen and IfThenElse.

Syntax

Not(IsMark("marker-text")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The Not macro returns a False value if the mark
exists or a True value if it does not. The marker text must appear in quotation marks.

Example

The following macro jumps to the topic with context string "Settle Accounts" if a marker named "Balance
Checkbook" has not been set by the SaveMark macro:

IfThen(Not(IsMark("Balance Checkbook")), "JI(`finance.hlp', `Settle Accounts')")

PopupContext (PC)

This macro displays a topic identified by a context number. The context numbers are entered via the Help
Magician's "Context #" field.

Syntax

PopupContext("filename", context-number)

Parameters

Argument Definition

filename The name of the file that contains the topic to be displayed in the pop-up window.
The file name must appear in quotation marks. If WinHelp cannot find this file, it
displays an error message.

context-number Context number of the topic to be displayed in the pop-up window. The context
number must entered in the "Context #" entry field in the Help Magician. If the
context number does not exist or cannot be found, WinHelp displays the contents
topic or the first topic in the file instead.

Example

The following macro displays in a pop-up window the topic mapped to the context number 1501 in the file
PROGMAN.HLP:

PopupContext("progman.hlp", 1501)

Comments

Use the word "THISFILE" to refer to the current help file.

PopupId (PI)

This macro displays a topic from a specified file in a pop-up window.

Syntax

PopupId("filename", "context-string")

Parameters

Argument Definition

filename The name of the file that contains the pop-up window topic. The file name must appear
in quotation marks. If this file does not exist, WinHelp displays an error message.

context-string Context string of the topic in the destination file. The context string must appear in
quotation marks. If the requested context string does not exist, WinHelp displays the
contents topic or the first topic in the file in the pop-up window. Context strings can be
entered in the "Context $" entry field in the Help Magician.

Example

The following macro displays in a pop-up window a topic identified by the context string "second_topic" in
the file SECOND.HLP:

PopupId("second.hlp", "second_topic")

Comments

Use the word "THISFILE" to refer to the current help file.

PositionWindow (PW)

This macro sets the size and position of the main Help window or an existing secondary window.

Syntax

PositionWindow(x, y, width, height, state, "window-name")

Parameters

Argument Definition

x, y X and Y coordinates of the upper-left window corner. Positions are defined in terms
of WinHelp's 1024 x 1024 coordinate system.

width, height Gives the default width and height of the window. Window sizes, like positions, are
defined in terms of WinHelp's coordinate system.

window-state Specifies how the window is sized. This parameter is 0 for normal size and 1 for
maximized. If the parameter is 1, WinHelp ignores the x, y, width, and height
parameters.

window-name The name of the window to position. The name "main" is reserved for the primary
Help window. Secondary windows must be defined in the Help Windows
Specifications form under the Options menu in the Help Magician. This name must
appear in quotation marks.

Example

The following macro positions the secondary window "Samples" in the upper-left corner (100, 100) with a
width and height of 500 (in WinHelp coordinates):

PositionWindow(100, 100, 500, 500, 0, "Samples")

Comments

If the window to be positioned does not exist, WinHelp ignores the macro.

Prev

This macro displays the previous topic in the browse sequence for the Help file. It has the same effect as
choosing the Browse Back (<<) button.

Syntax

Prev()

Parameters

None

Comments

If the currently displayed topic is the first topic of a browse sequence, this macro does nothing.
WinHelp ignores this macro if it is run in a secondary window.

Print

This macro sends the currently displayed topic to the printer.

Syntax

Print()

Parameters

None

Comments

This macro should be used only to print topics in windows other than the main Help window. For example,
it can be used to print topics displayed in secondary windows, provided the user doesn't have a dialog
box open at the time of printing.

Use of this macro in secondary windows is discouraged.

PrinterSetup

This macro displays the Print Setup dialog box (same as the Print Setup command on the File menu).

Syntax

PrinterSetup()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

RegisterRoutine (RR)

This macro registers a function within a DLL as a Help macro. Registered functions can be used in macro
hot spots, topic macros, or project macros, just as standard Help macros are used. (It should be noted
that the Help Magician performs all necessary macro registrations for you automatically when the RTF file
is written.)

Syntax

RegisterRoutine("DLL-name", "function-name", "format-spec")

Parameters

Argument Definition

DLL-name The file name of the DLL being called. The file name must appear in quotation marks.
If WinHelp cannot find the DLL, it displays an error message and does not perform the
call.

function-name The name of the function to be executed in the designated DLL. The function name
must appear in quotation marks.

format-spec A string specifying the formats of parameters passed to the function. The format string
must appear in quotation marks. Characters in the string represent C parameter types:
"u" for unsigned short, "U" for unsigned long, "i" for short int, "I" for long int, "s" for
string (near char *), "S" for string (far char *), or "v" for void. WinHelp automatically
makes sure these formats match the parameter types specified in the function
prototype.

Example

The following DLL call registers a routine "RetString" in the DLL named HELPLIB.DLL. RetString takes
arguments of types far char *, short int, and unsigned long.

RegisterRoutine("HELPLIB", "RetString", "S=iU")

Comments

This is an advanced level macro and its use is discouraged for novices.

RemoveAccelerator

This macro removes a Help macro from a shortcut key that had been previously assigned.

Syntax

RemoveAccelerator(key, shift-state)

Parameters

Argument Definition

key The Windows virtual-key value. For a list of these keys, select the Acc Keys hints button.

shift-state A number specifying the combination of ALT, SHIFT, and CTRL keys used with the shortcut
key: 0 (none), 1 (SHIFT), 2 (CTRL), 3 (SHIFT+CTRL), 4 (ALT), 5 (ALT+SHIFT), 6
(ALT+CTRL), or 7 (ALT+SHIFT+CTRL).

Example

The following macro removes the macro assigned to the key sequence Ctrl-P:

RemoveAccelerator(0x50, 2")

Comments

WinHelp does not display an error message if you try to remove an unassigned accelerator key.
Use the AddAccelerator macro to assign a macro to a key combination.

ResetMenu

This macro returns the WinHelp menus to the default configuration.

Syntax

ResetMenu()

Parameters

None

SaveMark

This macro saves the location of the currently displayed topic and file and associates a text marker with
that location. The GoToMark macro can then be used to jump to this location.

Syntax

SaveMark("marker-text")

Parameters

Argument Definition

marker-text Text used to identify the topic location. The marker text must appear in quotation marks,
and it must be unique. If the same text is used for more than one marker, WinHelp
recognizes only the most recently entered marker.

Example

The following macro saves the marker "Balance Checkbook" in the current topic in the Financial Help file:

SaveMark("Balance Checkbook")

Comments

In addition to GoToMark, WinHelp offers the following other macros for use with text markers:

DeleteMark removes any defined marker.

IsMark tests whether a given marker has been set in the Help file. Not negates the result of this test.

IfThen and IfThenElse run one or more Help macros if a given marker has been set. These use the
IsMark (and optional Not) macro to test whether the marker is set.

Text markers are not saved if the user exits and then restarts WinHelp.

Search

This macro displays the dialog box for the Search button, which allows users to search for topics using
keywords defined in the Help Magician. It has the same effect as choosing the Search button.

Syntax

Search()

Parameters

None

Comments

WinHelp ignores this macro if it is run in a secondary window.

SetContents

This macro designates a specific topic as the contents topic within the Help file.

Syntax

SetContents("filename", context-number)

Parameters

Argument Definition

filename The name of the Help file that contains the desired contents topic. The file name
must appear in quotation marks. If WinHelp cannot find the file, it displays an error
message and does not perform the jump.

context-number Context number of the topic in the specified file. The context number must be
assigned in the destination Help file. If the context number does not exist or cannot
be found in the destination help file, WinHelp displays an error message.

Example

The following macro sets the topic mapped to the context number 1501 in the PROGMAN.HLP file as the
contents topic:

SetContents("PROGMAN.HLP", 1501)

After running this macro, pressing the Contents button causes a jump to the specified topic.

Comments

Use the word "THISFILE" to refer to the current help file.

SetHelpOnFile

This macro designates the specific Help file that replaces WINHELP.HLP, the default Using Help file in the
Windows environment.

Syntax

SetHelpOnFile("filename")

Parameters

Argument Definition

filename The name of the replacement Using Help file. The file name must appear in quotation
marks. If WinHelp cannot find this file, it displays an error message.

Example

The following macro sets the Using Help file as MYHELP.HLP:

SetHelpOnFile("myhelp.hlp")

Comments

If this macro appears within a topic in the Help file, the replacement file is set after execution of the
macro. If this macro appears in the Project Macro Definition, the replacement file is set when the Help file
is opened.

Comments

Use the word "THISFILE" to refer to the current help file.

sndPlaySound

This macro plays a sound (.WAV) file.

Syntax

sndPlaySound("filename", play-flag)

Parameters

Argument Definition

filename The name of the sound (.WAV) file. The file name must appear in quotation marks. If
WinHelp cannot find this file, it displays an error message.

play-flag A flag that determines how long the sound plays for. Enter a '0' to terminate normally, '8' to
play continuosly until the macro is called again with the '0' play-flag set.

Example

The following macro plays the "CHIMES.WAV" file:

sndPlaySound("chimes.wav", 0)

Comments

This is not a standard WinHelp macro and needs to be registered using the RegisterRoutine macro
should you be creating the project file manually.

UnCheckItem

This macro removes a check mark beside a menu item added to a Help menu using the AppendItem
macro.

Syntax

UncheckItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the item in the AppendItem macro. The item identifier must appear
in quotation marks.

Example

The following macro removes a checkmark beside the menu item named "syntax-item":

UncheckItem("syntax-item")

Comments

Use the CheckItem macro to set the checkmark.
WinHelp ignores this macro if it is run in a secondary window.

Load (Basic)

Syntax

load device_id [filename] [notify] [wait]

The load command loads a device element from disk.

Parameters

You can specify the following optional parameter:

filename

Specifies the source path and file.

Example

The following command loads a file into the "vidboard" device:

load vidboard c:\vid\fish.vid notify

The notify flag tells MCI to send a notification message when the loading completes.

pause (Basic)

Syntax

pause device_id [notify] [wait]

The pause command pauses playing or recording. Most drivers retain the current position, allowing
playback or    recording to continue at the current position.

Example

The following command pauses the "mysound" device:

pause mysound

play (Basic)

Syntax

play device_id [parameters] [notify] [wait]

The play command starts playing the device.

Parameters

You can specify one or more of the following optional items for parameters:

from position

Specifies a starting position for the playback. If the from paramer is not specified, playback begins at    the
current position.

to position

Specifies an ending position for the playback. If the to parameter is not specified, playback ends at the   
end of the media.

Comments

Before issuing any commands that use position values, you should set the desired time format using the
set    command.

Example

The following command plays the mysound device from position 1000 through position 2000, sending a   
notification message when the playback completes:

play mysound from 1000 to 2000 notify

record (Basic)

Syntax

record device_id [parameters] [notify] [wait]

The record command starts recording data. All data recorded after a file is opened is discarded if the file
is    closed without saving it.

Parameters

You can specify one or more of the following optional items for parameters:

insert

Specifies that new data is added to the device element at the current position.

from position

Specifies a starting position for the recording. If the from parameter is not specified, the device starts   
recording at the current position.

to position

Specifies an ending position for the recording. If the to parameter is not specified, the device records   
until it receives a stop or pause command.

overwrite

Specifies that new data will replace data in the device element.

Comments

Before issuing any commands that use position values, you should set the desired time format using the
set    command.

Example

The following command starts recording data into the "newsound" device at the current position:

record newsound

The recording stops when a stop or pause command is issued.

resume (Basic)

Syntax

resume device_id [notify] [wait]

The resume command continues playing or recording on a paused device.

Example

The following command continues playing or recording the "newsound" device:

resume newsound

save (Basic)

Syntax

save device_id [filename] [notify] [wait]

The save command saves the MCI element.

Parameters

You can specify the following optional item:

filename

Specifies the destination path and file.

Comments

The filename parameter is required if the device was opened using the new device ID.

Example

The following command saves the data in the "newsound" device to C:\SOUNDS\NEWSND.WAV:

save newsound c:\sounds\newsnd.wav

seek (Basic)

Syntax

seek device_id parameter [notify] [wait]

The seek command moves to the specified position and stops.

Parameters

Specify one of the following items for parameter:

to position

Specifies the position to stop the seek.

to start

Seeks to the start of the media.

to end

Seeks to the end of the media.

Comments

Before issuing any commands that use position values, you should set the desired time format using the
set    command.

Example

The following command seeks to the start of the media file associated with the "mysound" device:

seek mysound to start

set (Basic)

Syntax

set device_id parameters [notify] [wait]

The set command establishes control settings for the driver.

Parameters

Specify one or more of the following items for parameters:

audio all off

Disables audio output.

audio all on

Enables audio output.

audio left off

Disables output to the left audio channel.

audio left on

Enables output to the left audio channel.

audio right off

Disables output to the right audio channel.

audio right on

Enables output to the right audio channel.

door closed

Loads the media and closes the door if possible.

door open

Opens the door and ejects the media if possible.

time format milliseconds

Sets the time format to milliseconds. All commands that use position values will assume milliseconds.   
You can abbreviate milliseconds as ms.

video off

Disables video output.

video on

Enables video output.

Example

The following command sets the "mysound" device to use milliseconds as the time format:

set mysound time format ms

status (Basic)

Syntax

status device_id parameter [notify] [wait]

The status command gets status information for the device. This command is also listed as a required   
command. As a basic command, status adds options for devices with linear media.

Parameters

Specify one of the following items for parameter:

current track

Returns the current track.

length

Returns the total length of the media.

length track track_number

Returns the length of the track specified by track_number.

number of tracks

Returns the number of tracks on the media.

position

Returns the current position.

position track track_number

Returns the position of the start of the track specified by track_number.

ready

Returns true if the device is ready to play.

start position

Returns the starting position of the media.

time format

Returns the current time format.

Comments

Before issuing any commands that use position values, you should set the desired time format using the
set    command.

Example

The following command returns the time format used by the "mysound" device:

status mysound time format

stop (Basic)

Syntax

stop device_id [notify] [wait]

The stop command stops playback or recording.

Example

The following command stops playback or recording on the "mysound" device:

stop mysound

predefined WinHelp menu id's:

mnu_file (File menu)
mnu_edit (Edit menu)
mnu_bookmark (Bookmark menu)
mnu_help (Help menu)
mnu_helpon (Help sub-menu)
mnu_helpontop (Help sub-menu)
mnu_main (WinHelp main menu)
mnu_floating (Floating menu)

Unknown Prototype

This prototype is not a standard WinHelp macro.

Example Syntax

SampleMacro(arg1, "arg2")

arg1 - Numerical argument. Enter any integer number in decimal or hex (ex.    3    or 0xF7).

arg2 - String argument. Enter any combination of text within the double (or single) quotes. Some
characters need to be preceded with a backslash (\) such as an opening or closing parenthesis "()", single
or double quotes, and the backslash.

File names

File naming conventions in the Windows environment use the last three characters after the period, called
the file name extension or extension for short, as a way of identifying the file type. Below is a list of files
used in various WinHelp macros along with their functions and extensions:

Audio Files
These files contain sound information and carry the extension of .WAV.

Animation Files
Animation files contain information used in multimedia animation files. They have .MMM as an extension.

Image Files
Image files contain picture or bitmap information in the "DIB" or "BMP" format and have .DIB or .BMP for
their extensions, respectively.

Help Files
Help files, like this one, have .HLP as an extension.

Dynamic Link Libraries (DLL's)
Dynamic link libraries are files that contain programs that can be called from WinHelp macros. They
typically exist in the Windows directory or in the parent directory of the application, but may exist in the
default path set in the AUTOEXEC.BAT file using the PATH statement. They have .DLL as an extension.

Executable Files
These files are the actual application programs and can also be called from WinHelp macros such as
ExecProgram. They typically exist in the Windows directory or in the parent directory of the application,
but may exist in the default path set in the AUTOEXEC.BAT file using the PATH statement. They have
.EXE as an extension.

COMMENTS:
All files with the exception of executables and DLL's should be located in the ROOT path or BMROOT (in
the case of bitmaps and DIB's). Executables and DLL's should be located in the Windows directory, the
SYSTEM directory, the default DOS PATH, or preferably in the ROOT path set in the Help Magician.

Note:    The Macro Editor hints button will allow you to select a file name with an associated path, but will
strip the path from the file name before inserting it into an argument. This is because the Help Magician
expects all files to be located in the locations mentioned in the paragraph above. You may include a path
with a file name in an argument at anytime, but beware that WinHelp will expect that file to be in that
particular path when the Help file is opened. This can cause unexpected behavior in WinHelp if the file is
not found, like in an targeted end user's environment for instance. It is safest to keep all the support files
together in the ROOT directory and to advise your end users to do the same.

ROOT
The ROOT directory, for a help build, is any directory designated as containing the files necessary to build
and compile the Windows help file. To the Help Magician, this is the directory from which the help file is
opened or the directory to which the help file is saved.

BMROOT
The BMROOT directory, for a help build, is any directory or directories designated as containing the
bitmap and/or DIB files necessary to build and compile the Windows help file. These paths can be set in
the Paths form from the Options menu in the Help Magician.

Help Magician Pro 95 Macro Reference

About
AddAccelerator (AA)
ALink
Annotate
AppendItem
Back
BookMarkDefine
BookMarkMore
BrowseButtons
ChangeButtonBinding (CBB)
ChangeEnable
ChangeItemBinding (CIB)
CheckItem (CI)
CloseSecondarys
CloseWindow
Compare
Contents
ControlPanel
CopyDialog
CopyTopic
CreateButton (CB)
DeleteItem
DeleteMark
DestroyButton
DisableButton (DB)
DisableItem (DI)
EnableButton (EB)
EnableItem (EI)
EndMPrint
ExecFile
ExecProgram (EP)
Exit
ExtAbleItem
ExtInsertItem
ExtInsertMenu
FileExist
FileOpen
Finder
FloatingMenu
Flush
FocusWindow
GoToMark
HelpOn
HelpOnTop
History
IfThen
IfThenElse
InitMPrint
InsertItem
InsertMenu
IsBook
IsMark

IsNotMark
JumpContents
JumpContext (JC)
JumpHelpOn
JumpId (JI)
JumpKeyWord (JK)
KLink
mciExecute
Menu
MPrintHash
MPrintID
Next
NoShow
Not
PopupContext (PC)
PopupId (PI)
PositionWindow (PW)
Prev
Print
PrinterSetup
RegisterRoutine (RR)
RemoveAccelerator (RA)
ResetMenu
SaveMark
Search
SetContents
SetHelpOnFile
SetPopupColor
ShellExecute
ShortCut
sndPlaySound
TCard
Test
TestALink
TestKLink
UncheckItem (UI)
UpdateWindow

About

This macro displays the About dialog box (same as the About command on the Help menu).

Syntax

About()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

AddAccelerator (AA)

This macro assigns a Help macro to a shortcut key (or key combination) so that the macro is run when
the user presses the shortcut key(s).

Syntax

AddAccelerator(key, shift-state, "macro")

Parameters

Argument Definition

key The Windows virtual-key value. For a list of these keys, select the Acc Keys hints button.

shift-state A number specifying the combination of ALT, SHIFT, and CTRL keys used with the shortcut
key: 0 (none), 1 (SHIFT), 2 (CTRL), 3 (SHIFT+CTRL), 4 (ALT), 5 (ALT+SHIFT), 6
(ALT+CTRL), or 7 (ALT+SHIFT+CTRL).

macro The Help macro or macro string that is run when the user presses the shortcut key(s). The
macro must appear in quotation marks. Multiple macros in a string must be separated by
semicolons (;).

Example

The following macro starts the Windows Notepad program (provided in Windows version 3.1) when the
user presses ALT+SHIFT+CTRL+F4:

AddAccelerator(0x73, 7, "ExecProgram(`notepad.exe', 1)")

Comments

The Help macro that is run by AddAccelerator might not work in secondary windows, or its use may be
discouraged if the macro it runs is prohibited or discouraged in secondary windows. Check the usage
notes for the macro before using AddAccelerator to run it in a secondary window.

Use RemoveAccelerator to remove an assigned accelerator key.

ALink    (Win95 Only)

This macro searches for matching A-keywords.

Syntax

ALink("keywords", type, "context-string", "window-name")

Parameters

Argument Definition

keywords One or more keywords separated by semicolons (;).

shift-state Specifies the action to perform if one or more keywords are found. If this parameter is not
specified or is zero, the default action is always to display the Topics Found dialog box
containing the topic title. This parameter may specify one or more of the following values,
separated by spaces.

Value Meaning

JUMP (1) Specifies that if only one topic matches any of the keywords, WinHelp should
jump directly to that topic.

TITLE (2) Specifies that if a keyword is found in more than one Help file, WinHelp
should display the title of the Help file (as specified in the contents [.cnt] file)
beside the topic title in the Topics Found dialog box.

TEST (4) Specifies that the macro should return a value indicating whether or not there
is at least one match. The TestALink macro is converted by Help Workshop
into an ALink macro with this parameter.

context-
string Specifies the context string of the topic to display in a pop-up window if no matches are

found. If this parameter is not specified, WinHelp displays a message box with the text "No
additional information is available". To specify a topic in a different Help file, the topic ID
should end with an ‘@’ character and the name of the Help file.

window-
name Specifies the window in which to display the topic. If this parameter is not specified, the

window that is specified for a topic (if one is defined) is used, or the default or current
window is used. If this macro results in an interfile jump, the window must be defined in
the project file for the Help file that is being jumped to.

Example

The following macro searches for the A-keyword "Engines":

ALink("Engines")

Comments

The ALink macro searches for A-keyword matches in the current Help file. If the Help file is associated
with a contents file, WinHelp searches all Help files specified in the contents file (by the :Index and :Link

commands) for matching A-keywords.

The ALink macro is identical to the KLink macro except that it searches for A-keywords instead of K-
keywords.

 See also:    KLink Macro

Annotate

This macro displays the Annotation dialog box (same as the Annotate command on the Edit menu).

Syntax

Annotate()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

If the Annotate macro is run from a pop-up window, the annotation is attached to the topic that contains
the hot spot to the pop-up window.

AppendItem

This macro appends a menu item to the end of a menu you create with the InsertMenu macro.

Syntax

AppendItem("menu-id", "item-id", "item-name", "macro")

Parameters

Argument Definition

menu-id Name used in the InsertMenu macro to create the menu. This name must appear in
quotation marks. The new item is appended to this menu.

item-id Name that WinHelp uses internally to identify the menu item. This name is case-sensitive
and must appear in quotation marks. Use this name in DisableItem, EnableItem,
DeleteItem, ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or
remove the item, or change the operations that the item performs in certain topics.

item-name Name that WinHelp displays on the menu for the item. This name is case-sensitive and
must appear in quotation marks. Within the quotation marks, place an ampersand (&)
before the character used as the macro's keyboard access key.

macro Help macro or macro string that is run when the user chooses the menu item. The name
must appear in quotation marks. Multiple macros in a string must be separated by
semicolons (;).

Example

The following macro appends a menu item labeled "Index" to a menu that has an identifier "mnu_cards":

AppendItem("mnu_cards", "mnu_index", "&Index", "JI(`index.hlp', `index_topic')")

Choosing the menu item causes a jump to a topic with the context string "index_topic" in the INDEX.HLP
file.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message, "Unable to add item", and
ignores the macro.

Back

This macro displays the previous topic in the Back list. The Back list includes the last 40 topics the user
has displayed since starting WinHelp.

Syntax

Back()

Parameters

None

Comments

WinHelp ignores this macro if it is run in a secondary window.
If the Back macro is run when the Back list is empty, WinHelp takes no action.

BackFlush (Win95 Only)

Removes the back history list from the current window. This macro does not affect the history list
displayed in the History window.

Syntax

BackFlush()

Parameters

None

Comments

None.

BookmarkDefine

This macro displays the Define dialog box (same as the Define command on the Bookmark menu).

Syntax

BookmarkDefine()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

If the BookmarkDefine macro is run from a pop-up window, the bookmark is attached to the topic that
invoked the pop-up window.

BookmarkMore

This macro displays the More dialog box (same as the More command on the Bookmark menu). The
More command appears on the Bookmark menu if the user has defined more than nine bookmarks.

Syntax

BookmarkMore()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

BrowseButtons

This macro adds the Browse Back (<<) and Browse Forward (>>) buttons to the toolbar in WinHelp.

Syntax

BrowseButtons()

Parameters

None

Example

The following macros in the Project Macro Definition cause the Notepad button to appear immediately
before the two browse buttons on the toolbar:

CreateButton("&Notepad", "ExecProgram(`notepad', 0)")
BrowseButtons()

Comments

WinHelp ignores this macro if it is run in a secondary window.

If the BrowseButtons macro is used with one or more CreateButton macros Project Macro Definition, the
order of the browse buttons on the WinHelp toolbar is determined by the order of the BrowseButtons
macro in relation to the other macros listed in the Project Macro Definition.

Note:

WinHelp version 3.1 doesn't automatically provide Browse Forward (>>) and Browse Back (<<) buttons.
The Help Magician will automatically insert the BrowseButtons macro into the Project Macro Definition if
you have created browse sequences.

ChangeButtonBinding (CBB)

This macro assigns a Help macro to a Help button.

Syntax

ChangeButtonBinding("button-id", "button-macro")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro or, for a standard Help
button, one of the following predefined button identifiers: btn_contents (Contents),
btn_search (Search), btn_back (Back), btn_history (History), btn_previous (<<), or
btn_next (>>). The button identifier must appear in quotation marks.

button-macro Help macro run when the user chooses the button. The macro must appear in quotation
marks.

Example

The following macro changes the function of the Contents button so that choosing it causes a jump to the
Table of Contents topic (identified by the context string "dict_contents") in the DICT.HLP file:

ChangeButtonBinding("btn_contents", "JumpId(`dict.hlp', `dict_contents')")

Comments

WinHelp ignores this macro if it is run in a secondary window.

ChangeEnable (Win95 Only)

Assigns a macro to a button bar button and enables that button.

Syntax

ChangeEnable("button-id", "button-macro")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro or, for a standard Help
button, one of the following predefined button identifiers: btn_contents (Contents),
btn_search (Search), btn_back (Back), btn_history (History), btn_previous (<<), or
btn_next (>>). The button identifier must appear in quotation marks.

button-macro Help macro run when the user chooses the button. The macro must appear in quotation
marks.

Example

The following macro assigns the JumpID macro to the Contents button and enables it:

ChangeButtonBinding("btn_contents", "JumpId(`dict.hlp', `dict_contents')"):

Comments

This macro is equivalent to calling both ChangeButtonBinding and EnableButton.

ChangeItemBinding (CIB)

This macro assigns a Help macro to an item that you add to a WinHelp menu using the AppendItem
macro.

Syntax

ChangeItemBinding("item-id", "item-macro")

Parameters

Argument Definition

item-id Identifier assigned to the item in the AppendItem macro. The item identifier must appear
in quotation marks.

item-macro Help macro that is run when the user selects the item. The macro must appear in
quotation marks.

Example

The following macro changes the menu item identified by "time_item" so that it starts the Windows Clock
program:

ChangeItemBinding("time_item", "ExecProgram(`clock', 0)")

Comments

WinHelp ignores this macro if it is run in a secondary window.

CheckItem (CI)

This macro places a check mark beside a menu item added to a Help menu using the AppendItem
macro.

Syntax

CheckItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the item in the AppendItem macro. The item identifier must appear
in quotation marks.

Example

The following macro places a checkmark beside the menu item named "syntax-item":

CheckItem("syntax-item")

Comments

Use the UncheckItem macro to clear the checkmark.
WinHelp ignores this macro if it is run in a secondary window.

CloseSecondarys (Win95 Only)

Closes all but the current secondary window.

Syntax

CloseSecondarys()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

If the BookmarkDefine macro is run from a pop-up window, the bookmark is attached to the topic that
invoked the pop-up window.

CloseWindow

This macro closes the specified window, which is either the main WinHelp window or a secondary
window.

Syntax

CloseWindow("window-name")

Parameters

Argument Definition

window-name The name of the window to close. The name "main" is reserved for the primary Help
window. For secondary windows, the window name must be defined in the Help
Windows Specifications form under the Options menu. This name must appear in
quotation marks.

Example

The following macro closes the secondary window "keys":

CloseWindow("keys")

Comments

The secondary windows names can also be found in the [WINDOWS] section of the project (.HPJ) file.
The project file is created every time the RTF file is written in the Help Magician.
If the window does not exist, WinHelp ignores the macro.

Compare (Win95 Only)

Displays a Help file in a second instance of WinHelp. The current Help file and the second Help file are
displayed side-by-side. Most actions performed in one Help file (for example, clicking jumps or the Back
and browse buttons) will be automatically reflected in the other file.

Syntax

Compare("helpfile")

Parameters

None

Example

The following macro opens the file "machines.hlp" and displays it side by side with the currently opened
help file:

Compare("machines.hlp")

Comments

This macro is useful for comparing original and translated versions of the same Help file.

You can run this macro from the Jump dialog box by typing the following in the Enter Topic Identifier text
box:

!compare("filename.hlp")

Contents

This macro displays the contents topic in the current Help file. The contents topic can be set in the
Compiler Options form under the Options menu.

Syntax

Contents()

Parameters

None

Comments

The contents topic is defaulted to the first topic in the help file. If multiple files are used, the contents topic
will come from the main help file.

ControlPanel (Win95 Only)

Opens a control panel applet with a specific tab on top.

Syntax

ControlPanel("CPL_name", "panel-name", tabnum)

Parameters

Argument Definition

CPL_name Specifies the name of the program that contains the control panel applet.

panel_name Specifies the name of the control panel applet. This must be identical to the text that
appears under the control panel applet's icon.

tabnum Specifies the number of the tab to display on top. The first tab is number 0, the second
tab is number 1, and so on.

Comments

Help Magician converts the ControlPanel macro into the ExecFile macro, which is in turn converted to EF.
EF is the only form of this macro that WinHelp can use.

Not all control panel applets recognize the panel_name and tabnum parameters.

CopyDialog

This macro displays the Copy dialog box (same as the Copy command on the Edit menu).

Syntax

CopyDialog()

Parameters

None

Comments

This macro is obsolete for Windows 95. Please use the CopyTopic macro instead.

Use of this macro in secondary windows is discouraged.

CopyTopic (CT)

This macro copies all the text in the currently displayed topic onto the Windows Clipboard.

Syntax

CopyTopic()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

This macro copies text only; it does not copy bitmaps or any other images in the Help topic.

If the CopyTopic macro is run from a pop-up window, only the text of the topic that invoked the pop-up
window is placed on the Clipboard.

A copyright notice can be set in the Appearance form under the Options menu.

CreateButton (CB)

This macro adds a new button to the WinHelp toolbar.

Syntax

CreateButton("button-id", "caption", "macro")

Parameters

Argument Definition

button-id Name that WinHelp uses internally to identify the button. This name must appear in
quotation marks. Use this name in the DisableButton or DestroyButton macro if you want
to remove or disable the button, or in the ChangeButtonBinding macro if you want to
change the Help macro that the button runs in certain topics.

caption The text that appears on the button. This caption must appear in quotation marks. To
designate a letter as a keyboard access key for this button, place an ampersand (&) before
a letter in this text. The button caption is case-sensitive and can contain up to 29
characters, beyond which the caption is clipped.

macro Help macro or macro string that is run when the user chooses the button. The macro must
appear in quotation marks. Multiple macros in a macro string must be separated by
semicolons (;).

Example

The following macro creates a new button labeled "Order Info" that jumps to a topic with the context string
"orderform" in the BUYPROG.HLP file when the button is chosen:

CreateButton("btn_order", "&Order Info", "JumpId(`buyprog.hlp', `orderform')")

Comments

WinHelp ignores this macro if it is run in a secondary window.

WinHelp allows a maximum of 16 authored buttons. It allows a total of 22 buttons, including the standard
browse buttons, on the toolbar.

If the BrowseButtons macro is used with one or more CreateButton macros in the Project Macro
Definition, the order of the browse buttons on the WinHelp toolbar is determined by where the
BrowseButtons macro is listed in relation to the other macros in the Project Macro Definition. The button
order may be changed in the Macro Editor form available from the Define Macros menu item under the
Macros menu.

DeleteItem

This macro removes a menu item that was added using the AppendItem macro.

Syntax

DeleteItem("item-id")

Parameters

Argument Definition

item-id The item identifier string used in the AppendItem macro. The item identifier must appear in
quotation marks.

Example

The following macro removes the menu item "Tools" appended in the example for the AppendItem macro:

DeleteItem("mnu_tools")

Comments

WinHelp ignores this macro if it is run in a secondary window.

DeleteMark

This macro removes a text marker added with the SaveMark macro.

Syntax

DeleteMark("marker-text")

Parameters

Argument Definition

marker-text Marker text specified in the SaveMark macro. The marker text must appear in quotation
marks.

Example

The following macro removes the marker "Saving Money" from the Financial Help file:

DeleteMark("Saving Money")

Comments

If the marker does not exist when the DeleteMark macro is run, WinHelp displays a "Topic not found" error
message.

DestroyButton

This macro removes a button added with the CreateButton macro.

Syntax

DestroyButton("button-id")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro. The button identifier must
appear in quotation marks. The button identifier cannot duplicate an identifier used
for one of the standard Help buttons. (See the ChangeButtonBinding macro for a list of
these identifiers.)

Comments

WinHelp ignores this macro if it is run in a secondary window.

DisableButton (DB)

This macro disables (rays out) a button added with the CreateButton macro.

Syntax

DisableButton("button-id")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro. The button identifier appears
in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

A button disabled by the DisableButton macro cannot be used in the topic until an EnableButton macro is
run.

DisableItem (DI)

This macro disables and dims a menu item added with the AppendItem macro.

Syntax

DisableItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the menu item in the AppendItem macro. The item identifier must
appear in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

A menu item disabled by the DisableItem macro cannot be used in the topic until an EnableItem macro is
run.

EnableButton (EB)

This macro re-enables a button disabled with the DisableButton macro.

Syntax

EnableButton("button-id")

Parameters

Argument Definition

button-id Identifier assigned to the button in the CreateButton macro. The button identifier must
appear in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

EnableItem (EI)

This macro re-enables a menu item disabled with the DisableItem macro.

Syntax

EnableItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the menu item in the AppendItem macro. The item identifier must
appear in quotation marks.

Comments

WinHelp ignores this macro if it is run in a secondary window.

EndMPrint

Dismisses the printing message box and terminates the printing of multiple topics.

Syntax

EndMPrint()

Parameters

None

ExecFile (Win95 Only)

Runs a program or the program associated with a file.

Syntax

ExecFile("program", "arguments", display-state, "topic-ID")

Parameters

program Specifies the name of the program to be run or the name of a file. If a file is
specified, the program associated with that file type is started.

arguments Specifies the command-line arguments to send to the program.

display-state Specifies a value indicating how the program's window is to be shown. If this
parameter is not specified, SW_SHOW is used (activates the window and shows it
in its default size and position).

topic-ID Specifies the ID of the topic to display if the specified file or program cannot be
started.

Comments

If a path is specified, WinHelp first searches for the file in the specified path. If the file is not found or no
path was specified, WinHelp searches the same locations as it does when it searches for Help files:

· The folder of the current Help file.
· The current folder.
· The System subfolder in the Windows folder.
· The Windows folder.
· The folders listed in the PATH environment.
· The location specified in the Winhelp.ini file.
· The Help portion of the registry.

Example

The following example opens the WIN.INI file in the program associated with .ini files:

ExecFile(win.ini)

ExecProgram (EP)

This macro runs a Windows-based application.

Syntax

ExecProgram("command-line", display-state)

Parameters

Argument Definition

command-line Command line for the application to be executed. The command line must appear in
quotation marks. WinHelp searches for this application in the current directory,
followed by the Windows directory, the user's path, and the directory of the currently
displayed Help file.

display-state A value indicating how the application is shown when executed. A value of 0 indicates
normal, 1 indicates minimized, and 2 indicates maximized. For a complete list of
display states, select the "Display" hints button.

Example

The following macro runs the Windows Clock program in its normal window size:

ExecProgram("clock.exe", 0)

Comments:

This macro is obsolete for Windows 95. Please use the ExecFile macro instead.

Exit

This macro exits the WinHelp application (same as the Exit command on the File menu).

Syntax

Exit()

Parameters

None

ExtAbleItem

This macro enables or disables an existing menu item. It is functionally equivalent to the combination of
the EnableItem and DisableItem macros.

Syntax

ExtAbleItem("item-id", enabled-state)

Parameters

Argument Definition

item-id Identifier assigned to the menu item in the AppendItem or ExtInsertItem macros. The item
identifier must appear in quotation marks.

enabled-state An integer specifying the initial state of the menu item. Use a '0' to enable the item and '1'
to disable the item.

Example

The following macro disables the menu item "mnu_tools":

ExtAbleItem("mnu_tools", 1)

Comments

WinHelp ignores this macro if it is run in a secondary window.

ExtInsertItem

This macro functions identically to the InsertItem macro with one exception: it has an extra argument to
enable or disable the item on startup.

Syntax

ExtInsertItem("menu-id", "item-id", "item-name", "macro", position, enabled-state)

Parameters

Argument Definition

menu-id Either a standard WinHelp menu name or the name used in the InsertMenu macro to
create the menu. Standard menu names are mnu_file (File menu), mnu_edit (Edit
menu), mnu_bookmark (Bookmark menu), and mnu_helpon (Help menu). The menu
identifier must appear in quotation marks. The new item is inserted into this menu.

item-id Name that WinHelp uses internally to identify the menu item. The item identifier must
appear in quotation marks. Use this name in DisableItem, EnableItem, DeleteItem,
ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or remove the
item, or change the operations that the item performs in certain topics.

item-name Name that WinHelp displays on the menu for the item. This name is case-sensitive and
must appear in quotation marks. Within the quotation marks, place an ampersand (&)
before the character used for the item's keyboard access key.

macro Help macro or macro string that is run when the user chooses the menu item. The
macro must appear in quotation marks. Multiple macros in a string must be separated
by semicolons (;).

position An integer specifying the position in the menu where the new item will appear. Position
0 is the first or topmost position in the menu.

enabled-state An integer specifying the initial state of the menu item. Use a '0' to enable the item and
'1' to disable the item.

Example

The following macro inserts a menu item labeled "Tools" as the third item (0,1,2) on a menu that has an
identifier "mnu_books":

ExtInsertItem("mnu_books", "mnu_tools", "&Tools", "JI(`tools.hlp', `first_topic')", 3, 0)

Selecting the menu item causes a jump to a topic with the context string "first_topic" in the TOOLS.HLP
file.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message Unable to add item and
ignores the macro.

Use "mnu_main" for the menu-id to place an item directly on the WinHelp main menu bar.

Use "mnu_floating" to place an item in the floating menu. Remember to execute the FloatingMenu()
macro to enable    the floating menu option.

ExtInsertMenu

This macro functions similarily to the InsertMenu macro with a couple of enhancements:

1. It has an extra argument to allow placing the menu under other menus as a sub-menu.
2. It has an extra argument to enable or disable the item on startup.

Syntax

ExtInsertMenu("parentmenu-id", "submenu-id", "submenu-name", submenu-position, enabled-state)

Parameters

Argument Definition

parentmenu-id Either a standard WinHelp menu name or the name used in the InsertMenu
macro to create the menu. Standard menu names are . The menu identifier must appear in
quotation marks. The new item is inserted into this menu. If "mnu_main" is used, the menu
will be inserted into WinHelp's main menu bar.

submenu-id Name that WinHelp uses internally to identify the submenu item. The item identifier must
appear in quotation marks. Use this name in DisableItem, EnableItem, DeleteItem,
ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or remove the
item, or change the operations that the item performs in certain topics.

submenu-name Name that WinHelp displays on the submenu for the item. This name is case-
sensitive and must appear in quotation marks. Within the quotation marks, place an
ampersand (&) before the character used for the submenu's keyboard access key.

submenu-position An integer specifying the position in the parent menu where the new submenu
will appear. Position 0 is the first or topmost position in the parent menu.

enabled-state An integer specifying the initial state of the menu item. Use a '0' to enable the item and '1'
to disable the item.

Example #1

The following macro inserts a submenu item labeled "Tools" as the third item (0, 1, 2) on a parent menu
that has an identifier "mnu_books":

ExtInsertMenu("mnu_books", "mnu_tools", "&Tools", 2, 0)

Example #2

The following macro inserts a menu labeled "Charts" as the second item (0, 1) on WinHelp's main menu:

ExtInsertMenu("mnu_main", "mnu_chts", "&Charts", 1, 0)

Example #3

The following macros insert a submenu labeled "File" as the first item on WinHelp's floating menu and
adds four menu items to it:

ExtInsertMenu("mnu_floating", "mnu_ffile", "&File", 0, 0)
AppendItem("mnu_ffile", "itm_file1", "&Open", "FileOpen()")
AppendItem("mnu_ffile", "itm_file2", "&Print Topic", "Print()")
AppendItem("mnu_ffile", "itm_file3", "P&rint Setup...", "PrinterSetup()")
AppendItem("mnu_ffile", "itm_file4", "&Exit", "Exit()")

To see this example function, click the right mouse button to display the floating menu.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message Unable to add menu and
ignores the macro.

Use "mnu_main" for the menu-id to place a menu directly on the WinHelp main menu bar.

Use "mnu_floating" to place a sub-menu in the floating menu. Remember to execute the FloatingMenu()
macro to enable    the floating menu option.

FileExist (Win95 Only)

Checks to see whether the specified file or program exists.

Syntax

FileExist("filename")

Parameters

filename Specifies the name of the file.

Comments

This macro can be used in conjunction with macros such as IfThenElse, which use the result of a Boolean
macro to determine what action to take.

If a path is specified, WinHelp first searches for the file in the specified path. If the file is not found, or no
path was specified, WinHelp searches the same locations it does to find a Help file:

· The folder of the current Help file.
· The current folder.
· The System subfolder in the Windows folder.
· The Windows folder.
· The folders listed in the PATH environment.
· The location specified in the Winhelp.ini file.
· The Help portion of the registry.

Example

The following macro checks to see if "Myapp.exe" has been installed. If the file is present, WinHelp runs
it. If the file is not present, WinHelp displays a topic:

IfThenElse(FileExist(myapp.exe), ExecFile(myapp), JumpId(install_my_app))

FileOpen

This macro displays the Open dialog box (same as the Open command on the File menu).

Syntax

FileOpen()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

Find (Win95 only)

Displays the Find tab in the Help Topics dialog box.

Syntax

Find()

Parameters

None

Finder (Win95 only)

Displays the Help Topics dialog box.

Syntax

Finder()

Parameters

None

FloatingMenu

This macro displays the floating menu, providing items have been added to it.

Syntax

FloatingMenu()

Parameters

None

Comments

Menu items should be added to the floating menu before calling this macro.

Typically the user would click the right mouse button to display the floating menu, but this macro provides
the help author (you) a way to display it from a button or a hotspot, for example.

You can add as many as 20 menu items to the context menu.

Example

The following macros insert a submenu labeled "File" as the first item on WinHelp's floating menu and
adds four menu items to it:

ExtInsertMenu("mnu_floating", "mnu_ffile", "&File", 0, 0)
AppendItem("mnu_ffile", "itm_file1", "&Open", "FileOpen()")
AppendItem("mnu_ffile", "itm_file2", "&Print Topic", "Print()")
AppendItem("mnu_ffile", "itm_file3", "P&rint Setup...", "PrinterSetup()")
AppendItem("mnu_ffile", "itm_file4", "&Exit", "Exit()")
Floatingmenu()

Click the right mouse button to see an example of the floating menu.

Flush (Win95 only)

Causes WinHelp to process any pending messages, including previously called macros.

Syntax

Flush()

Parameters

None

FocusWindow

This macro changes the focus to the specified window, which is either the main WinHelp window or a
secondary window.

Syntax

FocusWindow("window-name")

Parameters

Argument Definition

window-name The name of the window to have the focus. The name "main" is reserved for the
primary Help window. For secondary windows, the window name must be defined in
the Help Windows Specifications form under the Options menu. This name must
appear in quotation marks.

Example

The following macro changes the focus to the secondary window "glossary":

FocusWindow("glossary")

Comments

If the window does not exist, WinHelp ignores the macro.

Generate (Win95 only)

Posts a message to the currently active Help window.

Syntax

Generate("message", "wParam", "iParam")

Parameters

message Specifies a message to send to the currently active Help window.
wParam Specifies the first argument of the message.
lParam Specifies the second argument of the message.

GoToMark

This macro jumps to a marker set with the SaveMark macro.

Syntax

GoToMark("marker-text")

Parameters

Argument Definition

marker-text Marker text specified in the SaveMark macro. The marker text must appear in quotation
marks.

Example

The following macro jumps to the marker "Saving Money" in the Financial Help file:

GoToMark("Saving Money")

HAnimateCommand

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HAudioCommand

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HAudioDialog

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HDisplayBitmap

This is currently a non-supported Viewer macro.
Its inclusion at this point is strictly for future version compatibility.

HelpOn

This macro displays the Using Help file for the WinHelp application (same as the Using Help command on
the Help menu).

Syntax

HelpOn()

Parameters

None

HelpOnTop

This macro forces the Help window to always stay on top of other applications so that it is always visible.

Syntax

HelpOnTop()

Parameters

None

Comments

Use of this macro with the main window is discouraged. To set the "on top" feature for the main window,
check the "Always On Top" menu item off the Help menu in WinHelp. Windows Help dows not provide a
way to monitor the state of the "on top" feature so it is up to the user to track the status of it.

History

This macro displays the Windows Help History window, which shows the last 40 topics the user has
viewed since opening a Help file in WinHelp. It has the same effect as choosing the History button on the
WinHelp toolbar.

Syntax

History()

Parameters

None

Comments

WinHelp ignores this macro if it is run in a secondary window.

The number of topics kept in the history list can be changed by using the BACKTRACK switch in the
Win.ini file.

IfThen

This macro runs a Help macro if a given marker exists. It uses the IsMark macro to make the test.

Syntax

IfThen(IsMark("marker-text"), "macro")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The marker text must appear in quotation marks.

macro The Help macro or macro string that is run if the marker exists. The macro must appear in
quotation marks. Multiple macros in a macro string must be separated by semicolons (;).

Example

The following macro jumps to the topic with the context string "bal_chk" if a marker named "Balance
Checkbook" has been set by the SaveMark macro:

IfThen(IsMark("Balance Checkbook"), "JI(`finance.hlp', `bal_chk')")

IfThenElse

This macro runs one of two Help macros, provided a marker exists. It uses the IsMark macro to make the
test.

Syntax

IfThenElse(IsMark("marker-text"), "macro1", "macro2")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The marker text must appear in quotation
marks.

macro1, macro2 WinHelp runs macro1 if the marker exists and macro2 if it does not. Both macros
must appear in quotation marks. Multiple macros in either macro string must be
separated by semicolons (;).

Example

The following macro jumps to the topic with the context string "bal_chk" if a marker named "Balance
Checkbook" has been set by the SaveMark macro. If the marker does not exist, it jumps to the contents
screen for the FINANCE.HLP file:

IfThenElse(IsMark("Balance Checkbook"), "JI(`finance.hlp', `bal_chk')","JumpContents(`FINANCE.HLP')")

InitMPrint (Win95 only)

Initializes WinHelp in preparation for printing multiple topics.

Syntax

InitMPrint()

Parameters

None

Comments

This macro displays the Printer Setup dialog box. If a user clicks OK, the InitMPrint macro returns TRUE.
Otherwise, it returns FALSE. This macro should be used as the first parameter in an IfThen macro to
ensure that printing multiple topics occurs only if a user clicks OK.

InsertItem

This macro inserts a menu item at a given position on an existing menu. The menu can be either one you
create with the InsertMenu macro or one of the standard WinHelp menus.

Syntax

InsertItem("menu-id", "item-id", "item-name", "macro", position)

Parameters

Argument Definition

menu-id Either a standard WinHelp menu name or the name used in the InsertMenu macro to
create the menu. Standard menu names are mnu_file (File menu), mnu_edit (Edit menu),
mnu_bookmark (Bookmark menu), and mnu_helpon (Help menu). The menu identifier
must appear in quotation marks. The new item is inserted into this menu.

item-id Name that WinHelp uses internally to identify the menu item. The item identifier must
appear in quotation marks. Use this name in DisableItem, EnableItem, DeleteItem,
ExtAbleItem, ChangeItemBinding macros if you want to disable/enable or remove the
item, or change the operations that the item performs in certain topics.

item-name Name that WinHelp displays on the menu for the item. This name is case-sensitive and
must appear in quotation marks. Within the quotation marks, place an ampersand (&)
before the character used for the item's keyboard access key.

macro Help macro or macro string that is run when the user chooses the menu item. The macro
must appear in quotation marks. Multiple macros in a string must be separated by
semicolons (;).

position An integer specifying the position in the menu where the new item will appear. Position 0
is the first or topmost position in the menu.

Example

The following macro inserts a menu item labeled "Tools" as the third item on a menu that has an identifier
"mnu_books":

InsertItem("mnu_books", "mnu_tools", "&Tools", "JI(`tools.hlp', `first_topic')", 3)

Selecting the menu item causes a jump to a topic with the context string "first_topic" in the TOOLS.HLP
file.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menu items are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message Unable to add item and
ignores the macro.

InsertMenu

This macro adds a new menu to the WinHelp menu bar.

Syntax

InsertMenu("menu-id", "menu-name", menu-position)

Parameters

Argument Definition

menu-id Name that WinHelp uses internally to identify the menu. The menu identifier must
appear in quotation marks. Use this identifier in the AppendItem macro to add
commands to the menu.

menu-name Name for the menu that WinHelp displays on the menu bar. This name is case-
sensitive and must appear in quotation marks. Within the quotation marks, place an
ampersand (&) before the character used for the menu's keyboard access key.

menu-position Number telling WinHelp which position on the menu bar the new menu name will
have. Positions are numbered from left to right, with position 0 being the leftmost
menu.

Example

The following macro adds a menu named "Utilities" to WinHelp:

InsertMenu("menu_util", "&Utilities", 3)

The label "Utilities" appears as the fourth menu on the WinHelp menu bar. The user presses ALT+U to
display the menu and its commands.

Comments

WinHelp ignores this macro if it is run in a secondary window.

Make sure that the keyboard access keys you assign to menus are unique. If you assign a key that
conflicts with other menu access keys, WinHelp displays the error message "Unable to add menu" and
ignores the macro.

IsBook (Win95 only)

Determines whether WinHelp is running as a standalone system (a double-clicked book icon), or if it is
being run from a program. This macro can be used as the first parameter of a IfThen or IfThenElse macro
to take specific action depending on whether the current Help file is being run as a double-clicked book
icon.

Syntax

IsBook()

Parameters

None

Comments

The IsBook macro returns a value of TRUE if WinHelp is being run as a book; otherwise, the macro
returns FALSE.

IsMark

This macro determines whether a marker set by the SaveMark macro exists. It is used as a parameter to
the conditional macros IfThen and IfThenElse.

Syntax

IsMark("marker-text")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The IsMark macro returns a True value if the
mark exists and a False value if it does not. The marker text must appear in quotation
marks.

Example

The following macro jumps to the topic with the context string "bal_chk" if a marker named "Balance
Checkbook" has been set by the SaveMark macro:

IfThen(IsMark("Balance Checkbook"), "JI(`finance.hlp', `bal_chk')")

Comments

The Not macro can be used to reverse the results of the IsMark macro.

IsNotMark (Win95 only)

Tests whether or not a marker that was set by the SaveMark macro exists.

Syntax

IsNotMark("marker-text")

Parameters

Argument Definition

marker-text Marker text tested by the IsNotMark macro. The IsNotMark macro returns FALSE if the
mark exists or TRUE if it does not. The marker text must appear in quotation marks.

Comments

The IsNotMark macro is used as a parameter in the conditional macros IfThen or IfThenElse.    This result
is the exact opposite of the implicit IsMark macro that is usually used for the IfThen and IfThenElse
macros.

JumpContents

This macro jumps to the contents topic of a specified Help file. The contents topic can be set in the
Compiler Options form under the Options menu.

Syntax

JumpContents("filename")

Parameters

Argument Definition

filename The name of the destination file for the jump. The file name must appear in quotation
marks. If WinHelp cannot find this file, it displays an error message and does not perform
the jump.

Example

The following macro jumps to the contents topic of the PROGMAN.HLP file:

JumpContents("PROGMAN.HLP")

Comments

If the CONTENTS option is not specified, WinHelp jumps to the first topic in the Help file.
WinHelp ignores this macro if it is run in a secondary window.
Use the word "THISFILE" to refer to the current help file.

JumpContext (JC)

This macro jumps to a topic identified by a context number. The context number must be entered in the
"Context #" field in the Help Magician.

Syntax

JumpContext("filename", context-number)

Parameters

Argument Definition

filename The name of the destination file for the jump. The file name must appear in quotation
marks. If WinHelp cannot find this file, it displays an error message and does not
perform the jump.

context-number Context number of the topic in the destination file. The context number must
assigned for the topic to be recognized. If the context number does not exist or
cannot be found, WinHelp jumps to the contents topic or the first topic in the file
instead, and displays an error message.

Example

The following macro jumps to the topic mapped to the context number 1501 in the PROGMAN.HLP file:

JumpContext("PROGMAN.HLP", 1501)

Comments

Use the word "THISFILE" to refer to the current help file.

JumpHash (Win95 only)

Jumps to a topic identified by a hash code.

Syntax

JumpHash("filename>window", hash-code)

Parameters

Argument Definition

filename Specifies the name of the Help file containing the hash number. This optional
parameter is used when jumping to a topic that is not in the current Help file.

window-name Specifies the window type in which to display the topic.

hash-code Specifies the hash number of the topic in the destination file.

Comments

You can use the Report command in Help Magician to list the hash numbers of all the topics in a Help file.
This enables you to display information about a Help file for which you have no topic, project, or contents
files.

JumpHelpOn

This macro jumps to the contents topic of the "Using Help" file. The "Using Help" file is either the default
WINHELP.HLP file or the Help file designated by the SetHelpOnFile macro.

Syntax

JumpHelpOn()

Parameters

None

Example

The following macro jumps to the contents topic of the designated Using Help file:

JumpHelpOn()

Comments

If WinHelp cannot find the specified Help file, it displays an error message and does not perform the
jump.

JumpId (JI)

This macro jumps to the topic with the specified context string in the Help file.

Syntax

JumpId("filename", "context-string")

Parameters

Argument Definition

filename Name of the Help file (.HLP) containing the context string. The file name must appear
in quotation marks. If WinHelp does not find this file, it displays an error message and
does not perform the jump.

context-string Context string of the topic in the destination file. The context string must appear in
quotation marks. If the context string does not exist, WinHelp jumps to the contents
topic for that file instead.

Example

The following macro jumps to a topic with "second_topic" as its context string in the Help file
SECOND.HLP:

JumpId("second.hlp", "second_topic")

Comments

Use the word "THISFILE" to refer to the current help file.

JumpKeyword (JK)

This macro opens the indicated Help file (.HLP), searches through the keyword table, and displays the
first topic containing the keyword specified in the macro.

Syntax

JumpKeyword("filename", "keyword")

Parameters

Argument Definition

filename The name of the .HLP file that contains the desired keyword table. The file name must
appear in quotation marks. If this file does not exist, WinHelp displays an error message
and does not perform the jump.

keyword The keyword that the macro searches for. The keyword must appear in quotation marks. If
WinHelp finds more than one match, it displays the first matched topic. If it does not find
any matches, it displays a "Not a keyword" message and the contents topic of the
destination file.

Example

The following macro opens the first topic that has "hands" as an index keyword in the Help file
CLOCK.HLP:

JumpKeyword("clock.hlp", "hands")

Comments

Use the word "THISFILE" to refer to the current help file.
WinHelp searches through the 'K' keyword table, the default table that the Help Magician generates.
Multiple keyword tables are ignored.

This macro is functionally equivalent to the KLink macro.

KLink (Win95 only)

Searches for keywords specified by K-footnotes.

Syntax

KLink("keyword", type, "topicID", window)

Parameters

Argument Definition

keyword Specifies one or more keywords to search for. Separate multiple keywords using a
semicolon. If any keyword contains a comma, enclose the entire keyword string in
quotation marks.

type Specifies the action to perform if one or more keywords is found. If this parameter
is not specified or is zero, the default action is to display the Topics Found dialog
box containing the topic title. This parameter can be one or more of the following
values, separated by spaces.

Value Meaning

JUMP (1) Specifies that if only one topic matches any of the keywords,

WinHelp should jump directly to that topic.

TITLE (2) Specifies that if a keyword is found in more than one Help file,

WinHelp should display the title of the Help file (as specified in the
contents [.cnt] file) beside the topic title in the Topics Found dialog
box.

TEST (4) Specifies that the macro should return a value indicating whether or
not there is at least one match. The TestKLink macro is converted
by Help Workshop into an KLink macro with this parameter.

topic-ID Specifies the topic to display in a pop-up window if no matches are found. If this

parameter is not specified, WinHelp displays a message box with the text “No
additional information is available”. To specify a topic in a different Help file, the
topic ID should end with an ‘@’ character and the name of the Help file.

window Specifies the window in which to display the topic. If this parameter is not

specified, the window that is specified for a topic (if one is defined) is used, or the
default or current window is used. If this macro results in an interfile jump, the
window must be defined in the project file for the Help file that is being jumped to.

Examples

The following example generates a list of topics that contain the "network printing" or "local printing"
keywords in K-footnotes:

KLink(network printing; local printing)

The following example generates a list of topics that contain the keyword "how_to" in K-footnotes and
displays those topics in the Steps window:

KLink(how_to, , , Steps)

Comments

The KLink macro searches for K-keyword matches in the current Help file. If the Help file is associated
with a contents file, WinHelp searches all Help files specified in the contents file (by the :Index and :Link
commands) for matching K-keywords.

The KLink macro is identical to the ALink macro except that it searches for K-keywords instead of A-
keywords.

mciExecute

Basic Commands

The following list summarizes the basic commands. The use of these messages by a device is optional.

Command Description

load Recalls data from a disk file.
pause Pauses playing or recording.
play Starts transmitting output data.
record Starts recording input data.
resume Resumes playing or recording on a paused device.
save Saves data to a disk file.
seek Seeks forward or backward.
set Sets the operating state of the device.
status Obtains status information about the device. The status command is also listed in the

group of required commands. In the basic group, options are added for devices that use
linear media with identifiable positions.

stop Stops playing or recording.

Comments

If a driver supports a basic command, it must also support a standard set of options for the command.

This is not a standard WinHelp macro and needs to be registered using the RegisterRoutine macro
should you be creating the project file manually.

Menu

This macro displays the Define dialog box (same as the Define command on the Bookmark menu).

Syntax

BookmarkDefine()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

If the BookmarkDefine macro is run from a pop-up window, the bookmark is attached to the topic that
invoked the pop-up window.

MPrintHash (Win95 only)

Prints a topic identified by a hash code. This macro must be used in conjunction with the InitMPrint and
EndMPrint macros.

Syntax

MPrintHash(hash-code)

Parameters

Argument Definition

hash-code Specifies the hash number of the topic to be printed.

Comments

You can use the Report command in Help Magician to list the hash codes of all the topics in a Help file.
This enables you to display information about a Help file for which you have no topic, project, or contents
files.

MPrintID (Win95 only)

Prints a topic. This macro must be used in conjunction with the InitMPrint and EndMPrint macros.

Syntax

MPrintID("topicID")

Parameters

Argument Definition

topicID The topic ID (context string) of the topic to be printed.

Next
This macro displays the next topic in the browse sequence for the Help file. It has the same effect as
choosing the Browse Forward (>>) button.

Syntax

Next()

Parameters

None

Comments

If the current topic is the last of a browse sequence, this macro does nothing.

WinHelp ignores this macro if it is run in a secondary window.

NoShow (Win 95 only)

Prevents a Help window from being displayed if it has not already been displayed.

Syntax

NoShow()

Parameters

None

Not

This macro reverses the True or False result returned by the IsMark macro. It is used with the IsMark
macro as a parameter to the conditional macros IfThen and IfThenElse.

Syntax

Not(IsMark("marker-text")

Parameters

Argument Definition

marker-text Marker text tested by the IsMark macro. The Not macro returns a False value if the mark
exists or a True value if it does not. The marker text must appear in quotation marks.

Example

The following macro jumps to the topic with context string "Settle Accounts" if a marker named "Balance
Checkbook" has not been set by the SaveMark macro:

IfThen(Not(IsMark("Balance Checkbook")), "JI(`finance.hlp', `Settle Accounts')")

PopupContext (PC)

This macro displays a topic identified by a context number. The context numbers are entered via the Help
Magician's "Context #" field.

Syntax

PopupContext("filename", context-number)

Parameters

Argument Definition

filename The name of the file that contains the topic to be displayed in the pop-up window.
The file name must appear in quotation marks. If WinHelp cannot find this file, it
displays an error message.

context-number Context number of the topic to be displayed in the pop-up window. The context
number must entered in the "Context #" entry field in the Help Magician. If the
context number does not exist or cannot be found, WinHelp displays the contents
topic or the first topic in the file instead.

Example

The following macro displays in a pop-up window the topic mapped to the context number 1501 in the file
PROGMAN.HLP:

PopupContext("progman.hlp", 1501)

Comments

Use the word "THISFILE" to refer to the current help file.

PopupHash (Win95 only)

Displays in a pop-up window the topic identified by a hash code.

Syntax

PopupHash("filename", hash-code)

Parameters

Argument Definition

filename Specifies the name of the destination Help file for the jump. Use this optional parameter if
the pop-up is not in the current Help file.

hash-code Specifies the hash code of the topic to be printed.

Comments

You can use the Report command in Help Magician to list the hash numbers of all the topics in a Help file.
This enables you to display information about a Help file for which you have no topic, project, or contents
files.

PopupId (PI)

This macro displays a topic from a specified file in a pop-up window.

Syntax

PopupId("filename", "context-string")

Parameters

Argument Definition

filename The name of the file that contains the pop-up window topic. The file name must appear
in quotation marks. If this file does not exist, WinHelp displays an error message.

context-string Context string of the topic in the destination file. The context string must appear in
quotation marks. If the requested context string does not exist, WinHelp displays the
contents topic or the first topic in the file in the pop-up window. Context strings can be
entered in the "Context $" entry field in the Help Magician.

Example

The following macro displays in a pop-up window a topic identified by the context string "second_topic" in
the file SECOND.HLP:

PopupId("second.hlp", "second_topic")

Comments

Use the word "THISFILE" to refer to the current help file.

PositionWindow (PW)

This macro sets the size and position of the main Help window or an existing secondary window.

Syntax

PositionWindow(x, y, width, height, state, "window-name")

Parameters

Argument Definition

x, y X and Y coordinates of the upper-left window corner. Positions are defined in terms
of WinHelp's 1024 x 1024 coordinate system.

width, height Gives the default width and height of the window. Window sizes, like positions, are
defined in terms of WinHelp's coordinate system.

window-state Specifies how the window is sized. This parameter is 0 for normal size and 1 for
maximized. If the parameter is 1, WinHelp ignores the x, y, width, and height
parameters.

window-name The name of the window to position. The name "main" is reserved for the primary
Help window. Secondary windows must be defined in the Help Windows
Specifications form under the Options menu in the Help Magician. This name must
appear in quotation marks.

Example

The following macro positions the secondary window "Samples" in the upper-left corner (100, 100) with a
width and height of 500 (in WinHelp coordinates):

PositionWindow(100, 100, 500, 500, 0, "Samples")

Comments

If the window to be positioned does not exist, WinHelp ignores the macro.

Prev

This macro displays the previous topic in the browse sequence for the Help file. It has the same effect as
choosing the Browse Back (<<) button.

Syntax

Prev()

Parameters

None

Comments

If the currently displayed topic is the first topic of a browse sequence, this macro does nothing.
WinHelp ignores this macro if it is run in a secondary window.

Print

This macro sends the currently displayed topic to the printer.

Syntax

Print()

Parameters

None

Comments

This macro should be used only to print topics in windows other than the main Help window. For example,
it can be used to print topics displayed in secondary windows, provided the user doesn't have a dialog
box open at the time of printing.

Use of this macro in secondary windows is discouraged.

PrinterSetup

This macro displays the Print Setup dialog box (same as the Print Setup command on the File menu).

Syntax

PrinterSetup()

Parameters

None

Comments

Use of this macro in secondary windows is discouraged.

This macro is obsolete for Windows 95. WinHelp always displays the Print Setup dialog box before
printing.

RegisterRoutine (RR)

This macro registers a function within a DLL as a Help macro. Registered functions can be used in macro
hot spots, topic macros, or project macros, just as standard Help macros are used. (It should be noted
that the Help Magician performs all necessary macro registrations for you automatically when the RTF file
is written.)

Syntax

RegisterRoutine("DLL-name", "function-name", "format-spec")

Parameters

Argument Definition

DLL-name The file name of the DLL being called. The file name must appear in quotation marks.
If WinHelp cannot find the DLL, it displays an error message and does not perform the
call.

function-name The name of the function to be executed in the designated DLL. The function name
must appear in quotation marks.

format-spec A string specifying the formats of parameters passed to the function. The format string
must appear in quotation marks. Characters in the string represent C parameter types:
"u" for unsigned short, "U" for unsigned long, "i" for short int, "I" for long int, "s" for
string (near char *), "S" for string (far char *), or "v" for void. WinHelp automatically
makes sure these formats match the parameter types specified in the function
prototype.

Example

The following DLL call registers a routine "RetString" in the DLL named HELPLIB.DLL. RetString takes
arguments of types far char *, short int, and unsigned long.

RegisterRoutine("HELPLIB", "RetString", "S=iU")

Comments

This is an advanced level macro and its use is discouraged for novices.

RemoveAccelerator

This macro removes a Help macro from a shortcut key that had been previously assigned.

Syntax

RemoveAccelerator(key, shift-state)

Parameters

Argument Definition

key The Windows virtual-key value. For a list of these keys, select the Acc Keys hints button.

shift-state A number specifying the combination of ALT, SHIFT, and CTRL keys used with the shortcut
key: 0 (none), 1 (SHIFT), 2 (CTRL), 3 (SHIFT+CTRL), 4 (ALT), 5 (ALT+SHIFT), 6
(ALT+CTRL), or 7 (ALT+SHIFT+CTRL).

Example

The following macro removes the macro assigned to the key sequence Ctrl-P:

RemoveAccelerator(0x50, 2")

Comments

WinHelp does not display an error message if you try to remove an unassigned accelerator key.
Use the AddAccelerator macro to assign a macro to a key combination.

ResetMenu

This macro returns the WinHelp menus to the default configuration.

Syntax

ResetMenu()

Parameters

None

SaveMark

This macro saves the location of the currently displayed topic and file and associates a text marker with
that location. The GoToMark macro can then be used to jump to this location.

Syntax

SaveMark("marker-text")

Parameters

Argument Definition

marker-text Text used to identify the topic location. The marker text must appear in quotation marks,
and it must be unique. If the same text is used for more than one marker, WinHelp
recognizes only the most recently entered marker.

Example

The following macro saves the marker "Balance Checkbook" in the current topic in the Financial Help file:

SaveMark("Balance Checkbook")

Comments

In addition to GoToMark, WinHelp offers the following other macros for use with text markers:

DeleteMark removes any defined marker.

IsMark tests whether a given marker has been set in the Help file. Not negates the result of this test.

IfThen and IfThenElse run one or more Help macros if a given marker has been set. These use the
IsMark (and optional Not) macro to test whether the marker is set.

Text markers are not saved if the user exits and then restarts WinHelp.

Search

This macro displays the dialog box for the Search button, which allows users to search for topics using
keywords defined in the Help Magician. It has the same effect as choosing the Search button.

Syntax

Search()

Parameters

None

Comments

WinHelp ignores this macro if it is run in a secondary window.

SetContents

This macro designates a specific topic as the contents topic within the Help file.

Syntax

SetContents("filename", context-number)

Parameters

Argument Definition

filename The name of the Help file that contains the desired contents topic. The file name
must appear in quotation marks. If WinHelp cannot find the file, it displays an error
message and does not perform the jump.

context-number Context number of the topic in the specified file. The context number must be
assigned in the destination Help file. If the context number does not exist or cannot
be found in the destination help file, WinHelp displays an error message.

Example

The following macro sets the topic mapped to the context number 1501 in the PROGMAN.HLP file as the
contents topic:

SetContents("PROGMAN.HLP", 1501)

After running this macro, pressing the Contents button causes a jump to the specified topic.

Comments

Use the word "THISFILE" to refer to the current help file.

SetHelpOnFile

This macro designates the specific Help file that replaces WINHELP.HLP, the default Using Help file in the
Windows environment.

Syntax

SetHelpOnFile("filename")

Parameters

Argument Definition

filename The name of the replacement Using Help file. The file name must appear in quotation
marks. If WinHelp cannot find this file, it displays an error message.

Example

The following macro sets the Using Help file as MYHELP.HLP:

SetHelpOnFile("myhelp.hlp")

Comments

If this macro appears within a topic in the Help file, the replacement file is set after execution of the
macro. If this macro appears in the Project Macro Definition, the replacement file is set when the Help file
is opened.

Comments

Use the word "THISFILE" to refer to the current help file.

This macro is obsolete for Windows 95. WinHelp version 4.0 will ignore this macro.

SetPopupColor (Win95 only)

Sets the background color for all subsequent pop-up windows.

Syntax

SetPopupColor(r, g, b)

Parameters

Argument Definition

r Specifies the red component of the color. This value is an integer in the range 0 to 255.

g Specifies the green component of the color. This value is an integer in the range 0 to 255.

b Specifies the blue component of the color. This value is an integer in the range 0 to 255.

Comments

After this macro is run, the set color applies to all pop-up topics.

Example

The following macro sets the background color for pop-up windows to blue:

SetPopupColor(0, 0, 255)

ShellExecute (Win95 only)

Opens or prints the specified file.).

Syntax

ShellExecute("filename", "options", show-flag, "operation", "path", "topic-id")

Parameters

Argument Definition

filename Specifies the name of the file to open.
options Specifies parameters passed to the program when the filename parameter specifies an

executable (.exe) file. If the filename parameter specifies a document file, this parameter is
empty.

show-flag Specifies how the program is shown when it is opened. If the filename parameter specifies
a document file, this parameter should be zero.

Value Meaning

HIDE (0) Hides the window.

MAXIMIZE (3) Activates the window and maximizes it.

MINIMIZE_ACTIVATE (6) Activates the window and minimizes it.

MINIMIZE_NOACTIVE (7) Minimizes the window, but WinHelp keeps the focus.

NOACTIVATE (4) Displays a window in its current state, but WinHelp
keeps the focus. (If the window was minimized before
this call, it stays minimized.)

NORMAL (5) Activates the window and displays it in its current size
and position.

RESTORE (9) Restores the window to its original size and position if
the window is minimized or maximized.

operation Specifies the operation to perform. This parameter can be "open" or "opencpl" or "print". If
this parameter is not specified, "open" is the default value.

path Specifies the default folder. Use “” if you do not need to specify a default folder.

topic-id Specifies the ID of the topic to display if this macro fails.

Comments

The filename can be a document file or an executable file. If it is a document file, this function opens or
prints it, depending on the value of the operation parameter. If it is an executable file, this function opens
it, even if the operation parameter specifies print.

If no path is specified with the filename, WinHelp searches the following locations in the order listed:

· The folder in which the Winhelp.exe program is located

· The folder that contains the current Help file
· The System subfolder in the Windows folder
· The Windows folder
· The PATH environment
· The registry

The ShellExecute macro calls the Windows ShellExecute function.

ShortCut (Win95 only)

Runs the specified program if it is not already running. If the specified program is running, WinHelp
activates it. If the wParam parameter is specified, a WM_COMMAND message with the specified wParam
and lParam values are sent to the program.

Syntax

ShortCut("window-class", "program", "wParam", "lParam", "topic-ID")

Parameters

Argument Definition

window-class Specifies the class name of a top level window of the program. WinHelp uses this
class name to determine if the program is already running.

program Specifies the executable name of the program. This is the name of the program that
runs if the window class name cannot be found. The .exe extension does not need to
be included.

wParam Specifies the first argument to the WM_COMMAND message that is sent to the
program. If this value is not specified, the program is started, but no message is sent
and the program is not activated.

lParam Specifies the second argument to the WM_COMMAND message.

topic-ID Specifies the topic ID of the topic to jump to if the program cannot be found. If this
parameter is not specified, WinHelp displays a message box indicating that the
program could not be found. If it is specified and no filename is included, the filename
specified by the :Base command in the contents (.cnt) file is used. If there is no
associated contents file, the current Help file is used. To specify a specific filename,
the topic ID should end with an '@' character and the name of the Help file.

Comments

If you need to include a topic ID, but do not want to send the program any messages, you can either use
-1 for the wParam argument and 0 for the lParam argument, or you can simply include the commas
without specifying the values for the arguments as follows:

ShortCut(class_name, myapp, , , topic-ID)

Some programs, such as the Microsoft Visual C++ compiler (MSVC), cannot receive a message in the
same call that runs them. In this case, you must first call the ShortCut macro without specifying wParam
or lParam. You can then call this macro again and send the wParam and lParam messages. Note that the
second time you call this macro, you can use an empty string ("") for the program name.

sndPlaySound

This macro plays a sound (.WAV) file.

Syntax

sndPlaySound("filename", play-flag)

Parameters

Argument Definition

filename The name of the sound (.WAV) file. The file name must appear in quotation marks. If
WinHelp cannot find this file, it displays an error message.

play-flag A flag that determines how long the sound plays for. Enter a '0' to terminate normally, '8' to
play continuosly until the macro is called again with the '0' play-flag set.

Example

The following macro plays the "CHIMES.WAV" file:

sndPlaySound("chimes.wav", 0)

Comments

This is not a standard WinHelp macro and needs to be registered using the RegisterRoutine macro
should you be creating the project file manually.

TCard (Win95 only)

Sends a message to the program that is invoking WinHelp as a training card.

Syntax

TCard("command")

Parameters

Argument Definition

command Specifies one of the following commands or a numeric value. If one of the following values
is specified, its numeric equivalent is sent as the wParam value of the WM_TCARD
message:

Value Meaning

IDABORT (3) The user clicked an authorable Abort button.
IDCANCEL (2) The user clicked an authorable Cancel button.
IDCLOSE (8) The user closed the training card.
IDHELP (9) The user clicked an authorable Help button.
IDIGNORE (5) The user clicked an authorable Ignore button.
IDOK (1) The user clicked an authorable OK button.
IDNO (7) The user clicked an authorable No button.
IDRETRY (4) The user clicked an authorable Retry button.
IDYES (6) The user clicked an authorable Yes button.

If a numeric value is used, the training card program is sent HELP_TCARD_DATA (16) for the wParam
parameter, and the numeric value is passed as the lParam value of the WM_TCARD message.

Test (Win95 only)

Runs an internal WinHelp test.

Syntax

Test(test-num)

Parameters

Argument Definition

test-num Specifies the testing option. This parameter can be one of the following values:

Value Description

1 Displays all the topics in the Help file, starting with the current topic.
2 Displays all the topics in the Help file, starting with the first topic.
3 Continuously displays all the topics in the Help file, starting with the first topic.
4 Displays all the topics in the Help file, starting with the first topic, and then quits.
5 Jumps to all topics specified in the contents file excluding macros.
6 Jumps to all topics specified in the contents file, excluding macros, and then

quits.
7 Turns on Help Mode for the current instance of WinHelp only, and then launches

a second instance of WinHelp on the same Help file. Both instances of WinHelp
resize their windows so they can appear side-by-side and both display the first
topic in the current Help file. Moving through one file (using CTRL+SHIFT
commands) updates both windows. The functionality is the same as the Compare
macro.

TestALink (Win95 only)

Tests whether an ALink macro has an effective link to at least one topic.

Syntax

TestALink("keyword")

Parameters

Argument Definition

keyword Specifies one or more A-keywords to search for. Separate multiple keywords using
semicolons. If a keyword contains a comma, enclose the entire keyword string in quotation
marks.

Comments
If an effective link is found, TestALink returns a value of "1".

The TestALink macro is typically used as the first parameter in an IfThen or IfThenElse macro.

Example

The following macro enables or disables a SeeAlso button, depending on whether at least one topic
contains a "print" keyword:

IfThenElse(TestALink(print), ChangeEnable(btn_seealso, ALink(print)), DisableButton(btn_seealso))

TestKLink (Win95 only)

Tests whether an KLink macro has an effective link to at least one topic.

Syntax

TestKLink("keyword")

Parameters

Argument Definition

keyword Specifies one or more K-keywords to search for. Separate multiple keywords using
semicolons. If a keyword contains a comma, enclose the entire keyword string in quotation
marks.

Comments

If an effective link is found, TestKLink returns a value of "1".

The TestKLink macro is typically used as the first parameter in an IfThen or IfThenElse macro.

Example

The following macro enables or disables a SeeAlso button, depending on whether at least one topic
contains a "print" keyword:

IfThenElse(TestKLink(print), ChangeEnable(btn_seealso, KLink(print)), DisableButton(btn_seealso))

UnCheckItem

This macro removes a check mark beside a menu item added to a Help menu using the AppendItem
macro.

Syntax

UncheckItem("item-id")

Parameters

Argument Definition

item-id Identifier assigned to the item in the AppendItem macro. The item identifier must appear
in quotation marks.

Example

The following macro removes a checkmark beside the menu item named "syntax-item":

UncheckItem("syntax-item")

Comments

Use the CheckItem macro to set the checkmark.
WinHelp ignores this macro if it is run in a secondary window.

UpdateWindow (Win95 only)

Jumps to the topic with the specified context string in the specified window, and then returns the focus to
the window that called the macro.

This macro displays the Define dialog box (same as the Define command on the Bookmark menu).

Syntax

UpdateWindow("filename>window-state", "context-string")

Parameters

Argument Definition

filename Specifies the name of the Help file to jump to, if it is not the current Help file. If
specified, this parameter must be followed by a greater than sign (>).

window-name Specifies the window type to display the topic in.
topic-ID Specifies the ID of the topic to jump to.

Comments

If the secondary window was not already created, the UpdateWindow macro is ignored.
This macro is usually used in an entry macro to update the secondary window whenever the topic is
shown.

Example

This macro displays the topic "snippet" in the window "codewin" from the file "projects.hlp":

UpdateWindow("projects.hlp>codewin", "snippets")

Unknown Prototype

This prototype is not a standard WinHelp macro.

Example Syntax

SampleMacro(arg1, "arg2")

arg1 - Numerical argument. Enter any integer number in decimal or hex (ex.    3    or 0xF7).

arg2 - String argument. Enter any combination of text within the double (or single) quotes. Some
characters need to be preceded with a backslash (\) such as an opening or closing parenthesis "()", single
or double quotes, and the backslash.

a hash code is a unique number generated form a topic ID (context string). It is this number and not the
topic ID that WinHelp uses to reference the topic.

