CHAPTER 1 INTRODUCTION 1-1

Template Language Overview Contents |

Clarion for Windows’ Template Language is a flexible script language
complete with control structures, user interface elements, variables, file 1/0,
and more. The Template Language “drives” the Application Generator both
at application design time and during source code generation.

. During application design, the programmer is asked for
specific information about the application being gener-
ated. These prompts for information come directly from
the templates.

. During source code generation, the template is in control
of the source code statements generated for each proce-
dure in the application, and also controls what source
files receive the generated code.

This process makes the Templates completely in control of the Application
Generator. The benefit to the programmer of this is the complete flexibility
to generate code that is directly suited to the programmer’s needs.

WhatTemplates Are

A template is a complete set of instructions, both Template and “target”
language statements, which the Application Generator uses to process the
programmer’s input for application customizations then generate “target”
language (usually, but not limited to, Clarion language) source code.

Clarion’s templates are completely reuseable. They generate only the exact
code required for each specific instance of its use; they do not inherit unused
methods. The templates are also polymorphic, since the programmer
specifies the features and functions of each template that are required for the
procedure. This means one template can generate different functionality
based upon the programmer’s desires.

Some of the most important aspects of template functionality supported by
the Template Language incle:

. Support for controls (#PROMPT) that gather input from
the developer, storing that input in uskfined template
variables (symbols).

. Pre-defined template variables (Built-in Symbols)
containing information from the data dictionary and
Clarion for Windows’ application development environ-
ment.

. Specialized #PROMPT entry types, which give the
programmer a list of appropriate choices for such things
as data file or key selection.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

. Unconditional and conditional control structures (#FOR,
#LOOP, #IF, #CASE) which branch source generation
execution based on an expression or the contents of a
symbol (variable). This allows the Application Generator
to generate only the exact source code needed to produce
the programmer’s desired functionality in their applica-
tion.

. Statements (#EMBED) that define specific points where
the developer can insert (embedhotinsert their own
source code to further customize their application.

. Support for code templates (#CODE), control templates
(#CONTROL), and extension templates (#EXTEN-
SION) that add their specific (extended) functionality to
any procedure template. This makes any procedure type
polymorphic, in that, the procedure can include func-
tionality normally performed by other types of proce-
dures.

Template code is contained in one or more ASCII files (*.TPL or *. TPW)
which the Application Generator pre-compiles and incorporates into the
REGISTRY.TRF file. It is this template registry file that the Application
Generator uses during application design.

Once in the registry, the template code is completely reusable from
application to application. It generates custom source code for each
application based upon the application’s data dictionary and the options
selected by the programmer while working with the Application Generator.

The programmer can customize the templates in the registry (or in the *. TP*
files) to fit their own specific standard design requirements. This means that
each procedure template can be designed to appear exactly as the
programmer requires as a starting point for their applications. Multiple
“default” starting points can be created, so the programmer can have a
choice of starting point designs for each procedure type.

When the programmer has customized the template source (*.TP* file), the
Application Generator automatically updates the registry. When the
programmer has customized the registry, the template source files can be re-
generated from the registry, if necessary.

The Application Generator always makesaopyof the template, as stored in
the registry, when creating a procedure or first populating a procedure with a
code, control, or extension template. Once this copy is made, the
programmer further customizes it to produce exactly the functionality
required by the application for that procedure.

The template language can generate more than source code: it can even be
used to create add-in utilities (see #UTILITY).

CHAPTER 1

INTRODUCTION

Template Types

There are four main types of templates: procedure, code, control, and
extension templates.

. Procedure templates (#PROCEDURE) generate proce-
dures and/or functions in an application. This is the
choice you make when asked to choose the starting point
for a “ToDo” procedure in the Application Generator.

. Code templates (#CODE) generate executable code into
a specific embed point. The developer can only insert
them at an embed point within a procedure. A list of the
available code templates appears from which to choose.

. Control templates (#CONTROL) place a related set (one
or more) of controls on a procedure’s window and
generate the executable source code into the procedure’s
embed points to provide the controls’ standard function-
ality.

. Extension templates (#EXTENSION) generate execut-
able source code into one or more embed points to add
specific functionality to a procedure that is not “tied” to
any window control.

WhatTemplates Do

ITEM(C'

The template code files contain template language statements and standard
“target” language source code which the Application Generator places in
your generated source code files. They also contain the prompts for the
Application Generator which determine the standard customizations the
developer can make to the generated code.

The programmer’s response (or lack of) to the prompts “drives” the control
statements that process the template language code, and produces the logic
that generates the source code. The templates also contain control statement
which instruct the Application Generator how to process the standard code.
The function of a template is to generate the “target” language source code,
customized per the programmer’s response to the prompts and design of the
window or report.

There are some lines of code from templates that are inserted directly into
your generated source code. For example, if you accept a default Copy
command menu item in your application window, the following code is
inserted in your generated source exactly as it appears in the template file:

&Copy'),USE(?Copy),STD(STD:Copy) ,MSG('Copy item to Windows clipboard")
Some of the standard code in the template is a mix of “target” (Clarion)

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

language statements and template language statements. For example, when
the contents of a template variable (symbol) needs to be inserted in the
generated source code, the Application Generator expands the symbol to the
value the application will use, as it generates the source code for the
application. Within the template code, the percent sign (%) identifies a
variable (symbol). In the example below, the Application Generator will fill

in the field equate label for the control as it writes the source code file,
substituting it for the %Control variable:

SELECT(%Control)

To support customizing the template starting point at design time, Clarion’s
template language provides prompt statements that generate the template’s
user interface, so that the Application Generator can query the developer for
the information needed to customize the application. The basic interface
consists of command buttons, check boxes, radio buttons, and entry controls
placed on the Procedure Properties dialog. These statements can also create
custom dialog boxes to gather input from the developer. While working with
the Application Generator, therefore, some of the dialogs and other interface
elements the developer sees are not part of the Application Generator—
rather they are produced by the template.

For example, the following statement displays a file selection dialog from
the application’s data dictionary, then stores the programmer’s choice for a
data file in a variable (symbol) called %MyFile:

##PROMPT(“Pick a file’,FILE),%MyFile

It makes no difference what the programmer names the files and fields, nor
what database driver is selected. The programmer picks them from a file
selection dialog.

The template also contains control structures to instruct the Appfica
Generator on how to generate the code(such as, #IF, #LOOP, #CASE).
These control statements work in the same manner as Clarion language
control structures.

Pre-Processing and Source Code Generation

Before allowing you to create an application using the templates, the
Application Generator pre-processes the template code (.TPL and .TPW)
files. The Application Generator verifies the registry is up to date by testing
the time stamps and file sizes of all the template source code files.

The Application Generator utilizes the templates as stored in binary form in
the registry file, as it gathers customizations from the developer with the
prompts and dialogs available through the Procedure Properties dialog. The
Application Generator stores the template starting point for each procedure
and the customization from the programmer in the .APP file.

CHAPTER 1

INTRODUCTION 1-5

Embed Points

At source code generation time, the Application Generator processes the
application’s procedures as stored in the .APP file against the template, a
second time. Some of the more important steps it uses to produce the source
code are:

. It executes the template language control statements to
process the template and the procedure’s customizations
in the correct order.

. It resolves the template symbols—both built-in and user-
defined.
. It creates the source code files and writes the source

code as generated by the template, line by line, including
the previously evaluated symbols.

. It evaluates embed points and writes the source code, as
embedded by the developer and stored in the .APP file,
in the correct location within the generated source code.

One of the most important template language statements is #EMBED, which
defines an embed point. These extend the structure and functionality of the
procedure template by allowing the programmer to add their own custom
code. The embed points indicate “targ at which the developer can add

their own custom code to the generated source. These are also taes*targ

for the source code generated by control and extension templates.

Each procedure template allows for a certain number of default points at
which embeds are allowed. These are typically points which coincide with
messages (events) from the operating environment (Wisidsuch as when
the end user moves focus from or to a field. The template programmer can
add to, or subtract from, the list.

When the developer customizes the template, pressing the Embeds button in
the Procedure Properties dialog provides access to all the embed points
available in a procedure. The Actions popup menu selection in the Window
Formatter also provides access to the embed points for a specific control.

The developer adds custom code—either hand coded from scratch in the
editor, or created with a code template—at the embed point. The embed
points are also the points into which control templates and extension
templates generate executable code to support their functionality.

The Application Generator stores the embed point’s code (no matter what its
origination) in the .APP file. At code generation time, the Application
Generator processes the template, producing source; when it reaches an
embed point, it places the developer’s code, line by line, into the generated
source code document.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Template Prompts

Input Validation Statements and Prompt Entry types place controls on the
Procedure Properties window or Actions dialog which the developer sees
when using the template to design an application. These range from a simple
string telling the Developer what to do (#DISPLAY), to command buttons,
check boxes, or radio buttons. There are also specialized entry types which
provide the programmer a list of choices for input, such as the data fields in
the dictionary.

Standard Windows controls can be used to get information fromn the
programmer on the Procedure Properties window, the Actions dialog, or
custom prompt dialogs. The common control types—entry field, check box,
radio button, and drop-down list—are all directly supported via the
#PROMPT statement.

#PROMPT places the prompt, the input control, and the symbol in a single
statement. The general format is the #PROMPT keyword, the string to
display the actual prompt, a variable type for the symbol, then the symbol or
variable name. The Application Generator places the prompt and the control
in the Procedure Properties or Actions dialog (depending on whether the
prompt comes from a the procedure template or a code, control, or extension
template). When the developer fills the control with a value, then closes the
dialog, the symbol holds the value.

The #BUTTON statement provides additional “space” for developer input
when there is more developer input required than can fit in the one dialog.
This places a button in the dialog, which displays an additional custom
dialog when pressed. The additional dialogs are called “prompt pages.’

#ENABLE allows prompts to be conditionally enabled based on the
programmer’s response to some other prompt. #BOXED supports logical
grouping of related prompts. Once the programmer has input data into a
prompt, the #VALIDATE statement allows the template to check its validity.

These tools provide a wide range of flexibility in the type of information a
template can ask the programmer to provide. They also provide multiple
ways to expedite the programmer’s job, by providing “pick-lists” from
which the programmer may choose wherever appropriate.

CHAPTER 1 INTRODUCTION

Data Dictionary Interface

The templates use information from the Data Dictionary extensively to
generate code specifically for the declared database. There are several
symbols that specifically give the templates access to all the declarations:
%File, %Field, %Key, and %Relation. These, and all the symbols related to
them, give the templates access to all the ifnormation in the Data Dictionary.

Pay special attention to the %FileUserOptions, %FieldUserOptions,
%KeyUserOptions, and %RelationUserOptions symbols. These are the
symbols that contain the values the user enters iddéeOptions text
control on theDptions tab of theFile Properties , Field Properties , Key
Properties , andRelation Properties dialogs. This can be a powerful tool to
customize any output from the Data Dictionary.

The best way to use these %UserOptions symbols is to set them up so the
user enters their custom preferences which your template supports in the for
of attributes with parameters, with each attribute separated by a comma.
This gives them the same appearance as Clarion language data structure
attributes. By doing this, you can use the EXTRACT built-in template
function to get the value from the user. For example, if the user enters the
following in aUser Options for a field:

MYCUSTOMOPTION(On)
The template code can parse this using EXTRACT:

#IF(EXTRACT(%FieldUserOptions, MYCUSTOMOPTION’.1) = On)
#!Do Something related to this option being turned on
JFENDIF

This is a very powerful tool, which allows for infinite flexibility in the way
your custom templates generate source code.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Template Structure

Template Source Format

The structure of the ASCII template source file is different than the structure
of a Clarion source file. To read the ASCII source for a template, start out
with the following guidelines:

. Any statement beginning with a pound symbol (#)
identifies a template language statement.
. A percent sign (%) before an item within any statement

(template or “target” language) identifies a template
symbol (variable), which the Application Generator
processes at code generation time.

. Any statement that begins without the pound (#) or
percent (%) is a “target” language statement which is
written directly into a source code file.

The template files are organized by code sections that terminate with the
beginning of the next section or the end of the file. The template code
generally divides into ten sections.

. #TEMPLATE begins a template set (template class).
This is the first statement in the template set (required)
which identifies the template set for the registry.

. #APPLICATION begins the source generation control
section. This is the section of the template that controls
the “target” language code output to source files, ready
to compile. One registered template set must have a
#APPLICATION section.

. #PROGRAM begins the global section of the generated
source code, the main program module. One registered
template set must have a #PROGRAM section.

. #MODULE begins a template section that generates the
beginning code for a source code module other than the
global (program) file. One registered template set must
have a #MODULE section.

. #PROCEDURE begins a procedure template. This is the
fundamental “target” language procedure or function
generation template.

. #GROUP begins a reusable statement group containing
code which may be #INSERTed into any other section of
the template. This is the equivalent of a template lan-
guage procedure or function.

CHAPTER 1

INTRODUCTION 1-9

. #CODE begins a code template section which generates
executable code into a specific embed point. The devel-
oper can only insert them at an embed point within a
procedure. A list of the available code templates appears
from which to choose.

. #CONTROL begins a control template. Control tem-
plates place a related set (one or more) of controls on a
procedure’s window and generate the executable source
code into embed points that provides the controls’
standard functionality.

. #EXTENSION begins an extension template. Extension
templates generate executable source code into one or
more embed points of a procedure to add specific
functionality to the procedure that is not “tied” to any
window control.

. #UTILITY begins a utility execution section.This is an
optional section of the template that performs a utility
function, such as cross-reference or documentation
generation. This is similar to #APPLICATION in that it
generates output to ASCII files.

A template set must have a #TEMPLATE section to name the set for
registration in the REGISTRY.TRF template registry file. At least one
registered template set must have #APPLICATION, #PROGRAM, and
#MODULE sections.

TheTemplate Registry File

The Template Registry file (REGISTRY.TRF) is a specialized data
repository which stores template code and defaults in binary form. All the
template elements available in the Application Generator come from the
registry. As you add elements from the template into your application, the
Application Generator retrieves the code from the registry then stores it
along with your customizations, in the .APP file.

Storing the templates in a binary registry provides these advantages:

. Quick design-time performance.

. The ability to update the defaults in the registry using
standard application development tools (such as the
Window Formatter). For example, you can modify a
procedure template’s default window without writing
template source code.

The sources for the REGISTRY.TRF are the template code files (.TPL and
.TPW) which are installed in the TEMPLATE subdirectory. The Application
Generator can read and register .TPL files, adding it to the template registry

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

tree. The .TPW files usually contain additional procedure or code template
source, which is processed along with the .TPL file by the #INCLUDE
statement in the .TPL file. This allows the template author to logically
separate disparate template components.

The default template file for Clarion for Windows is CW.TPL. This file uses

the #INCLUDE statement to specify processing the the other .TPW files
which appear in the \CW\TEMPLATE directory.

Customizing DefaultTemplates

There are two methods for customizing the templates:

. You can edit the template source code in the .TPL and
.TPW files.

It is always a good idea to make a backup copy before making any
modifications to the shipping templates

When directly editing the template source code, you can change the type of
source code it generates, or the logic it uses to generate the code. This is
how you can make your templates generate source code the way you would
write it if you were hand-coding the application.

You can also extend the functionality of the templates by adding your own
features. For example, you may want to add prompts to each procedure
template that allow you to generate a “comment block” at the beginning of
each procedure containing procedure maintenance comments from the
programmer maintaining the application.

Adding the following code to the end of any existing template set
acccomplishes this modification:

#EXTENSION(CommentBlock, "Add a comment block to the procedure'),PROCEDURE
#PROMPT('Comment Line',@S70),%MyComment ,MULTI('Programmer Comments')
fFATSTART
J#FOR(%MyComment)
1%MyComment
J#FENDFOR
FFENDAT

This code adds an extension template that is available for any procedure in
the application. When you design your procedure, add the CommentBlock
extension template to the procedure, then add comments to the Comment
Line prompt each time you modify the procedure. At source generation time,
each comment line will appear following an exclamation point (!). The block
of comments appears in the code just before the PROCEDURE or
FUNCTION statement.

If you want this extension to be used in all the procedures you write, go into

CHAPTER 1

INTRODUCTION 1-11

the Template Registry and add the extension to all the default procedures for
each procedure template. This way, you can make sure it is always used, anc
you can even place its prompts on the Procedure Properties dialog by
checking the Show on &perties box as you add the extension to the
procedure template.

Once you make the changes, either choos&¢iep[] Template Registry
menu selection, open an existing application, or create a hew application.
Make sure the Re-register When Changed box is checked in the Registry
Options dialog. The Application Generator automatically pre-processes the
templates to update the registry when you have made changes to the
template code files.

. You can add to or edit the default user interface proce-
dure template elements—such as the standard window
designs and report layouts, or your standard global and
local data variables—using the Template Registry.

When you highlight a procedure template in the Template Registry and press
the Properties button, the Procedure Properties dialog appears, without all
the custom prompts you would normally see when developing an
application. Any button which is not dimmed in the Template Registry is
available to you to create the default starting point for the procedure.

You can set up the procedure for the starting point that will get you furthest
toward a complete procedure while requiring the least amount of
customization from you at application design time. If the procedure allows
it, you may use the window and report formatters, or define additional data,
by pressing the appropriate buttons.

Once you've customized your template registry, you can alsoreyour
customizations to template source code files. This is useful for sharing your
customizations with other developers.

To update the template source code with the customizations made in the
Template Registry, press the Regenerate button in the Template Properties
dialog. This updates the .TPL and .TPW files with the changes made.

1-12 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Adding New Template Sets

Adding another set of templates, whether from a third-party vendor or
templates you have written yourself, is a very simple process. There is only
one requirement for the new template set; a #TEMPLATE statement to
identify the set for the template registry. Of course, it also needs to have the
specific procedure, code, control, and extension templates to add to the
template registry.

For example, the following code is completely valid as a template set with
nothing else added:

#fITEMPLATE(PersonalAddOns, 'My personal Template set')
ffCODE(ChangeProperty, 'Change control property')

#PROMPT('Control to change',CONTROL),%MyField,REQ

#PROMPT('Property to change',@S20),%MyProperty,REQ

#PROMPT('New Value',@S20),%MyValue,REQ
%MyField{%MyProperty} = %'MyValue f#,<!Change the %MyProperty of %MyField

When you register this template set, it will appear in the template registry as
Class PersonalAddOns containing just the ChangeProperty code template.

Once a template set is registered in the template registry, all its components
are completely available to the programmer for their application
development, along with all the components of all other registered template
sets. This allows the programmer the flexibility to “mix-and-match” their
components during development.

For example, the programmer could create a procedure from a procedure
template in the standard Clarion template set, populate it with a control
template from a third-party vendor, insert a code template into an embed
point from another third-party vendor, then add an extension template from
their own personally written template set. At source generation time, all
these separate components come together to create a fully functional
procedure that performs all the tasks required by the programmer (and
nothing else). This is the real power behind Clarion’s Template-oriented
programming!

CHAPTER 2 TEMPLATE ORGANIZATION 2-1

Template Code Sections Contens |
#TEMPLATE (begin template set)

#TEMPLATE(name, description)

#TEMPLATE Begins the Template set.

name The name of the Template set which uniquely identifies
it for the Template Registry and Template Language
statements. This must be a valid Clarion label.

description A string constant describing the Template set for the
Template Registry and Application Generator.

The#TEMPLATE statement marks the beginning of a Template set. This
should be the first non-comment statement in the Template file.

The Template Registry allows multiple Template sets to be registered for the
Application Generator. Each Template Code Section (#APPLICATION,
#PROGRAM, #MODULE, #PROCEDURE, #CONTROL, #CODE,
#EXTENSION, and #GROUP) within a Template is uniquely identified by

its #TEMPLATE statementsameand the name of the section. This allows
different Template sets to contain Template Code Sections with names that
duplicate those in other Template sets without ambiguity, and allows the
programmer to concurrently use Template sets from multiple sources to
generate applications.

Example:

#TEMPLATE(SampleTemplate,’This is a sample Template’)
#FINCLUDE(‘FileTwo.TPX")
#INCLUDE(‘FileThree.TPX")

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#APPLICATION (source generation control section)

Example:

#APPLICATION(description) [, HLP(helpid)]

#APPLICATION Begins source generation control section.

description A string constant describing the application section.
HLP Specifies on-line help is available.
helpid A string constant containing the identifier to access the

Help system. This may be either a Help keyword or
“context string.”

The #APPLICATION statement marks the beginning of a source generation
control section. The section is terminated by the next Template Code Section
(#PROGRAM, #MODULE, #PROCEDURE, #CONTROL, #CODE,
#EXTENSION, #UTILITY, or #GROUP) statement. The Template

statements contained in this section control the source generation process.
Only one #APPLICATION section is allowed in a single Template set.

Actual source generation is done by the #GENERATE statement.

Any User-defined symbols defined in the #APPLICATION section are
available for use in any Template Code Section that is generated. Any
prompts in this section are placed on the Global Properties window and have
global scope.

fFAPPLICATION(‘Example Application Section’) ##!Generate entire application
#PROMPT(‘Enable &Shared Files’,CHECK),%SharedFiles
#PROMPT(‘Close Unused &Files’,CHECK),%CloseFiles,DEFAULT(1)
#BUTTON(“.INI File Settings’)
#PROMPT(‘Use .INI file’,CHECK),%INIActive,DEFAULT(1)
FFENABLE(%INIActive)
#PROMPT(*.INI File to use’,DROP,’Program Name.INI|Other’),%INIFile
fFENABLE(%INIFile="0ther”)
#PROMPT(“File Name’,@S40),%ININame

FFENDENABLE
#PROMPT(‘Save Window Locations’,CHECK),%INISaveWindow,DEFAULT(1)
#ENDENABLE

FFENDBUTTON
i#!
##l——Global Template Declarations.
#MESSAGE(“‘Generating ¢ & %Application,0) #! Open the Message Box
#IDECLARE(%FilesUsed),UNIQUE,MULTI #! Label of every file used
#IDECLARE(%FilePut,%FilesUsed) #! “Yes” for RI PUT used
#IDECLARE(%FileDelete,%FilesUsed) #! “Yes” for RI DELETE used

#DECLARE (%ModuleFilesUsed,%Module) ,UNIQUE,MULTI,SAVE #!Name of file used in module
#DECLARE(%ModuleFilePut,%ModuleFilesUsed),SAVE #! “Yes” for RI PUT used
#DECLARE (%ModuleFileDelete,%ModuleFilesUsed),SAVE #! “Yes” for RI DELETE used

#DECLARE(%IniFileName) #! Used to construct INI file
#DECLARE (%ModuleProcs,%Module) ,MULTI,SAVE,UNIQUE #! Program MAP prototype
#DECLARE (%ModulePrototype,%ModuleProcs) #! Module MAP prototype
#DECLARE (%AccessMode) #! File open mode equate

#DECLARE(%BuildFile) #! Construction filename
i#!

CHAPTER 2

TEMPLATE ORGANIZATION

See Also:

##l—————Initialization Code for Global User-defined Symbols.
#IF(%SharedFiles) #! IF Shared Files Enabled
#SET(%AccessMode, "42h”) #! default access ‘shared’
fFELSE ##! ELSE (IF NOT Shared Files ..)
#SET(%AccessMode, *22h”) #! default access ‘open’
fFENDIF #! END (IF Shared Files ...)
#IF(%INIFile = ‘Program Name.INI’) #! IF using program.ini
#SET(%INIFileName, %Application & ‘.INI’) #! SET the file name
#FELSE #! ELSE (IF NOT using
Program.ini)
#SET(%INIFiTleName,%ININame) #! SET the file name
JFENDIF #! END (IF using program.ini)
i#!
f##l——— Main Source Code Generation Loop.

#DECLARE(%GlobalRegenerate)

#! Flag that controls generation

#IF(~%ConditionalGenerate OR %DictionaryChanged OR %RegistryChanged)

#SET(%GTlobalRegenerate,%True)
FFELSE
#SET(%G1obalRegenerate,%False)
fFENDIF
#SET(%BuildFile, (%Application & “.TM$"))
#FOR(%Module), WHERE (%Module <> %Program)
#MESSAGE(“‘Generating Module: ‘ & %Module,
J#IF(%ModuleChanged OR %GlobalRegenerate)

#FREE(%ModuleProcs)

#FREE(%ModuleFilesUsed)

#CREATE(%BuildFile)

#FOR(%ModuleProcedure)
#FIX(%Procedure,%ModuleProcedure)
#MESSAGE(‘Generating Procedure:
JFGENERATE(%Procedure)

fFENDFOR

#CLOSE(%BuildFile)

#CREATE(%Module)

#GENERATE (%Module)

F#APPEND(%BuildFile)

#CLOSE(%Module)

fFENDIF
fIENDFOR
#FIX(%Module,%Program)
#MESSAGE(‘Generating Module:
#FREE(%ModuleProcs)
#FREE(%ModuleFilesUsed)
ffCREATE(%BuildFile)
#FOR(%ModuleProcedure)
#FIX(%Procedure,%ModuleProcedure)
#MESSAGE(‘Generating Procedure:
#GENERATE (%Procedure)
fIENDFOR
fiCLOSE()

#GENERATE

‘ & %Procedure, 2) #!

‘ & %Module, 1)

‘ & %Procedure,

#! Generate Everything

#! ELSE (If no global change)
#! Generate changed modules only
#! END (IF Global Change)

#! Make temp program filename
#! For all member modules

#! Post generation message

#! IF module to be generated

##! Clear module prototypes

#! Clear files used

f#! Create temp module file

#! FOR all procs in module

#! Fix current procedure

Post generation message
#! Generate procedure code

#! END (For all procs in module)
#! Close last temp file

#! Create a module file

#! Generate module header

#! Append the temp mod file

#! Close the module file

#! END (If module to be...)

#! END (For all member modules)
#! FIX to program module

#! Post generation message

#! Clear module prototypes

#! Clear files used

#! Create temp module file

#! For all procs in module

#! Fix current procedure

2) #! Post generation message
#! Generate procedure code

#! EndFor all procs in module
#! Close last temp file

2-4 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#PROGRAM (global area)

#PROGRAM(name, description [, target, extension]) [, HLP(helpid)]

#PROGRAM Defines the beginning of the main program module.

name The name of the #PROGRAM which identifies it for the
Template Registry and Template Language statements.
This must be a valid Clarion label.

description A string constant describing the #PROGRAM section
for the Template Registry and Application Generator.

target A string constant that specifies the source language the
Template generates. If omitted, it defaults to Clarion.

extension A string constant that specifies the source code file
extension for thearget If omitted, it defaults to .CLW.

HLP Specifies on-line help is available.

helpid A string constant containing the identifier to access the

Help system. This may be either a Help keyword or
“context string.”

The #PROGRAM statement defines the beginning of the main program
module of the Template. The #PROGRAM section is terminated by the next
Template Code Section (#MODULE, #PROCEDURE, #CONTROL,
#CODE, #EXTENSION, or #GROUP) statement encountered, or the end of
the file. Only one #PROGRAM section is allowed in a Template set.

#BUTTON, #PROMPT, and #DISPLAY statements are not valid within a
#PROGRAM section. Global prompts go in the #APPLICATION section.

Example:

#PROGRAM(CLARION, *Standard Clarion Shipping Template’)
PROGRAM IPROGRAM statement required
INCLUDE(‘Keycodes.clw’)
INCLUDE(“Errors.clw’)
INCLUDE(‘Equates.clw’)

CHAPTER 2 TEMPLATE ORGANIZATION

#MODULE (module area)
#MODULE(name, description|, target, extension]) [, HLP(helpid)] [EXTERNAL]
#MODULE Begins the module section.
name The name of the Module which identifies it for the

Template Registry and Template Language statements.
This must be a valid Clarion label.

description A string constant describing the #MODULE section for
the Template Registry and Application Generator.

target A string constant that specifies the source language the
Template generates. The word “EXTERNAL” is conven-
tion adopted to indicate an external source or object
module. If omitted, it defaults to Clarion.

extension A string constant that specifies the source code file
extension for thearget If omitted, it defaults to .CLW.

HLP Specifies on-line help is available.

helpid A string constant containing the identifier to access the
Help system. This may be either a Help keyword or
“context string.”

EXTERNAL Specifies no source generates into the module.

The#MODULE statement defines the beginning of the section of the
template which puts data into each generated source module’s data area. Th
#MODULE Section is terminated by the next Template Code Section
(#PROGRAM, #MODULE, #PROCEDURE, #CONTROL, #CODE,
#EXTENSION, or #GROUP) statement encountered, or the end of the file.

A Template set may contain multiple #MODULE statements.

Code generated by a #MODULE section is (usually) placed at the beginning
of a source code file generated by the Application Generator.

#BUTTON, #PROMPT, and #DISPLAY statements are not valid within a
#MODULE section.

Example:

#MODULE(External0OBJ, 'External .0BJ module’,’EXTERNAL’,’.0BJ’),EXTERNAL
#MODULE(ExternalLIB, External .LIB module’,”EXTERNAL’,’.LIB”),EXTERNAL
#MODULE(GENERATED,’Clarion MEMBER module’)

MEMBER(‘%Program’) IMEMBER statement is required
%ModuleData #!Data declarations Tocal to the Module

2-6

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#PROCEDURE (begin a procedure template)

Example:

#PROCEDURE(name, description [, target]) [, REPORT] [, WINDOW] [, HLP(helpid)]
[, PRIMARY(message [, flag])] [, QUICK(wizard)]

#PROCEDURE Begins a procedure template.

name

description
target

REPORT
WINDOW

HLP
helpid

PRIMARY
message

flag

QUICK

wizard

The label of the procedure template. This must be a valid
Clarion label.

A string constant describing the procedure Template.

A string constant that specifies the source language the
template generates. If omitted, it defaults to Clarion.

Tells the Application Generator to make the Report
Formatter available.

Tells the Application Generator to make the Window
Formatter available.

Specifies on-line help is available.

A string constant containing the help identifier. This may
be either a Help keyword or “context string.”

Specifies at least one file must be placed in the
procedure’s File Schematic.

A string constant containing a message that appears in
the File Schematic next to the procedure’s Primary file.

If present, contains OPTIONAL (the file is not required),
OPTKEY (the key is not required), or NOKEY (the file
is not required to have a key).

Specifies the procedure has a wizard #UTILITY that
runs when théJse Procedure Wizard box is checked.

The identifier (including template class, if necessary) of
the wizard #UTILITY template.

The #PROCEDURE statement begins a Procedure template. A Procedure
template contains the Template datjetlanguage statements used to
generate the source code for a procedure within your application. A
#PROCEDURE section is terminated by the first occurrence of a Template
Code Section (#PROGRAM, #MODULE, #PROCEDURE, #CONTROL,
#CODE, #EXTENSION, or #GROUP) statement, or the end of the file.
Within a Template set you may have multiple #ROCEDURE sections, but
they must all have unigueameparameters.

#PROCEDURE(ProcNamel,*This is a sample window procedure’),WINDOW
##PROCEDURE(ProcName2, 'This is a sample report procedure’),REPORT
#PROCEDURE(ProcName3, 'This is a sample anything procedure’),WINDOW,REPORT
#PROCEDURE (Browse, 'List with Wizard'),WINDOW,QUICK(BrowseWizard(Wizards))

CHAPTER 2 TEMPLATE ORGANIZATION

#GROUP (reusable statement group)

#GROUP(symbol [, [type] parameters]) [, AUTO] [, HLP(helpid)]

#GROUP Begins a section of template code that may be inserted
into another portion of the template.

symbol A user-defined symbol used as the #GROUP’s identifier.

type The data type of a passpdrameter LONG, REAL,

STRING, or * (asterisk). An asterisk (*) indicates it is a
variable-parameter (passed by address), whose value
may be changed by the #GROUP. LONG, REAL, and
STRING indicates it is a value-parameter (passed by
value), whose value is not changed by the #GROUP. If
typeis omitted, theparameteris a passed as a STRING.

parameters Userdefined symbols by which values passed to the
#GROUP are referenced. You may pass mulpplam-
eters each separated by commas, to a #GROUP. All
specifed parameteranust be passed to the #GROUP;
they may not be omitted.

AUTO Opens a new scope for the group. This means that any
#DECLARE statements in the #GROUP would not be
available to the #PROCEDURE being generated. Pass-
ing parametergo a #GROUP implicitly opens a new

scope.
HLP Specifies on-line help is available.
helpid A string constant containing the identifier to access the

Help system. This may be either a Help keyword or
“context string.”

#GROUP defines the beginning of a section of code which is generated into
the source. A #GROUP section may contain Template and/or target language
code. The #GROUP section is terminated by the first occurrence of a
Template Code Section (#PROGRAM, #MODULE, #PROCEDURE,
#CONTROL, #CODE, #EXTENSION, or #GROUP) statement, or the end

of the file. Within a single Template, separate #GROUP sections may not be
defined with the samg&ymbol The parametergpassed to a #GROUP fall

into two categoriesialue-parametersandvariable-parameters.

Value-parametersare declared as user-defined symbols, with an optional
typeand are “passed by value” (a copy of the value is pagstayr

symbols or expressions may be passed as value-parameters. When a multi-
valued symbol is passed as a value-parameter, only the current instance is
passed.

Variable-parameters are declared as user-defined symbols with a
prepended asterisk)((and natypg. A variable-parameter is “passed by
address” and any change to its value by the #GROUP code changes the valu

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:

See Also:

of the passed symbol. Only symbols may be passed to a #GROUP as
variable-parameters. When a multi-valued symbol is passed as a variable-
parameter, all instances are passed.

The statements contained in the #GROUP section are generated by the
#INSERT statement. A #GROUP may contain #EMBED statements to
define embedded source code points.

#GROUP(%GenerateFormulas) #!A {#fGROUP without parameters
#FOR(%Formula)
#IF(%FormulaComputation)
%Formula = %FormulaComputation
JELSE
IF(%FormulaCondition)
%Formula = %FormulaTrue
ELSE
%Formula = %FormulaFalse
END
fFENDIF
fFENDFOR
#GROUP(%ChangeProperty,%MyField,%Property,%Value)
#!A #GROUP that receives parameters
%MyField{%Property} = ‘%Value’ #<!Change the %Property of %MyField

#GROUP (%SomeGroup, * %VarParm, LONG %ValParm)
#!A #GROUP that receives a variable-parameter and a value-parameter

#INSERT

CHAPTER 2 TEMPLATE ORGANIZATION

#UTILITY (utility execution section)

#UTILITY(name, description) [, HLP(helpid)] [, WIZARD]

#UTILITY Begins a utility generation control.

name The name of the #UTILITY which identifies it for the
Template Registry. This must be a valid Claridrela

description A string constant describing the utility section.

HLP Specifies on-line help is available.

helpid A string constant containing the identifier to access the

Help system. This may be either a Help keyword or
“context string.”

WIZARD Specifies the #UTILITY is used as a Wizard to generate
a procedure or a complete application.

The#UTILITY statement marks the beginning of a utility execution control
section. The section is terminated by the next Template Code Section
(#PROGRAM, #MODULE, #PROCEDURE, #CONTROL, #CODE,
#EXTENSION, #UTILITY, or #GROUP) statement. The Template
statements contained in this section control the utility execution process.
Multiple #UTILITY sections are allowed in a single Template set.

The #UTILITY section is very similar to the #APPLICATION section, in
that it allows you to produce output from the application. The purpose of
#UTILITY is to provide extensible supplemental utilities for such things as
program documentation, or a tree diagram of procedure calls. The list of
registered utilities appears in the Utilities menu in the Clarion for Windows
environment.

#UTILITY with the WIZARD attribute specifies it contains a #SHEET with
#TABs that display one tab at a time, guiding the user through the prompts.

Example:

#UTILITY(ProcCallTree, ‘Output procedure call tree’)
J#ICREATE (%Application & *.TRE”)
Procedure Call Tree: for %Application
#INSERT(%DisplayTree, %FirstProcedure, “’, ¢)
#iCLOSE
! khhkkkhkkhkhkhkhkhkhkkhkkhkkhkkhkhhkhkhkhkhkkhkkhkhhhhkhkhkhkhkkhkhkhhkhkhkhkhkhkkhkkhkhhkhkhkhkhkhkhkkhkhkhhkhkhhkhkixkx
#GROUP(%DisplayTree, %ThisProc, %Level, %NextIndent)
#FIX(%Procedure, %ThisProc)
%Level+-%ThisProc (%ProcedureTemplate)
##FOR(%ProcedureCalled)
#LF(INSTANCE(%ProcedureCalled) = ITEMS(%ProcedureCalled))

#INSERT(%DisplayTree, %ProcedureCalled, %lLevel & %NextIndent, ¢)
fFELSE

#INSERT(%DisplayTree, %ProcedureCalled, %Level & %NextIndent, ‘| *)
fFENDIF

J#/ENDFOR

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#CODE (define a code template)

#CODE(name,description [,target])[, SINGLE][, HLP(helpid)] [, PRIMARY(message [, flag])]
[, DESCRIPTION(expression)][, ROUTINE]
[, REQ(addition[, | BEFORE |])]1[| FIRST |]
| AFTER | | LAST |

#CODE
name

description

target

SINGLE

HLP
helpid
PRIMARY
message

flag

DESCRIPTION

expression
ROUTINE

REQ

Begins a code template that generates source into an
embedded source code point.

The label of the code template. This must be a valid
Clarion label.

A string constant describing the code template. The total
number of characters in the #CODE statement must be
less than 255. Therefore, tHescriptionmust not be so
long that the entire #CODE statement exceeds this limit.

A string constant that specifies the source language the
code template generates. If omitted, it defaults to
Clarion. This restricts the #CODE to matchtagget
language use, only.

Specifies the #CODE may be used only once in a given
procedure (or program, if the embedded source code
point is global).

Specifies on-line help is available.

A string constant containing the identifier to access the
Help system. This may be either a Help keyword or
“context string.”

Specifies a primary file for the code template must be
placed in the procedure’s File Schematic.

A string constant containing a message that appears in
the File Schematic next to the #CODE’s Primary file.

Either OPTIONAL (the file is not required), OPTKEY
(the key is not required), or NOKEY (the file is not
required to have a key).

Specifies the display description of a #CODE that may
be used multiple times in a given application or proce-
dure.

A string constant or expression that contains the descrip-
tion to display.

Specifies the generated code is not automatically in-
dented from column one.

Specifies the #CODE requires a previously placed
#CODE, #CONTROL, or #EXTENSION before it may
be used. It also means all prompts and variables of the

CHAPTER 2

TEMPLATE ORGANIZATION

Example:

requiredadditionare available to it.

addition The name of the previously placed #CODE, #CON-
TROL, or #EXTENSION template, from any template
set.

BEFORE Specifies the code is generated before the code is
generated for thaddition

AFTER Specifies the code is generated after the code is gener-
ated for theaddition

FIRST Specifies the code is generated at the beginning of the
embedded source code point, before any other code.

LAST Specifies the code is generated at the end of the embed-

ded source code point, after any other code.

#CODE defines the beginning of a code template which can generate code
into embedded source code points. A #CODE section may contain Template
and/or target language code. The #CODE section is terminated by the first
occurrence of a Template Code Section (#PROGRAM, #MODULE,
#PROCEDURE, #CONTROL, #CODE, #EXTENSION, or #GROUP)
statement, or the end of the file. Within a single Template set, separate
#CODE sections may not be defined with the saamae

#CODE generates its code into a #EMBED embedded source code point.
The generated code is automatically indented when placed in ROUTINES,
unless the ROUTINE attribute is present. A #CODE section may contain
#PROMPT statements to prompt for the values needed to generate proper
source code. It may also contain #EMBED statements, which become active
only if the #CODE section is used.

You can use the #WHERE statement to limit the availability of the #CODE
to those embedded source code points where the generated code would be
appropriate. A #CODE may contain multiple #WHERE statements to
explicitly define all the valid embedded source code points in which it may
appear. #RESTRICT can also further restrict the availability of the #CODE
based on an expression or Template language statements.

The #AT/HENDAT structure allows a single #CODE to generate code into
multiple embedded source code points to support its functionality.

#fCODE(ChangeProperty,’Change control property’)
JWHERE (%SetupWindow. .%ProcedureRoutines) #!Appropriate only after window open
#PROMPT(‘Control to change’,CONTROL),%MyField,REQ
#PROMPT(“Property to change’,@520),%Property,REQ
#PROMPT(“‘New Value’,@S20),%Value,REQ
%MyField{%Property} = ‘%Value’ #<!Change the %Property of %MyField

See Also:

#EMBED, #WHERE, #RESTRICT, #AT

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#CONTROL (define a control template)

#CONTROL(name, description) [, MULTI] [, PRIMARY(message [, flag])]
[, WINDOW] [, REPORT]
[, REQ(addition[, | BEFORE |1)[, | FIRST |][, DESCRIPTION(expresion)]]

| AFTER | | LAST |
CONTROLS
control statements [, #REQ]
END

#CONTROL Begins a code template that generates a set of controls
into a window and the source code required to manipu-
late them into embedded source code points.

name The label of the control template. This must be a valid
Clarion label.

description A string constant describing the control template. The
total number of characters in the #CONTROL statement
must be less than 255. Therefore, diescriptionmust
not be so long that the entire #CONTROL statement
exceeds this limit.

MULTI Specifies the #CONTROL may be used multiple times
in a given window.

PRIMARY Specifies a primary file for the set of controls must be
placed in the procedure’s File Schematic.

message A string constant containing a message that appears in
the File Schematic next to the #CONTROL'’s Primary
file.

flag Either OPTIONAL (the file is not required), OPTKEY

(the key is not required), or NOKEY (the file is not
required to have a key).

WINDOW Tells the Application Generator to make the #CON-
TROL available in the Window Formatter. This is the
default setting if both WINDOW and REPORT are
omitted.

REPORT Tells the Application Generator to make the #CON-
TROL available in the Report Formatter. If omitted, the
#CONTROL may not be placed in a REPORT.

REQ Specifies the #CONTROL requires a previously placed
#CODE, #CONTROL, or #EXTENSION before it may
be used.

addition The name of the previously placed #CODE, #CON-
TROL, or #EXTENSION.

BEFORE Specifies the code is generated before the code is

generated for thaddition

CHAPTER 2

TEMPLATE ORGANIZATION 2-13

AFTER Specifies the code is generated after the code is gener-
ated for theaddition

FIRST Specifies the code is generated at the beginning of the
embedded source code point, before any other code.

LAST Specifies the code is generated at the end of the embed-

ded source code point, after any other code.

DESCRIPTION Specifies the display description of a #CONTROL that
may be used multiple times in a given application or
procedure.

expression A string constant or expression that contains the descrip-
tion to display.

CONTROLS Specifies theontiols for the #CONTROL, and must be
terminated with an END statement. This is a “pseudo-
Clarion keyword” in that, if you replace the CON-
TROLS statement with a WINDOW statement, you can
use the Text Editor’'s Window Formatter to create the

controls

controls Window control declarations that specifiy the control set
belonging to the #CONTROL.

#REQ Specifies theontrol is required. If deleted from the

window or report, the entire #CONTROL (including all
its controlg is deleted.

#CONTROL defines the beginning of a code template containing a
“matched set” of controls to populate into a window or report as a group. It
also generates the source code required for their correct operation into
embedded source code points. A #CONTROL section may contain Template
and/or target language code. The #CONTROL section is terminated by the
first occurrence of a Template Code Section (#PROGRAM, #MODULE,
#PROCEDURE, #CONTROL, #CODE, #EXTENSION, or #GROUP)
statement, or the end of the file. Within a single Template set, separate
#CONTROL sections may not be defined with the saarmae

#CONTROL generates the code to operatedtstrolsinto #EMBED

embedded source code points using the #AT/#ENDAT structure.
#RESTRICT can restrict use of the #CONTROL based on an expression or
Template language statements.

A #CONTROL section may contain #PROMPT statements to prompt for the
values needed to generate proper source code. These prompts appear on the
Actions window in the environment. It may also contain #EMBED

statements which become active only if the #CONTROL section is used.

Thex andy parameters of the AT attribute of tbentrolsin the #CONTROL

set determine the positioning of tbentrol relative to the last control in the
#CONTROL set placed on screen (or relative to the window, if first). If these
parameters are omitted, the programmer is prompted for the position to

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

place thecontmol. This makes it simple to populate an entire setawitrols
without requiring the programmer to place each one individually.

Example:

#CONTROL(BrowselList, 'Add Browse List controls’)
#PROMPT(“Al1ow Inserts’,CHECK),%InsertAllowed,DEFAULT(1)
FENABLE (%InsertAllowed)
#PROMPT(“Insert Hot Key’,@s20),%InsertHotKey,DEFAULT(‘InsertKey’)
FFENDENABLE
#PROMPT(“Al11ow Changes’,CHECK),%ChangeAllowed,DEFAULT(1)
FENABLE (%ChangeAllowed)
#PROMPT(‘Change Hot Key’,@s20),%ChangeHotKey,DEFAULT(‘CtrlEnter”)
FFENDENABLE
JIPROMPT(“‘AT1ow Deletes’,CHECK),%DeleteAllowed,DEFAULT(1)
#ENABLE (%DeleteAllowed)
#PROMPT(‘Delete Hot Key’,@s20),%DeleteHotKey,DEFAULT(‘DeleteKey’)
FFENDENABLE
#PROMPT(‘Update Procedure’,PROCEDURE),%UpdateProc
CONTROLS
LIST,AT(,,270,99),USE(?List),IMM, FROM(Queue:Browse),#REQ
BUTTON(“Insert’),AT(,,40,15),KEY(%InsertHotKey),USE(?Insert),MSG(‘Add record’)
BUTTON(‘Change’),AT(,,40,15),KEY(%ChangeHotKey),USE(?2Chg),DEFAULT,MSG(‘Change’)
BUTTON(‘Delete’),AT(,,40,15),KEY(%DeleteHotKey),USE(?Delete),MSG(‘Delete record’)
END
#!
#AT(%ControlEvent),WHERE(%Control0riginal="?Insert’ AND %ControlEvent="Accepted’)
#IF(%InsertAllowed)
Action = AddRecord
%UpdateProc
fFENDIF
FFENDAT
!
#AT(%ControlEvent) ,WHERE(%Control0riginal="2?Chg’ AND %ControlEvent="Accepted’)
#IF(%ChangeAllowed)
Action = ChangeRecord
%UpdateProc
fFENDIF
fFENDAT
#!
#AT(%ControlEvent),WHERE(%Control0riginal="?Delete’ AND %ControlEvent="Accepted’)
#IF(%DeleteAllowed)
Action = DeleteRecord
%UpdateProc
fFENDIF
FFENDAT

See Also: #EMBED, #WHERE, #RESTRICT, #AT

TEMPLATE ORGANIZATION

CHAPTER 2

#EXTENSION (define an extension template)

#EXTENSION(name, description [, target]) [, MULTI] [, | APPLICATION

]
| PROCEDURE |
[, REQ(addition[, | BEFORE |])[, | FIRST |][, DESCRIPTION(expression)]]
| AFTER | | LAST | [, PRIMARY(message [, flag])]

#EXTENSION

Begins an extension template that generates code into
embedded source code points to add some functionality
not associated with specific controls.

name The label of the extension template. This must be a valid
Clarion label.

description A string constant describing the extension template.

target A string constant that specifies the source language the
extension template generates. If omitted, it defaults to
Clarion.

MULTI Specifies the #EXTENSION may be used multiple times
in a given application or procedure.

APPLICATION Tells the Application Generator to make the #EXTEN-
SION available only at the global level.

PROCEDURE Tells the Application Generator to make the #EXTEN-
SION available only at the local level.

REQ Specifies the #EXTENSION requires a previously
placed #CODE, #CONTROL, or #EXTENSION before
it may be used.

addition The name of the previously placed #CODE, #CON-
TROL, or #EXTENSION.

BEFORE Specifies the code is generated before the code is
generated for thaddition

AFTER Specifies the code is generated after the code is gener-
ated for theaddition

FIRST Specifies the code is generated at the beginning of the
embedded source code point, before any other code.

LAST Specifies the code is generated at the end of the embed-
ded source code point, after any other code.

DESCRIPTION Specifies the display description of a #EXTENSION that
may be used multiple times in a given application or
procedure.

expression A string constant or expression that contains the descrip-
tion to display.

PRIMARY Specifies a primary file for the extension must be placed

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

in the procedure’s File Schematic.

message A string constant containing a message that appears in
the File Schematic next to the #EXTENSION’s Primary
file.

flag Either OPTIONAL (the file is not required), OPTKEY

(the key is not required), or NOKEY (the file is not
required to have a key).

#EXTENSION defines the beginning of an extension template containing
code to generate into the application or procedure to provide some
functionality not directly associated with any control. A #EXTENSION
section may contain Template and/or target language code. The
#EXTENSION section is terminated by the first occurrence of a Template
Code Section (#PROGRAM, #MODULE, #PROCEDURE, #CONTROL,
#CODE, #EXTENSION, or #GROUP) statement, or the end of the file.
Within a single Template set, separate #EXTENSION sections may not be
defined with the sameame

#EXTENSION can only generate code into #EMBED embedded source
code points using the #AT/#ENDAT structure. A #EXTENSION section may
contain #PROMPT statements to prompt for the values needed to generate
proper source code. These prompts appear when you edit an Extension from
the Extensions button in the environment. It may also contain #EMBED
statements which become active only if the #EXTENSION section is used.

#RESTRICT can restrict appearance of the #EXTENSION in the list of
available extensions based on an expression or Template language
statements.

CHAPTER 2 TEMPLATE ORGANIZATION

Example:

#EXTENSION(Security, ’Add password’),PROCEDURE
#PROMPT(‘Password File’,FILE),%PasswordFile,REQ
J#PROMPT (‘Password Key’,KEY(%PasswordFile)),%PasswordFileKey,REQ
#PROMPT(“‘Password Field’,COMPONENT(%PasswordFileKey)),%PasswordFileKeyField,REQ
#AT (%DataSectionBeforeWindow)

LocalPswd STRING(10)

SecurityWin WINDOW

ENTRY(@s10),USE(LocalPswd),REQ,PASSWORD
BUTTON(‘Cancel”),KEY(EscKey),USE(?CancelPswd)
END
H#FENDAT
#AT (%ProcedureSetup)

OPEN(SecurityWin)

ACCEPT
CASE ACCEPTED()

OF ?LocalPswd
%PasswordFileKeyField = LocalPswd
GET(%PasswordFile,%PasswordFileKey)
IF NOT ERRORCODE()
LocalPswd = ‘0K’
END
BREAK
OF ?CancelPswd
CLEAR(LocalPswd)
BREAK
END

END

CLOSE(SecurityWin)

IF LocalPswd <> ‘0K’ THEN RETURN.

FFENDAT

See Also: #EMBED, #WHERE, #RESTRICT, #AT

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Embed Points

#EMBED (define embedded source point)

#EMBED(identifier, descriptor) [, symbol] [, HLP(helpid)] [, DATA][, HIDE]
[, WHERE(expression)][, MAP(symbol, description)]

#EMBED

identifier

descriptor

symbol

HLP
helpid

DATA

HIDE

WHERE

expression
MAP

description

Identifies an explicit position in the Template where the
programmer may place their own source code.

A user-defined template symbol which identifies the
embedded source code point for the Application Genera-
tor.

A string constant containing a description of the embed-
ded source code’s position in the Template. This is the
string displayed in the list of available embedded source
code windows for a procedure Template.

A built-in multi-valued template symbol. You may have
multiple symbolson a single #EMBED statement.

Specifies on-line help is available for the #EMBED.

A string constant containing the identifier to access the
Help system. This may be either a Help keyword or
“context string.”

Specifies the embed point is in a data section, so the
Text Editor's Window and Report Formatters can be
used.

Specifies the source code point does not appear in the
tree of available embedded source code points. There-
fore, the #EMBED is only available for #CODE, #CON-
TROL, or #EXTENSION code generation.

Specifies the #EMBED is available only for those
instances of theymbolwhere theexpressions true.

An expression that specifies the condition.

Maps thedescriptionto thesymbol for display in the
embedded source tree. You may have as many MAP
attributes asymbols

An expression that specifies the text to display in the
embedded source tree.

#EMBED identifies an explicit position in the Template where the
programmer may call a procedure, generate code from a code template, or
place their own custom embedded source code within the procedure or
function. The Application Generator prompts the programmer for the
procedure to call, or the code template to use, or calls the Text Editor to

CHAPTER 2 TEMPLATE ORGANIZATION

allow the programmer to write the embedded source code. #EMBED is also
used as the destination of all the source automatically generated by #CODE,
#CONTROL, and #EXTENSION template sections. If no code is written in
the embedded source code point by the programmer or any code template,
control template, or extension template, no code is generated.

In a #PROCEDURE section, the source code is automatically placed in the
exact column position at which #EMBED is located within the Template. If
#EMBED is directly placed in the data section of a #PROGRAM,
#MODULE, or #PROCEDURE, it must be in column one (1) of the
Template file (so the embedded code may contain data labels). If the
#EMBED statement has the DATA atribute, the Window and Report
Formatters in the Text Editor are available for use. In executable code
sections, #EMBED may be placed in column one, but that is not required.

#EMBED is valid in a #GROUP section, however, this should be used with
care. Since it is possible for a #GROUP to be recursive (call itself), it is
possible to create embedded source code that is repeated within each
iteration of the recursive #GROUP’s generated code. The source code is
generated in the same relative column position as the code generated from
the #GROUP.

A #EMBED using thesymbolattribute is used within a #FOR statement to
allow a different piece of embedded source to be inserted for each instance
of thesymbol It can also be used within #FOR, #LOOP, and/or recursive
#GROUPs for the current instance of the symbol (if it has been #FIXed).
The MAP attribute allows you to replacelescriptionfor thesymbolin the
embedded source tree.

Example:

#PROCEDURE(SampleProc, 'This is a sample procedure’),WINDOW
#!Template and target language data declarations for the procedure go here
#fEMBED(%DataSection, 'Data Section Source Code Window’),DATA
#!Source code starting in column 1
CODE IBegin executable code
#EMBED (%SetupProc, *Code Section Source Code Window 1")
#!Source code starting in column 3
#!Template and target language executable code for the procedure goes here

OPEN(Screen) !Open window
ACCEPT lEvent handler
CASE SELECTED() IHandle field-selection events

#FOR(%Control)
OF %Control
JFEMBED (%ScreenFieldSetupEmbed, *Field Selected Embed’),%Control
fFENDFOR
END
CASE ACCEPTED() !Handle field-action events
#FOR(%Control)
OF %Control
#EMBED (%ScreenFieldEditEmbed, ’Field Accepted Embed’),%Control
fFENDFOR

#EMBED (%CustomRoutines, 'Code Section Source Code Window 2')
#!Source code starting in column 1

2-20

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#AT (insert code in an embed point)

Example:

See Also:

#AT(location [, instances |) [, WHERE(expression)]

Statements
#ENDAT
#AT Specifies docationto generatestatements
location An #EMBED identifier. This may be a #EMBED for the
procedure that comes from another template set.
instances Thelocation parameters that identify the embedded

source code point for a multi-valued #EMBHdntifier.
There may as marigpstanceparameters as are required
to explicitly identify the embedded source code point.

WHERE More closely specifies the #Adcation as only those
embed points where thlexpressionis true.

expression An expression that specifies exact placement.
statements Template and/or target language code.
#ENDAT Terminates the section.

The#AT structure specifieslacationto generatstatements#AT is valid

only in a #CONTROL, #CODE, or #EXTENSION templates, and is used to
allow them to generastatementinto multiplelocations The #AT structure
must terminate witHhENDAT .

The WHERE clause allows you to createsapressiorthat can specify a
single specific instance of a #EMBED that hasymbolattribute.

#iCONTROL(BrowselList, *Add Browse List controls’)
#AT(%ControlEvent, ' ?Insert’, ’Accepted’)
#IF(%InsertAllowed)
Action = AddRecord
%UpdateProc
fFENDIF
fFENDAT
#!

#EMBED, #CODE, #CONTROL, #EXTENSION, #RESTRICT

CHAPTER 2 TEMPLATE ORGANIZATION

#ATSTART (template intialization code)

#ATSTART
Statements
#ENDAT
#ATSTART Specifies template code to execute before the #PROCE-
DURE, #CODE, #CONTROL, or #EXTENSION
generates.
statements Template language code.
#ENDAT Terminates the section.

The#ATSTART structure specifies template code to execute before the
#PROCEDURE, #CODE, #CONTROL, or #EXTENSION generates its
code. Therefore, th&tatementshould normally only contain Template
language. #ATSTART is usually used to initialize internal template
variables.

Example:

#CONTROL(BrowselList,’Add Browse List controls’)
FFATSTART
#DECLARE(%ListQueue)
J#ENDAT

See Also: #PROCEDURE, #CODE, #CONTROL, #EXTENSION

2-22 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#ATEND (template reset code)

#ATEND
Statements
#ENDAT
#ATEND Specifies template code to execute after the #PROCE-
DURE, #CODE, #CONTROL, or #EXTENSION
generates.
statements Template language code.
#ENDAT Terminates the section.

The #ATEND structure specifies template code to execute after the
#PROCEDURE, #CODE, #CONTROL, or #EXTENSION generates its
code. Therefore, thetatementshould only contain Template language.
#ATEND is usually used to reset internal template variables.

Example:

#CONTROL(BrowseList,’Add Browse List controls’)
fFATEND
#SET(%ListQueue,NULL)
JFENDAT

See Also: #PROCEDURE, #CODE, #CONTROL, #EXTENSION

CHAPTER 2 TEMPLATE ORGANIZATION

#EMPTYEMBED (generate empty embed point comments)

#EMPTYEMBED(text [, condition])

#EMPTYEMBED Generates comments into empty embed points.

text A string constant or constant expression containing the
text to place in the empty embed point.

condition An expression that, when true, allows the comments to
generate.

The#EMPTYEMBED statement specifies that comments generate into all
embed points in which the user has not entered code. This will not generate
comments for embed points in which the user has entered code or in which
the templates have generated code.

This is valid only in a #PROGRAM or #MODULE section. The output
conditionis usually the value of a global prompt.

The commentextmay use the %EmbedID, %EmbedDescription, and
%EmbedParameters built-in symbols to identify the embed point:

%EmbedID The current embed point’s identifying symbol.
%EmbedDescription

The current embed point’s description.
%EmbedParameters

The current embed point’s current instance, as a comma-

delimited list.

Example:

#EXTENSION(EmptyEmbeds, 'Empty Embed Comments'),APPLICATION
#fPROMPT('Generate Empty EMBED Comments',CHECK),%EmptyEmbeds
f#FEMPTYEMBED(' !Embed: ' & %EmbedDescription & ' ' & %EmbedParameters,%EmptyEmbeds)

See Also: #PREEMBED, #POSTEMBED

2-24

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#POSTEMBED (generate ending embed point comments)

Example:

See Also:

#POSTEMBED(text [, condition])

#POSTEMBED('

#POSTEMBED Generates comments at the end of embed point code.

text A string constant or constant expression containing the
text to place in the embed point.

condition An expression that, when true, allows the comments to
generate.

The #POSTEMBED statement specifies that comments generate at the end
of embed points that contain code. This is valid only in a #PROGRAM or
#MODULE section. The outputonditionis usually the value of a global
prompt.

The commentextmay use the %EmbedID, %EmbedDescription, and
%EmbedParameters built-in symbols to identify the embed point:
%EmbedID The current embed point’s identifying symbol.

%EmbedDescription
The current embed point’s description.

%EmbedParameters
The current embed point’s current instance, as a comma-
delimited list.

! After Embed Point: ' & %EmbedID & ‘ ‘ & %EmbedDescription & ' ' & |
%EmbedParameters,%GenerateEmbedComments)

#PREEMBED, #EMPTYEMBED

CHAPTER 2 TEMPLATE ORGANIZATION

#PREEMBED (generate beginning embed point comments)

#PREEMBED(text [, condition])

#PREEMBED Generates comments at the beginning of embed point

code.

text A string constant or constant expression containing the
text to place in the embed point.

condition An expression that, when true, allows the comments to
generate.

The#PREEMBED statement specifies that comments generate at the
beginning of embed points that contain code. This is valid only in a
#PROGRAM or #MODULE section. The outprdnditionis usually the
value of a global prompt.

The commentextmay use the %EmbedID, %EmbedDescription, and
%EmbedParameters built-in symbols to identify the embed point:

%EmbedID The current embed point’s identifying symbol.

%EmbedDescription
The current embed point’s description.

%EmbedParameters
The current embed point’s current instance, as a comma-
delimited list.
Example:

ff/PREEMBED('! Before Embed Point: ' & %EmbedID & ° * & %EmbedDescription & ' ' & |
%EmbedParameters,%GenerateEmbedComments)

See Also: #POSTEMBED, #EMPTYEMBED

2-26 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Template Code Section Constraints
#WHERE (define #CODE embed point availability)

#WHERE(embeds)

#WHERE Limits the availability of a #CODE to only those specific
embedded source code points where the generated code
would be appropriate.

embeds A comma-delimited list of #EMBEDdentifiersthat
specifies the embedded source code points that may use
the #CODE to generate source code.

The#WHERE statement limits the availability of a #CODE to only those
#EMBED embedded source code points where the generated code would be
appropriate. A single #CODE may contain multiple #WHERE statements to
explicitly define all the valid #EMBED embedded source code points. All

the #WHERE statements in a #CODE are evaluated to determine which
embedded source code points have been specifically enabled.

The embeddist must contain individual #EMBERientifiers delimited by
commas. It may also contain ranges of embed points in the form
Firstldentifier..Lastldentifier also delimited by commas. Thebeddist

may contain both types in a “mix and match” manner to define all suitable
embedded source code points.

Example:

#fCODE(ChangeProperty,’Change control property’)
JWHERE (%AfterWindowOpening..%CustomRoutines)
#!Appropriate everywhere after window open
#PROMPT(“Control to change’,CONTROL),%MyField,REQ
#PROMPT(‘Property to change’,@S20),%MyProperty,REQ
#PROMPT(‘New Value’,@S20),%MyValue,REQ
WMyField{%MyProperty} = ‘%’MyValue

See Also: #EMBED, #CODE, #RESTRICT

CHAPTER 2 TEMPLATE ORGANIZATION

#RESTRICT (define section use constraints)

#RESTRICT [, WHERE(expression)]
Statements
#ENDRESTRICT

#RESTRICT Specifies conditions where a Template Code Section
(#CODE, #CONTROL, #EXTENSION, #PROCE-
DURE, #PROGRAM, or #MODULE) can be used.

WHERE The #RESTRICTstatementare excuted only when the
expressioris true.

expression A logical expression to limit execution of the #RE-
STRICT statements

statements Template language code to #ACCEPT or #REJECT use

of the section which contains the #RESTRICT structure.
#ENDRESTRICT Terminates the #RESTRICT structure.

The#RESTRICT structure provides a mechanism to limit the availability
of a Template Code Section (#CODE, #CONTROL, #EXTENSION,
#PROCEDURE, #PROGRAM, or #MODULE) at application design time to
only those points where the generated code would be appropriate. Any
WHERE clause on the Template Code Section is evaluated first, before
#RESTRICT.

The #ACCEPT statement may be used to explicitly declare the section as
appropriate for use. An implicit #ACCEPT also occurs if the #RESTRICT
statement&xecute without encountering a #REJECT statement. The
#REJECT statement must be used to specifically exclude the section from
use. Both the #ACCEPT and #REJECT statements immediately terminate
processing of the #RESTRICT code.

Example:

#CODE(ChangeControlSize, *Change control size’)
#RESTRICT
J#FCASE(%ControlType)
FOF(LIST”)
FOROF (“BUTTON")
#REJECT
JFELSE
J#ACCEPT
FFENDCASE
FENDRESTRICT
#PROMPT(‘Control to change’,CONTROL),%MyField,REQ
#PROMPT(“‘New Width’,@n04),%NewWidth
#PROMPT (“‘New Height’,@n04),%NewHeight
%MyField{PROP:Width} = %NewWidth
%MyField{PROP:Height} = %NewHeight

See Also: #ACCEPT, #REJECT

2-28 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#ACCEPT (section valid for use)

#ACCEPT

The #ACCEPT statement terminates #RESTRICT processing, indicating
that the Template Code Section (#CODE, #CONTROL, #EXTENSION,
#PROCEDURE, #PROGRAM, or #MODULE) is valid.

The #RESTRICT structure contains Template langséatementshat

evaluate the propriety of generating the section’s source code. The
#ACCEPT statement may be used to explicitly declare the section as
appropriate. An implicit #ACCEPT also occurs if the #RESTRICT
statement&xecute without encountering a #REJECT statement. The
#REJECT statement must be used to specifically exclude the section from
use. Both the #ACCEPT and #REJECT statements immediately terminate
processing of the #RESTRICT code.

Example:

J#iCODE(ChangeControlSize, *Change control size’)
#WHERE (%EventHandling)
#RESTRICT
#CASE(%ControlType)
ffOF “LIST’
ffOROF “BUTTON’
fiREJECT
#FELSE
ffACCEPT
fFENDCASE
fFENDRESTRICT
#PROMPT(‘Control to change’,CONTROL),%MyField,REQ
#PROMPT (“‘New Width’,@n04),%NewWidth
#PROMPT (‘New Height’,@n04),%NewHeight
%MyField{PROP:Width} = %NewWidth
%MyField{PROP:Height} = %NewHeight

See Also: #RESTRICT, #REJECT

CHAPTER 2 TEMPLATE ORGANIZATION

#REJECT (section invalid for use)

#REJECT

The#REJECT statement terminates #RESTRICT processing, indicating
that the Template Code Section (#CODE, #CONTROL, #EXTENSION,
#PROCEDURE, #PROGRAM, or #MODULE) is invalid.

The #RESTRICT structure contains Template langséatementshat

evaluate the propriety of generating the section’s source code. The
#ACCEPT statement may be used to explicitly declare the section as
appropriate. An implicit #ACCEPT also occurs if the #RESTRICT
statement&xecute without encountering a #REJECT statement. The
#REJECT statement must be used to specifically exclude the section from
use. Both the #ACCEPT and #REJECT statements immediately terminate
processing of the #RESTRICT code.

Example:

J#iCODE(ChangeControlSize, *Change control size’)
#WHERE (%EventHandling)
#RESTRICT
#CASE(%ControlType)
ffOF “LIST’
ffOROF “BUTTON’
fiREJECT
#FELSE
ffACCEPT
fFENDCASE
fFENDRESTRICT
#PROMPT(‘Control to change’,CONTROL),%MyField,REQ
#PROMPT (“‘New Width’,@n04),%NewWidth
#PROMPT (‘New Height’,@n04),%NewHeight
%MyField{PROP:Width} = %NewWidth
%MyField{PROP:Height} = %NewHeight

See Also: #RESTRICT, #ACCEPT

CHAPTER 3 DEFAULTS AND TEMPLATE DATA 3-1

Default Data and Code Contens |
#WINDOWS (default window structures)

#WINDOWS
structures
#ENDWINDOWS

#WINDOWS Begins a default window data structure section.
structures Default APPLICATION or WINDOW structures.
H#ENDWINDOWS Terminates the default window section.

The#WINDOWS structure contains default APPLICATION or WINDOW
data structures for a procedure Template. The default wisttowstures
provide a starting point for the procedure’s window design.

The #WINDOWS section may contain multiguctureswhich may be
chosen as the starting point for the procedure’s window design. If there is
more than one window structure to choose from, the Application Generator
displays a list of thosstructuresavailable the first time the procedure’s
window is editted. The names of the windows which appear in the
Application Generator’s list comes from a preceding comment beginning
with two exclamations and a right angle bracket (!!>).

If the procedure template contains a #DEFAULT procedure, there is no need
for #WINDOWS, since the default window is already in the #DEFAULT.
Therefore, the list does not appear when the window is first editted.

Example:

fFWINDOMS
11> Window
Label WINDOW(‘Caption’),AT(0,0,100,100)
END
11> Window with OK & Cancel
Label WINDOW(‘Caption’),AT(0,1,185,92)
BUTTON(C“OK”),AT(144,10,35,14),DEFAULT,USE(?0k)
BUTTON(“Cancel’),AT(144,28,36,14),USE(?Cancel)
END
#FENDWINDOWS

3-2

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#REPORTS (default report structures)

Example:

#REPORTS
Structures
#ENDREPORTS
#REPORTS Begins a default report data structure section.
structures Default REPORT structures.

J#IREPORTS
I'l> Report

#ENDREPORTS Terminates the default report section.

The #REPORTS structure contains default REPORT datadures for a
procedure Template. The default reirticturesprovide a starting point for
the procedure’s report design.

The #REPORTS section may contain multigtieictureswhich may be

chosen as the starting point for the procedure’s report design. If there is
more than one report structure to choose from, the Application Generator
displays a list of thosstructuresavailable the first time the procedure’s

report is editted. The names of the windows which appear in the Application
Generator’s list comes from a preceding comment beginning with two
exclamations and a right angle bracket (!!>).

If the procedure template contains a #DEFAULT procedure, there is no need
for #REPORT, since the default report is already in the #DEFAULT.
Therefore, the list does not appear when the report is first editted.

Label REPORT,AT(1000,2500,6000,6000),THOUS
HEADER,AT(1000,1000,6000,1000)
END

Detail DETAIL
END
FOOTER,AT(1000,10000,6000,1000)
END
FORM,AT(1000,1000,6000,9000)
END

END
FENDREPORTS

CHAPTER 3

DEFAULTS AND TEMPLATE DATA

#LOCALDATA (default local data declarations)

Example:

#LOCALDATA
declarations
#ENDLOCALDATA

#LOCALDATA Begins a default local data declaration section.
declarations Default data declarations.

#ENDLOCALDATA
Terminates the default local data declarations.

The#LOCALDATA structure contains default dataclarationslocal to the
procedure generated by the #PROCEDURE procedure Template.
#LOCALDATA may only be placed in a #PROCEDURE, #CODE,
#CONTROL, or #EXTENSION section of the Template. Tleelarations

will appear in the generated procedure between the keywords PROCEDURE
(or FUNCTION) and CODE.

fFLOCALDATA

Action BYTE !Disk action variable
TempFile CTRING(65) !Temporary filename variable
fFENDLOCALDATA

#GLOBALDATA (default global data declarations)

Example:

#GLOBALDATA
declarations
#ENDGLOBALDATA

#GLOBALDATA Begins a default global data declaration section.
declarations Default data declarations.

#ENDGLOBALDATA
Terminates the default global data declarations.

The#GLOBALDATA structure contains default dataclarationsglobal to
the program. #GLOBALDATA may be placed in a #PROGRAM,
#PROCEDURE, #CODE, #CONTROL, or #EXTENSION section of the
Template. Theleclarationswill appear in the global data section of the
generated source code.

fFGLOBALDATA
Action BYTE !Disk action variable
TempFile CTRING(65) !Temporary filename variable

f#FENDGLOBALDATA

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#DEFAULT (default procedure starting point)

#DEFAULT
procedure
#ENDDEFAULT
#DEFAULT Begins a default procedure declaration section.
procedure Default procedure in .TXA file format.
#ENDDEFAULT Terminates the default procedure declaration.
The#DEFAULT structure contains a single defguibceduredeclaration in
.TXA format as generated by the Application Generator's Export function.
#DEFAULT may only be placed at the end of a #PROCEDURE section. You
may have multiple #DEFAULT structures for a single #PROCEDURE. The
enclosedroceduresection of a .TXA file should contain a procedure of the
preceeding #PROCEDURE’s type. The recommended way to create a
#DEFAULT structure is to edit the default procedure in the template registry,
and then export the template as text, which creates a .TXA file.
Example:
#IDEFAULT
NAME DefaultForm
[COMMON]

DESCRIPTION 'Default record update’
FROM Clarion Form
[PROMPTS]
%WindowOperationMode STRING ('Use WINDOW setting’)
%INISaveWindow LONG (1)
[ADDITION]
NAME Clarion SaveButton
[INSTANCE]
INSTANCE 1
PROCPROP
[PROMPTS]
%InsertAllowed LONG (1)
%InsertMessage @S30 ('Record will be Added')
%ChangeAllowed LONG (1)
%ChangeMessage @S30 ('Record will be Changed')
%DeleteAllowed LONG (1)
%DeleteMessage @S30 ('Record will be Deleted')
%MessageHeader LONG (0)
[ADDITION]
NAME Clarion CancelButton
[INSTANCE]
INSTANCE 2
[WINDOW]
FormWindow WINDOW('Update Records...'),AT(18,5,289,159),CENTER,SYSTEM,GRAY ,MDI
BUTTON('OK"'),AT(5,140,40,12),USE(?0K),DEFAULT,#SEQ(1),#0RIG(?0K),#LINK(?Cancel)
BUTTON('Cancel'),AT(50,140,40,12),USE(?Cancel),#SEQ(2),#f0RIG(?Cancel)
STRING(@S40),AT(95,140,,),USE(ActionMessage)
END
fFENDDEFAULT

CHAPTER 3 DEFAULTS AND TEMPLATE DATA

Symbol Management Statements
#DECLARE (declare a user-defined symbol)

#DECLARE(symbol [, parentsymbol [,type] 1) [, MULTI] [, UNIQUE] [, SAVE]

#DECLARE Explicitly declares a user-defined symbol.

symbol The name of the symbol being declared. This must meet
all the requirements of a user-defined symbbisTust
not be a #PROMPT symbol or a variable in the same
scope.

parentsymbol Specifies the parent of tlsgmbo] indicating its value is
dependent upon the current value in another symbol.
This must be a multi-valued symbol. You may specify
more than on@arentsymboif the symbolis dependent
upon a set of symbols. This allows implicit multi-
dimensional arrays.

type The data type of thparentsymbolLONG, REAL, or
STRING. If omitted, the data type is STRING.

MULTI Specifies thesymbolmay contain multiple values.

UNIQUE Specifies a multi-valuegymbolthat cannot contain

duplicate values. The values are stored in ascending
order. This implicitly declares the symbol as multi-
valued, the MULT] attribute is not required.

SAVE Specifies the value(s) in tymbolare saved between
source generation sessionssyinbolwith the SAVE
attribute may only be declared in the #APPLITAN
area.

The#DECLARE statement explicitly declares a user-defisgohbol This
may contain a single value or multiple values. All user-defined symbols
must be explicitly declared with #DECLARE except those declared on a
#PROMPT statement and #GROUP parameters.

The MULTI attribute declares theymbolas multi-valued. This allows the
#FIX, #FOR, #ADD, #DELETE, #SELECT, and #FREE statements to
operate on theymbal

A user-defined multi-valuesymbolmay be treated as an array or a queue.
As an array, a single instance of the user-defined multi-valyrmolmay
be addressed as %symbol[1] in expressions.

The UNIQUE attribute ensures all instances of a multi-vasyasbolto be
unique and sorted in ascending sequence. When UNIQUE is specified,
MULTI is not required. The #ADD statement builds #enbolvalues in
sorted order and only allows a single instance of every value sythieol

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

when each entry is added.

If the #DECLARE statement contains one or mpagentsymboparameters,
the user-definedymbolis dependent on thgarentsymbolsThis means a
separate instance (or instances, if multi-valued) oéyinebolis available for
each instance of thmmarentsymbollf there are nparentsymboparameters,
it is independent.

#DECLARE may be used to create dependgntbols The parentsymbol
must be a multi-valued symbol, whetherit is a built-in or user-defined
symbol.

The SAVE attribute causesgmbol’svalue(s) to be saved at the end of

source generation and restored when the #DECLARE statement is executed
at the beginning of the next source generation sessisypmolwith the

SAVE attribute may only be declared in the #APPLICATION section.

Example:

##APPLICATION(‘Sample One’)
#DECLARE(%UserSymbol),SAVE #!Value saved after generation

#! and restored for next generation
#DECLARE(%ModuleFile,%Module) ,UNIQUE,MULTI #!Level-1 dependent symbol
#DECLARE(%ModuleFilePut,%ModuleFile) #!Level-2 dependent symbol
#DECLARE(%ModuleFileDelete,%ModuleFile) #!Second Level-2 dependent symbol

See Also: #FIX, #FOR, #ADD, #DELETE, #FREE

CHAPTER 3 DEFAULTS AND TEMPLATE DATA

#ALIAS (access a symbol from another instance)

#ALIAS(oldsymbol , newsymbol [, instance])

#ALIAS Re-declares a user-defined symbol.

oldsymbol The name of the symbol being re-declared. This must
meet all the requirements of a user-defined symbol. This
must not be a #PROMPT symbol or a variable in the

same scope.
newsymbol Specifies the new name of thielsymbal
instance An expression containing the instance of the addition

containing theoldsymbol
The#ALIAS statement re-declares a user-defiokeldymboldeclared in a

#CODE, #CONTROL, or #EXTENSION template prompt for use in
another.

Example:

J#IEXTENSION(GlobalSecurity,’Global Password Check’),APPLICATION
#DECLARE(%PasswordFile)
#DECLARE(%PasswordFileKey)

H#EXTENSION(LocalSecurity, Local Procedure Password Check’),PROCEDURE

FALIAS(%PasswordFile,%PswdFile, ’GlobalSecurity(Clarion)’)
JFALIAS (%PasswordFileKey,%PswdFileKey, *GlobalSecurity(Clarion)”)

See Also: #CODE, #CONTROL, #EXTENSION

3-8

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#ADD (add to m ulti-valued symbol)

Example:

See Also:

#ADD(symbol, expression [, position])

#ADD Adds a new instance to a multi-valued user-defined
symbol.

symbol A multi-valued user-defined symbol.

expression An expression containing the value to place in the

symbol’'sinstance.

position An integer constant or symbol containing the instance
number to add to theymbol Instance numbering begins
with one (1). If thepositionis greater than the number of
previously existing instances plus one, the new instance
in appended and no intervening instances are instanti-
ated.

The#ADD statement adds a value to a multi-valued user-defipedbol An
implied #FI1X to thatsymbol'sinstance occurs. If theymbolis not a multi-
valued user-defined symbol then a source generation error is produced.

If the symbolhas been declared with the UNIQUE attribute, then the #ADD
is a union operation into the existing seswpibol’svalues. Only one
instance of the value being added may exist. Also, the UNIQUE attribute
implies the #ADD is a sorted insert into the existing selyaibol’'svalues.
After each #ADD, all of thesymbol'svalues will be in sorted order.

If the symbolhas been declared without the UNIQUE attribute, duplicate
values are allowed. The new value is added to the end of the list and may be
a duplicate. If thesymbolis a duplicate, then any dependent children

instances are inherited.

#DECLARE(%ProcFilesPrefix) ,MULTI,UNIQUE #!Declare unique multi-valued symbol

H#FIX(%File,%Primary) #!Build 1ist of all file prefixes in proc
#ADD(%ProcFilesPrefix,%FilePre) #!Start with primary file
#FOR(%Secondary) #!Then add all secondary files

#FIX(%File,%Secondary)
#ADD(%ProcFilesPrefix,%FilePre)

#fENDFOR

#DECLARE

CHAPTER 3

DEFAULTS AND TEMPLATE DATA

#DELETE (delete a multi-valued symbol instance)

Example:

See Also:

#DELETE(symbol [, position])

#DELETE

userdefined symbol.

symbol
position

A multi-valued user-defined symbol.
An integer constant or symbol containing the instance

Deletes the value from one instance of a multi-valued

number in thesymbol Instance numbering begins with
one (1). If omitted, the default is the current fixed
instance.

The#DELETE statement deletes the value from one instance of a multi-
valued user-defined symbol. If there are any symbols dependent upon the
symbo] they are also cleared. If this is the last instance isyth&o] the
instance is removed. You can get the current instance number to which a
symbol is fixed by using the INSTANCE(%symbol) built-in template

function.

#DECLARE(%ProcFilesPrefix),MULTI
#ADD (%ProcFilesPrefix, 'SAV’)
#ADD(%ProcFilesPrefix, 'BAK")
#ADD (%ProcFilesPrefix, PRE’)
#ADD (%ProcFilesPrefix, 'QUE")

#DELETE(%ProcFilesPrefix,1)

#FIX(%ProcFilesPrefix,’PRE’)
#DELETE(%ProcFilesPrefix)

#DECLARE, #ADD

#!Declare multi-valued symbol

#!Add a value

#!Add a value

#!Add a value

#!Add a value
#!%ProcFilesPrefix contains:

#!Delete first value (SAV)
#!%ProcFilesPrefix contains:

#!Fix to a value

#!Delete it
#!%ProcFilesPrefix contains:

SAV,

BAK,

BAK,

BAK,

PRE,

QUE

PRE, QUE

QUE

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#DELETEALL (delete multiple multi-valued symbol instances)

#DELETEALL(symbol, expression)

#DELETEALL

symbol
expression

theexpression

Example:

#DECLARE(%ProcFilesPrefix),MULTI

#ADD(%ProcFilesPrefix, 'SAV’)
#ADD(%ProcFilesPrefix, 'BAK”)
#ADD(%ProcFilesPrefix, PRE’)
#ADD(%ProcFilesPrefix, 'BAK”)
#ADD (%ProcFilesPrefix, 'QUE’)

#IDELETEALL(%ProcFilesPrefix, "BAK”)

Deletes the values from specified instances of a multi-
valued user-defined symbol.

A multi-valued user-defined symbol.
An expression that defines the instances to delete.
The#DELETEALL statement deletes all values from flyenbolthat meet

#!Add
#!Add
#!Add
#!Add
#!Add

a
a
a
a
a

value
value
value
value
value

J#!1%ProcFilesPrefix contains:

J#!Declare multi-valued symbol

SAV, BAK, PRE, BAK, QUE

#!Delete all BAK instances

#!%ProcFilesPrefix now contains: SAV, PRE, QUE

See Also: #DECLARE, #ADD

CHAPTER 3 DEFAULTS AND TEMPLATE DATA

#PURGE (delete all single or multi-valued symbol instances)

#PURGE(symbol)

#PURGE Deletes the values from all instances of a user-defined
symbol.
symbol A user-defined symbol.

The#PURGE statement deletes all values from slyenbol If there are any
symbols dependent upon tegmbo] they are also cleared. If tisgmbolis
dependent upon a multi-valued symbol, all instances of that dependent
symbolare purged for all instances of the symbol upon which it is

dependent.
Example:
#DECLARE(%ProcFilesPrefix),MULTI J#!Declare multi-valued symbol
#ADD(%ProcFilesPrefix, SAV’) #!Add a value

#ADD(%ProcFilesPrefix, *BAK’
#ADD(%ProcFilesPrefix, 'PRE’
#ADD(%ProcFilesPrefix, *BAK’
#ADD(%ProcFilesPrefix, 'QUE’

#!Add a value

#!Add a value

#!Add a value

#!Add a value
#!%ProcFilesPrefix contains: SAV, BAK, PRE, BAK, QUE
#PURGE(%ProcFilesPrefix) #!Delete all instances

— — — —

See Also: #DECLARE, #ADD

#CLEAR (c lear single-valued symbol)

#CLEAR(symbol)

#CLEAR Removes the value from a single-valued dafined
symbol.
symbol A single-valued user-defined symbol.

The#CLEAR statement removes the value from a single-valued user-
defined symbol. This statement is approximately the same as using #SET to
assign a null value to tteymbo] except it is more efficient.

Example:
#DECLARE(%SomeSymbo1) #!Declare symbol
{#SET (%SomeSymbol, ’Value’) J#!Assign a value
#!%SomeSymbol now contains: ‘Value’
#CLEAR(%SomeSymbo1) #!Clear value

#!%SomeSymbol now contains:

See Also: #DECLARE, #ADD

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#FREE (free a multi-valued symbol)

#FREE(symbol)

#FREE Clears all instances of a multi-valued user-defined
symbol.
symbol A multi-valued user-defined symbol.

The #FREE statement clears all instances of a multi-valued user-defined
symbol. If there are any symbols dependent uposyh#o] they are also

cleared.
Example:

#DECLARE(%ProcFilesPrefix),MULTI #!Declare multi-valued symbol

#ADD(%ProcFilesPrefix, 'SAV’) #!Add a value

#ADD(%ProcFilesPrefix, *BAK’) #!Add a value

#ADD(%ProcFilesPrefix, PRE’) #!Add a value

#ADD(%ProcFilesPrefix, *BAK’) #!Add a value

#ADD (%ProcFilesPrefix, 'QUE’) #!Add a value
#!%ProcFilesPrefix contains: SAV, BAK, PRE, BAK, QUE

#DELETEALL(%ProcFilesPrefix, "BAK’) #!Delete all BAK instances
#!%ProcFilesPrefix now contains: SAV, PRE, QUE

#FREE(%ProcFilesPrefix) #!Free the symbol

J#1%ProcFilesPrefix now contains nothing

See Also: #DECLARE, #ADD

CHAPTER 3 DEFAULTS AND TEMPLATE DATA

#FIX (fix a multi-value symbol)

#FIX(symbol, fixsymbol)

#FIX Fixes a multi-valued symbol to the value of a single
instance.

symbol A multi-valued symbol.

fixsymbol A symbol or expression containing the value to fix the
symbolto.

The#FIX statement fixes the current value of the multi-vakyadbolto the
value contained in thisxsymbol This is done so that one instance of the
symbolmay be referenced outside a #FOR loop structure, or so you can
reference the symbols dependent upon the multi-vadyedbol

Thefixsymbolmust contain a valid instance of one of lyenbol’'smultiple

values. If thdixsymboldoes not contain a valid instance, fyebolis

cleared and contains no value when referenced. Unless #ADD has been usec
to add a new value and fix to that instance, #FIX or #SELECT must be used
to set the value in symbolbefore it contains any value for Template
processing outside of a #FOR loop.

#FI1X is completely independent of #FOR in that #FOR always loops
through every instance of tisgmbo] whether there is a previous #FIX for
thatsymbolor not. If there is a previous #FIX statement for gyanhbol
before the #FOR loop, thaymbolreverts to that previouxvalueafter the
#FOR terminates.

If #FIX is used within a #FOR structure, the scope of the #FIX is limited to
within the #FOR in which it is used. It does not change the #FOR symbol’s
iteration value if both the #FOR and #FIX happen to use the same symbol.

Example:
#SET (%0neFile, "HEADER”) #! Put values into two User-defined symbols
#SET(%TwoFile, "DETAIL")
#FIX(%File,%0neFile) #! %File refers to °‘HEADER’
#FOR(%File) #! %File iteratively refers to all file names
#FIX(%File,%TwoFile) #! %File refers to ‘DETAIL’
fFENDFOR

#! %File refers to ‘HEADER’ again

See Also: #SELECT

3-14 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#FIND (“super-fix”multi-value symbols)

#FIND(symbol, fixsymbol [, limit])

#FIND

symbol
fixsymbol

limit

The#FIND statem

Fixes all multi-valued parent symbols to values that
point to a single child instance.

A multi-valued symbol.

A symbol or expression containing the value to fix the
symbolto.

A parent symbol which limits the search scope to the
children of thdimit symbol.

ent finds the first instance of fhxsymbolcontained

within thesymbolthen fixes it and all the “parent” symbols on which the

symbolis depende

nt to the values that “point to” the value ofixisgmbol

contained in thaymbol This is done so that all the symbol dependencies
are aligned and you can reference other symbols dependent on “parent”

symbols of thesym

bol

For example, assume %ControlUse contains CUS:Name. The
#FIND(%Field,%ControlUse,%Control) statement:

Finds the first instance of %Field that matches the
current value in %ControlUse (the first instance of
CUS:Name in %Field) in the current procedure.

Fixes %Field to that value (CUS:Name).

Fixes %File to the name of the file containing that field
(Customer).

This allows the Template code to reference other the
symbols dependent upon %File (like %FilePre to get the
file’s prefix).

The fixsymbolmust contain a valid instance of one of lyebol’'smultiple
values. If thdixsymboldoes not contain a valid instance, siyenbolis
cleared and contains no value when referenced.

Example:
#FIND(%Field,%ControlUse)

See Also: #SELECT, #FIX

#!Fixes %Field and %File to %ControlUse parents

CHAPTER 3 DEFAULTS AND TEMPLATE DATA

#SELECT (fix a multi-value symbol)

#SELECT(symbol, instance)

#SELECT Fixes a multi-valued symbol to a particulastance
number.

symbol A multi-valued symbol.

instance An expression containing the number of the instance to
which to fix.

The#SELECT statement fixes the current value of the multi-valsyadbol
to a specifidnstance The result of #SELECT is exactly the same as #FIX.
Eachinstancein the multi-valuedsymbolis numbered starting with one (1).

Theinstancemust contain a valid instance number of one oktmbol’s
multiple values. If thenstances not valid, thesymbolis cleared and
contains no value when referenced. The INSTANCE built-in template
function can return the instance number.

Unless #ADD has been used to add a new value and fix to that instance,
#FIX or #SELECT must be used to set the valuesgrabolbefore it
contains any value for Template processing outside of a #FOR loop.

Example:
#SELECT(%File, 1) #!Fix to first %File instance

3-16 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#SET (assign value to a user-defined symbol)

#SET(symbol,value)

#SET Assigns a value to a single-valued user-defined symbol.

symbol A single-valued user-defined symbol. This must have
been previously declared with the #DECLARE state-
ment.

value A built-in or user-defined symbol, string constant, or an
expression.

The#SET statement assigns thalueto thesymbol If the value parameter
contains an expression, you may perform mathematics during source code
generation. The expression may use any of the arithmetic, Boolean, and
logical operators documented in thenguage Referencé the modulus
division operator (%) is used in the expression, it must be followed by at
least one blank space (to explicitly differentiate it from the Template
symbols). Logical expressions always evaluate to 1 (True) or O (False).
Clarion language function calls (those supported in EVALUATE()) and built-
in template functions are allowed.

Example:

fISET (%NetworkApp, "Network’)

#SET (%MySymbo1,%Primary)

#FOR(%File)
#SET(%FilesCounter,%FilesCounter + 1)

%FileStructure

fFENDFOR

#UNFIX (unfix a multi-value symbol)

#UNFIX(symbol)

#UNFIX Unfixes a multi-valued symbol.
symbol A multi-valued symbol.

The#UNFIX statement unfixes the current value of the multi-valued
symbol If the unfixedsymbolis referenced outside a #FOR loop structure, it
has no value and you cannot reference any other symbols dependent upon
the multi-valuedsymbol

Example:
#SET(%0neFile, "HEADER”) #! Put values into two User-defined symbols
f#SET(%TwoFile, *DETAIL")
#FIX(%File,%0neFile) #! %File refers to °‘HEADER’
#FOR(%File) #! %File iteratively refers to all file names
#FIX(%File,%TwoFile) #! %File refers to ‘DETAIL’
fFENDFOR

#! %File refers to ‘HEADER’ again
FUNFIX(%File) #! %File refers to no spcific value

CHAPTER 3 DEFAULTS AND TEMPLATE DATA

#DECLARE Attributes
UNIQUE (no duplicates allowed)

UNIQUE

TheUNIQUE attribute of a #DECLARE statement specifies the multi-

valued symbol being declared cannot contain duplicate values. To
accomplish this, the #ADD statement always adds instances to the symbol in
ascending order.

Example:
#DECLARE(%ProcFilesPrefix) ,MULTI,UNIQUE #!Declare unique multi-valued symbol
H#FIX(%File,%Primary) #!Build 1ist of all file prefixes in proc
#ADD(%ProcFilesPrefix,%FilePre) #!Start with primary file
#FOR(%Secondary) #!Then add all secondary files

#FIX(%File,%Secondary)
#ADD(%ProcFilesPrefix,%FilePre)
#ENDFOR

See Also: #DECLARE

SAVE (save symbol between generations)

SAVE

The SAVE attribute on a #DECLARE statement causes the value(s) of the
declared symbol to be saved at the end of source generation and restored at
the beginning of the next source generation session. A #DECLARE
statement with the SAVE attribute may only appear in the #APPLICATION
section.

Example:

ffAPPLICATION(‘Sample One”’)
#DECLARE(%UserSymbo1), SAVE #!Value saved after generation

#! and restored for next generation
#DECLARE(%ModuleFile,%Module),UNIQUE,MULTI 4!Level-1 dependent symbol
#DECLARE(%ModuleFilePut,%ModuleFile) #!Level-2 dependent symbol
#IDECLARE(%ModuleFileDelete,%ModuleFile) #!Second Level-2 dependent symbol

See Also: #DECLARE

PROGRAMMER INPUT 4-1

Contents |

CHAPTER 4

Input and Validation Statements
#PROMPT (prompt for programmer input)

#PROMPT(string, type) [, symbol] [, REQ] [, DEFAULT(value)][, ICON(file)]11[, AT()]
[, PROMPTAT()][, MULTI(description)][, INLINE][, SELECTION(description)]

#PROMPT
string

type
symbol

REQ
DEFAULT
value
ICON

file

AT

PROMPTAT

MULTI

description

Asks the programmer for input.

A string constant containing the text to display as the
input prompt. This may contain an ampersand (&)
denoting a “hot” key used in conjunction with the

key to get to this field on the properties screen.

A picture token or prompt keyword.

A User-defined symbol teceive the input. A
#PROMPT with a RADIO or EMBERype cannot have
asymbo] all othertypesmust have aymbol

Specifies the prompt cannot be left blank or zero.
Specifies an initial value (which may be overidden).
A string constant containing the initial value.

Specifies an icon for the button face of a #PROMPT
with the MULT] attribute.

A string constant containing the name of the .ICO file to
display on the button face.

Specifies the position of the prompt entry area in the
window, relative to the first prompt placed on the
window from the Template (excluding the standard
prompts on every procedure properties window). This
attribute takes the same parameters as the Clarion
language AT attribute.

Specifies the position of the promgiting in the win-

dow, relative to the first prompt placed on the window
from the Template (excluding the standard prompts on
every procedure properties window). This attribute takes
the same parameters as the Clarion language AT at-
tribute.

Specifies the programmer may enter multiple values for
the #PROMPT. The prompt appears as a button which
pops up a list box allowing the programmer to enter
multiple values, unless the INLINE attribute is also
present.

A string constant containing the name to display on the
button face and at the top of the list of prompt values.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

INLINE The multiple values the programmer enters for the
#PROMPT appears as a list box with update buttons
which allow the programmer to enter multiple values.
The MULTI attribute must also be present.

SELECTION Specifies the programmer may select multiple values for
the #PROMPT from the list of choices presented by the
FROMtype The prompt appears as a button which pops
up a list box allowing the programmer to choose mul-
tiple values, unless the INLINE attribute is also present.

The #PROMPT statement asks the programmer for input. A #PROMPT
statement may be placed in #APPLICATION, #PROCEDURE, #CODE,
#CONTROL, #EXTENSION, #UTILITY, or #FIELD sections. It may not
be placed in a #PROGRAM, #MODULE, #TEMPLATE, or #GROUP
section.

When the #PROMPT is placed in a template section, the pr&tniqpg and
its associated entry field are placed:

Section Name Window Name

#APPLICATION Global Settings
#PROCEDURE Procedure Properties
#CODE Embeds Dialog

#CONTROL Control Properties Actions Tab
#EXTENSION Extensions Dialog

#FIELD Control Properties Actions Tab

Thetypeparameter may contain a picture token to format the programmer’s
input, or one of the following keywords:

PROCEDURE The label of a procedure

FILE The label of a data file

KEY The label of a key (can be limited to one file)

COMPONENT The label of a key component field (can be limited to
one key)

FIELD The label of a file field (can be limited to orike¥

FORMAT Calls the listbox formatter.

PICTURE Calls the picture token formatter.

DROP Creates a droplist of items specified in its parameter

KEYCODE A keycode or keycode EQUATE

OPTION Creates a radio button structure

RADIO Creates a radio button

CHECK Creates a check box

CONTROL A window control

FROM Creates a droplist of items contained in its symbol
parameter

EMBED Allows the user to edit a specified embedded source
code point

EMBEDBUTTON Allows the user to edit a specified embedded source
code point

CHAPTER 4 PROGRAMMER INPUT

SPIN Creates a spin control

For alltypesexcept RADIO and CHECK (and MULTI attribute prompts),
the #PROMPTstring is displayed on the screen immediately to the left of its
data input area.

A #PROMPT with the REQ attribute cannot be left blank or zero; it is a
required input field. The DEFAULT attribute may be used to provide the
programmer with an initiakaluein the #PROMPT, which may be overidden
at design time.

A #PROMPT with a RADIQtypecreates one Radio button for the
immediately preceding #PROMPT with an OPTIB/de There may be
multiple RADIOs for one OPTION. Each RADIGs¢ring, when selected, is
placed in the closest preceding OPTIOBsnbol The OPTION structure is
terminated by the first #PROMPT following it that is not a RADIO.

The MULTI attribute specifies the programmer may enter multiple values for
the #PROMPT. A button appears on the Properties window with the
descriptionon its face. Alternatively, this can have an ICON attribute to
name an .ICO file to display on the button face. This button calls a window
containing a list box to display all the multiple values entered for the
#PROMPT, along with Insert, Change, and Delete buttons. These three
buttons call another window containing the #PROMf&Thg and its data

entry field to allow the programmer to update the entries in the list.

When the programmer has entered a value for the #2ROMPT, the input
value is assigned to tlsymbol The value entered by the programmer may
be checked for validity by one or more #VALIDATE statements immediately
following the #PROMPT statement.

The value(s) placed in tlsymbolmay be used or evaluated elsewhere within
the Template. ssymboldefined by a #PROMPT in the #APPLICATION
section of the Template is Global, it can be used or evaluated anywhere in
the Template. Aymboldefined by #PROMPT in a #PROCEDURE section
is Local, and is a dependent symbol to %Procedure; it can be used or
evaluated only within that #PROCEDURE sectiorsyinboldefined by
#PROMPT in a #CODE, #CONTROL, or #EXTENSION section of the
Template can be used or evaluated only within that section.

Example:
##PROMPT(‘Ask for Input’,@s20),%InputSymbol #!Simple input
#PROMPT(‘Ask for FileName’,FILE),%InputFile,REQ #!Required filename
#PROMPT(‘Pick One’,0PTION),%InputChoice #!Mutually exclusive options

##PROMPT(‘Choice One’,RADIO)

ffPROMPT(‘Choice Two’,RADIO)

#PROMPT(‘Next Procedure’,PROCEDURE),%NextProc #!Prompt for procedure name

#PROMPT(‘Ask for Multiple Input’,@s20),%MultiSymbol,MULTI(‘Input Values...’)
#!Prompt for multiple input

See Also: #DISPLAY, #VALIDATE, #GROUP, #BOXED, #ENABLE, #BUTTON

4-4 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#VALIDATE (validate prompt input)

#VALIDATE(expression,message)

#VALIDATE Validates the data entered into the immediately preced-
ing #PROMPT field.

expression The expression to use to validate the entered data.

message A string constant containing the error message to display

if the data is invalid.

The#VALIDATE statement validates the data entered into the #PROMPT
field immediately preceding the #VALIDATE. Thexpressioris evaluated
when the OK button is pressed on the Procedure Properties window. If the
expressioris falsethe messagés displayed to the programmer in a message
box, and control is given to the #PROMPT field that immediately precedes
the #VALIDATE. There may be multiple #VALIDATE statementdiéwing

a #PROMPT to validate the entry.

Example:

#PROMPT(‘Input Value, Even numbers from 100-200’,@N3),%Value

#VALIDATE((%Value > 100) AND (%Value < 200),’Value must be between 100 and 200')
#VALIDATE((%Value % 2 = 0),'Value must be an even number')

#PROMPT(“Screen Field’,WINDOWCONTROL),%SomeField

#VALIDATE(%ScreenFieldType = ‘LIST’,’Must select a list box’)

See Also: #PROMPT

CHAPTER 4 PROGRAMMER INPUT

#ENABLE (enable/disable pr ompts)

Example:

See Also:

#ENABLE(expression) [, CLEAR]

prompts
#ENDENABLE
#ENABLE Begins a group gbromptswhich may be enabled or
disabled based upon the evaluation ofekgression
expression The expression which controls the prompt enable/
disable.
CLEAR Specifies thg@romptssymbol values are cleared when
disabled.
prompts One or more #PROMPT, #BUTTON, #DISPLAY,
#ENABLE, and/or #VALIDATE statements.
#ENDENABLE Terminates the group @rompts
The#ENABLE structure containgromptswhich may be enabled or
disabled based upon the evaluation ofdkpression|f the expressionis
true, thepromptsare enabled, otherwise they are disabled.prbmpts
appear dimmed when disabled and the programmer may not enter data in
them.
#PROMPT(“Pick One’,0PTION),%InputChoice #!Mutually exclusive options

#PROMPT(‘Choice One’,RADIO)

ffPROMPT (“Choice Two’,RADIO)

fFENABLE(%InputChoice = ‘Choice Two’)
JFPROMPT(“‘Screen Field’,WINDOWCONTROL),%SomeField #!Enabled only for Choice Two
#VALIDATE(%ScreenFieldType = ‘LIST’,’Must select a list box’)

fFENDENABLE

#PROMPT, #GROUP, #BOXED, #BUTTON

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#BUTTON (call another page of prompts)

#BUTTON(string [, icon]) [, HLP(id)1 [, AT() 1 [, REQ][, INLINE]
[, | FROM(multisymbol, expression) [, WHERE(condition)] |]
| MULTI(fromsymbol, expression) |

prompts
#ENDBUTTON

#BUTTON Creates a command button to call another page of
prompts

string A string constant containing the text to display on the
button’s face. This may contain an ampersand (&) to
indicate the “hot” letter for the button.

icon A string constant containing the name of an .ICO file or
standard icon to display on the button’s face. Jthieg
then serves only for “hot” key definition.

HLP Specifies on-line help is available for the #BUTTON.

id A string constant containing the identifier to access the
Help system. This may be either a Help keyword or
“context string.”

AT Specifies the position of the button in the window,
relative to the first prompt placed on the window from
the Template (excluding the standard prompts on every
procedure properties window). This attribute takes the
same parameters as the Clarion language AT attribute.

REQ Specifies the programmer must press the button at least
once when the procedure is created.

FROM Specifies the programmer may enter a set of values for
the promptsfor each instance of ttismmsymbal

fromsymbol A built-in multi-valued symbol which pre-defines all
instances on which thromptssymbols are dependent.
The programmer may not add, change, or delete in-
stances of thGomsymbal

expression A string expression to format data display in the mul-
tiple value display list box.

WHERE Specifies the #BUTTON displays only those instances of
thefromsymbolwhere theconditionis true.

condition An expression that specifies the condition for use.

MULTI Specifies the programmer may enter multiple sets of
values for the prompts. This allows multiple related
groups of prompts.

multisymbol A user-defined symbol on which all tbeomptssym-

bols are dependent. This symbol is internally assigned a

CHAPTER 4

PROGRAMMER INPUT

unique value for each setfompts

INLINE The multiple values the programmer enters for the
#BUTTON appears as a list box with update buttons
which allow the programmer to enter multiple values.
The MULTI or FROM attribute must also be present.

prompts One or more #PROMPT statements. This may also
contain #DISPLAY, #VALIDATE, #ENABLE, and
#BUTTON statements.

#ENDBUTTON Terminates the group pfomptswhich are on the page
called by the #BUTTON.

The#BUTTON statement creates a command button displaying either the
string or theicon on its face. When the programmer presses the button, a
new page opromptsappears for selection and entry.

Each new page gfromptshas its own OK, CANCEL, and TEMPLATE
HELP buttons as standard fields. All other fields on the page are generated
from thepromptswithin the #BUTTON structure.

Each page’s OK button closes the current pagearhpts saving the data

the programmer entered in thempts then returns to the prior window.

The CANCEL button closes the current pag@moimptswithout saving,

then returns to the prior window. If the page calls another page with a nested
#BUTTON statement and the programmer presses OK on the lowest level
page, then CANCEL on the page that called it, the entire transaction is
cancelled.

The MULTI attribute specifies the programmer may enter multiple sets of
values for theorompts The button calls a window containing a list box to
display all the multiple values entered for the setsrofnpts along with

Insert, Change, and Delete buttons. These three buttons call another window
containing all thgoromptsto allow the programmer to update the entries in

the list. Theexpressions used to format the information for display in the

list box.

The FROM attribute also specifies the programmer may enter multiple sets
of values for thgarompts The button calls a window containing a list box
that displays each instance of filamsymbal along with an Edit button.

This button calls another window containing all giemptsto allow the
programmer to update the entries associated with that instance of the
fromsymbal Theexpressioris used to format the information for display in
the list box. The WHERE attribute may be used to limit the instances of the
fromsymbolto only those that meet the WHERENdition

Example:

See Also:

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#/PROMPT(‘Name a File’,FILE),%FileName #!Prompt on the first page
#BUTTON(‘Page Two’) J#!Button on first page calls
#PROMPT(Pick One’,0PTION),%InputChoice #!These prompts on second page
#fPROMPT(‘Choice One’,RADIO)
#fPROMPT(‘Choice Two’,RADIO)
#ENABLE(%InputChoice = ‘Choice Two’)
#PROMPT(‘Screen Field’,WINDOWCONTROL),%SomeField
#VALIDATE(%ScreenFieldType = ‘LIST’,’Must select a 1ist box’)
fFENDENABLE
f#/ENDBUTTON J#!Terminate second page prompts
#IPROMPT(“‘Enter some value’,@S520),%InputValuel #!Another prompt on first page

#!Multiple input button:
#BUTTON(“‘Multiple Names’),MULTI(%ButtonSymbol,%ForeName & * * & %SurName)
#PROMPT(‘First Name’,@520),%ForeName
#PROMPT(‘Last Name’,@S20),%SurName
f#/ENDBUTTON #!Terminate second page prompts

#IPROMPT(‘Enter another value’,@520),%InputValue?2 J#!Another prompt on first page
#!Multiple input button dependent on %File:
#BUTTON(“File Options’),FROM(%File)
#PROMPT(‘Open Access Mode’,DROP(‘Open|Share’),%FileOpenMode
f#/ENDBUTTON J#!Terminate second page prompts

#PROMPT, #VALIDATE, #EMBLE

CHAPTER 4

PROGRAMMER INPUT

#FIELD (control prompts)

Example:

#FIELD, WHERE(expression)

prompts
#ENDFIELD

#FIELD Begins a control prompts section.

WHERE Specifies the #FIELD is used only for those instances
where theexpressions true.

expression An expression that specifies the condition for use.

prompts Prompt (#PROMPT, #BUTTON, etc.) statements.

#ENDFIELD Terminates the section.

The#FIELD structure containpromptsfor controls that are populated onto
a window. Thes@romptsappear in the Actions... dialog.

The list of field prompts appearing in the Actions... dialog is built in the
following manner:

1. #CONTROL prompts.

2. #PROCEDURE-level #FIELD prompts (also from inserted #GROUPs).

3. #PROCEDURE-level #FIELD prompts from active #EXTENSION
sections.

4. #CONTROL-level #FIELD prompts.

5. #CODE-level #FIELD prompts.

The values the user inputs into the #FIELD prompts are used to generate the
source to govern the behavior of the control.

#FIELD, WHERE(%ControlType = ‘BUTTON’)
#PROMPT(‘Enter procedure call’,PROCEDURE),%ButtonProc

##ENDFIELD

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#PREPARE (setup prompt symbols)

#PREPARE
Statements
#ENDPREPARE
#PREPARE Begins a prompts symbol setup section.
statements Template language statements to fix multi-valued

symbols to the values needed to process the #PROMPT
or #BUTTON statement following the #PRA&RE.

#ENDPREPARE Terminates the section.

The #PREPARE structure contains Template language statements to fix
multi-valued symbols to the values needed to process the #PROMPT or
#BUTTON statements preceding the #PREPARE.

Example:

#BUTTON('Customize Colors'),FROM(%ControlField,%ControlField),WHERE(%CntriHasColor)
fFPREPARE
#FIND(%ControlInstance,%ActiveTemplateInstance,%Control)
fFENDPREPARE
#BOXED('Default Colors")
#PROMPT('&Fore Normal:',COLOR),%ControlFieldForeNormal,DEFAULT(-1)
#PROMPT('&Back Normal:',COLOR),%ControlFieldBackNormal,DEFAULT(-1)
#IPROMPT('&Fore Selected:',COLOR),%ControlFieldForeSelected,DEFAULT(-1)
#PROMPT('&Back Selected:',COLOR),%ControlFieldBackSelected,DEFAULT(-1)
fFENDBOXED
#BOXED('Conditional Color Assignments')
#BUTTON('Conditional Colors'),MULTI(%ConditionalColors,%ColorCondition),INLINE
#PROMPT('&Condition:',@S255),%ColorCondition
J#/PROMPT ('&Fore Normal:',COLOR),%CondControlFieldForeNormal,DEFAULT(-1)
#PROMPT('&Back Normal:',COLOR),%CondControlFieldBackNormal,DEFAULT(-1)
JPROMPT (' &Fore Selected:',COLOR),%CondControlFieldForeSelected,DEFAULT(-1)

#PROMPT('&Back Selected:',COLOR),%CondControlFieldBackSelected,DEFAULT(-1)
fFENDBUTTON

J#FENDBOXED
#FENDBUTTON

CHAPTER 4

PROGRAMMER INPUT

#PROMPT Entry Types
CHECK (check box)

CHECK

Example:

TheCHECK typein a #PROMPT statement indicates the promgtisbol

is a toggle switch which is used only for on/off, yes/no, we/talse
evaluation. CHECK puts a check box on screen in the entry area for the
#PROMPT. When the Check box is toggled on, the promsptizbol

contains one (1). When the Check box is toggled off, the prosyatibol
contains zero (0).

#PROMPT(‘Network Application’,CHECK),%NetworkApp

COMPONENT (list of KEY fields)

COMPONENT [(scope)]

Example:

COMPONENT Displays a list of KEY component fields.

scope A symbol containing a KEY. If omitted, the list displays
all KEY components for all KEYs in all FILESs.

The COMPONENT typein a #7ROMPT statement indicates the prompt’s
symbolmust contain the label of one of the component fields of a KEY. A
list of available KEY fields pops up when the #PROMPT is encountered on
the Properties screen.

The COMPONENT may havestopeparameter that limits the KEY
components available in the list.d€opeis the label of a KEY, the list
displays all KEY components for that KEY.

#PROMPT(‘Record Selector’,COMPONENT(%Primary)),%RecordSelector

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

CONTROL (list of window fields)

CONTROL

The CONTROL typein a #PROMPT statement indicates the prompt’s
symbolmust contain the field equate label of a window control. A list of
available controls pops up when the #PROMPT is encountered on the
Properties screen.

Example:

#IPROMPT(‘Locator Field’,CONTROL),%Locator

DROP (droplist of items)

DRORP [(scope)]

DROP Creates a droplist of items.

scope A string constant containing the items for the list,
delimited by the vertical bar (|) character.

The DROP typein a #PROMPT statement indicates the promgptimbol

must contain one item from the list specified in shepeparameter. The
scopemust contain all the items for the list. The list of items drops down
just like a Clarion language LIST control with the DROP attribute. If no
default value is specified, the prompt's symbol defaults to the first value in
the scopelist.

Example:

#PROMPT(“If file not found’,DROP(‘Create the file|Halt Program’)),%FileNotFound

CHAPTER 4 PROGRAMMER INPUT

EMBED (enter embedded source)

EMBED(identifier [, instance])

EMBED Specifies the prompt directly edits an embedded source
code point.

identifier The user-defined template symbol which identifies the
#EMBED embedded source code point to edit.

instance A string constant or expression containing one of the

values in the multi-valued symbol used by the #EM-
BED. You must have as maimstancesas are hecessary
to explicitly identify the single #EMBED point instance
to edit.

TheEMBED typein a #PROMPT statement indicates the prompt is used to
directly edit an embedded source code point. This places an an entry area
with an ellipsis (...) button next to the prompt to allow the user access to the
embedded source code point. The programmer may enter a procedure call in
the entry area, or press the ellipsis (...) button to go into the normal source
dialog.

If the #EMBED is associated with a multi-valued symbol, you must identify
the specifidnstanceof the #EMBED. If you use a multi-valued symbol as
aninstanceexpression, it must be fixed to a single value. Most commonly,
this would be used in a #FIELD structure.

Example:

#PROMPT(‘Embedded Data Declarations’,EMBED(%DataSection))
##FIELD, WHERE(%ControlType = ‘BUTTON’)

#PROMPT(“‘Action when button is pressed’,EMBED(%ControlEvent,%Control,’Accepted’))
fIENDFIELD

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

EMBEDBUTTON (enter embedded source)

EMBEDBUTTON(identifier [, instance])

EMBEDBUTTON Specifies the prompt directly edits an embedded source

code point.
identifier The user-defined template symbol which identifies the
#EMBED embedded source code point to edit.
instance A string constant or expression containing one of the

values in the multi-valued symbol used by the #EM-
BED. You must have as maimstancesas are hecessary
to explicitly identify the single #EMBED point instance
to edit.

The EMBEDBUTTON typein a #PROMPT statement indicates the prompt

is used to directly edit an embedded source code point. This places a button
next to the prompt allow the user access to the embedded source code point.
The programmer may press the button to enter the embed dialog.

If the #EMBED is associated with a multi-valued symbol, you must identify
the specifianstanceof the #EMBED. If you use a multi-valued symbol as
aninstanceexpression, it must be fixed to a single value. Most commonly,
this would be used in a #FIELD structure.

Example:

#PROMPT(‘Embedded Data Declarations’,EMBEDBUTTON(%DataSection))
#FIELD, WHERE(%ControlType = ‘BUTTON’)

#PROMPT(“‘Action for button press’,EMBEDBUTTON(%ControlEvent,%Control, Accepted’))
fFENDFIELD

CHAPTER 4 PROGRAMMER INPUT

FIELD (list of data fields)

FIELD [(scope)]

FIELD Displays a list of fields in FILEs.

scope A symbol containing a FILE label. If omitted, the list
displays all fields for all FILEs.

TheFIELD typein a #PROMPT statement indicates the promgisbol
must contain the label of a field in a data file. A list of available fields pops
up when the #PROMPT is encountered on the Properties screen.

There may be acopeparameter that limits the fields available in the list. If
scopenames a FILE, the list displays all fields in the FILE. If there is no
scopeparameter, the list displays all fields in all FILESs.

Example:

#PROMPT(‘Locator Field’,FIELD(%Primary)),%Locator

FILE (list of files)

FILE

TheFILE typein a #PROMPT statement indicates the promgtisibol

must contain the label of a data file. A list of available files from the
procedure’s File Schematic pops up when the #PROMPT is encountered on
the Properties screen.

Example:
#PROMPT(‘Logout File’,FILE),%LogoutFile

FORMAT (call listbox formatter)

FORMAT

The FORMAT typein a #PROMPT statement indicates the pronmgtisibol
must contain a LIST or COMBO control’'s FORMAT attribute string, so it
calls the listbox formatter to create it.

Example:

#PROMPT(“‘ATternate LIST format’,FORMAT),%AlternateFormatString

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FROM (list of symbol values)

FROM(symbol [, expression] [, value])

FROM Specifies a drop-down list of values from gyanbol
symbol A multi-valued symbol.
expression An expression which controls whigdymbolvalues are

displayed. Onlysymbolvalues where thexpressions
true are displayed in the drop list.

value The symbol containing the values to display for the
prompt and assigned mto thgmbol

The FROM typein a #PROMPT statement indicates the user must select
one item from the list contained in tegmbol Theexpressiorcan be used
to limit the valuesdisplayedwhile thevaluedefines the display elements.

Example:

#PROMPT(‘Select an Event’,FROM(%ControlEvent)),%WhichEvent
#PROMPT(“Select a Button’,FROM(%ControlField,%ControlType = ‘BUTTON’)),%WhichButton
#IPROMPT(‘Pick a Field’,FROM(%Control,%ControlUse <> *“’,%ControlUse)),%MyButton

KEY (list of keys)

KEY [(scope)]

KEY Displays a list of KEYSs.

scope A symbol containing a FILE. If omitted, the list displays
all KEYs in all FILEs.

The KEY typein a #PROMPT statement indicates the promgptimbol
must contain the label of a KEY. A list of available keys from the data
dictionary pops up when the #PROMPT is encountered on the Properties

screen.

There may be acopeparameter that limits the KEYs available in the list. If
scopenames a FILE, the list displays all KEYs in the FILE. If there is no
scopeparameter, the list displays all KEYs in all FILEs.

Example:
#PROMPT (‘Which Key’,KEY(%Primary)),%UseKey

CHAPTER 4 PROGRAMMER INPUT

KEYCODE (list of ke ycodes)

KEYCODE

TheKEYCODE typein a #PROMPT statement indicates the prompt's
symbolmust contain a keycode or keycode equate label. A selection list of
keycode equate labels from KEYCODES.EQU pops up when the user
presses the ellipsis button next to the prompt on the Properties screen.

Example:

J#/PROMPT(‘Hot Key’,KEYCODE),%ActiveKey

OPTION (display radio buttons)

OPTION

TheOPTION typein a #PROMPT statement indicates the promptimbol
must contain the value of one of thieingsin one of the following RADIO
#PROMPT statements. Each of stengsdisplays a radio button on the
Properties saen when the #PROMPT is encountered.

Example:

#PROMPT(‘Ask for Choice’,0PTION),%0ptionSymbol
ffPROMPT(‘Option One’,RADIO)

ffPROMPT(‘Option Two’,RADIO)

ffPROMPT(‘Option Three’,RADIO)

PICTURE (call picture formatter)

PICTURE
ThePICTURE typein a #PROMPT statement calls the picture formatter to
create a picture token used to format data for display.
Example:
#PROMPT(‘Display Format’,PICTURE),%DisplayPicture

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

PROCEDURE (add to logical procedure tree)

PROCEDURE

The PROCEDURE typein a #PROMPT statement indicates the value
placed in thesymbolis the name of a procedure in your application. This
procedure name is added to the Application Generator’s logical procedure
call tree in the appropriate place.

Example:

#/PROMPT(“‘Next Procedure’,PROCEDURE),%NextProcedure

RADIO (one radio button)

RADIO

The RADIO typein a #PROMPT statement creates one RADIO button for
the closest preceding OPTION prompt. When selected, the RABIDig
is placed in the OPTION'symbol

Example:

#PROMPT(‘Ask for Choice’,0PTION),%0ptionSymbol
##PROMPT(‘Option One’,RADIO)

ffPROMPT(‘Option Two’,RADIO)

##PROMPT(‘Option Three’,RADIO)

SPIN (spin box)
SPIN(picture, low, high [, step])

SPIN Creates a spin control.

picture A data entry picture token.

low A numeric constant or expression containing the lowest
valid value.

high A numeric constant or expression containing the highest
valid value.

step A numeric constant or expression containing the amount

to change each increment between lowest and highest
valid values. If omitted, the default is 1.

The SPIN typein a #PROMPT statement creates a spin control for the
programmer to select a valid number.

Example:
#PROMPT(‘How Many?’,SPIN(@n2,1,10)),%SpinSymbo]l

CHAPTER 4 PROGRAMMER INPUT

Display and Formatting Statements
#BOXED (prompt group box)

#BOXED([string 1) [, AT()][, WHERE(expression)] [, CLEAR] [, HIDE]

prompts
#ENDBOXED

#BOXED Creates a group box pfompts

string A string constant containing the text to display as the
group box caption.

AT Specifies the position of the group in the window,
relative to the first prompt placed on the window from
the Template (excluding the standard prompts on every
procedure properties window). This attribute takes the
same parameters as the Clarion language AT attribute.

WHERE Specifies the #BOXED is visible only for those instances
where theexpressions true.

expression An expression that specifies the condition for use.

CLEAR Specifies thggromptssymbol values are cleared when
disabled.

prompts One or more #PROMPT statements. This may also
contain #DISPLAY, #VALIDATE, #ENABLE, and
#BUTTON statements.

HIDE Specifies thgoromptsare hidden if the WHEREXxpres-
sionis false when the dialog is first displayed.

#ENDBOXED Terminates the group box pfompts

The#BOXED statement creates a group box displayingsthiag as its

caption. If the WHERE attribute is present, giremptsare hidden or visible

based upon the evaluation of #aeressionif the expressionis true, the
promptsare visible, otherwise they are hidden.
Example:
#PROMPT(“Pick One’,O0PTION),%InputChoice #!These prompts on second page

#PROMPT(‘Choice One’,RADIO)

ffPROMPT(‘Choice Two’,RADIO)

#BOXED(‘Choice Two Options’),WHERE(%InputChoice = ‘Choice Two’)
#PROMPT(*Screen Field’,WINDOWCONTROL),%SomeField
#VALIDATE(%ScreenFieldType = ‘LIST’,’Must select a list box”)

fFENDBOXED

See Also: #PROMPT, #VALIDATE

4-20 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#DISPLAY (display-only prompt)

#DISPLAY([string]) [, AT()]

#DISPLAY Displays a string constant on a properties window.
string A string expression containing the text to display.
AT Specifies the size and position of #tdng display area

in the window, allowing multiple lines of text. This
attribute takes the same parameters as the Clarion
language AT attribute.

The#DISPLAY statement displays thstring on a properties window. If the
string is omitted, a blank line is displayed. #DISPLAY is not valid in a
#MODULE section.

Example:
#IDISPLAY () f#1Display a blank line
#DISPLAY(‘Ask programmer to input some’) #!Display a string
#PROMPT(¢ specific value’,@s20),%InputSymbol
See Also: #PROMPT, #GROUP, #BOXED, #ENABLE, #BUTTON
#IMAGE (display graphic)
#IMAGE(string) [, AT()]

#IMAGE Displays a graphic image on a properties window.

picture A string expression containing the name of the image
file to display.

AT Specifies the size and position of thieture display area
in the window. This attribute takes the same parameters
as the Clarion language AT attribute.

The#IMAGE statement displays thpécture graphic image on a properties

window. #IMAGE is not valid in a #MODULE section.

Example:

#IMAGE(“SomePic.BMP") #!Display a bitmap

CHAPTER 4 PROGRAMMER INPUT

#SHEET (declare a group of #TAB controls)

#SHEET
tabs
#ENDSHEET
#SHEET Declares a group of #TAB controls.
tabs Multiple #TAB control declarations.

#ENDSHEET Terminates the group box pfompts

#SHEET declares a group of #TAB controls that offer the user multiple
“pages” of prompts for the window. The multiple #TAB controls in the
SHEET structure define the “pages” displayed to the user.

Example:

FUTILITY(ApplicationWizard, 'Create a New Database Application'),WIZARD
i#!
fFSHEET
#TAB('Application Wizard')
F#IMAGE (' CMPAPP.BMP")
#DISPLAY('This wizard will create a new Application.'),AT(90,8,235,24)
#DISPLAY('To begin creating your new Application, click Next.'),AT(90)
J#FENDTAB
#TAB('Application Wizard - File Usage'),FINISH(1)
FIMAGE("WINAPP.BMP")
#DISPLAY('You can gen procs for all files, or select them'),AT(90,8,235,24)
#/PROMPT('Use all files in DCT',CHECK),%GenA11Files,AT(90,,180),DEFAULT(1)
fFENDTAB
#TAB('Select Files to Use'),WHERE(NOT %GenAl1Files),FINISH(1)
F#IMAGE("WINAPP.BMP")
#PROMPT('File Select',FROM(%File)),%FileSelect,INLINE,SELECTION('File Select')
fFENDTAB
#TAB('Application Wizard - Finally..."'),FINISH(1)
F#IMAGE("WINAPP.BMP")
#DISPLAY('01d procs can be overwritten or new procs suppressed’')
#PROMPT('Overwrite existing procs',CHECK),%0verwriteAl1l,AT(90,,235),DEFAULT(0)
#IMAGE('<255,1,4,127>'),AT(90,55)
#DISPLAY('Your First Procedure is always overwritten!'),AT(125,54,200,20)
J#FENDTAB
fFENDSHEET

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#TAB (declare a page of a #SHEET control)

#TAB(text) [,FINISH()] [WHERE()]

prompts
#ENDTAB
#TAB Declares a group gfromptsthat constitute one of the
multiple “pages” within a #SHEET structure.
text A string constant containing the text to display on the

tab, or as the title of the window, if the WIZARD
attribute is present on the #UTILITY.

FINISH Specifies the “Finish” button is present. Valid only in a
#UTILITY with the WIZARD attribute.

WHERE Specifies the #BOXED is visible only for those instances
where theexpressions true.

expression An expression that specifies the condition for use.

prompts One or more #PROMPT statements. This may also

contain #DISPLAY, #VALIDATE, #ENABLE, and
#BUTTON statements.

#ENDTAB Terminates the page pfompts

The#TAB structure declares a groupmbmptsthat constitute one of the
multiple “pages” of controls contained within a #SHEET structure. The
multiple #TAB controls in the #SHEET structure define the “pages”
displayed to the user.

Example:

FUTILITY(ApplicationWizard, 'Create a New Database Application'),WIZARD
{!
#SHEET
#TAB('Application Wizard')
fFIMAGE (' CMPAPP.BMP")
#DISPLAY('This wizard will create a new Application.'),AT(90,8,235,24)
#DISPLAY('To begin creating your new Application, click Next.'),AT(90)
fFENDTAB
#TAB('Application Wizard - File Usage'),FINISH(1)
F#FIMAGE("WINAPP.BMP")
#IDISPLAY('You can gen procs for all files, or select them'),AT(90,8,235,24)
##PROMPT('Use all files in DCT',CHECK),%GenA11Files,AT(90,,180),DEFAULT(1)
fFENDTAB
#TAB('Select Files to Use'),WHERE(NOT %GenAT1Files),FINISH(1)
fFIMAGE ('WINAPP.BMP")
#PROMPT('File Select',FROM(%File)),%FileSelect, INLINE,SELECTION('File Select"')
fFENDTAB
#TAB('Application Wizard - Finally...'),FINISH(1)
fFIMAGE ('WINAPP.BMP")
#DISPLAY('01d procs can be overwritten or new procs suppressed’)
#PROMPT('Overwrite existing procs',CHECK),%0verwriteAl1,AT(90,,235),DEFAULT(0)
#IMAGE('<255,1,4,127>'),AT(90,55)
#DISPLAY('Your First Procedure is always overwritten!'),AT(125,54,200,20)
fFENDTAB
fFENDSHEET

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL 5-1

Template Logic Control Statements Contents |

#FOR (generate code multiple times)

#FOR(symbol) [, WHERE(expression) | [, REVERSE]

Statements
#ENDFOR

#FOR Loops through all instances of a multi-valued symbol.

symbol A multi-valued symbol.

WHERE Specifies thestatementén the #FOR loop are executed
only for those instances of tegmbolwhere theexpres-
sionis true.

expression An expression that specifies the condition for execution.

REVERSE Specifies the #FOR loops through the instances of the
symbolin reverse order.

statements Target and/or Template Language statements.

#ENDFOR Terminates the #FOR structure.

#FOR is a loop structure which generatessiisztement®nce for each value
contained in itsymbolduring source code generation. If there are no values
in thesymbo] no code is generated. #FOR must be terminated by
#ENDFOR. If there is no #ENDFOR, an error message is issued during
Template file pre-processing. A #FOR loop may be nested within another
#FOR loop.

The #FOR loop begins with the first instance of sgmbol(or last, if the
REVERSE attribute is present) and processes through all instances of the
symbotit is not affected by any #FIX statements. If IWelERE attribute

is present, the #FORatementare executed only for those instances of the
symbolwhere theexpressioris true. This creates a conditional #FOR loop.

Since #FOR is a loop structure, the #BREAK and #CYCLE statements may
be used to control the loop. #BREAK immediately terminates #FOR loop
processing and continues with the statement following the #ENDFOR that
terminates the #FOR. #CYCLE immediately returns control to the #FOR
statement to continue with the next instance ofthebol

Example:
#FOR(%ScreenField) ,WHERE(%ScreenFieldType = ‘LIST’)
#INSERT(%ListQueueBuild) #!Generate only for LIST controls
fFENDFOR

See Also: #BREAK, #CYCLE

5-2 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#IF (conditionally generate code)

#IF(expression)

statements
[#ELSIF(expression)
statements |
[#ELSE
statements |
#ENDIF
#IF A conditional execution structure.
expression Any Template Language expression which can evaluate
to false (blank or zero) or true (any other value). The
expression may contain Template symbols, constant
values, and any of the arithmetic, Boolean, and logical
operators documented in thanguage Reference
Function calls are allowed. If the modulus division
operator (%) is used in the expression, it must be delim-
ited by at least one blank space on each side (to explic-
itly differentiate it from the Template symbols).
statements One or more Clarion and/or Template Language state-
ments.
#ELSIF Provides an alternagxpressiorto evaluate when
preceding #IF and #ELSI&xpressionare false.
#ELSE Provides alternatstatementso execute when all preced-
ing #IF and #ELSIFexpressionsare false.
#ENDIF Terminates the #IF structure.

#IF selectively generates a groupstdtementslepending on the evaluation
of theexpression(s)The #IF structure consists of a #IF statement and all
statements following it until the stcture is terminated BYENDIF. If there
is no #ENDIF, an error message is issued during Template file pre-
processing. #IF structures may be nested within other #IF structures.

#ELSIF and#ELSE are logical separators which separate the #IF structure
into statementgroups which are conditionally generated depending upon
the evaluation of thexpression(s)There may be multiple #ELSIF
statements within one #IF structure, but only one #ELSE.

When #IF is encountered during code generation:

. If theexpressiorevaluates as true, only te@atements
following #IF are generated, up to the next following
#ELSIF, #ELSE, or #ENDIF.

. If theexpressiorevaluates as false, #ELSIF (if present)
is evaluated in the same manner. If the #ELS{pres-
sionis true, only thestatementgollowing it are gener-

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

ated, up to the following #ELSIF, #ELSE, or #ENDIF.

. If all preceding #IF and #ELSIF conditions evaluate
false, only thestatements$ollowing #ELSE (if present)
are generated, up to the following #ENDIF. If there is no
#ELSE, no code is generated.

Example:

#IF(SUB(%ReportControlStatement,1,6)="HEADER')
#SET(%Indentation,%Indentation+1)
FELSIF(SUB(%ReportControlStatement,1,6)="FOOTER")
#SET(%Indentation,%Indentation+1)
FELSIF(SUB(%ReportControlStatement,1,6)="DETAIL")
#SET(%Indentation,%Indentation+1)
FELSIF(SUB(%ReportControlStatement,1,6)="0PTION")
#SET(%Indentation,%Indentation+1)
FELSIF(SUB(%ReportControlStatement,1,5)="GROUP")
#SET(%Indentation,%Indentation+1)
#ELSTIF(SUB(%ReportControlStatement,1,5)="BREAK")
#SET(%Indentation,%Indentation+1)
FELSIF(SUB(%ReportControlStatement,1,4)="FORM")
#SET(%Indentation,%Indentation+1)
#ENDIF

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#LOORP (iteratively generate code)

#LOOP [,

| UNTIL(expression) |
| WHILE(expression) |
| FOR(counter, start, end) [, BY(step)]|

]

statements

#ENDLOOP

#LOOP Initiates an iterative statement execution structure.

UNTIL Evaluates itexpressiorbefore each iteration of the
#LOOP. If itsexpressiorevaluates to true, the #LOOP
control sequence terminates.

expression Any Template language expression which can evaluate to
false (blank or zero) or true (any other value).
WHILE Evaluates itexpressiorbefore each iteration of the

#LOOP. If itsexpressiorevaluates to false, the #LOOP
control sequence terminates.

FOR Initializes itscounterto thestart value, and increments
it by thestepvalue each time through the loop. When
thecounteris greater than thendvalue, the #LOOP
control sequence terminates.

counter A user-defined symbol used as the loop counter.

start An expression containing the initial value to which to set
the loopcounter

end An expression containing the ending value of the loop
counter

BY Explicitly defines the increment value for tbeunter

step An expression containing the increment value for the
counter If omitted, thestepdefaults to one (1).

statements One or more target and/or Template Language state-
ments.

#ENDLOOP Terminates the #LOOP structure.

A #LOOP structure repetitively executes thmtementsvithin its structure.

The #LOOP structure must be terminatedfBNDLOOP. If there is no
#ENDLOOP, an error message is issued during Template file pre-processing.
A #LOOP structure may be nested within another #LOOP structure.

The#LOOP,UNTIL or#LOOP,WHILE statements create exit conditions
for the #LOOP. Theiexpressionare always evaluated at the top of the
#LOOP, before the #LOOP is executed. A #LOOP WHILE structure
continuously loops as long as tiepressioris true. A #.O0P UNTIL
structure continuously loops as long asekpressiornis false. The
expressiommay contain Template symbols, constant values, and any of the
arithmetic, Boolean, and logical operators documented ihdahguage

CHAPTER 5

Locic AND SOURCE GENERATION CONTROL 5-5

Example:

See Also:

ReferenceFunction calls are allowed. If the modulus division operator (%)
is used in thexpressionit must be followed by at least one blank space (to
explicitly differentiate it from the Template symbols).

The#LOOP,FOR statement also creates an exit condition for the #LOOP.
The #LOORP initializes theounterto thestart value on its first iteration.

The #LOOP automatically increments t@unterby thestepvalue on each
subsequent iteration, then evaluateschenteragainst theendvalue. When
thecounteris greater than thend the #LOOP control sequence terminates.

#LOOP (without WHILE, UNTIL, or FOR) loops continuously, unless a
#BREAK or #RETURN statement is executed. #BREAK terminates the
#LOOP and continues execution with the statement following the #LOOP
structure. Allstatementsvithin a #LOOP structure are executed unless a
#CYCLE statement is executed. #CYCLE immediately gives control back to
the top of the #LOOP for the next iteration, without executing any
statements following the #CYCLE in the #LOOP.

#SET(%LoopBreakFlag, *NO”)

f#LOOP

#!Continuous loop

#INSERT(%SomeRepeatedCodeGroup)
#IF(%LoopBreakFlag = ‘YES’) #!Check break condition

#FBREAK
JFENDIF
#ENDLOOP

#SET(%LoopBreakFlag, *NO”)
##LOOP,UNTIL(%LoopBreakFlag = ‘YES’) #!Loop until condition is true
#INSERT (%SomeRepeatedCodeGroup)

#FENDLOOP

#SET(%LoopBreakFlag, *NO*)
#LOOP,WHILE(%LoopBreakFlag = “NO’) #!Loop while condition is true
#INSERT(%SomeRepeatedCodeGroup)

#ENDLOOP

#BREAK, #CYCLE

5-6 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#CASE (conditional execution structure)

#CASE(condition)
#OF(expression)
[#OROF(expression) |
statements
[#ELSE
statements |
#ENDCASE

#CASE Initiates a selective execution structure.

condition Any Template Language expression which returns a
value.

#OF The #OFstatementsire executed when the #@kpres-
sionis equal to theonditionof the CASE. There may
be many #OF options in a #CASE structure.

expression Any Template Language expression which returns a
value.

#OROF The #OROFstatementsre executed when the #OROF
expressions equal to theonditionof the #CASE. There
may be many #OROF options associated with one #OF
option.

#ELSE The #ELSEstatementare executed when all preceding
#OF and #OROIlxpressionare not equal to the
conditionof the #CASE. #ELSE (if used) must be the
last option in the #CASE structure.

statements Any valid executable source code.
#ENDCASE Terminates the #CASE structure.

A #CASE structure selectively executsmtementbased on equivalence
between the #CASEonditionand one of the #0F or #OR@kpressionslf

there is no exact match, teeatement$ollowing #ELSE are executed. The
#CASE structure must be terminated#BNDCASE. If there is no

#ENDCASE, an error message is issued during Template file pre-processing.
#CASE structures may be nested within other #CASE structures.

Example:

#CASE %ScreenField

#O0F <20k’
#INSERT (%0kButtonGroup)

J#fOF *?Cancel”’

#OROF “?Exit’
#INSERT(%CancelButtonGroup)

#ELSE
#INSERT(%0therControlsGroup)

fFENDCASE

CHAPTER 5

Locic AND SOURCE GENERATION CONTROL

#INSERT (insert code from a #GROUP)

#INSERT(symbol [(set)][, parameters])

#INSERT Inserts code from a #GROUP.
symbol A symbol that names a #GROUP section.
set The #TEMPLATEnameparameter for the template set

to which the #GROUP belongs. If omitted, the #GROUP
must be of the same template saimeas the #PROCE-
DURE in which it is used.

parameters The parameters passed to the #GROUP. Each parameter
must be separated by a comma. All parameters defined
for the #GROUP must be passed; they may not be
omitted.

The#INSERT statement places, at the exact position the #INSERT is
located within the Template code, the code from the #GROUP named by the
symbol Thesetparameter specifies the #TEMPLATE that contains the
#GROUP. This allows any Template to use #GROUP code from any other
registered Template.

Theparametergassed to the #GROUP fall into two categories: value-
parameters and variable-parameters. Value-parameters are declared by the
#GROUP as a user-defined symbol, while variable-parameters are declared
by the #GROUP as a user-defined symbol with a prepended asterisk (*).
Either a symbol or an expression may be passed as a value-parameter. Only
a symbol may be passed as a variable-parameter.

Example:
#INSERT (%SomeGroup) #10rdinary insert
#INSERT (%GenerateFormulas(Clarion)) #!Insert #GROUP from Clarion Template
F#INSERT(%FileRecordFilter,%Secondary) #!Insert #GROUP with passed parameter

#INSERT(%FileRecordFilter(Clarion),%Primary,%Secondary)

See Also:

##fGROUP from Clarion Template with two passed parameters

#GROUP

5-8 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#BREAK (break out of a loop)

#BREAK

The#BREAK statement immediately breaks out of the #FOR or #LOOP
structure in which it is enclosed. Control passes to the next statement
following the #ENDFOR or #ENDLOOP. #BREAK is only valid within a
#FOR or #LOOP structure, else an error is generated during Template file
pre-processing. #BREAK acts as a #RETURN statement if issued from
within a #GROUP inserted in the loop (unless it is within a #FOR or
#LOOP structure completely contained within the #GROUP).

Example:

fFSET(%StopFile, ’CUSTOMER”)
fFFOR(%File)
##IF (UPPER(%File) = %StopFile)
#FBREAK
fFENDIF
OPEN(%File)
fFENDFOR

#CYCLE (cycle to top of loop)

#CYCLE

The#CYCLE statement immediately passes control back to the top of the
#FOR or #LOOP structure in which it is enclosed to begin the next iteration.
#CYCLE is only valid within a #FOR or #LOOP structure, else an error is
generated during Template file pre-processing. #CYCLE acts as a
#RETURN statement if issued from within a #GROUP inserted in the loop
(unless it is within a #FOR or #LOOP structure completely contained within
the #GROUP).

Example:

ffSET(%StopFile, ’CUSTOMER")
fFFOR(%File)
##IF (UPPER(%File) <> %StopFile)
OPEN(%File)
fHCYCLE
fELSE
#'BREAK
JFENDIF
fFENDFOR

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

#RETURN (return from #GROUP)

#RETURN

The#RETURN statement immediately returns control to the statement
following the #INSERT that called the #GROUP containing the #RETURN
statement. #RETURN is only valid in a #GROUP section.

Example:

#GROUP (%ProcessListGroup,%PassedControl)
#FIX(%ScreenField,%PassedControl)
#IF (%ScreenFieldType <> ‘LIST’)
FUNFIX(%ScreenField)
#RETURN
FENDIF

#GENERATE (generate source code section)

#GENERATE(section)

#GENERATE Generates a section of the application.

section One of the following built-in symbols: %Program,
%Module, or %Procedure. This symbol indicates the
portion of the application to generate.

The#GENERATE statement generates the source code for the specified
sectionof the application by executing the Template Language statements
contained within thasection #GENERATE should only be used within the
#APPLICATION or a #UTILITY section of the Template.

Whensectionis:

%Program The #PROGRAM section of the Template is generated.
%Module The appropriate #MODULE section of the Template is
generated.

%Procedure The appropriate #PROCEDURE section of the Template
for the current value of %Procedure is generated.

Example:
#FGENERATE(%Program) #!Generate program header
ffFOR(%Module) #!
#GENERATE(%Module) #!Generate module header
#FOR(%ModuleProcedure) #!For all procs in module
#FIX(%Procedure,%ModuleProcedure) #!Fix current procedure
#GENERATE(%Procedure) #!Generate procedure code
#ENDFOR #!EndFor all procs in module

#/ENDFOR #!1EndFor all modules

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#ABORT (abort source generation)

#ABORT

The #ABORT statement immediately terminates source generation by the
previous #GENERATE statement. #ABORT may be placed in any template
section.

Example:

#IF(%ValidRangeKey=%Null)
#ERROR(%Procedure & ° Range Error: The range field is not in the primary key!’)
JFABORT

H#FENDIF

See Also: #GENERATE

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

File Management Statements
#CREATE (create source file)

#CREATE(file)

#CREATE Creates a disk file teeceive generated source code.

file A string constant, template symbol, or expression
containing a DOS file specification. This may be a fully
gualified DOS pathname.

The#CREATE statement creates a disk file to receive the source code
generated by #GENERATE. If tHige does not exist, it is created. If thie
already exists, it is opened and emptied (truncated to zero length)filé the
is already open, a source generation error is produced.

Thefile is automatically selected as the active source output destination.

Example:

#SET(%5NewProgramFile, (%Application & “.$$$°)) #!Temp new program filename
#CREATE(%NewProgramFile) #!Create new program file

FGENERATE(%Program) #!Generate main program header

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#OPEN (open source file)

Example:

See Also:

#OPEN(file) [, READ]

#OPEN Opens a disk file toeceive generated source code.

file A string constant, template symbol, or expression
containing a DOS file specification. This may be a fully
qualified DOS pathname.

READ Opens the file as read-only. The file cannot be already

open for output.

The #OPEN statement opens a disk file to receive the source code generated
by #GENERATE. If thefile does not exist, it is created. If thike already

exists, it is opened in “append source” mode. Iffileeis already open, a

source generation error is produced. Tileeis automatically selected as the

active source output destination.

If the READ attribute is present, the file is opened in read-only mode so the
#READ statement can read it as an ASCII text file. Only one file can be

open for input at one time.

#SET(%ProgramFile, (%Application & “.$$$°))
ffOPEN(%ProgramFile)
#GENERATE(%Program)

#CLOSE(%ProgramFile)

#OPEN(%ProgramFile),READ
#DECLARE (%ASCIIFileRecord)
fLOOP
J#READ(%ASCIIFileRecord)
#! Parse the line and do something with it
#IF(%ASCIIFileRecord = %EOF)
#BREAK
J#ENDIF
fFENDLOOP
#CLOSE(%ProgramFile),READ

#READ, #CLOSE

#!Temp program filename

#!0pen existing program file
#!Generate main program header
#!Close output file

#!0pen it in read-only mode

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

#CLOSE (close source file)

#CLOSE([file]) [, READ]

#CLOSE Closes an open generated source code disk file.

file A string constant, template symbol, or expression
containing a DOS file specification. This may be a fully
qualified DOS pathname. If omitted, the current disk file
receiving generated source code is closed.

READ Closes the read-only input file.

The#CLOSE statement closes an open disk file receiving the generated
source code. If théle is omitted, the current disk file receiving generated
source code is closed. If tifike does not exist, or is already closed, a source
generation error is produced.

Example:
#SET(%NewProgramFile, (%Application & “.$$$’)) #!Temp new program filename
#CREATE (%NewProgramFile) #!Create new program file
#GENERATE(%Program) #!Generate main program header
#CLOSE(%NewProgramFile) #!Create new program file
#OPEN(%ProgramFile),READ #!0pen it in read-only mode
fIDECLARE(%ASCIIFileRecord)
J#LO0P

J#READ(%ASCIIFileRecord)
#! Parse the line and do something with it
#IF(%ASCIIFileRecord = %EOF)
#BREAK
fFENDIF
FENDLOOP
#CLOSE(%ProgramFile),READ #!Close the read-only file

See Also: #OPEN, #READ

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#READ (read one line of a source file)

#READ(symbol)

#READ Reads the next record from the opened read-only file.
symbol The symbol to receive the text from the file.

The #READ statement reads the next record (up to the next CR/LF

encountered) from open read-only file. Tenbolreceives the text from the
file. If the last record has been read, slgenbolwill contain a value
equivalent to the %EOF built-in symbol.

Example:

#OPEN(%ProgramFile),READ #!0pen it in read-only mode
ffDECLARE(%ASCIIFileRecord)
J#LO0P

J#READ(%ASCIIFileRecord)

#! Parse the line and do something with it
#IF(%ASCIIFileRecord = %EOF)
#BREAK

fFENDIF
FENDLOOP
#CLOSE(%ProgramFile),READ #!Close the read-only file

See Also: #OPEN, #CLOSE

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

#REDIRECT (change source file)

#REDIRECT([file])

#REDIRECT Changes the current generated source destination file.

file A string constant, template symbol, or expression
containing a DOS file specification that has already been
opened with #OPEN or #CREATE. This may be a fully
qualified DOS pathname. If omitted, the source genera-
tion destination returns to the previous file theataived
generated source.

The#REDIRECT statement changes the destinafitenfor generated

source code. All source generation output is directed to the spditdied

until a #0OPEN or another #REDIRECT statement is executed. If the file has
not been previously opened (or created), or is closed, then a source
generation error is produced.

The destination files for generated source are kept as a LIFO (Last In, First
Out) “stack” list. When #REDIRECT is issued withoutila parameter, the
source generation destination reverts to the previous destination file.

Example:
#SET(%NewProgramFile, (%Application & “.CLW’)) #!Temp new program filename
#CREATE(%NewProgramFile) #!Create new program file
#FOR(%Module)
#CREATE(%Module & “.CLW”) #!Make module files
f#FENDFOR
#REDIRECT (%NewProgramFile) #!Redirect output to program file
##GENERATE(%Program) #!Generate main program header
#CLOSE (%NewProgramFile) #!Create new program file
#FOR(%Module)
#REDIRECT(%Module & “.CLW") #!Redirect output to module file
JFGENERATE (%Module) #!Generate module header
#FOR(%ModuleProcedure) #!For all procs in module
#FIX(%Procedure,%ModuleProcedure) #!Fix current procedure
#FGENERATE(%Procedure) #!Generate procedure code
#/ENDFOR #!EndFor all procs in module
fFENDFOR
#!The following code demonstrates the LIFQ files Tist:
fFREDIRECT(“F1.CLW") #lList contains: F1
##REDIRECT(“F2.CLW") #!List contains: F1, F2
fFREDIRECT(“F3.CLW") #!List contains: F1, F2, F3
#REDIRECT() #!List contains: F1, F2

#REDIRECT() #!List contains: F1

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#APPEND (add to source file)

Example:

#APPEND(file)

#APPEND Adds thefile contents to the end of the current source
output destination file.
file A string constant, template symbol, or expression

containing a DOS file specification. This may be a fully
qualified DOS pathname.

The #APPEND statement adds the complete contents ofikhé¢o the end
of the current source output destination file. The contents dil¢here NOT
interpreted for source generation purposes. Thereforélegtstould not
contain any Template Language code.

If the file does not exist, #APPEND is ignored and source gtéoera
continues.

#FOR(%Module)
J#SET(%TempModuleFile, (%Module & .$$$°)) #!Set temp module file
#CREATE(%TempModuleFile) #!Create temp module file
##FOR(%ModuleProcedure) f#!For all procs in module
#FIX(%Procedure,%ModuleProcedure) #!Fix current procedure
#GENERATE(%Procedure) #!Generate procedure code
#IENDFOR #!EndFor all procs in module
#SET(%ModuleFile, (%Module & “.CLW’)) #!1Set to current module file
#CREATE(%ModuleFile) #!Create module file
JFGENERATE (%Module) ##!Generate module header
#APPEND(%TempModuleFile) #!Add generated procedures

#ENDFOR

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

#REMOVE (delete a source file)

#REMOVE(file)

#REMOVE
file

Deletes a source output file.

A string constant, template symbol, or expression
containing a DOS file specification. This may be a fully
qualified DOS pathname.

The#REMOVE statement deletes the specified source odilputf the file
does not exist, #REMOVE is ignored and source generation continues.

Example:
#FOR(%Module)

#SET (%TempModuleFile, (%Module & “.$$$°)) #!Set temp module file

JICREATE (%TempModuleFile)
##FOR(%ModuleProcedure)

#!Create temp module file
#!For all procs in module

#FIX(%Procedure,%ModuleProcedure) #!Fix current procedure

#GENERATE (%Procedure)
fFENDFOR

#!Generate procedure code
#!EndFor all procs in module

#SET(%ModuleFile, (%Module & “.CLW’)) #!Set to current module file

#fCREATE (%ModuleFiTe)

#FGENERATE (%Module)

J#APPEND (%TempModuleFile)

#REMOVE (%TempModuleFile)
J#ENDFOR

#!Create module file
#!Generate module header
#!Add generated procedures
#!Delete the temporary file

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#REPLACE (conditionally replace source file)

#REPLACE(oldfile, newfile)

#REPLACE Performs “intelligent” file replacement.

oldfile A string constant, template symbol, or expression
containing a DOS file specification. This may be a fully
qualified DOS pathname.

newfile A string constant, template symbol, or expression
containing a DOS file specification. This may be a fully
gualified DOS pathname.

The #REPLACE statement performs a binary comparison between the
contents of theldfile andnewfile If the contents of theldfile are different
from the contents of theewfile (or theoldfile does not exist), then the
oldfile is deleted and theewfileis renamed to theldfile. If the two files are
identical, then no action is taken. If thewfiledoes not exist, #REPLACE
is ignored and source generation continues.

Example:
##FOR(%Module)
#SET(%TempModuleFile, (%Module & “.$$$°)) #!Set temp module file
#CREATE(%TempModuleFile) #!Create temp module file
H#GENERATE (%Module) #!Generate module header
#FOR(%ModuleProcedure) #!For all procs in module
#FIX(%Procedure,%ModuleProcedure) #!Fix current procedure
F#FGENERATE(%Procedure) #!Generate procedure code
#/ENDFOR #!EndFor all procs in module
#SET(%ModuleFile, (%Module & “.CLW’)) #!Set to existing module file
#REPLACE(%ModuleFile,%TempModuleFile) #!Replace old with new (if
changed)

#ENDFOR

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

#PRINT (print a source file)

#PRINT(file, title)

#PRINT Prints dfile to the current Windows printer.

file A string constant, template symbol, or expression
containing a DOS file specification. This may be a fully
qualified DOS pathname.

title A string constant, template symbol, or expression
containing the title to generate for tfile.

The#PRINT statement prints the contents of fiie to the Windows default

printer.

Example:

#FOR(%Module)
#SET(%ModuleFile, (%4Module & “.CLW’)) #!Set to existing module file

#PRINT (%ModuleFile,”Printout * & %ModuleFile)
fFENDFOR

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Conditional Source Generation Statements
#SUSPEND (begin conditional source)

#SUSPEND

The#SUSPENDstatement marks the start of a section of source that is
generated only if a #RELEASE statement is encountered. This allows empty
unnecessary “boiler-plate” code to be easily removed from the generated
source. The end of the section must be delimited by a matching #RESUME
statement.

These #SUSPEND sections may be nested within each other to as many
levels as necessary. A #RELEASE encountered in an inner nested section
commits source generation for all the outer nested levels in which it is
contained, also.

A #EMBED that contains source to generate performs an implied
#RELEASE. Any generated source output also performs an implied
#RELEASE. Therefore, an explicit #RELEASE statement is not always
necessary. The #? statement defines an individual conditional source line
that does not perform the implied #RELEASE.

Example:

ACCEPT
#SUSPEND #!Begin suspended generation
##2CASE SELECTED()
#FOR(%ScreenField)
#SUSPEND
#20F %ScreenField
J#IEMBED (%ScreenSetups, *Control selected code’),%ScreenField
#!Implied {fRELEASE from the #EMBED of both nested sections
fFRESUME
END
#RESUME #!End suspended generation

J#FSUSPEND #!Begin suspended generation
#2CASE EVENT()
##SUSPEND
#20F EVENT:AlertKey
##SUSPEND
##2CASE KEYCODE()
{#iFOR %HotKey
J#RELEASE f#1Explicit #RELEASE
#20F %HotKey
J#FEMBED (%HotKeyProc, "Hot Key code’),%HotKey
fFENDFOR
#2END
fFRESUME
#F2END
#RESUME #!End suspended generation
END

See Also: #RELEASE, #RESUME, #?

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

#RELEASE (commit conditional source generation)

#RELEASE

The#RELEASE enables source generation in a #SUSPEND section. This
allows empty unnecessary “boiler-plate” code to be easily removed from the
generated source. The code in a #SUSPEND section is generated only when
a #RELEASE statement is encountered.

#SUSPEND sections may be nested within each other to as many levels as
necessary. A #RELEASE encountered in an inner nested section commits
source generation for all the outer nested levels in which it is contained,
also.

A #EMBED that contains source to generate performs an implied
#RELEASE. Any generated source output also performs an implied
#RELEASE. Therefore, an explicit #RELEASE statement is not always
necessary. The #? statement defines an individual conditional source line
that does not perform the implied #RELEASE.

Example:

ACCEPT
#SUSPEND #!Begin suspended generation
##2CASE SELECTED()
J##FOR(%ScreenField)
##SUSPEND
#20F %ScreenField
J#EMBED (%ScreenSetups, *Control selected code’),%ScreenField
#!Implied {fRELEASE from the #EMBED of both nested sections
fFRESUME
fF2END
J#FRESUME #!End suspended generation

J#SUSPEND #!Begin suspended generation
#2CASE EVENT()
##SUSPEND
#?20F EVENT:AlertKey
##SUSPEND
#2CASE KEYCODE()
#FOR %HotKey
#RELEASE #!Explicit #RELEASE
#20F %HotKey
J#/EMBED (%HotKeyProc, "Hot Key code’),%HotKey
fFENDFOR
F2END
fFRESUME
fF2END
J#FRESUME #!End suspended generation
END

See Also: #SUSPEND, #RESUME, #?

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#RESUME (delimit conditional source)

#RESUME

The#RESUME statement marks the end of a section of source that is
generated only if a #RELEASE statement is encountered. This allows empty
unnecessary “boiler-plate” code to be easily removed from the generated
source. The beginning of the section must be delimited by a matching
#SUSPEND statement.

These #SUSPEND sections may be nested within each other to as many
levels as necessary. A #RELEASE encountered in an inner nested section
commits source generation for all the outer nested levels in which it is
contained, also.

A #EMBED that contains source to generate performs an implied
#RELEASE. Any generated source output also performs an implied
#RELEASE. Therefore, an explicit #RELEASE statement is not always
necessary. The #? statement defines an individual conditional source line
that does not perform the implied #RELEASE.

When a #RESUME is executed without the output to the file being released,
any conditional lines of code are un-done back to the matching #SUSPEND.

Example:

ACCEPT
J#SUSPEND #!Begin suspended generation
#2CASE SELECTED()
#FOR(%ScreenField)
#SUSPEND
#20F %ScreenField
#EMBED (%ScreenSetups, ’Control selected code’),%ScreenField
#!Implied ffRELEASE from the #EMBED of both nested sections
#RESUME
#F2END
#RESUME #!End suspended generation
J#SUSPEND #!Begin suspended generation
#2CASE EVENT()
#SUSPEND
#20F EVENT:AlertKey
##SUSPEND
#2CASE KEYCODE()
#FOR %HotKey
#RELEASE #!Explicit #RELEASE
#20F %HotKey
#EMBED(%HotKeyProc, Hot Key code’),%HotKey
fFENDFOR
#2END
fFRESUME
#2END
J#FRESUME #!End suspended generation
END

See Also: #SUSPEND, #RELEASE, #?

CHAPTER 5 Locic AND SOURCE GENERATION CONTROL

#? (conditional source line)

Example:

See Also:

#7? statement
#? Defines a single line of source code generated only if
#RELEASE commits the conditional source section.
statement A single line of target language code. This may contain

template symbols.

The#? statement defines a single line of source code that is generated only
if a #RELEASE statement is encountered. This allows empty unnecessary
“boiler-plate” code to be easily removed from the generated source.

A #EMBED that contains source to generate performs an implied
#RELEASE. Any generated source output also performs an implied
#RELEASE. Therefore, an explicit #RELEASE statement is not always
necessary. The #? statement defines an individual conditional source line
that does not perform the implied #RELEASE. When a #RESUME is
executed without the output to the file being released, any conditional lines
of code are un-done back to the matching #SUSPEND.

ACCEPT #!Unconditional source line
#SUSPEND
#2CASE SELECTED() #1Conditional source line
#FOR(%ScreenField)
#FSUSPEND
#20F %ScreenField #!Conditional source line
#EMBED (%ScreenSetups, *Control selected code’),%ScreenField
fFRESUME
##2END #!'Conditional source line
#RESUME
#SUSPEND
J#2CASE EVENT() J#!Conditional source line
#FSUSPEND
J#20F EVENT:AlertKey J#!Conditional source line
#FSUSPEND
#2CASE KEYCODE() #!Conditional source line
#FOR %HotKey
fFRELEASE
#20F %HotKey #!Conditional source line
#EMBED (%HotKeyProc, *Hot Key code’),%HotKey
FFENDFOR
J2END #!Conditional source line
fFRESUME
#2END f#!Conditional source line
F#FRESUME
END #!Unconditional source line
#SUSPEND, #RELEASE, #RESUME

CHAPTER 6 MISCELLANEOUS 6-1

Miscellaneous Statements Contents |

#! (template code comments)

#! comments

Initiates Template Language comments.
comments Any text.

#! initiates Template Language comments. All text to the right of the #! to
the end of the text line is ignored by the Template file processor. #!
comments are not included in the generated source code.

Example:

#! These are Template comments which
! will not end up in the generated code

#< (aligned target language comments)

#<comments

#< Initiates an aligned target language comment.

comments Any text. This must start with the target language
comment initiator.

#< initiates a target language comment which is included in the generated
source code. The comment is generated at the column position specified by
the #COMMENT statement. If the column position is occupied, the

comment is appended one space to the right of the generated source code
statement. Any standard target language syntax comments without a
preceding #< are included in the generated code at whatever column position
they occupy in the template.

Example:

FCOMMENT (50)
#! This Template file comment will not be in the generated code
#<! This is a Clarion comment which appears in the generated code in column 50
I This Clarion comment appears in the generated code in column 2
#<// This is a C++ comment which appears in the generated code beginning in column
50
// This C++ comment appears in the generated code in column 2

See Also: #COMMENT

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#CLASS (define a form ula class)

#CLASS(string, description)

#CLASS Defines a formula class.
string A string constant containing the formula class.
description A string expression containing the description of the

formula class to display in the list of those available in
the Formula Editor.

The #CLASS statement defines a formula class for use in the Formula
Editor. The Formula Class allows the Template to determine the precise
logical position at which the formula appears in the generated source code.

Example:

#PROCEDURE (SomeProc, "An Example Template’),WINDOW
#CLASS(“START’,’At beginning of procedure’)
ffCLASS(“LOOP’,”In process Tloop’)
#FCLASS(END’,’At end of procedure’)
%Procedure PROCEDURE
%ScreenStructure
CODE
#INSERT(%GenerateFormulas, *START ") #!Generate START class formulas
OPEN(%Screen)
ACCEPT
#INSERT(%GenerateFormulas, ’LOOP”) #!Generate LOOP class formulas
END
FINSERT(%GenerateFormulas, "END”) #!Generate END class formulas

#COMMENT (specify comment column)

#COMMENT(column)

#COMMENT Sets the default column number for aligned comments.
column A numeric constant in the range 1 to 255.

The#COMMENT statement sets the default column number in which
Clarion comments prefaced with the #<! statement will be generated by the
Application Generator.

Example:

J#ICOMMENT (50) #!1Set comment column

IF Action = 1 4K!If adding a record
SomeVariable = InitVariable

END

See Also: #<

CHAPTER 6 MISCELLANEOUS

#ERROR (display source generation error)

#ERROR(message)

#ERROR Displays a source generation error.

message A string constant, user-defined symbol, or expression
containing an error message to display in the Source
Generation window.

#ERROR displays anessagén the Source Generation window. This could
be information for the user. It may also alert the user that they made some
error which will cause the procedure Template to generate invalid source
code which could create compiler errors.

When a #ERROR statement is encountered at source code generation time,
its message is displayed. The user may choose to abort the compile and link
process, or continue on to the compiler.

Example:

#PROCEDURE(SampleProc,'This is a sample procedure’)
##PROMPT(‘Access Key’,KEY),%SampleAccessKey
#IF(%SampleAccessKey = %NULL) #!IF the user did not enter a Key
#SET(%ErrorSymbol, (%4Procedure & ¢ Access Key blank’)
#ERROR(%ErrorSymbo1)
#ERROR(‘This error is Fatal -- DO NOT CONTINUE”)
fFABORT
JFENDIF

#EXPORT (export symbol to text)

#EXPORT(symbol)

#EXPORT Creates a .TXA text file from symbol
symbol The template symbol to export.

#EXPORT outputs .TXA script text for theymbolto the current output file
(see #CREATE or #OPEN). This .TXA file may then be used for importing
to other Clarion applications.

Example:

FFOPEN(“‘MyExp.TXA")
#FOR(%Procedure)

#EXPORT (%Procedure)
fFENDFOR

See Also: #CREATE, #OPEN, #IMPORT

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#HELP (specify template help file)

#HELP(helpfile’)

#HELP Specifies the Template’s help file.
helpfile A string constant containing the name of the template’s
help file.

The#HELP statement specifiesheelpfile which is used by this template.
Once specified, thieelpfileis used to access the help topics specified by the
help id’s in all HLP attributes in the template.

Example:
#HELP(‘Template.HLP")

#INCLUDE (include a template file)

#INCLUDE(filename)

#INCLUDE Adds a template file to the Template fileain.

filename A string constant containing the name of the template
file to include.

The#INCLUDE statement adds a template file to the Template file chain.
The template file containing the #INCLUDE statement continues to be
processed after the included file has been processed.

Example:

#TEMPLATE(Clarion,’Clarion Standard Shipping Templates’)
#INCLUDE(‘Clarionl.TPX’) #!Include a template file
#INCLUDE(‘Clarion2.TPX") #!Include another template file

CHAPTER 6 MISCELLANEOUS

#IMPORT (import from text script)

#IMPORT(source) [,| RENAME |]

| REPLACE |
#IMPORT Creates an .APP for Clarion for Windows from a .TXA
scriptsourcefile.
source The name of the .TXA script file from which to create
the .APP file.
RENAME Overrides thé’rocedure Name Clash prompt dialog

and renames all procedures.

REPLACE Overrides the’rocedure Name Clash prompt dialog
and replaces all procedures.

#IMPORT adds procedure and/or function definitions to a Clarion for
Windows .APP file from a .TXA scripgourcefile. This is used for
importing from other versions of Clarion application development products.

Example:

FUTILITY(SomeUtility, Some Utility Template’)
#PROMPT(“File to import’,@s64),%ImportFile
#FIMPORT (%ImportFile)

#MESSAGE (display source generation message)

#MESSAGE(message, line)

#MESSAGE Displays a source generation message.

message A string constant, or a user-defined symbol, containing a
message to display in the Source Generation dialog.

line An integer constant or symbol containing the line
number on which to display thmessagelf out of the
range 1 through 3, thmessagés displayed in the title
bar as the window caption.

#MESSAGE displays anessagén the Source Generation messsage dialog.
The first #fMESSAGE statement displays the message window. Subsequent
#MESSAGE statements modify the display text.

Example:

fIMESSAGE(‘Generating ¢ & %Application,0) #!Display Title bar text
#MESSAGE(‘Generating ¢ & %Procedure,?) #!Display Progress message on line 2

6-6

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#PROTOTYPE (procedure pr ototype)

Example:

#PROTOTYPE(parameter list)

#PROTOTYPE Assigns thearameter listo thePrototype entry field.

parameter list A string constant containing the procedure’s prototype
parameter list (the entire procedure prototype without
the leading procedure name) for the application’s MAP
structure (see the discussion of Function and Procedure
Prototypes in théanguage Referenge

The #PROTOTYPE statement assigns tharameter listo thePrototype

entry field on the Application Generator's Procedure Properties window,
which automatically “dims out” the field (the programmer may not override
this Prototype). This allows you to create procedure Templates which require
a specific parameter list without forcing the programmer to know the
procedure’s prototype.

The #PROTOTYPE statement is valid only within a #PROCEDURE section
and only one is allowed per #PROCEDURE section. If there is no
#PROTOTYPE statement in the #PROCEDURE, the programmer is allowed
to change it.

#PROCEDURE (SomeProc, *Some Procedure Template’)
%Procedure PROCEDURE(Parml,Parm2,Parm3)
#PROTOTYPE(“ (STRING,*LONG,<*SHORT>)*)
#!This procedure expects three parameters:
#! a STRING passed by value
#! a LONG passed by address
#! a SHORT passed by address which may be omitted

#PROCEDURE (SomeFunc, *Some Template Function’)
%Procedure FUNCTION(Parml,Parm2,Parm3)
#PROTOTYPE(“ (STRING,*LONG,<*SHORT>),STRING”)

#!This function expects three parameters:
#! a STRING passed by value
#! a LONG passed by address
#! a SHORT passed by address which may be omitted
#!1t returns a STRING

CHAPTER 6

MISCELLANEOUS

#PROJECT (add file to project)

Example:

#PROJECT(module)

#PROJECT Includes a source or object code library, or Project file,
in the application’s Project file.
module A string constant which names a source (.CLW, if

Clarion is the target language), object (.OBJ), or library
(.LIB) file containing procedures and/or functions
required by the procedure Template. This may also name
a Project (.PRJ) file to be called by the application’s
Project. The type of file being imported is determined by
the file extension.

The#PROJECT statement specifies a source or object code library, or
Project file, which is required to be in the application for the correct
functioning of procedures created by the procedure Template.

#PROJECT provides a direct method of communicatinguleinformation

to the Application Generator and Project system. It alerts the Application
Generator to the required presence ofrtieglulefor compiling and/or

linking the application. Therefore, the application’'s Project file (generated
by the Application Generator) automatically includesniadulefor

making, compiling, and/or linking.

If multiple instances of the same #PROJECT statement are referenced by
procedures created in the application, only the first is used. Thiklw

occur when multiple procedure Templates require the sanaeile or

multiple application procedures are created from the same procedure
Template.

#PROJECT allows a developer to automate the installation of third-party
libraries and Templates to other developer’s computers. This ensures that the
application’s Project is generated correctly.

#PROJECT for a Project (.PRJ) file provides the ability to create a hierarchy
of Projects on large development projects. Where multiple libraries are being
linked into a package, this allows you to ensure “make dependencies” are
met for all libraries referenced in a particular project.

#AT (%CustomGlobalDeclarations)
#PROJECT(‘Party3.LIB”)

fFENDAT

6-8 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Built-in Template Functions
EXTRACT (return attribute)

EXTRACT(string, attribute [, parameter])

EXTRACT Returns the complete form of the specifattibute
from the propertystring symbol.

string The symbol containing the properties to parse.

attribute A string constant or symbol containing the hame of the
property to return.

parameter An integer constant or symbol containing the number of

the property’s parameter to return. Zero (0) returns the
entire parameter list (without tlagtribute). If omitted,
theattribute and all itsparametersare returned.

The EXTRACT function returns either the complete form of the specified
attribute from the attributestring symbol, or just the specifigthrameter
This is useful if no built-in symbol exists for the particular attribute you
need.

Return Data Type: STRING

Example:

#SET (%MySymbo1, EXTRACT (%ControlStatement, 'DROPID’) #!Return DROPID attribute
#SET(%MySymbo1,EXTRACT (%ControlStatement, "DROPID’,0) #!Return all DROPID parameters

See Also: REPLACE

CHAPTER 6

MISCELLANEOUS

EXISTS (return embed point existence)

EXISTS(symbol)

Return Data Type:

Example:

EXISTS Returns TRUE if the embedded source code point is
available for use.

symbol Theidentifier symbol for a #EMBED embedded source
code point.

The EXISTS function returns true (‘1’) if the embedded source code point

is available for use, at design-time only. If the embedded source code point
is not available for use, EXISTS returns false (). An embedded source code
point is available for use if the section containing it is being used. This
means that all #EMBEDs in the #PROCEDURE section, and all # GROUP
sections referenced in the #PROCEDURE, are always available. #EMBEDs
in a #CONTROL, #CODE, or #EXTENSION section are available only if

the section is being used.

LONG

FIF(EXISTS(%CodeTemplateEmbed))
IGenerate some source

J#ENDIF

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

FILEEXISTS (return file existence)

FILEEXISTS(file)

FILEEXISTS Returns TRUE if thdile available on disk.
file An expression contiaining the DOS filename.

The FILLEEXISTS function returns true (‘1’) if théle is available on
disk. If thefile is not available, FILEEXISTS returns false (*).

Return Data Type: LONG

Example:

#IF(FILEEXISTS(%SomeFile))
JfOPEN(%SomeFile)
#FREAD(%SomeFile)

I'some source

H#FENDIF

INLIST (return item exists in list)

INLIST(item, symbol)

INLIST Returns the instance number of ttemin thesymbol

item A string constant or symbol containing the name of the
item to return.

symbol A multi-valued symbol that may contain the item.

TheINLIST function returns the instance number of iteenin the symbol
If the itemis not contained in theymbo] INLIST returns zero (0).

Return Data Type: LONG

Example:

FIFCINLIST(“?MyControl”’,%Control))
IGenerate some source
H#FENDIF

CHAPTER 6 MISCELLANEOUS

INSTANCE (return current instance number)

INSTANCE(symbol)

INSTANCE Returns the current instance number to whichstmebol
is fixed.
symbol A multi-valued symbol.

The INSTANCE function returns the current instance number to which the
symbolis fixed. If no #FIX or #FOR has been issued forgimmbo)
INSTANCE returns zero (0).

Return Data Type: LONG

Example:

#DELETE(%Control,INSTANCE(%Control)) #!Delete current instance

ITEMS (return multi-valued symbol instances)

ITEMS(symbol)

ITEMS Returns the number of instances contained by the
symbol
symbol A multi-valued symbol.
ThelTEMS function returns the number of instances contained by the
symbol
Return Data Type: LONG

Example:

#DELETE(%Control, ITEMS(%Control)) #!Delete Tast instance

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

QUOTE (replace string special characters)

QUOTE(symbol)

QUOTE Expands thesymbol'sstring data, “doubling up” single
guotes (), and all un-paired left angle brackets (<) and
left curly braces ({) to prevent compiler errors.

symbol The symbol containing the properties to parse.

The QUOTE function returns the string contained in the symbol with all
single quotes (‘), un-paired left angle brackets (<), and un-paired left curly
braces ({) “doubled up” to prevent compiler errors. This allows the user to
enter string constants containing apostrophes, and filter expressions
containing less than signs (<) without requiring that they enter two fo each.

Return Data Type: STRING
Example:
##PROMPT(‘Filter Expression’,@S255),%FilterExpression

#SET(%ValueConstruct,QUOTE(%FilterExpression)) #!Expand single quotes and angle
brackets

See Also: %’

CHAPTER 6 MISCELLANEOUS

REPLACE (replace attribute)

REPLACE(string, attribute, new value [, parameter])

REPLACE Finds the complete form of the specifigtdribute from
the propertystring symbol and replaces it with timew
value

string The symbol containing the properties to parse.

attribute A string constant or symbol containing the name of the
property to find.

new value A string constant or symbol containing the replacement
value for theattribute

parameter An integer constant or symbol containing the number of

the property’s parameter to affect. Zero (0) affects the
entire parameter list (without tlatribute). If omitted,
theattribute and all itsparametersare affected.

TheREPLACE function replaces either the complete form of the specified
attribute from the attributestring symbol, or just the specifigzthrameter
with thenew value It returns the modifiedtring.

Return Data Type: STRING

Example:
#SET(%ValueConstruct,REPLACE(%ValueConstruct, 'MSG',"'")) #!Remove MSG attribute

See Also: EXTRACT

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

SEPARATOR (return attribute string delimiter position)

SEPARATOR(string, start)

SEPARATOR Returns the position of the next comma in the attribute

string.

string A string constant or symbol containing a comma delim-
ited list of attributes.

start An integer constant or symbol containing the starting

position from which to seek the next comma.

The SEPARATOR function returns the position of the next comma in the
attributestring from thestart position. This function correctly processes
nested quotes within trering so that commas in string constants do not
cause it to return an incorrect position.

Return Data Type: LONG
Example:

#SET (%MySymbo1,SEPARATOR(%ControlStatement,1)
#!Return first comma position

CHAPTER 7

TEMPLATE SYMBOLS 7-1

Symbol Overview Contents |

Clarion for Windows’ Template Language uses symbols which act as
variables do in a programming language -- they contain information that can
be used as-is or may be used in expressions. These symbols may come fron
the built-in symbol set, or can be defined by the template author. Both types
may be single-valued or multi-valued.

The built-in symbols that are available to the Template writer contain
information from both the Dictionary and the Application about how the
programmer has designed the application. The template-defined symbols
contain information provided by the programmer from prompts on the
Application Generator's properties windows, or may only be for internal use.

All template symbols expand during source generation to place the value
they contain in the generated source code (if included in template code that
generates source).

Expansion Symbols

There are several special symbol forms that expand to allow formatting and
special characters to generate into the source. These may be combined with
each other to produce complex effects.

%% Expands to a single percent (%) sign. This allows the
Application Genetrator to generate the modulus operator
without confusion with any symbol.

%ot Expands to a single pound (#) sign. This allows the
Application genetrator to generate an implicit LONG
variable without confusion with any Template Language
statement.

% @picture@symbol
Formats thesymbolwith the specifiegicturewhen
source generates. For example, %@D1@MyDate
expands the %MyDate symbol, formatted for the @D1
picture

%[numbetsymbol Expands thesymbolto fill at least thenumberof spaces
specified. This allows proper comment and data type
alignment in the generated source.

%| Expands the next generated source onto the same line as
the last. This is the Template line continuation character.

%’'symbol Expands thesymbol'sstring data, “doubling up” single
guotes (), and all un-paired left angle brackets (<) and
left curly braces ({) to prevent compiler errors.

% (expression Expands thexpressionnto the generated source.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Example:
%CALLC® *“, %indent))%[20]Field %@d3@Date
#!Generate an indent, expand %Field to occupy at least 20 spaces, then
#! generate the date in mmm dd, yyyy format
%[30INull #!Generate 30 spaces

#! %MySymbol contains: Gavin’s Holiday
StringVar = “%’MySymbol’ #!Expands as a valid Clarion string constant
#! to ‘Gavin’’s Holiday”

CHAPTER 7 TEMPLATE SYMBOLS

Symbol Hierarchy Overview

The Built-in Symbols all form a hierarchy of dependencies. This hierarchy
starts with %Application, upon which all the other built-in symbols are
dependent. The following tree diagram does not show all the dependent
symbols, but does graphically represent the hierarchy of symbols. Most of
these are multi-valued symbols.

%Application
%DictionaryFile
%File
%Field
%Key
%Relation
%Program
%GlobalData
%Module
%ModuleProcedure
%Mapltem
%ModuleData
%Procedure
%Report
%ReportControl
%ReportControlField
%Window
%WindowEvent
%Control
%ControlEvent
%ProcedureCalled
%LocalData
%ActiveTemplate
%ActiveTemplatelnstance
%Formula
%FormulaExpression

These symbols (and all the symbols not listed here that are dependent upon
these) contain all the information about the applciation that is available in
the data dictionary (.DCT) and application (.APP) files. They enable you to
write a template to generate any type of code you require.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Built-in Symbols

Symbols Dependent on %Application

%Application The name of the .APP file. The hierarchy of built-in
symbols starts with %Application.

%ApplicationDebug
Contains 1 if the application has debug enabled.

%ApplicationLocalLibrary
Contains 1 if the application is linking in the Clarion
runtime library.

%Target32 Contains 1 if the application is producing a 32-bit
program.
%DictionaryChanged

Contains 1 if the .DCT file has changed since the last
source generation.

%RegistryChanged
Contains 1 if the .REGISTRY.TRF file has changed
since the last source generation.

%ProgrambDateCreated
The program creation date (a Clarion standard date).

%ProgramDateChanged
The date the program was last changed (a Clarion
standard date).

%ProgramTimeCreated
The program creation time (Clarion standard time).

%ProgramTimeChanged
The time the program was last changed (a Clarion
standard time).

%FirstProcedure The label of the applciation’s first procedure.
%HelpFile The name of the application’s help file.

%ProgramExtension
Contains EXE, DLL, or LIB.

%DictionaryFile The name of the .DCT filefor the application.

%File Contains all file declarations in the .DCT file. Multi-
valued. Dependent on %DictionaryFile.

%Program The name of the PROGRAM file without extension).

%GlobalData The labels of all global variable declarations made

through the Global Data button on the Global Settings
window. Multi-valued.

CHAPTER 7 TEMPLATE SYMBOLS

%GlobalDataStatement
The variable’s declaration statement (data type and all
attributes). Dependent on %GlobalData.

%Module The names of all source code modules other than the
PROGRAM module. Multi-valued.

%QuickProcedure The name of the procedure type a #UTILITY with the
WIZARD attribute is creating.

%Procedure The names of all procedures and functions in the appli-
cation. Multi-valued.

Symbols Dependent on %File

%File Contains all file declarations in the .DCT file. Multi-
valued. Dependent on %DictionaryFile.

%FilePrefix Contents of the PRE attribute (the file prefix).

%FileDescription A short description of the file.

%FileType Contains FILE, VIEW, or ALIAS.

%FileDriver Contents of the DRIVER attribute first parameter.

%pFileDriverParameter
Contents of the DRIVER attribute second parameter.

%FileName Contents of the FILE statement’s NAME attribute.
%FileOwner Contents of the OWNER attribute.
%FileCreate Contains 1 if the file has the CREATE attribute.

%FileReclaim Contains 1 if the file has the RECLAIM attribute.

%FileEncrypt Contains 1 if the file has the ENCRYPT attribute.
%FileBindable Contains 1 if the file has the BINDABLE attribute.
%FileLongDesc A long description of the file.

%FileStruct The FILE statement (the label and all attributes).

%FileStructend The keyword END.

%FileStructRec The RECORD statement (including label and any
attributes).

%FileStructRecEnd The keyword END.

%FileStatement Contains the FILE statement’s attributes (only).
%FileThreaded Contains 1 if the file has the THREAD attribute.
%FileExternal Contains 1 if the file has the EXTERNAL attribute.

%FileExternalModule
Contents of the file's EXTERNAL attribute parameter.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%FilePrimaryKey The label of the file’s primary key.

%FileQuickOptions A comma-delimited string containing the choices the
user made on the Options tab for the file.

%FileUserOptions A string containing the entries the user made in the User
Options text box on the Options tab for the file.

%ViewFilter Contents of the FILTER attribute.
%ViewStruct TheVIEW statement (including the label and all at-
tributes).

%ViewStructEnd The keyword END.
%ViewStatement The VIEW statement’s attributes (only).
%ViewPrimary The label of the VIEW's primary file.

%ViewPrimaryFields
The labels of all fields in the VIEW from the primary
file. Multi-valued.

%ViewPrimaryField
Dependent on %ViewPrimaryFields. Contains the label
of a field in the VIEW from the primary file.

%ViewFiles The labels of all files in tREW. Multi-valued.

%AliasFile The label of the ALIASed file.

%Field The labels of all fields in the file (including MEMO
fields). Multi-valued.

%Key The labels of all keys and indexes for the file. Multi-
valued.

%Relation The labels of all files that are related to the file. Multi-
Valued.

Symbols Dependent on %ViewFiles

%ViewFiles The labels of all files in thdlEW. Multi-valued.
Dependent on %File.

%ViewFileStruct The JOIN statement for a secondary file in the VIEW.

%ViewFileStructEnd
The keyword END.

%ViewFile Contains the label of the file.
%ViewJoinedTo The label of the file to which the file is JOINed.

%ViewFileFields The labels of all fields in the file used in WEW.
Multi-valued.

%ViewFileField Contains the label of the field in the file used in the
VIEW. Dependent on %ViewFileFields.

CHAPTER 7 TEMPLATE SYMBOLS

Symbols Dependent on %Field

%Field The labels of all fields in the file (including MEMO
fields). Multi-valued.Dependent on %File.

%FieldDescription A short description of the field.
%FieldLongDesc A long description of the field.
%FieldFile The label of the file containing the field.
%FieldID Label of the field without prefix.

%FieldDisplayPicture
Default display picture.

%FieldRecordPicture
STRING field storage definition picture.

%FieldDimensionl Maximum value of first array dimension.
%FieldDimension2 Maximum value of second array dimension.
%FieldDimension3 Maximum value of third array dimension.
%FieldDimension4 Maximum value of fourth array dimension.
%FieldHelpID Contents of the HLP attribute.

%FieldName Contents of the field’'s NAME attribute.
%FieldRangeLow The lower range of valid values for the field.
%FieldRangeHigh The upper range of valid values for the field.
%FieldType Data type of the field.

%FieldPlaces Number of decimal places for the field.
%FieldMemoSize Maximum size of the MEMO.
%FieldMemolmage Contains 1 if the MEMO has a BINARY attribute.
%FieldInitial Initial value for the field.

%FieldLookup File to access to validate this field’s value.

%FieldStruct The field’s declaration statement (label , data type, and
all attributes).

%FieldStatement The field’s declaration statement (data type and all
attributes).

%FieldHeader The field’s default report column header.
%FieldPicture Default display picture.

%FieldJustType Contains L, R, C, or D for the field’s justification.
%FieldJustindent The justification offset amount.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%FieldFormatWidth
The default width for the field’'s ENTRY control.

%FieldChoices The choices the user entered for a Must Be In List field.
Multi-valued.

%FieldQuickOptions
A comma-delimited string containing the choices the
user made on the Options tab for the field.

%FieldUserOptions
A string containing the entries the user made in the User
Options text box on the Options tab for the field.

Symbols Dependent on %Key

%Key The labels of all keys and indexes for the file. Multi-
valued.

%KeyDescription A short description of the key.
%KeyLongDesc A long description of the key.

%KeyFile The label of the file to which the key belongs.
%KeyID The label of the key (without prefix).

%Keylndex Contains KEY, INDEX, or DYNAMIC.
%KeyName Contents of the key's NAME attribute.
%KeyAuto Contains the label of the auto-incrementing field.

%KeyDuplicate Contains 1 if the key has the DUP attribute.
%KeyExcludeNulls Contains 1 if the key has the OPT attribute.
%KeyNoCase Contains 1 if the key has the NOCASE attribute.
%KeyPrimary Contains 1 if the key is the file’s primary key.
%KeyStruct The key’s declaration sement (label and all attributes).
%KeyStatement The key's attributes (only).

%KeyField The labels of all component fields of the key. Multi-
valued.

%KeyFieldSequence
Contains ASCENDING or DESCENDING. Dependent
on %Keyfield.

%KeyQuickOptions A comma-delimited string containing the choices the
user made on the Options tab for the key.

%KeyUserOptions A string containing the entries the user made in the User
Options text box on the Options tab for the key.

CHAPTER 7 TEMPLATE SYMBOLS

Symbols Dependent on %Relation

%Relation The labels of all files that are related to the file. Multi-
Valued.

%RelationPrefix The prefix of the related file.
%FileRelationType Contains 1:MANY or MANY:1.
%RelationKey The label of the related file’s linking key.
%FileKey The label of the file’s linking key.

%RelationConstraintDelete
May contain: RESTRICT, CASCADE, or CLEAR.

%RelationConstraintUpdate
May contain: RESTRICT, CASCADE, or CLEAR.

%RelationKeyField The labels of all linking fields in the related file’s key.
Multi-valued.

%RelationKeyFieldLink
The label of the linking field in the file's key. Dependent
on %RelationKeyField.

%FileKeyField The labels of all linking fields in the file’s key. Multi-
valued.

%FileKeyFieldLink
The label of the linking field in the related file’s key.
Dependent on %FileKeyField.

%RelationQuickOptions
A comma-delimited string containing the choices the
user made on the Options tab for the relation.

%RelationUserOptions
A string containing the entries the user made in the User
Options text box on the Options tab for the relation.

Symbols Dependent on %Module

%Module Thes names of all source code modules other than the
PROGRAM module. Multi-valued.%ModuleDescription
%Module

%ModuleLanguage Contains the module target language.

%ModuleTemplate The name of the Module Template used to generate the
module.

%ModuleChanged Contains 1 if anything in the module has changed since
the last source generation.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%ModuleExternal Contains 1 if the module is external. (not generated by
Clarion for Windows).

%ModuleExtension The file extension for the module.
%ModuleBase The name of the module (without extension).

%Modulelnclude The fiel to INCLUDE in the program MAP containing
the module’s prototypes.

%ModuleProcedure The names of all procedures and functions in the mod-
ule. Multi-valued.

%ModuleData The labels of all module variable declarations made
through the Data button on the Module Properties
window. Multi-valued.

%ModuleDataStatement
The variable’s declaration statement (data type and all
attributes). Dependent on %ModuleData.

Symbols Dependent on %Procedure

%Procedure Thes names of all procedures and functions in the
application. Multi-valued.

%ProcedureType Contains PROCEDURE or FUNCTION.

%ProcedureReturnType
The data type returned, if the procedure is a FUNC-
TION.

%ProcedureDateCreated
The procedure creation date (a Clarion standard date).

%ProcedureDateChanged
The date the procedure was last changed (a Clarion
standard date).

%ProcedureTimeCreated
The time the procedure was created (a Clarion standard
time).

%ProcedureTimeChanged
The time the procedure was last changed (a Clarion
standard time).

%Prototype The procedure’s prototype for the MAP structure.

%ProcedureTemplate
The name of the Procedure Template used to generate
the procedure.

%ProcedureDescription
A short description of the procedure.

CHAPTER 7 TEMPLATE SYMBOLS

%ProcedureExported
Contains 1 if the procedure is in a DLL and is callable
from outside the DLL.

%ProcedureLongDescription
A long description of the procedure.

%ProcedureLanguage
The target language the procedure template generates.

%ProcedureCalled The names of all procedures listed by the Procedures
button on the Procedure Properties window. Multi-
valued.

%LocalData The labels of all local variable declarations made
through the Data button on the Procedure Properties
window. Multi-valued.

%LocalDataStatement
The variable’s declaration statement (data type and all
attributes). Dependent on %LocalData.

%ActiveTemplate The name of all control templates used in the procedure.
Multi-valued.

%ActiveTemplatelnstance
The instance numbers of all control templates used in
the procedure. Multi-valued. Dependent on
%ActiveTemplate.

%ActiveTemplateParentinstance
The instance number of the control template’s parent
control template. This is the control template that it is
“attached” to. Dependent on %ActiveTemplatelnstance.

%ActiveTemplatePrimarylnstance
The instance number of the control template’s primary
control template. This is the first control template in a
succession of multiple related control templates. Depen-
dent on %ActiveTemplatelnstance.

Window Control Symbols

%Window The label of the procedure’s window. Dependent on
%Procedure.
%WindowStatement

The WINDOW or APPLICATION declaration statement
(and all attributes). Dependent on %Window.

%MenuBarStatement
The MENUBAR declaration statement (and all at-
tributes). Dependent on %Window.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%ToolbarStatement
The TOOLBAR declaration statement (and all at-
tributes). Dependent on %Window.

%WindowEvent All field-independent events, as listed in the
EQUATES.CLW file (without EVENT: prepended).
Multi-valued. Dependent on %Window.

%Control The field equate labels of all controls in the window.
Multi-valued. Dependent on %Window.
%ControlUse The control's USE variable (not field equate). Dependent

on %Control.

%ControlStatement The control's declaration statement (and all attributes).
Dependent on %Control.

%ControlType The type of control (MENU, ITEM, ENTRY, BUTTON,
etc.). Dependent on %Control.

%ControlTemplate The name of the control template which populated the
control onto the window. Dependent on %Control.

%ControlTool Contains 1 if the control is in a TOOLBAR. Dependent
on %Control.

%ControlMenu Contains 1 if the control is in a MENUBAR. Dependent
on %Control.

%Controlindent The control declaration’s indentation level in the gener-
ated data structure. Dependent on %Control.

%Controlinstance The instance number of the control template which
populated the control onto the window. Dependent on
%Control.

%ControlOriginal The original field equate label of the control as listed in
the control template from which it cani@ependent on
%Control.

%ControlFrom The FROM attribute of a LIST or COMBO control.
Dependent on %Control.

%ControlAlert All ALRT attributes for the control. Multi-valued.
Dependent on %Control.

%ContolEvent All field-specific events appropriate for the control, as
listed in the EQUATES.CLW file (without the EVENT:
prepended). Multi-valued. Dependent on %Control.

%ControlField All fields populated into the LIST, COMBO, or SPIN
control. Multi-valued. Dependent on %Control.

%ControlFieldHaslcon
Contains 1 if the field in the LIST or COMBO control is
formatted to have an icon. Dependent on %ControlField.

CHAPTER 7

TEMPLATE SYMBOLS

%ControlFieldHasColor
Contains 1 if the field in the LIST or COMBO control is
formatted to have colors. Dependent on %ControlField.

%ControlFieldHasTree
Contains 1 if the field in the LIST or COMBO control is
formatted to be a tree. Dependent on %ControlField.

%ControlFieldHasLocator
Contains 1 if the field in the LIST or COMBO control is
formatted to be a locator. Dependent on %ControlField.

Report Control Symbols

%Report The label of the procedure’s report. Dependent on
%Procedure.

%ReportStatement The REPORT declaration statement (and all attributes).
Dependent on %Report.

%ReportControl The field equate labels of all controls in the report.
Multi-valued. Dependent on %Report.

%ReportControlUse
The control's USE variable (not field equate). Dependent
on %ReportControl.

%ReportControlStatement
The control’'s declaration statement (and all attributes).
Dependent on %ReportControl.

%ReportControlType
The type of control (MENU, ITEM, ENTRY, BUTTON,
etc.). Dependent on %ReportControl.

%ReportControlTemplate
The name of the control template which populated the
control onto the report. Dependent on %ReportControl.

%ReportControlindent
The control declaration’s indentation level in the gener-
ated data structure. Dependent on %ReportControl.

%ReportControlinstance
The instance number of the control template which
populated the control onto the report. Dependent on
%ReportControl.

%ReportControlOriginal
The original field equate label of the control as listed in
the control template from which it cari@ependent on
%ReportControl.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%ReportControlLabel
The label of the report STRING control. Dependent on
%ReportControl.

%ReportControlField
All fields populateed into the LIST, COMBO, or SPIN
control. Multi-valued. Dependent on %ReportControl.

Formula Symbols

%Formula The label of the result field for each formula. Multi-
valued. Dependent on %Procedure.

%FormulaDescription
A description of the formula.

%FormulaClass An identifier for the position in generated source to
place the formula.

%Formulalnstance The control template instance number for a formula
whose class has been declared in a control template.

%FormulaExpression
The expression to conditionally evaluate or assign to the
result field for each formula. Multi-valued. Dependent
on %Formula.

%FormulaExpressionType
Contains =, IF, ELSE, CASE, or OF. Dependent on
%FormulaExpression.

%FormulaExpressionTrue
Contains the line number of the true expression in the
generated formula. Dependent on %FormulaExpression.

%FormulaExpressionFalse
Contains the line number of the false expression in the
generated formula. Dependent on %FormulaExpression.

%FormulaExpressionOf
Contains the line number of the OF expression in the
generated formula. Dependent on %FormulaExpression.

%FormulaExpressionCase
Contains the line number of the assignment in the
generated formula. Dependent on %FormulaExpression.

File Schematic Symbols

%Primary The label of a Primary file listed in the procedure’s File
Schematic for the procedure or a control template used
in the procedure.

CHAPTER 7

TEMPLATE SYMBOLS 7-15

%PrimaryKey The label of the access key for the primary file. Depen-
dent on %Primary.

%Primarylnstance The control template instance number for which the file
is primary. Dependent on %Primary.

%Secondary The labels of all Secondary files listed in the File
Schematic for the procedure or a control template used
in the procedure. Multi-valued. Dependent on %Pri-
mary.

%SecondaryTo The label of the Secondary or Primary file to which the
Secondary file is related (thefile"above” it as listed in the
procedure’s File Schematic). Dependent on %Secondary.

%SecondaryType Contains 1:MANY or MANY:1. Dependent on %Sec-
ondary.

%0OtherFiles The labels of all Other Data files listed for the proce-
dure. Multi-valued.

File Driver Symbols

%Driver The names of all registered file drivers.

%DriverDLL The name of the driver’s .DLL file. Dependent on
%Driver.

%DriverLIB The name of the driver’s .LIB file. Dependent on
%Driver.

%DriverDescription A description of the file driver. Dependent on %Driver.

%DriverCreate Contains 1 if the driver supports the CREATE attribute.
Dependent on %Driver.

%DriverOwner Contains 1 if the driver supports the OWNER attribute.
Dependent on %Driver.

%DriverEncrypt Contains 1 if the driver supports the ENCRYPT at-
tribute. Dependent on %Driver.

%DriverReclaim Contains 1 if the driver supports the RECLAIM at-
tribute. Dependent on %Driver.

%DriverMaxKeys The maximum number of keys the driver supports for
each data file. Dependent on %Driver.

%DriverUnigueKey Contains 1 if the driver supports unique (no DUP
attribute) keys. Dependent on %Driver.

%DriverRequired Contains 1 if the driver supports the RECLAIM at-
tribute. Dependent on %Driver.

%DriverMemo Contains 1 if the driver supports MEMO fields. Depen-
dent on %Driver.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%DriverBinMemo Contains 1 if the driver supports the BINARY attribute
on MEMO fields. Dependent on %Driver.

%DriverSQL Contains 1 if the driver is an SQL driver. Dependent on
%Driver.
%DriverType All data types supported bythe driver. Multi-valued.

Dependent on %Driver.

%DriverOpcode All operations supported bythe driver. Multi-valued.
Dependent on %Driver.

Miscellaneous Symbols

%ConditionalGenerate
Contains 1 if the Conditional Generation box is checked
on the Application Options window.

%Null Contains nothing. This is used for comparison to detect
empty symbols.

%True Contains 1.

%False Contains an empty string (*).

%EOF Contains the value that flags the end of file when reading

a file with #READ.

%BytesOutput Contains the number of bytes written to the current
output file. This can be used to detect empty embed
points (if no bytes were written, it contained nothing).

%EmbedID Contains the current embed point’s identifying symbol.

%EmbedDescription
The current embed point’s description.

%EmbedParameters
The current embed point’s current instance, as a comma-
delimited list.

CHAPTER 8 ANNOTATED EXAMPLES

Procedure Template: Window Contents |

TheWindowProcedure template is the generic template that creates any
window handling procedure. Since most (if not all) procedures in a

Windows application have a window, the type of code this template
generates forms the basis of the generated source code for most procedures

The Window template is also the fundamental template upon which all the
other Procedure templates are built. For example, the Browse template is
actually a Window template with BrowseBox and BrowseUpdateButtons
Control templates pre-defined for the procedure.

The following template language code is all the code for the Window
Template:

NOTE: For this and all other code examples in this book, the template line
continuation character (%]) is used to split code lines that are too long to fit
on the page. In the template files on disk these characters are not (and
should not be) used to continue a template code line; they are used here only
for readability.

#PROCEDURE(Window, 'Generic Window Handler'),WINDOW,HLP(‘~TPLProcWindow’)

fFLOCALDATA

LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
fFENDLOCALDATA

ffCLASS('Procedure Setup','Upon Entry into the Procedure')
#CLASS('Before Lookups','Refresh Window ROUTINE, before lookups')
ffCLASS('After Lookups','Refresh Window ROUTINE, after lookups')
J#ICLASS('Procedure Exit','Before Leaving the Procedure’)
##/PROMPT('&Parameters:', @s255), %Parameters
H#ENABLE (%ProcedureType="FUNCTION")
#PROMPT('Return Value:',FIELD),%ReturnValue
fFENDENABLE
##PROMPT('Window Operation Mode:',DROP('Use WINDOW setting|Normal|MDI|Modal')) %|
,%WindowOperationMode
fFENABLE(%INIActive)
#BOXED("INI File Settings')
#PROMPT('Save and Restore Window Location',CHECK) %]
,%INISaveWindow,DEFAULT(1),AT(10,,150)
JFENDBOXED
fFENDENABLE
#AT(%CustomGlobalDeclarations)
#FINSERT(%StandardGlobalSetup)
fFENDAT
#INSERT(%StandardWindowCode)

This code starts with the #PROCEDURE statement, which names the
Procedure template and indicates that it will have a WINDOW (or
APPLICATION) structure, but no REPORT. The #LOCALDATA section
defines six local variables that generate automatically as part of the
procedure. These are common local variables for most generated procedures

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

The #CLASS statements define the formula classes for the Formula Editor.
These identify the source code positions at which formulas generate.

The #PROMPT statements create the prompts oRrtieedure Properties
window. The first allows the programmer to hame the parameters passed
into the procedure. The #ENABLE structure enables its #PROMPT only
when the %ProcedureType symbol contains “FUNCTION.” This occurs only
when thePrototype prompt (standard on all procedures) contains a
procedure prototype with a return data type.

The next #PROMPT allows the programmer to override the window’s
operation mode as specified on the WINDOW structure. The next
#ENABLE structure enables its #BOXED #PROMPT only when the
%INIActive symbol contains a value. This symbol comes from a check box
on the Global Settings window.

The #AT structure calls the %StandardGlobalSetup #GROUP. This contains
code to determine if the procedure is using any .VBX controls. It so, they
are added to the list of files to ship with the application that generates into
the ProgramNameSHP file.

You will note that none of these statements generates any target language
(Clarion) source code other than the six variable declarations. The last
#INSERT statement places all the code the %StandardWindowCode
#GROUP generates at the end of these statements. This is the #GROUP tha
handles all the source generation for the template.

%StandardWindowCode #GROUP

This #GROUP actually generates all the source code for the Window
template. This includes all the local data declarations, standard window
handling code, and provides all the “hooks” for all the control and extension
templates to attach into the generated procedure.

#GROUP (%StandardWindowCode)
FIF(NOT %Window)
#ERROR(%Procedure & ' Error: No Window Defined!")

#IRETURN
J#ENDIF

fIDECLARE(%FirstField)

#DECLARE(%LastField)
#DECLARE(%ProgressWindowRequired)
FINSERT(%FieldTemplateStandardButtonMenuPrompt)
#INSERT(%FieldTemplateStandardEntryPrompt)
FINSERT(%FieldTemplateStandardCheckBoxPrompt)

#EMBED (%GatherSymbols, 'Gather Template Symbols'),HIDE
#INSERT(%FileControlInitialize)

%Procedure %ProcedureType%Parameters

#FOR(%LocalData)
%[20]LocalData %LocalDataStatement

#FENDFOR

CHAPTER 8 ANNOTATED EXAMPLES

#INSERT (%StandardWindowGeneration)
#IF(%ProgressWindowRequired)
#INSERT (%StandardProgressWindow)
fFENDIF
CODE
#EMBED(%ProcedurelInitialize,'Initialize the Procedure')
LocalRequest = GlobalRequest
OriginalRequest = GlobalRequest
LocalResponse = RequestCancelled
ForceRefresh = False
CLEAR(GTobalRequest)
CLEAR(GTobalResponse)
#EMBED(%ProcedureSetup, 'Procedure Setup')
IF KEYCODE() = MouseRight
SETKEYCODE(O)
END
#INSERT (%StandardFormula, 'Procedure Setup')
#INSERT(%FileControlOpen)
#INSERT(%StandardWindowOpening)
#EMBED(%PrepareAlerts, 'Preparing Window Alerts')
#EMBED (%BeforeAccept, 'Preparing to Process the Window')
#MESSAGE('Accept Handling',3)
ACCEPT
#fEMBED (%AcceptLoopBeforeEventHandling, 'Accept Loop, Before CASE EVENT() handling')
CASE EVENT()
#EMBED (%EventCaseBeforeGenerated, "CASE EVENT() structure, before generated code')
FINSERT (%StandardWindowHandling)
#EMBED(%EventCaseAfterGenerated, 'CASE EVENT() structure, after generated code')
END
J#EMBED (%AcceptlLoopAfterEventHandling, 'Accept Loop, After CASE EVENT() handling')
J#SUSPEND
##2CASE ACCEPTED()
#INSERT(%StandardAcceptedHandling)
F2END
#RESUME
#fEMBED (%AcceptLoopBeforeFieldHandling, '"Accept Loop, Before CASE FIELD() handling')
J#SUSPEND
##2CASE FIELD()
#EMBED(%FieldCaseBeforeGenerated, 'CASE FIELD() structure, before generated code')
FINSERT (%StandardControlHandling)
J#FEMBED(%FieldCaseAfterGenerated, 'CASE FIELD() structure, after generated code')
F2END
#RESUME
END
DO ProcedureReturn

ProcedureReturn ROUTINE
#INSERT(%FileControlClose)
FINSERT(%StandardWindowClosing)
fFEMBED (%EndOfProcedure, 'End of Procedure')
FINSERT(%StandardFormula, 'Procedure Exit')
IF LocalResponse

GlobalResponse = LocalResponse
ELSE

GlobalResponse = RequestCancelled
END
#IF(%ProcedureType="FUNCTION")
RETURN(%ReturnValue)
fFELSE
RETURN
fFENDIF

InitializeWindow ROUTINE

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

J#FEMBED (%WindowInitializationCode, '"Window Initialization Code')
DO RefreshWindow

RefreshWindow ROUTINE
IF %Window{Prop:AcceptA11} THEN EXIT.
#EMBED (%RefreshWindowBeforeLookup, 'Refresh Window routine, before Tookups"')
FINSERT(%StandardFormula, 'Before Lookups')
#INSERT(%StandardSecondaryLookups)
FINSERT(%StandardFormula, 'After Lookups')
J#EMBED (%RefreshWindowAfterLookup, 'Refresh Window routine, after lookups')
J#/EMBED (%RefreshWindowBeforeDisplay, 'Refresh Window routine, before DISPLAY()"')
DISPLAY()
ForceRefresh = False

SyncWindow ROUTINE
H#EMBED (%SyncWindowBeforeLookup, 'Sync Record routine, before lookups')
JFINSERT(%StandardFormula, 'Before Lookups')
#INSERT(%StandardSecondaryLookups)
FINSERT(%StandardFormula, 'After Lookups')
#EMBED (%SyncWindowAfterLookup, 'Sync Record routine, after lookups')

#EMBED(%ProcedureRoutines, 'Procedure Routines')

This starts with the required #GROUP statement which identifies the group
for use in #INSERT statements.

The #IF(NOT %Window) error check detects whether the programmer has
forgotten to create a window for the procedure. The #ERROR statement
alerts the programmer to the mistake and #RETURN immediately aborts any
further source generation for the procedure. The #DECLARE statements
declare two template symbols for internal use by other #GROUPs that are
called to generate source for the procedure, and a “flag” that determines
whether a “progress” window is required by the procedure.

The next three #INSERT statements insert #GROUPs that contain #FIELD
structures to define the standard prompts that appear éwtihes tab for
BUTTON, ENTRY and CHECK controls placed on the procedure’s window.
These prompts allow the programmer to specify the standard actions these
controls can take from this procedure.

The %GatherSymbols #EMBED statement has the HIDE attribute. This
means that it will not appear in the list of available embed points for the
programmer to insert code, making the embed point only available for
inte;nal use (for Code, Control, or Extension templates to generate code
into).

The #INSERT (%HReControlinitialize) statement inserts a #GROUP that
updates the symbols that keep track of the files used in the application with
the files used by this procedure.

The %Procedure %ProcedureType%Parameters statement generates the firs
Clarion language source code for the procedure. It generates the procedure’s
PROCEDURE or FUNCTION statement, with or without a parameter list,

as appropriate.

CHAPTER 8

ANNOTATED EXAMPLES 8-5

The #FOR(%LocalData) loop generates all the local variable declarations
for the procedure. The %[20]LocalData syntax means that the %LocalData
symbol expands to fill at least 20 spaces before the %LocalDataStatement
symbol expands. This aligns the data types for each variable declaration
starting in column 22.

The #INSERT (%StandardWindowGeneration) statement generates the
procedure’s WINDOW or APPLICATION data structure. This #GROUP

also contains two #EMBED statements that allow the programmer to embed
code either before or after the window structure.

The #IF(%ProgressWindowRequired) statement conditionally #INSERTSs the
%StandardProgressWindow group, which generates the ProgressWindow
WINDOW structure for the procedure.

Next, the CODE statement generates, to begin the procedure’s executable
code section. The %Procedurelnitialize #EMBED statement is the first
programmer-available embed point in the executable code portion of the
procedure.

The next six Clarion language statements are directly generated into the
procedure to set it up for the action it should perform, as signaled to the
procedure through the GlobalRequest variable. The %ProcedureSetup
#EMBED statement is the next programmer-available embed point in the
executable code portion of the procedure.

The IF KEYCODE() = MouseRight structure detects when the procedure
has been called as a result afieT-cLick popup menu. If so, it ensures that
the keycode is cleared to prevent multiple execution.

The %StandardFormula #INSERT statement generates all the “Procedure
Setup” class formulas.dilowing that, the #INSERT (% ControlOpen)
generates the code to open all the files used in the procedure (if they are not
already open). This #GROUP also contains two #EMBED statements that
allow tge programmer to embed code either before or after the files are
opened.

The #INSERT (%StandardWindowOpening) generates the OPEN(window)
statement, and the .INI file handling code (if the programmer has checked
theUse .INI file to save and restore program settings box). This

#GROUP also includes two #EMBED statements that allow the programmer
to embed code either before or after opening the window.

The next two #EMBED statements allow the programmer to embed code
before entering the procedure’'s ACCEPT loop. #MESSAGE displays its
message during source generation.

The ACCEPT loop is Clarion’s event handling structure. The next #EMBED
(%AcceptLoopBeforeEventHandling) allows the programmer to add code
that will be the first to “see” any event that ACCEPT passes on. The CASE

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

EVENT() structure contains all the code to handle field-independent events,
generated from the #INSERT(%StandardWindowHandling) statement. This
#GROUP is discussed in detail in its own section. The two #EMBED
statements that surround this #INSERT and the one following the CASE
EVENT structure all give the programmer the opportunity to explicitly
handle anyt field-independent event not covered by the generated code.

The #SUSPEND statement means that conditional code statements (those
prefaced with #?) will only generate if an explicit code statement (without

#7?) is also generated for the event, or if the programmer has placed some
embedded source or used a Code template in an embed point associated wit
the event being processed. This is the mechanism that allows Clarion’s
Template Language to only generate code that is actually required for the
procedure, eliminating unnecessary generated code.

The #?CASE ACCEPTED() structure contains all the code to handle all the
Accepted events for menu items. Since menu items only generate Accepted
events, this structure keeps the following CASE FIELD(cstire from
becoming unwieldy. This line of code, since it is prefaced with #?, will only
generate if there is some other code generated within it, eliminating an
empty CASE structure. The code for the CASE structure is generated by the
#INSERT (% StandardAcceptedHandling) statement. This #GROUP is also
discussed in detail in its own section. The #?END statement will only
generate an END statement if other code has already been generated.

The #RESUME statement terminates the #SUSPEND section. If no source
code has actually been generated, none of the conditional source statements
(prefaced by #?) between the #SUSPEND and the #RESUME generate.

The #?CASE FIELD() structure (also bracketed within #SUSPEND and
#RESUME statements) contains all the code to handle all the field-specific
events. The code for the CASE structure is generated by the

#INSERT (% StandardControlHandling) statement (between its two
#EMBED statements). This #GROUP is also discussed in detail in its own
section. The #?END statement will only generate an END statement if other
code has already been generated.

The END statement terminates the ACCEPT loop. This statement is always
generated (as is the ACCEPT) because every window requires an ACCEPT
loop directly associated with it to process the events for that window. The

DO ProcedureReturn statement calls the “cleanup code” for the procedure.

The first line of code in the ProcedureReturn ROUTINE is the
#INSERT(%ReControlClose) statement. This generates the code to close
the files that were opened by the procedure. This #GROUP also contains
two #EMBED statements that allow the programmer to embed code either
before or after the files are closed.

The #INSERT (%StandardWindowClosing) generates the CL@BHOW

CHAPTER 8

ANNOTATED EXAMPLES 8-7

statement , and the .INI file handling code (if the programmer has checked
the Use .INI file to save and restore program settings box). This

#GROUP also includes two #EMBED statements that allow the programmer
to embed code either before or after closing the window.

The next #EMBED allows the programmer to embed code before closing
the procedure’s window. The next #INSERT statement generates all the
“Procedure Exit” class formulas. The next five Clarion language statements
set up the procedure to alert the calling procedure to the action it performed,
signaled back to the calling procedure through the GlobalRequest variable.
The #IF structure then determines whether the procedure is a FUNCTION
and generates the correct RETURN statement.

The InitializeWindow ROUTINE is a standard routine in all of Clarion’s
shipping Templates. The #EMBED allows the programmer to perrform any
initialization code for themselves, and provides Code, Control ,and
Extension templates a place to generate their window initialization code.
The DO RefreshWindow statement calls the routine to display the current
contents of all the controls’ USE variables at the time the window is
initialized.

The RefreshwWindow ROUTINE is another standard routine in all of
Clarion’s shipping Templates that performs the procedure’s MANY:1
lookups and refreshes the screen to ensure any changed data correctly
displays to the user at all times. The ROUTINE starts with the IF
%Windon{PROP:AcceptAll} THEN EXIT. statement. This detects when
the procedure is on “non-stop” mode performing all data validity checks
prior to writing a record to disk, and aborts the re-display.

The first #EMBED allows the programmer to embed code before the
lookups. The next #INSERT generates all the “Before Lookups” class
formulas, then #INSERT (%StandardSecondaryLookups) generates the code
to get all the related records for the procedure. The next #INSERT generates
all the “After Lookups” class formulas, then comes a #EMBED to allow the
programmer to embed code after the lookups. The DISPLAY statement puts
any changed values on screen, and ForceRefresh = False turns off the
procedure’s screen refresh flag.

The SyncWindow ROUTINE is also a standard routine in all of Clarion’s
shipping Templates. It performs the same lookups as the RefreshWindow
ROUTINE, with similar embed points, but does not refresh the screen.
Instead, it ensures all record buffers contain correct data. ROUTINE is
usually called before executing some action that may require the currently
highlighted record in a LIST.

The last #EMBED statement allows the programmer to embed any
ROUTINES they have called from their code within other embed points.

8-8 CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%StandardWindowHandling #GROUP

This #GROUP generates all the code to handle field-independent events for
the procedure. It generates its code inside the Window template’s CASE
EVENT() structure.

#GROUP(%StandardWindowHand1ing)
#FOR(%WindowEvent)
#SUSPEND
#20F EVENT:%WindowEvent
JFEMBED (%WindowEventHandling, 'Window Event Handling'),%WindowEvent
FCASE(%WindowEvent)
JOF (' OpenWindow")
IF NOT WindowInitialized
DO InitializeWindow
END
#IF(%FirstField)
SELECT(%FirstField)
fFENDIF
J#OF('GainFocus"')
ForceRefresh = True
IF NOT WindowInitialized
DO InitializeWindow
WindowInitialized = True
ELSE
DO RefreshWindow
END
JFENDCASE
#FRESUME
f#FENDFOR
fFSUSPEND
##?ELSE
#EMBED(%WindowOtherEventHandling, 'Other Window Event Handling')
#RESUME

This #GROUP starts with #FOR(%WindowEvent). This means it will loop
through every instance of the %WindowEvent symbol, generating code (if
required) for each field-independent event in the procedure.

The #SUSPEND statement begins the section of code that will only
conditionally generate code if an explicit code statement (without #7?)
generates, or if the programmer has placed some embedded source or used
Code or Extension template to generate code into an embed point.

The #?0F EVENT:%WindowEvent statement conditionally generates an OF
clause to the CASE EVENT() structure for the currently processing instance
of %WindowEvent. This line of code, since it is prefaced with #?, will only
generate if there is some other code generated within it, eliminating an
empty OF clause.

The #EMBED statement is the key to the source generation process, and to
the Procedure template’s interaction with Code, Control, and Extension
templates. Because it has the “,40dbwEvent” appended to the end, the
programmer will have a separate embed point available for every instance of
the %WindowEvent symbol. This means programmers can write their own

CHAPTER 8

ANNOTATED EXAMPLES 8-9

code for any field-independent event . It also means any Code, Ccontrol, or
Eextension templates the programmer places in the procedure can generate
code into these embed points, as needed, to produce the code necessary to
support their functionality. These embed points are the targets of the #AT
statements used in the Code, Control, and Extension templates.

The #CASE(%WindowEvent) structure generates explicit source code for
the field-independent events in itswgtture. The #OF('OpenWindow')

checks foEVENT:OpenWindow and generates the check on the
Windowlnitialized variable to conditionally initialize the window. This code
executes if no EVENT:GainFocus has already occurred (such as opening a
second window on the same execution thread that currently has focus).

The SELECT(%FirstField) statement is generated only if there are any
controls that can receive focus in the window.

The #OF('GainFocus') statement checks for EVENT:GainFocus and
generates the ForceRefresh = True, then checks to see if the window has
already been initialized (if the user is switching between active threads it
would have been). If not, it initializes the window, otherwise it simply
refreshes it.

The #ENDCASE statement terminates the #CASE structure. The
#RESUME statement terminates the #SUSPEND section. If no source code
has actually been generated, no conditional source statements (prefaced by
#7?) between the #SUSPEND and the #RESUME are generated.

#ENDFOR terminates the #FOR loop, then #SUSPEND statement begins
another conditional generation section. This means the #?ELSE statement
only generates an ELSE if source code is generated by the #EMBED
statement. #RESUME terminates this #SUSPEND section.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%StandardAcceptedHandling #GROUP

This #GROUP generates all the code to handle field-specific events for the
procedure. It generates its code inside the Window Template’s CASE
FIELD() structure.

#GROUP (%StandardAcceptedHandling)
#FOR(%Control) ,WHERE(%ControlMenu)
#FIX(%ControlEvent, "Accepted')
#MESSAGE('Control Handling: ' & %Control,3)
#SUSPEND
#20F %Control
#EMBED(%ControlPreEventHandling, 'Control Event Handling, before generated code') %]
,%Control,%ControlEvent
#INSERT(%FieldTemplateStandardHandling)
f#/EMBED(%ControlEventHandling, 'Internal Control Event Handling') %]|
,%Control,%ControlEvent,HIDE
#fEMBED(%ControlPostEventHandling, 'Control Event Handling, after generated code') %]
,%Control,%ControlEvent
#RESUME
fFENDFOR

This code starts with the #FOR(%Control), WHERE(%ControlMenu)
statement. The WHERE attribute limits this #FOR loop to only those
instances of %Control that contain menu items. The #FIX statement ensure
that this code only deals with Acceptecmets.

The #MESSAGE statement displays its message during source generation.
#SUSPEND begins a conditional source generation section.

The #?0F %Control statement conditionally generates an OF clause to the
CASE ACCEPTED() structure for the currently processing instance of
%Control. This line of code, since it is prefaced with #?, will only generate
if there is some other code generated within it, eliminating an empty OF
clause.

All three #EMBED statements have “,%Control,%ControlEvent” appended

to the end, so the programmer will have a separate embed point available for
every instance of the %ControlEvent symbol within every instance of the
%Control symbol. For this group, this only meansAbeepted event.

The #INSERT (%keldTemplateStandardHandling) statement generates code
to handle all the Actions dialog selections the programmer has made for the
menu item. The next two #EMBED statements also have
“,%Control,%ControlEvent” appended to the end. The first has the HIDE
attribute, so it is available only for Code, Control, and Extension template
use. These three #EMBEDs give the programmer an embed point both
before and after any code automatically generated for them by the Actions
tab prompts.

#RESUME terminates this #SUSPEND section. #ENDFOR terminates the
%Control loop.

CHAPTER 8 ANNOTATED EXAMPLES

%StandardControIHandIing #GROUP

This #GROUP generates all the code to handle field-specific events for the
procedure. It generates its code inside the Window template’s CASE
FIELD() structure.

#GROUP (%StandardControlHandling)
#FOR(%Control) ,WHERE(%Control)
#MESSAGE('Control Handling: ' & %Control,3)
J#SUSPEND
#20F %Control
#fEMBED(%ControlPreEventCaseHandling, 'Control Handling, before event handling') %]
,%Control
#?2CASE EVENT()
#IF(NOT %ControlMenu)
#FOR(%ControlEvent)
#SUSPEND
#20F EVENT:%ControlEvent
#fEMBED(%ControlPreEventHandling, 'Control Event Handling, Before Generated %]
Code'),%Control,%ControlEvent
FINSERT (%FieldTemplateStandardHandling)
#fEMBED(%ControlEventHandling, 'Internal Control Event Handling') %]
,%Control,%ControlEvent,HIDE
#fEMBED(%ControlPostEventHandling, 'Control Event Handling, After Generated %|
Code'),%Control,%ControlEvent
#RESUME
F#FENDFOR
FELSE
#20F EVENT:Accepted
fFENDIF
##SUSPEND
##2ELSE
JFEMBED (%Control0therEventHandling, 'Other Control Event Handling'),%Control
#RESUME
#F2END
#fEMBED(%ControlPostEventCaseHand1ing, 'Control Handling, after event handling') %]
,%Control
#RESUME
fFENDFOR

This code starts with the #FOR(%Control), WHERE(%Control) statement.
The WHERE clause may at first seem redundant, since #FOR will only loop
through existing instances of %Control. However, since some controls do

not need (and so do not have) field equate labels, there are valid instances of
%Control that do not contain a value for %Control itself. Therefore, the
WHERE attribute limits this #FOR loop to those instances of %Control that
do contain a field equate label for the control.

The #MESSAGE statement displays its message during source generation.
#SUSPEND begins a conditional source generation section.

The #?0F %Control statement conditionally generates an OF clause to the
CASE FIELD() structure for the currently processing instance of %Control.
This line of code, since it is prefaced with #?, will only generate if there is
some other code generated within it, eliminating an empty OF clause.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

The first #EMBED allows the programmer to handle any situation that needs
to be handled before any generated code for the control. The #?CASE
EVENT() conditionally generates a CASE EVENT() structure for the

contol. The #IF(NOT %ContiMenu) statement filters out all the menu

items, since they are handled by the %StandardAcceptedHandling #GROUP.
#FOR(%ControlEvent) loops through all the possible events that the control
being processed can generate.

#SUSPEND begins another conditional source generation section, nested
within the previous one. This allows multiple levels of conditional source
code generation. The outer section is automatically generated if any code is
generated from the inner section.

The #?0F EVENT:%ControlEvent statement conditionally generates an OF
clause to the CASE EVENT() structure for the currently processing instance
of %Control. This line of codeaince it is prefaced with #?, will only

generate if there is some other code generated within it, eliminating an
empty OF clause.

This next #EMBED statement has “,%Control,%ControlEvent” appended to
the end, so the programmer will have a separate embed point available for
every instance of the %ControlEvent symbol within every instance of the
%Control symbol. This means programmers can write their own code for

any field-specific event, for any control . It also means any Code templates,
Control templates, or Extension templates the programmer places in the
procedure can generate code into these embed points, as needed, to produc
the code necessary to support their functionality. These embed points are the
targets of the #AT statements used in the Code, Control, and Extension
templates.

The #INSERT (%keldTemplateStandardHandling) statement generates code
to handle all the Actions tab selections the programmer has made for the
contol. The prompts on the Actions tab come from the #FIELDcstres

that were #INSERTed at the beginning of the Window template.

The next two #EMBED statements also have “,%Control,%ControlEvent”
appended to the end, so the programmer will have a separate embed point
available for every instance of the %ControlEvent symbol within every
instance of the %Control symbol. The first has the HIDE attribute, so it is
available only for Code, Control, and Extension template use. These three
#EMBEDSs give the programmer an embed point both before and after any
code automatically generated for them by the Actions tab prompts.

#RESUME terminates the inner conditional source generation section, then
#ENDFOR terminates the %ControlEvent loop. The #ELSE refers back to
the #IF(NOT %ControlMenu) and will generate an empty OF
EVENT:Accepted éllowed by an ELSE statement for a Menu item if the
programmer has entered code into the Other Control Event Handling embed
point. This eliminates any duplication between EVENT:Accepted code for a

CHAPTER 8

ANNOTATED EXAMPLES 8-13

menu item while still allowing the programmer to process any user-defined
events for them.

The #SUSPEND statement begins another nested conditional generation
section. This means the #?ELSE statement only generates an ELSE if source
code is generated by the #EMBED statement. #RESUME terminates this
#SUSPEND section.

The #?END generates the END statement for the CASE FIELD() structure,
if any code has been generated, then the #RESUME statement terminates th
outer #SUSPEND section. #ENDFOR terminates the %Control loop.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Code Template: ControlValueValidation

The ControlValueValidéion Code template performs data entry validation

for an entry-type control (ENTRY, SPIN, or COMBO) by looking up the

value entered by the user in another data file. If the lookup is successful, the
entered value is valid. If not, it calls another procedure to allow the user to
select a valid value from the lookup file.

This Code template is designed to generate code only into EVENT:Selected
or EVENT:Accepted embed points of an ENTRY, SPIN, or COMBO
contol. These are the controls into which a user can directly type in data.

#CODE(ControlValueValidation, 'Control Value Validation')
#RESTRICT
#CASE(%ControlType)
J#OF ("ENTRY ")
#FOROF('SPIN")
JfOROF (' COMBO ")
#FCASE(%ControlEvent)
JHOF ("Accepted"')
#fOROF('Selected")
J#ACCEPT
F#ELSE
#REJECT
fFENDCASE
fFELSE
IREJECT
JFENDCASE
fFENDRESTRICT
#DISPLAY('This Code Template is used to perform a control value')
#DISPLAY('validation. This Code Template only works for')
#DISPLAY('the Selected or Accepted Events for an Entry Control.')
#DISPLAY('")
##PROMPT (" Lookup Key',KEY),%LookupKey,REQ
#PROMPT('Lookup Field',COMPONENT),%LookupField,REQ
#PROMPT (' Lookup Procedure',PROCEDURE),%LookupProcedure
#DISPLAY('")
#DISPLAY('The Lookup Key is the key used to perform the value validation.')
#DISPLAY('If the Lookup Key is a multi-component key, you must insure that')
#DISPLAY('other key elements are primed BEFORE this Code Template is used.')
#DISPLAY('")
#DISPLAY('The Lookup field must be a component of the Lookup Key. Before’)
#DISPLAY('execution of the lookup code, this field will be assigned the value of”)
#DISPLAY('the control being validated, and the control will be assigned the value’)
#DISPLAY('of the lookup field if the Lookup procedure is successful."')
#DISPLAY('")
#DISPLAY('The Lookup Procedure is called to Tet the user to select a value. °)
#DISPLAY ('Request upon entrance to the Lookup will be set to SelectRecord, and)
#DISPLAY('successful completion is signalled when Response = RequestCompleted.')
##IF(%ControlEvent="Accepted")
IF %Control{PROP:Req} = False AND NOT %ControlUse #<! If not required and empty
ELSE
#INSERT(%CodeTPLValidationCode)
END
F#FELSIF(%ControlEvent="Selected")
#INSERT(%CodeTPLValidationCode)
FFELSE
#ERROR('This Code Template must be used for Accepted or Selected Events!')
fFENDIF

CHAPTER 8

ANNOTATED EXAMPLES 8-15

A Code template always starts with the #CODE statement, which identifies
it within the template set and defines the description which appears in the
list of available Code templates for a given embed point.

The #RESTRICT structure defines the embed points where the code
template will appear as a choice. The #CASE(%ControlType) structure
limits the embed points to the ENTRY, SPIN, and COMBO atsitiand the
#CASE(%ControlEvent) structure limits the embed points to
EVENT:Accepted and EVENT:Selected.

The #ACCEPT statement indicates these are appropriate embed points,
while the #REJECT indicates all other control type and event embed points
are not valid for the Code template to appear in as a choice.

All the #DISPLAY statements display their text to the programmer on the
code template’s prompt dialog. These describe the information the
programmer needs to supply in the prompts.

The first #PROMPT asks for the name of the key to use in the file that will
be used to validate the user’s input. The REQ attribute indicates the
programmer must supply this information.

The second #PROMPT asks for the name of the field in the key that contains
the same information the user should enter into the contrainAthe REQ
attribute indicates the programmer must supply this information.

The third #PROMPT asks for the name of the procedure to call if the lookup
is unsuccessful. This would usually be a Browse procedure for the lookup
file with a Select button to allow the user to choose the record containing the
value they want for the control.

Again, the #DISPLAY statements display text to the programmer on the
prompt dialog to describe the information the programmer needs to supply
in the prompts.

The #IF(%ControlEvent="Accepted’) structure generates an IF structure for
EVENT:Accepted that detects when the control has the REQ attribute or the
user has entered a value and #INSERTSs the %CodeTPLValidationCode
#GROUP to generate the source code for the data validation. The #ELSIF
just unconditionally #INSERTSs the %CodeTPLValidationCode #GROUP to
generate the source code for the data validation.

If the event is anything other than EVENT:Accepted or EVENT:Selected, an
error message is the only output generated.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

%CodeTPLValidationCode #GROUP

This #GROUP is the “workhorse” of the Code template. It generates the
actual file lookup code to validate the data entry. It takes the information
provided in the prompts and combines it with the %ControlUse symbol to
generate a GET statement into the lookup file. If the GET is successful, the
data is valid. If not, it calls the lookup procedure.

#GROUP(%CodeTPLValidationCode)

%LookupField = %ControlUse #<! Move value for Tlookup
#FIND(%Field,%LookupField) #! FIX field for Tookup
GET(%File,%LookupKey) #<! Get value from file
IF ERRORCODE() #<! IF record not found
GlobalRequest = SelectRecord #<! Set Action for Lookup
%LookupProcedure #<! Call Lookup Procedure
LocalResponse = GlobalResponse #<! Save Returned Action
GTobalResponse = RequestCancelled #<! Clear the Action Value
IF LocalResponse = RequestCompleted #<! IF Lookup successful
%ControlUse = %LookupField #<! Move value to control field
#IF(%ControlEvent="Accepted") #! IF a Post-Edit Validation
ELSE #<! ELSE (IF Lookup NOT...)
SELECT(%Control) #<! Select the control
CYCLE #<! Go back to ACCEPT
fIENDIF #! END (IF a Pre-Edit...)
END #<! END (IF Lookup successful)
#IF(%ControlEvent="Selected") #! IF a Pre-Edit Validation
SELECT(%Control) #i<! Select the control
fIENDIF #! END (IF a Pre-Edit...)
END ##<! END (IF record not found)

This #GROUP starts by generating the %LookupField = %ControlUse
assignment. This assigns the control’s USE variable to the field named in the
second prompt; the key field that should contain the correct value.

The #FIND(%Field,%LookupField) statement looks through all the fields in
the data dictionary, looking for a matching field to the one contained in
%LookupField. This fixes %Field and %File to the correct values to
generate the GET(%File,%LookupKey) statement. This becomes a
GET(file,key) form of the GET statement to get a single record from the
lookup file with matching key field values.

The IF ERRORCODE() structure checks for a successful GET operation. If
an error occurred, the GET was unsuccessful and the GlobalRequest =
SelectRecord statement sets up the call to the lookup procedure, generated
by the %LookupProcedure statement.

After return from the lookup procedure, LocalResponse = GlobalResponse
saves the lookup procedure’s response code. Then the GlobalResponse =
RequestCancelled statement cleans up so any other execution thread does
not get an incorrect response. This must be done immediately, before the
user has a chance to change execution threads.

The IF LocalResponse = RequestCompleted structure detects a user choice

CHAPTER 8

ANNOTATED EXAMPLES 8-17

from the lookup procedure and the %ControlUse = %LookupField statement
assigns the choice to the control's USE variable.

The #IF(%ControlEvent='"Accepted’) detects when the Code template is
generating for EVENT:Accepted and adds the ELSE clause to SELECT the
control and CYCLE back to the top of the ACCEPT loop.

The END statement terminates the IF LocalResponse = RequestCompleted
structure. The #IF(%ControlEvent='Selectedyictire generates the
SELECT statement for the control when generating for EVENT:Selected.

The END statement terminates the IF ERRORCODE() structure. Obviously,
if there was no error on the GET statement, the data is valid and no further
code is necessary.

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

Control Template: DOSFileLookup

The DOSFileLookupControl template adds an ellipsis (...) button which
leads the end user to a standapen File dialog. You can specify a file
mask, and a return variable to hold the end user's choice.

#CONTROL(DOSFileLookup, 'Lookup a DOS file name'),WINDOW
CONTROLS
BUTTON('..."),AT(,,12,12),USE(?LookupFile)
END
#BOXED('DOS File Lookup Prompts')
#PROMPT('File Dialog Header:',@S60),%D0SFileDialogHeader,REQ,DEFAULT('Choose a File'")
#PROMPT('DOS FileName Variable:',FIELD),%DOSFileField,REQ
J#PROMPT('Default Directory:',@S80),%D0SInitialDirectory
##PROMPT('Variable File Mask',CHECK),%DOSVariableMask
fFENABLE (%D0OSVariableMask)
#PROMPT('Variable Mask Value:',FIELD),%D0OSVariableMaskValue
fFENDENABLE
#ENABLE(NOT %DOSVariableMask)
#PROMPT('File Mask Description:',@S40),%D0SMaskDesc,REQ,DEFAULT('AT1 Files")
#PROMPT('File Mask',@S50),%D0SMask,REQ,DEFAULT("*.*")
#BUTTON("'More File Masks'),MULTI(%DOSMoreMasks,%DOSMoreMaskDesc & ' - ' & %]|
%D0SMoreMask)
#PROMPT('File Mask Description:',@S40),%D0SMoreMaskDesc,REQ
#PROMPT('File Mask',@S50),%D0SMoreMask,REQ
fFENDBUTTON
FENDENABLE
fFENDBOXED
#LOCALDATA
DOSDialogHeader CSTRING(40)
DOSExtParameter CSTRING(250)
DOSTargetVariable CSTRING(80)
FFENDLOCALDATA
fFATSTART
#DECLARE(%D0OSExtensionParameter)
#DECLARE(%D0SLookupControl)
#FOR(%Control) ,WHERE(%ControlInstance = %ActiveTemplateInstance)
#SET (%D0SLookupControl,%Control)
J#ENDFOR
#IF(%D0OSVariableMask)
#FSET(%DOSExtensionParameter,%D0SVariableMask)
fFELSE
#SET(%D0SExtensionParameter,%D0SMaskDesc & '|' & %DOSMask)
J#FOR(%D0SMoreMasks)
#SET(%DOSExtensionParameter,%D0SExtensionParameter & '|' & %DOSMoreMaskDesc %|
& '|' & %DOSMoreMask)
#ENDFOR
fFEND
FFENDAT
#AT(%ControlEventHandling,%D0SLookupControl, "Accepted")
IF NOT %DOSFileField
FINSERT(%StandardValueAssignment, 'DOSTargetVariable',%D0SInitialDirectory)
ELSE
DOSTargetVariable = %DOSFileField
END
FINSERT(%StandardValueAssignment, 'DOSDialogHeader',%D0SFileDialogHeader)
#INSERT(%StandardValueAssignment, 'DOSExtParameter',%D0SExtensionParameter)
IF FILEDIALOG(DOSDialogHeader,DOSTargetVariable,DOSExtParameter,0)
%DOSFileField = DOSTargetVariable
DO RefreshWindow
END
FFENDAT

CHAPTER 8

ANNOTATED EXAMPLES 8-19

This starts, as all Control templates must, with a #CONTROL statement.
The WINDOW attribute allows you to populate it onto a window, but not
onto a report. The CONTROLS section pre-defines the BUTTON control for
the window.

The #BOXED structure places a box around all the prompts that display on
the Actions tab for this Control template. The first #PROMPT asks for the
text for the caption of th@pen File dialog, and the next asks for the name
of a variable to receive the end user's choice. The third allows you to
explicitly set the directory in which th@pen File dialog starts.

The fourth #PROMPT is a check box asking whether the programmer will
explicitly set the file mask(s) for thepen File dialog, or use a variable to
determine them at run time. When checked, the first #ENABLE activates the
Variable Mask Value #PROMPT to get the name of the variable toi use at
run time. If not checked, the second #ENABLE activates its set of prompts
to get each explicit file mask to pass to dpen File dialog.

The #LOCALDATA section defines three local variables that generate
automatically as part of the procedure. These local variables are only used in
the code generated by this Control template as the actual variables passed a
parameters to the FILEDIALOG function.

The #ATSTART statement begins a section of template code that executes
before any source code generates for the procedure. This means it is only
appropriate to initialize user-defined template symbols and perform any
necessary set up to generate correct source for the control template into the
procedure. This section does not generate source code. The #DECLARE
statements declare two symbols used only during source generation for this
Control template.

#FOR(%Control), WHERE(%Controlinstance=%ActiveTemplatelnstance)
executes the enclosed #SET statement only for the single control populated
by this Control template. The #SET statement then places the field equate
label of the control into %DOSLookupControl.

The #IF structure checks whether the programmer checkadibble File

Mask box and either sets up the variable, or the explicit file masks to pass to
the FILEDIALOG function. The #ENDAT statement terminates the
#ATSTART section.

The next #AT generates Clarion code into the embed point fércttepted
event for the control populated by this Control template to perform the file
lookup. The IF NOT %DOSFileField structure detects whether the user has
performed the lookup. If they haven’t the initial directory is assigned to the
DOSTargetVariable. If the user has performed the lookup, the ELSE clause
assigns the result of the previous lookup as the starting point for the next.

The two #INSERT statements create assignment statements to initialize the
File Open dialog's title and file masks. Next, the IF FILEDIALOG structure

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

performs the actual lookup for the file. If the user selects a file frorilthe
Open dialog, the selected filename is assigned to variable the user selected
in theDOS FileName Variable prompt, then he DO RefreshWindow
statement ensures that all data on the window is current. The #ENDAT
statement terminates the #AT section.

CHAPTER 8 ANNOTATED EXAMPLES

Extension Template: DateTimeDisplay

The DateTimeDisplayExtension template displays the date and/or time in
either a display-only STRING control or a section of the status bar. Of
course, the status bar should be declared on the window.

#EXTENSION(DateTimeDisplay, 'Display the date and/or time in the current window') %]
L,HLP('~TPLExtensionDateTimeDisplay"'),PROCEDURE
#BUTTON('Date and Time Display'),AT(10,,180)
#BOXED('Date Display...")
#PROMPT('Display the current day/date in the window',CHECK) %|
,%DisplayDate,DEFAULT(0),AT(10,,150)
#ENABLE(%DisplayDate)

#PROMPT('Date Picture:',DROP('October 31, 1959|0CT 31,1959|10/31/59| %]
10/31/1959|31 OCT 59|31 OCT 1959|31/10/59| %]
31/10/1959|0ther')),%DatePicture %|
,DEFAULT('October 31, 1959")

#ENABLE(%DatePicture = 'Other")

#PROMPT('Other Date Picture:',@S20),%0therDatePicture,REQ

fFENDENABLE

#PROMPT('Show the day of the week before the date',CHECK),%ShowDayOfWeek %]
,DEFAULT(1),AT(10,,150)

#PROMPT('&Location of Date Display:',DROP('Control|Status Bar')) %|
,%DateDisplaylLocation

#ENABLE(%DateDisplayLocation="Status Bar"')

#PROMPT('Status Bar Section:',@nl),%DateStatusSection,REQ,DEFAULT(1)

JFFENDENABLE

H#ENABLE(%DateDisplayLocation="Control")

#PROMPT('Date Display Control:',CONTROL),%DateControl,REQ
fFENDENABLE

JFENDENABLE
FFENDBOXED
#BOXED('Time Display...")

#PROMPT('Display the current time in the window',CHECK),%DisplayTime %]

,DEFAULT(0),AT(10,,150)

fFENABLE (%DisplayTime)

#PROMPT('Time Picture:',DROP('5:30PM|5:30:00PM|17:30|17:30:00| %]
1730|173000|0ther")),%TimePicture %|
,DEFAULT('5:30PM")

#ENABLE(%TimePicture = 'Other")

#PROMPT('Other Time Picture:',@520),%0therTimePicture,REQ

fFENDENABLE

#PROMPT('&Location of Time Display:',DROP('Control|Status Bar')) %|
,%TimeDisplaylLocation

#ENABLE(%TimeDisplayLocation="Status Bar')

#PROMPT('Status Bar Section:',@nl),%TimeStatusSection,REQ,DEFAULT(2)

JFFENDENABLE

H#ENABLE(%TimeDisplayLocation="Control")

#PROMPT('Time Display Control:',CONTROL),%TimeControl,REQ
fFENDENABLE
JFENDENABLE
FFENDBOXED
FENDBUTTON
fFATSTART
#DECLARE(%TimerEventGenerated)
#IF(%DisplayDate)
#DECLARE (%DateUsePicture)
J#CASE(%DatePicture)
#OF('10/31/59")
#SET(%DateUsePicture, '@D1")
#O0F('10/31/1959")

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#SET(%DateUsePicture, '@D2")
#OF('0CT 31,1959")
#SET(%DateUsePicture, '@D3")
J#OF('October 31, 1959")
#SET(%DateUsePicture, '@D4")
#O0F('31/10/59")
#SET(%DateUsePicture, '@D5")
#O0F('31/10/1959")
#SET(%DateUsePicture, '@D6")
#OF(*31 0OCT 59")
#SET(%DateUsePicture, '@D7")
#0F(*31 0CT 1959")
#SET(%DateUsePicture, '@D8")
J#OF('Other")
#SET(%DateUsePicture,%0therDatePicture)
fFENDCASE
fFENDIF
#IF(%DisplayTime)
J#IDECLARE(%TimeUsePicture)
#CASE(%TimePicture)
#OF('17:30")
#SET(%TimeUsePicture, '@T1")
#OF('1730")
#SET(%TimeUsePicture, '@T2")
J#OF('5:30PM")
#SET(%TimeUsePicture, '@T3")
#OF('17:30:00")
#SET(%TimeUsePicture, '@T4")
FOF('173000")
#SET(%TimeUsePicture, '@T5")
J#OF('5:30:00PM")
#SET(%TimeUsePicture, '@T6")
J#OF('Other")
#SET(%TimeUsePicture,%0therTimePicture)
JFENDCASE
fFENDIF
fFENDAT
#AT (%DataSectionBeforeWindow)
#IF(%DisplayDate AND %ShowDayOfWeek)
DisplayDayString STRING('Sunday Monday Tuesday WednesdayThursday %|
Friday Saturday ')
DisplayDayText STRING(9),DIM(7),0VER(DisplayDayString)
fFENDIF
H#FENDAT
fIAT (%BeforeAccept)
#IF(%DisplayTime OR %DisplayDate)
IF NOT INRANGE(%Window{Prop:Timer},1,100)
%Window{Prop:Timer} = 100
END
#INSERT (%DateTimeDisplayCode)
fFENDIF
H#FENDAT
#AT (%WindowEventHandling, 'Timer")
#SET(%TimerEventGenerated,%True)
#IF(%DisplayDate OR %DisplayTime)
#INSERT (%DateTimeDisplayCode)
fFENDIF
H#FENDAT
#AT (5WindowOtherEventHandling)
#IF(%DisplayDate OR %DisplayTime)
#IF(NOT %TimerEventGenerated)
IF EVENT() = EVENT:Timer

CHAPTER 8 ANNOTATED EXAMPLES

#INSERT(%DateTimeDisplayCode)
END
fFENDIF
fFENDIF
fFENDAT

An Extension template starts with the #EXTENSION statement. The
PROCEDURE attribute specifies the Extension template is available only at
the procedure level, not the global level of the application.

The #BUTTON structure creates a separate page for all the prompts for this
Extension template. These prompts ask the programmer for the format of the
date and/or time to display, and whether to display them in a control or the
status bar.

The #ATSTART statement begins a section of template code that executes
before any source code generates for the procedure. This means it is only
appropriate to initialize user-defined template symbols and perfrom any
necessary set up to generate correct source for the control template into the
procedure. This section does not generate source code.

The #DECLARE(%TimerEventGenerated) statement declares a symbol
used only in this Extension template. It is used to flag whether an OF
EVENT.:Timer clause has been generated for the procedure.

The #IF(%DisplayDate) structure sets up to display the date by declaring a
symbol to contain the programmer’s choice of date formats. The #CASE
structure assigns that choice to the %DateUsePicture symbol. The
#IF(%DisplayTime) structure sets up to display the time by declaring a
symbol to contain the programmer’s choice of date formats. The #CASE
structure assigns that choice to the %TimeUsePicture symbol. The #ENDAT
statement terminates the #ATSTART section.

The next #AT generates code into the embed point that appears immediately
before the window data structure. The #IF(%DisplayDate AND
%ShowDayOfWeek) structure generates two local variable declarations for
the procedure if the programmer is displaying the date with the day of week.

The next #AT generates code into the embed point that appears immediately
before the ACCEPT loop. The #IF(%DisplayTime OR %DisplayDate)
structure generates code that ensures the window has its TIMER attribute
set. The IF NOT INRANGE(%Window{Prop:Timer},1,100) detects the lack
of the attribute, then %Window{Prop:Timer} = 100 sets it to one second.
The #INSERT(%DateTimeDisplayCode) adds the code that updates the
display.

The next #AT generates code into the embed point for EVENT:Timer. This
embed point only appears if the programmer has placed a TIMER attribute
on the window. Therefore, the #SET(%TimerEventGenerated,%True)
statement signals that code was generated in this embed point. The

CoPYRIGHT © 1995 TorPSPEED CORPORATION—DO NOT REPRODUCE

#IF(%DisplayTime OR %DisplayDate) structure ensures the
#INSERT (% DateTimeDisplayCode) statement generates the code that
updates the display every time EVENT:Timer is processed.

The next #AT generates code into the “Other Window Event Handling”
embed point. This is the ELSE clause of the CASE EVENT() structure to
handle field-independent events. #IF(NOT %TimerEventGenerated) detects
that the previous #AT did not generate code because the programmer did not
place the TIMER attribute on the window. Therefore, the IF EVENT() =
EVENT:Timer structure is necessary for the code that updates the display
whenever EVENT:Timer occurs.

%DateTimeDisplayCode #GROUP

This #GROUP generates the code to actually display the Date and/or Time.

#GROUP (%DateTimeDisplayCode)
#IF(%DisplayDate)
#I1F(%ShowDayOfWeek)
J#CASE(%DateDisplayLocation)
JOF (' Control")
%DateControl{Prop:Text} = CLIP(DisplayDayText[(TODAY()%%7)+11) & ', ' & %]
FORMAT (TODAY () ,%DateUsePicture)
DISPLAY(%DateControl)

fFELSE
%Window{Prop:StatusText,%DateStatusSection} = CLIP(DisplayDayText[(%]
TODAY()%%7)+11) & ', ' & FORMAT(TODAY(),%DateUsePicture)
FFENDCASE
JELSE

J#CASE(%DateDisplayLocation)
JOF (' Control")
%DateControl{Prop:Text} = FORMAT(TODAY(),%DateUsePicture)
DISPLAY(%DateControl)
#ELSE
%Window{Prop:StatusText,%DateStatusSection} = FORMAT(TODAY(),%DateUsePicture)
fFENDCASE
JENDIF
fIENDIF
#IF(%DisplayTime)
#CASE(%TimeDisplaylLocation)
J#lOF('Control")
%TimeControl{Prop:Text} = FORMAT(CLOCK(),%TimeUsePicture)
DISPLAY(%DateControl)
FELSE
%Window{Prop:StatusText,%sTimeStatusSection} = FORMAT(CLOCK(),%TimeUsePicture)
fFENDCASE
FFENDIF

The #IF(%DisplayDate) structure generates the code to display the date. The
#IF(%ShowDayOfWeek) structure detects the programmer’s choice to
display the day along with the date, then #CASE(%DateDisplayLocation)
generates the code to display into a STRING display-only control for the
#OF('Contral) clause.

CHAPTER 8

ANNOTATED EXAMPLES 8-25

The assignment statement concatenates the day of the week (from the
DisplayDayText[(TODAY () %% 7)+1] expression) with the formatted date
(from the FORMAT(TODAY(),%DateUsePicture) expression) into the
STRING(text) property (the %DateControl{Prop:Text} property). The %%
generates as a single % (modulus operator) for the TODAY() % 7 + 1
expression to get the correct day of the week text from the DisplayDayText
array. The #ELSE clause of the #CASE(%DateDisplayLocation) assigns the
same expression to the status bar section the programmer chose for the date
display.

The #ELSE clause of the #IF(%ShowDayOfWeek) structure performs the
same assignments, without the day of the week. The #IF(%DisplayTime)
structure performs the same type of assignments of the formatted time to
either a STRING display-only control or the status bar.

Index Contents |

Symbols HENDBOXEDccvvviiiiiiieeeee e 4-8
H#ENDBUTTON ...t 4-10
> B BEND CASE .o 5-8
e et e e LI9ENDDEFAULT oo 3-6
B BBENDENABLE oo 4-7
B e CBENDEIELD oo 4-12
2 o 5:22, 5-23, 524, 5-25, 87, 8:9, B-LIYENDFORoooorroorrrorsroossroosssoossre s 5.3
HFABORT ..o 5-1ZENDGLOBALDATA oo 3-5
#ACCEPT o 2-26, 2-27, 2-28, 8-1HENDIFc..coevveerceeeeeeeeeeeeeeeeeee e 5-4
AADD s 3-7, 3-10, 3-15, 3-17 HENDLOCALDATAc.oovveerrrrirererriesiareeseeaan, 35
HALIAS ..o, B-HENDLOOP ..o 5-6
HFAPPEND ... 5-18ENDREPORTS ..o 3-4
#APPLICATION . 1-9, 2-4, 3-8, 3-19, 4-4, 5-11 #ENDRESTRICT ...ceoovevveerercrereeeersienereenaeen 2-26
AAT s 2-13, 2-15, 2-18, 2-22, 8-10, 8-124ENDWINDOWScoovvrverrceriereirisiesiesean, 33
H#ATEND ..o 2:24 BERROR oo 6-5, 8-6
HATSTART Lo 2-23, 8-19, 8-244EXTENSION..... 1-4, 1-5, 1-10, 2-17, 2-21, 2-
H#BOXEDoeoviiiiiiii, 1-8, 4-8, 8-4, 8-19 22, 2-23, 2-24, 2-26, 3-5, 3-9, 4-4, 6-
H#BREAK ..o 5-3, 5-7, 5-10 10, 8-24
#BUTTON ...ooovviiiiiiiiiis 1-8, 4-8, 4-9, 8-244FIELDoovvooeiiiii 4-4, 4-12, 4-16, 8-6, 8-12
FCASE ..o 1-4, 5-BFEIND ..o, 3-16, 8-15, 8-20
FCLASS ... 6-4, B-FFIX oo 3-7, 3-15, 3-17, 5-3, 8-19
FCLEAR ..o 3-13FOR 1-4, 2-21, 3-7, 3-15, 3-17, 5-3, 5-10
FCLOSE ... S-1BFREE. ... 3-7, 3-14
#CODE1-4, 1-5, 1-10, 2-12, 2-21, 2-22, 2-#GENERATEc........... 5-11, 5-12, 5-13, 5-14
23, 2-24, 2-25, 2-26, 3-5, 3-9, 4-4, 6- HGLOBALDATAc.cocoeveeereeeeeeeeeeeneneee e 35
10, 8-14 #GROUP1-9, 2-9, 2-21, 3-7, 5-9, 5-11, 8-4, 8-5
HCOMMENT ..., 6-4&GROUP parameters __ 3-7
#CONTROL1-4, 1-5, 1-10, 2-14, 2-21, 2-22, 2-HHELPcooveeeeeeeireeenceinesneneneesneeeeseeseessnenes 6-5
23, 2-24, 2-26, 3-5, 3-9, 4-4, 6-10, 8-19 HIF ... 1-4, 5-4
HCREATE ... S-LBIMPORT ..o 6-6
HCYCLE ..o 5-3, 57, 5-1Q4INCLUDEcocooveveveeeeeeeeeeeeeee e 1-11, 6-6
#DECLARE 3-7, 3-19, 8-6, 8-19, 8-24#INSERT 1-9, 2-10, 5-9, 5-11, 8-4, 8-5
HDEFAULT ... 3-3, 3-4, 3-6HLOCALDATAc.cooveeeeeeeeeeeeee e 3-5, 8-3
ADELETE. ..., 37, B LIHLOOP oo 1-4, 2-21, 5-6, 5-10
H#DELETEALL ..o -1 2HMESSAGE ... oo 6-7, 8-7, 8-11
#DISPLAY ... 1-8, 4-6, 4-8, 8-144#MODULE ...oovvoee. 1-9, 2-7, 2-21, 2-26, 5-11
HELSE oo 54, SBEOF ... 5-8
HELSIF o SBOPEN ... 5-14
#EMBED ... 1-4, 1-7, 2-10, 2-13, 2-15, 2-18, 2-#OROFcccecvurrurrrerieineeeneeenssenensessseensseeeees 5-8
20, 2-25, 5-22, 5-23, 5-24, 5-25, 6-10, B-64PRINTcccovivvrrreriierieesireisnesnenencsee e 5-21
#ENABLE ... 1-8, 4-7, 4-8, 8-4#PROCEDURE 1-5, 1-9, 2-8, 2-21, 2-23, 2-

H#ENDAT .o 2-22, 2-23, 2-24 24, 2-26, 3-5, 3-6, 4-4, 5-11, 6-8, 6-10, 8-

CoPYRIGHT © 1995 TorSreEED CORPORATION—DO NOT REPRODUCE

3 QONUIL.....coeic e, 7-17
#PROGRAM...... 1-9, 2-6, 2-21, 2-26, 3-5, 5-11%Primarycccccccourrririiiiieiieeee e e 7-15
HAPROJECT oot B-BOProcedurecoccvvviiiiiieeiee e 7-11
#PROMPT ... 1-3, 1-8, 2-13, 2-15, 2-18, 3-7, 4-%Relationccoovvrriiiiiiiiieeeieeeeece e, 7-10

3, 4-6, 8-4 B0 R U=] o0 7-14
#PROMPT ENtry TYPES...ovvvivveiiiiiiiiieeeeeee 4-186SECONUANYevvveiieiiiiiieee et 7-16
H#PROTOTYPE ..o 6-80'SYmbOloooiiii i, 7-3
HPURGE ... G R L I U 7-17
HREAD ... 5-14, 5-186VIeWFIlES.........cccooiiiiiic e, 7-8
HREDIRECT .o B-1PAWINAOW .vvvvviiiiiieiieeeeeeeeeeeeeeeee e 7-13
H#REJECT .oovvvveeeiiiiiieeeen, 2-26, 2-27, 2-28, 8-14 ...t 2-9, 5-9
#RELEASEcceeennnn. 5-22, 5-23, 5-24, 5-25 . TPL oo 1-4
HREMOVE ... B-19.TPW e 1-4
H#REPLACE ... 5-20NI file handling codeccccooviieeiniiiine e 8-7
HREPORTS ... B-APL e 1-10, 1-12
HREQ .o e 2-1HPW. .. 1-10, 1-12
#RESTRICT 2-13, 2-15, 2-18, 2-26, 2-27, 2-TXA oottt 6-6

28, 8-14 TXA file format cooeeveecciee e 3-6
HRESUME ..o, 5-24, 8-7, 8-10VBX CONLIOISuieiiieieieeeeeeeeee e, 8-5
H#RETURN ..o 5-7, 5-11, 8-6
HSELECT.....ciiii e, 3-7, 3-15, 3-17
HSET o 3-13, 3-18 01t source GENEIAtON ..voooeeeeeeeeeeeeeeee 5.12
ASUSPEND 5-22, 5-23, 5-25, 8-7, 89, 8-1I0CcCEPT 100p...........oooovooeeeeeeecoeeeeeeeen 8-7
FTEMPLATE woovvvnneineniennieinin, 19, 1-12, 2-3 ccess to the embed points.......cccceeeveevieeeininnnn, 1-7
FUNFIX oo 3-18\ ions dHalog oo 1.8, 8.6, 8.12
AUTILITY o, 1-4, 1-10, 2-11, 5-11 ACtiONS POPUP MENU ...oevveenrieciieeiie et e e 1-7
FVALIDATE woovvvvniniinniisiinninnne, 1-8, 4-6, 4-8 ctions... dialogcooovveiiiiieiii e 4-12
AWHERE oo 213, 22344 file to ProjeCt .o 6-9
ijOWINDOWS .. '1“6“31 dd to logical procedure free ... 4-19
%#. .. gg :0 multi- va:cltjed S 35_1108

... o source file ... g
Zﬁéxpressmn) """""""""""""""""""""""" 3 & 2 dd-in utilities ..., 1-4
%@picture@sy.r.r;.l;(.).l """"""""""""""""""""""" 7 ‘Rdding New Template Sets...........cccceeeeeuvennen. 1-12
QO[NUMBEISYMDOL .o 7. é ding your own features........ccccccevveeeeniiiinnnns 1-11
%| 73 g FTER .o, 2-12, 2-15, 2-17
... B I , |gned target language COMMENts 6-3
YOAPPIICALION ...t 7 PPLICATION __ 217
HCONAMIONAGENEIALE w.ovvovvvvvvvriririensiisiien L1 -\ VPP 3-7
Z/oControI .. SS|gn value to a user-defined symbol 3-18
Y] 1Y/ *

o = Ster'Sk () ot 2-9, 59
L r= Y[Ny £ 1A 4-3, 48, 4-9
%Field T AtDULE ... 2-15
ORI oot ttrlbute string delimiter POSItion 6-13
POFIE coovorsvvvcess s AUTO oo 29
LY o 1 110 - 7-15

DOKBY ettt 7-9

B [o{UES] (0] g W o]0 Lo [T 1-7

custom dialog bOXeScccovviiiiiiiiiiiiiiiiieeee 1-6
BEFORE ..o 2-12, 2-14, 2-1€uStomiIZationScccvevveveveeeerrereeeseesenninen, 1-5
Before LOOkUpS .. 8'§ustomize the appiication __________________________________ 1-4
begin conditional source ..., S-2¢ustomize the templates...........c..cccevvervrvrrrnennne 1-4
break out of a IOOp ... 5'1@ust0mizing Dduit Tempiates _____________________ 1-11
Built-in Symbols ... 13, 75, T-BCW.TPL c..oovovceeeeeeeeeeeeeeee e 1-11
built-in Symbols .. 7'%yc|e to top of ioop __ 5-10
Built-in TemplateFunctionscccccccceeeenn. 6-10
built-in template functionsccococevevevrvenee. 31D
BY 5 g ATA 2-20
C data entry validation..............ccccceiiiiiiiienninnenn. 8-13

data fields in the dictionarycccccceevviinnnenn. 1-8
call listbox formatter..............cooeeevcivviviiineennnn. 4-1eclare a user-defined Symbo| ___________________________ 3-7
CASE EVENT() c.oovviiiiiiiiin 8-7, 8-9, B-1IDEFAULTcocveeieieeeceeeeeeeee e 4-3
CASE FIELD() ...covvviiiiiiininiiiiiis 8-7, 8-10Default Data and COdec.cceevvveeerreeerennne. 3-3
Change source file ..., 5-Idefault g|0ba| data declarationsoovvvieieiiiiii, 3-5
changes to the template code files.................... 1-Mefault local data declarations 3-5
CHECK ..o 4-4, 4-1%iefau|t procedure Starting point _________________________ 3-6
Check DOXEScoviiiiiiis 1-6, 1-@efault proceduUreSscccveveeeveeeeeeiereeeennns 1-12
CLEAR ... 4-7, 4-&1efau|t report StruCtUresooovevvvviiieeeieeeeeenn, 3-4
clear single-valued symbol ... 3-13efault Window StIUCLUIESccvevevveverrreeereeeanns 3-3
Close source ﬁle .. 5'1éefau|ts in the registry ______________________________________ 1-10
COde Template .. 8'13deﬁne a formuia Ciass __ 6-4
code template 1-7, 1-8, 1-10, 2-12, 2-2}elete a multi-valued symbol instance 3-11
COde templates ... 1'&|ete a source fiie ___ 5-19
code templates 1'4, 8'9, 8'18e|ete all Singie or multi-valued Symboi instances
command buttonsccccccveiiniienene 1-6, 1-8 3-13
comment blOCk ... 1'1ae|ete aii Vaiues from the Symboi ____________________ 3-13
comment C0|umn .. 6'6e|ete muitipie muiti_vaiued Symboi instancesg_lz
commit conditional source generation S-23elimit conditional SOUICec..ccceovevavn, 5-24
COMPONENT ..o 4-4, 4-13ependent SYmMbOISccevvuerreerreerreerrenen, 3-8
conditional control structuresc.ccccevvveeennnn 1-HESCRIPTION oo 2-12, 2-15, 2-17
conditional execution structure S-@isable Promptscccoevevcverceeeeeeeeee e, 4-7
conditional source line ..o, S-28lisplay radio bBULtONSccevvvevceereenann, 4-19
conditionally generate code ..o S-lisplay-0nly Promptcccccvveeeeveceereierereneanns 4-6
conditionally replace source file.................... S52BROP ..o, 4-4, 4-14
CONTROL ..o, 4-4, 4-14roplist Of ILEMSc.cv.evevceereeeeieeeieeeereeieneaas 4-14
control Promptscccceeviiiciiiiiieee e 4-12
Control TEMPIALE ... 8-1F
il ot e 18 4100 20 2Bt the template source code ... 111
control templates 1-4, 1-7, 8-10, 8-1 MBED ...t 4-4, 4-15
CONTROLS ... 2-15, 8_1gambed RIS 1-4
create source filecoooevevvveereeeeeceeeee 5-13NDEA POINL...ooovo 1-10, 2-22
current instance NUMDbErcccoveeeeviiiieeeennns 6 fﬂ“bed point AVAHADIILY ...ovvveveenennnne 2-25

“émbed PoiNt eXISteNCE.........ccuvviiiiiiiiiieeeeeeeenn 6-10

CoPYRIGHT © 1995 TorSreEED CORPORATION—DO NOT REPRODUCE

Embed Pointsccoovviiiiiiiiieeeee, 1-7, 2-2Bormat a symbol............ccooecciiiiiiiiiieee e 7-3
embed pointscccceeiiiiiiinen, 8-10, 8-12, 8-1Brmula Classcccoeeivveeeeeieeeieiie e 6-4
EMBEDBUTTONccovvieiiiieeieeeveee, 4-4, 4-16formula ClaSSesScuveevieiiieeiiie e 8-3
embedded source codeocueveeiiiiiiiennnnnen. 2-Ebrmula SymbolSsccoooiiiiii 7-15
embedded Source Pointccceeeeeeviiieeeeennne 2-2fe a multi-valued symbolccccovvieeennns 3-14
Embeds buttoncovveeiiiiiiiiieeee e IFROM e 4-4, 4-9, 4-18
enable/disable promptsccccceeiiiiiiiinieenn, 4-
enter embedded SOUICE.........coovvvveeeiiiiiiieeeeniis 4-
ENLrY CONIOIS . .ceiiiiiiiiiie e 1'8enerate SOUCE COAE SECHON oo 511
EVALUATE() ... 3-18 et all the related records ... 8-8
event handling 100p ..., 8- [obal areacccvviiiiiiii 2-6
EVENT:Acc_:epted """"""""""""""""""""""""" 8-1310bal data SECHONvveeeeeeeveeeeeeeeeeeeseeseeeen 3-5
EVENT:GaInFoc_;us """"""""""""""""""""""" 8-1& obal PrOMPLS ..t 2-6
EVENT:OpenWINAOWoovvveiinee 8-105)0pal Properties Windowccoeeeviieennieenns 2-4
EVENT:Sglected """"""""""""""""""""""""" 8-1B10Dal SECHON +v.voevveeeeeee oo 1-9
EVENTTIMEN coovvrienniensisseinneniesieiesens 8-10. 8-245 g Settings WiNdOWcccoovveeinieeenieeene 8-4
EXISTS wooooeeieceeeeeeeeeeee e 61| ODAIREGUESE oo 8-15
expand_a SYMDBDOl ., 1- lobalRequest VaHableoo..cooorrvveeerr. 8-6
Expan§|on Symbols........... e 7'élobalResponse .. 8-15
extensible supplemental utilities 2-11
Extension Emplateccooceivieiiiiiieneiiiiieen, 8-2H
extension template ... 1-8, 1-10, 1-11, 2-17, 2-21
Extension temp'ates ___ lj’plp I e 6-5
extension temp|ates ______________ 1_4, 1_7, 8_10, 8_1t'||DE .. 2'20, 4-8
EXTERNAL ..o 2-7HIDE attribute ... 8-12
EXTRACT ..o 6-1G1LP....... 2-4, 2-6, 2-7, 2-8, 2-9, 2-11, 2-12, 2-
20, 4-9
F HLP attribULESovevvveievecieecicce e 6-5
how to write a control template 8-17
FIELD .. 4-4, 4-17
field-independent event..........ccccccveeeeiiiiiiiinns 8-p
field-independent eventsccccceeeiiiiiiieeenns 8-7
ﬁe'd_specific CVENTS oo 8_7, 8_1dCON .. 4-3
FILE coovoieieieceee s 4-4, 4-13mport APP from SCript ..o, 6-6
File Driver SymbolScccoveueueueeeieeenennnn. 7-1énclude a template file.............. 6-6
file EXISTENCEcvovveeeeeeeeeeeeeeeeee e 6-1tnitializeWindow ROUTINE ..., 8-8
filE 1/ 1o L-BNLIST o, 6-11
file 100KUP COAEvvevveeeeeecceeee e, g-18put and Validation Statements 4-3
File SCheMAtiCcvoveeeeereeeeeeeeeeeeee e g-1ipput from the developer ..., 1-3
File Schematic Symbols...........cccccccevevevevernane. 7-1fput Validdion Statements ... 1-8
FileDrop control template................c.ccccoeeurne.. g-17nsert code from a #GROUP ... 5-9
FILEEXISTS oot 6-1ANSTANCE ..o 3-17, 6-12
FIRST oo 2-12, 2-15, 2-1NSTANCE(%SYmbOl) ..o, 3-11
fix a multi-value symbo' _______________________ 3_151 3_17|tem eXiStS IN lISt cevvveiiiiieiie e 6-11
FOR oottt SHEMS 6-12
FOrCERETESN ...vvveeeeeeeeeeeeeeeeeeeee e gitpratively generat€ode ..., 5-6

K PEICENT (Y0) vevveeiiiiiiiee ettt 7-3

percent Sign (%0)coovvvvieiieeiiiiiie e, 1-6, 1-9
KEY oo A-8, A-LGCK-lISS ..o 1-8
KEYCODE ... A-4, A-LDICHUNE. ..o 7-3
L polyr_nor.phic .. 1-3, 1-4
positioning of the control..............ccoccvieiennnnne 2-15
LAST oo 2-12, 2-15, 2-1P0UNd (#) oo 7-3
line continuation character 7_3’ 8_@0Und Symbol (#) ... 1-9
list of choices for iNPULcc.cvrvereercrceeene, 1-&re-defined template variables 1-3
list of data fieldSc.ccevevereverireeeee, 4-1pre-processes the templates ...l 1-12
lISt OF fIIES ..o 4-1pre-processing template code ... 1-6
list Of KEY fieldscccoovvrveeeeierereeieieceenen, 4-13PRIMARY ..o, 2-8, 2-13, 2-14, 2-17
list Of KEYCOESveereeececeeeeieeee e, 4-1BRIMARY attribute.........ocoovveiiiis 8-19
lISt OF KEYSvevececeevceceesee e 4-1Brimary file ... 8-17
list of SYMbOI VAIUESc.oveveeeeeeeeeeeeeeeeen 4-1@rint a source file ... 5-21
list of window fieldscc.ccoeereererrrcrereenenan, 4-14PROCEDURE ..o, 2-17, 4-4, 4-19
liStbOX fOrMALLETcvocveceeceecieieeee e 4-1PROCEDURE attributeoooovviiieiciens 8-24
local variable declarationsc.cccooevennn g-Brocedure Properties ..., 8-4
local Variablesc.cccccveuerereieieeeeere s, g-Brocedure Properties dialog 1-6, 1-7, 1-12
LOCAIRESPONSEcovevecereeiceeresieeiese s, g-Fyocedure Properties Windowc..cccoco..... 1-8
LOGIC CONTON ..o 5-Procedure Prototype ..., 6-8
100D SEUCHUIE ..o, 5Brocedure SEtUp ... 8-7
Procedure Template.........ocovveeeeiiiiiieieeniiiiieeeee 8-3
M procedure template.................... 1-4, 1-8, 1-9, 2-8
. Procedure templatesccceeeeiiiiiiieeiiiiiieeeees 1-5
main program modulecccccevviiiieeniiiieenens z'grogram documentation ... 211
MAP o 2-2Q, :
FOJECt file oo, 6-9
EZ‘B"J}Edafee; OF CONMOIS --vvvvvrrsvvvvvecsss 2 BROMPT oo 1-3
MOAUIUS AVISION OPErAtOr (%6) oo 3_15I;0%MPT entry tYPES ...cooveviiiiiie e 1_3
Pt ENtry tyPeS ..ovveeecie 1-8
MOdUIUS OPErator.........ccovvviviiiieeiiiiiiiee s 8'2r?rompt GIOUD DOX oo 4-8
MULTE. oo 2-14, 2-17, 3-1, 4-3, 4-9 FOMPL PAGES .vvveeveereerieieieie et 1-8
MULT] BUIDULE -.oovvoves v 8'1gE>ROMPTAT .. 4-3
multi-valued symbol instances 6-1
multi-valued symbols...........ccccooviiiiiiennn, &)
O QUEUE .ot 3-7
open source file ..o 5-1R
OPTION oo 4-4, 4-19
RADIO ..ot 4-4, 4-20
P radio DULEONcoveviieieiiccice e 4-20
radio buttons ..o 1-6, 1-8
page Of PromMpPtScoovviiieiiiiiieeeree e 4'r%-generated templates from the registry 1-4
parameters passed P P PR “regster When Changedo...cooovvvvee... 1-12
parameters passed into the procedure................ BREAD oo 5-14, 5-15
passed by addressccocceeiiiiiiienin 28d one line of a source file ... 5.16
passed by valueccccoiiiiiiiii 27 A0-ONIY MOTE —.eveeeeeeeeeeeeeeeeee oo 5.14

CoPYRIGHT © 1995 TorSreEED CORPORATION—DO NOT REPRODUCE

recursive #GROUPScccccviiiiiiiiiiiiiiiieeens 2-23ymbols Dependent on %Application............... 7-6
RefreshWindow RUTINEccccooiiviininnenn. 8-8 Symbols Dependent on %Fileocccvveeennnee. 7-7
Regenerate Wtoncccovvvveeieiniiiiee e, 1-12Symbols Dependent on %Formula 7-15
Registry Options dialogccccevvvviieeeniininenn. 1-18ymbols Dependent on %Keyccccveeeeennnen. 7-9
REGISTRY.TRF ...ttt 1-4, 1-1Bymbols Dependent on %Module 7-11
REPORT ...ovtiiiiiiiieeeeeee 2-8, 2-18ymbols Dependent on %Procedure 7-11
Report Control Symbolsccccovviiiieiiiininenn, 7-1&ymbols Dependent on %Relation 7-10
Report Formatter ... 2-23%ymbols Dependent on %Report..........ceeeeee.. 7-14
REQ .o 2-12, 2-14, 2-17, 4-3, 4-Bymbols Dependent on %ViewFiles.................. 7-8
REQ attributecccoovviiiiiieiiee 8-18ymbols Dependent on %Window 7-13
return attributeccoooii 6-18yncWindow ROUTINEccceevviiiiiiiiiieeens 8-8
return attribute string delimiter position 6-13
return current instance number 6-1-5
return gmbeq POINL EXISIENCE wvvvvvvvveeiesssssssssssess 6'1tgirget l[anguagecccceviiiiiii 1-3
return file existence...........ccccocoeveiiiiiiins L rget language source codevvverorrveveenn., 1.5
return from #G,RO_UP, """"""""""""""""""""" 51 rget language statementocceeiiiiienn, 1-9
return item exists in list RSP E RSP p 6-1 argets for control and extension templates....... 1-7
return multi-valued symbol instances.............. 6-1 Mplate Classocccveveiiiiiiii e 1-9
reusable Statement group 1-9, 2fgmplate code COMMENLSccevevrieeeeiiieeeiiieeeees 6-3
reuseable ... 1 mplate code flES ... v.eorrrveeererroeeeresreeeennn, 1-10
REVERSEooiiiiii et 5- emplate COde SECHONSvvvveeeereeeeeeeeee. 2.3
S template code Sectionsccccoecvveeeeiniiineenninn, 1-9
template help file ..o 6-5
SAVE ..o 3-7, 3-1%emplate intialization code...........cccccvvvreeeeennnn. 2-23
SCHPL 1aNQUAGEvvvveeiiiiiiee e 1+émplate language procedure or function 1-9
section use CONSLraiNtSccceevvvieeeeniiiiieeeenns 2-Zmplate Promptsccccoovviiieieiiniieeee e 1-8
SEPARATOR ..ottt 6-13Femplate Properties dialogccccoecvveveernnne 1-12
SHIP TS e 8-Bemplate Registry 1-10, 1-12, 2-3, 2-6
Show on Properties boXcccccueveiieiiiiiiiennn, 1-H2mplate registry ..., 1-13
SINGLE ...ttt 2-12emplate registry file ... 1-4
SOMEd INSEIMT ... 3-Iemplate reset Code........coceviiiiiiiiiiiiiieee e 2-24
source code generation timecccccceeveeeeeeenn. 1TEmplate Set ... 2-4, 2-6
source generation controlccccccceeviiiiiiiinneen. 2#mplate set ... 1-9, 1-13, 2-3
source generation control section 1-Bemplate StruCtUreooooviieeeiiiieee e 1-9
SOuUrce generation €rrorc.eeeeeevvevreeeeennnnneens 6tBmplate symbol (variable)cccccoiiiniiinennn. 1-9
source generation MesSage.........ccvveveevrvveeeennnne @emplate variable (symbol)cccooviiiiinnn 1-6
SPIN 4-4, 4-20 Text EdIitOr.......cccooiuiieiiiiiiiiiiie e 2-21
standard customizationsccccoocvveeeeeininieenen. 1-HMER attributec.ovvveeiiiiieeeee e, 8-24
standard window handling code 8-tree diagram of procedure calls 2-11
starting point designscccoevvieeee e, 1-4
super-fix nulti-value symbolscccceeeen. 3-16
symbol....: ... 1-6)nconditional control structures ... 1-4
Symbol Hierarchyccocooiiiiii 7-9nfix a multi-value SYMDON cvveooeeeeeeeeeeee 3.18
Symbol Management Statements UNION OPEratioNc.oveeveeeeeeeeeeeeeeeeeeeeen. 3-10
SYMDOIS ... 7'§NIQUE .. 3-7, 3-19

update the registrycccccviviiiiiiiiiee s 1-12

user-defined milti-valued symbol 3-7
user-defined symbolcccccceevviiiiiiiiiinneeee, 3-7
User-defined symbolS.......cccccceevvviiciiiiiiinineeee, 2-4
utility execution sectionc...... 1-10, 2-11
\%

validate prompt iNPULeeeeeiiiiiiieeiiieeeeeee 4-6
Validation Statementsccccceeiiiiiiiieennninnn. 4-3
Value-parameters.........occvvveeeiiiieee i 2-9
value-parameters.........coccvvveeiiiiieee i 5-9
Variable-parametersccccooiiiieiiniiiineeeee, 2-9
variable-parameterscccocveeieiiiiiieie e, 5-9
variables......cccoooiiiiiiii 1-3, 7-3
W

WHERE........... 2-20, 2-22, 2-26, 4-8, 4-12, 5-3
WHILE ... 5-6
WINDOW ... 2-8, 2-14
WINDOW attributeccvvveeeiiiiiiieee i 8-19
Window Control Symbolsccccovvviieeeinns 7-13
Window Formatterccccccvviviiveennen. 1-7, 2-21
window handling procedure............ccccceeeiiinnns 8-3

Window procedure templateccccceeeeeeennnnnn. 8-3

	1 Introduction
	Template Language Overview
	What Templates Are
	Template Types
	What Templates Do
	Pre-Processing and Source Code Generation
	Embed Points
	Template Prompts
	Data Dictionary Interface

	Template Structure
	Template Source Format
	The Template Registry File
	Customizing Default Templates
	Adding New Template Sets

	2 Template Organization
	Template Code Sections
	#TEMPLATE (begin template set)
	#APPLICATION (source generation control section)
	#PROGRAM (global area)
	#MODULE (module area)
	#PROCEDURE (begin a procedure template)
	#GROUP (reusable statement group)
	#UTILITY (utility execution section)
	#CODE (define a code template)
	#CONTROL (define a control template)
	#EXTENSION (define an extension template)

	Embed Points
	#EMBED (define embedded source point)
	#AT (insert code in an embed point)
	#ATSTART (template intialization code)
	#ATEND (template reset code)
	#EMPTYEMBED (generate empty embed point comments)
	#POSTEMBED (generate ending embed point comments)
	#PREEMBED (generate beginning embed point comments)

	Template Code Section Constraints
	#WHERE (define #CODE embed point availability)
	#RESTRICT (define section use constraints)
	#ACCEPT (section valid for use)
	#REJECT (section invalid for use)

	3 Defaults and Template Data
	Default Data and Code
	#WINDOWS (default window structures)
	#REPORTS (default report structures)
	#LOCALDATA (default local data declarations)
	#GLOBALDATA (default global data declarations)
	#DEFAULT (default procedure starting point)

	Symbol Management Statements
	#DECLARE (declare a user-defined symbol)
	#ALIAS (access a symbol from another instance)
	#ADD (add to multi-valued symbol)
	#DELETE (delete a multi-valued symbol instance)
	#DELETEALL (delete multiple multi-valued symbol instances)
	#PURGE (delete all single or multi-valued symbol instances)
	#CLEAR (clear single-valued symbol)
	#FREE (free a multi-valued symbol)
	#FIX (fix a multi-value symbol)
	#FIND (“super-fix” multi-value symbols)
	#SELECT (fix a multi-value symbol)
	#SET (assign value to a user-defined symbol)
	#UNFIX (unfix a multi-value symbol)

	#Declare Attributes
	UNIQUE (no duplicates allowed)
	SAVE (save symbol between generations)

	4 Programmer Input
	Input and Validation Statements
	#PROMPT (prompt for programmer input)
	#VALIDATE (validate prompt input)
	#ENABLE (enable/disable prompts)
	#BUTTON (call another page of prompts)
	#FIELD (control prompts)
	#PREPARE (setup prompt symbols)

	#PROMPT Entry Types
	CHECK (check box)
	COMPONENT (list of KEY fields)
	CONTROL (list of window fields)
	DROP (droplist of items)
	EMBED (enter embedded source)
	EMBEDBUTTON (enter embedded source)
	FIELD (list of data fields)
	FILE (list of files)
	FORMAT (call listbox formatter)
	FROM (list of symbol values)
	KEY (list of keys)
	KEYCODE (list of keycodes)
	OPTION (display radio buttons)
	PICTURE (call picture formatter)
	PROCEDURE (add to logical procedure tree)
	RADIO (one radio button)
	SPIN (spin box)

	Display and Formatting Statements
	#BOXED (prompt group box)
	#DISPLAY (display-only prompt)
	#IMAGE (display graphic)
	#SHEET (declare a group of #TAB controls)
	#TAB (declare a page of a #SHEET control)

	5 Logic and Source Generation Control
	Template Logic Control Statements
	#FOR (generate code multiple times)
	#IF (conditionally generate code)
	#LOOP (iteratively generate code)
	#CASE (conditional execution structure)
	#INSERT (insert code from a #GROUP)
	#BREAK (break out of a loop)
	#CYCLE (cycle to top of loop)
	#RETURN (return from #GROUP)
	#GENERATE (generate source code section)
	#ABORT (abort source generation)

	File Management Statements
	#CREATE (create source file)
	#OPEN (open source file)
	#CLOSE (close source file)
	#READ (read one line of a source file)
	#REDIRECT (change source file)
	#APPEND (add to source file)
	#REMOVE (delete a source file)
	#REPLACE (conditionally replace source file)
	#PRINT (print a source file)

	Conditional Source Generation Statements
	#SUSPEND (begin conditional source)
	#RELEASE (commit conditional source generation)
	#RESUME (delimit conditional source)
	#? (conditional source line)

	6 Miscellaneous
	Miscellaneous Statements
	#! (template code comments)
	#< (aligned target language comments)
	#CLASS (define a formula class)
	#COMMENT (specify comment column)
	#ERROR (display source generation error)
	#EXPORT (export symbol to text)
	#HELP (specify template help file)
	#INCLUDE (include a template file)
	#IMPORT (import from text script)
	#MESSAGE (display source generation message)
	#PROTOTYPE (procedure prototype)
	#PROJECT (add file to project)

	Built-in Template Functions
	EXTRACT (return attribute)
	EXISTS (return embed point existence)
	FILEEXISTS (return file existence)
	INLIST (return item exists in list)
	INSTANCE (return current instance number)
	ITEMS (return multi-valued symbol instances)
	QUOTE (replace string special characters)
	REPLACE (replace attribute)
	SEPARATOR (return attribute string delimiter position)

	7 Template Symbols
	Symbol Overview
	Expansion Symbols
	Symbol Hierarchy Overview

	Built-in Symbols
	Symbols Dependent on %Application
	Symbols Dependent on %File
	Symbols Dependent on %ViewFiles
	Symbols Dependent on %Field
	Symbols Dependent on %Key
	Symbols Dependent on %Relation
	Symbols Dependent on %Module
	Symbols Dependent on %Procedure
	Window Control Symbols
	Report Control Symbols
	Formula Symbols
	File Schematic Symbols
	File Driver Symbols
	Miscellaneous Symbols

	8 Annotated Examples
	Procedure Template:Window
	%StandardWindowCode #GROUP
	%StandardWindowHandling #GROUP
	%StandardAcceptedHandling #GROUP
	%StandardControlHandling #GROUP

	Code Template: ControlValueValidation
	%CodeTPLValidationCode #GROUP

	Control Template: DOSFileLookup
	Extension Template: DateTimeDisplay
	%DateTimeDisplayCode #GROUP

	 Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W

