
 TOPSPEED CORP.’S Clarion for Windows
1.5 is just around the corner. This is a must-
have upgrade for Clarion developers, and
it's terrific news for any developers looking
to build applications for any Windows
platform. Among the many other improve-
ments and refinements, this version
generates either 16-bit or 32-bit Windows
applications. And Clarion clones features
across the 16-bit/32-bit barrier, so you can
generate 16-bit applications with a Windows
95 look and feel and 32-bit applications that
use your existing 16-bit Visual
Basic controls.
 Oddly enough, a year or so ago
the market for enterprise-level
visual rapid database applications
development tools for Windows
(and how many buzzwords can you
fit in one sentence?) were devoid
of products that closely blend
database access with an optimizing compiler
Clarion for Windows 1.0 was the first to
deliver this unique combination, but it didn’t
escape competition for long. On the heels
of its release, Borland International Inc.
shipped Delphi, an Object Pascal based
visual applications development environ-
ment, also for Windows.
 It's not without a certain irony that Clarion
for Windows should compete head-to-head
with Delphi. As it turns out, both Delphi and
Clarion share some of their roots in Turbo
Pascal. Delphi could be considered the
latest version of Turbo Pascal. But did you
know that Borland's Niels Jensen and the
development team for Turbo Pascal left
Borland to form Jensen and Partners

International and created the line of
TopSpeed compilers? After that, they merged
with Clarion Software to form TopSpeed
Corp.

You say you want a revolution
 Although Delphi is the logical evolution of
Turbo Pascal, Clarion is the revolutionary
product. Somewhere along the line,
Borland stopped innovating and started
imitating. That's not to say there's anything
wrong with Delphi, which is, in a sense,

Visual Basic done right. And in that
respect Delphi is perhaps the most
remarkable visual development
environment of its type available
for Windows. It deftly fills the
gaping holes in Visual Basic (i.e., it
is based on a language that is
neither structured, object oriented,

nor compiled).
 Clarion, on the other hand, has always
represented a complete rethinking of how
database applications development should
be done. It designed Clarion for Getting The
Job Done, and it is unexcelled in this area,
even by Delphi. The developers asked
themselves what they could do to create a
language and set of tools that could grease
the whole database application development
process as much as possible, and they
succeeded admirably in reaching that goal.
Then the TopSpeed folks came along and
added to these tools the best compiler
technology in the business.
 So whereas Delphi makes it easy to create
applications with complex custom interfaces
and a unique look and feel, Clarion makes it

far easier to generate robust, tight business
database applications with a common look
and feel - and do it quickly. It does this
through its template-based applications
generator and its powerful and supremely
flexible COBOL-like, data oriented, event-
driven modular language, adeptly fitted to
the Windows environment. (You didn’t think I
could get more buzzwords in here, did you?)
 And don't miss this point: Clarion is the
best for business applications, and that's
business with a capital
"B Look at the
attention to detail in
this respect: In addition
to all its other
supported database
formats, Clarion has
native support for
Btrieve, still one of the
most widely used
business database
formats. And Clarion
uses binary-coded
decimal fixed-point
arithmetic, which
makes it easy to
produce financial
calculations without the rounding errors that
can occur when you use floating-point math
in other languages.
 With its support for multithreading
(something Delphi currently lacks) and
capability to generate 32-bit applications for
Windows 95 and Windows NT, Clarion for
Windows, Version 1.5, will be an irresistible
buy for developers wishing to jump into 32-
bit Windows programming. Look for it later
this month. You can give TopSpeed a call at
(305) 785-4555.

Oh joy. Send me E-mail via the Internet to
nicholas-petreley@infoworld.com or

A FRIEND WAS INTERESTED IN
STARTING a newsletter for his prosper-
ing music store. He asked me if I could
help him write a program to keep track
of his customers, the instruments they
played, their achievements, and any
other news that might be of interest.
Because this was a favor for a friend, I
wanted to produce the program as
quickly and easily as I could. If there
was ever a time I needed the "rapid" in
rapid application development, this was
it.
 I looked around and found Clarion for
Windows, a powerful, flexible, 4GL
database-development environment. It
combines shortcuts and visual design

tools with its own custom
programming language,
allowing you to create applica-
tions with as much or as little
code as you want -- or no code
at all.
 Clarion let me create a fast-
and-easy program to help my
friend with his newsletter.

THE TRUMPET
OF THE TEMPLATES
 Clarion’s installation went
smoothly. The heart of Clarion's
development environment is the
application generator. It
contains easy-to-use tools that

let you customize the look and behavior
of your app's elements, including
windows, menus, databases, and reports.
The generator uses templates of
prewritten generic code and data
structures, both which you can custom-
ize with visual-design tools and
embedded source code. Clarion creates
application source code based on the
predefined procedures in the template.
 'The templates are completely reusable,
and one template can have different
abilities depending on the customiza-

tions you've made. In each use, only the
relevant code is generated. Clarion is
packaged with a set of default tem-
plates-they let you simply plug in many
standard features, providing a lot of
instant gratification during development.
For example, the procedure templates
define a procedure type and include a
generic window, an MDI parent frame,
an SDI window, a source procedure to
handle hand-coding, a process proce-
dure to perform an operation on each of
a database's records, an external
procedure to declare a procedure
contained in an external library, a
browser, a form, a report procedure, and
an ASCII file viewer.
 Code templates can contain source
code for both embedded source code
points and in hand-coded procedures.
These templates include source to
initiate a thread (needed when opening
an MDI window from an application
frame), to call a look-up procedure, to
control value validation, and to close the
current window. The control templates
define the appearance and function of
the controls placed in a procedure's
window. The control templates contain a
number of browse controls; save, cancel,
close, search, and print buttons; an
ASCII listbox; and a DOS file look-up
control. Finally, extension templates add
specific functions that are not tied to a
control. Together, these templates cover
most of the facets of an application and
can greatly reduce the amount of work a
developer has to do.
 If the templates that Clarion provides
still don't give you everything you need,
many third-party templates are avail-
able. You can also modify the default
templates, or even use Clarion's
template language to create your own.
 The template language is a flexible
script language that contains structures
for getting information from the

programmer during the design process
and also for generating source code.
Based on the options selected during
program design, the language supports
statements that control the exact source
code put into an application. The script
language also allows you to define
points where embedded code can be
inserted. This all adds up to provide a
great deal of control in defining
templates, and that translates into faster,
easier application development.
 Once you've precompiled and incorpo-
rated the template code in a registry file,
the template is available in the applica-
tion generator. Several sets of templates
can be in the register at once, and the
default templates, third-party templates,
modified templates, and created
templates can be used together in an
application. The ability to mix tem-
plates from different sources is helpful
when you're building a library of
templates for an application.

PERCUSSIVE PROCEDURES
 In the application generator, creating an
application is a process of adding,
defining, and customizing procedures.
You add procedures whenever a call is
made to a procedure that does not yet
exist, such as when designing a menu
procedure. A procedure type is defined
using the template that most closely
matches the function you'd Eke to give
it. Once it's defined, you can customize
the procedure with the design tools or
with source code. The process is very

straightforward, and as I set up proce-
dures, I found that Clarion led me
naturally through the process.
 Procedures aren't set in stone-you can
always go back later and redefine one.
Any procedures that branch from the
original procedure exist as "orphans"
until you delete them. I found this
especially useful when I was redesign-
ing a part of an application. I removed
the procedure I wanted to change and
put in a new one. 'Men, I simply
attached the original orphan procedures
to the new procedure.
 You can view the procedures in your
application in several ways. A collaps-
ible hierarchical tree displays the calling
sequence and lists of modules and sorts
them alphabetically by procedure name
or by template type. You can also list
modules by the procedures they own.
Because I was interested in seeing the
structure of my program, I used the
hierarchical tree the most. Although the
views of modules do provide useful
information, they didn't seem as useful
as the other views during development.
 Clarion for Windows also contains a
number of tools that make the design
process easier. Clicking on a procedure
calls the tool appropriate for its defining
template. Clarion uses the template to
automatically generate source code for
items designed with the tool. Changes
you make to the generated code are then
reflected in future instances of the tool-
more instant gratification with no loss of
convenience when you start putting in

custom code.
 The windows structure formatter is a
visual-design tool for creating an
application's windows and dialog boxes.
Starting with the template-defined
format of the window, you can manipu-
late the window's properties and
controls. VBX version 1.0 custom
controls are supported, but unfortunately
there's no support for OLE custom
controls. The tool contains a menu
editor, listbox formatter, and dialogs that
let you specify the controls' properties.
Although it's nice to be able to control
every last detail of the window and
window controls in the formatter, it is
somewhat overwhelming at times. The
formatter controls can also be cryptic at
first.
 The report formatter is a visual tool for
laying out an application's reports.
Report development is simple and fast,
and the resulting report data-structure
defines page formatting and page
overflow management. The print engine
takes care of the rest.
 The formula editor generates state-
ments that assign expressions to values.
You can use it with computed fields,
conditional fields, global variables, and
local variables. The formulas you create
are the equivalent of small functions,
complete with conditionals and case
structures. After a bit of initial fumbling,
I found this tool very useful and
powerful.
 The programmer's text editor features
auto-indenting, multiple-document
windows, and customizable color coded
syntax highlighting to improve the
clarity of code. If you have an unsuc-
cessful compile, you can use the editor's
Goto Next Error and Goto Previous
Error commands to find and correct the
errors.
 You can switch from the text editor to
the visual-design tools with a click of an
icon. You can either use the tools with
templates you've already placed in your
code or pick a new template from a list.
When you exit from a design tool, the
source code is instantly generated in the
text editor. Here, too, changes in
generated source code are reflected in
future uses of the design tools. I
enjoyed the convenience of being able
to jump between coding and visual
tools.

JAZZ FUSION
 The Clarion language is a proprietary
amalgam of languages incorporating
elements of Pascal, COBOL, C++, and
others. Coding in it gave me a strange
feeling of deja vu. The following code
snippet is from the Accept loop-the main

event-handling loop in a Clarion
program. The first event shown here
fires when the application starts up and
the second fires when the Window gets
the focus.

ACCEPT
CASE EVENT()
OF EVENT:OpenWindow
Splash
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True

END
OF EVENT:GainFocus
DO FLD2::FilIList
DO RefreshWindow
IF NOT WindowInitialized
WindowInitialized = True
DO InitializeWindow

ELSE
ForceRefresh = True
DO RefreshWindow

END
ELSE...

 Clarion compiles to native, 16-bit
executable code using the TopSpeed
optimizing compiler and linker. This
compiler gained fame some years back
for the speed of its executables. Perfor-
mance in a database application, though,
is more dependent on the database
engine and the database schema than on
the compiler. The Clarion database
engine provided adequate performance
in my simple program, but I can't say
how well performance would scale up.

TURN THOSE PROPERTIES DOWN!
 You can also use the application
generator to set global properties that
define the app's behavior as a whole,
including how and when files are
opened and closed. You can also use it to
create global variables that can be
defined in the same manner-in fact, with
the same dialog-as fields.
 A project-management system similar
to a Make utility visually manages the
source code files, external libraries,
resources, and other application
components. You may not always need
the project manager, because the
application generator takes care of
project maintenance. You’ll need it if
you use Clarion without the application
generator.
 A database dictionary is an essential
part of a database application. It holds a
description of the database, including its
database drivers, fields, keys, relations,
field-validation rules, and referential-
integrity constraints. Clarion supports

the database structure, integrity, and
manipulation required by the relational
model. Multiple files, including file
aliases and views, can belong to a
database dictionary. You can add an alias
for a file already in the dictionary. Ibis
lets you have a second file buffer for a
file, as well as multiple relational links
between files while obeying the strict
theory of relational databases. A view is
a virtual file constructed from selected
fields taken from multiple files. Be-
cause you can choose to use only the
fields that are actually required for an
operation, this feature provides an

advantage in a client-server environ-
ment.
 Field definitions let you define almost
every aspect of a field's appearance and
behavior, including the type, field
length, display-string format, initial
value (which may be a function), default
prompt, column heading, controls,
validity checks, typing mode, justifica-
tion, help information, and instant event
notification to controls referencing the
field. (This is another feature that might
overwhelm you with choices.) The types
of fields available depend on the file
driver you've selected. The Clarion

database driver lets you select any of the
standard data types, including a memo
field that you can flag to hold binary
data. There is also support for a group
(compound) type and a LIKE type that
takes the type of another field.
WHAT?
 Clarion for Windows supports a number
of database formats beyond the propri-
etary TopSpeed data file format. Drivers
are provided for ASCII, Basic, Btrieve,
Clarion 2.1/3.0, Clipper, dBase 3 and 4,
DOS (binary byte addressable), FoxPro,
and Paradox 3. Several other drivers,
such as AS/400, Oracle, and Sybase, are
available separately. ODBC support is
also included. With it, Clarion can
handle any file system that has an
ODBC driver. This adds client-server
support with the selection of an appro-
priate file driver.
 During development, the data dictio-
nary is maintained by the dictionary
editor. Through this editor, you can
define all of the properties, files, fields,
relations, keys, and so on.
 You can access data files directly,
without an application, using the
database manager. It's a programmer's
tool, with no validity or referential
integrity checks. Use it with care.
 Although Clarion for Windows focuses
on database development, the applica-
tion generator lets you create non
database applications. Once you have
turned off the "Require a dictionary"
option, you do not need to include a
data dictionary.
 Two shortcut tools, Quick Start and
Quick Load, make the application
generator easier to use by giving you a
head start in development. With Quick
Start, you fill in a few fields about the
application in general and then define
the name, display format, and key for
each field in its data file. It takes only
minutes to enter the information. Once
you're done, an entire application is
automatically constructed with a data
dictionary, a view window and report for
each key, and a form procedure for

updating all fields in the database file.
You get immediate results, which you
can use right away or modify.
 Quick Load is an easy and fast way to
add a new file definition to an existing
data dictionary. Like Quick Start, you
fill in a few items of general information
and then define the name, display
format, and key for each field that's in
the new file. The full data file is
generated automatically.
 Because you provide only the most
basic information for these applications
and database files, the results of Quick
Start and Quick Load are generic --
whatever fields you set up are always
used in the same manner. For example,
in the forms and reports, fields are
always placed in a column and set to the
default values. Though you can use
them as they are, you will probably want
to customize. You can do this just as you
would with any other Clarion applica-
tion or database. There's no difference
between an application created with the
shortcut tools and the same application
created manually.

LEARNING TO PLAY
 Clarion for Windows is powerful and
flexible. But the power and flexibility
come with a price-a steep learning
curve. Once you familiarize yourself
with the basic concepts, however, the
Clarion language is not difficult to learn.
It may take some time to get acquainted
with its full capabilities, but the
structure is, for the most part, straight-
forward, and the language reference
presents clear explanations and code
examples.
 There are different levels on which you
can use this product, and the amount of
effort you need to put into mastering the
development environment depends on
how much of the environment you want
to use. For example, using just the
shortcut tools and application generator,
you can complete a database application
within hours of removing the shrink-
wrap. But going beyond the application
generator with custom coding requires
that you learn the Clarion language.
Naturally, this takes more time than
simply figuring out the application
generator.
 Basic navigation around the develop-
ment environment and elementary
concepts can be a bit confusing. Just
figuring out what each icon represents,
determining which menu choice you
want, and wading through dialogs full of
options can be frustrating. However,
Clarion provides plenty of assistance-
and you'll probably need it, too. The
Guided Tour walks you through the

development process and shows you
actual application-development win-
dows with descriptions of each button
and field. Tutorials provide a step-by-
step, hands-on introduction to develop-
ing an application.
 The package contains a full set of
manuals and online Help. The online
documentation includes a guide to
examples, the full text of the language
reference, and a master index to the
manuals. The documentation seems
complete and provides straightforward
explanations. Sometimes I needed to
search to find the explanation for a
particular icon or option, but I generally
found the documentation on par with the
better software documentation I have
encountered.
 If you still have trouble, technical
support by phone and fax is free for 30
days from the date of your first call.
Although it was sometimes difficult to
get through to a real live tech-support
person, the person I talked to was very
helpful. After the first 30 days, pay-per
call support is available through a 900
number, and free support is available on
CompuServe. Technical and marketing
documents are available with a fax
retrieval system. Patches and other files
are available through both a BBS and
CompuServe. And if all that doesn't
help, there's a support system that lets
you report problems and make sugges-
tions electronically. You can also view
and manage a database of previously
reported problems and suggestions.

IT TOLLS FOR THEE...
IF YOU DON'T BUY IT
 Clarion for Windows is thorough in
anticipating the needs of programmers.
It's a complete application development
package whose capabilities cover the
spectrum from instant gratification to
complete customization.
 However, the ultimate test of a
development environment is the quality
of the applications created with it. Here,
too, Clarion for Windows shows its
value. In my testing, the application
generator produced code that ran
smoothly, and database operations
proceeded speedily with the TopSpeed
driver. So even though Clarion is a bit
confusing, even frustrating, at first, its
convenience and power make learning
the environment and language well
worth the effort.

K.J. Bernstein is a software engineer
for Duffers Scientific Inc. in Poestenkill,
New York.

THE TWO DATABASE experts

blinked. I'd asked them how I'd

choose among Microsoft's database offer-

ings.

 "Well, it one said, "I can't give you a

general rule of thumb, but if you give me a

concrete example, it'll be obvious."

 "Okay here's a concrete example: You're in

the hotel business and you want to write a

central reservations system. It has to

support distributed databases. The tables

potentially have millions of records and a

record has to come up very quickly.

 "If a guest calls

the main toll-free

number and says,

'Hi, this is John

Smith from

Omaha, and I'd

like a room for

next

Monday,' the reservations clerk should
answer, 'So you're coming to Dubuque
again, Mr. Smith? I can reserve your
preferred nonsmoking room with a
king-size bed overlooking the pool.
Would you like to guarantee that for
late arrival with your American Express
card?'
 "How would you do that?"
 "I'd do it with SQL Server on the
back end and Visual Basic on the front
end."
 I smiled broadly. "That's exactly what
I told my client at the time. Of course,
since then, the client decided to use
Delphi and Oracle instead.
 "Okay, now try this one: You run a
hospice, and your records system
needs to track the dying patients, their
doctors, their case workers and their
families."
 Microsoft's database guru started to
look uncomfortable.
 "It's all right. People do die, and a
hospice makes the process more
bearable for the patient and the
bereaved. I do some pro bono
consulting for them and make some
bereavement calls. One problem this
hospice has is generating all the
paperwork required after a death-the
sympathy cards, the mailing labels, the
forms for volunteers who work with
the bereaved. Right now the staff
types everything over and over for the
different forms. The database schema
is pretty simple, and the biggest table
runs to thousands of records-tens of
thousands, tops."
 The database guru gave me a big
smile. "That's easy. I'd do that with
Access."
 "But what about Visual FoxPro?" Visual
FoxPro (800-426-9400) was what this
meeting was ostensibly about.

Ill
us

tra
tio

n:
 S

C
O

TT
 B

AL
D

W
IN

, P
ho

to
: R

IC
K

FR
IE

D
M

AN

 "Well, sure, Fox could handle it, but
Access would be a lot easier, especially
if they themselves wanted to modify the
forms later. They probably don't have
too many technical people (I smiled
thinly), but even the clerks should be
able to add a field to an Access form
using its visual design tools. Fox might
be too complicated for them to maintain.
If they needed hundreds of thousands of
records, Fox would win because it scales
better, but for thousands of records
Access is just fine."
 Eventually, we did get around to
looking at Microsoft's Visual FoxPro,
which I found impressive and a compel-
ling choice for Xbase developers who
want to migrate to a visual, object-
oriented environment. But either I'm
easily impressed these days or database
development products are getting very
good indeed. I find Clarion for Windows
(TopSpeed Corp., 800-354-5444) and
Delphi for Windows (Borland Interna-
tional, 800453-3375, x13O9) equally
impressive for various reasons. But I'll
have to defer any further discussion of
Visual FoxPro until I actually have a
copy in my office.

 First there was Turbo Pascal
 Clarion and Delphi are both spiritual
descendants of Turbo Pascal. Those of
you up on Borland trivia will recall that
a 14-year-old Dane named Nils Jensen
wrote the original Turbo Pascal product
and Philippe Kahn marketed it success-
fully for $99. Borland rose from there,
diversified, acquired, grew-and faltered.
 At one crucial point, as the story goes,
Nils and his key people had their own C
compiler under development when
Philippe bought Wizard C instead and
renamed it Turbo C. Nils left, formed
Jensen & Partners and came out with the
TopSpeed compiler family. Eventually,
Jensen & Partners (which had some
great compiler and linker technology, but
no database technology and not much
marketing clout) merged with Clarion
Corp. (which had some great database
development technology and a decent
installed base, but nothing worthwhile as
far as compilers). The resulting Topspeed
Corp. seemed to go quiet for more than a
year and then surfaced with Clarion for
Windows.
 Meanwhile, back in Scotts Valley, Turbo
Pascal went through revision after
revision, picking up more depth with
each iteration, moving nicely to
Windows and adding object orientation.
Then suddenly there were mutterings

about this new Delphi product that was
being called a VB-killer, a PowerBuilder-
killer and a visual Pascal with reusable
objects and integrated databases.
 You've heard about Delphi by now. I've
mentioned it before, and most of the
magazines and journals for Windows
programmers have written it up. It's a
fine product, with in-memory compila-
tion, two-way visual tools, a single-user
version of InterBase Server, ReportSmith
and all the Borland design and debug-
ging tools, classes and samples. It
requires a CD-ROM drive and at least
30MB of free disk space-or closer to
90MB if you want to do a full install.
People keep writing me to ask how I like
Delphi. I like it fine, except for the
amount of disk space it hogs.
 Nobody writes to ask me how I like
Clarion, and I think that's a crying
shame. It may not have all the polish
and features of Delphi, but it's the most
efficient database development package
I've ever used-not to mention that it
installs from five diskettes. Despite the
Microsoft guru's recommendation of
Access, I've decided to build the
applications the hospice needs with
Clarion. I haven't had much time to
work on them yet, more's the pity, but
when I do I'll let you know how they
turn out.

 Clarion feels right
 I have begun to learn the Clarion
environment. It's a bit different, but for
a database application it feels right. If
you can design a data dictionary and
pick the right templates, you can have a
working, compiled database application
faster than you could ever have imag-
ined. Clarion's Quick Start feature gets
you from the data dictionary to a vanilla
database application in minutes. And
templates let you add standard function-
ality in hours rather than days.
 So, what's a template? If you know
what templates are in C++ you already
have a pretty good idea. A template is a
prewritten procedure skeleton that
allows for parameter substitution. In
Clarion, the parameters are things like
tables, data fields, data validation ranges
and referential integrity checks. In other
words, if you want to implement a
browse procedure in Clarion, you won't
have to write any code. just place a few
templates and customize their properties,
in much the same way as you'd place
bound controls on a VB form. The
major difference is that the Clarion
template does a lot of stuff you'd have to

hand-code in a VB application.
 I'm a language junkie from way back.
Clarion has its own fourth-generation
language, which isn't exactly like Pascal
or C or Xbase. I haven't bothered to
learn it. I haven't even needed to look at
the generated source code. I just treat
the entire Clarion development system
as a black box that turns my design into
an application.
 I haven't gotten to the point of stressing
the system yet. I haven't found out how
well Clarion handles reading and writing
locks in multi-user applications or how
well it imports data in odd formats with
entry errors or any of the other things
that make or break a database system in
real life. Stay tuned.

Martin Heller consults for a variety of
businesses, illuminates dark code and
writes in Andover, Mass. Contact Martin
care of the editor at the addresses on
page 18.

detection and one-click access to the error's
location and on-screen diagnosis of possible
corrective actions.

PERFORMANCE
In a processor-intensive empty-loop benchmark,
Clarion ran much faster than Visual Basic, even
surpassing Delphi and Blue Sky Software Corp.'s
WinMaker Pro 6.0 despite disabled optimizations
and the inclusion of debugging code.

In tests involving computation and display,
Clarion for Windows provided a more flicker free
display during rapid updates than Visual Basic
while running only 20 percent slower.

Even the C-based WinMaker Pro and Pascal-,
based Delphi were only 20 percent to 30 percent
faster than Clarion in a tight data-display loop
(see benchmark chart, Page 79)

Although not the performance leader, Clarion
for Windows is still one of the most efficient tools
we've seen for high-level database access.
However, Clarion's EXE files,
though fast and small, rely on a
577K-byte DLL (dynamic link
library) that is almost 50 percent
larger than Visual Basic's run-time
DLL.

UNDERLYING
 ARCHITECTURE

The Clarion programming language
has overtones of both XBASE and
COBOL, and we found Clarion
code quite readable. The product
includes a variety of sample
applications that helped us become
quickly productive with the language.

With years of refinement under its belt, the
Clarion language has evolved to combine strong
support for basic data processing with well-
conceived extensions for Windows.

Though not as elegant as Delphi's language,
Clarion will lend itself to production coding by
those who do it as a job rather than an art form.

With its use of text files for storing program
components, Clarion will work smoothly with any
of the more common version managers, such as
Intersolv Inc.'s PVCS. However, Version 1.0

International Inc.'s Delphi 1.0 (see comparative
review, April 24, Page 71) still provide more direct
access to the basics of algorithms and data
structures.

In addition, we continue to recommend Delphi
for applications where complex code is a major
driver of project schedule and cost.

DEVELOPMENT TOOLS
Clarion's tools, both text-based and graphical,
follow current programming conventions and offer
informative and helpful pointers during develop-
ment.

For example, when defining the data dictionary
for an application, Clarion displayed examples of
entries for various fields at the bottom of the
screen, freeing us from having to consult
documentation.

During our tests, prototype applications took
shape quickly, providing menu-driven com-.
mands to browse, update, and print reports based
on the data-dictionary definition with no further
coding.

The integration of database definition and data
access in the Clarion development cycle encour-
aged us to provide sophisticated query and report
options even at early stages in its prototyping
process.

In addition, prototyping was accelerated by
Clarion's excellent error handling, with quick

BY PETER COFFEE
The late-April update of TopSpeed Corp.'s Clarion
for Windows 1.0, Release 1002, is an outstanding
tool for developers who want to automate access
to data in fast, attractive, stand-alone applications.
Clarion for Windows demonstrates a fine balance
between making simple things obvious and
making complex things accessible but not
intimidating.

The $1,299 front-end tool greets the developer
with an empty data dictionary, instead of a blank
GUI "canvas." Developers can easily refine the
user interface with Clarion's convenient drag-and-
drop tools, but only after defining a data model for
their application.

 Microsoft Corp.'s Visual Basic 3.0 or Borland

provides no built-in support for using these tools
as part of the development cycle.

As with most competing tools, Clarion for
Windows provides no group development features
and no repository for non-sequential operations
using multiple, multi vendor tools.

OBJECT-PROGRAMMING SUPPORT
Clarion’s environment clarifies relationships
among application components with clear
graphical views. In addition, the data dictionary’s
discipline makes a clear distinction between data
and application logic—clearer than that of
products using C, Pascal, or BASIC, which treat

data as a mere
external
resource.

We found it
both practical
and productive
to build
applications on
the foundation
of templates
included with
the product, and
extendable by
the developer.

These
templates
represent such

basic application components as windows, menus,
data browsers, reports, forms, and viewers.

Clarion’s approach offers the reusability of
objects without the conceptual leap required to
move from COBOL or dBASE to Smalltalk or
C++. Although Visual Basic and Delphi make
definition of reusable elements more intuitive and
scalable, Clarion developers will still achieve
significant productivity gains by reusing common
application components.

DATABASE SUPPORT
Clarion provides efficient, format-specific data file
access drivers for ASCII, Btrieve, Clipper, dBASE
III/IV, Foxbase/FoxPro, and Paradox 3, as well as
the older DOS-based Clarion 2.1/3.0 and a new
proprietary TopSpeed format.

Access to different data formats and database
servers, including those used via Open Database
Connectivity, is accomplished with code, not
graphical tools—a process that is not obvious. A
product with Clarion’s emphasis on database
access should provide more straightforward tools,
like those of Trinzic Corp.’s Object Pro.

DESKTOP INTEGRATION
Like other aspects of Windows, DDE
(Dynamic Data Exchange) is accessible
from Clarion to developers willing to
write the required code.

By calling the DDESERVER
function, for example, we obtained a
DDE server channel number that we
could then use with such functions as
DDEWRITE to exchange information
between applications. The resulting
code is clear, not cryptic, but it does
require some effort to absorb.

Clarion applications can also interact
with other Windows applications and
data sources via programmed access to
the Clipboard, with strings both
readable and writable from and to that
shared resource.

OLE (Object Linking and Embed-
ding), however, is not included in the

Clarion developer's tool kit which is a shame and
places it in the shadow o@ such products as Visual
Basic.

Clarion's excellence in defining data sets and
data interactions would make a Clarion-based
browser a useful OLE server to embed in other
applications.

 PLATFORM SUPPORT
Clarion, a Windows-specific front-end tool, is as
good a package for developing 16-bit applications
as either Visual Basic or Delphi.

 When TopSpeed ships Version 1.5 late in the
summer, Clarion will provide an upgrade path to
the 32-bit Windows environment. The 1.5 release
will include both 16and 32-bit compilers and add
new user-interface, controls for compatibility with
Windows 95.

 DOCUMENTATION AND SUPPORT
Clarion for Windows installed easily and automati-
cally made all the required settings. We found the
Getting Started manual both accessible and thorough

in helping us understand the product's
unique approach to developing
applications. We strongly recommend
taking the time to follow the
hardcopy tutorials.

We also found the Language
Reference manual clear, well-
organized, and usefully indexed.
Unlike most other manuals, Clarion's
seemed to anticipate our questions. In
particular, the Language Reference
manual offers an interesting and
informative description of the
language's rationale.

Clarion developers find both
vendor support and mutual assistance
in a CompuServe support forum. We
found one discussion that involved a
possible bug in one of Clarion’s
numeric data types that may lead to
unpredictable changing of the
arithmetic sign of a value.
TopSpeed's technical support
responded promptly and courteously
to this report.

C
larion for Windows (CW) is a
rapid application development
tool. The integrated develop
ment environment (IDE) in-

cludes a compiler, an application genera-
tor (AppGen), a text editor, a screen/win-
dow editor, a data dictionary editor, a
project management system, a report de-
signer, and many other elements to sup-
port visual application design. CW also in-
cludes a "template" language facility,
which drives AppGen, and a system of in-
terchangeable database drivers that enable
native (direct) access to a long list of da-
tabase types, including TopSpeed's own
Clarion and TopSpeed formats as well as
dBASE, Paradox, ASCII, DOS binary,
Btrieve, ODBC, and SQL. Underlying all
this is the Clarion language itself, an ele-
gant but practical programming language
ideally suited for business applications but
perfectly acceptable for any kind of pro-
gramming.

There are three ways to use CW as a
tool. An application can be built entirely
with AppGen, without writing a single line
of code. This is an ideal approach for larg-
er organizations wishing to build front-end
programs to browse and maintain legacy
mainframe data or newer client/server
data. Or, an application can be entirely
hand-coded using the Clarion language.
Because of the language's design and its
inherent abstractions, hand-coding is re-
markably efficient and typically faster than
using any other language. Finally, an ap-
plication can be built in a hybrid fashion,
with the developer using AppGen to the
extent desired while embedding Clarion
code freely throughout the project.

AppGen is perhaps the most appealing
characteristic of CW AppGen is centered
around the display of a tree diagram of the
application under construction. Each leaf

(node) on this tree represents a type of pro-
cedure whose properties are enumerated
in a series of dialogs (see Figure 1) that
appear when the developer clicks on the
procedure of interest. Properties include
such things as a list of local data, a list of
files needed by the procedure, and the lay-
out of the Window if the procedure has one.
Properties also include any custom code
the developer cares to write, code that is
automatically embedded at the appropri-
ate point when AppGen generates code. A
procedure can also include nothing but
hand-written code, if desired.

Once the application structure has been
defined, the user builds the program. App-
Gen uses the property lists to generate Clar-
ion source code. This is automatically
merged with any hand-written code the
developer may have produced. The com-
bined source code is then compiled and
linked. The project system is incremental,
so only new code or changes are recom-
piled. The resulting program is native x86
code in EXE format, a module that can be
run or debugged from within the CW en-
vironment.

Such a brief description of AppGen hard-
ly conveys its power. AppGen is controlled
by templates that define 'available proce-
dures. Templates are a combination of Clar-
ion code, template language (macro) code,
and pre-defined properties. A user enter-
ing information in the property window of
a procedure is actually providing the vari-
able information needed by the template.
Once the variable information has been
supplied, AppGen can generate native code
customized to the developer's specifica-
tions.

A brief example will help to explain this.
CW comes with a "browser" template-a
browser is nothing more than a window
that contains a scrolling region in which
records (or views) meeting certain criteria

are displayed. The browser template
doesn't know anything about the file it
might be browsing, the fields from those
records it might be displaying, or the cri-
teria by which it might select records. The
browser template is completely general,
able to display any set of fields from any
file supported by the database driver sys-
tem. Let's say the user wished to browse a
typical customer file, showing the custom-
er's name and phone number. AppGen takes
its generic template, combines it with pro-
cedure properties and any embedded code,
and generates specific Clarion code to han-
dle the particular case. The user writes no
code!

 The templates, being source code them-
selves, can be modified or completely re-
placed by the developer. For example, if a
developer preferred different browsing
behavior, it would only be necessary to
revise the browser template accordingly.
Several companies, including both long-
standing third-party Clarion vendors and
some new entrants, have already written
add-in templates for a variety of uses. C3
(708-3 8 5-9 844) and Boxsoft (416-944-
2358) have updated their suites of tem-
plates (previously available for Clarion for
DOS), while newcomer Toolcraft (408-
7324300) has released an enhanced brows-
er. Others will surely follow.

Visual design with CW is similar to most
other products in this category. The CW
window editor has a basic set of controls
that can be enhanced with VB custom con-
trols (VBX). Using these controls is a sim-
ple drag and drop affair, almost identical
to using VB. The property system of the
controls is visible in CW, so the handling
of controls is also similar to that of VB.
CW can handle only level I VBXS, and
not all level 1 controls work with CW (al-
though this is often the fault of the VBX
itself). There is no list of controls that do
work with CW, so trial and error (or beg-
ging and bribing people on the CLARI-
ON forum on CompuServe) is necessary
to learn the ropes. TopSpeed does not plan
to significantly enhance VBX support,
opting instead to support OLE custom con-
trols (OCXs)-a sensible direction. An aside:
If TopSpeed can maintain its schedule, it
could have OCX support in CW before
Visual Basic 4.0 ships.

On all fronts, CW is fast. In one test case,
AppGen generated 5,700 lines of Clarion
code, then compiled it all and linked it in
90 seconds on a 486DX2/ 66. 1 wanted to
get a better idea of how fast Clarion is, so
I took a number of snippets of production
code, wrote I them in CW, Visual Basic, Vi-
sual C++ 1.5, and several PC database prod
ucts, and then compared the results. I VB
is the fastest interpretive system, beating
most of the other PC database tools by a
factor of five. However, CW is dramati-
cally faster than VB in these tests-from six
to eighteen times faster! ' CW stood up well
against C also, t averaging 60 percent of
the speed of C. I Visual performance was
measured by designing a window with a
reasonable number of controls, then dis-

playing and hiding it several thousand
times. CW is about 60 percent faster than
VB at this task-a visibly noticeable differ-
ence.

TopSpeed recently released an interim
upgrade to CW, making the current version
1.001. The interim releases generally fix
as many bugs as the company has been
able to tackle and also add requested fea-
tures if possible. TopSpeed makes these
interims available fairly frequently, which
many in the Clarion community like be-
cause bugs are getting fixed-but many oth-
ers dislike because of the time required to
test and validate the new tool.

In CW version 1.001, and in the initial
release, the back end (primarily the com-
piler) has shown great stability and few
bugs. In short, the compiler is solid. The
front end (the IDE, AppGen, and all the
visual tools) is still a bit creaky, rather typ-
ical of a vendor's first Windows product.
The biggest problem with the CW front
end is its user interface (Ul), which lacks
the refinement of other Windows products
that have been around longer. The interface
problem extends to the window editor,
which does its job but which could be
much smoother, more intuitive, and more
powerful. One Ul quirk: Topspeed’s devel-
opers must have done their development
work on high resolution machines, because
a number of dialog boxes don't fit on the
screen in 4Ox480 VGA resolution!
TopSpeed told me that its upcoming ver-

sion 1.5 will have major improvements in
all aspects of the Ul (no release date for
1.5 has been set).

Despite interface difficulties and the
somewhat stodgy window editor, Clarion
for Windows is capable of building an ap-
plication whose Ul can go toe-to-toe with
the best Windows apps. The first commer-
cial application written in CW has been
released. It is called Time Matters for Win-
dows, a time, event, contact, and case
management program for attorneys from
Data.TXT Corporation in Miami. A slide
show demo disk is available that shows
clearly what can be done with CW; if in-
terested, ask TopSpeed to get you the demo.
Time Matters is also an exemplar of all that
is good about Clarion. The program works
standalone or in the networked, workgroup
environment. On the network, the Win-
dows version coexists with the older OS
version, sharing the same data from the
same files at the same time. These capa-
bilities spring, in large measure, from Clar-
ion itself.

In spite of all this, Clarion for Windows
remains the only Windows development
tool that delivers high-performance code;
generalized database access; a potent, cus-
tomizable application generator; a com-
plete set of visual tools; and a strong IDE/
project system all in a single product. It is
arguably the best Windows development
tool on the market today.

ports the CA-Clipper, dBASE, and FoxPro
flavors of .dbf, Paradox, Btrieve, ASCII, and
other formats. All these formats are support-
ed directly, and they are buttressed by stan-
dard ODBC access to other databases. A driv-
er for AS/400 is available from TopSpeed
($3999 per server), while drivers for DRDA,
Oracle, and Sybase will be released later this
year.

First Impressions
While performing the installation, I read
through Bruce Barrington's notes on lan-
guage design. A few years ago I read a pre-
vious version of this document and found it
illuminating to read about the author's tran-
sition to Windows. I am a believer in playing
into a language rather than against it, and I
wish that all language designers would take
the time to write a similar document. It illu-
minates the designer's origins, intentions,
perspective, and goals in a way no "Getting
Started" pamphlet can.

The 12 sample programs are supplied as
executables, so I ran them even before I ran
Clarion itself. Their quick load times im-
pressed me, so I popped into File Manager
to browse the directories. 'Me largest sam-
ple program, RELATION.EXE, which shows
off Clarion's multitable data windows, was
a mere 9OKB. This program creates a hand-
ful of tables and then populates them with
artificial data, displaying them in a series of
related scrolling lists. (See Figure 2, page
32.) Besides the executable, at least one oth-
er file (CWRUN.DLL, 562KB) is required,
but, even so, this is far smaller than the
equivalent program in CA-Visual Objects or
Microsoft FoxPro , both of which demand
approximately 4MB.

Development Environment
Clarion for Windows thinks in terms of ap-
plications and components, presenting the
application object as an indented outline that
reflects the calling structure of the various
components. From the basic shell, you can
reach any of the tools with a mouse click or
two.

The Clarion environment consists of sev-
en components housed in a multiple docu-
ment interface (MDI) shell window: a dic-
tionary editor, window formatter, report for-
rnatter, text editor, formula editor, application
generator, and source-level d bugger. The dic-
tionary editor maintains the application's
data dictionary, which houses all details con-
cerning tables, indexes, relationships, fields,
and views.

You use the window formatter to create
menus and reports as well as windows the
entire visual dimension of your application.
(It surprises me that more software does not

work this way. After all, the differences be-
tween forms and reports are so trivial, they
could be encapsulated in a template an ap-
proach TopSpeed takes.) The window format-
ter provides the standard range of control
objects, and also supports VBX and custom
controls. However, it lacks some of the cos-
metic capabilities of other window painters,
such as definable field borders (3D, re-
cessed, or shadowed). It also doesn’t let you
tag a group of fields to load simultaneously.

Clarion's text editor performs color cod-
ed syntax highlighting, but it lacks program-
mer-oriented facilities such as regular-ex-
pression searching. The formula editor
vaguely resembles tools such as FoxPro's
Query Builder, except that it is generalized
to create any statement resulting in a value,
so you can use it to create filter expressions,
calculated fields, and other expressions. The
application generator automatically writes a
project file for the application, containing
compile and link options. and other proper-
ties.

Beneath the IDE (interactive development
environment) and its various editors, an ap-
plication consists of two files: a file contain-
ing the application's components (called the
APP file), and a data dictionary (called the
DCT file) containing all the information
about tables, indexes, keys, fields, relation-
ships, views, and validations.

To debug an application, you click the De-
bug button, set breakpoints near the prob-
lematic code, and inspect the values at those
points in the program. You can open multiple
source files as you investigate the problems.
Given the large proportion of generated code
and the formula editor, I have so far had lit-
tle occasion to work with the debugger. You
can run your application from within the
development environment, and, because it
opens an application window, you are still
free to browse the APP file as you test the
program.

You don't have to give any consideration
to managing the windows in an MDI appli-
cation. Starting with the application window
and its menu, you attach dialogs and data
windows to menu options, and don't have to
give it another thought. Clarion's application
framework handles the complexities auto-
matically.

For the most part, I found the develop-
ment environment intuitive and responsive.
As I began to develop my test application,
however, it became obvious that the envi-
ronment is not quite as modeless as it ap-
pears. Although you can open several com-
ponents at once, you can only open one in-
stance of each. Ibis prevents you from edit-
ing two windows at once, for example. More
serious (and more puzzling, because it's un-

Clarion for Windows is an application de
velopment system for Windows, with a

rich development environment, a native-
code compiler, and a built-in linker. Its stated
purpose is to let developers create "blazing-
ly fast Windows applications quickly. While
Clarion has traditionally been used for data-
base application development, designer
Bruce Barrington has always aspired to
make Clarion a general-purpose language.
With Clarion for Windows, he is most of the
way there. While Clarion might appear to
compete with Borland's dBASE for Win-
dows, Microsoft's FoxPro, and Computer As-
sociate's CA-Visual Objects, you can consid-
er Clarion for applications that you would
normally write in Visual Basic, C++, or
Borland Delphi.

Clarion for Windows introduces a new da-
tabase format called TopSpeed, and also sup-

rather than at runtime. Given the enormous
percentage of generated code in a given ap-
plication, I found myself quite willing to
learn the new syntax.

One well-conceived aspect of Clarion is
threaded table access, which lets you open
n independent instances of a table. Enabling
threaded access is exceedingly trivial in Clar-
ion: You click a checkbox with the mouse.
(See Figure 3.)

The printed documentation consists of
three well-written volumes that are much im-
proved over the earlier DOS versions. With
these and the 12 sample applications, pro-
grammers new to Clarion will have little
trouble getting up to speed.

Thanks to a native-code compiler backed
by dedicated database drivers, Clarion for
Windows applications are blazingly fast far
outpacing interpreters such as dBASE for
Windows and PowerBuilder. In terms of ta-
ble access speeds, the TopSpeed data format
seems fastest. The dedicated drivers for. dbf
files are considerably faster than going
through ODBC. Clarion for Windows appli-
cations are particularly fast in their displays,
with none of the lurching and control-by-
control display characteristics of, for exam-
ple, FoxPro.

Criticisms
The window formatter is too spare, lacking
the basic abilities I've already mentioned.
The Quick Start, application wizard insists
on creating the table that it's going to use,
thus precluding the use of existing databas-
es. Furthermore, it'. restricted to string and
numeric fields, disallowing dates, memos,
or logicals. After some experimentation, I
discovered ways to work around this limita-
tion, such as first creating only the support-
ed fields, and then modifying the table struc-
ture and regenerating it afterward, but this
process is silly. Without these basic abilities,
Quick Start is terrific fun for the first day or
two, after which you'll never bother to use it
again.

Aside from color-coded syntax, the source
code editor offers only the most basic search
and replace facilities, with a few adjustable
settings such as smart indentation. In lieu of
a genuine programmer's editor, it would very
nice if you could substitute your tool of
choice. Although in my limited tests I did not
hit the ceiling in designing reports, I would
like to know that I can substitute the report-
er of my choice. You could certainly write an
application that calls an external report ex-
ecutor such as Crystal Reports, but you
would have to create those reports external-
ly, and they would not be able to draw from
the data dictionary.

documented), you cannot open the data dic-
tionary while the APP file is open.

Language, Documentation, and
Performance

Beneath the Clarion environment are the
high-level. Clarion language itself and a tem-
plate language that you can use to tailor the
generated source code. Most Clarion users
will probably never get around to writing
their own templates, but for advanced pro-
grammers, the gateway is there.

Because my language roots are in Xbase
and C, the Clarion syntax is new to me. I
was pleased to discover that Clarion allows
C-style in-line assignments (x += y) and sup-
ports a wide range of data types for precise
control. Clarion does not support pointer
variables; instead, it provides C++-style ref-
erence variables. (A reference variable con-
tains the data type and the identity of a vari-
able.) The language also supports function
and procedure prototyping, so you can elim-
inate many common errors at compile time

Although Clarion for Windows supports
DDE as both client and server, it does not
support OLE 2.0., A TopSpeed Corp. repre-
sentative informed me that OLE support
would be included in the 32bit version, due
for release later this year.

A Winner
With Clarion for Windows, TopSpeed Corp.
has delivered a rapid application develop-
ment environment that lets developers work

at a very high level, yet compiles applica-
tions to native code. Despite the shortcom-
ings I've noted, this is an impressive release.
judging by the traffic in the Clarion forum
on CompuServe, the bugs are few and mi-
nor. With only a quick look, its impossible to
tell precisely where the outer limits are, but
at this point I feel that I could comfortably
use Clarion for Windows for anything I might
have written in CA-Clipper.

Although it costs more than dBASE for
Windows, Paradox, Access, or FoxPro, Clar-
ion for Windows offers Windows developers
two strong benefits: rapid application devel-
opment and native-code performance. If
you're looking for a pure object-oriented
product, look elsewhere. n the other hand, I
suspect that many developers are craving a
Windows application development tool that
does not demand total immersion in OOP. In
the short time I've had Clarion for Windows,
I’ve already moved two of my CA-Clipper
applications to Windows. TopSpeed Corp. as
a winner here.

Arthur Fuller teaches and writes about
database and object technology. He is au-
thor of the Dynamics of Clipper books (Busi-
ness One Books, 1989 and 1992). You can
reach Arthur via CompuServe at
76506,1301, or via the Internet at
artful@passport.ca.

feel comfortable, while new users who are fa-
miliar with Windows applications development
environments may have to make slight adjust-
ments until they get used to Clarion's method
of application development.

Focus on language
While Clarion for Windows ostensibly com-

petes with Microsoft Access, Borland Paradox
for Windows, and others, its true competition
is Microsoft Visual Basic and Visual C++, and
the upcoming Borland Delphi. Clarion for Win-
dows is a business-oriented programming lan-
guage that compiles to an executable (.EXE)
file. You distribute the EXE and dynamic link
library (.DLL) files to users. This doesn't mean
you develop in a text editor. On the contrary,
Clarion for Windows ships with a full-featured
integrated development environment (IDE),
which includes, along with a text editor, screen
and report generators, and menu and toolbar
builders.

You can get from the text editor to the screen
and report generators at the touch of a hot key.
If you’re editing the source code for a data
entry screen and you want to paint the screen,
press Ctrl+F – you’re now in the screen gen-
erator. Any changes you make are updated in
the source code when you save the screen. The
same holds true for reports.

Extensible Foundations
Clarion for Windows actually contains two

languages. The first is the Clarion language
you see most of the time. Clarion’s second lan-
guage is the Template language. Clarion for
Windows uses templates to create screens, re-
ports, and menus. The templates, which are
source code modules with boilerplate code,
tell the application generator how to generate
code for the screens, reports, and menus. You
can modify the templates easily. In fact, the
ease with which templates can be modified
have resulted in the creation of a cottage in-
dustry of third-party template providers (Box-
soft Corp. and Power Craft, for instance).
These companies, with more to follow, provide
templates with functionality that isn't present
in the default Clarion for Windows templates.
Data, data everywhere

Clarion for Windows handles data for prac-
tically any database format. It has drivers for
Xbase .DBF, Paradox .DB, Btrieve, Clarion for
DOS, BASIC, ASCII, and TopSpeed's new
proprietary file format. You can also hook up
to other databases, like Microsoft Access, us-
ing an ODBC driver. TopSpeed also sells driv-
ers for AS/ 400, Oracle, and SYBASE SQL
Server.

C
larion has never had presence
in the database market like
dBASE or Paradox, but has
always had a small, dedicated,
vocal group of adherents. Still,
it's considered among one of

the more powerful and flexible application de-
velopment environments for DOS. Users have
been waiting for the Windows version since
TopSpeed Corp. announced it at the 1994 Clar-
ion User Conference. (In October 1994, Clar-
ion Software changed their name to TopSpeed
Corp.)

TopSpeed Corp. tested Clarion for Windows
for almost five months and has released a sol-
id and impressive program. Clarion for Win-
dows still holds to the Clarion way of perform-
ing tasks, so those jumping from DOS should

tionships between files. While the creation of
relationships isn't done graphically, as in Par-
adox for Windows or Access, it's still easy to
do, and you can specify referential integrity
at the same time. For referential integrity you
have several choices: cascaded updates and
deletes, to roll out changes to any affected
child records; restricted, to prevent deletion

You manage data through the Clarion for
Windows data dictionary, where you specify
file keys and indexes. Keys are updated auto-
matically during record addition, deletion, or
modification. Indexes have to be built each
time they're accessed.

The data dictionary lets you specify one-
to-many, one-to-one, and many-to-one rela-

of child records; and clear, to clear the value
of a foreign key if changes to the child record
with the primary key are made (clear gener-
ates no referential integrity code).

Clarion is RAD
Clarion for Windows excels at rapid appli-

cation development. It has a QuickStart fea-
ture that lets you create an application with
one table and as many keys as you want with
almost no coding. The application generator
creates a browse window and report for each
key and a data entry screen for the table. You
can then compile this into an application.

QuickStart is fine for new applications, but
it doesn't let you use an existing file as a start-
ing point for a new application. Allowing this
would make converting applications from oth-
er database systems easier. QuickStart is also
limited only to String and Numeric data fields.
I'd like to see support for more field types such
as Memo.

If you do your development without Quick-
Start, you can set up files and screens any way
you want. When you develop an application,
you specify an MDI (multiple document in-
terface) frame-essentially, your main menu
using the menu editor (figure 1). The menu
editor is easy to use and intuitive enough that
you won't use the manuals too often.

After you specify menu choices and proce-
dures to run, you can pull up a tree structure
to see how your application fits together (fig-
ure 2). Double-clicking on a procedure lets
you define it. You can create Windows, Reports,
Browse Boxes, call an external program, or
hand code your procedures. This is where tem-
plates come in. All procedures, except for
hand-coded ones and external programs, are
contained in templates.

These templates are boilerplate source code
modules that tell the application generator how
to create the code for them. As you develop
the procedures, you can jump between the
source code version and the graphical version.
Changes made in one are immediately made
in the other.

In creating your windows, you have the op-
tion of embedding source code in virtually any
location on any control. This is useful for pre
and post-field processing, or for making any
control change its properties or actions based
on conditions. Also, Clarion for Windows
thoughtfully gives you Control Templates, tem-
plates for writing often-used controls, like
buttons.

Since most applications rely heavily on a
pleasing user interface, it's a great advantage

if a development system has a good set of tools
to create interface elements, such as data en-
try screens, browse boxes, etc. Clarion for
Windows as what's called the Window Format-
ter (figure 3), a screen painter that is used as
the starting point for creating your own browse
boxes, data entry screens, popup lists, and re-
ports. That's right; the Window Formatter also
creates reports. Only the underlying template
is different.

The Window Formatter is good, if not spec-
tacular. It has a few minor flaws that make it
less than perfect. One annoyance is apparent
when you try to add more than one field at a
time to a window or report-you can only
choose one field at a time. Although there is a
multiple populate choice, it only allows you
to put down one field. Then you have to choose
another to put on the screen. This becomes tire-
some after a few minutes and is contrary to
the way most DOS and Windows database
management systems work.

Another flaw is the inability to jump from
the Window Formatter to the data dictionary
to add or modify a field. To add fields to a ta-
ble, you have to close what you are doing, then
open the data dictionary. This is both time con-
suming and cumbersome.

Once you've developed all of your proce-
dures, the next step is to compile and link the
app into an EXE file. It's simple; you just click
on the Make toolbar button. You can also use
the Clarion for Windows debugger to help you
keep your program clean. The debugger is one
of Clarion’s best features. It lets you debug as
you run the program or as a separate applica-
tion. The debugger also has a unique feature;
if your program breaks the screen that caused
the problem, the screen is still fully redrawn.
Other Windows debuggers leave the window
only partially complete, thereby making it
more difficult to trace where the problem lies
in the code.

During the compile and link phase, a text
file is produced that tells you exactly what files
you need to give to users in order for them to
run your program. This eliminates any guess-
work on your part. In most cases you'll dis-
tribute the EXE, a database driver DLL, and
the Clarion for Windows runtime DLL. The two
DLL files are typically less than 1M, making
them very efficient for disk space. It's fair to
say most applications you create can be con-
tained on one or two 1.44M disks.

Documentation and help
TopSpeed Corp. came under fire for the poor

quality manuals for Clarion Database Devel-
oper for DOS; this time, they appear to have

learned from their mistakes. The documenta-
tion consists of three manuals: a Language
Reference, a User Guide, and a slim Getting
Started guide hat doubles as a tutorial. There
is no printed template language manual, but
since this is one most users won't use, help
for the template language is provided in an
online Windows help file.

All of the manuals are easy to read with
helpful hints scattered throughout the text on
interface and database design tips. There are
also plenty of screen shots to let you tie the
text with what you see on the screen.
There are five help files that cover everything
from a guide to the example programs to the
template language, to ore than a dozen exam-
ple programs showing the versatility of Clari-
on for Windows. Included are a calculator, strat-
egy game, and a couple of sample database
applications.

Wish list
TopSpeed created a very developer friend-

ly environment with Clarion for Windows. You'll
encounter a few tumbling blocks as you cre-
ate larger applications, but none of them are
large enough to prevent you from creating
mall, fast applications. One stumbling block
is the text editor; it isn't as friendly as ones for
Access or Paradox. You can only open one file

at a time, so cutting and pasting from other
modules or programs can be an exercise in
frustration. On the flip side, most developers
won't spend much time in the editor and will
opt instead for Clarion's IDE.

I'd also like to see TopSpeed add a user-
friendly report generator. As any developer
knows, users want more reports or the ability
to create ad hoc reports after you've designed
an application. The ad hoc reporting capabili-
ty will likely be provided by third-party tool
providers, some of which may include Query
By Example (QBE) templates. Clarion for Win-
dows also needs direct access to more file for-
mats, such as Access. You can access Access
via ODBC, but this is slow and has limits. As
a plus, TopSpeed Corp. sells database drivers
for Oracle, Sybase SQL server, and AS/400,
so client/ server data access isn't an issue.

Quick assessment
Perhaps the highest praise I can give Clarion
for Windows is this: If I were stranded on a
desert island and could only take one Windows
development tool with me, it would be Clari-
on for Windows. Clarion for Windows reminds
me of an advertisement for the game, Othel-
lo: "A minute to learn, a lifetime to master."

C larion for Windows is TopSpeed
Corp.'s new rapid database
application development environ
ment for Windows. This is no

namby-pamby visual programming
environment where your application winds
up using interpreted, tokenized, or
semicompiled code along with a run-time
module. This is the real thing. Clarion is a
hybrid set of development tools consisting
of visual application development utilities,
an event-driven programming language, and
a compiler that creates optimized ex-
ecutables with execution speeds that rival
the output of the best C compilers.
 The DOS version of Clarion already has a
loyal following of database application
developers. If you're one of them, you can
skip straight to the phone number at the end.
Clarion for Windows is a must-have addition
to your development library.

A LANGUAGE LOUD AND CLEAR. For the
rest of you, Clarion for Windows is, like the
DOS product, a superb set of development
tools with which you can quickly whip up
the essential pieces of an application.
TopSpeed had to make some changes in the
language to make Clarion suitable for
Windows development, but the original
language has proved to be surprisingly
adaptable to its new digs. All the core
strengths of the language and utilities that
won converts to the DOS product are still
there.
 Granted, the Clarion language and tools
are difficult to get used to, but once you
begin to master then, you can start churning
out professional-quality applications in short
order. That's what Clarion is about. I used to
be a Clarion developer several years ago,
but I'd forgotten most of what I knew since
then. It took a few days of struggling with
this product to get my lip back. But there
was a point after which I hit that Clarion
stride, where I could start cranking out the
code with unbelievable ease. It will take
new users longer to hit that stride, but it's a
goal worth attaining.

A UTILITARIAN PRODUCT. You can jump right
into Clarion and start coding, compiling, and
debugging with the interactive debugger. Or
you can use some combination of code-
writing and development tools to build your
application.
 The database dictionary utility lets you
define fields, tables, default screen format-
ting for fields, and table relationships that
you expect to use in your application. The
tables you create can be several formats or
combinations of formats, including the
different flavors of dBase, Clipper, FoxPro,
Clarion native, TopSpeed database format,
and Btrieve, to name a few. You can also use
ODBC drivers to connect your Clarion
applications to any SQL database for which
you can find ODBC drivers.
 The hefty Application Generator is a

template-driven code generator for building
a more sophisticated program. Your
application starts with a Windows Multiple
Document Interface frame, and then you
add modules to it as necessary. The
application takes shape as a hierarchical tree
of interconnected code modules. Studying
the code that the Application Generator
creates for each module is a great way to
learn your way around the Clarion language.
 Each time you define a module, you use
the appropriate visual development tool to
paint data entry screens and reports. (You can
use these visual tools even if you hand-code
your application.) Then the Application
Generator uses the appropriate template to
take your screen and build part of the

application around it. The screen
formatter is something like a
dialog box editor. You drop controls
onto the canvas and then define
the properties for them, such as
which field they will display. (Yes,
you can add your own custom
VBX controls.) You can also define
an action to be taken when the
control is used.
 There are several places in the
Application Generator where you
can add snippets of your own
code, so that the code will be
inserted into your application
every time you make modifica-
tions using the Application
Generator. You'll want to work that
way until you're satisfied with the
core of the application, because
once you start modifying the source
modules directly, you won't be able to go
back to the Application Generator without
losing your changes.
 The templates used by the Application
Generator are much like the templates used
in the DOS product. You have a handful of
screen types and control types to choose
from, including browse windows and data
entry windows. There is one catch. The
applications you generate will always have
a typical Clarion look and feel, because the
templates force you to think like the
template designer. It's not a bad look and
feel, but it's always basically the same.
 But as the templates are simply text files,
third-party vendors have the opportunity to
follow up the release of Clarion for Windows
with after-market sales of custom templates.
Or, you could take a month off work, study
the template language yourself, and come
up with your own designs.
 When you're done using the Application
Generator, you have Clarion generate the
code for you. You go into the code and tidy
up, and then use Clarion to compile and link
the code into an optimized application. And
not just any application - one that can run
hundreds of times faster than what you'll get
out of Paradox for Windows, Dbase for
Windows, Microsoft Access, and all the rest.

 Take careful note that we're not talking
about data access speed. That will depend
entirely on the data driver you choose.
What we're talking about here is the sheer
speed of the compiled language. An
application built with Paradox for Windows
can have so much overhead executing
instructions that you can watch your
application load a list box with entries one
by one. The same operation in a Clarion
program is instantaneous.
 That's the beauty of Clarion for Windows.
You get the benefits of a visual environment
with plug-and-play database access without
having to sacrifice the execution speed
you'd get if you wrote your application in C
or C++. I recommend it for anyone who
takes database applications programming
seriously enough to want to use a real
language.
 Clarion for Windows will sell for an
introductory price of $599 for the first 90
days; list price to cost $1,299. It is due to
ship this month. TopSpeed Corp., in
Pompano Beach, Fla., can be reached at
(800) 354-5444 or (305) 785-4555; fax:
(305) 946-1650.

Nicholas Petreley is Executive Editor of
Reviews & Testing.

	Infoworld 8/14/95
	Windows Tech Journal 9/95
	Windows Magazine 8/95
	PC Week 6/26/95
	PC Techniques June/July 95
	DBMS 7/95
	Data Based Advisor 2/95
	Infoworld 10/24/94

