FORWARD ORIGINS OF THE CLARION LANGUAGE

Contents

FORWARD - Origins of the Clarion
Language

by Bruce D. Barrington, CEO, TopSpeed Corporation

As so often happens, | was just trying to please myself. | bought the first PC
| ever saw and wanted to program it. That's what | do. Pascal was a straight-
jacket and C wasn't available yet. So | tried BASIC. All it needed were

some smart screen and keyboard routines. Right? Perhaps a little indexed
sequential. Right?

Wrong! | could make it work. But | couldn’t make it clean. | had just spent
10 years working with software development tools of my own design. |

liked them. Maybe it was time to share what | had learned. Maybe the world
really needed yet another computer language—a general-purpose, business
programming language. Designed especially for PCs.

It may sound contradictory to call a business language “general-purpose,”
but in the PC world there are many business “languages” that are anything
but general-purpose. Writing spreadsheet macros is programming, | suppose
but the macros hardly comprise a general-purpose language. For that matter,
most database languages are not general-purpose languages. They are reall
scripts to be executed by their database manager. The scripts define a role
the database manager plays while acting out your application. Even the
dBase language, which can be compiled and run on stand-alone basis, is not
really general-purpose.

According to my definition, a general-purpose language should be able to
exercise the entire repertoire of capability offered by the underlying
platform. That means a program should be able to read any section of any
file that is visible to the operating system. It should pass through all the
versatility available for the user interface. It should connect, in standard
ways, to other general-purpose languages and componentware. A general-
purpose language does not contaminate a program with its own “look and
feel.” It does not erect barriers to be surmounted. Rather, it grants wide
latitude within the constraints of its platform to solve a broad range of
programming problems with an extensive choice of styles.

But why restrict the new language to PCs? Other mainstream languages are
meticulously portable. | decided that PCs deserve special treatment. Even in
1984, when | began designing Clarion in earnest, PCs already comprised a
substantial percentage of all the computers installed in the world. And PCs
were different than other computers. They were inherently single-user
devices with an integrated keyboard and monitor. The keyboard and monitor
could be accessed instantly, without modems and communications lines.

Setting the Style

CW T rRIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

These machines begged for responsive, interactive application programs. |
wanted to exploit this functionality by building memory-mapped video into
my new language. If a Clarion program could “only” run on 40 or 50

million computers, that was all right by me.

| was driven by the steadfast belief that programming should be simpler.
That programming languages should be easier to read and write. And that
the poor productivity associated with software development stemmed from
inadequate and poorly designed programming tools.

These feelings began as pet peeves: Why would anyone design an
statement likéF...THEN BEGIN ;statement&ND ELSE... (Pascal). What
possible value do thEHEN, BEGIN, andEND keywords serve in this
structure? Why use=" instead of =" for an assignment statement (Pascal,
Modula-2, Ada). Didn’t the language designer know that assignments are the
most numerous statements in a program or thdti$ a finger locking
combination of shifted and unshifted keys? How abdREAD.. AT END
(COBOL) clause that sets an end-of-file variable that is tested to terminate a
read loop? Why can't the loop test for end-of-file? Having declared a
variable, why must | remind the compiler to convert it in mixed

expressions? Can’t the compiler remember that for me? Have you ever done
lint collection? Did you ask why? And hex dumps. What about HEX
DUMPS! After twenty years of programming, | felt like the anchorman in

the movieNetworkwho shouted out the window: “I'm mad as hell and I'm

not going to take it anymore.”

So | set out to design a new computer language that was compact (easy to
write) and expressive (easy to read). | began at the back and worked toward
the front: First, | wrote lots of programs, experimenting with syntax and
semantics until the programs looked great. Then | wrote a small language
reference manual. When the manual was well along, the development team
started writing a compiler. The language was changing daily. Our old
development memos describe an energetic and interactive process. Many
ideas were proposed and rejected for reasons of art. Others for poor
technology. Some were simply insane. Like Darwin’s species, only the
strong survived.

| classify programming languages into three styles: token oriented, sentence
oriented, and statement oriented. Token oriented languages like Pascal and (
are compact but not particularly expressive. Such languages treat a program
as a set of tokens (keywords, data names, constants, punctuation, etc.)
separated by “white space” (spaces, CR/LFs, comments, and sometimes
commas). The compiler collects the tokens and ignores the white space.
Token oriented languages are one-dimensional, so programmers use white
space to add a second dimension to their programs:

FORWARD

ORIGINS OF THE CLARION LANGUAGE

typedef struct {
unsigned char Type; /*the type of structure*/

unsigned Vien; /*variable length*/

unsigned char Dplac; /*decimal places if decimal*/

void *Use; /*pointer to variable*/
}Usedef

This C programmer has done about everything possible to code a readable
type definition. But the left brace seems to “dangle” offdtract keyword.

And Usedef dangles off the right brace. After all, braces aren’t very artistic
vertical delimiters.

Sentence oriented languages like COBOL and most database languages are
expressive but not very compact. Sometimes statements in sentence orientec
languages read like perfect English. This COBOL statement is certainly
expressive:

MULTIPLY PRINCIPAL BY RATE GIVING PAYMENT ROUNDED.
But no more so than:
Payment = Principal * Rate

I would argue that in the context of an entire program, the second statement
is easier to read than the first, which tends to melt into paragraphs full of
verbiage. Other sentence formats are not very English-like at all. | found
this “beauty” in an xBase language reference manual:

EDIT [FIELDS <field Tist>] [<scope>][FOR <explLl>]
[WHILE <expL2>I[FREEZE <field>]
[KEY<exprl> [,<expr2>]] [LAST] [LEDIT] [REDIT]
[LPARTITION] [NOAPPEND] [NOCLEAR] [NODELETE]
[NOEDIT | NOMODIFY] [NOLINK] [NOMENU] [NOOPTIMIZE]
[NORMALI[NOWAITI[PARTITION <expN1>][PREFERENCE <expCl>]
[SAVEILTIMEOUT <expN2>] [TITLE <expC2>]
[VALID [:F] <expL3> [ERROR <expC3>]] [WHEN <explL4>]
[WIDTH <expN3>] [[WINDOW <window namel>]
[IN [WINDOW] <window name2> | IN SCREEN]]
[COLOR SCHEME <expN4>] | COLOR <color pair Tist>]

Wow! These are certainly English words, but are they expressive? Could any
programmer understand an instance of this statement format without a
manual? Among many other questions I'd like to ask is: Who designed a
WHILE clause and &/HEN clause in the same statement? It makes me
want to scream out the window.

My experimental programs had become statement oriented—that old
fashioned style used by FORTRAN and BASIC. Statement oriented
languages exploit the fact that source programs are contained in ASCII
source files—every line of a program is a record in the file. So record
boundaries can be used to eliminate punctuation. | settled on a statement
format that proved to be compact, expressive, and versatile:

label STATEMENT[(parameters)] [,ATTRIBUTE[(parameters)]]

Attributes are only used to declare data. Executable statements use the
format of a standard procedure call. Of course, | defined different statement
formats for assignment statements (A = B) and (IF, CASE, etc.).

Declaring Data

CW T rRIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

A statement label starts in column one (the first position of the record). A
statement without a label must not start in column one. A statement is
terminated by the end of the line unless it is continued by a vertical bar (|).
| adopted the semi-colon as an optional statement separator to allow more
than one statement per line. By adopting the Modula-2 concept of ignoring
empty statements, | eliminated the distinction between statement separators
and terminators that had confounded countless Pascal programmers.

This design eliminates the punctuation otherwise necessary to identify labels
and separate statements. Blocks of statements are initiated by a single
compound statement such as IF and are terminated by a statement separator
such as ELSE (which initiates another statement block) or by an END
statement (or period). There are no “dangling” keywords.

In its infancy, COBOL was said to be “self-documenting” because of its
explicit data division and its expressive statement syntax.. Every element
that a COBOL program processes must be declared in the data division:
variables, constants, files, records, indexes—even sort sequences and report
formats. | agreed that these declarations were essential for documenting
business programs. And | felt that our new statement format would greatly
improve their readability.

In the late 1960’s, IBM promoted PL/I as the successor to COBOL. The
language was a disappointment to many, but it did offer a few fresh ideas.
By condensing the data type keywords and introducing embedded comments
(/*comment*/), PL/I provided enough space to comment every declaration
statement. COBOL had been designed for long, descriptive data names. But
programmers didn’t use long data names. There were good reasons for this:
First of all, programmers like to columnarize programs to make them more
readable. Arranging the data division in columns restricts data names to an
arbitrary maximum length. Secondly, programmers don't like long data
names in the procedure division. Long names create unwieldy expressions
and add to the writer’s cramp produced by an already verbose language. So
most COBOL programmers used short, cryptic labels and wrote programs
that weren'’t nearly as self-documenting as they should have been.

PL/I programmers got around that problem by commenting their declaration
statements. If there was a question about the meaning of a data name, it
could be resolved by looking up its declaration. | had managed a large PL/I
project in the 60’s and became convinced that declaration statements
required three parts: a statement label, a data type, and a comment.

The new statement format was perfect. The statement label appeared on the
left where it would be most visible. Data type keywords were short (BYTE,
REAL, DIM, etc.) to maximize the space available for the comment. As a
final space saver, a single exclamation character (!) was designated as a
comment initiator.

FORWARD

ORIGINS OF THE CLARION LANGUAGE

COBOL and PL/I use “levels” to declare data structures. Every variable has
a level number. A variable with a higher level number is “part of” a prior
variable with a lower level number. If a variable is not part of a data
structure, it is declared as an “01” or “77” level. | never liked using “levels”
and was surprised that they were carried over in PL/I. | considered them
arbitrary and a waste of space. (What does “77” mean and why do
unstructured variables need a level anyway?) | chose GROUP (named after
COBOLs's “group item”) as a compound statement to initiate data structures
(which we then called “groups”). This mechanism is similar to record...end
used in Pascal, Modula-2, and ADA; and struct{..} used in C. Indenting
nested GROUP statements produces a very readable declaration:

Error GROUP,PRE(Err) lError information
Date DATE !Date of error
Time TIME ITime of error
Device STRING(12) IActive device
Message GROUP lError message
MsgCode STRING(@PHHHEP) IMessage Code
STRING(® - *)
MsgText STRING(32) IMessage text

END
END

COBOL and PL/I permit the same data name to be used in different data
structures. Such data names are referenced by the data name qualified by th
structure name. This is a useful construct, since the same fields frequently
appear in more than one data structure (e.g. ACCT-NO IN OLD-VENDOR,
ACCT-NO IN CURRENT-PAYEE, etc.). But many programmers refuse to

use this feature because it creates such long references. Instead, they code
mnemonic prefixes on every field (e.g., VND-ACCT-NO). This takes extra
coding time and reduces the available name space.

To deal with this issue, | included an optional prefix attribute that could be
attached to any data structure (€8E(VND)). Elements of the structure
are qualified by placing the prefix and a colon in front of their data name
(e.g. VND:AcctNo, PAY:AcctNo).

To match the functionality of “MOVE CORRESPONDING” in COBOL and
“BY NAME” assignments in PL/I, a “deep” assignment statement was
added to move matching elements between groups:

DestinationGroup :=: SourceGroup

As a business language, Clarion needed a rich set of basic data types: All
sizes of integers and real numbers were included to provide compatibility
with external record layouts and parameter lists. Packed decimals were
included to solve rounding problems and reduce memory usage. (They can
be declared in a range of sizes.) Various string formats (fixed, Pascal, and
C), along with a complete set of string functions, were also included. And
finally, data types for dates and times were designed to support direct
arithmetic on these variables:

Tomorrow = Today + 1

But what about structured data types? In ALGOL-like languages such as

Painless Typing

CW T rRIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

Pascal, Modula-2, Ada, and C, groups and arrays are declared as types. You
declare the type, then you declare a group or array as an instance of the
predeclared type. | never have liked this syntax. In business programs, most
groups and arrays are only declared once. Thinking up a type name and
coding aTYPE statement is usually unnecessary busy-work. | have never
considered a group or an array to be a data type anyway. Groups and arrays
describe storage relationships, not data types.

So | made the type declaration optional. A Clarion declaration WitfiRE
attribute declares a data type that can be used for recurring structures or
structures that are passed as parameters. A declaration WiNRio

attribute declares both a data type and a variable of the same name. |
adopted the PLAIKE statement to declare a variable of predeclared type. |
felt that this design offered the best of both worlds:

Totals GROUP,PRE(QTR)

GrossPay DECIMAL(12,2)
Deductions DECIMAL(12,2)
NetPay DECIMAL(12,2)

END

YTD:Totals LIKE(Totals),PRE(YTD)

A computer language is strongly typed if every data element has a single
data type and the language syntax makes it is impossible to view that
element as a different type. Many experts feel that strong typing increases
program reliability. Perhaps. But strongly typed programs are harder to
write, restricting the use of general purpose procedures, and requiring an
unnecessarily vigilant awareness of data types. Furthermore, | have never
heard a COBOL programmer acci®EDEFINES (used solely to defeat
strong typing) of causing reliability problems. (COBOL programmers, by
the way, are not uncritical of their language. M ER statement fell into
disuse years ago because it produced unstable programs.)

| didn’t want our new language to be strongly typed. First of all, | wanted to
support re-declarations similar REDEFINES or theunion type in C.
Redeclarations are useful for implementing record types (variant records in
Pascal) and for handling special programming cases. | assignéy/ Efe
attribute to this purpose:

MonthNames STRING(‘JdanFebMarAprMayJdundulAugSepOctNovDec’)
Month STRING(3),DIM(12),0VER(MonthNames)

Secondly, | wanted group structures to be treated like strings. This weakened
data typing because groups can contain data types other than strings. But
groups need functionality. They must be moved, passed as parameters, even
(carefully) compared. That'’s the rub, of course. Most numeric data types
don'’t collate as strings, so groups containing numeric elements usually

won't collate properly. Negative integers collate higher than positive

integers and floating-point numbers collate somewhat randomly. Design

FORWARD

ORIGINS OF THE CLARION LANGUAGE

involves compromise (sigh) and | elected the functionality while accepting
the risk.

It was important for Clarion data types to permit simple construction of
general-purpose procedures. If a procedure expected a numeric parameter,
then any numeric data type should suffice. | thought it was ridiculous to
require different numeric functions to handle different numeric data types
like the ALGOL derivative languages. To go even further, | think
polymorphism, as implemented in C++, that requires separate functions for
each data type but permits them to be called by a single function name is a
notational sham.

In the original version of Clarion, parameters were not even prototyped.
Whatever appeared in the callers argument list was used by the procedure.
Clarion now requires parameter prototypes but permits the data type to be
unspecified. Clarion procedures have always been truly polymorphic for
unstructured data.

Clarion parameters are prototyped to be passed by value or by address.
Clarion does not support pointers. There are two reasons for this: First,
pointers don't carry data type information with them and can be easily
misused. And second, pointer dereferences (syntax differentiating the pointer
from its target) needlessly complicate programs. It has been my experience
that pointer mishaps are involved in most C program bugs.

We chose reference variables, as implemented in C++, to support
indirection. A reference variable contains the data type as well as the identity
of its target. And a reference variable is automatically dereferenced when it
is used. There is no possibility of confusion between a reference variable
and its target. Consider the following:

CompanyA FILE

END
CompanyB FILE

END

Company &FILE ICompany being processed
CODE
CASE Companyletter IWhich company to process?
0F ‘A’
Company &= CompanyA IPoint to Company A
OF ‘B’
Company &= CompanyB IPoint to Company B
END
OPEN(Company) !0Open selected company

The reference variableompanyis set by a reference assignment statement
(&=). The compiler will object if the data types don’t match. Thereafter, a
reference variable can be used in any context its target is permitted.

XXViii

CW T RIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

Intermediate Values

Another important issue involved automatic type conversion. | felt strongly

that you declared a data type so that the compiler would know! And that an
obliging compiler would generate data type conversions as needed. | also

felt that a great compiler would probe expressions for meaning and supply
logical conversions.

For example, if | add a string to an integer, it is reasonable for the compiler
to assume that the string contains an ASCIl number and to generate such a
conversion. Conversely, if | concatenate an integer to a string, | am asking
the compiler to convert the integer first. By selecting appropriate data types
for intermediate values, the compiler can safely convert data types in
expressions without losing information. If you divide two integers, a good
compiler will store the result in an intermediate value that will hold a
fraction. If you add an integer to a string, the compiler will also use a
;ractional intermediate value because a string is capable of expressing a
raction.

Information can be lost, of course, when a value is moved, for instance, by
an assignment statement or as a parameter of a procedure call. Moving a rea
number to an integer truncates the fraction. Moving a real number to a
packed decimal rounds to the least significant decimal digit. Some
languages, such as Pascal, require that such data conversions be explicitly
called. | felt that by declaring a data type, a programmer was requesting the
compiler to implicitly restrict the data element to a given domain of value.

Earlier versions of Clarion used just two data types for numeric intermediate
values: 32 bit signed integer (LONG) and a 64 bit floating point (REAL). A
divide operation or any operation with one or more REAL operands would
produce a REAL intermediate value. This strategy provided sufficient
accuracy since a REAL could express the maximum numeric significance
(15 digits) supported by Clarion. Although they are accurate, floating point
values are not discreet. Two equivalent expressions suchas1/2and 2/4
can produce floating point results that differ in the least significant bit. This
is usually a meaningless difference in computations.

But not in comparisons. A programmer expects one-half to equal two-
fourths. | may be willing to avoid comparing REALSs but | expect a logical
expression such as this to work every time:

IF Hours > Normal * 1.5

Using a REAL to receive the expression on the right casts doubt on the
results of the comparison. We resolved this issue in Clarion for Windows by
implementing fixed-point intermediate values with 31 decimal digits on
each side of the decimal point. This change also increased our maximum
numeric significance to 31 digits.

FORWARD

ORIGINS OF THE CLARION LANGUAGE

Control Structures

While the business languages, COBOL and PL/I, offered the preferred
model for declaring data, the ALGOL derivatives, especially Modula-2,
offered better control structures. | modified the Modul&3tatement by
making theTHEN keyword replaceable by a statement separator. This had
the effect of eliminating superfluoGdHENSs from multi-line IF structures.

By adopting Modula-2'€LSIF, | eliminated the massive indenting and
multiple terminations caused by deeply neskedtructures:

IF Number < 0
Sign = -1
ELSIF Number > 0
Sign = +1
ELSE
Sign =0
END
| also used Modula-2 as a guide for ClariocDASE statement. Modula-2's
CASE supports enumerated case labels and case label ranges—very useful
features. But | didn't like its punctuation. T keyword introduces the
first case label, but subsequent case labels are initiated by a vertical bar
(“I". 1 felt this punctuation was ugly and not very intuitive. Instead, | used
OF to introduce all case labels. | invented @ROF keyword to enumerate
case labels and tHeO keyword for case label ranges. These changes
produced a very friendly syntax:

CASE SUB(Name,1,1)

OF(‘A”) TO (*M’) OROF(‘a’) T0O (‘m”)
DO FirstHalf

OF(C‘N”) TO (*Z’) OROF(‘n’) TO (°‘z*)
DO SecondHalf

ELSE
DO FirstHalf

END

Modula-2 was the first usage | had seen ofll®©P keyword in its proper
context. In Modula-2|.OOP...END executes an unconditional loop that is
terminated by executing &XIT statement. | augmented this concept by
adding aCYCLE statement to recycle the loop from within. (I also changed
EXIT toBREAK because | was usirgXIT for another purpose.) |
implemented conditional loops by adding four optional clauses to the
LOOP statement:

LOOP I = 1 TO 100 BY 2
LOOP 10000 TIMES

LOOP WHILE Count > 0
LOOP UNTIL EndOfFile

| felt that good program organization required local subroutines. A local
subroutine is a block of statements that has been removed from the main
logic and is executed by a subroutine call statement. If the subroutine is
aptly named, the main logic becomes shorter without losing clarity. COBOL
and BASIC usé?ERFORM andGOSUB for this purpose. Local

procedures in Pascal and Modula-2 nearly fit the bill but they require a

CW T RIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

prototype statement to declare the parameter types. | didn’t want to support
subroutine parameters because | wanted all the caller’s data to be visible to
the subroutine. | designed tROUTINE statement to initiate a local
subroutineROUTINE s are placed at the end of a procedure or function and
are executed by BO statement.

A number of languages support executing a single statement from a list of
statements as indicated by a statement selection integer. FORTRAN uses the
computedGOTO. COBOLusesGOTO...DEPENDING ON. BASIC uses
ON...GOTO andON...GOSUB | wanted to implement a similar capability

that would execute any type of statement from a list of statements depending
on an integer expression. | named this strudiXECUTE after the
commonXEQ machine language instruction which executes the single
instruction addressed by its operand. This new structure is, | believe, unique
to the Clarion language, but has proven quite useful:

EXECUTE UpdateAction
ADD(Master)
PUT(Master)
DELETE(Master)

END

Taming the User Interface

In 1970, | was working for McDonnell Douglas Automation Company when
we purchased one of the first IV/70 computers built by Four Phase Systems,
Inc. It was a marvelous machin®6K of solid-state memory, with a

footprint not much larger than a PC. What made this box so interesting was
its video support: 32 CRTs daisy-chained from 8 video ports that were
refreshed directly from memory. Before the IV/70, every CRT | had used
was a communications device. You could watch individual characters
display as they arrived at the terminal. With the IV/70, an entire new screen
was displayed every thirtieth of a second. It was the perfect platform for
interactive programs. But no one seemed to notice. Four Phase was selling
the system as a replacement for IBM’s clustered CRTs and as a multi-station
keypunch.

| had a higher use in mind. In 1973, | formed a company to develop a turn-
key hospital information system based on the IV/70 computer. | wrote a
multi-user operating system and a macro-language that exercised it. Then |
wrote a macro pre-processor and a small hospital information system. The
entire process took 9 months.

The macro language accessed the CRTs as if they were memory (that's what
they were!) using move macros. The hospital application “painted” the
screen by moving literals to the video memory, then placed entry field
descriptions in a user field table and returned to the operating system for
processing. When a field completed or a special key was pressed, control
returned to the application.

FORWARD

ORIGINS OF THE CLARION LANGUAGE

This strategy had a distinct operating system “centric” viewpoint. Function
keys were connected to screen procedures. Screen procedures created field
tables that were connected to field edit procedures. A program didn’t “run”

in a conventional sense. In fact, there was no such thing as a program—just
a set of procedures that responded to operating system events. The
operating system was in control. It was up to the programmer to anticipate
its needs. Our programmers eventually became so proficient with this
approach that most hospital systems could be designed, implemented, and
fully tested before the hardware was cabled together.

But it was never intuitive. Every one of our programmers climbed a steep
learning curve. Event-driven programming is hard to grasp. Later, in one of
the most vivid flashes of insight | have ever experienced, it dawned on me
that an event-driven operating system could be controlled by a conventional
program. The user interface would be invoked by a single statement. For
Clarion, | called it ACCEPT. The leading edge of ACCEPT would return
control to the operating system and the trailing edge could serve as the entry
point for all event processing. A small set of functions would be crafted to
identify the event that occurred and the fields involved.

Event-driven systems had always seemed “inside-out” to me. | was inside,
chained to an oar, obeying the drummer, processing his events. | realized
that ACCEPT would make me the master again. Now the drum was mine! |
would call the operating system, not the other way around.

But how would Clarion depict a screen layout? Well, if screen literals are
data and screen fields are data, then a screen layout has to be a data
structure, doesn't it? | unimaginatively called S&REEN structure.
OPEN(MyScreen) would display a screexCCEPT would enable the
keyboard and handles all of the behavior of operator entry. When the
operator completes a field or presses a “hot” keyABEEPT statement
would “fall through,” releasing control to the progra@LOSE(MyScreen)
would restore the state of the monitor before “MyScreen” was opened.

Declaring screen layouts made them easy to process but even easier to
design. The development team integrated a screen painter into the Clarion
source code editor which could genel@@REEN structures. The screen

painter could also reg8lCREEN structures. Get the picture? Position the
cursor in &SCREEN structure and invoke the screen painter. The screen
painter interprets the source and displays the screen layout. Now “paint”
some changes on the screen and exit. The screen painter changes the sourct
code by replacing the ol8sCREEN structure with the updated version.
Interactive visual design like this is impossible without declared structures.

| designed a similar structure for report layoUREPORT structures

contain layouts for print lines, page headers and page footer®RINT
statement handles data formatting and page overflow automatically. And a
report painter is integrated with the source code editor to maintain
REPORT structures just lik6CREEN structures.

CW T rRiALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

Opening Windows

As luck would have it, our user interface design was perfectly suited to
Microsoft Windows—an “inside out” operating system if | ever saw one.
Windows programmers were having a very difficult time—who could blame
them? The “Hello World” example shipped with a popular C++ product was

8 pages long! Windows was in desperate need of a simple messaging model
like the Clarion ACCEPT loop. We decided to provide just that.

We changed our SCREEN structures to WINDOW structures, introducing
the grammar necessary to declare and contain Windows objects and
properties. We added multi-threading to accommodate the multiple
document interface. We changed the grammar of REPORT structures to
depict WYSIWYG reports, background forms, and nested group headers,
footers, and sub-totals.

The ACCEPT statement became a structure defining the boundaries of an
event processing loop. We designed the compiler to cooperate with the run-
time library to hide the direction of the procedure calls used to process
window events. A call to a run-time window processor is generated above
the ACCEPT loop. The loop itself is generated as an embedded accept
procedure.

The window processor creates the necessary objects, specifying a common
event processing procedure for every event produced by every object. This
event processor handles “housekeeping” events such as redraws and calls th
embedded accept procedure to deal with other events. When the window
closes, the window processor returns control to the statement following the
ACCEPT loop.

To the Clarion programmer, it is all quite simple. Open a window, then fall
into an ACCEPT loop. The ACCEPT loop cycles for every event the
program needs to see. Close the window and fall out of the loop.

We defined a convenient set of functions to identify the events and objects
involved. The code necessary to process a typical dialog box looks like this:

FORWARD ORIGINS OF THE CLARION LANGUAGE XXXiii

OPEN(Window) !0pen the window

ACCEPT 'Enable the window
CASE FIELD() IWhich field needs attention?
OF ?0K I ‘0K’ needs attention

CASE EVENT()
OF EVENT:Selected

Which event has occurred?
‘0K’ is pressed down

: Process the 0K button

CLOSE(Window)

Close the window
END End CASE EVENT()
OF ?Cancel ‘Cancel’ needs attention

CASE EVENT()
OF EVENT:Selected

!
!
1
1
1
!

! Which event has occurred?

! ‘Cancel’ is pressed down

: ! Process ‘Cancel’ button
CLOSE(Window) !
1
1
!
1
1
1

Close the window
END End CASE EVENT()
ELSE Must be a non-field event

CASE EVENT()
OF EVENT:CloseWindow

Which event has occurred?
The window will be closed
: Process window close down

END

End CASE EVENT()
END ! End CASE FIELD()
END 'End ACCEPT
RETURN IReturn to the caller

A by-product of our object-oriented run-time library corrected a serious
deficiency in the Clarion language—compiler invariants. Declaring screens,
reports, and files is very illuminating. But it can also be restrictive. Because
they are compiled in, you can’t change most declarations at run-time. Many
of the language extensions requested by Clarion programmers involved
making declared attributes visible to and changeable by the program

In our Windows run-time library, these structures are objects. Objects have
properties. And properties can be changed. Anytime. Since we had already
overloaded the period as both a structure terminator and a decimal point, we
could not implement the standard object oriented notatiatjeftt.property

So we elected to use “curly brackets” to enclose properties. With this
notation, any declared attribute, such as the text displayed on a button, can
be modified by a statement such as:

?Button{PROP:Text} = ‘My Button’

Designing a Database

| wanted to implement a simple database syntax that would support all three
standard file access methods, direct, sequential, and indexed. The underlying
file organization would also be simple: The file would contain a header
followed by fixed length data records. The header would describe the record
layout and associated keys and memos which would reside in separate files.
This arrangement is similar to that used by dBase—a record could be
accessed sequentially or directly by key or by its relative record number. |
designed &ILE structure, similar to a COBOED, to declare files and

their components:

CW T rRiIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

Detail FILE,PRE(DTL),NAME(‘C:\LEDGER\DETAIL.DAT”)
AcctKey KEY(DTL:AcctNo,DTL:Period,DTL:Date)
BatchKey KEY(DTL:Batch,DTL:Period),DUP
Comment MEMO(4096)
RECORD !Detail record
AcctNo SHORT IAccount number
Period BYTE IAccounting period
Date DATE ITransaction date
Batch STRING(12) !Batch ID
Amount DECIMAL(12,2) Amount (+/- = debit/credit)

END
END

I implemented sequential processing usstgr, NEXT, PREVIOUS, and
SKIP verbs.SET establishes the sequence (by key or relative record
number) and starting point for the other three verbs which read records
forward and backward, and skip over records. These verbs combine nicely
with the end-of-file functionEOF) in a read loop:

SET(Dt1:AcctKey) ISet account number sequence
LOOP UNTIL EOF(Detail) !'Loop through every record

NEXT(Detail) IRead the next record
END

TheGET verb reads a record randomly by key or relative record number.
Importantly, GET does not interfere with sequential processing by resetting
the next record processeBUT andDELETE process records accessed by
NEXT, PREVIOUS, orGET. ADD inserts a new record in the database.

This database access grammar proved to be efficient, robust and versatile—
an essential and popular component of our product.

As the Clarion language spread, however, it took on new responsibilities.
Clarion developers needed to access dBase files. So we added a dBase
procedure library (we called Clarion procedure libraries “Language
Extension Modules™—or LEMSs). Then Novell came out with client-server
support for Btrieve (server-based indexing). Some large Clarion applications
needed Btrieve to improve their transaction throughput. So two of our third-
party developers came out with Btrieve LEMs.

That left DB2. And RDB. And Oracle. And SQL Server. And every other
variety of database that runs on or is accessed by PCs. We were planning to
support direct C function calls in the next version of the language, so any
database with a C language API could be accessed by a Clarion program.
But it was clear to me that this was not the answer. Surely a general-purpose
business language shouldn't be using a different grammar for every database
format. Migrating a data file shouldn’t require a major program overhaul.

The Clarion language needed standardized, built-in support for all common
databases.

It was suggested that we adopt SQL as our database grammar. | took the
suggestion seriously and rewrote some typical Clarion programs using
embedded SQL. It wasn't long before | realized this was a terrible idea.
When used as a programming language, SQL is extremely verbose and
inelegant. The little four statement record loop illustrated earlier becomes

FORWARD

A New View

ORIGINS OF THE CLARION LANGUAGE

this albatross under SQL.:
DECLARE X CURSOR

FOR SELECT *
FROM Detail
ORDER BY Dt1:AcctNo,Dt1:Period,Dt1:Date
END
END
OPEN X
LOOP
FETCH X

IF ReturnCode = 100 THEN BREAK.

END
CLOSE X

Not only are SQL cursors inelegant, they are also nearly useless. You can't
make a cursor skip—for example, to re-display a prior page of records. And
you can’'t make it relocate—for example, to jump to “Jones” while browsing
alphabetically. | concluded that if | were to replace the Clarion database
access syntax with SQL, | would have been tarred and feathered and run out
of town on a rail.

So we decided to implement replaceable database drivers. Clarion
programmers liked their database grammar, they just needed support for
other database formats. By building on the existing language structure, we
would be leveraging their knowledge as well as enhancing their current
applications. With our new database driver technology, we would make all
databases look alike—a non-trivial benefit.

To produce SQL database drivers, we map SQL syntax onto our own
database grammar. OBET statement constructs an SQELECT

statement which is issued at the first instance MEXT or PREVIOUS
operation. If you change directions (eNEXT .. PREVIOUS), the driver
issues anotheé8ELECT with a differentORDER BY clause. OUuGET

issues SELECT..FETCH. ADD issues atNSERT; GET..DELETE

issues DELETE ; andGET..PUT issues atUPDATE. A few features,

such as relative record access, are not supported for SQL databases, but
otherwise, the implementation is quite complete.

However, our database grammar was unable to exercise some very importan
SQL features. Clarion programs implement record filters by reading and
throwing out unwanted records:

LOOP UNTIL EOF(Part)

NEXT(Part)
IF Prt:0OnHand > 0 THEN CYCLE

END

An SQL database can filter records on the server and save a lot of time.
Clarion programs join files by reading the primary record to prime a key in

CW T rRiIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

order to read the secondary record. An SQL database returns the primary anc
secondary records with a single access. And Clarion programs read every
field in every record on every access. SQL returns only the fields you need.

Of course, an SQL database cannot read minds. You have to tell it what you
want it to do. So we designed a VIEW structure for this purpose:

View VIEW(Part),FILTER(‘PRT:OnHand = 0°)
PROJECT(PRT:Number,PRT:Name,PRT:0nHand,PRT:Usage)
JOIN(Vendor,PRT:Vendor,VND:Number)

PROJECT(VND:Name,VND:Address,VND:CityStateZip)
END
END

This VIEW structure consolidates the intentions of a Clarion program so

that the database driver can utilize any services offered by its underlying
database engine. The database driver either performs filter (record selection).
join (record lookup), and project (field selection) operations or requests the
database server to do so. In either case, performance is optimized.

There was also a problem implementing optimistic concurrency under SQL.
To update a shared file, a Clarion program reads and saves a record. Then,
before it is updated, the record is locked, reread, and compared to the saved
copy. If they are the same, the changes are written to the database.
Otherwise, the record has been changed by another workstation and the
operator is so advised. This process is called “optimistic concurrency” and is
based on the expectation that records are usually unchanged.

SQL implements optimistic concurrency with a WHERE clause that requires
that all fields to be updated continue to have the same value. If one or more
fields have changed, SQL returns an appropriate error. Since Clarion had no
syntax to make such a request, we added a WATCH statement for this
purpose. WATCH is issued before a GET, NEXT, or PREVIOUS to initiate
optimistic concurrency. When the record is accessed, the driver saves a copy
In response to the PUT statement, the driver either rereads the record for
comparison or issues an UPDATE...WHERE. to an SQL database. If the
record has changed, PUT returns an error.

Our First Compiler

We shipped version 1.0 of Clarion in May of 1986 with both a compiler and
an interpreter. The Clarion Compiler produced intermediate code that was
then interpreted by the Clarion Processor. The intermediate code was so
compact, that large Clarion applications would run on the small memory
sizes (256K) that characterized PCs of that era. The compiler produced such
tight code by generating a binary description of every declaration statement.
Then the data was addressed by a two-byte pointer to the binary description.
So it took five bytes to add an integer to a string and format the result
according to a picture (one byte for the add operation and four bytes for the
pointers to the integer and picture string descriptions). For every operation,

FORWARD

A New Partner

ORIGINS OF THE CLARION LANGUAGE XXXVii

the Processor examined the data types of the elements involved and
performed any necessary conversions.

But tight intermediate code wasn't the primary reason for this design. By
interpreting the output from the compiler, the Processor could execute a
Clarion application without requiring a link step. This was no small
consideration. In 1985 and for a long time thereafter, linking was a time-
consuming process. Our customers appreciated quick testing, but they also
let us know that “real” programming languages prodube<k files! Early

the next year, we released the Clarion Translator that converted Clarion
intermediate code int®BJ files by replacing the operation codes with
procedure calls. The pointers were passed as parameters. This strategy
served us well for six years but also posed some problems:

. We had trouble with external librarieSBJ files could
be linked into a ClariorEXE, but they could not be
executed directly by the Processor. We designed a
process that converted a suitald3J into a special
binary format (LEM) that could be executed by the
processor and changed back inta@BJ by the Transla-
tor. But the process was complicated and was only used
by sophisticated developers.

. Simple Clarion programs produced liEs. The run-
time decision making referenced library procedures that
were included in theEXE but never called. That made
a “Hello World” program take 141K.

. Clarion applications ran slower than C, Pascal, and
Modula-2 programs because Clarion programs examined
data types at run-time while the other languages did so
at compile time.

. It was no longer necessary to avoid linking in the test
cycle. New linkers that supported run-time libraries
could link a program for testing as fast as we could load
the Processor.

Most importantly, we needed technology that would provide a development
path to Windows, protected mode, OS/2, UNIX, 32-bit, and non-Intel
architectures.

In May of 1990, we solved those problems and many others by licensing the
TopSpeed technology from Jensen & Partners International (JPI), a British
company. JPI was formed in 1988 when Niels Jensen, founder of Borland
International, and his language development team left that company as a
group. They purchased their work in progress and produced the TopSpeed
product line, the top-rated compiler technology in the industry. JPI had

XXXViii

CW T rRIALPAK—Do NoT REPRODUCE LANGUAGE REFERENCE

developed C, C++, Pascal, and Modula-2 compilers that shared the same
optimizing code generator and project system. JPI called the compilers
“front-ends” and the code generator the “back-end.”

We started immediately writing a Clarion front-end. As usual, it was harder

than we thought. The language required more changes than we expected.

The project took longer and used more resources than we thought it would.
But we were thrilled with the results.

We knew the TopSpeed back-end was good, but we were astonished when a
Clarion “Sieve of Eratosthenes” (an algorithm for finding prime numbers)
ran twice as fast as the same program written with Borland’s Turbo C++. We
had also licensed TopSpeed linking technology, but | hadn’t realized just
how good it was. TopSpeed’s unique "Smart Linking” produced perfect
granularity by eliminating all unreferenced procedures and static data
elements from arEXE. Better yet, while we were working on our front-

end, JPI had developed an automatic overlay loader, DOS DLLs, a royalty-
free DOS extender, and had announced 32-bit support. With this state-of-
the-art technology, we had finally removed the performance penalty that had
always been associated with high-level business languages.

In September of 1991, we announced our new product at the first Clarion
Developers Conference. New features and the Clarion/TopSpeed connection
drew rave reviews. Caught up in the festivity of the occasion, Niels Jensen,
and | started talking about merging our companies. It made a great deal of
sense. TopSpeed products would gain a US presence and access to a much
larger programming market. Clarion products would own their core
technology. We would be the first to apply leading edge compiler technology
to business software development tools. After a lengthy negotiation, the
merger was concluded in April of 1992. Two and a half years later, after the
companies had completely homogenized their operations and product lines,
the successor company was renamed TopSpeed Corporation. In October of
1994, TopSpeed Corporation released Clarion for Windows, the first product
developed in its entirety by the merged companies.

Where We Stand Now

These remarks originally comprised the introduction tdPtogrammer’s
Guidethat accompanied Clarion Database Developer Version 3.0, released
in April of 1993. Extensive additions and revisions have been necessary for
this version. Such is progress. | think of software development as the
process of gently rocking a Chinese checker board until all the marbles fall
into holes. | believe in the notion of a final, correct design. Until Clarion for
Windows, | felt that we were a long way from our goal. Now | am not so
sure. There are very few marbles rolling.

