
Powersoft PowerJ Learning Edition

Quick Start
VERSION 98.04.22

Copyright  1996-1998 Sybase, Inc. and its subsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by any
means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission
of Sybase, Inc. and its subsidiaries.

PowerBuilder, Powersoft, S-Designor, SQL Smart, and Sybase are registered trademarks of
Sybase, Inc. and its subsidiaries. Adaptive Server, Adaptive Server Anywhere, Adaptive Server
Enterprise, AppModeler, InfoMaker, the Column Design, ComponentPack, DataArchitect,
DataExpress, Data Pipeline, DataWindow, dbQueue, Dynamo, InfoMaker, Jaguar CTS, jConnect,
MetaWorks, NetImpact, ObjectCycle, Optima++, Power++, PowerBuilder Foundation Class
Library, PowerDesigner, PowerDynamo, PowerJ, PowerScript, PowerSite, PowerTips, Powersoft
Portfolio, Powersoft Professional, ProcessAnalyst, SDP, SQL Remote, SQL Server, StarDesignor,
Sybase SQL Anywhere, Watcom, Watcom SQL, and web.works are trademarks of Sybase, Inc.
and its subsidiaries. Certified PowerBuilder Developer and CPD are service marks of Sybase, Inc.
and its subsidiaries. DataWindow is a proprietary and patented technology of Sybase, Inc..

All other company and product names used herein may be the trademarks or registered trademarks
of their respective companies.

Information in this manual may change without notice and does not represent a commitment on
the part of Sybase, Inc. and its subsidiaries.

i

Contents

A quick start ... 1

Tutorial 1: Creating a command line application2

Tutorial 2: Creating an applet..4

Product features... 18

Samples... 20

About PowerJ Learning Edition A quick start

ii

About PowerJ Learning Edition

PowerJ Learning Edition provides JavaBean-based visual development and
deployment for the Java programming language. Its drag-and-drop
programming, in-context debugging, and syntax-highlighting tools save
time and make Java easier to learn.

The PowerJ Learning Edition environment includes the following features:

• The Sun Java Development Kit (JDK) 1.1.5

• Four available targets (Applet, Application, Classes, and Beans) that
you can create

• Online documentation (this Quick Start, the PowerJ Programmer's
Guide, component references for Sun JDK 1.1.5, PowerJ and
Power++ Keyboard Shortcuts references, and Thinking in Java)

• PowerJ Samples

PowerJ Learning Edition provides support for: Sun JDK 1.1.5; importing
existing Java code into PowerJ; the Sun Virtual Machine (VM); running
programs in web browsers; and debugging programs in the Applet Viewer
and under Internet Explorer.

About this guide

This guide describes the PowerJ development environment for the Java
programming language. The guide assumes that you are familiar with the
basic principles of using Windows, including how to:

• Start a Windows program.

• Reposition, resize, and close windows.

• Create, open, copy, and delete files and folders.

• Point, click, double-click, and drag with a mouse or other pointing
device.

If you are not familiar with such features, consult the Windows
documentation (for example, Introducing Microsoft Windows 95).

A quick start About this guide

iii

This guide also assumes that you are familiar with, or in the process of
learning, the Java programming language. To help you to learn Java,
PowerJ Learning Edition includes Thinking in Java, an introduction to
Java by Bruce Eckel.

There is a PDF version of this Quick Start, available in the PowerJ 2.1
Learning Edition folder, for printing.

A quick start

This chapter includes introductory tutorials for PowerJ Learning Edition, a
list of product features with helpful references to the PowerJ Programmer’s
Guide, and a list of sample programs.

The introductory tutorials will guide you through the creation of simple
Java programs using PowerJ, a tool for writing Java applications and
applets. The tutorials demonstrate, respectively, how to create a command
line (console) Java application and how to create a Java applet with
PowerJ.

Topic Page

Tutorial 1: Creating a command line application 2

Tutorial 2: Creating an applet 4

Product features 18

Samples 20

About this chapter

Contents

Tutorial 1: Creating a command line application A quick start

2

Tutorial 1: Creating a command line application

This tutorial shows you how to write a simple, command line, Java
application called ‘‘Hello World’’ with the help of PowerJ.

♦ Start PowerJ:

1. Double-click on the PowerJ icon in the PowerJ Learning
Edition folder.

When you first open PowerJ, you will be presented with a new, untitled
code editor window:

Menu bar

Toolbar

Component
palette

Code editor
window

Status bar

By default, the code editor window contains the startup code for a Java
application. To create a command line application, you simply enter the
remainder of the necessary Java code in the code editor and run the
application in a Java console.

♦ Create the Hello World application:

1. After the opening brace of the main method, start a new line and type
the following Java code:

 System.out.println("Hello World");

A quick start Tutorial 1: Creating a command line application

3

The final code should look like this:

public class Main
{
 public static void main(String[] args)
 {
 System.out.println("Hello World");
 }
}

Now you can use PowerJ to save your code. In PowerJ, code is saved as a
project. Every project has an associated project file which lists information
about the project. PowerJ project files use the extension .WXJ.

A single PowerJ target (a Java applet, standalone Java application, or Java
package) has many associated source files, which are automatically
generated by PowerJ. (Source files can be Java source code files, HTML
files, and other files.) You must save each target in a separate folder to
prevent the files of one target from overwriting the files of another.

♦ Save your Hello World application:

1. On the File menu of the main PowerJ menu bar, click Save Project.
This displays the contents of the Projects folder in your
PowerJ21le folder.

2. Under Folder name, type Hello . Click Save. This creates a folder
called Hello for the target.

3. Next to File name, leave Hello.wxj as the project file name, and
click Save. PowerJ creates a project file named Hello.wxj in the
folder named Hello , along with other target files.

Your application is complete and can now be run on a Java console.

♦ Run your Hello World application:

1. On the Tools menu, click Show Console so that it is checked.

The Java console appears. Position it on the screen so that you can see
its upper-left corner.

2. On the Run menu of the main PowerJ window, click Run.

PowerJ runs the Hello target. The text Hello World appears on the
console.

Note: Clicking the Run menu item (or the Run button) in PowerJ is
equivalent to compiling your Java code with a command line compiler (e.g.
javac) and then executing the application (e.g. by typing java
classname).

Tutorial 2: Creating an applet A quick start

4

When you no longer want to view the Java console, go to the Tools menu
and click Show Console again.

♦ Close the Hello project:

1. On the File menu of the main PowerJ window, click Close Project.

Tutorial 2: Creating an applet

To design the user interface of an applet using the PowerJ framework, you
lay out one or more objects on the form design window, creating a user
interface that can appear on a web page or on an Applet Viewer. Together,
the form design window, component palette objects, and project views
allow you to manage forms and use the drag-and-drop programming
features.

Important: When you use the PowerJ framework to create an applet or
application, you will need to access classes in the powerjle.zip file.
When you deploy your target, make sure that powerjle.zip is in the
same directory as the target's class file. For more information on classes
and deployment, see the following sections of the PowerJ Programmer's
Guide: How PowerJ uses the CLASSPATH environment variable in
Chapter 2, Classpath options in Chapter 3, and CLASSPATH and
CODEBASE in Chapter 5.

The applet you are about to create has a user interface that consists of a list,
a text field, and a command button. When you run the applet in the Applet
Viewer, you will see a form similar to the following:

When the program is running, you can type a line of text into the text field,
then add that line to the list by pushing the command button.

A quick start Tutorial 2: Creating an applet

5

♦ Start a new project:

1. On the File menu of the main PowerJ menu bar, click New Project.

The code editor window for an untitled new project appears. To create
a framework applet, you also need to use the PowerJ form design
window.

2. On the File menu of the main PowerJ menu bar, point to New and
click Target. This opens the Target Wizard, which takes you step-by-
step through the creation of the new target.

3. Click Java - Applet, then click Next.

The Target Wizard asks you if you wish to use the PowerJ framework.
Using the PowerJ framework allows PowerJ to automatically generate
code that implements the Applet's main form. It also lets you use
PowerJ's design-time facilities to make the user interface.

4. Use the PowerJ framework is selected by default. Click Next.

5. Click Next to use the Powersoft Java AWT 1.10 class library.

6. Under Target Name, type List , and specify where to store the files
associated with the new target. Typically, you will accept the default to
create a new folder under the PowerJ Learning Edition Projects folder,
using the name you just typed for the new target. Click Next.

The Target Wizard asks you what you want to call the new form.

7. Click Finish to accept the default form name.

PowerJ creates the new target and all of the necessary source files.

PowerJ now displays a form design window instead of a code editor:

Tutorial 2: Creating an applet A quick start

6

Menu bar

Toolbar

Component
palette

Form design
window

Status bar

You can drag from the objects (components) on the component palette to
the form design window to create a user interface. The first step is to click
one of the objects on the component palette. Then you can move the cursor
to the form design area, press and hold down the left mouse button, and
drag the cursor diagonally to specify the object’s position and size. If you
click on the form without dragging the cursor, PowerJ adds a default-sized
component.

The first step in the design of this applet is to add a list at the top of the
form.

♦ Add a list:

1. Click the List button (indicated by the java.awt.List.11 tooltip) on the
Standard page of the component palette.

2. Point anywhere in the upper-left quarter of the form design window.
The cursor changes from an arrow to a crosshair.

3. Hold down the left mouse button and drag the cursor diagonally across
the form. While you are dragging, a rectangular outline shows you the
size that the list object will be.

4. Release the mouse button.

A quick start Tutorial 2: Creating an applet

7

This creates a list on the form. You can move the list by dragging it and
resize it by dragging one of the resizing handles on the list's corners and
edges.

The next step in designing the form is to add a text field.

♦ Add a text field:

1. Click the Text Field button (java.awt.TextField.11) on the Standard
page of the component palette.

2. In the form design window, drag diagonally to create a text field below
the list.

The form now has a list and text field. You can change the size and
position of the text field the same way you change the size and
position of the list.

The next step in designing the form is to add a button.

♦ Add a button:

1. Click the Button button (java.awt.Button.11) on the Standard page
of the component palette.

2. In the form design window, click under the text field to create a
standard-size button (which can also be moved and resized).

You can now run your applet to see the default behavior of the objects that
you have added.

♦ Run your applet and test the program interface:

1. On the Run menu of the main menu bar, click Run to prepare your
program for execution.

2. Wait for the applet to be compiled and executed in the Applet Viewer.
Once the Applet Viewer has loaded your applet, the objects you placed
on the form will appear in the Applet Viewer window. This is the
program that you have created.

3. Experiment with your new program. Notice that you can edit text in
the text field and click the button, but the list does not change.

4. Close the Applet Viewer to terminate your program.

The next step in creating a program is to adjust the properties of the objects
you placed on the form. The properties affect the appearance and behavior
of the objects.

Tutorial 2: Creating an applet A quick start

8

♦ Label the button:

1. Use the right mouse button to click the button you placed on the form.
Then click Properties to display the properties for the button.

2. On the General page, click in the Label text field, then type
Add Text .

3. Click OK .

The next step in creating this program is to write code that will respond to
user actions. You need to add the code that will be invoked when a user
clicks the button. When this happens, the program should retrieve the text
that is currently in the text field and add that text to the list object.

You can use drag-and-drop programming to create the code with very little
typing. Using drag-and-drop programming means dragging from objects
placed on the form design window to the code editor window. This opens
the Reference Card, which allows you to easily apply methods and
properties to objects.

Although you can always type code directly into the code editor, drag-and-
drop programming will assist you when you do not know the methods
available for a class, or when you cannot remember the syntax for a
method. Typically, you will use the drag-and-drop coding facilities less as
you become more familiar with the Java classes you are using.

♦ Create code to be invoked when the user clicks the button:

1. Use the right mouse button to click the button. Point to Events, then
click java.awt.event.Action.actionPerformed.

This opens a code editor window for the actionPerformed event
handler. The actionPerformed event will be triggered when a user
clicks on the button, which will termed the command button for the
remainder of this tutorial.

2. Move the code editor window to the bottom right of the screen so that
you can see at least part of each object in the form design window.

You can now create the code that responds to a user clicking the command
button. When the user clicks the command button, you want the applet to
respond by retrieving the text that is currently in the text field.

A quick start Tutorial 2: Creating an applet

9

♦ Generate code to retrieve the text from the text field:

1. Drag from the text field in the form design window to the blank line
below the opening brace of the actionPerformed event handler in the
code editor window, then release the mouse button. The Reference
Card opens.

The first time that you open the Reference Card by dragging from an
object, it automatically opens to that object’s class on the Contents
page. The Contents page has a hierarchical view of packages, classes,
methods, and properties.

2. Click the Find page on the Reference Card to find a method for
java.awt.TextField.11.

3. In step 2 of the Find page, type getText.

4. In step 3 of the Find page, click text.

5. In step 4 of the Find page, click java.lang.String getText().

6. Click Parameters to open the Parameter Wizard for the getText
method.

The selected Object Prefix should be textf_1 . Make sure that Store
in a variable is checked and that the variable is text .

7. Click Finish to generate code in the editor.

The actionPerformed event handler now has an additional variable, which
is assigned a copy of the string present in the text field when the user clicks
the command button. The code added by the Parameter Wizard to retrieve
the text is:

 java.lang.String text;
 text = textf_1.getText();

The next step is to add code to put the text from the text field into the list.

♦ Generate code to copy the text to the list:

1. Drag from the list on the form design window to the code editor
window, leaving a blank line after the getText function call of the
actionPerformed event handler.

The Reference Card for java.awt.List.11, opens to the Find tab.

2. In step 2 of the Find page, type add , since you are looking for a
method to add text to the list. The list will show only the entries
containing add .

Tutorial 2: Creating an applet A quick start

10

3. In step 3 of the Find page, click addItem.

4. In step 4 of the Find page, click the version of addItem that only takes
a single string argument (the first one shown). This method will add
the text to the end of the list.

5. Click Parameters to open the Parameter Wizard so that you can
specify the parameters for addItem.

6. The selected Object Prefix should be lb_1 . Use the right mouse
button to click the java.lang.String item text field, then click
Variables on the context menu. This shows a list of the variables that
are defined in the event handler, so you can pick a variable to use as
the parameter.

7. In the Variables dialog box, click text (the variable holding the
string), then click OK . This specifies that the text variable will be
used as the parameter.

8. Click Finish to generate code in the editor.

The code is now complete and should look like this:

 public void cb_1_actionPerformed(
java.awt.event.ActionEvent event)
 {
 java.lang.String text;
 text = textf_1.getText();

 lb_1.addItem(text);

 }

If there are any differences, change your code to match the above sample.

♦ Run your program:

1. In the Run menu of the code editor window, click Run to start your
program.

2. Wait for your applet to be compiled and started.

3. Type text in the text field, then click the command button. Notice that
the text is added to the list.

4. Modify the text in the text field, then click the command button. The
modified text is added to the end of the list.

Close the Applet Viewer when you are finished experimenting with your
program.

A quick start Tutorial 2: Creating an applet

11

♦ Save your project:

1. On the File menu of the main menu bar, click Save Project. This
displays the contents of the Projects folder.

2. Under Folder name, type List and click Save. This creates a folder
called List for your project.

3. Under File name, leave List.wxj as the project file name and click
Save.

PowerJ creates a project file named List.wxj in the new folder
named List , along with other files and folders of your project.

Improving your applet

This section shows you how to improve your applet in several ways. The
new version of the program you create will clear the text field after adding
a new line to the list. It will also check to see if the text field actually
contains text; if the text field is empty, the program will not try to add a
blank line to the list.

The new source code that will do this work will be added to the existing
actionPerformed event handler for the command button.

♦ Generate code to determine if there is text in the text field:

1. Drag from the text field on the form design window to the blank line
after the getText function call in the code editor window. This opens
the Reference Card.

2. In step 1 of the Find page, in the drop-down list, click
java.lang.String.11 Functions. This changes the Reference Card to
show methods for the Java String class.

3. In step 2 of the Find page, type length to find method names that
include “length”.

4. In step 3 of the Find page, click length to select the length method of
the String class. This method returns the length of the string.

5. Click Parameters. This opens the Parameter Wizard for the length
method.

6. In the Object Prefix drop-down list, click text. This specifies the
object of the length method.

7. Make sure Store in a variable is checked and that the variable is
result .

Tutorial 2: Creating an applet A quick start

12

8. Click Finish to generate code in the editor.

The code editor window now contains a declaration for an integer named
result and a statement that assigns the value of text.length() to
result .

To avoid adding empty lines to the list, the next lines of the code should
make having a string of at least one character in the text field a condition
for adding the text field contents to the list.

♦ Generate code to check for a non-zero string length:

1. After the line calling the length method, start a new line and type:

if (result > 0) {

2. Select the next line (containing addItem). On the Edit menu, click
Indent to indent the line.

The code in the code editor window should look like this:

 public void cb_1_actionPerformed(
java.awt.event.ActionEvent event)
 {
 int result;
 java.lang.String text;
 text = textf_1.getText();
 result = text.length();

 if (result > 0) {
 lb_1.addItem(text);

 }

The if statement checks whether the length of the text that the user typed
is greater than zero. If it is, your code can retrieve the text.

Next you add code to clear the text field for new input. The following steps
show you how to do this using the Reference Card and Parameter Wizard.

♦ Generate code to clear the text field:

1. Drag from the text field to the blank line after the addItem statement
in the code editor window. This opens the Reference Card for
java.awt.TextField.11.

2. In step 2 of the Find page for TextField, type text . This will display
method names that contain “text”.

3. In step 3 of the Find page, click text.

4. In step 4 of the Find page, click void setText(java.lang.String), then
click Parameters to open the Parameter Wizard.

A quick start Tutorial 2: Creating an applet

13

5. The Object Prefix should be textf_1 . Type two double quotes ("")
in the java.lang.String t text field to specify an empty string.

6. Click Finish to generate code in the editor.

The editor now has code to clear the text field. Note that it is at the same
level of indentation as the preceding code.

♦ Complete the if statement:

1. In the code editor, type a closing curly brace (}), then start a new line.

The closing curly brace returns to the same level of indentation as the
beginning of the if statement.

The next step is to set the input focus to the text field, to make it easier for
a user to enter new text after clicking the Add Text button.

♦ Generate code to return the focus to the text field:

1. In the Help menu, click Reference Card. In step 2 of the Find page
for TextField, type focus . In step 3, click requestFocus, then double-
click void requestFocus() in step 4 to set the parameters.

2. In the ObjectPrefix drop-down list, click textf_1.

3. Click Finish to generate code in the editor.

The editor now has code to set the focus to the text field.

Your final code should look like this:

 public void cb_1_actionPerformed(
java.awt.event.ActionEvent event)
 {
 int result;
 java.lang.String text;
 text = textf_1.getText();
 result = text.length();

 if (result > 0) {
 lb_1.addItem(text);
 textf_1.setText("");
 }
 textf_1.requestFocus();

 }

Run the program as usual. Notice that the input focus returns to the text
field after you click the command button. Click the command button when
the text field is empty to see that the program does not try to add the blank
line to the list. Close the Applet Viewer before continuing.

Tutorial 2: Creating an applet A quick start

14

Debugging your program

This section examines how to use the debugging features of PowerJ with
your program. In particular, this section demonstrates the use of a
breakpoint. If you set a breakpoint on a statement in your program’s source
code, program execution stops when it reaches that statement. While the
program is stopped at the breakpoint, you can perform a variety of
operations to examine the current state of your program.

Note: Make sure that your program is not running before you try to set a
breakpoint.

♦ Set a breakpoint in your code:

1. If the code editor window is not open, use the right mouse button to
click on the command button, then point to Events and click
java.awt.event.Action.actionPerformed. This opens a code editor
window showing the actionPerformed event handler for the
command button.

2. Use the right mouse button to click on the line:

 result = text.length();

3. Click Toggle Breakpoint on the context menu.

The Toggle Breakpoint action sets a breakpoint on the line.

Note: If there is already a breakpoint on a line, clicking Toggle
Breakpoint removes the breakpoint.

When you set a breakpoint on a statement, PowerJ marks the breakpoint
with a red stop sign icon to the left of the statement. You can also double-
click on a line’s icon to toggle whether it has a breakpoint or not.

Once you have a breakpoint in your code, you are ready to run your applet
again. The breakpoint will only work if you are running the applet with a
Virtual Machine (VM) that supports the debugging facilities needed by
PowerJ.

♦ Turn on debugging:

1. On the Run menu of the main menu bar, click Run Options. This
opens the Run Options dialog.

By default, your program is run using Sun's Java Interpreter.

2. Click the Debug tab and make sure Run with the debugger is
selected.

A quick start Tutorial 2: Creating an applet

15

3. Click OK .

This specifies that PowerJ will activate the debugger when you run
your program.

You can now run the program to see what happens when execution reaches
the breakpoint.

♦ Run the program up to the breakpoint:

1. On the Run menu, click Run.

2. When the form appears, type some text in the text field, then click the
Add Text command button.

When you click the command button, the program executes the
actionPerformed event handler and hits the breakpoint that you set.
Program execution then “freezes”, or suspends, so that you can examine
the current state of your program.

In the code editor window showing the actionPerformed event handler,
you will see a yellow arrow in the left margin, pointing to the statement
where you placed the breakpoint. This shows the point of execution. In this
case, execution is suspended at the breakpoint.

Note: When you set a breakpoint, execution stops just before executing the
statement where the breakpoint is set.

When your program is stopped at a breakpoint, you can examine the local
variables of your program using the Locals view.

♦ Open the Locals view:

1. On the Debug menu of the code editor window, click Locals.

This displays the following window:

Tutorial 2: Creating an applet A quick start

16

The Locals window shows the local variables defined at this point in the
program. It also shows this , referring to the form itself. If you click on
the + sign to expand this , you see the objects on the form. By expanding
other items in the Locals view, you can examine the contents of all the
objects on the form. For example, you can see the text that is stored in the
text field.

After stopping at a breakpoint, you can continue executing your program
one statement at a time.

♦ Step through the code:

1. On the toolbar of the code editor window, click

This is the Step Over button. You will see the yellow arrow move to the
next statement in your program. This means that PowerJ has executed the
statement at the breakpoint and has "stepped over" to the next statement.

As you execute the statements, the Locals view updates to display changed
values. For example, when a new value is assigned to result , the Locals
view displays the new value.

If you click the Step Over button again, execution moves on to the next
statement. By repeatedly clicking the button, you can execute your program
one statement at a time.

♦ Return to normal execution:

1. On the Run menu of the code editor window, click Run.

This starts your program running normally again, instead of following the
statement-by-statement operation used in the previous section.

The next time you click the command button, your program executes the
actionPerformed event handler and runs into the breakpoint again. The
program will stop as before, giving you a chance to examine local data
again.

Many other debugging features are available through the Debug and Run
menus of the code editor window while you are stopped at a breakpoint.

Note: To remove a breakpoint, close your program, then right-click on the
line where the breakpoint has been set and click Toggle Breakpoint.

A quick start Tutorial 2: Creating an applet

17

Using a web browser

By default, PowerJ Learning Edition runs your applet using the Applet
Viewer and Sun’s implementation of the Java VM. If you have a web
browser that supports JDK 1.1 installed on your system, you can run your
applet under the browser instead of on the Applet Viewer.

♦ Run your applet under a web browser:

1. On the Run menu of the main menu bar, click Run Options. This
opens the Run Options dialog.

2. On the General page of the Run Options dialog, click Use a web
browser, then click Configure. This opens a configuration dialog box.

3. Click Netscape Navigator or Internet Explorer , then click OK .

4. If the field under Initial URL is blank, click the associated Browse
button. This opens a file dialog box for selecting the name of an
HTML file.

5. Open the Release folder, click List.html , and then click Open.

6. Click OK to close the Run Options dialog.

7. On the Run menu of the main menu bar, click Run.

PowerJ launches the web browser you configured and runs your
program under it.

Note: You can debug your program under a browser only if you are using
Internet Explorer. PowerJ Learning Edition does not allow debugging in
Netscape Navigator. When you configure the run options to run your applet
under a browser, PowerJ automatically turns off debugging. Therefore, if
you are using Internet Explorer and wish to debug your program, you have
to turn debugging on again.

♦ Configure Run Options to debug your program under Internet
Explorer:

1. Open the Run Options dialog, as before.

2. Click the Debug tab, then click Run with the debugger.

3. Click OK to close the Run Options dialog.

Product features A quick start

18

Note: When debugging your program under a browser, you follow the
same procedures for starting your program, toggling breakpoints, and
viewing the debugging features of PowerJ as you do when debugging your
program under the Applet Viewer.

You have now created two simple Java programs (a command line
application and a framework applet) and explored the basic capabilities of
PowerJ as a tool for writing Java code.

Product features

PowerJ Learning Edition replaces the usual command line interface with a
JavaBean-based visual development environment for the Java
programming language. Its drag-and-drop programming, in-context
debugging, and syntax-highlighting tools save time and make Java easier
to learn.

PowerJ Learning Edition includes a subset of the features found in PowerJ
Enterprise Edition. The following table provides references to detailed
descriptions of the features of PowerJ.

For more information on: See the following section of the
PowerJ Programmer's Guide :

Basic concepts of Java Java in Chapter 1

Using forms in PowerJ Forms in Chapter 1

Using targets in PowerJ Targets in Chapter 2

Using projects in PowerJ Projects in Chapter 2

Contents and organization of PowerJ
target folders and files

Target folder contents in Chapter 2

Properties of Java applets Java applets in Chapter 2

Properties of Java applications Java applications in Chapter 2

Using the PowerJ form design window Using the form design window in
Chapter 3

Adding component palette objects to a
form

Adding objects to a form in Chapter 3

Using PowerJ templates as form design
shortcuts

Templates in Chapter 3

A quick start Product features

19

PowerJ startup options Startup options in Chapter 3

Using the PowerJ code editor window The PowerJ code editor in Chapter 3

Importing classes Importing classes in Chapter 3

Using drag-and-drop programming Using drag-and-drop programming in
Chapter 3

Debugging with PowerJ Debugging in Chapter 4

Importing Java code into PowerJ Importing from other Java
environments in Chapter 7

Writing PowerJ code Using JDK and PowerJ components in
Chapter 9

Layout managers Layout managers in Chapter 13

The Resize Percentages property Resize percentages property in Chapter
13

Creating JavaBeans components Creating JavaBeans Components in
Chapter 18

PowerJ Enterprise Edition includes all the components of PowerJ Learning
Edition, plus many additional features. The extra features of PowerJ
Enterprise Edition are:

• Support for JDK 1.02

• Support for the Microsoft VM

• Support for CORBA

• Database Components (including Transaction Object, Query Object,
Data Navigator, and databound versions of standard controls)

• Client-side caching for high-performance database applications

• Sybase's jConnect for JDBC

• Development version of Powersoft Jaguar CTS, a high- performance
component transaction server designed for delivering scalable
transactional applications for WebOLTP.

• Support for importing Visual Café projects

• Development version of Sybase Dynamo

• Sybase SQL Anywhere, a scalable SQL database solution for
workgroups of any size.

• Support for the included revision control system

Samples A quick start

20

• Support for Powersoft ObjectCycle and other systems

• Powersoft Components, including Tab Control, Grid Control, and
Picture Box, and many other integrated components, classes, and
drivers from JScape, KL Group, ObjectSpace, Visigenic, and XDB

• Support for collection targets (ZIP, JAR, and CAB), Java servlets, and
Jaguar CTS

• Support for Web Application target

Samples

PowerJ comes with a number of sample projects that you may like to
examine or experiment with. The sample projects available are:

Sample Name Description Keywords

Application Queries and displays the Java System
Properties.

Java System
Properties

Button Demonstrates the Button component. Button

CheckBox Demonstrates the use of Checkbox
component and a CheckboxGroup. A
CheckBoxGroup guarantees that, at
most, one item is selected from the
group of Checkboxes.

CheckBox

Choice Demonstrates the Choice component. Choice

JSocket Demonstrates some capabilities of the
PowerJ socket component. Used with
JServerSocket.

Socket

JServerSocket Demonstrates socket-based
communication. Used with JSocket.

ServerSocket

ResizePercentages Demonstrates using the resize
percentage properties of components to
handle window resizing.

Resize
Percentage

ScrollBar Demonstrates the ScrollBar component.
Note: Runs best in a web browser. In the
development environment you may have
to uncheck the "Vertical" property on
each ScrollBar's property sheet.

ScrollBar
Scroll events

SortableVector Demonstrates the SortableVector class. TextArea
Sortable

A quick start Samples

21

Vector

TextArea Demonstrates the TextArea component,
menus, and a simple dialog.

TextArea
Menu
Dialog

Thermometer Uses a scroll bar to simulate a
thermometer.

Scroll bar

Threads Uses various methods to control three
different threads. Each thread can be
started by the user, then stopped,
suspended, and resumed. You can also
change the priority of the thread.

Thread

♦ Load a sample project:

1. In the File menu of the main PowerJ menu bar, click Open Project.
This displays the Open Project dialog box that lets you choose the
project you want to open.

2. Use the dialog box to find the main PowerJ21LE folder.

3. Double-click the folder icon for PowerJ Samples. This displays a new
list of folders, corresponding to various sample programs.

4. Double-click one of the folder icons. This displays the contents of the
associated folder.

5. Double-click the project file in this folder. (The name of this file
should be the same as the name of the folder, with the extension .WXJ
added.)

When you double-click this project file, PowerJ loads the associated sample
project. You can run this program to see how it works. You can also
examine the properties of each object on the program’s forms and examine
the event handlers for these objects.

