

PrimeBase™
Reference Manual

3.0

© SNAP Innovation Softwareentwicklungsgesellschaft mbH

Virchowstr. 17

22767 Hamburg

Development Manager: Paul McCullagh

Software Development: Mitchell Frazer, Dieko Jacobi, Ingo Karge, Barry Leslie, Dirk Strack

Special Thanks: To all our ex-collegues at P.INK.

PrimeBase™ is a Trademark of SNAP Innovation.

All other product names are trademarks or registered trademarks of their respective manufacturers.

The right to copy the SNAP program and this manual is subject to the conditions of the copyright. It is unlawful to copy, compile and format

the software without prior written consent from SNAP Innovation, except in the normal use when installing the software or making a

backup copy of the software.

SNAP INNOVATION GMBH AND THE LICENSORS ACCEPT NO LIABILITY FOR THE MERCHANTABLE QUALITY OR FITNESS FOR A PARTIC-

ULAR PURPOSE OF THE SOFTWARE AND ITS DOCUMENTATION, PROVIDED THAT IT IS LEGALLY AUTHORIZED.

Hamburg, 12. July 1996

Contents

CONTENTS

CONTENTS...3

DATA TYPES...11

Integer types ...11
Decimal types ...11
Floating-point types ...12
Boolean types ...12
Time types ..12
Character types ...13
Binary types ..13
Special types ...13

DDL REFERENCE MANUAL ..15

ADD USER ...18
ALTER TABLE ..20
ALTER USER ...21
BACKUP DATABASE ..23
BACKUP TABLE ..25
CLOSE DATABASE ...25
CLOSE DBMS ..26
CLOSE TABLE ...27
COMMENT ON ..27
CREATE DATABASE ...28
CREATE DEFAULT ..30
CREATE DOMAIN ...32
CREATE GROUP ...37
CREATE INDEX ...37
CREATE KEY ...39
CREATE RULE ...42
CREATE TABLE ...44
CREATE VARIABLE ...46
CREATE VIEW ...51
DESCRIBE COLUMNS ..52
PrimeBase Reference Manual I-3

Contents

DESCRIBE DATABASES ...54
DESCRIBE DBMS ..56
DESCRIBE LINKSETS ...69
DESCRIBE OPEN DATABASES ..70
DESCRIBE OPEN DBMS ...71
DESCRIBE TABLES ...72
DROP GROUP ...75
DROP <object> ..75
GRANT ...76
MOUNT DATABASE ...79
OPEN DATABASE ...80
OPEN DBMS ..82
OPEN TABLE ...84
REMOVE USER ...86
RENAME <object> ..87
REORG TABLE ..87
RESTORE DATABASE ..88
REVOKE ...89
SERVER CHECKPOINT ...90
SERVER COMMENT ...90
SERVER ERROR ..91
SERVER RESTART ..93
SERVER RESTORE ..96
SERVER SHUTDOWN ...97
SET VARIABLE ..97
TRANS ERROR ..98
TRANS RESTART ..98
TRANS SHUTDOWN ..99
UNMOUNT DATABASE ...100
USE DATABASE ...101
USE DBMS ..102

IDENTIFICATION ..103

IDENTIFIERS ..103
ALIASES ..104

Database Alias ..105
Table Alias ..105
Column Alias ..105

REFERENCES ..105
Object Reference ..106
I-4 PrimeBase Reference Manual

Contents

Column Reference ..106
Column of Table Reference ...107

DAL LANGUAGE REFERENCEPrimeBase..109

BEGIN ..109
BREAK ...109
CALL ..110
COMMIT ..111
CONTINUE ..111
DECLARE ...112
DECLARE CURSOR ...113
DECLARE PROCEDURE ..113
DELETE (positioned) ...115
DELETE (searched) ...116
DESELECT ...116
DO ..117
ERRORCTL ...118
EXECUTE ...118
EXECUTE FILE ...119
FETCH ..120
FOR ..121
FOR EACH ...122
GOTO ...123
IF ..123
INSERT ..124
LABEL ..126
PINKCTL ..126
PRINT ...131
PRINTALL ..132
PRINTCTL ..133
PRINTF ...135
PRINTINFO ..136
PRINTROW ..136
QUERY SPECIFICATION ...137
RETURN ...140
ROLLBACK ..140
SELECT ..141
SET ...144
SWITCH ...145
UPDATE (positioned) ...146
PrimeBase Reference Manual I-5

Contents

UPDATE (searched) ..148
WHILE ..149

API FUNCTIONS ..151

API function groups ..151
Session-control functions ..151
Program-execution functions ..152
Results-processing functions ..152

Return Values ..152
Integer Values for Return on Codes ..153
Integer Values for Data Type Codes ...154
Results Processing ...155
API Functions and NULLs ..156

CLBreak() Function ...156
CLConInfo() Function ...157
CLExec() Function ...159
CLGetErr() Function ..160
CLGetItem() Function ...161
CLGetSn() Function ..164
CLInit() Function ...165
CLSend() Function ..166
CLSendItem() Function ..167
CLState() Function ..168
CLUnGetItem() Function ..169

HyperCard XCMDs & XFCNs ..171

Session Control ..171
Program Execution ...171
Results Processing ...171
Global Variables ...172

CL1End XCMD ..172
CL1Exec XCMD ...173
CL1GetList XFCN ..173
CL1Getstat XFCN ..174
CL1Getval XFCN ...174
CL1Init XCMD ..175
CL1Putval XCMD ..176
CL1Send XCMD ..177
CL1State XFCN ...177
I-6 PrimeBase Reference Manual

Contents

SYSTEM FUNCTIONS ...179

String Functions ...179
$left and $right ...180
$locate ...181
$substr ...182
$trim, $ltrim, and $rtrim ..184
$toupper, $tolower - PrimeBase Extersion ..184

Cursor Functions ..185
Variable Functions ..186

$len ..186
$typeof ..187

$format Function ..187
File Functions - PrimeBase Extensions ...190

$open ...191
$close ..191
$readline ...191
$writeline ..192

Utility Functions - PrimeBase Extensions ...192
$now ..192
$errorstring ...192

SYSTEM VARIABLES ..195

Date and Time Formats ...195
Decimal and Money Formats ..198
DAL System Variables ...201
DAL System Constants ..201
Lock Settings - PrimeBase Extension ...203
DBMS Lookup Parameters - PrimeBase Extension204
Login Information - PrimeBase Extension ...205
Cursor Information - PrimeBase Extension ..205

SYSTEM PROCEDURES ..207

Syntax ..207
DEVICES ..208

Add Device ..209
Alter Device ...210
Remove Device ...210

LOCATIONS ..211
Add Location ...211
PrimeBase Reference Manual I-7

Contents

Alter Location ...212
Remove Location ..213

PARTITIONS ..213
Add Partition ...214
Alter Partition ..215
Remove Partition ..215

System parameters ...217

TransactionLimit ...217
SystemFileLimit ..217
LogBufferSize ...217
LogThreshold ..218
CheckpointThreshold ...218
CacheSize ..219
VirtualCacheSize ...219
OfflineFunction ...219
DataServerName ..220
ConnectionLimit ...220
ConnectionTotal ...220
SerialNumber ...220
ActivationKey ..221
ExpiryDate ...221
IdentificationString ...221
InitialMemoryBlockSize ...221
MemoryBlockSize ...222
MemoryBlockTotal ...223

APPENDIX A: SYSTEM DATABASE..225

Model DATABASE ..225
Domains ..225
Tables ..226

APPENDIX B: ERROR CODES ...237

DATA DEFINITION ERRORS ..237
Database related errors ...237
Database alias related errors ...237
Database objects: ...238
Database users and groups: ..238
I-8 PrimeBase Reference Manual

Contents

DATA MANIPULATION ERRORS ...238
PRIVILEGE VIOLATIONS ..239

Secondary errors ..239
CALCULATION AND CONVERSION ERRORS ..240

Invalid literal (string) values in conversion ..240
String to floating point conversion errors ..241
Invalid conversions ..241
Error in calculations ...241

TRAPABLE PROGRAMER ERRORS ...241
Symbol related errors ..242
Cursor related errors ..242
Connection related errors ..242

APPENDIX C: GOLFERS DATABASE ..245

DATABASE DESCRIPTION ...245
Golfers ...245
Clubs ..247
Courses ...247
Competitions ..248
Results ...250
Scores ..251

CREATE SCRIPT ..252

INDEX .. I-259
PrimeBase Reference Manual I-9

Contents
I-10 PrimeBase Reference Manual

DATA TYPES

DATA TYPES

Integer types

TINYINT an unsigned 8-bit integer.

SMINT, SMALLINT a signed 16-bit integer.

INT, INTEGER a signed 32-bit integer.

<integer_literal>::= ['-' | '+'] <digit> {<digit> }

<digit>::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' |

'9'

Decimal types

DECIMAL, NUMERIC a signed decimal number that has a total number of deci-
mal digits and a scale, which is the total number of digits
to the right of the decimal point.

MONEY a special type of decimal value that can be converted to
and from character strings in the form of currency values,
for example, $12.34, 1.234,000 DM.

<decimal_literal>::= ['-' | '+'] <digit> { <digit> } '.'

<digit> { <digit> }

<money_literal> = '$' <decimal_literal>
PrimeBase Reference Manual 11

DATA TYPES

Floating-point types

SMFLOAT, SMALLFLOAT
a 4-byte floating point value.

REAL a 4-byte floating point value.

FLOAT an 8-byte floating point value.

REAL10 a 10-byte floating point value.

REAL12 a 12-byte floating point value.

<float_literal>::= ['-' | '+'] <digit> { <digit> } ['.'

<digit> { <digit> }] (E | 'e') ['-' | '+'] { '0'..'9' }

Boolean types

BOOLEAN a truth value. PrimeBase uses 3-valued logic, therefore a
boolean value can either be true false, or maybe.

<boolean_literal>::= '$TRUE' | '$FALSE' | '$MAYBE'

Time types

DATE a 4-byte value consisting of the year, the month and the
day.

TIME a 4-byte value consisting of hours (0-23), minutes, seconds
and hundredths of a second.

TIMESTAMP, DATETIME
an 8-byte value consisting of a date and a time value.

Submitted as character literals, according to the current value of either $datefmt,
$timefmt, or $tsfmt.
12 PrimeBase Reference Manual

DATA TYPES

Character types

CHAR, CHARACTER a fixed length character string.

VARCHAR a variable length character string.

<character_literal>::= ('”' | ''') { <character> } ('”' | '''

) | ':' <var_name>

Binary types

BIN, BINARY a fixed length byte string.

VAR, VARBINARY a variable length byte string.

Special types

GENERIC an item used to declare a variable that can assume any of
the other data types when data is assigned to it.

OBJNAME a data item whose value identifies an identifier.
PrimeBase Reference Manual 13

DATA TYPES

14 PrimeBase Reference Manual

DDL REFERENCE MANUAL

DDL REFERENCE MANUAL

This section provides a reference guide to the following statement groups: data
control statements, database statements, information statements, object manip-
ulation statements and users, groups and privileges. An explanation of the func-
tion of each command is given, followed by the syntax, and an explanation of
each part of the syntax. Any idiosyncrasies of a particular command are noted
under the section, “notes“.

All examples throughout this chapter are based a the “golfers” database which is
provided in Appendix C.

The following list shows the statements of this manual grouped according to the
kind of statement they are. The order in which they are documented in this man-
ual, however, is alphabetical.

DBMS Statements

• OPEN DBMS

• CLOSE DBMS

• USE DBMS

Database Manipulation Statements

• OPEN DATABASE

• CLOSE DATABASE

• USE DATABASE

• CREATE DATABASE

• BACKUP DATABASE
PrimeBase Reference Manual 15

DDL REFERENCE MANUAL

• RESTORE DATABASE

• MOUNT DATABASE

• UNMOUNT DATABASE

Information Statements

• DESCRIBE DBMS

• DESCRIBE OPEN DBMS

• DESCRIBE DATABASES

• DESCRIBE OPEN DATABASES

• DESCRIBE TABLES

• DESCRIBE COLUMNS

• DESCRIBE LINKSETS

• COMMENT SPECIFICATION

Object Manipulation Statements

• CREATE DOMAIN

• CREATE TABLE

• ALTER TABLE

• OPEN TABLE

• CLOSE TABLE

• BACKUP TABLE

• REORG TABLE

• CREATE KEY

• CREATE DEFAULT

• CREATE INDEX

• CREATE RULE

• CREATE VIEW
16 PrimeBase Reference Manual

DDL REFERENCE MANUAL

• CREATE VARIABLE

• DROP <object>

• RENAME <object>

• SET VARIABLE

Database Privileges Statements

• ADD USER

• REMOVE USER

• ALTER USER

• CREATE GROUP

• DROP GROUP

• GRANT

• REVOKE

Server Control Statements

• SERVER RESTART

• TRANS RESTART

• SERVER SHUTDOWN

• TRANS SHUTDOWN

• SERVER ERROR

• TRANS ERROR

• SERVER RESTORE

• SERVER CHECKPOINT

• SERVER COMMENT
PrimeBase Reference Manual 17

DDL REFERENCE MANUAL

ADD USER

function This statement is used to either add one or more users to a database, or, if the TO
clause is included, to add the user to a specific group within the database.

syntax ADD USER <user_name> { <user_detail> } {',' <user_name>

<user_detail> {<user_detail>} } [TO <group_name>] ';'

<user_name>::= <character_literal>

<user_detail>::= CREATOR <creator_name> | PASSWORD <password> |

ABORT TIME <expression>

<password>::= <character_literal>

<group_name>::= <character_literal>

parameters ADD USER identifying keywords.

<user_name> the name of the user who you are adding to the database.
It must be a character literal - any printable character, en-
closed by quotation marks.

<user_detail> information on the user being added - concerning pass-
word, creator name and the user´s transaction abort time,
which is the amount of time that a transaction started by
this user may be idle, before it is aborted by the transac-
tion manager.

CREATOR keyword, indicating that the creator name for the new user
follows. This name must adhere to the rules for identifiers,
page 103. This clause is only necessary if you are adding a
new user to the database. If this clause is omitted, the de-
fault creator name is “Common”.

<creator_name> the creator name of the user. The users creator name is
used when the user creates objects. All objects have
names consisting of two parts. The first part is the creator
name of the user creating the object, and the second part is
the name given to the object at creation time
18 PrimeBase Reference Manual

DDL REFERENCE MANUAL

PASSWORD keyword, indicating that the password to be used by the
new user follows. As with the CREATOR clause, this clause
is only necessary if you are adding a new user to the data-
base. The default password is an empty string:“”.

<password> the actual password the user will use.

ABORT TIME This clause allows the user´s transaction abort time to be
set. The value given is in seconds, and represents the
amount of time a transaction is allowed to remain idle
before it is aborted. An idle transaction is a transaction that
does no disk I/O. It is also the time that the system takes to
detect a complex deadlock between transactions. A com-
plex deadlock is a deadlock that involves more than two
transactions. The default abort time is 30 minutes.

<expression> A value given in seconds, representing the amount of time
a transaction is allowed to remain idle before it is aborted.

TO this clause enables you to assign the user to a specific
group within the database. This clause is optional.

<group_name> the actual name of the group to which you are assigning
this user.

notes A user may belong to any number of groups within the database; not just one
group.

The <user_name> is unique within the whole database, and is used for log-in pur-
poses. It identifies a user, and as a result, identifies also that user´s privileges.

The creator_name is an identifier, and therefore must conform to the rules for
identifiers. It is not necessarily database-wide unique. This name also becomes a
component of the qualified name of any objects created by that user. In addition,
if a user specifies a database object without completely qualifying it, then that
user´s <creator_name> is automatically used. If no object is found, the system
will try using the creator names “Common” and “System”.

New users to a database are automatically assigned to the system group called
“Public”.
PrimeBase Reference Manual 19

DDL REFERENCE MANUAL

To add a user to a normal database, the database must be in use, and the user
must be the DBA.

To add a user to the Master database, the user must be an SA, and the Master da-
tabase must be in use. Users added to this database do not receive SA status;
they are, however, allowed to create their own databases. A user of the Master
database can be promoted to SA, by granting SA privileges.

Users of the Master database that have SA (System Administrator´s) privileges
can open any database, and SAs are automatically made DBA (Database Admin-
istrator) of any database the open. However, normal users of the Master database
that do not have SA privileges are not automatically made DBA of any database
they open.

Users of the Master database, that do not have SA privileges, are not automati-
cally made DBA of any database they open, as is the case with the SA.

examples /***In this example, the user, called Caspar Fyson is added to

the database. He is given a creator name, “golf”, the password,

“Birdy”, and is made a member of the group called “Golfer-

sPros”.***/

ADD USER “Caspar Fyson” CREATOR golf PASSWORD “Birdy” TO “Golf-

ersPros”;

see also create user, alter user, remove user, grant, revoke, create group, drop group

ALTER TABLE

function This statement is used to change the structure of an existing relation.

syntax ALTER TABLE <table_reference> <column_command> ';'

<column_command>::= <append_column> | <rename_column>

<append_column>::= (APPEND | ADD) [COLUMN] <column_def>

<rename_column>::= RENAME [COLUMN] <column_name> TO

<column_name>
20 PrimeBase Reference Manual

DDL REFERENCE MANUAL

parameters ALTER TABLE statement identifying keywords.

<table_reference> the qualified name of the relation you want to alter.

<column_command> defines how you want to alter the relation; either APPEND
or RENAME a column.

<append_column> adds another column to the relation.

<rename_column> changes the name of an existing column.

APPEND keyword.

<column_def> the definition of the column that is to be altered; either
simple column definition or composite column definition.
(See CREATE TABLE, page 44.)

RENAME keyword.

<column_name> the name of the column you want to rename.

notes In the APPEND clause, the name of the column must be distinct from those al-
ready existing in the table. If <column_def> is a composite column definition then
the component columns must be simple columns already existing in the table.
New columns must allow NULLs, as the value stored in new simple columns is
NULL.

examples ALTER TABLE Golfers

APPEND COLUMN

medalswon INT;

ALTER TABLE Golfers

RENAME COLUMN medalswon TO medals;

see also create table, drop table, rename table, reorg table, backup table, check table,
open table, close table

ALTER USER

function This statement is used to alter details associated with a user.
PrimeBase Reference Manual 21

DDL REFERENCE MANUAL

syntax ALTER [USER <user_name>] <user_detail> {<user_detail>} {','

<user_name> <user_detail> { <user_detail> } } ';'

<user_detail>::= CREATOR <creator_name> | PASSWORD <password> |

ABORT TIME <expression>

<password>::= <character_literal>

<group_name>::= <character_literal>

parameter ALTER statement identifying keyword.

USER if this clause is omitted then the current user is assumed.

<user_name> the name of the user to be affected by this statement.

CREATOR to set the new creator name for the user.

<creator_name> the new creator name. It must conform to the rules for
identifiers, page 103.

PASSWORD to set the new password for the user.

<password> the new password.

ABORT TIME the maximum time a transaction (that belongs to the user)
may be idle. A transaction is idle when not reading or writ-
ing. For example, when a transaction is waiting for a lock,
it is idle.

<expression> the time in seconds that the transaction may be idle.

notes Users may set their own passwords, but only the DBA may set the creator name
of a user and the password of another user.

If the USER clause is omitted, then the current user is assumed.

examples /***In this example, the password of the user, Caspar Fyson is

altered, and is changed to “Eagle”. The ABORT TIME is set at 5

seconds.***/

ALTER USER “Caspar Fyson” PASSWORD “Eagle” ABORT TIME 5;

see also create user, add user, remove user, grant, revoke, create group, drop group
22 PrimeBase Reference Manual

DDL REFERENCE MANUAL

BACKUP DATABASE

function This statement is used to backup a database.

syntax BACKUP DATABASE <database_name> {<file_location_spec>}

{<backup_options>} ';'

<file_location_spec>::= [DATA|INDEX] [IN] LOCATION

<character_literal>

<backup_options> ::= <include_index> | <preserve_previous>

<include_index> ::= (WITH | WITHOUT) INDEX

<preserve_previous> ::= (REPLACE | PRESERVE) [PREVIOUS]

parameters BACKUP DATABASE keywords.

<database_name> the name of database.

<file_location_spec> this is an optional clause used to specify backup locations
for the database.

DATA indicates a path specified for data files.

INDEX indicates a path specified for index files.

IN an optional keyword.

LOCATION indicates file system location follows.

<character_literal> location in the file system.

(WITH | WITHOUT) INDEX

these are optional keywords, to specify whether or not the
database should be backed up including the indices, (WITH
INDEX).

(REPLACE | PRESERVE) [PREVIOUS]

these are optional keywords, to indicate whether a previ-
ous backup in the backup location should be overwritten or
not.
PrimeBase Reference Manual 23

DDL REFERENCE MANUAL

notes The BACKUP/RESTORE facility in PrimeBase is designed to guarantee complete
recovery of a database including changes applied to the database after the
backup was completed.

Backup of a database can be done while the database is online (i.e. while it is in
normal use), using the BACKUP DATABASE statement. A backup of a database
can be restored using the RESTORE DATABASE statement. The backup image of
a database looks identical to the normal database image. However, if the backup
was made while the database was in use, then the image may not be consistent,
due to the fact that the tables were copied at different times. If the database was
not in use during backup, the backup image can be mounted as any other data-
base, provided the backup is the first of the database in that location. If this is
done, the mounted database will reflect the state of the database at the time of
the backup, and will not include any subsequent changes. It may be necessary to
mount a backup image if any of the log file at the time of backup has been lost or
corrupted.

By default, offline logs are deleted by the server. Offline logs are logs no longer
needed by the server to do a normal restart (recovery). In order to bring a data-
base completely up-to-date from a backup, the offline logs must be archived. To
do this, the system administrator must set the system variable OfflineFunction to
"Archive", as follows:

OPEN DATABASE master;

SET VARIABLE offlinefunction = "Archive";

CLOSE DATABASE;

To set the offline log function back to deletion, set OfflineFunction to "Delete".
When the offline location function is set to Archive, log files are not deleted, but
copied to a log archive location. An archived log is given a different name (the
first letter of the log name is changed). The restore function will only look for an
archived log in the archive location to which it was copied. In order for restore to
succeed, all required archive logs must be available. This means that all volumes
containing archive logs must be online.

example /***In this example, the database Golfers is backed up.***/

BACKUP DATABASE Golfers;
24 PrimeBase Reference Manual

DDL REFERENCE MANUAL

BACKUP TABLE

function This statement does a backup of a table.

syntax BACKUP TABLE <table_reference> ';'

parameters BACKUP TABLE statement identifying keywords.

<table_reference> name of the table you want to backup.

notes The backup of the table is added to the last backup done of the database. The
backup options and locations used are those specified in the original database
backup command. It is necessary to backup a table after it has been reorganized
(REORG TABLE).

CLOSE DATABASE

function This statement closes a currently open database.

syntax CLOSE DATABASE [<database_alias>]';'

<database_alias>::= <identifier>

parameters CLOSE DATABASE statement identifying keywords.

<database_alias> an identifier. If no alias was specifically given in the ALIAS
clause of OPEN DATABASE, then the default database is
closed. An alias must conform to the rules for identifiers.
See “Identifiers” , page ***.

notes When a database is opened it becomes the current default database. If the default
database is closed it is not possible to determine which open database will
become the new default database (unless there is only one open database left).
The USE DATABASE statement below should be used to reset the default data-
base. You can first use the statement DESCRIBE OPEN DATABASES, which lists
the default database.
PrimeBase Reference Manual 25

DDL REFERENCE MANUAL
example /***In this example the database “Golfers” is closed. In OPEN

DATABASE, “Golfers” was assigned the alias “G”, which is then

used in this CLOSE DATABASE statement.***/

CLOSE DATABASE G;

/***In this example, the same as above is achieved, but in two

steps rather than one. Notice that the alias is not included in

the syntax of the close statement.***/

USE DATABASE G;

CLOSE DATABASE;

see also backup database, restore database, open/use database, create/drop database,
mount/unmount database

CLOSE DBMS

function This statement closes an open DBMS. If <dbms_brand> is not given, then the cur-
rent DBMS is closed. All the open databases of the DBMS are also closed by this
statement.

syntax CLOSE [<dbms_brand>] DBMS ';'

parameters CLOSE DBMS keywords.

<dbms_brand> name of dbms brand to be closed.

examples CLOSE DBMS;

CLOSE MyServer DBMS;

CLOSE 'PrimeBase Server' DBMS;

notes In PrimeBase the DAL concept of DBMS is equated with that of server or gateway.
An “open dbms” is, therefore, an open connection to a server. The command
CLOSE DBMS closes the connection.

Note that the name of the DBMS must be placed in quotes if it contains spaces or
special characters.
26 PrimeBase Reference Manual

DDL REFERENCE MANUAL
see also open dbms, use dbms, describe dbms, describe open dbms

CLOSE TABLE

function This statement closes a table. PrimeBase, however, ignores this statement, as a
table is automatically closed at the end of the transaction in which the table was
opened.

syntax CLOSE TABLE <table_reference>';'

parameters CLOSE TABLE keyword.

<table_reference> the name of the table being closed.

example /***In this example, the table, “Golfers” is closed. Please re-

member, however, that this has no meaning in PrimeBase, as the

table is automatically closed at the end of the transaction in

which it was opened.***/

CLOSE TABLE Golfers;

see also create/drop/rename table, alter table, backup table, reorg table, check table, open
table

COMMENT ON

function This statement allows you to place a comment on any type of object and on col-
umns. The type of object may be specified, but it is optional.

syntax COMMENT ON (<object_comment> | <column_comment>) IS <expression>

';'

<object_comment>::= [<object_type>] <object_reference>

<object_type>::= DOMAIN | TABLE | KEY | DEFAULT | INDEX | RULE |

VIEW | VARIABLE
PrimeBase Reference Manual 27

DDL REFERENCE MANUAL
<column_comment>::= COLUMN <column_of_table_reference>

parameters COMMENT ON statement identifying keywords.

<object_comment> specifies the object to which the comment is bound.

<object_type> an optional specification of the type of the object.

<object_reference> the name of the object.

<column_comment> specifies the column to which the comment is bound.

COLUMN this keyword is required when placing a comment on a col-
umn.

<column_of_table_reference>

the qualified name of a simple or composite column. The
syntax is explained at the end of this Reference section,
page 103.

<expression> A string (value of type CHAR or VARCHAR) that is the com-
ment text to be placed on the object/column.

notes A previous comment may be removed by specifying the comment as an empty
string, (““).

examples /***In this example, a comment is added to the Courses ta-

ble.***/

COMMENT ON TABLE Courses IS “Each club has a number of courses.

The details of each hole of each course are stored in the Courses

table.”

see also describe dbms, describe open dbms, describe databases, describe open data-
bases, describe tables, describe linksets

CREATE DATABASE

function This statement creates the necessary system folders and files for a new database.
28 PrimeBase Reference Manual

DDL REFERENCE MANUAL
syntax CREATE DATABASE <database_name> {<file_location_spec>} ';'

<file_location_spec>::= [DATA|INDEX] [IN] LOCATION

<character_literal>

 parameters CREATE DATABASE statement identifying keywords.

<database_name> a unique name for the database.

<file_location_spec> an optional location specifications for data and/or index
files.

DATA keyword specifies that path name for data files follows.

INDEX keyword indicates that path name for index files follows.

IN optional keyword.

LOCATION indicates that path name follows.

<character_literal> path name.

notes Only system administrators (SA) and master database users with DBA status
may create a database.

The new database is created but not opened.

The creator of the database is entered as the second user of the database with
DBA privileges. The first user of a database is the user “System”. ”System” is the
creator and owner of the system tables and other system objects. When a system
administrator opens a database in which he is not a user, he is then considered to
be the user, “System”.

In creating a database two file system locations may be specified. The location
for the data (DATA keyword in the IN LOCATION clause), and the location for the
indices (INDEX keyword). These locations may be the same (i.e. both DATA and
INDEX keywords may be omitted. If no location is specified, then location for
both data and index is the DataServer root path by default. The dataserver root
path is given when installing the dataserver, and contains the Master and Model
databases. The dataserver will append a directory to the specified location, and
then place the data/index files within that directory. The name of the directory is
identical to the name of the database.
PrimeBase Reference Manual 29

DDL REFERENCE MANUAL
A database name must be an identifier, whether specified as a character string or
not. Since the name of the directory containing the database files is identical to
that of the database, the names of databases are limited as for directory names of
the underlying operating system. For example, a dataserver running under DOS
would only support database names of maximum 8 characters in length. How-
ever, the system ensures that the names of databases are case insensitive like all
other identifiers.

New databases are created by duplicating the model database. The SA is able to
configure created databases by modifying the model database.

Warning: Do not remove, rename, or delete any files or directories created by the
server. If you wish to delete a database, use the DROP DATABASE statement. IF
you want to change the location of a database, you can use the MOUNT and UN-
MOUNT command.

examples /***In this example, the database “Golfers” is created.***/

CREATE DATABASE Golfers ;

see also restore database, backup database, open/close/use database, drop database,
mount/unmount database

CREATE DEFAULT

function This statement is used to specify a value that will be automatically inserted into a
column, if no value is explicitly supplied at insert time.

syntax CREATE DEFAULT <default_reference> ON ([COLUMN]

<column_of_table_reference> | DOMAIN <domain_reference>)

<default_def> ';'

<default_def>::= AS (<expression> | USER | SERIAL

<variable_reference> | NOW)

parameters CREATE DEFAULT statement identifying keyword.
30 PrimeBase Reference Manual

DDL REFERENCE MANUAL
<default_reference> qualified name of default.

ON identifying keyword; indicates that you are specifying the
column, or simple domain to which the default value will
be bound.

COLUMN optional identifying keyword; indicates that the default is
to be bound to a column.

<column_of_table_reference>

the qualified name of a simple column.

DOMAIN keyword; indicates that you want to bind the default to a
simple domain.

<domain_reference> the qualified name of a simple domain.

<default_def> definition of the default.

AS keyword.

<expression> an expression that is evaluated when the default is created
to produce a literal value.

USER The USER function returns the name of the current user in
the case of character columns, or the database user identi-
fier in the case of numeric columns.

SERIAL The SERIAL function returns the next in sequence of a par-
ticular data type.

<variable_reference> the name of a variable of type, counter, that has already
been defined, see CREATE VARIABLE, page 46.)

NOW this keyword returns the current time or date.

notes Defaults may be specified on a simple column or a simple domain. If a default is
placed on a domain, a further default may still be specified on a column defined
on that domain. This default takes priority over the domain default. If no default
value is stated, the value is recorded as missing (NULL). If the column does not
allow missing values an insert in which the column value is not specified is re-
jected. On insert the column default takes priority.
PrimeBase Reference Manual 31

DDL REFERENCE MANUAL
The default value must be compatible with the data type of the column or domain
to which it is bound.

examples /***In this example, a default is created on the domain, Golf-

erID, called GolferDef. It is a SERIAL default, based on the

counter variable, called GolferCnt.***/

CREATE COUNTER INTEGER GolferCnt = 1;

CREATE DOMAIN GolferID INTEGER NOT NULL;

CREATE DEFAULT GolferDef ON DOMAIN GolferID AS SERIAL GolferCnt;

/***In this example, a default, ParDef, is created on the col-

umn, Par, of the table Courses. A default value of 4 is always

inserted into this column.***/

CREATE DEFAULT ParDef ON Courses.Par AS 4;

see also drop/rename default

CREATE DOMAIN

function The domain manipulation statement, create domain, allows the declaration of a
user-defined, extended data type, which is distinct from any other domain within
the database (simple or composite).

syntax CREATE [PRIMARY] DOMAIN <domain_reference> (

<simple_domain_def> | <composite_domain_def>) ';'

<simple_domain_def>::= <data_type> { [',']

<domain_specification> }

<domain_specification>::= <missing_specification> |

<arithmetic_specification> | <order_specification>

<missing_specification>::= [NOT] NULL

<arithmetic_specification>::= ARITHMETIC [NOT] APPLICABLE
32 PrimeBase Reference Manual

DDL REFERENCE MANUAL
<order_specification>::= ORDER [[NOT] APPLICABLE] [AS <se-

quence>]

<sequence>::= COLLATING SEQUENCE <variable_reference> |

<system_sequence> { ',' <system_sequence> }

<system_sequence>::= COMMON | CASE INSENSITIVE | IGNORE DIACRIT-

ICAL MARKS

<composite_domain_def>::= '(' <simple_domain> ','

<simple_domain> { ',' <simple_domain> } ')'

<simple_domain>::= <domain_reference> | <data_type>

parameters CREATE [PRIMARY] DOMAIN
statement identifying keyword;.

<domain_reference> the identifying name of the domain you are creating.

<simple_domain_def>the actual definition of a simple domain; a domain that is
based on a single basic data type.

<data_type> a basic data type.

<domain_specification>
either a missing specification, an arithmetic specification,
or an order specification.

<missing_specification>
an indication of whether values in a column based on a
domain may be missing. The default is: missing values
permitted.

[NOT] NULL NULL means that values may be missing; NOT NULL indi-
cates that values may not be missing.

<arithmetic_specification>
the arithmetic specification indicates whether arithmetic
operations ('*', '/', '+', '-' , etc.) are allowed on the domain.
The default is: arithmetic not permitted.

<order_specification> See notes for a full explanation of this clause.
PrimeBase Reference Manual 33

DDL REFERENCE MANUAL
ORDER APPLICABLE declares that the comparison operators; '<', '>', '<=' and
'>=' can be meaningfully applied to the extended data type
being defined. The default is: order not applicable.

NOT negates the above statement, (i.e.the comparison opera-
tors cannot be meaningfully applied).

<variable_reference> a system variable of type collating sequence. System vari-
ables of this type may be created by the user using the
CREATE VARIABLE statement. See notes for an explana-
tion of the different types of system defined sequences.

<system_sequence> There are three system defined sequences. See notes for
details.

<composite_domain_def>
a domain defined on a combination of simple domains

<simple_domain> either the name of an existing simple domain, or a basic
data type.

<domain_reference> the name of a previously declared simple domain.

notes A domain in its definition stores information as to its basic data type, whether
values of the domain are allowed to be missing, and information as to whether
the comparative and arithmetic operators can be meaningfully applied. (The op-
erators = and ≠ can always be meaningfully applied.)

The range of values permitted on a domain may be specified by placing a rule on
the domain, (see CREATE RULE).

By default, the missing_specification should be set as NULL in the case of a non-
primary domain, and NOT NULL in the case of a primary domain.

By specifying that a domain is primary (CREATE RPIMARY DOMAIN), the user in-
dicates that values in primary keys defined on that domain must be domain-wide
unique. For example, it is possible to create a number of primary keys that draw
values from a common domain. The system ensures that the sets of values in
various primary keys on a primary domain are disjoint. If the domain is not pri-
mary, uniqueness of primary key values on the domain are only ensured within
34 PrimeBase Reference Manual

DDL REFERENCE MANUAL
the table on which the primary key is defined. Note that if there is only ONE pri-
mary key on a domain then it makes no difference whether the domain is primary
or not.

Please remember, however, that when we talk about a primary domain, we do
not mean a domain that has a primary key defined on it, but we mean a domain
that has been explicitly declared as primary..

Domains cannot be declared recursively, in terms of one another.

Composite domains may include basic data types as well as simple domains as
components. Domains cannot be declared recursively, in terms of one another.

The order of the components of a composite domain is significant in that, when
sorting values in a domain, the left-most component is considered the most im-
portant. This means that if a domain is ordered, its components are sorted from
right to left, and compared left to right.

Note that <domain_reference> in <simple_domain> is the name of a previously
declared simple domain.

The order specification statement declares the following information:

1. Whether or not the operators '<', '>', '<=', or '>=' can be meaningfully applied
to values of the domain (ORDER APPLICABLE). If order is not applicable, only
equality tests, (equals ('='), not-equals ('!=')), may be done when comparing two
values of the domain. Sorting, however, is still possible.

2. That a collating sequence should be used when comparing values of the do-
main. The name of the collating sequence may be explicitly specified
(<variable_reference>), or a system defined collating sequence can be selected
using the COMMON, CASE INSENSITIVE... keywords.

Collating Sequences

COMMON: The common ordering is an improved ordering of the ASCII character
set, which places alphabetically similar characters together, and upper case
before lower case:

AÄaäâBbCÇcç...
PrimeBase Reference Manual 35

DDL REFERENCE MANUAL
CASE INSENSITIVE: In a case-insensitive sequence, the case of the characters is
ignored. In such a sequence, A=a, and Ä=ä, etc..

IGNORE DIACRITICAL MARKS: When ignoring diacritical marks, A=Ä, and a=ä,
for example.

example /***In this example a series of domains, defaults and variables

are created, to provide a structure for the table, “Golf-

ers”.***/

CREATE COUNTER INTEGER GolferCnt = 1;

CREATE DOMAIN GolferID INTEGER NOT NULL;

CREATE DEFAULT GolferDef ON DOMAIN GolferID AS SERIAL GolferCnt;

CREATE DOMAIN NameType VARCHAR[55] ORDER APPLICABLE AS CASE IN-

SENSITIVE;

CREATE DOMAIN StatusType CHAR[8];

CREATE RULE StatusRule ON StatusType AS StatusType IN ('Ama-

teur', 'Pro', 'Pro/Am');

CREATE DOMAIN HandicapType SMINT;

CREATE RULE HandicapRule ON HandicapType AS HandicapType BETWEEN

36 AND -5;

CREATE COUNTER INTEGER ClubCnt = 1;

CREATE DOMAIN ClubID INTEGER;

CREATE DEFAULT ClubDef ON DOMAIN ClubID AS SERIAL ClubCnt;

CREATE TABLE Golfers

(ID GolferID NOT NULL,

SurName NameType NOT NULL,

FirstNames NameType NOT NULL,

Name (SurName, FirstNames),

Title CHAR[10],

Sex CHAR[1] NOT NULL,

Nationality NameType,

DateOfBirth DATE,

Status StatusType,
36 PrimeBase Reference Manual

DDL REFERENCE MANUAL
Handicap HandicapType,

MemberOfClub ClubID,

Earnings MONEY[12,2]

);

see also drop/rename domain

CREATE GROUP

function This statement creates a group, or number of groups, within a database.

syntax CREATE GROUP <group_name> { ',' <group_name> } ';'

parameter CREATE GROUP statement identifying keywords.

<group_name> name of the group you are creating. This must be a charac-
ter literal, and must be enclosed in quotation marks.

notes The group will be created in the database that you are currently working in.

example /***In this example, a group is created called GolfersPros, con-

taining the names of professional golfers, who use this data-

base.***/

CREATE GROUP “GolfersPros”;

see also create user, alter user, add user, remove user, grant, revoke, drop group

CREATE INDEX

function This statement is used to create an index on a column, group of columns or a do-
main.

syntax CREATE <index_spec> <index_reference> ON [TABLE]

<table_reference> <column_group>) ';'

<index_spec>::= INDEX { SUPPRESS ZERO | SUPPRESS NULL }
PrimeBase Reference Manual 37

DDL REFERENCE MANUAL
parameters CREATE statement identifying keyword.

<index_spec> this specifies the definition of the index.

<index_reference> the qualified name of the index.

ON identifying keyword; introduces the clause indicating the
object on which the index is created.

<table_reference> the qualified name of the table on which the index is to be
created.

<column_group> an ordered list of columns (simple and/or composite), on
which the index is to be created.

INDEX identifying keyword; indicates that an index is being cre-
ated.

SUPPRESS ZERO identifying keyword indicating that these values are to be
excluded from the index.

SUPPRESS NULL identifying keyword; indicates that these values are to be
excluded from the index.

notes Indices are a performance related feature, for example, they can speed up data
retrieval, but can slow down data insert and update.

If duplicate key values occur very often, the speed of data retrieval will not in-
crease, and update/delete will slow down.

The fewer rows there are that match the search conditions, the more effective the
index will be.

Remember that is zero depression has been defined on an index, a search on that
index will not retrieve any zeros.

examples /***in this example, an index is created, called “GolfersIndex”,

and is defined on the table called “Golfers” - on the column, ID.

The primary key for the table is also defined on this column. It

is recommended that you define your indices on the same columns

as your primary keys.***/

CREATE INDEX GolfersIndex ON Golfers (ID);
38 PrimeBase Reference Manual

DDL REFERENCE MANUAL
/***In the next example, an index is defined on a composite col-

umn. In this case, each separate component of the composite

column must be listed. You may not simple give the name of the

composite column itself.***/

CREATE INDEX CoursesIndex ON Courses (Club, Course, Hole);

see also drop/rename index

CREATE KEY

function The key manipulation statement, CREATE KEY, defines a primary, candidate or
foreign key on a base relation.

syntax CREATE <key_spec> <key_reference> ON [COLUMN]

<column_of_table_reference> [<reference_spec>];

<key_spec> ::= UNIQUE | ((PRIMARY | CANDIDATE | FOREIGN) KEY)

<reference_spec>::= REFERENCES <table_reference> { ','

<table_reference> } { <triggered_action> }

<triggered_action>::= ON UPDATE <referential_action> | ON DELETE

<referential_action>

<referential_action>::= RESTRICT | CASCADE | SET NULL | SET DE-
FAULT

parameters CREATE keyword.

<key_spec> key specification, either primary, candidate or foreign.

<key_reference> the qualified name of the simple or composite key you
wish to define.

UNIQUEalternate keyword to specify the definition of a candidate key.

PRIMARY, CANDIDATE, FOREIGN
a full explanation of these keywords is the user manual in
chapter KEYS.
PrimeBase Reference Manual 39

DDL REFERENCE MANUAL
COLUMN identifying keyword; indicates that the key you are creating
is to be bound to a column. This keyword is optional.

<column_of_table_reference>
the qualified name of a simple or composite column.
Syntax specifications - page 103.

<reference_spec> an optional specification of the target table(s) of the for-
eign keys. Each target table must have a primary key de-
fined on the same domain as the foreign key. Only one of
the tables is required to contain the corresponding primary
key value.

REFERENCES keyword.

<table_reference> the qualified name of a target table.

<triggered_action> indicates that after certain commands performed on any of
the target tables, a particular function is to be carried out.

ON UPDATE keywords, indicating that when an update is carried out on
the target table, referential action must be taken!

ON DELETE keywords, indicating that when a delete is carried out on
the target table, referential action must be taken.

<referential_action> from a list of functions, you can specify what happens to
foreign key values that no longer have corresponding pri-
mary key values.

RESTRICTED The update or delete operation is restricted to the case
where there are no related values (it is otherwise rejected).

CASCADES The update, or delete operation “cascades” to update the
foreign key in all related values.

SET NULL On update, or deletion, the foreign key is set to null in all
related values and the target record is then updated, or de-
leted (of course, this case could not apply if the foreign key
cannot accept nulls in the first place).
40 PrimeBase Reference Manual

DDL REFERENCE MANUAL
SET DEFAULT On foreign key columns that have a default bound to them,
on an update, or delete, operation to the primary key col-
umn, the foreign key is then updated to the default value -
set by the CREATE DEFAULT statement.

notes Foreign keys may only be defined on a column that is based on a previously de-
fined domain (simple or composite).

All primary keys must fulfil the entity integrity rule, which states: no component
of the primary key in a base relation is allowed to contain a NULL. When a pri-
mary key is defined on a column which allows NULLs, the column will no longer
accept missing values.

All primary and candidate keys must satisfy the uniqueness property, which
states: No two tuples of a key may have the same value, therefore although it is
allowed for candidate keys to be defined on a column that allows NULLs, this col-
umns may only include one NULL, as two NULLs are considered as duplicate val-
ues.

All composite candidate and primary keys must satisfy the minimality property,
which states: If a candidate key is composite, then no component of that key can
be removed from that combination without the uniqueness of that key being lost.
However, adherence to this requirement of the relational model cannot be veri-
fied by the DBMS.

All foreign keys must fulfil the referential integrity rule, which states: The data-
base may not contain any unmatched foreign key values. These values are all
drawn from the primary key which is being referenced, via the primary domain
on which the foreign key is based.

A base relation must have one and only one primary key defined on it.

A primary key must be defined on a base relation before the relation can be used.

example /***in this example, a primary key is created, GolfersPk, and

defined on the column, ID, in the table, Golfers.***/

CREATE PRIMARY KEY GolfersPk

ON Golfers.ID;
PrimeBase Reference Manual 41

DDL REFERENCE MANUAL
/***A candidate key is defined on the same table, on the column,

Names. This column is a composite column, made up of the compo-

nent columns, SurName and FirstName.***/

CREATE CANDIDATE KEY GolferNameCk ON Golfers.Name;

/***A foreign key is created on the Clubs table, and is defined

on the column Professionals. There is no need to explicitly

define the reference to the primary key, as the foreign key is

defined on the same domain as the primary key - therefore a re-

lationship between the two keys is automatically created. You

can however set up triggered action, independent of the REFER-

ENCES clause.***/

CREATE FOREIGN KEY ClubsProFk ON Clubs.Professional ON UPDATE

CASCADE ON DELETE CASCADE.

see also drop/rename key

CREATE RULE

function Rules can be applied to tables or simple domains. They restrict the values and
combinations of values of a row of a table or a simple domain.

syntax CREATE RULE <rule_reference> ON ([TABLE] <table_reference> |

[DOMAIN] <domain_reference>) <rule_def> ';'

<rule_def>::= (CHECK | AS) <search_condition>

parameters CREATE RULE statement identifying keyword.

ON specify to which table or domain the rule is to be bound.

<rule_reference> the qualified name of the rule.

<table_reference> the qualified name of the table to which you want to bind
the rule.
42 PrimeBase Reference Manual

DDL REFERENCE MANUAL
<domain_reference> the qualified name of the domain to which the rule is
bound. Rules can only be specified on simple domains.

<rule_def> specifies the conditions of the rule.

<search_condition> can be any expression that would be valid in a WHERE
clause. Subqueries, however, are not allowed.

notes If a base table is dropped, all rules defined on that table are also dropped.

In order for a new rule to be defined on a given table, the old rule must first be
dropped.

When a rule is defined on a table, existing rules are not checked to conform to the
rule. Only subsequent inserts and updates are checked.

Columns or components of columns referenced in <search_condition> are lim-
ited to the columns of <table_reference> (a single row). Note that only the com-
parison operators are defined on composite columns

Rules can only be specified on a simple domain (i.e. a domain defined on a single
basic data type). In the case of rules defined on domains, the name of the domain
(optionally qualified by the creator name) may be used in place of columns in
<search_condition>.

examples /***In this example, a rule, StatusRule is defined on the do-

main, StatusType.***/

CREATE DOMAIN StatusType CHAR[8];

CREATE RULE StatusRule ON StatusType AS StatusType IN ('Ama-

teur', 'Pro', 'Pro/Am');

/***A rule, ParRule is defined on the column, Par, in the table,

Courses.***/

CREATE RULE ParRule ON Courses AS Par IN (3, 4, 5);

see also drop/rename rule
PrimeBase Reference Manual 43

DDL REFERENCE MANUAL
CREATE TABLE

function This statement creates a relation within a currently open database.

syntax CREATE TABLE <table_reference> <table_def> ';'

<table_def>::= '(' <column_def> {',' <column_def> } ')'

<column_def>::= <column_name> (<simple_column_def> |

<composite_column_def>)

<simple_column_def>::= <simple_domain>

[<missing_specification>]

<simple_domain>::= <domain_reference> | <data_type>

<composite_column_def>::= <column_group> [<domain_reference>]

<column_group>::= '(' <column_name> { ',' <column_name> } ')'

parameters CREATE TABLE statement identifying keywords.

<table_reference> the qualified name of the relation you are creating.

<table_def> the definition of the relation being created, which is a list of
column definitions.

<column_def> the definition of a column of the relation, which consists of
a column name followed by a simple or composite column
specification.

<column_name> the identifying name for a particular column..

<simple_column_def>the definition of a simple column, specifying the type or
domain of the column, and whether or not this column
may contain NULLS (missing_specification>).

<simple_domain> the domain from which a simple column draws its values.
This must be an already existing simple domain (see sec-
tion on domains), or a basic data type.

<data_type> any one of the basic data types. See section on data types,
in the user manual in chapter DATA TYPES..
44 PrimeBase Reference Manual

DDL REFERENCE MANUAL
<composite_column_def>
the definition of a composite column, consisting of two, or
more, simple columns, optionally based on a composite
domain.

<column_group> an ordered list of simple columns that comprise the com-
posite column.

<domain_name> the composite domain on which the composite column is
based.

notes A column can either be simple or composite. A simple column is defined using a
simple domain (<simple_domain> in <simple_column_def>). Please note how-
ever, that <simple_domain> also allows the direct specification of a basic data
type. This means that the user is not required to declare a domain for every
column in the database, and also renders PrimeBase compatible with other data-
base management systems.

A composite column is a combination of simple columns.

If a composite domain is specified in the declaration of a composite column, it is
not required that the simple columns mentioned in the <column_group> have
been previously declared, as the simple column definition can be deduced from
the composite domain that follows, (<domain_name> in
<composite_column_def>).

The <missing_secification> for simple columns declared in this way is as per de-
fault. If the <missing_specification> in the definition of a simple column is omit-
ted, the column will assume the <missing_specification> of the underlying
domain, or missing value allowed (NULL) in the case of simple columns defined
on a basic data type. If the underlying simple domain is defined as NOT NULL,
then the column cannot be defined as NULL.

Please note, that a simple column may be a member of more than one composite
column.

A table may not be used until a primary key has been defined on it. Equally, when
a primary key is dropped from a base relation, that relation is temporarily dis-
abled until a new primary key has been defined.
PrimeBase Reference Manual 45

DDL REFERENCE MANUAL
A CHAR or VARCHAR defined column with NULLs allowed takes up much more
space than a VARCHAR or CHAR column where NULLs are not allowed.

examples /***A table is created, called Results. Two of the columns are

defined on the domains, CompetitionID, and GolferID. A composite

column has been created, called Key. The primary key is defined

on this column, as is the index.

CREATE TABLE Results

(

Year SMINT NOT NULL,

Competition CompetitionID NOT NULL,

Place SMINT NOT NULL,

Key (Year, Competition, Place),

Golfer GolferID,

TotalScore SMINT,

Points SMINT,

Winnings MONEY[10,2]

);

CREATE PRIMARY KEY ResultsPk ON Results.Key;

CREATE FOREIGN KEY ResultGolferFk ON Results.Golfer;

CREATE INDEX ResultsIndex ON Results (Year, Competition, Place);

see also drop/rename table, alter table, reorg table, backup table, check table, open/close
table

CREATE VARIABLE

function This statement is used to create a database variable.

syntax CREATE (<collating_sequence> | <user_counter> | <user_variable>

) ';'

<collating_sequence>::= COLLATING SEQUENCE [VARIABLE]

<variable_reference> '=' <comparison_order>
46 PrimeBase Reference Manual

DDL REFERENCE MANUAL
<comparison_order>::= '('<equivalent_sequence> { ','

<equivalent_sequence> } ')'

<equivalent_sequence>::= '(' <expression> { ',' <expression> }

')' | <expression>

<user_counter>::= COUNTER [VARIABLE] <data_type>

<variable_reference> ['=' <expression>]

<user_variable>::= VARIABLE <data_type> <variable_reference> [

'=' <expression>]

parameters CREATE keyword.

<collating_sequence> specifies how character string values are to be compared
and sorted.

COLLATING SEQUENCE
identifying keywords: indicate that a collating sequence
variable is to be created.

[VARIABLE] an optional keyword.

<variable_reference> a name for the variable you are creating. It must conform
to the rules for identifiers.

<comparison_order> an ascending list of <equivalent_sequence>s.

<equivalent_sequence>
specifies that all characters in the sequence are considered
to be equal for comparison purposes.

<expression> any valid expression, which is interpreted as a single or
string of characters.

<user_counter> a database variable that can be used to generate unique
identifiers. By using a counter as a serial default (see
CREATE DEFAULT, page 30) the current value of the
counter may be automatically inserted into a column, and
then the counter variable incremented.
PrimeBase Reference Manual 47

DDL REFERENCE MANUAL
COUNTER [VARIABLE]
identifying keywords: indicate that a variable of the
counter type is being created.

<data_type> a numeric data type, such as INTEGER, FLOAT or DECI-
MAL.

<variable_reference> a name for the variable. It must conform to the rules for
references, page 103.

<expression> any valid expression. This clause is optional. If you do not
set an expression, the counter will start at zero, (0). An ex-
pression can also later be set with the SET VARIABLE state-
ment.

<user_variable> a user defined variable.

VARIABLE statement identifying keyword: indicates what kind of a da-
tabase structure is being created.

<data_type> any of the basic data types.

<variable_reference> a name for the variable. It must conform to the rules for
references, page 103.

<expression> any valid expression. This clause is optional. If no expres-
sion is set here, this can be done later with the SET VARI-
ABLE statement.

examples /***In the following example, a collating sequence variable is

created, called “normal”. It defines the order for sorting and

comparison purposes.***/

CREATE COLLATING SEQUENCE VARIABLE normal =

(

'AÀÄÃÅaáàâäãå',

'Ææ',

'Bb',

'CÇcç',

'Dd',

'EÉeéèêë',
48 PrimeBase Reference Manual

DDL REFERENCE MANUAL
'Ff',

'Gg',

'Hh',

'Iiíìîï',

'Jj',

'Kk',

'Ll',

'Mm',

'NÑnñ',

'OÖÕoóòôöõ',

'Œœ',

'Øø',

'Pp',

'Qq',

'Rr',

'Ssß',

'Tt',

'UÜuúùûü',

'Vv',

'Ww',

'Xx',

'Yyÿ',

'Zz',

'0',

'1',

'2',

'3',

'4',

'5',

'6',

'7',

'8',

'9'

);
PrimeBase Reference Manual 49

DDL REFERENCE MANUAL
/***Here are some examples of how the equivalent sequence

'AÀÄÃÅaáàâäãå' could have been written:***/

('A', 'À', 'Ä', 'Ã', 'Å', 'a', 'á', 'à', 'â', 'ä', 'ã', 'å'),

or

('AÀÄÃÅ', 'aáàâäãå'),

/***Note that the characters that are omitted (there are 256

characters, although many are not printable) from the collating

sequence are added automatically, each in there own equivalent

sequence in order of ASCII numbers.***/

/***In the next example, three counter variables are created.

These counter variables are referred to in later default state-

ments.***/

CREATE COUNTER INTEGER GolferCnt = 1;

CREATE COUNTER INTEGER ClubCnt = 1;

CREATE COUNTER INTEGER CompetitionCnt = 1;

/***In the last example, a user defined variable is created,

called “year_end_no”. It is of the data type, DATE, and the ex-

pression is the date of the year - “1992”.***/

CREATE VARIABLE DATE year_end_no = “1992”;

notes A database user variable can be used to store certain values used by an applica-
tion permanently in the database.

The order of characters within an <equivalent_sequence> is important when sort-
ing

Each expression in an equivalent sequence represents a character or sequence of
characters. Strings (CHAR, VARCHAR, BIN and VARBIN) represent a sequence of
characters. Other numbers (INTEGER, FLOAT,...) represent single characters. The
number is considered to be the ASCII value of a character (e.g. 65 = 'A', 66 = 'B',
etc.).

All the characters in an <equivalent_sequence> are considered to be equal for
comparison ('=', '<', '>', BETWEEN and LIKE) purposes. The order of charac-
ters within an <equivalent_sequence> is important when sorting (e.g. by the
50 PrimeBase Reference Manual

DDL REFERENCE MANUAL
ORDER BY clause). In this case, characters are sorted ascending from left to right.
For example, the <equivalent_sequence> “Aa” indicates that “A” and “a” are
equal for comparison purposes, but when sorting, “A” will appear before “a”.

While an <equivalent_sequence> consists of characters that are considered equal
when compared, the <comparison_order> indicates the result of '<', '<=', '>'
and '>=' operations performed on characters from different
<equivalent_sequences>.

The only way of finding the current value of a database variable is by selecting
the value from the SysVariables table.

see also set/drop/rename variable

CREATE VIEW

function The statement create view enables you to create a virtual, derived table. Any
table that can be retrieved via a SELECT statement (any derivable table) can be
defined as a view.

syntax CREATE VIEW <view_reference> [<column_group>]

AS <query_spec>

[WITH CHECK OPTION]';'

parameters CREATE VIEW statement identifying keyword.

AS specifies the mapping of that object to the conceptual
level.

WITH CHECK OPTION
indicates that update and insert operations are to be
checked, to ensure that they satisfy the view-defining con-
dition. It is optional.

<view_reference> the qualified name of the view being created.
PrimeBase Reference Manual 51

DDL REFERENCE MANUAL
<column_group> optional; list of unique column names, should two or more
columns of the view otherwise have the same name, or if
view is derived from a function, operational expression, or
a literal, and thus has no name that can be inherited.

<query_spec> query specification; the SELECT statement that defines the
view.

example /***In this example, a view, GolfersAmateurs is created. It con-

sists of columns from the table Golfers, and includes all golf-

ers with the status Amateur.***/

CREATE VIEW GolfersAmateurs

AS SELECT ID, Name, Title, Handicap, Status

FROM Golfers

WHERE Status ="Amateur"

WITH CHECK OPTION;

notes Views are dynamic, meaning that changes to the underlying table will automati-
cally and immediately be reflected in the view. Equally, changes made to the view
itself are also applied to the underlying relation(s).

It is strongly advisable to always include the primary and/or candidate key of the
underlying relation(s) in your view definition. This will ensure that it is possible to
update (INSERT, UPDATE, DELETE) the view.

see also drop/rename view

DESCRIBE COLUMNS

function This statement describes all columns of a particular table. The table must be ac-
cessible to the user and must be in an already open database. The resulting table
is described below:

syntax DESCRIBE COLUMNS [OF] <table_reference> [INTO <cursor>] ';'

return values
52 PrimeBase Reference Manual

DDL REFERENCE MANUAL
parameters DESCRIBE COLUMNSkeywords.

OF an optional keyword

<table_reference> a reference to a table.

col# Data Type Name Description

1 SMINT colnr Column number

2 SMINT level Column level
number

3 VARCHAR[31] name Column name

4 SMINT type Column data
type

5 SMINT len Column length
in bytes

6 SMINT places Column scale

7 BOOLEAN nullsok Nulls allowed

8 BOOLEAN groupcol Group column

9 SMINT parentnr Parent column
number

10 SMINT occurs Number of oc-
currences

11 SMINT occdep Occurs depend-
ing on column

12 BOOLEAN updtok Is column updat-
able

13 VARCHAR[31] title Column title

14 VARCHAR[255] remarks Column remarks
PrimeBase Reference Manual 53

DDL REFERENCE MANUAL
INTO an optional clause: rowset can be put into a specific cursor.
If no cursor is mentioned, the rowset is placed into the
system defined cursor, $cursor.

<cursor> A cursor variable to receive the rowset. It must conform to
the rules for identifiers.

notes It is not necessary for the table specified by <table_reference> to have been pre-
viously opened with an OPEN TABLE statement.

examples /***A describe columns of the table Golfers is carried out in

this example.***/

DESCRIBE COLUMNS OF Golfers;

PRINTALL;

1 0 ID 3 4 0 $FALSE $FALSE 0 0 0 $TRUE

2 0 SurName 12 55 0 $FALSE $FALSE 0 0 0 $TRUE

3 0 FirstNames 12 55 0 $FALSE $FALSE 0 0 0 $TRUE

4 0 Title 9 10 0 $TRUE $FALSE 0 0 0 $TRUE

5 0 Gender 9 1 0 $FALSE $FALSE 0 0 0 $TRUE

6 0 Nationality 12 55 0 $TRUE $FALSE 0 0 0 $TRUE

7 0 DateOfBirth 6 4 0 $TRUE $FALSE 0 0 0 $TRUE

8 0 Status 9 8 0 $TRUE $FALSE 0 0 0 $TRUE

9 0 Handicap 2 2 0 $TRUE $FALSE 0 0 0 $TRUE

10 0 MemberOfClub 3 4 0 $TRUE $FALSE 0 0 0 $TRUE

11 0 Earnings 11 12 2 $TRUE $FALSE 0 0 0 $TRUE

see also describe dbms, describe open dbms, describe databases, describe open data-
bases, describe tables, describe linksets

DESCRIBE DATABASES

function This statement returns a list of all databases on a specific DBMS (server or gate-
way).

syntax DESCRIBE [<dbms_brand>] DATABASES
54 PrimeBase Reference Manual

DDL REFERENCE MANUAL
[[IN] LOCATION <character_literal>]

[INTO <cursor>]';'

return values The rowset returned into <cursor> is as follows:

parameters DESCRIBE DATABASESkeywords

<dbms_brand> specify which brand of DBMS. This parameter is optional.
If given, it must be the name of a previously opened DBMS
(see OPEN DBMS command). The default is the current
DBMS as selected by the USE DBMS command.

IN an optional keyword. The IN LOCATION clause is ignored
by the PrimeBase server.

LOCATION an optional clause, to specify the location of the databases.

<character_literal> In this case, the path name of the databases in the form of
a string. This parameter is ignored by the PrimeBase
server, due to the fact that all databases are listed in the
SysDatabases table in the Master database. When access-
ing a non-PrimeBase server through a gateway, however,
the use of this parameter depends on the type of DBMS
(brand).

INTO an optional clause: rowset can be put into a specified cur-
sor.

<cursor> A cursor variable to receive the rowset. Must conform to
the rules for identifiers.

col# Data Type Name

1 VARCHAR[31] name
PrimeBase Reference Manual 55

DDL REFERENCE MANUAL
notes A PrimeBase server can deliver information other than just the names of the da-
tabases. This information includes the ID of the databases and the privilege level
of the user. The PINKCTL statement is used to control what information is pro-
vided by DESCRIBE DATABASES. By default, only the names of the databases are
listed in order to maintain DAL compatibility.

example /***In this example the databases of the default DBMS are

listed.***/

DESCRIBE DATABASES;

PRINTALL;

Master

Model

test

SysTestMaster

SysTestTemp

Golfers

see also describe dbms, describe open dbms, describe open databases, describe tables,
describe linksets, describe columns, open database

DESCRIBE DBMS

function This function returns the names of all DBMSs that can be accessed by the cli-
ent.The result is a rowset, as described below.

syntax DESCRIBE DBMS [INTO <cursor>]';'

<cursor>::= <identifier>

return values The resulting rowset contains one row for each DBMS. Each row contains the 17
columns of information shown in the table below.
56 PrimeBase Reference Manual

DDL REFERENCE MANUAL
col# Data Type Name Information

1 VARCHAR[31] brand DBMS name or
server alias

2 VARCHAR[31] rev Version number

3 VARCHAR[31] brparms Brand open pa-
rameters

4 VARCHAR[31] dbparms Database open
parameters

5 VARCHAR[31] tbparms Table open pa-
rameters

6 VARCHAR[31] struct Database struc-
ture info

7 VARCHAR[31] txns Transaction sup-
port

8 VARCHAR[31] types Supported data
types

9 VARCHAR[31] stmts Supported state-
ments

10 VARCHAR[31] queries Query process-
ing options

11 VARCHAR[31] aggfcns Aggregate func-
tion support

12 VARCHAR[31] brtype DBMS brand
(brand type)

13 VARCHAR[31] prot Protocol that
may be used to
connect to the
DBMS
PrimeBase Reference Manual 57

DDL REFERENCE MANUAL
parameters DESCRIBE DBMS statement identifying keywords.

INTO an optional clause: rowset can be put into a specified cur-
sor.

<cursor> A cursor variable to receive the rowset. Must conform to
the rules for identifiers.

example /***In this example, the DBMS, PrimeBase, is described. The

printall statement is used to print the results.***/

DESCRIBE DBMS; PRINTALL;

SQLonPPC 0 NNN YNNNNNYN NYN YYYYYNNNN YYN YYYYYYYYYYYYYYNN

YYYYYYYYNNYY YYYYYYYYYY YYYYYYYY PrimeBase adsp \zDev-

Zone\bPrimeBase DevZone

SUNServer2400 0 NNN YNNNNNYN NYN YYYYYNNNN YYN YYYYYYYYYYYYYYNN

YYYYYYYYNNYY YYYYYYYYYY YYYYYYYY PrimeBase adsp \zDev-

Zone\bPrimeBase DevZone

SQLonPPC 0 NNN YNNNNNYN NYN YYYYYNNNN YYN YYYYYYYYYYYYYYNN

YYYYYYYYNNYY YYYYYYYYYY YYYYYYYY PrimeBase ppc \zDevZone\wPaul's

Quadra\bPrimeBase DevZone

IBMTestDBMS 0 NNN YNNNNNYN NYN YYYYYNNNN YYN YYYYYYYYYYYYYYNN

YYYYYYYYNNYY YYYYYYYYYY YYYYYYYY PrimeBase adsp \zDev-

Zone\bPrimeBase DevZone

14 VARCHAR[255] options The options that
should be used
to connect

15 VARCHAR[31] zone The zone (if ap-
plicable) of the
DBMS

16 VARCHAR[31] server The actual
server name

17 VARCHAR[31] unused6 Reserved

col# Data Type Name Information
58 PrimeBase Reference Manual

DDL REFERENCE MANUAL
PressSQL24 0 NNN YNNNNNYN NYN YYYYYNNNN YYN YYYYYYYYYYYYYYNN

YYYYYYYYNNYY YYYYYYYYYY YYYYYYYY PrimeBase adsp \zMyZone\bPrime-

Base MyZone

notes Unlike standard DAL, the PrimeBase DESCRIBE DBMS command lists all DBMSs
that are published on the network, not just those on a particular host. As a result,
DBMS brand (the first column of the rowset described above) is, in fact, the
DBMS name. The actual DBMS brand is given in column 12: brtype. After creat-
ing a session, many 3rd party DAL applications allow the user to select a DBMS.
In doing this, they present a list of values in the ‘brand’ column. In the case of
P:INK DAL, this is a list of server and gateways on the network accessible from
the client.

Other details provided by the DESCRIBE DBMS command include the version
number, 15 profile strings and connection information.

The connection information is a PrimeBase extension to standard DAL. All the in-
formation required to make a connection to a particular DBMS, using OPEN
DBMS, is provided in the columns, brtype, prot, options and zone. In the follow-
ing two sections we describe the profile strings and the connection information.

Profile Strings

The 15 DBMS profile strings provide a description of a particular DBMS brand.
They tell which features are supported or not supported by the brand, what pa-
rameters are required or optional, and so forth. The strings are positional, with
character positions numbered from 0 (the first one) to N-1, where N is the length
of the string. In each position of each string, the character will either be a Y
(meaning the feature is supported) or an N (meaning the feature is not sup-
ported).

BRPARMS

The profile string, brparms, specifies which parameters of the OPEN DBMS state-
ment are relevant for the DBMS brand. It has three characters in the following po-
sitions:
PrimeBase Reference Manual 59

DDL REFERENCE MANUAL
DBPARMS

The profile string dbparms specifies which parameters of the OPEN DATABASE
statement are relevant for the DBMS brand. It has eight characters in the follow-
ing positions:

Position PrimeBase Value Meaning

0 Y Is the user name used?

1 Y Is the password used?

2 Y Is the option string used?

Position PrimeBase Value Meaning

0 Y Is the database name used?

1 N Is the location used?

2 N Is the user name used?

3 N Is the password used?

4 N Is the option string used?

5 N Is SHARED mode supported?

6 Y Is PROTECTED mode supported?

7 N Is EXCLUSIVE mode supported?
60 PrimeBase Reference Manual

DDL REFERENCE MANUAL
TBPARMS

The profile string tbparms specifies which parameters of the OPEN TABLE state-
ment are relevant for the DBMS brand. It has three characters in the following po-
sitions:

STRUCT

The profile string struct specifies general structural information about how the
DBMS brand organizes its databases and whether various database features are
present or absent. It has nine characters in the following positions:

Position PrimeBase Value Meaning

0 N Is SHARED mode supported?

1 Y Is PROTECTED mode supported?

2 N Is EXCLUSIVE mode supported?

Position PrimeBase Value Meaning

0 Y Does the DBMS support creation
of multiple databases on a single
host system? (If N, there is one
system-wide database.)

1 Y Are individual databases named?
(If N, databases are unnamed.)

2 Y Does the DBMS use host loca-
tions (directories, catalogues) to
structure its databases?
PrimeBase Reference Manual 61

DDL REFERENCE MANUAL
TXNS

The profile string txns specifies the transaction-processing support provided by
the DBMS brand. It has three characters in the following positions:

3 Y Does the DBMS support concur-
rent access to multiple data-
bases? (If Y, this DBMS brand
supports multiple OPEN DATA-
BASE statements; if N, only one
database of this brand can be
open at a time.)

4 Y Does the DBMS support queries
across different databases? (If Y,
the FROM clause of a SELECT
statement can include tables
from multiple databases; if N, all
tables must be from the same da-
tabase.)

5 N Are linksets present in databases
of this brand? (If N, the DESCRIBE
LINKSETS statement will always
produce a rowset with no row.)

6 N Are hierarchical columns present
in databases of this brand? (If Y,
column names can have the form
a.b.c.)

7 N Are repeating columns present in
databases of this brand? (If Y, col-
umns names can have the form
colname[6].)

8 N Are variable repeating columns
present in databases of this
brand?

Position PrimeBase Value Meaning
62 PrimeBase Reference Manual

DDL REFERENCE MANUAL
TYPES

The profile string types specifies which DAL data types can result from a data-
base of the DBMS brand. Each position of the string corresponds to a single DAL
data type. It has 16 characters in the following positions:

Position PrimeBase Value Meaning

0 Y Does the DBMS support transac-
tions (that is, is the DAL COM-
MIT/ROLLBACK mechanism
supported?)

1 Y Are transactions performed in re-
peatable-read (RR) mode? That
is, can the client application be
sure that data it has read during
the current transaction will be
identical if re-read before a
COMMIT or ROLLBACK?

2 N Are transactions performed in
cursor-stability (CS) mode? That
is, can the client application be
sure only that data read through
a single cursor is consistent? (Ei-
ther CS or RR mode will be TRUE
for a given DBMS, but not both.)

Position PrimeBase Value Meaning

0 Y Does the DBMS generate NULL
data?

1 Y Does the DBMS generate BOOL-
EAN data?
PrimeBase Reference Manual 63

DDL REFERENCE MANUAL
2 Y Does the DBMS generate SMINT
data?

3 Y Does the DBMS generate INTE-
GER data?

4 Y Does the DBMS generate SM-
FLOAT data?

5 Y Does the DBMS generate FLOAT
data?

6 Y Does the DBMS generate DATE
data?

7 Y Does the DBMS generate TIME
data?

8 Y Does the DBMS generate TIMES-
TAMP data?

9 Y Does the DBMS generate CHAR
data?

10 Y Does the DBMS generate DECI-
MAL data?

11 Y Does the DBMS generate MONEY
data?

12 Y Does the DBMS generate VAR-
CHAR data?

13 Y Does the DBMS generate VARBIN
data?

14 N Does the DBMS generate LONG-
CHAR data?

15 N Does the DBMS generate
LONBIN data?

Position PrimeBase Value Meaning
64 PrimeBase Reference Manual

DDL REFERENCE MANUAL
STMTS

The profile string stmts specifies which DAL statements are supported for data-
bases of the DBMS brand. Each position of the string corresponds to a single DAL
data-manipulation statement. It has 12 characters in the following positions:

Position PrimeBase Value Meaning

0 Y Is SELECT statement supported?

1 Y Is FETCH statement supported?

2 Y Is DESELECT statement sup-
ported?

3 Y Is searched UPDATE statement
supported?

4 Y Is positioned UPDATE statement
supported?

5 Y Is searched DELETE statement
supported?

6 Y Is positioned DELETE statement
supported?

7 Y Is INSERT statement supported?

8 N Is LINK statement supported?

9 N Is UNLINK statement supported?

10 Y Is COMMIT statement supported?

11 Y Is ROLLBACK statement sup-
ported?
PrimeBase Reference Manual 65

DDL REFERENCE MANUAL
QUERIES

The profile string queries specifies the features supported in DAL queries against
databases of the DBMS brand. It has ten characters in the following positions:

Position PrimeBase Value Meaning

0 Y Are select-list expressions sup-
ported? (If N, only column refer-
ences and aggregate functions of
column references can appear in
a select list.)

1 Y Are joins supported? (If N, the
FROM clause of a SELECT state-
ment can include only a single ta-
ble.)

2 Y Are row-selection criteria sup-
ported? (If N, there can be no
WHERE clause in a SELECT state-
ment.)

3 Y Is grouping supported? (If N,
there can be no GROUP BY
clause in a SELECT statement.)

4 Y Is group selection supported? (If
N, there can be no HAVING
clause in a SELECT statement.)

5 Y Is sorting supported? (If N, there
can be no ORDER BY clause in a
SELECT statement.)

6 Y Are subqueries supported? (If N,
the IN (subquery) predicate, the
EXISTS predicate, the quantified
predicates, and comparison pred-
icates with their associated sub-
queries are not supported.)
66 PrimeBase Reference Manual

DDL REFERENCE MANUAL
AGGFCNS

The profile string aggfcns specifies which DAL aggregate functions are sup-
ported in queries against databases of the DBMS brand. It has eight characters in
the following positions:

7 Y Are aggregate functions sup-
ported in a select list?

8 Y Are aggregate functions sup-
ported in a HAVING clause?

9 Y Are aggregate functions with
outer references supported in
subqueries?

Position PrimeBase Value Meaning

0 Y Is the COUNT(*) supported?

1 Y Is the COUNT(DISTINCTx) func-
tion supported?

2 Y Is the MIN(x) function supported?

3 Y Is the MAX(x) function sup-
ported?

4 Y Is the SUM(x) function sup-
ported?

5 Y Is the SUM(DISTINCT x) function
supported?

6 Y Is the AVG(x) function supported?

7 Y Is the AVG(DISTINCT x) function
supported?

Position PrimeBase Value Meaning
PrimeBase Reference Manual 67

DDL REFERENCE MANUAL
Since the PrimeBase Server only supports the PrimeBase DBMS, the table will
have only one entry - describing the PrimeBase DBMS.

Connection Information

The connection information is a PrimeBase extension to DAL.

BRTYPE

This is the actual brand of the DBMS.The brand is given here, because the
column called ‘brand’ (the first column of the rowset) contains the name/alias of
the server or gateway. A particular brand may be selected by setting the global
variable $dbmsbrand. Setting this variable to NULL lists all known DBMS brands
that may be accessed by a PrimeBase client.Setting the variable to ‘PrimeBase’
will list only PrimeBase servers.

PROT

The protocol that may be used to connect to the server or gateway.If more than
one protocol is possible, the server will be listed once for each. Possible values
for this field are:

adsp Apple Data Stream Protocol. The standard protocol for Ap-
pletalk networks. This protocol can only be used when con-
necting to a remote server. Use the ppc protocol to
communicate with a local Mac server.

ppc Apple’s Program-to-Program Communication. Also known
as program-linking. This protocol is mainly used to com-
municate with a server on the same Macintosh as a client,
however it may also be used over the network. To enable
remote clients to connect to a server using ppc, start pro-
gram-linking and enable guest logins for linking programs.

tcp Transport Control Protocol/Internet Protocol (TCP/IP).
68 PrimeBase Reference Manual

DDL REFERENCE MANUAL
ipc Inter-process Communications. A protocol that uses
shared memory to communicate between processes on
the same machine. Currently this protocol is only imple-
mented for UNIX systems.

OPTIONS

Options are the connection specific parameters required by the OPEN DBMS
command to make a connection to this particular DBMS.

ZONE

On AppleTalk networks, this is the zone of the server or gateway. If a lookup zone
has been selected using the global variable $dbmszone, then this field contains
no additional information.

SERVER

This is the actual server name as published on the network. This value may be
different to the DBMS brand name or server alias appearing in column 1.

see also describe open dbms, describe databases, describe open databases, describe ta-
bles, describe linksets, describe columns

DESCRIBE LINKSETS

function This statement is included for DAL compatibility only.

syntax DESCRIBE LINKSETS [[OF] <database_alias>] [INTO <cursor>] ';'

parameters DESCRIBE LINKSETS keywords.

OF an optional keyword.
PrimeBase Reference Manual 69

DDL REFERENCE MANUAL
<database_alias> the alias of the database being queried.

INTO an optional clause: rowset can be put into a specific cursor.
If no cursor is mentioned, the rowset is placed into the
system defined cursor, $cursor.

<cursor> A cursor variable to receive the rowset. It must conform to
the rules for identifiers.

notes It returns no rows, as there are no linksets in PrimeBase. They are not included,
as they are not a feature of the relational model.

see also describe dbms, describe open dbms, describe databases, describe open data-
bases, describe tables, describe columns

DESCRIBE OPEN DATABASES

function This statement returns a cursor containing information about the currently open
databases. The structure of the table is given below.

syntax DESCRIBE OPEN DATABASES [INTO <cursor>]';'

return values The resulting rowset has one entry for each database that is currently open. The
first database described in the rowset is the current default database. Each row
contains the five columns of information shown below:

col# Data Type Name Description

1 SMINT order Sequence
number

2 VARCHAR[31] alias Database alias

3 VARCHAR[31] brand DBMS brand

4 SMINT shrmode Sharing mode

5 SMINT updmode Update mode
70 PrimeBase Reference Manual

DDL REFERENCE MANUAL
notes The rowset created by this statement has an EXTRACT mode, so the number of
databases described is available through the $rowcnt system variable.

The sharing mode (shrmode) is reported as 1=SHARED, 2=PROTECTED, 3=EX-
CLUSIVE.

The update mode (updmode) is reported as 1=READONLY, 2=UPDATE,
3=SCROLLING, 4=EXTRACT mode.

Current Owner: This column is always an empty string, as there are no owners in
PrimeBase.

example DESCRIBE OPEN DATABASES;

0 Golfers PrimeBase 2 2

see also describe dbms, describe open dbms, describe databases, describe tables, de-
scribe linksets, describe columns

DESCRIBE OPEN DBMS

function This statement describes all currently open database management systems
(DBMSs).

syntax DESCRIBE OPEN DBMS [INTO <cursor>]';'

return values a rowset which consists of a DBMS number followed by a row with the identical
structure of the rowset returned by the DESCRIBE DBMS statement.

parameter DESCRIBE OPEN DBMS
statement identifying keywords.

INTO an optional clause: rowset can be put into a specified cur-
sor.

6 VARCHAR[31] owner current owner

col# Data Type Name Description
PrimeBase Reference Manual 71

DDL REFERENCE MANUAL
<cursor> A cursor variable to receive the rowset. Must conform to
the rules for identifiers.

notes This statement lists all open connections to DBMSs. The first row returned is the
current DBMS (as specified in USE DBMS.

see also describe dbms, describe databases, describe open databases, describe tables,
describe linksets, describe columns

DESCRIBE TABLES

function This statement returns a cursor describing the tables of a particular database.

syntax DESCRIBE TABLES [[OF] <database_alias>] [INTO <cursor>] ';'

return values The structure of the table returned into <cursor> is given below.

col# Data Type Name Description

1 VARCHAR[255] name Table name

2 VARCHAR[1] type Table(T) or view
(V)

3 BOOLEAN ordered Is table ordered?

4 SMINT colcnt Column count

5 INTEGER rowcnt Row count

6 SMINT parentcnt Parent count

7 SMINT childcnt Child count

8 VARCHAR[31] title Table title

9 VARCHAR[255] remarks Remarks

10 VARCHAR[255] owner Table owner
72 PrimeBase Reference Manual

DDL REFERENCE MANUAL
parameters DESCRIBE TABLES statement identifying keywords

OF an optional keyword. If this clause is omitted, the default
database is used.

<database_alias> The alias of the database whose tables are to be described.
If dbalias is omitted, the default database is used.

INTO an optional clause: the resulting rowset can be put into a
user-specified cursor.

<cursor> A cursor variable to receive the rowset. Must conform to
the rules for identifiers.

notes The OPEN DATABASE statement must be used to open the database specified by
<database_alias> (or the default database if the database alias was not specified)
before the DESCRIBE TABLES statement can be used.

If the <database_alias> is omitted, the default database is used (refer to
USE/OPEN DATABASE statements).

Note also that the DESCRIBE TABLES statement describes not just the user de-
fined tables, but also the system tables of the currently open database.

example /***In this example, the tables in the database Golfers are de-

scribed. Golfers is the default database.***/

OPEN DATABASE Golfers;

DESCRIBE TABLES;

printall;

Clubs T $FALSE 9 0 0 9 $NULL $NULL Common

Competitions T $FALSE 9 0 0 9 $NULL $NULL Common

Courses T $FALSE 7 0 0 7 $NULL $NULL Common

Golfers T $FALSE 11 0 0 11 $NULL $NULL Common

GolfersAmateurs V $FALSE 6 0 0 6 $NULL $NULL Common

Results T $FALSE 7 0 0 7 $NULL $NULL Common

Scores T $FALSE 8 0 0 8 $NULL $NULL Common
PrimeBase Reference Manual 73

DDL REFERENCE MANUAL
SysColumnComps T $FALSE 7 0 0 7 $NULL $NULL System

SysColumnPrivs T $FALSE 11 0 0 11 $NULL $NULL System

SysColumns T $FALSE 15 0 0 15 $NULL $NULL System

SysDataTypes T $FALSE 6 0 0 6 $NULL $NULL System

SysDefaults T $FALSE 10 0 0 10 $NULL $NULL System

SysDomainComps T $FALSE 8 0 0 8 $NULL $NULL System

SysDomains T $FALSE 13 0 0 13 $NULL $NULL System

SysIndexComps T $FALSE 6 0 0 6 $NULL $NULL System

SysIndices T $FALSE 18 0 0 18 $NULL $NULL System

SysKeys T $FALSE 9 0 0 9 $NULL $NULL System

SysMembers T $FALSE 2 0 0 2 $NULL $NULL System

SysObjects T $FALSE 7 0 0 7 $NULL $NULL System

SysPrivileges T $FALSE 16 0 0 16 $NULL $NULL System

SysReferences T $FALSE 5 0 0 5 $NULL $NULL System

SysRules T $FALSE 6 0 0 6 $NULL $NULL System

SysTables T $FALSE 15 0 0 15 $NULL $NULL System

SysUsers T $FALSE 12 0 0 12 $NULL $NULL System

SysVariables T $FALSE 8 0 0 8 $NULL $NULL System

SysViews T $FALSE 14 0 0 14 $NULL $NULL System

see also describe dbms, describe open dbms, describe databases, describe open data-
bases, describe tables, describe linksets, describe columns
74 PrimeBase Reference Manual

DDL REFERENCE MANUAL
DROP GROUP

function This statement drops a specific group or groups from the database.

syntax DROP GROUP <group_name> { ','<group_name> } ';'

parameter DROP GROUP statement identifying keywords.

group_name the name of the group you want to drop.

notes Naturally, once a group has been dropped, the users who were part of it are no
longer members of it.

example /***In this example, the group called GolfersPros is

dropped.***/

DROP GROUP GolfersPros;

see also see create user, alter user, add user, remove user, grant, revoke

DROP <OBJECT>

function This statement allows the deletion of a database object from the database.

syntax DROP [<object>] <object_reference> (',' <object_reference>) ';'

parameters DROP keyword

<object> the keyword of the object you are dropping. For example, if
you are dropping a table, you may write: DROP TABLE. It is
however optional whether you write in the keyword of the
object or not.

<object_reference> the name of the object you wish to drop.

notes Please note, that it is not possible to undo this statement.

example /***In this example, a database is dropped. Please note, that

first the database had to be closed, in order to be dropped.***/
PrimeBase Reference Manual 75

DDL REFERENCE MANUAL
CLOSE DATABASE Golfers;

DROP DATABASE Golfers;

GRANT

function This statement grants object or command privileges to the specified users and
groups.

syntax GRANT (<command_privileges> | <object_privileges>) TO (PUBLIC

| <user_name> { ',' <user_name> }) [WITH GRANT OPTION] ';'

<command_privileges>::= DBA | SA | RESOURCE |

<object_privileges>::= ALL [PRIVILEGES] | (

<object_privs_spec> { ','<action> }) ON <object_reference> [

<column_group>]]

<object_privs_spec>::= INSERT | DELETE | REFERENCE | SELECT |

UPDATE | EXECUTE

parameters GRANT statement identifying keywords.

<command_privileges>
determine which commands (or statements) a user is per-
mitted to issue.

DBA Database Administrator: this status means that a user in a
particular database can perform any action on the data-
base, without requiring specific privileges to do it. This
user also has the ability to introduce new users to the data-
base, and to grant DBA status to them. The DBA may also
drop the database.

SA System Administrator: SAs have DBA privileges to all data-
bases controlled by the DataServer. SAs can create, alter,
and delete any database. SAs do not need to be a user of a
database in order to open a database.
76 PrimeBase Reference Manual

DDL REFERENCE MANUAL
RESOURCE This means that a user may issue all CREATE commands.
Note that this does not include the DROP command. This is
because drop privileges are fixed as follows: Users can
drop any object created by themselves and DBA can drop
any object in the database. The ability to create databases
is only given to users of the master database. Creating
groups and adding user to a database may only be per-
formed by the database DBA (or SA in the case of the
master database).

<object_privileges> determines which database objects (and columns) a user is
permitted to access.

ALL the user is permitted access to all those statements that are
applicable to the object in question. The following privi-
leges can be granted:

INSERT permission to add a new row to a relation.

DELETE permission to remove a row from a relation

REFERENCE can only be granted on a domain, and allows the user to
create a foreign key on that domain.

SELECT permission to retrieve rows and columns from a relation or
relations.

UPDATE permission to update a row or column of a relation.

ON indicates on which database object the user will be able to
use these privileges.

<object_reference> the qualified name of the object.

<column_group> the specific references to those columns that are to be af-
fected. If the column_group is not specified, then all col-
umns are included in the privilege.

TO which group or user, these privileges are to affect.
PrimeBase Reference Manual 77

DDL REFERENCE MANUAL
PUBLIC All users are a member of the system group, PUBLIC. As a
result, granting a privilege to PUBLIC grants the privilege
to all users (or future users) of the database.

WITH GRANT OPTION
this clause enables the user, or group in question to also
grant the privileges that have been granted. This clause is
optional.

notes Two types of privileges can be granted with this statement, command or object
privileges. A command privilege determines whether a user is permitted to issue
certain commands (or statements). Object privileges, on the other hand, associ-
ate privileges with specific objects (and columns) in the database.

DROP privileges are a special case. Users can drop any object that they them-
selves have created, and DBAs can drop any object in the database, including the
database itself, but he/she may not drop any system objects.

When a user is added to the database, he/she is automatically given the lowest
privileges possible. To add a user to a normal database, the database must be in
use and the user must be a DBA. To add a user to the Master database, the
master database must be in use and the user must be an SA. Users added to the
Master database are not given SA status, but are allowed to create their own da-
tabases (they are called DBAs in the master database). A user of the Master data-
base may be promoted to SA by granting SA privileges (SA in
<command_privilege> above). Users of the master database who do not have SA
privileges still need to be a user of a database to open the database. A user of the
Master database that has SA privileges, however, is able to open any database
and is automatically given DBA privileges in that database.

If <column_group> is not specified all columns are included in the privilege grant.
A <column_group> may be specified in the case of INSERT, SELECT and the
UPDATE privilege granting. DELETE and REFERENCE are always granted on an
object level. The REFERENCE privilege can only be granted on a domain and
means the user has the power to create a foreign key on that domain.
78 PrimeBase Reference Manual

DDL REFERENCE MANUAL
examples /***In this example, the privilege, RESOURCE is granted to the

group called GolfersPros. This means that all users who are mem-

bers of this group are automatically assigned these privileges:

namely that they can issue all CREATE object commands.***/

GRANT RESOURCE TO GolfersPros;

/***In the following example, DBA privileges are granted to the

user Julian Baldock.***/

GRANT DBA TO “Julian Baldock”;

/***In the next example, the privilege to issue the SELECT

statement on the table Courses, specifically to select from the

columns, Key, and Description, has been granted to Heather

Fyson. She may also grant this privilege to other users - hence

the WITH GRANT OPTION clause. This clause does not apply to the

<command_privileges>.***/

GRANT SELECT ON Golfers (Key, Description) TO “Heather Fyson”

WITH GRANT OPTION;

see also see create user, alter user, add user, remove user, revoke, drop group

MOUNT DATABASE

function This statement allows a dataserver to register the existence and location(s) of a
database that was created by another PrimeBase Server.

syntax MOUNT DATABASE <database_name> {<file_location_spec>}';'

<file_location_spec>::= [DATA | INDEX] [IN] LOCATION

<character_literal>

parameters MOUNT DATABASE identifying keywords: register database structure

<database_name> identifying name of database

<file_location_spec> path name specifications
PrimeBase Reference Manual 79

DDL REFERENCE MANUAL
DATA keyword indicating that you want to specify the location
for data.

INDEX keyword indicating you want to specify the location for in-
dices.

IN optional keyword indicating that the location is about to
follow.

LOCATION keyword indicating that the path name to the database fol-
lows.

<character_literal> the path name for the database that is to be mounted.

notes Do NOT mount a database that is already mounted by another server. Use the
UNMOUNT statement before you mount the database to a new server, or make a
copy of the entire database (when the server is not running).

Restore is not possible for a newly mounted database until a backup has been
done.

If no location for data and indices is specified, then their location is by default the
dataserver root path. The dataserver root path is given when installing the
dataserver. The dataserver will append the name of the database to the specified
location(s). It will expect to find the index and data files of the database at these
locations.

example /***In this example, the database Golfers is mounted. No loca-

tion is specified, as this is not strictly required.***/

MOUNT DATABASE Golfers;

see also create database, restore database, backup database, open/close/use database,
drop database, unmount database

OPEN DATABASE

function This statement opens a database on the host.
80 PrimeBase Reference Manual

DDL REFERENCE MANUAL
syntax OPEN [<dbms_brand>] DATABASE [<database_name>]

[ALIAS <database_alias>]

[[IN] LOCATION <character_literal>]

[[AS] USER <character_literal> [[WITH] PASSWORD

<character_literal>]]

[FOR [<shared_mode>] [<access_mode>]]';'

<database_name>::= <character_literal>

<database_alias>::= <identifier>

<shared_mode>::= SHARED | PROTECTED | EXCLUSIVE

<access_mode>::= READONLY | UPDATE

parameters OPEN keyword.

<dbms_brand> an identifier specifying a DBMS alias of a previously
opened connection.

DATABASE keyword.

<database_name> a character literal specifying the database name.You will
find the rules for identifiers page 103. DAL syntax allows
the database name to be optional (as indicated in the syn-
tax), but since PrimeBase simply requires the name, leav-
ing the database name out causes an error. Other DBMSs
do not require the name because they only support one da-
tabase, or the database is identified by the location. The
name of the database is used if the ALIAS clause is omitted
- but only if the database name follows the rules for identi-
fiers.

ALIAS an optional clause. If no alias is specified, the database
name is assumed as default.

<database_alias> an identifier that is to be used as an alias for the open data-
base. See page 103 for the rules on identifiers.

The syntax after and including the IN LOCATION clause is accepted but ignored.
PrimeBase Reference Manual 81

DDL REFERENCE MANUAL
notes If specified, the dbms_brand must be PrimeBase.

The LOCATION, USER, and PASSWORD clauses are ignored with warning. The
<user_name> and <password> used to access the database are those given when
the connection was made to the host.

The LOCATION clause is ignored, because in PrimeBase, the location of a data-
base has already been specified in the CREATE DATABASE statement. This infor-
mation is remembered and stored with that database entry in the system table,
SysDatabases. There is, therefore, no need to repeat this information. When you
remount a database, and the location of data and index files is thus changed, the
change of location is noted in the SysDatabases table.

PrimeBase does not support the FOR clause in the OPEN DATABASE statement,
however, if you have this syntax hardcoded into your program, this will not cause
an error - PrimeBase simply ignores it.Databases are always open for protected
update no matter what mode is specified.

When a database is opened, it becomes the current default database.

example /*** In this example, the Golfers database is opened, and given

an alias “G”.***/

OPEN PrimeBasePrimeBasePrimeBase DATABASE Golfers ALIAS G;

see also create database, restore database, backup database, close/use database, drop
database, mount/unmount database

OPEN DBMS

function This statement opens a DBMS.

syntax OPEN <dbms_brand> DBMS

[[AS] USER <character_literal> [[WITH] PASSWORD <password>]]

[OPTION <character_literal>]';'

parameters OPEN DBMS keywords
82 PrimeBase Reference Manual

DDL REFERENCE MANUAL
<dbms_brand> the name (or alias) of a server or gateway, as listed by the
DESCRIBE DBMS command.

USER Keyword indicating the name of a user follows. This clause
is optional. If not given, the value stored in this system
variable $user is used.

<character_literal>
the name a user of the DBMS.

PASSWORD keyword indicating a password follows. If the clause is
omitted, it is assumed the password is blank.

<password> the password of the user of the DBMS.

OPTION an optional clause used to specify connection specific op-
tions.

<character_literal>

an option string. Options may include information such as:
the protocol to be used for the connection, the zone of the
DBMS, the type of server or gateway, etc. All options re-
quired to make a particular connection are listed by the DE-
SCRIBE DBMS command.

notes This statement opens a connection to a DBMS. That is, a PrimeBase server or
gateway to some other DBMS brand. Standard DAL allows only DBMSs on the
host computer to be opened. PrimeBase DAL extends this idea to include any
server or gateway published on the network. The “host” in PrimeBase DAL is, in
fact, the entire network. As a result, <brand_name> is not the actual brand of the
DBMS, but rather the name of the server or server alias. Furthermore, when a
PrimeBase DAL session is created, it is not actually necessary to supply a host
name, user name and password, due to the fact that a session is automatically
connected to the “host”.

If a host name is given when creating a PrimeBase DAL session, it is considered
to be the name of a DBMS, and an OPEN DBMS statement is done automatically.
This has the effect that a session has an open DBMS immediately after creation.
PrimeBase Reference Manual 83

DDL REFERENCE MANUAL
From this it is also clear that PrimeBase DAL session can have connections to
multiple servers (each server is an open DBMS). And, in addition, these servers
can be located locally, or anywhere on the network.

see also describe dbms, close dbms, use dbms

OPEN TABLE

function This statement opens a particular table for use. The purpose of opening the table
is to lock it for read-only or exclusive use.

syntax OPEN TABLE <table_reference> [FOR [<shared_mode>]

[<access_mode>]] ';'

<shared_mode>::= SHARED | PROTECTED | EXCLUSIVE

<access_mode>::= READONLY | UPDATE

parameters OPEN TABLE keywords: open database structure.

<table_reference> the name of the table you want to open.

FOR an optional clause to specify how the table can be used
when it is opened. You can choose from a combination of
<shared_mode> and <access_mode>.

<shared_mode> indicates whether or not data can be accessed concur-
rently by other users.

SHARED data can be accessed by other users

PROTECTED data can be read and updated concurrently by other users,
but updates are not allowed to conflict.

EXCLUSIVE other users are not tolerated when reading data, or updat-
ing data in the table.

<access_mode> indicates whether the user intends to update or only read
table data.
84 PrimeBase Reference Manual

DDL REFERENCE MANUAL
READONLY data may only be read, and not updated.

UPDATE whether or not updates may be carried out on a table.

notes Tables need not be opened before accessing data in the table. In PrimeBase DAL
there is also no performance gain in opening a table before use. The main reason
for using OPEN TABLE is to gain table level readonly or exclusive locks during a
transaction.

Not all combinations of sharing and access modes are supported by PrimeBase.
The default mode is PROTECTED UPDATE, which means that the user can read
and update data concurrently with other users, but updates are not allowed to
conflict.

A further two modes are supported: PROTECTED READONLY and EXCLUSIVE
UPDATE. PrimeBase treats EXCLUSIVE READONLY as PROTECTED READONLY. If
the user really wants exclusive access to a table, then the table must be opened
for EXCLUSIVE UPDATE. In this mode the user may read or update the table, and
no other user is allowed to either read or update the table.

The keyword SHARED is not supported by PrimeBase - but we have a good
reason for not supporting it. The definition of SHARED is: table access may be
shared by other users who concurrently update the database and whose opera-
tions may cause interference with this user. It is not good that a user´s operations
can be interfered with. Therefore PrimeBase automatically upgrades SHARED
mode to PROTECTED.

The table is automatically closed at the end of a transaction. This means that to
continue with exclusive access to a table, an OPEN TABLE statement must be
issued after every BEGIN transaction.

examples /***in the following example, the table “Golfers” is opened for

PROTECTED UPDATE. There is no need to explicitly enter the key-

words, as PROTECTED UPDATE is the default setting. It means that

the user can read and update data concurrently with other users.

Updates are not allowed to conflict.***/

OPEN TABLE Golfers;
PrimeBase Reference Manual 85

DDL REFERENCE MANUAL
/***in the next example, the table “Golfers” is opened for EX-

CLUSIVE UPDATE. This means that the user may read and update the

table, but no other user may read or update the table.***/

OPEN TABLE Golfers FOR EXCLUSIVE UPDATE;

see also create/drop/rename table, alter table, reorg table, backup table, check table, close
table

REMOVE USER

function This statement removes users either from the database or from a specific group.

syntax REMOVE USER <user_name> { ',' <user_name> } [FROM <group_name>

] ';'

parameter REMOVE USER statement identifying keyword.

<user_name> the name of a user you are removing.

FROM introduces an optional clause that is used when removing
users from a group.

<group_name> the name of a group in the default database.

return values OK the user has been removed.

notes To use this statement, the users must be users of the default database, (i.e., the
database last used or opened); the group must also be an existent group.

When a user is removed from the database, all privileges that he or she granted
are also removed.

examples /***In this example, the user, called “Heather Fyson” is removed

from the group called “GolfersPros”. She is still in the data-

base - just not in the group, “GolfersPros”.***/

REMOVE USER “Heather Fyson” FROM “GolfersPros”;

see also see create user, alter user, add user, grant, revoke, create group, drop group
86 PrimeBase Reference Manual

DDL REFERENCE MANUAL
RENAME <OBJECT>

function This statement alters the name of an already existing object - such as a domain,
a table, an index, etc., etc.

syntax RENAME [<object>] <object_reference> TO <object_name> ';'

parameters RENAME keyword

<object> an optional keyword specifying the type of object you are
renaming, for example: DOMAIN, TABLE, KEY, etc..

<object_reference> the name of the object to be renamed.

TO keyword

<object_name> an identifier that is the new name for the object.

example /***In this example, the table Clubs is renamed to Golf-

Clubs.***/

RENAME TABLE Clubs TO GolfClubs;

REORG TABLE

function This command performs a low-level reorganization of the table. The user re-
quires exclusive update access to the table before the command may run, and if
the user has not already opened the table, the exclusive access mode will be ac-
quired automatically for him by the system. The function statement packs the
data (eliminating spaces left in the data file due to previous deletions) and re-
builds the indices of the table. Only the DBA or the creator of a table may reorga-
nize a table.

syntax REORG TABLE <table_reference>';'

parameters REORG TABLE statement identifying keywords.

<table_reference> name of table to be reorganized.
PrimeBase Reference Manual 87

DDL REFERENCE MANUAL
RESTORE DATABASE

function This command restores a database from backup.

syntax RESTORE DATABASE <database_name> { <restore_options> } ';'

<restore_options>::= FROM <expression> | <partial_restore>

<partial_restore>::= PARTIAL | UNTIL (ERROR | LOG <log_spec>)

<log_spec> ::= '{' <expression> ',' <expression> ‘}’

parameters RESTORE DATABASE identifying keywords

<database_name> the name of the database to be restored.

<restore_options> specification of various restore options

FROM an optional clause, used to select the backup to be stored.
By default, the most recent backup is restored.

<expression> the identifier of the backup to be restored.

<partial_restore> specifies a partial restore of the database.

PARTIAL restore the database, ignoring errors that occur during the
process.

UNTIL indicates restore should stop at some point before the da-
tabase is completely restored.

ERROR restore the database until the first error occurs.

LOG restore the database until a certain log file.

<log_spec> specifies a log file, by it’s restart number and identifier.

notes In its simplest form, the restore command will restore any database using the
previous backup and all the log files starting at the time of backup.
88 PrimeBase Reference Manual

DDL REFERENCE MANUAL
In order to bring a database up to date during restore, the RESTORE command
requires access to the copies made of the database tables during backup (the
backup image), and all log files written since the backup began. If a log file is
missing, the restore statement cannot bring the database up to date beyond this
point in time.

A database may be partially restore if a missing log, or an error prevents com-
plete restore. A database must be recovered to be restored, as the restore pro-
cess is atomic. This means, that if it fails it has no effect on the current state of the
database.

A database may not be in use while it is being restored.

example /*** In this example, the database, Golfers is restored, where

“n” is the backup identifier noted in the system table called,

SysBackups***/

RESTORE DATABASE Golfers FROM n;

REVOKE

function This statement removes specific privileges from a user or group of users.

syntax REVOKE (<command_privileges> | <object_privileges>) FROM (

PUBLIC | <user_name> { ',' <user_name> }) ';'

parameter REVOKE identifying keyword; revoke privilege.

<command_privileges>
see GRANT statement for an explanation of command
privileges.

<object_privileges> see GRANT statement for an explanation of object privi-
leges.

FROM defines from whom or what the privileges are being taken
away.

PUBLIC revokes all privileges from the group “Public”.
PrimeBase Reference Manual 89

DDL REFERENCE MANUAL
<user_name> the name of the user in question.

example /***In this example, the privileges that were assigned to

Heather Fyson are revoked.***/

REVOKE SELECT ON Golfers (Key, Description) FROM “Heather Fy-

son”;

see also create user, alter user, add user, grant, remove, create group, drop group

SERVER CHECKPOINT

function This command starts a full checkpoint of the server.

syntax SERVER CHECKPOINT ';'

parameter SERVER CHECKPOINT identifying keywords.

notes The checkpoint process flushes all cache pages, and then writes a checkpoint
record to the log file.

SERVER COMMENT

function Display a message on the console of all connected workstations.

syntax SERVER COMMENT <character_literal> ';'

parameter SERVER COMMENT identifying keywords.

<character_literal>
the text of the message that will appear immediately on
all user’s consoles.

notes The server comment command is used to display a message on the screen of
all online users. For example, the command may be used to inform the user
that a database backup or reorganization is about to take place.
90 PrimeBase Reference Manual

DDL REFERENCE MANUAL
SERVER ERROR

function This statement loads error information from the error manager into a cursor.

syntax SERVER ERROR [INTO <cursor>]';'

parameters SERVER ERROR keywords.

INTO an optional clause to place the returned rowset in a specific
cursor.

<cursor> A cursor variable to receive the rowset. It must conform to
the rules for identifiers.

return values This command returns a rowset containing information on file I/O errors that may
occur during a query, or certain other commands. The rowset has the following
structure.

col# Data Type Name Information

1 SMINT PrimaryError The primary
error code

2 SMINT] SecondaryError Additional error
information

3 SMINT SystemError System specific
error code

4 TIMESTAMP Time Time of error

5 VARCHAR[31] FunctionName Operation at-
tempted

6 INTEGER DevID The device on
which the error
occurred

7 INTEGER SeekPosition Seek position of
error
PrimeBase Reference Manual 91

DDL REFERENCE MANUAL
PrimaryError is the primary error code of the error that occurred. If this is zero, no
error has occurred, and in this case, all other columns will have the value NULL.

The system error is the error code provided by the system. The meaning of this
error is dependent on the operating system on which the server is running.

The columns SeekPosition and TransferSize have significance depending on the
value of the column FunctionName. In the table below, 'Yes' indicates that the
value is significant to the operation, and '-' indicates that the value is not applica-
ble.

8 INTEGER TransferSize Byte transfer re-
quired

9 INTEGER DatabaseID The database in
which the error
occurred

10 VARCHAR[255] FileName The system file
name in which
the error oc-
curred

FunctionName SeekPosition TransferSize

Read Yes Yes

Write Yes Yes

Grow - Yes

Seek Yes -

Flush - -

Create - -

Open - -

col# Data Type Name Information
92 PrimeBase Reference Manual

DDL REFERENCE MANUAL
The file name on which the operation occurred is given in the last column of the
rowset.

notes The statement loads the details of the most recently occurred errors from the
error manager on the server. This error information is global for the entire
server, and not related to an individual session. Error can be traced to the files
in which they occurred using this statement.

If no errors have occurred since startup, the statement will return no rows.

SERVER RESTART

function Start the normal server startup sequence, which includes recovery of all
databases.

syntax SERVER RESTART [COLD] [<partial_restart>]

[<restart_location_spec>] ';'

<restart_location_spec>::= [IN] LOCATION [<character_literal>]

{',' [<character_literal>] }

<partial_restart>::= [PARTIAL] [WITHOUT <expression> { ','

<expression>}]

parameters SERVER RESTART keywords: indicate that the server is to be restarted.

COLD an optional keyword that indicates whether or not a cold
start is permitted.

Delete - -

Rename - -

Make Directory - -

Remove
Directory

- -

FunctionName SeekPosition TransferSize
PrimeBase Reference Manual 93

DDL REFERENCE MANUAL
<partial_restart> a partial restart will recover those databases for which no
error occurs during the restart. Another form of partial
restart allows the SA to select databases for which to
omit the recovery procedure. The database identifiers are
given in a list in the WITHOUT clause.

<restart_location_spec>
a clause to specify locations that are important to server
restart.

[IN] LOCATION optionally specify a certain paths (location in the host file
system) that are required for recovery.

<character_literal> a string specify a path. Up to three paths may be
specified. The first two are paths of the restart files, and
the last is the server root.

PARTIAL keyword: initiates a partial restart.

WITHOUT keyword introducing a list of database identifiers.

notes This statement initiates the normal server restart sequence. The normal restart
sequence begins automatically when the server is started. However if this fails,
the server requires the intervention of the system administrator. If a normal
restart fails, the system administrator should attempt to correct the problem
and manually initiate the restart sequence using this command.

Details of the error that occurred during restart can be obtained from the error
manager using the TRANS ERROR command. The system error number, file
name, database identifier and other details are contained in the rowset returned
by this command.

The restart process includes: (a) restarting the transaction manager, and recover-
ing the master database, (b) recovery of all user databases that are set recover
pending in the master database, (c) bringing the previous active log online, and
(d) setting all system parameters as recorded in the master database.
94 PrimeBase Reference Manual

DDL REFERENCE MANUAL
For this purpose, the server searches for the following: firstly, a restart file (RE-
START.SQL), which indicates in which log files, and where recovery should
begin. Secondly, the restart process must locate the master database (this loca-
tion is also known as the server root).

Once the master database has been recovered, it is opened, and the information
concerning the location of the user databases is used to recover the user data-
bases.

In general, the keyword COLD, indicates that the actual recovery process should
be skipped. Using a cold start, databases can be brought online without recovery.
This should only be done if there is no way the problem that prevents recovery
can be fixed, because without recovery the server cannot guarantee the integrity
of the database or prevent data loss. After a cold start, a database will probably
need to be reorganized. If the integrity of the system tables has been compro-
mised, it may not be possible to open the database. In this case the only possibil-
ity is to restore the database from backup.

A partial restart (the PARTIAL keyword) is in any case better that a cold start as it
tells the server to ignore errors during recovery and to do what it can. The conve-
nience of the partial restart carries with it the problem that you will not be quite
sure what was done and what not. For example, if restart was failing because of
insufficient disk space, partial restart could result in significant data loss.

Cold starting the server means that all databases are cold started. This is an ex-
tremely harsh measure if the error is only occurring in one database. Using the
WITHOUT clause, you may indicate to the server to leave certain databases out of
the recovery process. Once the server and most of the databases are on line, you
may then attempt to correct the problem concerning the database. A database
can be recovered separately using the RECOVER DATABASE command.

To prevent an inadvertent cold start, the server requires the administrator to
remove any restart files before it will proceed with a cold start. As long as the
server finds a file called RESTART.SQL, it will ignore the COLD keyword.

If the restart files or log files are lost of corrupted there is no other option but to
cold start. As a result, and due to the fact that the restart file is vital for restoring
the master database, the restart file can be duplicated by the server. The location
of the restart files and the dataserver root are stored in the server environment
PrimeBase Reference Manual 95

DDL REFERENCE MANUAL
file (‘PrimeBase Environment’ on the Macintosh). If this information is lost or has
changed, the paths may be specified in the LOCATION clause in the SERVER RE-
START statement.

For security, the restart file, RESTART.LOG, may be duplicated. Normally, the
location of the restart files is found where it is stored in the preferences file (in
the Macintosh system, in the file “PrimeBase Preferences”, in the Preferences
folder). If no restart file is found, the normal server restart will fail.

SERVER RESTORE

function This command restores the Master database from backup.

syntax SERVER RESTORE [<restart_location_spec>] {<restore_options>}

';'

<restart_location_spec>::= [IN] LOCATION [<character_literal>]

{',' [<character_literal>] }

parameters SERVER RESTORE keywords: indicate that the server is to be restored.

<restart_location_spec>
an optional clause used to specify the location of the
restart files and the server root.

<restore_options> specifies the restore options. set RESTORE DATABASE for
details.

notes This statement restores the Master database from the most recent backup. The
backup device(s) of the Master database must be online for the SERVER
RESTORE statement to function correctly. When the restore is complete, only
the Master database will be considered recovered. At this point a normal server
restart should be attempted.
96 PrimeBase Reference Manual

DDL REFERENCE MANUAL
SERVER SHUTDOWN

function Shutdown the server application.

syntax SERVER SHUTDOWN [<expression>]

[COMMENT <character_literal>] ';'

parameters SERVER SHUTDOWN keywords: indicate that the server is to be shutdown.

<expression> an optional clause. In this expression state, in seconds,
the time the server will wait before shutting down. If no
expression is given, the server shuts down immediately.

COMMENT this is an optional clause, which allows the administrator
to send a message to logged on users, to inform them
that the server will shut down.

<character_literal>
the text of the message that will appear immediately on
all user’s consoles.

notes On shutdown, any transactions still active are automatically rolled back. The alert
that appears on the users screen, can be disabled on the client machine. If the ex-
pression is NULL the current shutdown sequence is cancelled.

SET VARIABLE

function This statement sets the value of an existing database variable.

syntax SET VARIABLE <variable_reference> '=' <expression> ';'

parameters SET VARIABLE identifying keywords

<variable_reference> the identifier of an existing variable

<expression> any valid expression
PrimeBase Reference Manual 97

DDL REFERENCE MANUAL
example /***In this example, the variable, “YearEndNo” is set to a new

value. It was originally set at 1992 - in the CREATE VARIABLE

statement. In this statement, it is set at “1993”.***/

SET VARIABLE YearEndNo = “1993”;

see also create/drop/rename variable

TRANS ERROR

function This statement returns details of the error that caused the transaction manager
to go down.

syntax TRANS ERROR [INTO <cursor>]';'

parameters TRANS ERROR keywords.

INTO an optional clause to place the returned rowset in a specific
cursor.

<cursor> A cursor variable to receive the rowset. It must conform to
the rules for identifiers.

notes The details of the error the transaction manager to go down are returned from
the error manager on the server. If the transaction manager is not down, this
command will return no rows. The transaction manager goes down when it can
no longer guarantee that transactions are atomic, or that committed data will
be written to the database. This command can be used to determine more
precisely the reason for the transaction manager going down. When the
problem has been corrected, use the SERVER RESTART command to start the
transaction manager.

TRANS RESTART

function Start the transaction manager and recover the master database.
98 PrimeBase Reference Manual

DDL REFERENCE MANUAL
syntax TRANS RESTART [COLD | PARTIAL] [<restart_location_spec>] ';'

<restart_location_spec>::= [IN] LOCATION [<character_literal>]

{',' [<character_literal>] }

parameters TRANS RESTART keywords: start the transaction manager.

COLD an optional keyword that indicates whether or not a cold
start of the master database is permitted.

PARTIAL initiates a partial recovery of the master database, during
which errors are ignored.

[IN] LOCATION optionally specify a certain paths (location in the host file
system) that are required for recovery.

<character_literal> a string specify a path. Up to three paths may be
specified. The first two are paths of the restart files, and
the last is the server root.

notes This command is similar to SERVER RESTART, but performs only two steps of a
normal server restart, namely: (a) the restarting the transaction manager, and re-
covering the master database, (b) bringing the previous active log online.

This command can be used to correct problems that occur when a user database
is recovered, or when a system parameter is set. After TRANS RESTART, it is pos-
sible to open the master database and adjust parameters and databases loca-
tions.

After the transaction manager has be started, the server is effectively still in
single-user mode, due to the fact that the communications will only accept
remote connection after server restart. As a result, transaction restart should be
followed at some stage by either a full or partial server restart.

see also trans shutdown, server shutdown, server restart

TRANS SHUTDOWN

function This command is used to shut down the transaction manager.
PrimeBase Reference Manual 99

DDL REFERENCE MANUAL
syntax TRANS SHUTDOWN [<expression>] ';'

parameters TRANS SHUTDOWN keywords: indicate that the transaction managers is to be
shutdown.

<expression> an optional clause. In this expression state, in seconds,
the time the transaction manager will take to shut down.
If no expression is given, the transaction manager shuts
down immediately.

notes While the transaction manager is shutting down, transactions can only be com-
mitted. Attempts to begin a transaction will return an error.

see also trans restart, server shutdown, server restart

UNMOUNT DATABASE

function This statement removes the link that a server has to a database. The database
can then be mounted by another server, or the locations of the database can be
changed and the database remounted by the server.

syntax UNMOUNT DATABASE <database_name> ';'

return values OK the database has been successfully unmounted.

parameters UNMOUNT DATABASE
keywords indicating that a database is to be unmounted by
the current server.

<database_name> the identifying name of the database to be unmounted.

notes Here is an example situation: Changing the index location of a database.

1. Make sure that no users have the database open.

2. UNMOUNT the database.

3. Create a directory in the target location, and give it the same name as the data-
base.
100 PrimeBase Reference Manual

DDL REFERENCE MANUAL
4. Move the index files of the database to this directory. Index files have a .ind ex-
tension.

5. You may now delete the directory in which you found the index files, if it is
empty.

6. MOUNT the database giving the new index location using the INDEX clause.
(The data location must also be given if it not the DataServer root path.)

example /***In this example the database, Golfers, is unmounted.***/

UNMOUNT DATABASE Golfers;

see also create database, restore database, backup database, open/close/use database,
drop database, mount database

USE DATABASE

function The USE DATABASE statement establishes a particular database as the default
database.

syntax USE DATABASE <database_alias>';'

<database_alias>::= <identifier>

parameters USE DATABASE keywords.

<database_alias> the database alias given to the database when it was
opened.

example /***In this example the database Golfers is to be set as the de-

fault database. In OPEN DATABASE it was given the alias “G”.***/

USE DATABASE G;

see also create database, restore database, backup database, open/close database, drop
database, mount/unmount database
PrimeBase Reference Manual 101

DDL REFERENCE MANUAL
USE DBMS

function This statement establishes a previously opened DBMS as the default DBMS.

syntax USE <dbms_brand> DBMS ';'

parameters USE DBMS keywords

<dbms_brand> the name of the DBMS.

example USE MyServer DBMS;

see also open dbms, close dbms
102 PrimeBase Reference Manual

IDENTIFICATION
IDENTIFICATION

This section provides you with a quick reference to the syntax that is required for
identifiers, aliases and references. You will encounter these procedures in almost
all data definition language statements.

IDENTIFIERS

An identifier is a sequence of characters, that defines a database object. Like key-
words, case is not significant in identifiers. Maximum length is 31 characters. An
identifier is unique within the database.

Identifiers are so called as they are used to identify the many different types of
objects that may be created using DAL and the PrimeBase data definition lan-
guage. This includes DAL variables, procedures and cursors, and PrimeBase pro-
cedures, databases, database objects (tables, domains, keys, etc.,) and columns.

The following are all identifiers.

<var_name>::= <identifier>

<cursor>::= <identifier>

<database_name>::= <identifier>

<dbms_brand>::= <identifier> | ':' <var_name> | <expression>

<object_name>::= <identifier> | ':' <var_name>

<column_name>::= <identifier> | [':'] <var_name>

<creator_name>::= <identifier> | ':' <var_name>

The following are object names:

<domain_name>::= <object_name>

An identifier is a sequence of characters, defined as follows:
PrimeBase Reference Manual 103

IDENTIFICATION
syntax <identifier> ::= (<alpha> | <diac> | '_' | '$') { <alpha> |

<diac> | <digit> | '_' | '#' }

<alpha>::= 'a' | 'b' | ... | 'z' | 'A' | 'B' | ... | 'Z'

<diac>::= Upper and lower case alphabetic characters with dia-

critical marks (e.g. ä, å, à, ...)

notes The hash ('#') symbol is one of the characters of an identifier (however, not the
first character). So a column 'supplier number' can be given the name: 'P#'.

The dollar ('$') symbol is only allowed as the first character of an identifier. Note
that identifiers of the form $... are used by DAL to indicate system variables and
functions.

<var_name> must be of data type OBJNAME, see the user manual in chapter
DATA TYPES.

ALIASES

Aliases are names that may be different to the actual name of the object that they
identify. Specifying an alias name is always optional. When not specified, the
actual name of the object is taken as the alias. This is due to the fact that in the
context in which an alias is used, the use of an alias is not optional. For example,
databases are always referred to using an alias, whether an alias is specified in
the OPEN DATABASE statement or not.

Aliases can be created for three types of objects: for databases, tables, and col-
umns.
104 PrimeBase Reference Manual

IDENTIFICATION
Database Alias

A database alias is created in the OPEN DATABASE statement. The database alias
is either the name of the database or the identifier specified in the ALIAS clause.
Each open database must be specified by a unique alias. The database alias is
valid until the database is closed and may be used to refer to the database and
objects and columns within the database.

syntax <database_alias>::= <identifier>

Table Alias

A table alias is created in a query specification, and is only valid within the query
or any subqueries.

A unique table alias is required for every table in the query specification, and is
the table name by default.

syntax <table_alias>::= <identifier>

Column Alias

A column alias is created in the select list of a query specification. The column
alias may then be used to make cursor based references. The column alias is
valid until the cursor is deselected, or until another rowset is selected into the
cursor.

syntax <column_alias>::= <identifier>

REFERENCES

References fully identify database objects such as domains, tables, keys, etc..
PrimeBase Reference Manual 105

IDENTIFICATION
Object Reference

An object reference is a specification that identifies a particular database object.
In its complete form, an object reference consists of the database alias, the object
creator name, and the object name. If the database alias is omitted from this list,
then the default database is assumed. If <creator_name> is omitted, the creator
name of the user of the database specified in database alias (or the default data-
base) is assumed. If no such object exists, then the creator names “common”
and “System” will be tried.

syntax <object_reference>::= [<database_alias> '!'] [<creator_name>

'.'] <object_name> | [':'] <var_name>

The following are also object references:

<domain_reference>::= <object_reference>

<table_reference>::= <object_reference>

<key_reference>::= <object_reference>

<default_reference>::= <object_reference>

<index_reference>::= <object_reference>

<rule_reference>::= <object_reference>

<view_reference>::= <object_reference>

Column Reference

A column reference is a specification that identifies a particular column ion a da-
tabase. In its complete form, it consists of the table alias and the name of the col-
umn. If <table_alias> is omitted the column reference is resolved by searching all
possible tables in the query. Note that ambiguous references are not reported.
The user may assume that the tables in a query are searched in the order men-
tioned in the FROM clause, beginning with the innermost nested subquery and
moving outwards.

syntax <column_reference>::= [<table_alias> '.'] <column_name>
106 PrimeBase Reference Manual

IDENTIFICATION
Column of Table Reference

A column of table reference specifies a column within a table, where the table in
which the column is situated, is different to the table mentioned in the FROM
clause. In its complete form, the <column_of_table_reference> consists of the da-
tabase alias, the creator name of the table, the object name, and the column
name itself.

syntax <column_of_table_reference>::= [<database_alias> '!'] [

<creator_name> '.'] <object_name> '.' <column_name> | ':'

<var_name>
PrimeBase Reference Manual 107

IDENTIFICATION
108 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
DAL LANGUAGE
REFERENCEPRIMEBASE

Data manipulation statements retrieve, modify and delete information stored in
the tables of the open databases.

BEGIN

function This statement simply initiates transaction processing. Transaction processing
is only “on” after execution of this statement.

syntax BEGIN [WORK | TRANSACTION | TRANS] ';'

parameters BEGIN keyword: indicates that transaction processing can start.

WORK | TRANSACTION | TRANS
These keywords are optional: only include them for
readability.

BREAK

function This statement causes a premature break in the flow of a loop structure - like a
WHILE, DO, FOR, FOR EACH, or SWITCH statement. Execution then continues
with the first statement that follows the body of statements in which the BREAK
appears. The loop is not repeated after a BREAK statement.

syntax BREAK ';'
PrimeBase Reference Manual 109

DAL LANGUAGE REFERENCEPrimeBase
parameters BREAK keyword: indicates that execution should continue with
the first statement following the loop structure in which it
appears.

notes When a BREAK appears within nested loops, or SWITCH statements, it will
cause the processing of the innermost loop (or rather, SWITCH) to break. It is
not possible to cause a multilevel break in a single statement.

CALL

function This statement calls a procedure. This statement can call either a procedure or a
function. In this statement, the parameters specify which procedure is to be
called, the values must be passed to the procedure as its arguments, and the
variables that receive the return values from the procedure.

syntax /***calling a procedure***/

[CALL] <procedure_name> ['(' <expression> { ',' <expression> }

')']

[RETURNING <var_name> {',' <var_name> }] ';'

/***calling a function***/

<var_name> '=' <procedure_name> '(' <expression> { ','

<expression> } ')' ';'

parameters [CALL] an optional clause, containing the keyword, CALL
meaning that a procedure is to be called.

<procedure_name> the identifying name of the procedure to be called.

<expression> any valid expression, specifying which values are to be
passed as arguments to the procedure.

RETURNING keyword: indicates that the variables that follow are those
that will receive the return values from the procedure.
This clause is optional.
110 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
<var_name> the name of a variable that will receive the return values
from the procedure. The number and type of variables
must agree with the procedure declaration.

notes Procedure calls may be nested deeply. The depth of nesting is subject only to
resource constraints on the run-time environment.

Recursive procedure calls are not supported.

COMMIT

function This statement signals that the current transaction has been successfully
completed. Any modifications to the database made during the transaction are
committed, and new transaction can begin.

syntax COMMIT [WORK | TRANSACTION | TRANS] ';'

parameters COMMIT keyword: indicates the successful completion of the
current transaction.

WORK | TRANSACTION | TRANS
These keywords are optional: only include them for
readability.

CONTINUE

function This statement interrupts the flow of the body of a WHILE, DO, FOR, FOR EACH
statement, thus causing the remainder of the current iteration of the WHILE,
DO, FOR, FOR EACH statement to be skipped.

Execution continues with the loop control expression (for WHILE or DO) or with
the loop-reinitialiser (for FOR), or with fetching of the next row (for FOR EACH).

syntax CONTINUE ';'
PrimeBase Reference Manual 111

DAL LANGUAGE REFERENCEPrimeBase
parameters CONTINUE keyword: indicates that the flow of program is to be
interrupted.

notes When CONTINUE appears within nested loops or SWITCH statements, the
processing of the innermost loop (or SWITCH) is broken. It is not possible to
cause a multi-level break in a single statement.

DECLARE

function This statement declares one or more variables to be a specific data type, before
they are used in a program.When this statement is in a procedure definition, it
declares a local variable for that procedure whose scope lies within the
procedure definition. If the DECLARE statement is within the outer block, it
declares an outer block variable whose scope is limited to the outer block.

syntax [DECLARE] <data_type> <declaration> {',' <declaration>} ';'

<declaration>::= <var_name> ['=' <expression>]

parameters DECLARE keyword: indicates that a variable is being declared. This
keyword is optional.

<data_type> any valid data type.

<declaration> the name and initial value of the variable.

<var_name> an identifier that is the name for the variable.

<expression> an expression defining an initial values for the variable.
This part is optional.

notes The same name space is shared for both outer-block variable names and
procedure names. A DECLARE statement for an outer block automatically
redeclares any procedure or outer block variable with the same name.

If an initial value is present, an outer block variable is initialised at declaration; a
local variable is reinitialised on each procedure entry.
112 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
On return from a procedure, local variables lose their value; note particularly
that rowsets associated with local CURSOR variables are then deselected.

If an initial value is not specified, the variable remains uninitialised and
produces an error if it is used in an expression before a value is assigned.

A DECLARE statement takes priority over any previous declaration for a
variable of the same name within the same block.

DECLARE CURSOR

function This statement declares a cursor. Tables retrieved from databases are stored in
cursors. A cursor has a current row pointer which refers to a row in the table
stored in the cursor. The various values of a column in the current row of a
cursor may be accessed by a cursor based reference.

syntax [DECLARE] CURSOR <var_name> { ',' <var_name>} ';'

parameters [DECLARE] CURSOR keywords indicating that a cursor is to be declared. The
keyword DECLARE is optional.

<var_name> an identifier for the cursor being declared.

DECLARE PROCEDURE

function This statement defines a PrimeBase procedure. This procedure can then be
invoked by the CALL statement.A procedure can be invoked by other
procedures also using the CALL statement. A PrimeBase procedure takes zero
or more arguments, which are passed on by value. It returns zero or more
return values. Local variables can be declared for use within the procedure.

syntax [DECLARE] PROCEDURE <procedure_name> '(' [<var_name>] {','

<var_name> } ')'

[RETURNS <data_type> { ',' <data_type> ';']
PrimeBase Reference Manual 113

DAL LANGUAGE REFERENCEPrimeBase
{ <decl> }

'{' <statement_list> '}'

END PROCEDURE <procedure_name> ';'

<decl>::= ARGUMENT <data_type> <var_name> ['=' <expression>]

{',' <var_name> ['=' <expression>] } ';'

parameters [DECLARE] PROCEDURE
keywords: indicate that a procedure is to be declared. The
keyword DECLARE is optional.

<procedure_name> the identifying name for the procedure: it must conform
to the rules for identifiers.

<var_name> the name of a variable to be used within the procedure.

RETURNS an optional clause, defining the data type for the values
that are to be returned by the RETURN statement (see
next page)

<decl> a list of argument declarations.

ARGUMENT keyword: indicates that an argument declaration follows.

<data_type> the data type of the argument declaration.

<var_name> the name of the variable, if used in the DECLARE
PROCEDURE clause.

<expression> any valid expression.

<statement_list> any valid statements. If return values are expected, then
this statement_list must contain a RETURN statement.
See notes for more details.

END PROCEDURE keywords: indicate that the procedure is terminated here.

<procedure_name> the name of the procedure to be ended.

notes Execution of a procedure ends usually when a RETURN statement is executed.
If no RETURN statement is encountered in <statement_list> then an implied
RETURN statement with no return value is executed. This will, of course, result
in an error if you had specified a return data type in the head of the procedure
114 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
statement. Procedure names and outer block variables share the same name
space. A new procedure statement automatically redeclares any previously
declared procedure or outer block variable that had the same name.

DELETE (POSITIONED)

function This statement deletes the current row of a cursor from the underlying table.
The search condition indicates which rows are to be deleted.

syntax DELETE [FROM] <table_reference> [WHERE CURRENT OF <cursor>]

[';']

parameters DELETE [FROM] keywords, indicating that data is to be removed from a
database structure. The FROM keyword is optional.

<table_reference> the qualified name of the table.

WHERE CURRENT OF
keyword: indicating the current row of the specified
cursor. This clause is optional. If it is omitted, then all
rows in the active cursor are deleted.

<cursor> the name of an active cursor with a valid current row that
is then deleted by this statement.

notes The cursor must specify an updatable table or view and must specify a rowset
created by a SELECT statement including the <update_mode>.

The database may include referential-integrity constraints that prevent certain
rows from being dropped. Attempts to drop these rows will result in an error.

Rows from a view may only be dropped, if the view is derived from a single
table.

$rowsaffected is set after a successfull INSERT, UPDATE or DELETE. The value
is the number of rows effected by the query. If an error occurs $rowsaffected
is set to zero.
PrimeBase Reference Manual 115

DAL LANGUAGE REFERENCEPrimeBase
DELETE (SEARCHED)

function This statement deletes rows from a table. The search condition specifies which
rows are to be deleted. Warning, rows cannot be retrieved once they have been
deleted.

syntax DELETE [FROM] <table_reference> [WHERE <search_condition>]

[';']

parameters DELETE [FROM] keywords, indicating that data is to be removed from a
database structure. The FROM keyword is optional.

<table_reference> the qualified name of the table.

WHERE keyword: indicating which row or rows are to be deleted.
This clause is optional. If it is omitted, then all rows in the
table_reference are deleted.

<search_condition> the search condition that identifies the rows to be
deleted. If this is not included, then all rows are deleted.

notes The database may contain referential integrity constraints that prevent certain
rows from being dropped. Attempts to drop these rows will result in an error.

Rows from a view may only be dropped if the view has been derived from a
single table.

$rowsaffected is set after a successfull INSERT, UPDATE or DELETE. The value
is the number of rows effected by the query. If an error occurs $rowsaffected
is set to zero.

DESELECT

function This statement ends access to a rowset. The specified rowset is discarded, and
all associated resources are reclaimed. The cursor associated with the rowset is
then invalid.

syntax DESELECT [<cursor>] ';'
116 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
<cursor>::= <identifier>

parameters DESELECT keyword: indicates that access to rowset is to be ended.

[<cursor>] an optional clause. The name of the cursor variable
containing the cursor created by the SELECT statement
that created the rowset. If this clause is omitted, the
default cursor ($cursor) is assumed.

notes Because PrimeBase supports cursors the allow all movement throughout a
rowset, the rowset cannot be automatically discarded when FETCH statement
moves beyond its last row. The rowset must be explicitly deselected, otherwise
it will take up host resources (memory and disk space) for the length of the
current session.

DO

function This statement executes repeatedly and terminates through a post-test, when
this evaluates to FALSE. With each repetition, the DO statement executes a
specified statement, and then evaluates the specified expression. If the
expression evaluates as TRUE, then the cycle of statement execution followed
by expression evaluation continues. When the expression eventually evaluates
to FALSE, the flow then passes on to the next statement after the DO statement.

syntax DO <statement> WHILE '(' <expression> ')' ';'

parameters DO keyword: indicates that a cycle of statement followed by
expression to be evaluated follows.

<statement> any valid statement. Often this statement is compound.

WHILE keyword: indicates that an expression follows that is
evaluated as a test. If it produces a TRUE result, then the
cycle of statement/expression continues. If it produces a
FALSE result, flow passes on to the next statement after
the DO.

<expression> any valid expression.
PrimeBase Reference Manual 117

DAL LANGUAGE REFERENCEPrimeBase
notes The statement is always executed once, even if the expression produces a
FALSE result the first time round.

An expression that evaluates to NULL is FALSE.

ERRORCTL

function This statement controls the handling of errors during the execution of a
session. If the <expr_value_expr> evaluates to zero, the DAL program
terminates immediately as soon as any error is encountered. If
<expr_value_expr> is non-zero, then when a data management error occurs, the
system variable, $sqlcode, is set to the error number, and program execution
continues. In this case the DAL program itself is expected to handle the error.
Please note: It is assumed that a data-management error means all errors that
involve data-definition (CREATE, DROP...) and data-manipulation (SELECT,
UPDATE...).

syntax ERRORCTL <expr_value_expr>';'

parameters ERRORCTL keyword: indicates that an expression follows that when
evaluated defines how error handling is to be directed.

<expr_value_expr> an expression defining the direction of error handling.

notes The ERRORCTL statement governs error processing until another ERRORCTL
statement supersedes it.

EXECUTE

function This statement passes a command to the Server for execution. The command
to be executed is passed on as a text string in the EXECUTE command. There is
also an EXECUTE FILE command - see over leaf for more details.

syntax EXECUTE [IN <dbbrand>] <expression> ';'
118 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
parameters EXECUTE keyword: indicates that the following expression is to be
evaluated, compiled and executed.

[IN <dbbrand>] specify which DBMS brand you want. This clause is only
included for compatibility with DAL. You can only choose
one DBMS brand - namely PrimeBase. Therefore this
clause is optional.

<expression> the expression must be of type CHAR or VARCHAR. It is
evaluated, compiled and executed. Unlike DAL, any valid
sub-program may be compiled and executed in this
manner.

notes Unlike DAL PrimeBase can handle output generated from the command string.
Therefore it is possible to send SELECT statements and the like from via the
EXECUTE statement.

EXECUTE FILE

function This statement loads and executes statements from a file. Procedure definitions
are loaded and statements of other kinds are executed directly.

syntax EXECUTE FILE <expression> [[[IN] LOCATION <expression>] ';'

parameters EXECUTE FILE keywords: indicate that statements in a specific file are to
be executed.

<expression> this first expression is the name of a file and the second
expression is the path to the file. Both expressions must
be of type CHAR or VARCHAR.

IN LOCATION this optional clause specifies the path to the file.

notes The sub-program in the file is loaded and executed. Sufficient memory is
required to read the entire program into memory. Unlike DAL, the file executed
resides on the workstation, NOT on the Server machine.

There is a limit to the length of each line in the file; This limit is 512 characters.
PrimeBase Reference Manual 119

DAL LANGUAGE REFERENCEPrimeBase
If the file is not in the current folder, use the IN LOCATION clause to specify the
folder. A path from the current folder may be specified by preceeding the path
with a colon (':')

FETCH

function This statement requests a single row from a rowset. PrimeBase selects the
requested row as the current row of the given rowset. Cursor-based column
references to columns in the rowset can later be used in expressions as
identifiers that compare values of the specified column in the current row. As
default, the FETCH statement simply retrieves the next row of the current
rowset: the further optional parameters support movement of the cursor in
other directions within the rowset, and permit concurrent processing of
multiple rowsets.

syntax FETCH [<motion>] [OF <cursor>] ';'

<motion>::= FIRST | LAST | ABSOLUTE <expr_value_expr> | NEXT |

PREVIOUS | RELATIVE <expr_value_expr>

parameters FETCH keyword: indicates that a row from a given rowset is to
be retrieved.

<motion> specifies which record to retrieve. If <motion> is not
specified, then FETCH NEXT is assumed by default.

FIRST the first row of the rowset is retrieved.

LAST the last row of the rowset is retrieved.

ABSOLUTE <expr_value_expr>
a 4 byte integer value expressing the absolute number of
the row to be retrieved. If it is not a 4 byte integer, the
values are automatically converted.

NEXT the next row in the rowset in relation to the current row.
120 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
RELATIVE <expr_value_expr>
a 4 byte integer value that specifies the row number to be
retrieved relative to the current row (it may be positive or
negative). If the value is not given as a 4 byte integer, the
value is automatically converted.

notes The rowset has no particular order, unless sort_list was specified in the SELECT
statement that created the rowset.

When a rowset is first generated, the current row is the one just before the
actual first row, so that a FETCH NEXT statement then moves it to the first row.

There is no current row of the rowset between the execution of an SELECT and
the first FETCH statement; when FETCH moves on past the last row of the
rowset; and if the current row is deleted.

If you attempt to fetch past the end of the rowset with either FETCH FIRST,
LAST, NEXT or PREVIOUS, a $sqlcode value of $sqlnotfound is caused; for
FETCH ABSOLUTE or RELATIVE, an error code is returned.

FOR

function This statement performs repetitive execution initialised by an assignment,
causing an expression to be evaluated, which if resulting as TRUE allows the
specified statement to be executed. Then a loop reinitialisation assignment is
called, and the whole process begins again. This cycle continues until the
expression evaluates to FALSE. Flow then passes on to the next statement after
the FOR statement.

syntax FOR '(' [<init_assign>] ';' [<expression>] ';' [<init_assign>]

')' <statement>

<init_assign>::= <var_name> '=' <expression> | <var_name> '++'

| <var_name> '--'

parameters FOR keyword: indicates that cycle of
initialisation/expression/statement/reinitialisation follows.
PrimeBase Reference Manual 121

DAL LANGUAGE REFERENCEPrimeBase
<init_assign> an initialisation assignment, made up of a variable name
and an expression.

<var_name> a variable name.

<expression> any valid expression.

<statement> any valid statement (usually a compound statement) to
be executed if the expression is evaluated as TRUE.

notes The initialisation assignment is always executed exactly once. If the expression
produces a FALSE result at the first evaluation, then <statement> and the
second initialisation assignment will never be evaluated.

FOR EACH

function This statement performs repetitive execution for each row in a rowset. This
statement is a more convenient alternative to a WHILE loop containing a FETCH
statement and $sqlcode testing. A specified statement is then executed for each
row in the rowset, which is identified by the <cursor>.Cursor-based column
references in the statement can be used to obtain the values of the columns in
the current row for the iteration statement.

syntax FOR EACH [<cursor>] <statement>

parameters FOR EACH keywords: indicate that a statement follows that is to be
applied to each row of the rowset.

<cursor> the name of a cursor, identifying the rowset. This clause
is optional.

<statement> any valid statement to be applied to each row in the
rowset.

notes The CONTINUE statement can start the next loop iteration prematurely.

If the retrieval of any row in the rowset fails, the FOR EACH iteration is
terminated with an error. A BREAK statement can also prematurely terminate a
FOR EACH iteration statement.
122 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
GOTO

function This statement changes the flow of control in a program unconditionally. It is
used in direct combination with the LABEL statement in that it causes an
immediate fork to the particular statement labelled by the given statement
label. (The statement label is defined in the LABEL statement.)

Both the GOTO and the LABEL statement cause a direct leap to a separate
section of the program in order to perform any kind of processing. Please
beware that overuse of the GOTO statement can mean that a program becomes
needlessly complex, and difficult to understand and debug. Where possible,
you should use the SWITCH statement.

syntax GOTO <var_name> ';'

parameters GOTO keyword: indicates that a branch in the order of flow of
program follows.

<var_name> the identifier of a statement_label, previously specified by
the LABEL statement.

notes The GOTO statement may only appear within a procedure definition, and is also
not permitted in the outer block. Please note that this is not a limitation in
PrimeBase DAL. This is only limited by DAL.

A GOTO statement may leap out of a FOR, WHILE, DO, or SWITCH statement to
break the flow of control. It is not recommended to leap into the middle of a
FOR, WHILE, or DO loop, or a SWITCH statement.

IF

function This statement executes DAL statements depending on a test condition. When
the statement is executed, the specified expression is evaluated. If it produces a
TRUE value, then the conditioned statement is executed. If not, the statement
conditioned by the ELSE clause is executed.

syntax IF '(' <expression> ')' <statement> [ELSE <statement>]
PrimeBase Reference Manual 123

DAL LANGUAGE REFERENCEPrimeBase
parameters IF keyword: indicates that a conditional statement follows.

<expression> an expression that is evaluated as the test condition.

<statement> the statement to be executed is the <expression> is
evaluated as TRUE.

ELSE <statement> the statement to be executed is the <expression> is
evaluated as FALSE. Note: an expression that is evaluated
as NULL is FALSE.

INSERT

function This statement inserts a new row or new rows into a table.

syntax INSERT [INTO] <table_reference> [(<column_group>)]

(<values_spec> | <query_spec>) [';']

<values_spec>::= VALUES '(' [<expression> | NULL] { ',' [

<expression> | NULL] } ')' [<return_row>]

<return_row>::= RETURNING [<column_group>] [INTO <cursor>]

parameters INSERT [INTO] keywords: indicate that new rows are to be added to the
specified table. INTO is an optional keyword.

<table_reference> the qualified name of the table to receive the new rows.

<column_group> the group of columns to which new data is to be added.
This is an optional part of the syntax. If it is omitted then
all columns of the table are assumed. The order in which
the data values are listed in the VALUES clause must then
follow the order in which the column were created in
CREATE TABLE.

<values_spec> clause in which the new data value are listed.

VALUES keyword: indicates that new values follow.
124 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
<expression> any valid expression. If the value conflicts with the
definition of the column, then an error will occur.

NULL a NULL value

<return_row> with <return_row>, you can retrieve a copy of the
selected columns of the inserted row into a cursor. If the
update was successful, the cursor will contain one row of
data.

RETURNING the keyword indicating that you want to retrieve a copy of
the selected columns.

<column_group> a comma-separated list of those columns you would like
retrieved.

INTO keyword indicating that the selected columns are to be
put into a cursor.

 <cursor> the name of a cursor, into which the selected rows can be
put.

<query_spec> query specification. See the section entitled, “Query
Specification” for full details as to syntax. Here, if
present, indicates that the query should be carries out,
and the results of the query be inserted into the specified
table (<table_reference>). The number of columns
returned by <query_spec> must correspond to the
number of column specified in <column_group>.

notes If <column_group> is omitted, all columns of the table are assumed in the order
they were originally defined.

The number of expressions must correspond to the number of columns
specified in <column_group>. Alternatively, the number of columns returned by
<query_spec> must correspond to the number of columns specified in
<column_group>.

$rowsaffected is set after a successfull INSERT, UPDATE or DELETE. The value
is the number of rows effected by the query. If an error occurs $rowsaffected
is set to zero.
PrimeBase Reference Manual 125

DAL LANGUAGE REFERENCEPrimeBase
LABEL

function This statement, in combination with the GOTO statement unconditionally
changes the flow of control in a program. It associates a statement label with a
particular statement, thus serving as a branch destination.

syntax LABEL <var_name> ':' <statement>

parameters LABEL keyword: indicates that a label for a particular statement
follows.

<var_name> identifier for statement label.

<statement> any valid SQL/DAL statement.

notes This statement, together with the GOTO statement may only appear within a
procedure definition, and is not permitted in the outer block. Please note that
PrimeBase DAL does not include this limitation, this is only a limitation by DAL.

The scope of a statement label is the procedure that contains it.

A statement label and local variable may share the same name without arising
confusion.

PINKCTL

function This statement controls the DAL compatibility of the PrimeBase DAL Server. It
has been added to DAL in order that certain desirable features may be added to
the PrimeBase DAL Server, without sacrificing compatibility with existing DAL
Servers.

Each expression (in order from left to right) controls an aspect (parameter) of
DAL compatibility. An expression may be omitted if the user wishes to leave the
current compatibility setting unchanged. A value of zero always sets the
compatibility parameter to 100% DAL compatible. Positive numbers (1,2,...)
represent various modes of incompatibility depending on the parameter. See
notes for details.
126 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
syntax PINKCTL <expr_value_expr>

parameters PINKCTL keyword: indicates that an expression follows.

<expr_value_expr> that when evaluated defines an aspect of DAL
compatibility.

notes The statement:

PINKCTL 0;

sets all compatibility parameters to zero (100% DAL compatible. This is the start-
up setting for the compatibility parameters. Each of the compatibility
parameters, and their various modes are described below.

PARAMETER 1

The first compatibility parameter controls the resulting rowset of a DESCRIBE
DATABASES statement. It is possible to get further (useful) information from
the describe databases statement when the parameter is set to a non-DAL
compatible;

Mode 0: In this mode, DESCRIBE DATABASE returns the following rowset

Mode 1: In this mode, DESCRIBE DATABASE returns the following rowset:

Mode 2: In this mode, DESCRIBE DATABASES returns the following rowset:

Col# Data Type Name

1 VARCHAR[31] name

Col# Data Type Name

1 INT id

2 VARCHAR[31] name
PrimeBase Reference Manual 127

DAL LANGUAGE REFERENCEPrimeBase
Mode 3: In this mode, DESCRIBE DATABASE returns the following rowset:

In the rowsets above, the column “id” contains the database identifier, as given
in the master database. The column “access” contains information concerning
the user's access to that particular database. The column can contain one of the
following values:

DBA The user has DBA privileges in the database.

USR The user has normal user status in the database.

NA No access. The user is not a user of the database, and
may not open the database.

In the case of DBA and USR, the user may open the database. In the case of NA,
the user will not be allowed to open the database.

PARAMETER 2

Compatibility parameter 2 controls the formatting of DATETIME (TIMESTAMP)
values. Standard DAL DATETIME formatting suffers from the problem that in
the format string ($tsfmt) the symbol “MM” is ambiguous. It could mean either
months or minutes.

Col# Data Type Name

1 VARCHAR[31] name

2 CHAR[3] access

Col# Data Type Name

1 INT id

2 VARCHAR[31] name

3 CHAR[3] access
128 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
Mode 0 In the DAL compatible mode, this ambiguity is solved by
expecting the date format to appear before the first
space, and the time format to appear after the first space.
The expression of DATETIME values is therefore fairly
limited. It probably would have been good enough, in
this case, to have specified that DATETIME values are
formatted using $datefmt (DATE format) and $timefmt
(TIME format) strings concatenated together. In fact, the
PrimeBase DAL Server will do this if the $tsfmt string is
set to NULL (““ or NULL).

Mode 1 The ambiguous symbol, “MM” is clarified by designating
the upper-case version (“MM”) as months, and the lower-
case version (“mm”) of the symbol as minutes. In this
way, the time and date symbols, in the $tsfmt string, may
be freely mixed.

PARAMETER 3

Compatibility parameter 3 is used to make PrimeBase more compatible with
P.INK SQL 1.x. There are 3 options for compatibility with P.INK SQL 1.x:

1. When turned on, this option will place the value zero (or
empty string) into an inserted column whose value is not
specified and the column has no default.

2. This optional string trims trailing spaces from all values
returned through the API. In this case the stated length of
the string will exclude the trailing spaces (for CHAR and
VARCHAR values).

3. This option allows all possible settings of these three
options:

Mode 1 2 3

Mode 0 - - -
PrimeBase Reference Manual 129

DAL LANGUAGE REFERENCEPrimeBase
PARAMETER 4

This parameter allows you to define in which order the driver handles date and
time values.

Mode 0 In this mode, a timestamp value is ordered by time first
and then date.

Mode 1 In this mode, a timestamp value is ordered by date first
and then time.

PARAMETER 5

Parameter 5 concerns the confusion regarding buffer length when retrieving a
character string value; using this parameter, you can specify how the
application should handle this exchange.

Mode 0 DAL compatible mode: most, if not all, existing DAL
applications seem to work efficiently if we assume that
the size stated for the user buffer is one less than the
actual size. In this mode, the PrimeBase DAL driver
assumes that there is an extra byte, and always adds the
zero terminator.

Mode 1 ON - -

Mode 2 - ON -

Mode 3 ON ON -

Mode 4 - - ON

Mode 5 ON - ON

Mode 6 - ON ON

Mode 7 ON ON ON

Mode 1 2 3
130 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
Mode 1 In this mode, the driver foes not assume that there is an
extra byte, and nevertheless always adds the zero
terminator if there is space. Be warned that this can result
in the last byte of the string going missing.

Mode 2 In this mode, the driver does not assume that there is one
extra byte, and only adds the zero terminator if there is
space. This is contrary to DAL.

PARAMETER 6

This parameter determines the binary coded decimal (BCD) format for data
types DECIMAL and MONEY. The application can choose between DAL format
and DAM format for exchange of BCD numbers in decimal form.

Mode 0 DAL compatible mode: all BCD numbers are exchanged
in the internal form used by the PrimeBase Client driver.

Mode 1 DAM compatible mode: all BCD numbers are exchanged
in the format specified by the DAM. This format is
described in “Inside Macintosh 6”, pages 8-36.

Note: When a new session is started, Mode 1 is the default mode.

PRINT

function This statement outputs a series of data values as a single row of output.

syntax PRINT <expression> {',' <expression> }';'

parameters PRINT keyword: indicates that an expression will follow.

<expression> an expression whose value will become a column of the
output row.
PrimeBase Reference Manual 131

DAL LANGUAGE REFERENCEPrimeBase
notes The statement creates a single output row with as many columns as there are
expressions. The data type of the column is the data type of the corresponding
expression. See the PRIINTCTL statement for details as to output data type
mapping.

A maximum of 256 expressions can appear in the expression list.

PRINTALL

function This statement prints the entire contents of a rowset.It sends the table
described by <cursor> to the user application. The output is modified according
to the current PRINTCTL statement. PRINTALL statements are generated
automatically by the db...() type functions which are batch oriented and do not
make use of the program control statements.

syntax PRINTALL [<cursor>] ';'

parameters PRINTALL keyword: indicates that the contents of the current cursor
(or a specific cursor) are to be printed.

[<cursor>] the cursor identifying the rowset whose contents are to
be printed. This clause is optional. If it is omitted, then
the default cursor ($cursor) is assumed.

notes This statement creates zero or more output rows, depending on the contents of
the rowset. The number of columns in each row is equal to the number of
columns in the corresponding rowset. The data type of each column is the data
type of the corresponding column in the rowset. See PRINTCTL for details on
output data mapping.

Use the PRINTINFO statement to find out information on data types and names
of the columns in the rowset.

There is no limit on the number of rows or columns in a rowset, however there
is a limit on the transmission of data values to the client. A single row of output
should not be more than 32,000 characters, and a single value of output should
also not be greater than 32,000 characters.
132 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
PRINTCTL

function This statement controls the data type mapping of output rows. You can specify
the manner in which each data type is to be returned to the client application.
There are three ways in which this can be done. Firstly you can specify a data
type conversion according to position - see the data type codes and names in
the table below. Secondly you can define a specific conversion - from a source
data type to a destination data type, and thirdly you can specify a procedure
that handles data type conversion for a particular source data type.

syntax PRINTCTL <conversion_spec> {',' <conversion_spec>} ';'

<conversion_spec>::= <expr_value_expr> ['='

(<expr_value_expr> | <procedure_name>)] | <procedure_name>

parameters PRINTCTL keyword: indicates that specifications for data type
mapping follow.

<conversion_spec> specifications as to how data types are to be converted.

<expr_value_expr> any valid expression that states how a data type is to be
converted.

<procedure_name> a previously declared procedure that specifies the
conversion of a source data type.

notes Data types can be referred to either by their data type code, or by their system
variable name. The data types, their codes and names are listed in the following
table:

Type Code System variable name

BOOLEAN 1 $boolean

SMINT 2 $smint

INTEGER 3 $integer

SMFLOAT 4 $smfloat
PrimeBase Reference Manual 133

DAL LANGUAGE REFERENCEPrimeBase
Using this table, you can specify an integer expression, whereby, for example
the expression for, say, code number 7 (TIME data type) produces the result
value 6 - meaning that TIMESTAMP is converted to DATE.

There is a special code - namely 0, (zero), which specifies mapping to VARCHAR
(type code 12) and where NULL values are returned as the text string “$NULL”.
For convenience´ sake, the statement:

PRINTCTL 0,0,0,0,0,0,0,0,0,0,0,0:

can be abbreviated to:

PRINTCTL 0;

If the name of a procedure appears, the DAL subsystem is directed to call the
named procedure before sending it back to the client application. The
procedure should be declared to take a single argument and to produce a single
value. The DAL subsystem sends the return value from the procedure back to
the client application.

FLOAT 5 $float

DATE 6 $date

TIME 7 $time

TIMESTAMP 8 $timestamp

CHAR 9 $char

DECIMAL 10 $decimal

MONEY 11 $money

VARCHAR 12 $varchar

VARBIN 13 $varbin

LONGCHAR 14 $longchar

LONGBIN 15 $longbin

Type Code System variable name
134 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
The PRINTCTL governs output data mapping until another PRINTCTL statement
supersedes it.

This statement affects the actual data returned by the API to the client
application.

The PRINTINFO reports the DAL data type of each column in a rowset - that is
the unmapped types. If the contents of a rowset are printed with a PRINTALL or
PRINTROW statement, however, the client application will map the received
data.

The PRINTCTL statement must be used before values can be received in binary
form.

PRINTF

function This statement puts data items into an output-formatted string.

syntax PRINTF '(' <expression> { ',' <expression> } ')' ';'

parameters PRINTF keyword: indicates that specifications follow for an output
format string.

<expression> an expression, whose value is a format string to control
formatting. See the description of the $format() function
in the section on Built-in Function for the syntax of a
format string.

notes This statement creates a single output row containing a single output column of
type VARCHAR. This is, of course, subject to PRINTCTL - output data mapping.

This statement is especially useful for client applications that have little or no
tabular-processing capability and that are text-oriented.

The $format() function provides the same formatting features as PRINTF, but
produces a VARCHAR return value instead of generating output.
PrimeBase Reference Manual 135

DAL LANGUAGE REFERENCEPrimeBase
PRINTINFO

function This statement returns a description of a rowset to the client application.

syntax PRINTINFO [<cursor>] ';'

parameters PRINTINFO keyword: indicates that a description of the current
rowset is to be returned.

<cursor> an optional clause. Specify which rowset is to be
described. If this clause is omitted, the default cursor
($cursor) is assumed.

notes This statement generates a single row for each column of the specified rowset.
The table returned into <cursor> is as follows:

Similar information to that generated by the PRINTINFO statement can be
obtained through the following system functions: $colname(), $coltype(),
$rows(), and $cols().

PRINTROW

function This statement prints the current row of a cursor.

Col# Data Type Name

1 SMINT number

2 VARCHAR[255] name

3 SMINT type

4 SMINT length

5 SMINT scale

6 SMINT width
136 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
syntax PRINTROW [<cursor>] ';'

parameters PRINTROW keyword: indicates that the current row of a cursor is to
be printed.

[<cursor>] an optional clause. The name of the cursor in which the
row is to be found that you want printed.

notes This statement creates a single output row with as many columns as there are
columns in the current cursor. The data type is the type of the corresponding
column of the rowset. See PRINTCTL for details as to output data mapping.

Use the PRINTINFO statement to find out information about the names and
data types, and other related information, of the columns of a rowset

QUERY SPECIFICATION

function A query specification is the part of a data manipulation statement, where you
specify exactly what data you want retrieved from the database. The syntax for
a query specification is used in the SELECT statement, and also in the INSERT
statement.

syntax <query_spec>::= SELECT [ALL | DISTINCT] <select_list>

<table_expr>

<select_list>::= <select_item> { ',' <select_item> }

<select_item> ::= '*' | (<table_alias> '.' '*') |

<column_reference | <search_condition> [[AS] <column_alias>

]

<table_expr>::= <from_clause>

[<where_clause>]

[<group_by_clause>]

[<having_clause>]

<from_clause>::= FROM <table_specification> { ','

<table_specification> }
PrimeBase Reference Manual 137

DAL LANGUAGE REFERENCEPrimeBase
<table_specification>::= <table_reference> [[AS]

<table_alias>] | <subquery> [AS] <table_alias>

<where_clause>::= WHERE <search_condition>

<group_by_clause>::= GROUP BY <column_reference> { ','

<column_reference> }

<having_clause>::= HAVING <search_condition>

parameters SELECT [ALL | DISTINCT]
statement identifying keywords: indicate that data is to be
retrieved from the database. The clause ALL | DISTINCT is
an optional clause. The default is DISTINCT.

<select_list> The select_list is a comma separated list of select_items.
It is known as a “projection”.

* represents all the columns for the specified relation(s).

<table_alias>.* an all-columns-of-table specification. The table alias
obviously refers to a table in the FROM list.

<column_reference> the name of the column, or columns from which you
wish to select data.

<search_condition> any valid <search_condition> (chapter Search Conditions
in the User Manual). A query specification expressed
through a search condition is a calculated column.

[[AS] <column_alias>]an optional clause. This is best used in conjunction with
the search condition: the calculated column can be given
an alias name for the purposes of the current session.

<table_expr> species from which table the data is to be retrieved.
Included in the table expression are a number of optional
clauses, where it is possible to focus in on specific data
within the table.

<from_clause> specifies from which table the data is to be retrieved.

FROM clause identifying keyword.
138 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
<table_specification> a table can be referenced, either by entering the qualified
name of the table, or through a subquery.

<table_reference> qualified name of the table.

[[AS <table_alias>] an optional clause: the table you are retrieving from can
be given an alias, which is then valid for the duration of
the current session.

<where_clause> restricts the rows of the projection (of the <select_list>).

WHERE clause identifying keyword´.

<search_condition> any valid <search_condition> (chapter Search Conditions
in the User Manual). A query specification expressed
through a search condition is a calculated column.

<group_by_clause> summarises the rows of returned data into summary
rows. All rows that have identical data values in one or
more specified columns are divided into groups. These
groups are then summarized by a single summary row
for the group.

GROUP BY clause identifying keywords.

<column_reference> the qualified name of the column or columns.

<having_clause> This clause is used to restrict the summary rows created
by GROUP BY, just as the WHERE clause restricts those
rows that a re subject to grouping.

HAVING keyword: indicates that a search condition follows, which
is used as a measure to restrict the rows subject to
grouping.

<search_condition> any valid search condition. Please see section on search
conditions for details as to syntax.
PrimeBase Reference Manual 139

DAL LANGUAGE REFERENCEPrimeBase
RETURN

function This statement is used to return values from a PrimeBase procedure. It ends
execution of a called procedure. Execution then continues with the statement
that immediately follows the CALL statement in the calling procedure. One or
more return values can optionally be returned to the calling procedure. The
evaluation of the expression list in the RETURN statement obtains the return
values.

syntax RETURN [<expression> { ',' <expression> }] ';'

parameters RETURN keyword: indicates that return values are to be obtained
through the evaluation of the expressions that follow.

<expression> any valid expression.

notes Items in <expression> may evaluate to NULL, producing a NULL return value.

ROLLBACK

function This statement aborts whatever transaction is currently in process. Any updates
that have been made to the database during such a transaction are rolled back,
and a new transaction is begun.

syntax ROLLBACK [WORK | TRANSACTION | TRANS] ';'

parameters ROLLBACK keyword: indicates that transaction should be rolled back.

WORK | TRANSACTION | TRANS
These keywords are optional: only include them for
readability.
140 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
SELECT

function The SELECT statement retrieves data from open tables in the database. The
data is returned into a rowset.

syntax <query_spec>

[ORDER BY <sort_spec> {',' <sort_spec>}]

[INTO <cursor>]

[FOR (READONLY | <scrolling_mode> | <update_mode> | EXTRACT)

] [';']

<sort_spec> ::= (<column_reference> | <integer_literal>) [

ASC | DESC]

<scrolling_mode> ::= SCROLLING [<update_mode>]

<update_mode>::= UPDATE [<column_group> | OF <column_name> {

',' <column_name> }]

parameters <query_spec> see the section called “Query Specification”.

ORDER BY This clause is used to order the data returned by a
SELECT statement. Data can be ordered in an ascending
or descending order, specified by the words ASC and
DESC. If neither of these words are specified, then ASC is
assumed by default.

<sort_spec> the specifications as to how the rowset is to be ordered.

<column_reference> the qualified name of the column to be ordered by.

<integer_literal> the numerical position that is given to each separate
column in the select_list, in the ORDER BY clause. From
left to right, the columns are numbered from lowest to
highest.

ASC | DESC ascending or descending. If neither is specified, then
ascending is assumed by default.
PrimeBase Reference Manual 141

DAL LANGUAGE REFERENCEPrimeBase
INTO <cursor> the rowset can be loaded into a cursor. Cursors are
declared with the DECLARE statement. See the section
called “DECLARE” for more details.

FOR this keyword indicates that a specification as to what is to
happen to the returned data.

READONLY specifies that the rowset resulting from the query will be
read sequentially, using FETCH NEXT statements only,
and that the cursor will not be used to update the
database. READONLY is the default if no other update
mode is specified.

SCROLLING specifies that the rowset resulting from the query will be
processed by means of FETCH motions (NEXT,
PREVIOUS, FIRST, LAST, etc.) and that the cursor will not
be used to update the database.

EXTRACT specifies that the rowset resulting from the query will be
processed by means of any of the possible FETCH
motions and that the cursor will not be used to update
the database. With this mode the number of rows in the
rowset can be determined after the SELECT statement is
complete.

UPDATE specifies that the rowset resulting from the query will be
read sequentially, using FETCH NEXT statements only,
and that the cursor may be used to update the database
in subsequent positioned UPDATE or positioned DELETE
statements. If UPDATE is specified, the FROM clause of
the query specification must name a single table.

notes Update modes

The SELECT statement update modes (READONLY, UPDATE, SCROLLING, and
EXTRACT) control the detailed operation of the SELECT statement and the
subsequent FETCH and FOR EACH statements that reference the rowset it
creates.
142 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
The simplest mode is READONLY. In this mode, the Server fetches data from
the database row by row, depending on the specifications in the subsequent
FETCH or FOR EACH statements. The motion supported is a forward sequential
direction; those rows that were previously retrieved are discarded by the Server
and are no longer available without performing another query. As the
READONLY mode only retrieves rows from the database on request, the total
number of rows in the resulting rowset cannot be predicted until all rows have
been retrieved by the FETCH statement. The $rowcount system variable is set
to NULL immediately after the SELECT statement, thus is this mode appropriate
for those queries in which the data is read into the client application once, and
is then processed exclusively within the client application itself.

The SCROLLING update mode is slightly more complex. As with READONLY,
the Server fetches data from the database as specified by either the FETCH or
FOR EACH statements, however, in addition to making the row available to a
DAL program for processing, the Server adds the row to a shadow copy of the
rowset, which it then maintains. Thus FETCH motions for previously retrieved
(skipped) rows can be read from the shadow copy.This shadow copy of the
rowset is stored on the client.

The size of the rowset in the SCROLLING mode cannot be predicted until all
rows have been retrieved - as in READONLY. The $rowcount system variable is
set to NULL immediately after the SELECT statement. This mode is appropriate
for queries in which the client application anticipates a large rowset and uses
the Server to support large scale scrolling through the data. This flexibility is
not without its price: additional mass storage requirements and I/O overhead
on the client.

PrimeBase has an extra mode - SCROLLING for UPDATE. In effect, it is similar
to the normal SCROLLING mode, except that once your rowset has been
retrieved, you can indicate your intention to update the rowset. In the SELECT
statement, you must include the primary key in the select_list. To actually
update the rowset, use the UPDATE command and refer to the cursor, in which
the rowset was stored. These changes are written straight to the database on
the Server. You will not see these changes reflected in the rowset until you have
performed another SELECT query. This method of updating has its restrictions:
PrimeBase Reference Manual 143

DAL LANGUAGE REFERENCEPrimeBase
only simple columns may be selected (no aggregate functions or calculated
columns): GROUP BY and HAVING are not allowed - in contrast to DAL. ORDER
BY is permitted.

The OF clause in <update_mode> is alternative syntax for the normal
<column_group> syntax, provided for compatibility with DAL.

The ';' is optional, above. There is, however, a problem with this: if the ';' and
the FOR clause are omitted and the SELECT statement is by FOR or FOR EACH
loop (see <for_stat> and <for_each_stat>) the compiler will mistake these
statements for the FOR clause.

SET

function This statement assigns a value to a variable. The statement has three forms. In
the first form, the specified expression is evaluated, and its value is assigned to
the given variable. The second and third form increase and decrease
respectively the specified variable.

syntax [SET] <var_name> '=' <expression> ';' |

[SET] <var_name> '++' ';' |

[SET] <var_name> '--' ';'

parameters SET keyword: indicates that a value for a variable is being set.
This word is optional.

<var_name> the identifier of the variable that is to be assigned a value.

notes The expression may contain literals, variables, cursor-based column references,
as well as arithmetic and comparison operators. Subqueries and aggregate
functions are not permitted.

The data type of the expression will be automatically converted to that of the
var_name, if this is possible, according to the data type conversion rules.

A NULL expression value assigns the NULL value to the variable.
144 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
SWITCH

function The SWITCH statement acts as a junction to multiple paths in a program´s flow
of control. In many ways it is like the IF statement, except that numeric or string
values are compared to match the head expression, rather than the execution
of a simple TRUE/FALSE test.

The head of the SWITCH statement is an expression which is evaluated to
produce a result value. The body of the SWITCH statement contains one or
more CASEs, which each specify a constant integer of string value. These are
the comparison expressions. If one of these comparison_expressions matches
the expression in the head on the SWITCH statement, then that particular CASE
statement is then executed.

If no case values match the head expression, then the default statement is
carried out - if such a default statement is present.

Each CASE statement_list should end with the BREAK statement, otherwise the
program flow continues execution with the next CASE statement_list. Only in
the CASE statement_list preceeding the default case need there be no BREAK
statement.

syntax SWITCH '(' <expression> ')' '{'

{ CASE <literal> ':' <statement_list> }

[DEFAULT ':' <statement_list>]

'}'

parameters SWITCH keyword: indicates that head expression follows.

<expression> an expression that is evaluated to control the switch.

CASE indicates that a value follows to be used in comparison
with the control expression.

<literal> a constant expression that specifies the matching value
for this case.

<statement_list> the sequence of statements to be executed if the value of
the <expression> matches the case <literal>.
PrimeBase Reference Manual 145

DAL LANGUAGE REFERENCEPrimeBase
DEFAULT keyword: indicates that the statement_list that follows is
to be executed should none of the case literals match the
head expression.

notes The DEFAULT case may appear only once in the SWITCH statement, but can be
placed anywhere near to other CASEs.

As mentioned before, the CASEs themselves do not alter flow of program; flow
continues sequentially until all statements have been executed. Interrupt this
flow with BREAK, RETURN, GOTO or similar statements. The most common to
use is the BREAK statement.

Data types are converted for comparison, just as they would be for a
comparison expression (<expression> == <comparison_expression>).

The system variable $switch is set to the value of <expression> for the last
SWITCH statement that is executed when the body of the SWITCH statement is
entered.

UPDATE (POSITIONED)

function The positioned UPDATE statement updates data in the current row of a cursor.
The SET clause describes how a column is to be updated.

syntax UPDATE <table_reference> SET <set_clause> {',' <set_clause>} [

WHERE CURRENT OF <cursor>] [';']

<set_clause>::= <column_name> '=' <search_condition>

parameters UPDATE keyword: indicates that data is to be modified.

<table_reference> the qualified name of the table to be updated.

SET keyword: indicates that specifications as to how the data
is to be altered follow.

<set_clause> an expression that describes how a column is to be
updated. No subqueries, or aggregate functions are
allowed in the <search_condition> in this clause.
146 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
<column_name> name of column you are wanting to update.

<search_condition> an expression whose value is assigned to
<column_name>. This expression may include references
to the columns of the update table. The
<search_condition> in the SET clause is evaluated by the
Server.

WHERE CURRENT OF
keyword: indicating the current row of the specified
cursor.

<cursor> the name of an active cursor with a valid current row that
is then updated by this statement.

notes The table reference must specify an updatable table or view. In the case of
updating a view, this is only possible if the view is derived from a single table.

The cursor must specify a rowset created by a SELECT statement that included
an update mode (see the SELECT statement for more details). If the
<update_mode> specifies a list of updatable columns, then every column_name
in the SET clause must be present in the <update_mode> list.

According to the definition of the column (from CREATE TABLE), the values that
can be updated may be restricted. Attempts to insert a row in violation of these
restrictions will result in an error.

If an expression in the <set_clause> includes a reference to a column being
updated, the value used in computing the expression is the value of the column
before any updates are performed on the row.

$rowsaffected is set after a successfull INSERT, UPDATE or DELETE. The value
is the number of rows effected by the query. If an error occurs $rowsaffected
is set to zero.
PrimeBase Reference Manual 147

DAL LANGUAGE REFERENCEPrimeBase
UPDATE (SEARCHED)

function This statement modifies data in one or more rows of a table based on a row-
selection criteria. The search condition in the WHERE clause identifies the rows
to be updated. These columns are then updated according to the specifications
in the SET clause.

syntax UPDATE <table_reference> SET <set_clause> {',' <set_clause>} [

WHERE <search_condition>] [';']

<set_clause>::= <column_name> '=' <search_condition>

parameters UPDATE keyword: indicates that data is to be modified.

<table_reference> the qualified name of the table to be updated.

SET keyword: indicates that specifications as to how the data
is to be altered follow.

<set_clause> an expression that describes how a column is to be
updated. No subqueries, or aggregate functions are
allowed in the <search_condition> in this clause.

<column_name> name of column you are wanting to update.

<search_condition> an expression whose value is assigned to
<column_name>. This expression may include references
to the columns of the update table. The
<search_condition> in the SET clause is evaluated by the
Server.

WHERE keyword: indicating which rows are to be updated. If this
clause is left out, then all rows of the specified table are
updated.

notes The table reference must specify an updatable table or view. In the case of
updating a view, this is only possible if the view is derived from a single table.

According to the definition of the column (from CREATE TABLE), the values that
can be updated may be restricted. Attempts to insert a row in violation of these
restrictions will result in an error.
148 PrimeBase Reference Manual

DAL LANGUAGE REFERENCEPrimeBase
If an expression in the <set_clause> includes a reference to a column being
updated, the value used in computing the expression is the value of the column
before any updates are performed on the row.

$rowsaffected is set after a successfull INSERT, UPDATE or DELETE. The value
is the number of rows effected by the query. If an error occurs $rowsaffected
is set to zero.

WHILE

function This statement executes repeatedly and is terminated by a pretest. With each
repetition, the WHILE statement evaluates a specified test expression. If this
evaluates as TRUE then the statement is executed and a cycle of expression
evaluation followed by statement execution begins. This continues until the
expression evaluates as FALSE, when flow then passes on to the next
statement after the WHILE statement.

syntax WHILE '(' <expression> ')' <statement>

parameters WHILE keyword: indicates that an expression is to be evaluated;
if this expression evaluates as TRUE, then the statement
that follows may be executed.

<expression> any valid expression.

<statement> any valid statement.

notes The <statement> is usually a compound statement.

Remember that if the <expression> is evaluated as FALSE the first time, then
the statement will not be executed at all.

An expression that evaluates to NULL is FALSE.
PrimeBase Reference Manual 149

DAL LANGUAGE REFERENCEPrimeBase
150 PrimeBase Reference Manual

API FUNCTIONS
API FUNCTIONS

The API functions are the interface between the client application and the DAL
runtime environment. The client application calls the API functions to perform
the following tasks.

• begin and end communication with a DAL server.

• send fragments of DAL programs to the runtime environment.

• request execution of a program fragment.

• determines the status of execution of a DAL program.

• retrieve data passed back from the DAL program.

• determines the type of data passed back from the DAL program.

• force a break or abnormal termination of the DAL program.

• collect details of any error that occurs during the execution of a DAL program.

API FUNCTION GROUPS

The API functions described in this section may be divided into the following
function groups:

Session-control functions

• CLInit() Begins a DAL session

• CLEnd() Ends a DAL session

• CLConInfo() Describes a DAL session

• CLGetSn() Returns the session number
PrimeBase Reference Manual 151

API FUNCTIONS
Program-execution functions

• CLSend() Sends DAL program text to the runtime environment

• CLSendItem() Sends binary data to the runtime environment

• CLExec() Executes previously sent DAL programs

• CLState() Checks DAL program execution status

• CLGetErr() Retrieves error codes and messages

• CLBreak() Interrupts and terminates DAL program execution

Results-processing functions

• CLGetItem() Describes and/or retrieves the next data item

• CLUnGetItem() Unretrieves the previous data item

RETURN VALUES

All the API functions return integer values to indicate either successful or
unsuccessful completion of the call, or other types of status conditions. See the
following tables:
152 PrimeBase Reference Manual

API FUNCTIONS
Integer Values for Return on Codes

Symbol Value Description

A_NULL 1 The requested data item is a
NULL, therefore no data was
returned.

A_OK 0 Function successfully completed

A_VALUE 0 When returned by an
information request call, the
DAL program produces output
data that is awaiting retrieval by
the client application; when
returned by a data retrieval call,
the data item was successfully
retrieved into the supplied buffer.

A_ERROR -1 Program execution ended in an
error condition. The error details
can then be retrieved with
CLGetErr().

A_READY -2 The runtime environment is
ready to accept program text. If
a DAL program fragment was
being executed, it has finished
successfully and there is no
more output to be processed by
the client application.

A_BADTYPE -3 The item requested is not of the
data type expected. No data has
been returned.
PrimeBase Reference Manual 153

API FUNCTIONS
Integer Values for Data Type Codes

A_BREAK -5 An API results-processing
function was interrupted on
request from the client
application, or a timeout has
occurred.

A_EXEC -6 A DAL program is currently
being executed. There is no
output data waiting to be
processed by the client
application.

A_NOTCONN -7 Specified session ID parameter
is invalid.

A_SESSMAX -8 Specified session number
parameter is out of range.

A_INUSE -9 Session is in use by another
client application

A_NOHOST -10 Session is open, but not
connected to a host.

Symbol Data Type Value len places

A_BOOLEAN BOOLEAN 1 No No

A_SMINT SMINT 2 No No

A_INTEGER INTEGER 3 No No

A_SMFLOAT SMFLOAT 4 No No

A_FLOAT FLOAT 5 No No

Symbol Value Description
154 PrimeBase Reference Manual

API FUNCTIONS
Results Processing

The API functions, CLGetItem(), and CLGetUnItem(), allow the client application
to process output data generated by the execution of a DAL program.Output
data is generated by the various “print” statements: PRINT, PRINTROW,
PRINTALL, PRINTF, and PRINTINFO. The “print” statements generate an output
data stream with an implicit row/column structure for each statement.

Output from the DAL program is treated as one continuous stream of data
items by the DAL API. The CLGetItem() function retrieves each data item in
sequence, operating from the client application. The data items are returned to
the client application each with a set of flags. The flags are used to indicate
NULL values, end-of-row boundaries, and whether the output has been
formatted by the DAL program.

A_DATE DATE 6 No No

A_TIME TIME 7 No No

A_TIMESTAMP TIMESTAMP 8 No No

A_CHAR CHAR 9 Yes No

A_DECIMAL DECIMAL 10 Yes Yes

A_MONEY MONEY 11 Yes Yes

A_VCHAR VARCHAR 12 Yes No

A_VBIN VARBIN 13 Yes No

A_LCHAR LONGCHAR 14 Yes No

A_LBIN LONGBIN 15 Yes No

Symbol Data Type Value len places
PrimeBase Reference Manual 155

API FUNCTIONS
The CLUnGetItem() function can be used to return a data item, that has just
been retrieved, back to the stream, so that it can be retrieved again later. When
no more data is there, i.e. when the end of the DAL program´s output data
stream is reached, the API returns a A_READY result.

Another function of CLGetItem(), is to obtain information about the data item
from the API. For example, you may want to find out information on the data
type and length of the next data item, and based on this information then
allocate a buffer. You can then call the API a second time, and actually retrieve
the data item, and place it in the buffer. In this way the client application can
adapt to the returned data.

API Functions and NULLs

A client application should be prepared to handle NULL values in the output
data stream from the Server. The return value A_NULL, from the CLGetItem()
function indicates a NULL value.

If the client application cannot handle NULL values, you can use the PRINT
statement:

PRINTCTL 0;

All data is converted by this statement to VARCHAR strings; NULL values are
represented by the string “$NULL”.

CLBREAK() FUNCTION

function This function interrupts the runtime environment, by resetting, or aborting it.

syntax CLBreak (sessid, abort)

long sessid;

int abort;

parameters CLBreak The name of the function call.
156 PrimeBase Reference Manual

API FUNCTIONS
sessid The session ID that specifies which session is to be re-set
or aborted. CLInit() returns the session ID.

abort This requests that the current runtime environment be
aborted if non-zero. If zero, it requests that program
execution be halted, and that the runtime environment be
reset.

return values A_OK The session has been successfully reset or aborted.

A_ERROR The reset, or abort attempt was unsuccessful.

notes If the runtime environment is blocked, while waiting for a reply from the host,
any attempt to reset the environment will be unsuccessful. The reason for this
is that the runtime environment cannot process this function until the host
returns control to it.

This function can also be used to break an infinite loop or stop runaway output
from the program that is currently executing.

CLCONINFO() FUNCTION

function This function returns information about a specified session.

syntax CLConInfo (sessid, sessnum, outid, vrsid, host, user, network,

connstr, start, statep)

long sessid;

int sessnum;

long *outid;

long *vrsid;

char *host;

char *user;

char *network;

char *connstr;

long *start;

long *statep;
PrimeBase Reference Manual 157

API FUNCTIONS
parameters CLConInfo The name of the function call.

sessid The session ID specifying the session about which you
want information. If sessnum is used instead to identify
the session, then sessid must be zero.

sessnum The session number specifying the session about which
you want information. If sessid is used instead to identify
the session, then sessnum must be zero.

outid This is used to return the corresponding sessid from a
call where only the sessnum was specified.

vrsid This is used to return the client API version number as a
sequence of 4 bytes.

host This is used to return the host parameter that was
specified in the CLInit() call that created the session. This
is the name of the Server.

user This is used to return the user parameter that was
specified in the CLInit() call that created the session.

network This is used to return the name of the type of network
connection that is being used by the session.

connstr This is used to return the connection string parameter
that was specified in the CLInit() call that created the
session.

start This is used to return a unique TIMESTAMP value that is
associated with the start of a session.

statep This returns the state of the session as it would be
reported by the CLState() call. The possible return values
are the same as the CLState() return values.

return values A_VALUE Information for an active session has been retrieved
successfully.

A_NULL The input session id or number refers to an inactive
session.
158 PrimeBase Reference Manual

API FUNCTIONS
A_SESSMAX The specified sessnum is out of range.

notes Normally, this function should be used with a non-zero sessid obtained from a
previous CLInit() call (where sessnum is set to 0), in order to obtain information
about a session that was initiated by the client application.

For testing purposes, sessnum can be used to find out information on all the
available sessions - whether or not they were initiated by the client application.

The parameter statep can also return the value A_EXEC, which means that the
requested session was already in use by another user at the time when the
CLConInfo() call was made.

CLEXEC() FUNCTION

function This function requests the execution of a program fragment that has previously
been passed by one or more CLSend() or CLSendItem() calls. The run-time
environment then begins execution of the fragment, and control is immediately
returned to the client application.

syntax CLExec (sessid)

long sessid ;

parameters CLExec The name of the function call.

sessid The session ID specifying the session for which the
program fragment should be executed. The session ID is
that which is returned by the CLInit() call.

return values A_OK Execution of program fragment has begun successfully.

A_ERROR An error occurred while trying to begin execution.

notes The client application is free to continue work, while the runtime environment
begins execution.

This call is asynchronous, error messages may not be available at completion.
PrimeBase Reference Manual 159

API FUNCTIONS
You can determine the current status of execution with the CLState() function
call.

CLGETERR() FUNCTION

function This function call retrieves error codes and messages after an error has
occurred.

syntax CLGetErr (sessid, perr, serr, itm1, itm2, msg)

long sessid;

long *perr;

long *serr:

char *itm1;

char *itm2;

char *msg;

parameters CLGetErr The name of the function call.

sessid The session ID that is returned by CLInit().

perr The buffer in which the primary error code is placed.

serr The buffer in which the secondary error code is placed.

itm1 The buffer for the zero-terminated string that identifies
the first object of the error message.

itm2 The buffer for the zero-terminated string that identifies
the second object of the error message. The maximum
number of bytes returned is 256 (including zero
terminators).

msg The buffer for the returned error message. The maximum
number of bytes returned is 256 (including zero
terminators).

return values A_OK The error information has been retrieved successfully.
160 PrimeBase Reference Manual

API FUNCTIONS
A_ERROR An error occurred while retrieving the error information!

notes This call must be made following a function call that returns an error status
without any intervening API calls. This must be so in order to retrieve the error
information directly associated with the returned error status.

Any of the pointers may be NULL is the user is not interested in the data that
may be returned

When used after an unsuccessful CLInit() call, this function may be used to
determine why it was unsuccessful.

The message in msg always begins with the name of the program source, as
well as the line in which the error occurred. This information is followed by a
colon, (:), and the error message itself.For program fragments sent by the
CLSend() API function, the program source is identified as “network”. It is often
convenient to use the colon delimiter to parse the message so that only the
latter half is revealed to the user of the client application.

CLGETITEM() FUNCTION

function This function can either retrieve the next data item from the runtime
environment´s output data stream, or it can obtain information about the type
and size of the next data item.

This function call is an information request call when made with a NULL (0)
buffer pointer, The next data item in the data stream is examined, and data
type, length, number of decimal places and flags are returned to the client
application, however, the item itself is not retrieved. With the help of the
retrieved information, you can allocate a buffer to receive the next data item.
Remember, however, that an information CLGetItem() call does not advance the
API to the next data item in the data stream.
PrimeBase Reference Manual 161

API FUNCTIONS
Data can be retrieved with a non-NULL buffer pointer. Again, the data type,
length, number of decimal places, and flags for the next data item are returned
in addition to the data item itself. In contrast to an information request call, the
retrieval of a data item, with CLGetItem(), does advance the API to the next data
item in the data stream.

By passing a data type code to the CLGetItem() function, the client application
can tell the API what type of data item it expects to receive. If the type is
different to the type of the next item in the output stream, an error code is
returned. If the client application is prepared to receive any type of data, then
the data-type code, A_ANYTYPE must be passed to the CLGetItem() function.

syntax CLGetItem (sessid, timeout, typep, lenp, placesp, flagsp,

buffer)

long sessid;

int timeout;

short *typep;

short *lenp;

short *placesp;

short *flagsp;

char *buffer;

parameters CLGetItem() The name of the function call.

sessid This specifies the session ID call, that is returned by
CLInit().

timeout This specifies the length of time in hundredths of seconds
that CLGetItem() should wait for an available data item
before returning the code A_BREAK. If you do not wish to
specify a time - and therefore allow an unlimited wait for
the next data item, then you must pass the value
AW_FOREVER.

typep The typep pointer points to a short value (a 2 byte signed
value) that contains the expected data type of the
retrieved data item. On return, the value is set to the
actual type of the data.
162 PrimeBase Reference Manual

API FUNCTIONS
lenp The lenp pointer points to a short value (a 2 byte signed
value) that contains the length of the buffer pointed to by
buffer. The range allowed by this short value is between 0
and 32767 bytes. Once the data item has been retrieved,
the value is set to the actual length of the data item.

placesp The short value pointed to by placesp is set to the
number of decimal places in the retrieved data item. If the
item is not DECIMAL or MONEY type, then a zero is
returned.

flagsp the short value pointed to by flagsp contains a series of
bit flags that describe the retrieved data item. The flag
AF_ISNULL indicates that the data item is a NULL value.
The flag, AF_RECEND, specifies that the retrieved data
item is in the last column of an output row. The client
application can use this flag to test for an end-of-row
condition.

buffer To retrieve information about the next item, this
parameter must be set to NULL. For data retrieval, it must
be a pointer to a buffer where the retrieved data can be
placed. If the item is NULL, no data will be placed in the
buffer.

return values A_VALUE A non-NULL data value was retrieved.

A_NULL A NULL data value was retrieved.

A_ERROR The execution ended in an error. There is no more data.

A_READY Execution ended successfully; there is no more data.

A_BADTYPE The data item is not of the type expected.

A_BREAK The time limit specified by the timeout parameter ran out
while waiting for data from the runtime environment.

notes The statements PRINT, PRINTF, PRINTALL, and PRINTINFO generate the data
items that are retrieved by this function call. The data values form continuous
data stream, from which CLGetItem() retrieves each item in sequence.
PrimeBase Reference Manual 163

API FUNCTIONS
For VARCHAR and CHAR types, the length returned is the number of data
characters. The returned data also includes a NULL termination byte, which is
not counted as a data byte. Therefore when such data types are expected, your
buffer size should allow for the “returned length + 1”.

In order to skip the following data item in the data stream, call CLGetItem() with
a NULL buffer, and set typep to A_DISCARD.

A good use of the timeout feature in the CLGetItem() call is to supply a short
timeout value and thus allow the client application to regain control and
continue with other work, and not have to wait, should no data item be
currently available. While the client application is continuing with other work,
the function call CLState(), (page 168), can be called to determine when a data
item becomes available. An alternative to this procedure is to set the client
application to loop, calling CLGetItem() repeatedly with a relatively short
timeout value, then checking for other events between calls.

CLGETSN() FUNCTION

function This function call retrieves the internal DAL session number for a particular
session ID.

syntax CLGetSn(sessid)

long sessid;

parameters CLGetSn The name of the function call.

sessid The session ID, that can be obtained by CLInit(), for the
session number that you are requesting.

return value This call returns a session number, which is an integer value of 1 or more.

notes This function call is really only provided for testing and analytic purposes, and
is rarely used by client applications. It is then most often used together with
CLConInfo(), in order to retrieve information on all available sessions, whether
or not they have been initiated by the client application.
164 PrimeBase Reference Manual

API FUNCTIONS
The session number returned can be used as the sessnum of the CLConInfo()
function call.

CLINIT() FUNCTION

function This function call initiates a session for the client application. The call connects
it the session to a Server, and thus creates a runtime environment on the host
system (in this case PrimeBase). This function must be called before any other
API function.

If you are using System 6, DAL uses a connection definition in a file in the
System Folder, called “hosts.cl1”, and if you are running System 7, the same
connection definition is written in the file in the System Folder, called “DAL
Preferences”. This definition tells DAL how to connect to a particular host
system. It specifies the type of network to use, how to find the target host
system, and how to log on. See the installation manual for more information.
Each connection definition in these files is given a unique name. You supply
this name in using CLInit().

syntax CLInit (sessidp, host, user, passwd, connstr)

long *sessidp;

char *host;

char *user;

char *passwd;

char *connstr;

parameters CLinit the name of the function call.

sessidp an integer buffer in which the sessnum returned by this
function call is stored.

host the name of the entry in the file (either hosts.cl1, or DAL
Preferences, depending on which System you are
running).
PrimeBase Reference Manual 165

API FUNCTIONS
user the user name under which the runtime environment
executes.

passwd the password for that user name.

connstr a connection string, which is passed as a parameter to
the underlying network.

return values A_OK the session has been successfully initiated.

A_ERROR an error occurred while initiating the session.

notes A long-integer session ID is always returned to the buffer at sessidp, even when
CLInit() returns an error. This enables you to pass the session ID to CLGetErr(),
in order to determine the cause of the error.

The CLEnd() should always be called with the session ID returned by CLInit(), so
that all resources to do with that session can be freed. This must still be done,
even if CLInit() returned A_ERROR.

CLSEND() FUNCTION

function This function call sends program text to the runtime environment. Text is then
added to any previously passed text, to assemble a program fragment. This
program fragment is not executed until the client application has called the
CLExec() function call.

syntax CLSend (sessid, text, len)

long sessid;

char *text;

int len;

parameters CLSend The name of the function call.

sessid The session ID for which the program fragment is being
sent.

text A character string containing program text.
166 PrimeBase Reference Manual

API FUNCTIONS
len The length of the text.

return values A_OK The text was accepted successfully.

A_ERROR An error occurred while sending the text.

notes Program text can be passed in units as small as a single character. There is no
requirement that complete statements be sent in a single function call.

In PrimeBase DAL a CLSend() cannot obtain part of a token. Each token
(keywords, numbers, strings etc.) must be contained completely within the text
of a CLSend(). White space and semi-colons must be explicitly included in the
passed text.

It is possible to embed new lines and carriage returns in the passed text, in
order to divide it into lines. These characters are ignored syntactically.
Remember, thought, that DAL error messages reference the line number where
the error occurred. Line numbers begin at line 1 for the first text sent via
CLSend() after a CLInit() or CLExec() call.

CLSENDITEM() FUNCTION

function This function call sends a binary data item to the runtime environment. This
data item becomes part of the current program fragment that has been put
together by a series of CLSend() and CLSendItem() calls.

syntax CLSendItem (sessid, type, len, places, flags, buffer)

long sessid;

int type;

int len;

int places;

int flags;

char *buffer;

parameters CLSendItem The name of the functions call.
PrimeBase Reference Manual 167

API FUNCTIONS
sessid The session ID (returned by CLInit()) for which the data is
being sent.

type The data type code for the data item.

len The length of the data item. This is ignored if type
specifies a data type that has a self-defining length.

places The number of decimal places in the data item. This is
ignored for all data types other than DECIMAL and
MONEY.

flags A word used to pass a flag value - in the same format as
that returned by the CLGetItem() call. AF_ISNULL sends a
NULL data item; to send non-NULL data items, pass a
zero (0).

return values A_OK The data item was accepted successfully.

A_ERROR An error occurred while sending the data item.

notes Data items retrieved in binary form by CLGetItem() can later be sent back to the
runtime environment with CLSendItem().

CLSTATE() FUNCTION

function This function call returns the status of the runtime environment.

syntax CLState (sessid)

LONG sessid;

parameters CLState The name of the function call.

sessid The session ID of the session for which the status is being
requested.

return values A_EXEC A program is currently being executed.

A_VALUE Output data is available for the client application.
168 PrimeBase Reference Manual

API FUNCTIONS
A_NULL Output data (a NULL) is available.

A_READY Execution was successful; the runtime environment is
ready for text.

A_ERROR Execution ended in an error.

notes CLState() does not suspend or block user activity.

The CLState() is not reset by CLSend(), but only by CLExec().

CLUNGETITEM() FUNCTION

function This function call basically undoes the effect of the last CLGetItem() data
retrieval call. The data item that was retrieved by the immediately preceeding
CLGetItem() call is returned to the data stream, and can be re-retrieved the by
the next CLGetItem() function call!

syntax CLUnGetItem (sessid)

long sessid;

parameters CLUnGetItem The name of the function call.

sessid The session ID, as returned by CLInit().

return values A_VALUE The undoing of the last CLGetItem() call was successful.

A_ERROR An error occurred during the “undoing”.

notes Only a single data value can be undone; you cannot step back through
previously retrieved data,

This function comes in handy when your allocated buffer is not large enough to
handle the item and must then reallocate a larger buffer and retrieve the item
again.
PrimeBase Reference Manual 169

API FUNCTIONS
170 PrimeBase Reference Manual

HyperCard XCMDs & XFCNs
HYPERCARD XCMDS & XFCNS

HyperCard uses interface functions similar to the API functions implemented by
DAL. The HyperCard external functions and commands are used to send DAL
language statements to the Server to receive result data.

The HyperCard XFCNs and XCMDs can be split up into the following groups:

Session Control

• CL1Init Begins a DAL session.

• CL1End Ends a DAL session.

Program Execution

• CL1Send Sends DAL text to the runtime environment.

• CL1Exec Executes previously sent text.

• CL1State Returns the status of the host: PrimeBase.

Results Processing

• CL1Getval Retrieves the next data item.

• CL1Getstat Checks the state of execution.

• CL1Putval Calls CL1Getval in order to put values into fields.
PrimeBase Reference Manual 171

HyperCard XCMDs & XFCNs
Global Variables

Global variables are used by HyperCard to provide status and error information
for stacks that use DAL. These variables should not be altered, as they have
been set by the DAL XCMDs and XFCNs.

• cl1_id This variable contains the session ID of the current
session.

• cl1_error This variable contains the error-return string. This value is
reset after and error has occurred. The string depends
upon which command or function has caused the error.

• cl1_status This variables contains the primary DAL error number.
Every time the value of cl1_error is set to “Error”, the
value of cl1_status is reset.

• cl1_status2 This variable contains the secondary DAL error number.
Again, this value is reset each time cl1_error is set to
“Error”.

• cl1_message This variable contains a message that corresponds to the
error number in cl1_status. As above, this value is reset
every time cl1_error is set to “Error”.

CL1END XCMD

function This command ends a DAL session, and breaks the connection to the Server.

syntax cl1end

return values empty the session was terminated successfully.

“Error” an error occurred in ending the session.

“No cl1init was done”the session was not initiated.
172 PrimeBase Reference Manual

HyperCard XCMDs & XFCNs
notes You must set cl1_id to the session ID of the session you want to terminate. You
need not specify parameters. Any errors are returned in the result field.

Remember that if you do not use CL1End, you run the risk of leaving sessions
running on the Server.

This function is similar to the API function, CLEnd().

CL1EXEC XCMD

function This command executes previously passed program fragments. You can check
the status of the executing program after you´ve sent CL1Exec, with CL1Getstat,
or CL1State.

syntax cl1exec

return values empty the execution began successfully.

“Error” an error occurred while beginning execution.

“No cl1init done” the session was initiated.

notes There is no need for parameters to be specified, and no error information is
returned.

This function is similar to the API function, CLExec(), page 159.

CL1GETLIST XFCN

function This function retrieves a complete series of data items from the Server´s output
data stream. All data items are concatenated into a single string, separated by
Return characters, and the string is then returned to the result field.

syntax cl1getlist()

notes This function has no provisions for indicating successful completion, therefore
the global variable, cl1error, is cleared upon success, and set upon error.
PrimeBase Reference Manual 173

HyperCard XCMDs & XFCNs
CL1GETSTAT XFCN

function This function returns the status of the next available data item int he Server´s
output data stream. This statement is normally called before a CL1Getval
function, to fund out whether or not a data item is available. If a program
fragment is still being executed, and no output data is available, CL1Getstat
blocks further execution. This function returns a value when a data item has
been produced (by one of the PRINT statements), or when execution finishes
successfully, or when an error occurs.

syntax cl1getstat()

return values empty a data item has been produced by the CL1Getval
function, and is ready for retrieval.

“Ready” there is no more data. The execution of a DAL program
has ended successfully.

“Error” there is no more data. Execution ended in error, as
indicated by the cl1_status, cl1_status2, and cl1_message
variable values.

“Timeout” the time specified for waiting for the next data item has
run out.

notes This function provides the same information as the CL1State function, except
that CL1State returns immediately with a “Busy” message, if the Server is in
mid-execution, and CL1Getstate will not return values until data is produced. or
execution ends.

CL1GETVAL XFCN

function This function returns the next data item from the output data stream. The value
is returned as a variable-length text string, which can be placed in a HyperCard
container or in an expression.

syntax cl1getval()
174 PrimeBase Reference Manual

HyperCard XCMDs & XFCNs
return values “Error” there is no next data item. An error occurred during
execution.

“Ready” there is no next data item. Execution ended successfully.

“No cl1init done” the CL1Init XCMD was not executed.

value the retrieved data item.

notes This function is the same as the API function, CLGetItem(), when CLGetItem() is
used as a data retrieval call, (page 161).

Before using the CL1Getval XFCN, you should check the availability of the next
data item with CL1Getstat.

This function blocks waiting-for-output until the Server produces an output data
item, or until execution of a program fragment ends.

NULL values are returned as “$NULL” and BOOLEAN values are returned as
“$TRUE” and “$FALSE”.

CL1INIT XCMD

function This command initiates a session for your HyperCard stack, and makes a
connection to the Server. You must connect using this command before
executing any other commands or functions. The completion status of the
command is returned to the results field.

syntax cl1init [<host_name> [',' <user_name> [',' <password_ [','

<connstr>]]]]

parameters cl1init the name of the external command.

<host_name> a string expression, the value of which is the entry in the
configuration file (“hosts.cl1” or “DAL Preferences”).

<user_name> a string expression, whose value is the user name, for
access to the Server. The name must already have been
an entry in the SysUsers table.
PrimeBase Reference Manual 175

HyperCard XCMDs & XFCNs
<password> a string expression, whose value is the password
associated with the user name.

<connstr> a string expression, whose value is an optional
connection string.

return values empty the connection was initiated successfully.

“Error” an error occurred during the initiation of the connection.

notes This command is similar to the API function, CLInit, (page 165).

CL1PUTVAL XCMD

function This command retrieves a series of data items from the output data stream, and
places them in card fields, global variables, and background fields. Where these
items are to be placed is determined by a variable-length argument list.

syntax cl1putval [<positive_number>] [',' <negative_number] [',' '”'

<global_variable> '”'] [,...]

parameters cl1putval the name of the external command.

<positive_number> a valid card field number.

<negative_number> a valid background field number.

“global_variable” a global variable name.

return values empty the data was successfully retrieved.

“Ready” there is no data available, but execution ended
successfully.

“Error” there is no data available, and an error occurred during
execution.

“Timeout” the time specified for waiting for data ran out.

“No cl1init done” the CL1Init XCMD was not executed.
176 PrimeBase Reference Manual

HyperCard XCMDs & XFCNs
notes If an error occurs, the global variables, cl1_error, cl1_status, cl1_status2, and
cl1_message contain information about the error.

If you are using any version of HyperCard previous to 1.2, you must initialise a
global variable before using the command, in order to retrieve data into the
global variable.

CL1SEND XCMD

function This command send DAL statements to the runtime environment, and appends
it to any text that has previously been sent by other CL1Exec commands. The
program is not, however, executed until you issue a CL1Exec command.

syntax cl1send '”' <statement>'”'

parameters CL1Send the name of the external command.

<statement> any valid statement fragment.

return values empty the statement was sent successfully.

“Error” an error occurred sending the statement.

“No cl1init done” the session was not initiated.

notes This command is similar to the API function, CLSend, (page 166).

CL1STATE XFCN

function This function determines and returns the status of the runtime environment. It
is usual practice to call CL1STate after you have issued a CL1Exec command, in
order to find out such information as to whether the program fragment is still
executing, whether it has executed, or whether there is data available.

syntax cl1state()
PrimeBase Reference Manual 177

HyperCard XCMDs & XFCNs
return values empty there is output data available from the Server. Use
CL1Getval to retrieve the data.

“Ready” there is no more data to send, and the runtime
environment is waiting for more statements. This value
signals the end of the data stream produced by your
statements, it is returned immediately if the statements
do not produce any output.

“Error” an error occurred at the completion of a program. The
value of cl1_error, cl1_status. cl1_status2, and
cl1_message are set when “Error” is returned.

“No cl1init done” a session was not initiated.

“Busy” the Server is still executing a program.

notes When the Server is executing, CL1State will return a “Busy” status. CL1Getstat,
on the other hand, no matter how much you coax it will never return the status
message “Busy”.
178 PrimeBase Reference Manual

SYSTEM FUNCTIONS
SYSTEM FUNCTIONS

We divide system functions supported by PrimeBase into the following groups:

• functions that manipulate strings,

• functions that retrieve information and manipulate cursors,

• functions that retrieve information about variables,

• the $format function,

• functions that manipulate files,

• utility functions.

Several functions are not standard DAL, but PrimeBase specific extensions to
DAL. These functions are marked as extensions.

STRING FUNCTIONS

String manipulation functions are those that trim strings, extract a substring from
a string, and locate substring in a string. In addition to these, PrimeBase provides
two functions for converting upper- to lower-case and back.

The string functions are:

• $left extracts a substring from the left of a string.

• $right extracts a substring from the right of a string.

• $substr extract a substring.

• $locate finds a substring occurrence.

• $trim trims blank characters from both sides of a string.
PrimeBase Reference Manual 179

SYSTEM FUNCTIONS
• $ltrim trims blank characters from the left side of a string.

• $rtrim trims blank characters from the right side of a string.

• $toupper convert a string to upper-case characters.

• $tolower convert a string to lower-case characters.

$left and $right

These functions have basically the same function as the $locate function, except
that they extract portions of the input string rather than locating a position within
it. The syntax for these functions is as follows:

<outstr>::= $left '(' <instr> ',' <pattern> [',' <count>]')'

<outstr>::= $right '(' <instr> ',' <pattern> [',' <count>]')'

parameters <outstr> the output string

<instr> the string to be searched

<pattern> the substring to be located

<count> an optional argument. If included, a positive <count> value
causes the search of <instr> to continue until <count> oc-
currences have been found. A negative <count> value
causes the search to begin at the end of <instr>, and pro-
ceed from right to left. If it is omitted, the functions search
for the first occurrence of <pattern> within <instr>.

Examine the following examples:

$left (“Golfers.Results.Winnings”, “.”, 2)

yields “Golfers.Results”

$left (“Golfers.Results.Winnings”, “.”, -1)

yields “Golfers.Results”
180 PrimeBase Reference Manual

SYSTEM FUNCTIONS
$left (“Golfers.Results.Winnings”, “.”, -2)

yields “Golfers”

$right (“Golfers.Results.Winnings”, “.”, 2)

yields “Winnings”

$right (“Golfers.Results.Winnings”, “.”, -1)

yields “Winnings”

$right (“Golfers.Results.Winnings”, “.”, -2)

yields “Results.Winnings”

$locate

This function locates a substring within a string and returns its position as an in-
teger. The syntax is as follows:

<position>::= $locate '(' <instr> ',' <pattern> [',' <count>]

')'

parameters <position> an integer value for the position of the substring within the
string.

<instr> the string to be searched.

<pattern> the substring to be located.

<count> an optional argument. If included, a positive <count> value
causes the search of <instr> to continue until <count> oc-
currences have been found. A negative <count> value
causes the search to begin at the end of <instr>, and pro-
ceed from right to left. If omitted, the first occurrence of
<pattern> within <instr> is located and its position is re-
turned by the function.

$locate (“Golfers.Results.Winnings”, “.”)
PrimeBase Reference Manual 181

SYSTEM FUNCTIONS
yields 8

If <count> is specified, it instructs the function to continue past the first occur-
rence of <pattern> until <count> occurrences have been found:

$locate (“Golfers.Results.Winnings”, “.”, 2)

yields 16

$locate (“Golfers.Results.Winings”, “.”, 1)

yields 9

A negative <count> value instructs the function to begin its search at the end of
<instr> and search backward through the string.

$locate (“Golfers.Results.Winnings”, “.”, -1)

yields 16

$locate (“Golfers.Results.Winnings”, “.”, -2)

yields 8

Please note that with a negative count value, even though the search proceeds
from right to left, the returned position is always the position relative to the be-
ginning of <instr>, with the first character as position 1.

$substr

This function is used to extract a substring from a string variable or constant. The
syntax for this function is as follows:

<outstr>::= $substr '(' <instr>',' <position> [',' <length>]')'

parameters <outstr> the substring that is extracted from <instr>

<instr> the input string from which the output string is extracted
182 PrimeBase Reference Manual

SYSTEM FUNCTIONS
<position> an integer specifying the starting position within <instr>.
The first character of <instr> is specified as position1. If po-
sition is negative, then it specifies a position relative to the
end of <instr>. The final character of <instr> is designated
by the value -1.

<length> this argument is optional, and specifies the number of
characters to extract. If length is negative, then position
specifies the last character of the extracted string, and ex-
traction proceeds to the left instead of to the right. If omit-
ted, the function extracts the entire remainder of <instr> up
to its final character.

Examine the following examples:

$substr(“HELLO”, 3)

yields “LLO”

$substr(“HELLO”, 3, 2)

yields “LL”

$substr(“HELLO”, 3, 7)

yields “LLO”

$substr(“HELLO”, 3, -2)

yields “EL”

$substr(“HELLO”, -2, 2)

yields “LO”

$substr(“HELLO”, -2, 1)

yields “L”

$substr(“HELLO”, -2, -2)

yields “LL”
PrimeBase Reference Manual 183

SYSTEM FUNCTIONS
$trim, $ltrim, and $rtrim

There are three further string functions that are used to strip leading and trailing
blanks from character strings. All three functions take a single string argument
and return a string with the blanks removed. The $trim function removes both
leading and trailing blanks; the $ltrim function removes leading blanks from its
argument, and the $rtrim function removes trailing blanks, but leaves leading
ones.

Examine these examples:

$trim(“ removes leading and trailing blanks “)

yields “removes leading and trailing blanks”

$ltrim(“ removes leading blanks “)

yields “removes leading blanks “

$rtrim(“ removes trailing blanks “)

yields “ removes trailing blanks”

The $rtrim function is especially useful for stripping trailing blanks from CHAR
data that is retrieved from a database, thus converting it to a VARCHAR represen-
tation of the same string.

$toupper, $tolower - PrimeBase Extersion

These functions are used to convert the characters of a string to upper- or lower-
case. The function $toupper convers ASCII extended characters to upper-case
using the Macintosh character set. However, $tolower converts to lower-case as
C programmers would expect, ignoring extended characters. $toupper can be
used to perform case-insensitive comparisons in the same manner as PrimeBase
when comparing database object names.

Some examples:

$toupper(“1) This is Upper-case!“)
184 PrimeBase Reference Manual

SYSTEM FUNCTIONS
yields “1) THIS IS UPPER-CASE!”

$toupper(“2) Special characters: ä, é, ù.“)

yields “2) SPECIAL CHARACTERS: Ä, É, ù.“

$toupper(“3) This IS UPPER-CASE!“)

yields “3) this is lower-case!“

$tolower(“4) SPECIAL CHARACTERS: Ä, É, ù.“)

yields “4) special characters: Ä, É, ù.”

Notice that the character 'ù' has no upper-case equivalent .

CURSOR FUNCTIONS

These functions return such information as the length of a column, the type of
the column, the name of the column of a particular cursor. As extensions to stan-
dard DAL, PrimeBase provides functions to manipulate the actual contents of a
cursor rowset. All functions operate on the system cursor. $cursor, if no cursor is
explicitly specified.

Aside from passing a cursor identifier as one of the optional parameters, column
functions can also take an integer or a string as a calling parameter. In this case,
an integer would refer to the column's position, and a string would refer to the
name of the column. The column functions are:

• $collen returns the length, in number of bytes, of the data object
that the column contains.

• $colname returns the name of the column.

• $colplaces returns the number of decimal places in the column if the
data type is decimal or money.

• $coltype returns a number from 1-12, indicating the type of the col-
umn.
PrimeBase Reference Manual 185

SYSTEM FUNCTIONS
• $colwidth returns the field width associated with the column of a cur-
sor.

• $cols returns the number of columns contained in the cursor.

• $rows returns the number of rows contained in the cursor.

• $insertrow add a row to the cursor rowset at the current position.

• $updaterow alter the fields of the current row of a rowset.

• $deleterow delete the current row of a rowset.

• $currentrow return the absolute position of the current row of the
cursor rowset.

The syntax of the column functions is explained as follows:

VARIABLE FUNCTIONS

These functions return information on DAL variables

Aside .. are:

• $typeof returns the data type of the selected variable.

• $len returns the length the same way as $collen, but is The
syntax of the column functions is explained as follows:

$len

This function returns the length of the argument, which must have a string data
type: CHAR, VARCHAR, VARBIN. The function then returns the number of charac-
ters or bytes in the string. The example shows the use of this function:

declare char greeting1 = “Good ”;

declare char greeting2 = “Morning”;
186 PrimeBase Reference Manual

SYSTEM FUNCTIONS
declare varchar greeting3;

greeting3 = greeting1 + greeting2;

print $len(greeting3);

This example outputs the integer 11, which is the number of characters in the
concatenated string.

$typeof

This function returns the data type of its argument. This can be an expression of
any of the valid data types. It returns an INTEGER value which is the DAL code for
the data type. A list of the DAL data type codes can be found in chapter Data
Types in the User Manual.

declare date mydate = “13/9/1993”;

declare varchar new = “Birthday”;

declare generic gen1;

gen1 = mydate;

print $typeof(mydate), $typeof(new), $typeof(gen1);

The example outputs the three integers 6 (for DATE), 12 (for VARCHAR) and 6 (for
DATE).

$FORMAT FUNCTION

This function takes a variable number of arguments, and combines them into a
VARCHAR string according to a user-specified format. The syntax is as follows:

<outstr>::= $format '(' <fmtstr> { ',' <data> })'

parameters <outstr> the output string
PrimeBase Reference Manual 187

SYSTEM FUNCTIONS
$format the name of the function

<fmtstr> a string expression specifying the format to be used. The
specific contents of <fmtstr> determine the number of data
items.

<data> any number of data items.

The Format String

The format string (<fmtstr>) may consist of three formatting specifications. They
are interpreted in a left to right order. These formatting specifications are:

1. Ordinary characters: They simply stand for themselves, and are appended to
the end of the out string (<outstr>).

2. Special characters: They are non-printing characters - for example a tab. Spe-
cial characters consist of a two character sequence: a backslash and a second
character.

3. Conversion specifications: These are specifications that take the following data
argument and convert it into a sequence of characters that are appended to the
end of the out string.

Special Characters: Two-Character Sequences

• \ b generates a backspace character.

• \ n generates a newline character.

• \ r generates a return character.

• \ t generates a tab character.

• \ \ generates a backslash character.

• \ % generates a percent character.
188 PrimeBase Reference Manual

SYSTEM FUNCTIONS
Conversion Specifications

The percent character (%) introduces all conversion specifications and is con-
cluded by a conversion character (<fmtchar>). See the syntax below:

<conversion_spec>::= '%' ['-'] [<width>] ['.' <precision>] <fmt-

char>

Minus Sign

The minus sign, when included, justifies the data to the left upon conversion.
Otherwise the data is right justified. Justification is, of course, relative to width
and precision - which specify the width of the converted data string.

Width and Precision

Specify the width and precision of the converted data string in the fields <width>
and <precision>. Remember to include the period (.) preceeding the value you
give as the <precision>. You can specify width and precision as the special char-
acter, asterisk (*). Then the numeric value for the parameter is taken from the
next data argument to the $format() call.

Format Character Values

The values that you can use in <fmtchar> are as follows:

• d or u This is an integer data argument. It converts to a string,
whose value is given in the integer literal format.

• p This is a decimal or money data argument. It converts to a
string, whose value is given in the decimal literal format.

• c This is a single character data argument. It copies the char-
acter.
PrimeBase Reference Manual 189

SYSTEM FUNCTIONS
• f This is a floating-point data argument. It converts to a
string, whose value is given in the floating-point literal for-
mat.

• s This is a string data argument. It copies to a string, accord-
ing to the other conversion parameters.

• x or X This converts its data argument to a sequence of charac-
ters that are the unsigned hexadecimal representation of
the data item. A capital X results in uppercase hex digits
(A-F); a lowercase x results in lowercase hex digits (a-f).

When the <fmtchar> is preceded by:

• ^ (caret) the output field contents are to be converted to uppercase
characters.

• ! (exclamation point)
the output field contents are to be converted to lowercase
characters.

For every call to the $format() function, the number of conversion specifications
in <fmtstr> and the number of data arguments must match. If the number of data
arguments is less than the number of conversion specifications, then errors may
result.

FILE FUNCTIONS - PRIMEBASE EXTENSIONS

These functions allow the user to directly read and write files from a DAL pro-
gram. The main purpose of these functions is to import and export data to and
from PrimeBase in text format.

The file manipulation functions are:

• $open open a file.

• $close flush and close a file.

• $readline returns the next line.
190 PrimeBase Reference Manual

SYSTEM FUNCTIONS
• $writeline writes a line to a file.

$open

Open a text file for reading and writing. This function takes as input a string
value, that represents the path of the file to be opened. Returned is an integer
value which is to be used as a file handle for subsequence read and close opera-
tions. Note that there is no special file type, and normal integer is used as file
handle. Files opened are globally accessable, and as a result, files opened in pro-
cedures are not automatically closed on return from the procedure. Currently, a
maximum of 10 files may be opened. Valid file handles may range from zero to 9.
When a session is closed, all open file are close as well.

$close

This function takes as argument an integer value which was returned by $open.
The file associated with the integer is closed, and resources for accessing the file
are freed.

$readline

This function returns each line of an open file. It takes as argument an integer
value which was returned by $open. It returns a VARCHAR value that is the next
line of text of the file. The end-of-line indicator is NOT returned as part of the
string. There is no limit to the length of a line. $readline return $NULL when the
end of file is reached. This function will read text files created by Macintosh,
UNIX or DOS machines.
PrimeBase Reference Manual 191

SYSTEM FUNCTIONS
$writeline

This function writes a line to a text file. The syntax is as follows:

$writeline '(' <handle> ',' <line>)'

parameters $writeline the name of the function

<handle> the integer handle returned by $open

<line> the line to be written.

The function writes the line to the file ands the appropriete end-of-line characters.

UTILITY FUNCTIONS - PRIMEBASE EXTENSIONS

Utility functions are useful extensions to DAL. These functions include:

• $now returns the current time.

• $errorstring returns the string associated with an error number.

$now

This function returns the current time as a TIMESTAMP value. It takes no argu-
ments. Note that this is the time on the client machine, not the server. Server time
can be obtained after login (see system variable $logintime).

$errorstring

This function takes a single integer arguments, and returns the associated error
string. The syntax is as follows:

<outstr>::= $errorstring '(' <errno>)'
192 PrimeBase Reference Manual

SYSTEM FUNCTIONS
parameters <outstr> the output string error string

$errorstring the name of the function

<errno> an error number.
PrimeBase Reference Manual 193

SYSTEM FUNCTIONS
194 PrimeBase Reference Manual

SYSTEM VARIABLES
SYSTEM VARIABLES

Date and Time Formats

The date and time system variables have been extended to include more
options for the formatting values of these types. This has been done without
losing any compatibility with formats supported by DAL.

Date

• •$month

The system variable, $month, is a string of 12 month names, each separated by
a '+'. When a session is created, the following is true:

$month = “Jan+Feb+Mar+Apr+May+Jun+Jul+Aug+Sep+Oct+Nov”

Please note that spaces are significant in this string.

• $day

The system variable, $day, is a string of 7 day names separated by a `+´. If the
$day string is empty (i.e. the empty string, or NULL), a 3 digit Julian day
(number of the day in the year) is returned. On session startup, $day contains
an empty string in order to be compatible with DAL.

Please note that spaces are significant in this string.

• $datefmt

The following tokens are recognised in $datefmt. Case is NOT significant.

YYYY a 4-digit year.

YY a 2-digit year.
PrimeBase Reference Manual 195

SYSTEM VARIABLES
MMM substitute $month.

MM a 2-digit month.

M a 1 or 2-digit month.

DD a 2-digit day.

D a 1 or 2-digit day.

DDD substitute $day.

For DAL compatible startup, $datefmt = “MM/DD/YYYY”.

TIME

• $ampm

The system variable, $ampm, is a string containing two names separated by a
'+'. The first name is the sign for morning (AM), and the second is the sign for
evening (PM). For DAL compatibility, set $ampm to “AM+PM”.

• $timefmt

The following tokens are recognised in $timefmt, Case is NOT significant,
except for “xm” and “XM” (see below).

HH 2-digit hour: 24 hour time by default; 12 hour time if xm
or XM are included in the time format.

H 1or 2-digit hour.

MM 2-digit minutes.

M 1 or 2-digit minutes.

SS 2-digit seconds.

S 1 or 2-digit seconds.

HU 2-digit hundredths of a second.

T 1-digit tenths of a second.
196 PrimeBase Reference Manual

SYSTEM VARIABLES
XM | AM | PM substitute uppercase $ampm.

xm | am | pm substitute lowercase $ampm.

For DAL compatible startup, the following format is valid: $timefmt =
“HH:MM:SS:hu”

Date and Time

• $tsfmt

This format string includes both date and time tokens. Without losing
compatibility with DAL, PrimeBase allows the $tsfmt variable to be empty (the
empty string: ““), or NULL. In this case, the $datefmt and $timefmt are used, in
place of a $tsfmt, in that order and a space is placed between the two.

There are some problems with the DAL definition of this format, yet these are
solved with a non-compatible PrimeBase extension, which can be turned on or
off:

In DAL compatible mode the PINKCTL parameter 2 is set to zero. For example,

PINKCTL , 0;

In this mode, the format before the first space in the timestamp format must be
a date format, and the format after the first space must be a time format. Note
that in this way, “MM” or “M” appearing before the first space represent
months, and “MM” and “M” appearing after the first space represent minutes.

PrimeBase EXTENSION: This extension is not DAL compatible because it makes
the month and minute tokens case-sensitive in the timestamp format. For
example,

PINKCTL , 1;

both date and time tokens may be freely mixed. Month and minute tokens are
distinguished by the case of the first “m”. Upper-case indicates months and
lowercase indicates minutes. Thus “MM”, ““Mm” and “M” represent months,
and “mm”, “mM” and “m” represent minutes. Please note that the “MM”
token is still case-insensitive in the $timefmt and $datefmt system variables.
PrimeBase Reference Manual 197

SYSTEM VARIABLES
Decimal and Money Formats

The decimal and money format variables describes here are not part of
standard DAL; the system variables described in this section are extensions to
DAL.

• $decfmt

The decimal format system variable will accept a string with the following
format:

<decfmt>:: = ['['] '9' [<tchar>] '999' [']'] ['[']

<dchar> <fchar> [<ichar>] [']']

In this description, ' [' and '] ' indicate the string elements that are optional.
The characters enclosed in single quotation marks (' ') are meant literally. The
syntax, <tchar>, <dchar>, <fchar> and <ichar> are all single characters, that you
select. The various elements of the <decfmt> string have the following meaning:

<tchar> The user defined character, <tchar>, is the thousands
separator. If <tchar> is omitted, no thousands separator is
used.

<dchar> The user defined character, <dchar>, is the decimal point.
This character must be specified, and must be different to
<tchar>.

<fchar> The <fchar> character indicates how to display the
character immediately after the decimal point. The
characters `9´ and `0´ indicate that the digit should always
be displayed. The underscore character indicates that the
character is not to be displayed if the fractional part of the
number is zero. The characters, ' ' (a space), and ' * ' (the
asterisk), may also be used if the fractional part of the
number is zero.

<ichar> The <ichar> character is the insignificant fraction digits
character. Insignificant fraction digits are the trailing zero
digits of the fraction: for example, in the value 1.2000, the
198 PrimeBase Reference Manual

SYSTEM VARIABLES
characters '000' are the insignificant zero digits of the
fraction. The number of such digits depends on the scale
of the decimal number (and the number of significant
fraction digits). These digits are printed as the user
defined character <ichar>. (<ichar> must be set to '0' to
print the insignificant fraction digits as zeros!) <ichar>
may also be omitted, or the underscore character can be
set; in this case, insignificant fraction digits are not
displayed. <ichar> can also be: ' ' (space), '0', or '*'.

The first optional '[' ']'
The first optional set of brackets indicate whether the
whole number part of the number should be displayed, if
it is zero. By placing the whole number part between the
brackets, you indicate that it is optional and therefore not
displayed when the value is zero.

The second optional '[' ']'
By placing the fraction between the brackets (including
the decimal point), you indicate that this part is optional,
and should not be displayed when the value is zero.

Note: Both the whole number and fractional parts are optional, a zero will still
be printed as '0'.

For DAL compatible startup, the following format is valid: $decfmt = “[9999].9”

• $moneyfmt

The system variable, $moneyfmt accepts an ASCII string of the following form:

<moneyfmt>::= ['('] [<cstring>] ['('] ['-'] <decfmt> [

')'] [<cstring>] [')']

Parentheses: '(' ')' All parentheses are optional. If they appear, they indicate
that negative money values should be displayed in
parentheses. You can indicate whether the brackets
PrimeBase Reference Manual 199

SYSTEM VARIABLES
should include the currency string (<cstring>) or not.
When parentheses appear the negate sign is not
permitted, see below.

<cstring> The <cstring> is a user defined string of characters, which
may optionally be enclosed in double or single quotation
marks. The string indicates which currency symbol is to
be used. Spaces are significant in this string. Either the
first or second <cstring> must appear, but not both. The
position of <cstring> indicates the position of the
currency symbol: whether it comes before or after the
currency value.

The negate sign: '-' The negate sign is optional. When it appears, it indicates
that negative values are to be displayed with a leading `-
´character. Please note that either the optional
parentheses can be specified, or the negate sign, but
never both. If neither is specified, then the negate sign is
assumed by default.

<decfmt> This is a decimal format string, as has already been
described under the heading $decfmt. Please note the
following example in this regard: “9,999.9 DM”. In this
example, it is impossible to tell whether the space after
the 9 is meant to be the <ichar> (the insignificant fraction
digits character) or the first character of <cstring> (the
currency symbol). Please use the optional quotation
marks for the currency symbol in the case as follows:
“9,999,9' DM´”
It is now clear that the currency symbol has a leading
space and that insignificant fraction digits are not
displayed.

For DAL compatible startup, $moneyfmt = “$[9999].0”
200 PrimeBase Reference Manual

SYSTEM VARIABLES
DAL System Variables

• $sqlcode This variable is automatically set after each execution of
each data manipulation statement. Its value is zero if no
error occurred and negative for errors.

• $switch This system variable has the value of the expression of
the last SWITCH statement executed. It is unitialised
before the first switch statement is executed.

• $maxrows This variable is initially set to NULL, and can be modified
by the SET statement. If it is set, it limits the number of
rows in the rowset created by a SELECT statement.

• $cursor After a successful SELECT statement that has no cursor
explicitly specified as destination (i.e. no INTO clause),
this variable is set to identify the rowset just created.

• $colcnt After each successful SELECT statement, this variable is
automatically set to the number of columns that have just
been created in the rowset.

• $rowcnt After each successful SELECT statement, this variable is
set to the number of rows in the rowset just created, if
the number of rows is known. If the number of rows is
not known $rowcnt is set to NULL. Note that if the mode
of the SELECT statment is not EXTRACT, the number of
rows is not necessarly known. Only after a SELECT for
EXTRACT, have all rows always been loaded by the client,
and as a result the number of rows is known.

DAL System Constants

• $null a NULL value.

• $sqlnotfound the value to which $sqlcode is set when a cursor is
fetched past the end of rowset.
PrimeBase Reference Manual 201

SYSTEM VARIABLES
• $version a string containing the PrimeBase version of the client
software.

• $true the boolean value true.

• $false the boolean value false.

• $boolean the datatype number (as returned by $typeof) of type
boolean.

• $smint the datatype number of type smint.

• $integer the datatype number of type integer.

• $smfloat the datatype number of type smfloat.

• $float the datatype number of type float.

• $date the datatype number of type date.

• $time the datatype number of type time.

• $timestamp the datatype number of type timestamp.

• $char the datatype number of type char.

• $decimal the datatype number of type decimal.

• $money the datatype number of type money.

• $varchar the datatype number of type varchar.

• $varbin the datatype number of type varbin.

• $longchar the datatype number of type longchar.

• $longbin the datatype number of type longbin.
202 PrimeBase Reference Manual

SYSTEM VARIABLES
Lock Settings - PrimeBase Extension

Global variables are used to control various aspects of a locking. The current
setting of these variables determines the parameters of the next transaction to
be started for the session. A transaction can be started explicitly with the BEGIN
command, or implicitly when a SELECT, INSERT, UPDATE or DELETE is
executed.

• $locktimeout This variable contains the time in hundredths of seconds
that the system should wait for a lock. When set to zero,
the Server will return an error to the user as soon as the
user (user´s transaction) attempts to acquire a lock on
data that conflicts with locks held by other transactions. If
the variable is set to NULL the Server will wait as long as
it takes to acquire a lock. Any other positive value causes
the Server to wait that number of 100th of a second
before returning a locked error. The default for this
variable is zero.

• $aborttime The abort time is the time that the server allows a
transaction to remain idle. A transaction is considered
idle when it is not reading, writing or sorting. Abort time
is specified in seconds. The upper-limit (and default
value) for abort time stored per user in the SysUsers
table in each database. If more than one database is open
on a particular connection, then the upper-limit is the
minimum of all default values. It is recommended that
abort time be set to, at least, 2 seconds. Normally abort
time is quite high, for example 10 minutes. The system
default is 30 minutes. The purpose of a abort time is to
ensure that a transaction does not consume server
resources and do nothing. This can occur if a complex
deadlock has occurred (a deadlock involving more the 2
transactions), or if the client application has forgotten
PrimeBase Reference Manual 203

SYSTEM VARIABLES
about the transaction for some reason (for example, an
application begins a transaction, and then the user
switches to another application).

• $rowlocking This variable is used to turn row locking on (set to $true)
or off (set to $false). When row locking is off, the server
gains table level locks for every table accessed by the
transaction. When row locking is on, the server locks only
the rows accessed by the transaction. Row locking should
not be used in transactions that access a large number of
rows (over 2000), or most rows in a particular table,
because each row lock requires about 28 bytes of
memory on the server.

DBMS Lookup Parameters - PrimeBase Extension

These global variables are used to control the behaviour of the DESCRIBE
DBMS statement. PrimeBase equates a server with the DAL concept of a DBMS.
As a result, the DESCRIBE DBMS statement lists all servers/gateways that can
be accessed by the client. If the variables below are set to NULL, then all
possible servers are listed. The variables can be used to limit the search to
server in a particular zone, etc.

• $dbmszone If not NULL, then it specifies the AppleTalk zone to be
searched for servers by the DESCRIBE DBMS statement.

• $dbmsbrand This variable can be used to search for a particular
server/gateway type. For example, when set to ‘Sybase’,
the DESCRIBE DBMS statement will search for PrimeBase
gateways to Sybase. To lookup PrimeBase servers, set
this variable to ‘PrimeBase’.

• $dbmsprotocol Servers and gateways may publish itself on one or more
protocols, for example, ADSP (Apple Data Stream
Protocol) and TCP/IP (Transport Control Protocol/Internet
Protocol). When set to NULL, the client will search for all
204 PrimeBase Reference Manual

SYSTEM VARIABLES
servers published on protocols that the client is capable
of. Setting this variable to ‘adsp’, would limit the search
to servers capable of communicating using ADSP. Other
possiblities are: ‘tcp’ (TCP/IP), ‘ppc’ (Macintosh Program-
to-Program communications) and ‘ipc’ (UNIX
interprocess-communication, using shared-memory).
Note that an error will occur if the client is not capable of
the specified protocol.

Login Information - PrimeBase Extension

After the client has successfully established a connection to a server certain
information regarding the connection/login is made avialable to the client
application. This information is stored in the following global variables:

• $logintime The time on the server machine at login is recordedin this
variable. This value can be used by the client to
syncronise its time with that of the server after login.

• $connid The server connection identifier is stored in the variable
after login. The value can be used by the client to find it’s
connection entry in the SysConnections system table in
the Master database.

• $user Stored in this variable is the name of the user of the last
successfull connection to a server. If a user name is not
specified in subsequent connects (OPEN DBMS
command), then the value stored in $user is used.

Cursor Information - PrimeBase Extension

The following variable are extensions to the DAL standard.
PrimeBase Reference Manual 205

SYSTEM VARIABLES
• $rowsperpage This system variable allows you to control the number of
rows in a page received from the Server. Normally the
variable is set to zero or NULL, in which case the number
of rows is estimated by the system. The effect of setting
this variable is not visible from the DAL program itself.
NOTE: The size of the pages to be used is only calculated
when the SELECT is done; subsequent pages fetched for
the SELECT are not resized according to $rowsperpage
(i.e. make sure that $rowsperpage is set before the
SELECT is done).

$rowsaffected This variable is set after a successful INSERT, UPDATE, or
DELETE. The value is the number of rows affected by the
query. If an error occurs, $rowsaffected is set to zero.
206 PrimeBase Reference Manual

SYSTEM PROCEDURES
SYSTEM PROCEDURES

System procedures are used to initiate an operation performed by the server.
Master database specific objects such as devices, locations and partitions can be
created and deleted using system procedures.

SYNTAX

Server procedures all have the same syntax, consisting of two keywords fol-
lowed by parameters in parenthesis.

syntax <identifier> <name> '(' [<proc_input_spec>] ')'

[<proc_output_spec>] ';'

<proc_input_spec> ::= <required_params> {<optional_param>}

<required_params> ::= <server_param> {',' <server_param>}

<server_parame> ::= <name> '=' <expression>

<optional_param> ::= ',' [<name> '='] <expression>

<proc_output_spec> ::= <returning_variables> | (INTO <cursor>)

parameters <identifier> an identifying keyword.

<name> an identifying keyword or character expression.

<proc_input_spec> specification of procedure input.

<proc_output_spec> procedure output specification.

notes Server procedures define a generic syntax for services performed by the server.
The actual services provided depend on the server type, and version. There are a
number of possibilities regarding the output of server procedures:
PrimeBase Reference Manual 207

SYSTEM PROCEDURES
1. The procedure may return no values. In this case the <proc_output_spec>, if any
is ignored.

2. The procedure returns values. If a <returning_variables> clause has been speci-
fied, then the values are placed in DAL variables. Additional values are ignored. If
no <returning_variables> clause was specified, the values are printed to the
output stream.

3. The procedure returns a rowset. If an INTO clause is supplied, then the rowset
goes to specified cursor, otherwise into the default cursor ($cursor).

In all cases, no output is generated if an error occurs during execution of the
server procedure. Error details can be retrieved as all other DAL errors.

All server procedures have a set of required parameters, and a variable number
of optional parameters.The required parameters must be passed in the correct
order before the optional parameters. Optional parameters must be identified
using the <name> = syntax of server procedures.

Optional parameters, in the case of add type procedures have default values
which are used when the value is not specified. Optional parameters not speci-
fied in alter type procedures leave that particular aspect unchanged.

All names of parameters, and values given as input to system procedures are
case-insensitive, unless otherwise noted.

DEVICES

A device definition is the basic requirement of the server to access data residing
on permanent storage. Device descriptions tell the server the type of the device,
the location within the file system of the host, and any other information required
to access data stored on the device. Device descriptions are stored in the SysDe-
vices table in the master database. The following server procedures are provided
for maintaining devices:
208 PrimeBase Reference Manual

SYSTEM PROCEDURES
Add Device

Add a device description to the SysDevices table. The device can subsequently
be used to create locations, specify partitions, or locate log files. Exactly which
types of devices, and which options are supported, depends on the server ver-
sion, and host platform.

Required parameters:

NAME The name of the new device.

PATH A string identifying the location of the device within the
host filing system. This path may be relative to the location
of the server application. This value may be case sensitive,
depending on the host file system.

Optional parameters:

TYPE (default: FileSystem) The type of device. Determines the in-
ternal device driver used by the server.

REMOVEABLE (default: FALSE) True if the device contains removable
media.

READONLY (default: FALSE) True if the device is readonly.

RANDOMACCESS (default: TRUE) False if the device does not support
random seek operations.

USEABLESPACE (default: $NULL) A value in bytes that determines the max-
imum amount of space the server may use on the device.
$NULL means the space used is only limited by physical
size of the device.

ACCESSSTRING The access string is device specific information required by
the server's device driver in order to access the device.
PrimeBase Reference Manual 209

SYSTEM PROCEDURES
Alter Device

Alter a device definition. Note that certain aspects of a device cannot be altered.

Required parameters:

ID The device identifier as it appears in the SysDevices table.
When a device is added, it is automatically allocated a
unique identifier by the system.

Optional parameters:

NAME Change the name of the device.

REMOVEABLE Determines if the device contains removable media.

READONLY Determines if the device is readonly.

RANDOMACCESS Indicates whether the device supports random seek opera-
tions.

USEABLESPACE Determines how much space may be used by the server on
the device.

ACCESSSTRING Change the device specific access string.

PATH Change the device path.

Remove Device

Devices cannot be removed if there are any databases/backups or logs currently
located on the device. If so, an error is returned, indicating that the device is in
use.
210 PrimeBase Reference Manual

SYSTEM PROCEDURES
Required parameters:

ID The device identifier.

LOCATIONS

Locations indicate storage and backup areas of various types of files used by the
server. Current locations are searched for objects (databases, backups, log, etc.)
already existing. Future locations are used when objects are created, to deter-
mine where the files should be located.

Add Location

Add a location that indicates the placement of various database and server con-
trol files.

Required parameters:

NAME The name of the location.

FILETYPE The type of file to be stored in this location. Current possi-
bilities are: Data, Index, Blob, Log, Restart, VM.

FILEPURPOSE Indicates the purpose of files stored (or to be stored) in the
location. The following are valid purposes: CurrentStor-
age, FutureStorage, CurrentBackup, FutureBackup.

DEVICEID The device on which the location resides.
PrimeBase Reference Manual 211

SYSTEM PROCEDURES
Optional parameters:

GROUPNUMBER (default: $NULL) The group number of the location. Loca-
tion groups are only used for future locations. When creat-
ing new objects, if the modulus maximum group number
of the group number equals the minor identifier of the new
object, then the location is used to locate the new object.

ALLOCATION (default: Automatic) Allocation determines the allocation
strategy to be used by the server when creating objects
using the given location. Possibilities are:

Automatic: The location is automatically a candidate for
the creating of new objects.

Manual: The server never creates objects in this location,
however it does search for existing objects in the area.

Default: This location is only considered for creation of an
object if there are no other candidate locations.

MEDIANUMBER (default: $NULL) The media number of a specific media as-
sociated with the device.

COMMENTS (default: "") Description of the location or any other user
specific information.

Alter Location

Alter an existing location.

Required parameters:

ID The location identifier of an existing location.
212 PrimeBase Reference Manual

SYSTEM PROCEDURES
Optional parameters:

NAME Change the name of the location.

FILETYPE Change the type of files stored in the location.

FILEPURPOSE The new purpose of the location.

DEVICEID The device identifier of an existing device.

GROUPNUMBER New group number.

ALLOCATION Change the allocation strategy for the location.

MEDIANUMBER The media number of a particular media accosiated with
the device.

COMMENTS Change the comments on the location.

Remove Location

Delete a location.

Required parameters:

ID The location identifier of an existing location.

PARTITIONS

Partitions divide databases and backups into various locations. Each data-
base/backup file will be located completely within a particular partition. Types of
database files are: Data, Index and Blob (Binary large objects). Server partition
are logical entities that have no physical affect on the device.
PrimeBase Reference Manual 213

SYSTEM PROCEDURES
Add Partition

Add a parition to a particular database or backup.

Required parameters:

DATABASEID The identifier of an existing database.

DEVICEID The identifier of the device on which to place the partition.

Optional parameters:

BACKUPNUMBER (default: $NULL) The backup number, if the devision is in-
tended for a particular existing backup.

DATA (default: $TRUE) True if data type files should be stored in
this partition.

INDEX (default: $TRUE) True if index type files should be stored in
this partition.

BLOB (default: $TRUE) True if blob type files should be stored in
this partition.

MEDIANUMBER (default: $NULL) The media number (if any) of a particular
media associated with the device.

ALLOCATION (default: Automatic) The allocation strategy used by the
server when using this partition:

Automatic: The location is automatically used to lo-
cate/create database files.

Manual:- The server never creates files in this partion,
however it does locate existing database files.

Default: This partition is only used if there are no others.
214 PrimeBase Reference Manual

SYSTEM PROCEDURES
Alter Partition

Change certain parameters of an existing partition. Changing the types of files
that may be stored on a partition will not change the location of existing file on
the partition. However, the server will no longer find certain files, depending on
how the locations is altered.

Required parameters:

ID The identifier of an existing partition.

Optional parameters:

DATA Determines whether data type files can be stored in this
partition.

INDEX Determines whether index type files can be stored in this
partition.

BLOB Determines whether blob type files can be stored in this
partition.

ALLOCATION Alter the allocation method for this partion.

Remove Partition

Delete a partition. Deleting a partition does not delete the files on the device.

Required parameters:

ID The identifier of an existing partition.
PrimeBase Reference Manual 215

SYSTEM PROCEDURES
216 PrimeBase Reference Manual

System parameters
SYSTEM PARAMETERS

TransactionLimit

The transaction limit is the maximum number of transactions that the server can
process concurrently. If the a transaction is begun, and the server has no transac-
tions available, the user will be returned the error 'Too many active transactions'.
There should be approximately one transaction available per connection. The
minimum transaction limit is 32, and the maximum is 255.

SystemFileLimit

The system file limit is the number of system file handles the server will use.
When the server has consumed this number of file handles, it will recycles its file
handles on a least-recently-used basis. In addition to the file handles used by the
server, one file handle is required to access the environment file, and one is re-
quired per 'execute file' command entered from the console. If this value exceeds
the actual number of files available to the server (as provided by the system), it is
possible that users will occasionally receive the 'Too many files open' error. If this
occurs, set the SystemFileLimit down by one or two files. The default is 240 on all
platforms.

LogBufferSize

This is the size in bytes of the log buffers. The log buffers cache the data to be
written to the logs. Before the log is flushed, the contents of the log buffer is writ-
ten to the log file. The log must be flushed when a transaction is committed, or
PrimeBase Reference Manual 217

System parameters
when the log buffer is full. Large log buffers can improve the performance of long
running transactions. The transaction manager will allocate at most 2 log buffers,
one for each online log file. The mimimum size for the log buffer is 32K.

LogThreshold

The log threshold is the point at which a new online log is created. It is a size in
bytes. When the current active log (this is log with the highest number), reaches
this size, an new log is created. The new log becomes the active log, and the old
log becomes inactive. Transaction always begin writing to the active log. Transac-
tions cannot change the log to which they write. This means that transactions
that began when the now inactive log was active continue to write to the log
when it becomes inactive. Both the active and the inactive logs are called the 'on-
line logs'. When the inactive log has no more transaction writing to it, it is taken
offline. An offline log is no longer required by the dataserver for recovery pur-
poses, and if the offline log function is set to 'delete', then it will be deleted by the
server. If the inactive log grows to 150% of its threshold it is forced offline. Trans-
actions still writing to the inactive log when this occurs are aborted, and rolled
back.

CheckpointThreshold

After CheckpointThreshold bytes have been written to the log, the server writes a
checkpoint record to the log. The more frequently a checkpoint is written, the less
time the server takes to restart after the server application was unexpectedly quit.
The time taken to restart, however also depends on the size of the server disk
cache memory (CacheSize). The more information cached when the server was
quit, the more time required to restart. Writing a checkpoint record does noit take
much time.
218 PrimeBase Reference Manual

System parameters
CacheSize

Cache size is the maximum amount of memory, in bytes, used by the server to
cache records read from disk. Increasing the cache size improves the perfor-
mance of the server, but may also increase time required to restart the server if
the server is not shutdown correctly. Cache memory is taken from the total
memory allocated (or available) to the server. If set too high, insufficient memory
may remain for the correct operation of other parts of the server. To be safe about
256K should be available per connection, after cache memory and virtual cache
memory have been subtracted from total available memory.

VirtualCacheSize

Virtual cache size is the maximum amount of memory in bytes used by the virtual
memory manager. When the virtual memory manager has no more physical
memory available to it, it begins to swap data out to disk. The servers virtual
memory system is used to store intermediate result sets during the execution of
queries. Data being sorted is also maimtained in server virtual memory. Certain
queries will execute much faster when enough physical memory is available to
the virtual memory manager.

OfflineFunction

This variable determines what happens to the inactive log when it is moved of-
fline. There are only two permissable values: 'Delete' and 'Archive'. After installa-
tion, the ofline log function is set to 'Delete'. Offline logs are only required to
restore a database from backup. If no backups have been made, the offline logs
are not required. In this case, the offline log function can be set to 'Delete', which
causes the server to automatically delete logs as they are moved offline. If the log
function is set 'Archive', the offline logs are moved to the log archive location. If
the server requires a log when restoring a database, it looks in the location in
which the log was archived.
PrimeBase Reference Manual 219

System parameters
DataServerName

This variable contains the of the server used by client applications to access the
server. This name is published, and is visible over the network on protocols such
as ADSP and PPC. When set, the server changes the network visible name imme-
diately. Connected clients are not affected by change of the server name.

ConnectionLimit

The connection limit is the current number of connections permitted by the
server. This number may range from zero to ConnectionTotal (see below). In-
creasing this variable immediately makes more connections available for client. If
the connection limit is zero, the server is not published (is not visible) over the
network. Decreasing the value of connection limit will decrease the number of
connection available to clients. If the number is decreased below the number of
clients currently connected to the server, some of the client connections will be
terminated by the server.

ConnectionTotal

This variable contains the maximum number of connections permitted according
to the registration license of the server. The connection limit cannot be set to a
value greater than the connection total. Connection total is set by the installation
program, and may be increased later using the incrementor program. In each
case, a serial number containing the number of connections permitted is re-
quired.

SerialNumber

The serial number of the server. This value must be provided upon installation.
220 PrimeBase Reference Manual

System parameters
ActivationKey

A valid activation key is required to register a server. Without a valid activation
key the server runs in demostration mode. In demostration mode the server
shuts down after 2 hours of operation.

ExpiryDate

The expiry date of the server determines how long the server will run as a regis-
tered server. Setting this variable to $NULL indicates that there is no expiry date.
After the expiry date, the server runs in demostration mode. Before the expiry
date, the server runs as a registered server.

IdentificationString

The identification string contains the characteristics of an installed server that are
required for registration. The value of this variable, along with the serial number
must be sent to SNAP Innovation in order to register a server.

InitialMemoryBlockSize

The initial memory block size is the size of the initial memory block allocated by
the server in bytes. This is one of three variables used to control the amount of
memory used by the server.

Memory is allocated by the server from the system in blocks. The memory in
these blocks is then managed by the server itself. The server allocates memory
from these blocks using a very fast best-fit algorithm. This memory management
is faster and more effecient than any operating system memory management we
have tested so far.
PrimeBase Reference Manual 221

System parameters
When the server if finished using the memory in a block it frees the memory to
the system. The size indicated by this variable is the size of the initial block of
memory allocated by the server. It may be larger the subsequent blocks allo-
cated. In addition, the initial memory block is never freed to this system while the
server is running. This block is managed like all other blocks, and therefore must
be calculated as part of the block total (see below). Setting this variable has no
immediate effect on the size of the initial memory block. Only when the server is
started up again, will the new initial memory block size be used.

You should set this variable to the mimimum amount of memory you wish the
server to use. On the macintosh, make sure that enough memory is allocated to
the server application that the server can allocate the initial memory block. The
server will not start if it cannot allocate this block.

By setting this variable to NULL, you indicate to the server that the memory vari-
able should be automatically configured. On the Macintosh this is the optimal
setting, as the servers memory parameters are then automatically set according
to the memory limit given to the server application in the finder. Under UNIX the
automatic memory configuration causes the system to allocate memory until the
system says there is no more.

MemoryBlockSize

This is the size, in bytes, of all blocks of memory allocated by the server from the
system besides the initial memory block (which has size InitialMemoryBlock-
Size). Changing this variable has no affect on blocks already allocated, but subse-
quent blocks will be allocated using the new size. The server only allocates
memory blocks when cannot find a free segment of memory of the required size
amongst the blocks that it already has. If the segment of memory that the server
wishes to allocate exceeds the size of memory blocks the server will try to allo-
cate a block of the required size from the system. This means that MemoryBlock-
Size is, in fact, a minimum block size. As a rule, however, the server does not
require memory segments of much larger than 64K. One exeption to this are the
log buffers, whose size may be set by the system administractor (see LogBuffer-
Size).
222 PrimeBase Reference Manual

System parameters
MemoryBlockTotal

This is the total number of memory blocks (including the initial memory block)
that may be allocated by the server. After the server has allocated this number of
blocks, the server will report an 'Out of Memory' error. if the system does not
allow the server to allocate all its memory blocks, the server may report a 'out of
Memory' error sooner. The maximum amount of memory used by the server can
be calculated as:

MemTot = InitialMemoryBlockSize + MemoryBlockSize * (MemoryBlockTotal - 1)

Under UNIX it is recommended that MemTot be set such that when allocated, all
this memory will reside in physical RAM. The server has its own virtual memory
management scheme, and as a result it is better if the memory actually used by
the server is real and not virtual memory.
PrimeBase Reference Manual 223

System parameters
224 PrimeBase Reference Manual

APPENDIX A: SYSTEM DATABASE
APPENDIX A: SYSTEM DATABASE

MODEL DATABASE

Domains

CREATE DOMAIN System.ObjectTypeCHAR(4), ORDER NOT APPLICABLE AS
CASE INSENSITIVE; /* 1 */

CREATE DOMAIN System.ObjectIDINTEGER;

CREATE DOMAIN System.DBObjectID(ObjectType, ObjectID);

CREATE DOMAIN System.ColumnIDSMINT;

CREATE DOMAIN System.DBColumnID(ObjectType, ObjectID, Colum-
nID);

CREATE DOMAIN System.ComponentIDSMINT;

CREATE DOMAIN System.DBComponentID(ObjectType, ObjectID, Compo-
nentID);

CREATE DOMAIN System.DBColCompID(ObjectType, ObjectID, Colum-
nID, ComponentID);

CREATE DOMAIN System.SysNameVARCHAR(31), ORDER NOT APPLICABLE AS
CASE INSENSITIVE;

CREATE DOMAIN System.DBName(SysName, SysName);

CREATE DOMAIN System.UserIDINTEGER;

CREATE DOMAIN System.DataTypeSMINT;/* 12 */

CREATE DOMAIN System.UserType CHAR(3), ORDER NOT APPLICABLE;

CREATE DOMAIN System.UGID (UserID, UserID);
PrimeBase Reference Manual 225

APPENDIX A: SYSTEM DATABASE
CREATE DOMAIN System.KeyAction CHAR(4), ORDER NOT APPLICABLE;

CREATE DOMAIN System.PrivilegeID (ObjectType, ObjectID, UserID,
UserID);

CREATE DOMAIN System.ColPrivID (ObjectType, ObjectID, ColumnID,
UserID, UserID);

Tables

1. SysUsers

CREATE TABLE System.SysUsers

(

ID UserIDNOT NULL,

Name SysNameNOT NULL,

CreatorID UserIDNOT NULL,

CreationTime TIMESTAMPNOT NULL,

UserType UserTypeNOT NULL,

Resource BOOLEANNOT NULL,

CreatorName SysNameNOT NULL,

Password VARCHAR(11)NULL,

AbortTimeout INTEGERNULL,

LoginCnt INTEGERNOT NULL,

LastLogin TIMESTAMPNULL,

OnlineTime INTEGERNOT NULL

);

2. SysMembers

CREATE TABLE System.SysMembers

(

UserID UserID NOT NULL,

GroupID UserID NOT NULL,
226 PrimeBase Reference Manual

APPENDIX A: SYSTEM DATABASE
UGID (UserID, GroupID) UGID

);

3. SysDataTypes

CREATE TABLE System.SysDataTypes

(

DataType DataType NOT NULL,

Name SysName NOT NULL,

Scale BOOLEAN NOT NULL,

Length BOOLEAN NOT NULL,

Size SMINT NULL,

Comments VARCHAR(120) NULL

);

4. SysObjects

CREATE TABLE System.SysObjects

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

CreatorName SysName NOT NULL,

Name SysName NOT NULL,

CreatorID UserID NOT NULL,

CreationTime TIMESTAMP NOT NULL,

Comments VARCHAR(120) NULL,

DBID (Type, ID) DBObjectID,

DBName (CreatorName, Name) DBName

);
PrimeBase Reference Manual 227

APPENDIX A: SYSTEM DATABASE
5. SysDomains

CREATE TABLE System.SysDomains

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

Primary BOOLEAN NOT NULL,

PrimaryKeyCnt SMINT NOT NULL,

ComponentCnt SMINT NOT NULL,

DataType DataType NULL,

Scale SMINT NULL,

Length INTEGER NULL,

Nulls BOOLEAN NULL,

Arithmetic BOOLEAN NULL,

Ordered BOOLEAN NULL,

SequenceType ObjectType NULL,

SequenceID ObjectID NULL,

DBID (Type, ID) DBObjectID,

DBSequenceID (SequenceType, SequenceID) DBObjectID

);

6. SysDomainComps

CREATE TABLE System.SysDomainComps

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ComponentID ComponentID NOT NULL,

DataType DataType NULL,

Scale SMINT NULL,

Length INTEGER NULL,

DomainType ObjectType NULL,

DomainID ObjectID NULL,
228 PrimeBase Reference Manual

APPENDIX A: SYSTEM DATABASE
DBID (Type, ID) DBObjectID,

DBComponentID (Type, ID, ComponentID) DBComponentID,

DBDomainID (DomainType, DomainID) DBObjectID

);

7. SysTables

CREATE TABLE System.SysTables

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ColumnCnt SMINT NOT NULL,

CompColCnt SMINT NOT NULL,

FileName CHAR(8) NULL,

CheckPending BOOLEAN NOT NULL,

ReorgPending BOOLEAN NOT NULL,

BackupPending BOOLEAN NOT NULL,

RowCnt INTEGER NULL,

AverageDirTime SMFLOAT NULL,

TotalDirTime SMFLOAT NULL,

DirectCnt INTEGER NULL,

AverageSeqTime SMFLOAT NULL,

TotalSeqTime SMFLOAT NULL,

SequentialCnt INTEGER NULL,

DBID (Type, ID) DBObjectID

);

8.SysColumns

CREATE TABLE System.SysColumns

(

Type ObjectType NOT NULL,
PrimeBase Reference Manual 229

APPENDIX A: SYSTEM DATABASE
ID ObjectID NOT NULL,

ColumnID ColumnID NOT NULL,

Name SysName NOT NULL,

Title VARCHAR(64) NULL,

ComponentCnt SMINT NOT NULL,

Comments VARCHAR(120) NULL,

DomainType ObjectType NULL,

DomainID ObjectID NULL,

Nulls BOOLEAN NULL,

DataType DataType NULL,

Scale SMINT NULL,

Length INTEGER NULL,

DistinctValCnt INTEGER NULL,

SearchCnt INTEGER NULL,

DBID (Type, ID) DBObjectID,

DBColumnID (Type, ID, ColumnID) DBColumnID,

DBDomainID (DomainType, DomainID) DBObjectID

);

9. SysColumnComps

CREATE TABLE System.SysColumnComps

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ColumnID ColumnID NOT NULL,

ComponentID ComponentID NOT NULL,

ObjectType ObjectType NOT NULL,

ObjectID ObjectID NOT NULL,

CompColID ColumnID NOT NULL,

DBColumnID (Type, ID, ColumnID) DBColumnID,

DBComponentID (Type, ID, ColumnID, ComponentID) DBColCompID,

DBCompColID (ObjectType, ObjectID, CompColID) DBColumnID
230 PrimeBase Reference Manual

APPENDIX A: SYSTEM DATABASE
);

10. SysKeys

CREATE TABLE System.SysKeys

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

TableType ObjectType NOT NULL,

TableID ObjectID NOT NULL,

ColumnID ColumnID NOT NULL,

KeyType CHAR(2) NOT NULL,

ReferenceCnt SMINT NULL,

UpdateAction KeyAction NULL,

DeleteAction KeyAction NULL,

DBID (Type, ID) DBObjectID,

DBTableID (TableType, TableID) DBObjectID,

DBColumnID (TableType, TableID, ColumnID) DBColumnID

);

11. SysReferences

CREATE TABLE System.SysReferences

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ComponentID ComponentID NULL,

TableType ObjectType NULL,

TableID ObjectID NULL,

DBID (Type, ID) DBObjectID,

DBComponentID (Type, ID, ComponentID) DBComponentID,

DBTableID (TableType, TableID) DBObjectID

);
PrimeBase Reference Manual 231

APPENDIX A: SYSTEM DATABASE
12. SysDefaults

CREATE TABLE System.SysDefaults

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ObjectType ObjectType NOT NULL,

ObjectID ObjectID NOT NULL,

ColumnID ColumnID NULL,

DefaultText VARCHAR(512) NOT NULL,

DefaultType CHAR(3) NOT NULL,

Literal VARBIN(128) NULL,

SerialType ObjectType NULL,

SerialID ObjectID NULL,

DBID (Type, ID) DBObjectID,

DBObjectID (ObjectType, ObjectID) DBObjectID,

DBColumnID (ObjectType, ObjectID, ColumnID) DBColumnID,

DBSerialID (SerialType, SerialID) DBObjectID

);

13. SysRules

CREATE TABLE System.SysRules

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ObjectType ObjectType NOT NULL,

ObjectID ObjectID NOT NULL,

RuleText VARCHAR(1024) NOT NULL,

RuleBinary VARBIN(1024) NOT NULL,

DBID (Type, ID) DBObjectID,

DBObjectID (ObjectType, ObjectID) DBObjectID

);
232 PrimeBase Reference Manual

APPENDIX A: SYSTEM DATABASE
14. SysViews

CREATE TABLE System.SysViews

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ColumnCnt SMINT NOT NULL,

CompColCnt SMINT NOT NULL,

Updateable BOOLEAN NOT NULL,

UpdateCheck BOOLEAN NOT NULL,

ViewText VARCHAR(12228)NOT NULL,

ViewBinary VARBIN(16384) NOT NULL,

BuildLastTime TIMESTAMP NULL,

BuildFrenquency INTEGER NULL,

BuildCnt INTEGER NULL,

BuildTime INTEGER NULL,

BuildRowCnt INTEGER NULL,

UsageCnt INTEGER NULL,

DBID (Type, ID) DBObjectID

);

15. SysIndices

CREATE TABLE System.SysIndices

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ObjectType ObjectType NOT NULL,

ObjectID ObjectID NOT NULL,

ComponentCnt SMINT NOT NULL,

IndexType CHAR(3) NOT NULL,

EqUsageCnt INTEGER NULL,

EqAvgElements INTEGER NULL,
PrimeBase Reference Manual 233

APPENDIX A: SYSTEM DATABASE
EqAvgSearchTime SMFLOAT NULL,

EqAvgReductionPh SMFLOAT NULL,

MiUsageCnt INTEGER NULL,

MiAvgElements INTEGER NULL,

MiAvgSearchTime SMFLOAT NULL,

MiAvgReductionPh SMFLOAT NULL,

SiUsageCnt INTEGER NULL,

SiAvgElements INTEGER NULL,

SiAvgSearchTime SMFLOAT NULL,

SiAvgReductionPh SMFLOAT NULL,

DBID (Type, ID) DBObjectID,

DBObjectID (ObjectType, ObjectID) DBObjectID

);

16. SysIndexComps

CREATE TABLE System.SysIndexComps

(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

ComponentID ComponentID NOT NULL,

TableType ObjectType NOT NULL,

TableID ObjectID NOT NULL,

ColumnID ColumnID NOT NULL,

DBID (Type, ID) DBObjectID,

DBComponentID (Type, ID, ComponentID) DBComponentID,

DBTableID (TableType, TableID) DBObjectID,

DBColumnID (TableType, TableID, ColumnID) DBColumnID

);

17. SysVariables

CREATE TABLE System.SysVariables
234 PrimeBase Reference Manual

APPENDIX A: SYSTEM DATABASE
(

Type ObjectType NOT NULL,

ID ObjectID NOT NULL,

VariableText VARCHAR(2048) NOT NULL,

VariableType CHAR(3) NOT NULL,

DataType DataType NULL,

Scale SMINT NULL,

Length INTEGER NULL,

Value VARBIN(2048) NULL,

DBID (Type, ID) DBObjectID

);

18. SysPrivileges

CREATE TABLE System.SysPrivileges

(

ObjectType ObjectType NULL,

ObjectID ObjectID NULL,

GrantorID UserID NULL,

GranteeID UserID NULL,

CanInsert BOOLEAN NOT NULL,

CanDelete BOOLEAN NOT NULL,

CanSelect BOOLEAN NOT NULL,

CanUpdate BOOLEAN NOT NULL,

CanReference BOOLEAN NOT NULL,

CanExecute BOOLEAN NOT NULL,

GrantInsert BOOLEAN NOT NULL,

GrantDelete BOOLEAN NOT NULL,

GrantSelect BOOLEAN NOT NULL,

GrantUpdate BOOLEAN NOT NULL,

GrantReference BOOLEAN NOT NULL,

GrantExecute BOOLEAN NOT NULL,

DBID (ObjectType, ObjectID) DBObjectID,
PrimeBase Reference Manual 235

APPENDIX A: SYSTEM DATABASE
PrivilegeID (ObjectType, ObjectID, GrantorID, GranteeID)
PrivilegeID

);

19. SysColumnPrivs

CREATE TABLE System.SysColumnPrivs

(

ObjectType ObjectType NULL,

ObjectID ObjectID NULL,

ColumnID ColumnID NULL,

GrantorID UserID NULL,

GranteeID UserID NULL,

CanSelect BOOLEAN NOT NULL,

CanInsert BOOLEAN NOT NULL,

CanUpdate BOOLEAN NOT NULL,

GrantSelect BOOLEAN NOT NULL,

GrantInsert BOOLEAN NOT NULL,

GrantUpdate BOOLEAN NOT NULL,

DBColumnID (ObjectType, ObjectID, ColumnID) DBColumnID,

ColPrivID (ObjectType, ObjectID, ColumnID, GrantorID,
GranteeID) ColPrivID

);
236 PrimeBase Reference Manual

APPENDIX B: ERROR CODES
APPENDIX B: ERROR CODES

DATA DEFINITION ERRORS

All data definition and data manipluation errors can be trapped by the standard
DAL ERRORCTL statement. Set ERRORCTL 1; in your program if you wish to
handle any of these errors in you DAL program.

Where DAL compatible errors are used, the DAL defined macro has been given.

Database related errors

-12040 Unknown database.

-12039 Database already exists.

-12038 Database is currently in use.

-12037 Database cannot be opened, restore/recover pending.

-12036 Maximum number of open databases exceeded.

Database alias related errors

-10211 (CEDBOPEN) There is no database open.

-923 (CENOCON) Database with alias '%s' does not exist.

-12035 Database alias '%s' already in use.
PrimeBase Reference Manual 237

APPENDIX B: ERROR CODES
Database objects:

-601 (CEEXISTS) Database object '%s' already exists.

-12034 Unknown database object.

-12033 Table is currently in use.

Database users and groups:

-12032 Unknown user.

-12031 Unknown group.

-12030 A user with this name already exists.

-12029 A group with this name already exists.

-12028 The user is already a member of this group.

DATA MANIPULATION ERRORS

Error that can be specifically trapped (and are of particular interrest) during data
manipulation.

-407 (CENONNUL) NULL assigned to NON-NULL column.

-803 (CEDUPROW) nsert or update would create duplicate row
in a unique key column.

-10105 (CELOCK) The requested lock cannot be granted as a con-
flicting lock is already held by another ransaction. This
result is only possible if the transaction has a wait time (the
time to wai for a lock) of anything less than 'infinity', and is
only returned after the specified wait time.
238 PrimeBase Reference Manual

APPENDIX B: ERROR CODES
-913 (CETXFAIL) The calling transaction has been rolled back
due to deadlock with one other transaction (only) mutual
deadlock can be detected). This result is only possible if
wait time is set to a value greater than zero.

-12060 Rule violation.

PRIVILEGE VIOLATIONS

Primary errosr

-551 (CEOBJPRV) Object level privilege violation on %s.

-552 (CEOPNPRV) Command level privilege violation.

-922 (CECONAUTH) Database access denied, unknown user.

-12100 Database access denied, invalid password.

-12099 Column level privilege violation.

Secondary errors

-12080 nsert privilege required on %s.

-12079 Select privilege required on %s.

-12078 Delete privilege required on %s.

-12077 Update privilege required on %s.

-12076 Reference privilege required on %s.

-12075 Grant privilege required on %s.

-12074 DBA privileges required.
PrimeBase Reference Manual 239

APPENDIX B: ERROR CODES
-12073 DBA privileges or object creator required.

-12072 Resource privileges required.

-1207 SA privileges required.

-12070 Invalid privilege required for %s.

CALCULATION AND CONVERSION ERRORS

Errors that may occur during calculations and conversions.

-413 (CECNVOFL) Size overflow in conversion.

-10026 (CEUFLOW) Conversion underflow.

-10002 (CEDATLIT) Invalid date/time litera.

-103 (CENUMLIT) Invalid numeric literal.

Invalid literal (string) values in conversion

-12140 Invalid boolean literal.

-12139 Invalid decimal literal.

-12138 Invalid real value.

-12137 Date/time value out of range in conversion.

-12136 Invalid conversion of negative value to unsigned.

-12135 Binary value size mismatch in conversion.

-12123 Binary value is not a valid decimal number.
240 PrimeBase Reference Manual

APPENDIX B: ERROR CODES
String to floating point conversion errors

-12134 Floating point value is not a number (NAN).

-12133 Floating point value is positive inifinity.

-12132 Floating point value is negitive inifinity.

Invalid conversions

-12131 Conversion between given types is not possible.

-12130 Illegal type in conversion (unknown or unsupported type in
conversion). This includes: WORD_4, REAL_10/12 (some-
times), LONG...)

Error in calculations

-12129 Date/time calculation error.

-12128 Date calculation error

-12127 Time calculation error.

-12126 Size overflow.

-12125 Size underflow

-12124 Divide by zero.

TRAPABLE PROGRAMER ERRORS

These errors can occur due to a programmer error, but some programmer may
be interrested in handling them
PrimeBase Reference Manual 241

APPENDIX B: ERROR CODES
-12160 Cannot open file for execution.

-12154 File not found.

-12153 Bad file handle.

Symbol related errors

-10004 (CEUNDEF) Symbol was not previously declared.

-10016 (CENOVAL) Symbol used before given an initial value.

-12158 A system variable was assigned an illegal value.*/

Cursor related errors

-10020 CENOQRY) The specified cursor cannot be used, it is inac-
tive.

-10202 (CEROWNR) Absolute or relative cursor move not in
rowset.

-508 (CECURROW) Current row of cursor is invalid in CURRENT
OF reference.

-10021 (CENOFTCH) No fetch done yet (no current row).

-10022 (CEMXFTCH) Fetch beyond last (no current row).

-12156 No such column alias exists for the given cursor

-12155 Cursor column ordinal number out of range.

Connection related errors

-12152 No connection has been opened.
242 PrimeBase Reference Manual

APPENDIX B: ERROR CODES
-12151 Multiple connections specified in one statement.
PrimeBase Reference Manual 243

APPENDIX B: ERROR CODES
244 PrimeBase Reference Manual

APPENDIX C: GOLFERS DATABASE
APPENDIX C: GOLFERS DATABASE

In the reference sections of this manual, the golfers database is used to illustrate
the various syntax possibilities in each command. A brief description of the
tables in this database is given here, followed by the creation of thedatabase in-
script form.

DATABASE DESCRIPTION

The golfers database consists of six tables storing information on golfers, golf
clubs, golf courses, competitions, results of competitions and scores. The tables
are as follows:

Golfers

The golfers table contains one entry for each golfer.

ID An identity number for each golfer. This number is taken
from the domain, GolferID, which has a serial default de-
fined on it. The primary key for this table is defined on this
column, as is an index.

SurName The last name of the golfer.This value is taken from the do-
main, NameType, which is ordered using a case insensitive
system collating sequence.
PrimeBase Reference Manual 245

APPENDIX C: GOLFERS DATABASE
FirstNames The first names of each golfer. This value is taken from the
domain, NameType, whose values are defined to be case
insensitive. This is done by specifying that the domain is to
be ordered using the case insensitive system collating se-
quence.

Name This is a composite column, which takes its values from
the columns, SurName and FirstName. This column is a
candidate key for the table, which means the composite
values of the column are table-wide unique.

Title This column stores the title of each golfer: for example,
whether the golfer is a Mr., Mrs., Miss, etc., etc.

Gender The sex of each golfer. A rule has been defined on this col-
umn, allowing only the values “M” and “F”.

Nationality The nationality of each golfer. All values in this column are
taken from the domain, NameType.

DateOfBirth The date of birth of each golfer.

Status The status of each golfer; whether he/she is an amateur, or
professional. All values in this column are taken from the
domain, StatusType, which has a rule define on it, allowing
only the following values: amateur, pro and pro/am. The
value pro/a, can be applied to competitions only, and
means that the competition includes both amateur and
professional golfers.

Handicap The handicap for each golfer is noted here. All values in
this column are taken from the domain, HandicapType. A
rule has been defined on this domain, allowing only those
values in the range between 36 and -5 (inclusive).

MemberOfClub This is an identity number for the club in which each golfer
plays. A foreign key is defined on this column. All values
are taken from the domain, ClubID. The value may be
NULL if the player is not a member of any club.
246 PrimeBase Reference Manual

APPENDIX C: GOLFERS DATABASE
Clubs

The Clubs table contains one entry for each club to which the golfers belong, or
at which competitions take place.

ID An identity number for each club. All values are taken from
the domain, ClubID. The primary key for the table is de-
fined on this column, as is an index.

Name The name of the club. All values are taken from the do-
main, NameType. A candidate key is defined on this col-
umn.

Address The address of the club. The data type of this column is
VARCHAR, with a minimum size of 120 characters.

City The city in which the club is situated.

Country The country in which the club is situated.

Founded The date when the club was founded.

Professional The ID of the professional golfer who works at the club. A
foreign key is defined on this column. The foreign key au-
tomatically references the Golfers table over the domain
GolferID.

NoOfCourses The number of golf courses at the club.

NoOfMembers The total number of members that belong to the club.

Courses

Each club has a number of courses. The details of each hole of each course, are
stored in the Courses table.

Club The ID of the club, to which this course belongs. The for-
eign key for the table is defined on this column.
PrimeBase Reference Manual 247

APPENDIX C: GOLFERS DATABASE
Course The number of the course. All values are taken from the
domain, CourseNO, which has a rule defined on it, ensur-
ing that all values are greater than zero. Courses are num-
bered 1,2,... up to the total number of courses for that
particular club.

Hole The number of the hole on the course. All values are taken
from the domain, HoleNO. A rule is defined on this do-
main, allowing only number in the range 1 to 18.

Key A composite column, that takes its values from the simple
columns, Club, Course, and Hole, in that order. The pri-
mary key for the table is defined on this composite column,
as is an index.

Distance The total distance of the hole in meters.

Par The average number of strokes it takes a professional
player to complete the hole. A rule is defined on this col-
umn, allowing only values 3, 4, and 5. A default has also
been defined on this column, that automatically sets the
par for a hole at 4.

Stroke This is the difficulty rating for each hole. This rating is a
value between 1 and 18, (inclusive). All values are taken
from the domain, HoleNo, which has a rule enforcing this
restriction.

Description A description of the hole. The data type of this column is
VARCHAR, and the description may not be more than 120
characters long.

Competitions

The Competitions table contains information on all competitions played by the
golfers.
248 PrimeBase Reference Manual

APPENDIX C: GOLFERS DATABASE
ID An identity number for each competition. All values are
taken from the domain, CompetitionID. The primary key
for the table is defined on this column, as is the index.

Name The name of the competition. All values are taken from the
domain, NameType. A candidate key for the table is de-
fined on this column.

Status The status of the competition; whether it is amateur, pro-
fessional, or whether amateurs and professionals play to-
gether. All values are taken from the domain, StatusType,
which has a rule defined on it, allowing only the above val-
ues.

Month The month in which the competition takes place. The data
type of this column is SMINT. It is not DATE, as this is a
record of an annual competition, therefore there is no need
to state a year.

Day The day on which the competition takes place. The data
type of this column is SMINT.

Club The ID of the club where the competition takes place. All
values are taken from the domain, ClubID. A foreign key is
defined on this column, that automatically references the
Clubs table of the domain, ClubID.

Course The number of the course where the competition takes
place.All values are taken from the domain, CourseNO.

NoOfRounds The number of rounds in the competition. This column has
a default defined on it, setting the value automatically at 4.
All values are taken from the domain, RoundNO.

Scoring This column records the method of scoring at each compe-
tition. A rule is defined on this column that allows the scor-
ing values, “Medal” (an absolute score count),
“Stableford” (a point system), “Skins” (a game in which
golfers play for money on each hole), and “Plus-Minus”
(another type of point scoring system)
PrimeBase Reference Manual 249

APPENDIX C: GOLFERS DATABASE
Results

Each competition has a number of results. The details are stored in the Results
table.

Year The year the competition took place. The data type of this
column is SMINT.

Competition The ID of the competition in question. A foreign key is de-
fined on this column referring to the Competitions table.

Placing The placing (1st, 2nd, 3rd...) obtained by a golfer who
played in the competition.

Key This is a composite column, which takes its values from
the simple column, Year, Competition and Place. The pri-
mary key for the table is defined on this column, as is the
index.

Golfer The ID of the golfer who played in the competition. A for-
eign key is defined on this column.

TotalScore The sum of the golfer´s score for each round of the compe-
tition.

Points The value here depends on the type of competition. For ex-
ample, in a Medal competition the value is the number of
strokes above (a positive value) or below (a negative value)
par at the ned of the competition. In a Stableford competi-
tion, this field contains the total number of Stableford
points obtained.

Winnings How much the golfer won in the competition. The data
type of this column is MONEY[12,2].
250 PrimeBase Reference Manual

APPENDIX C: GOLFERS DATABASE
Scores

The Scores table contains the score for each hole obtained by each player in each
competition.

Year The year in which the player took part in the competition.

Competition The ID for the competition. All values are taken from the
domain, CompetitionID. A foreign key is defined on this
column, that references the Competitions table.

Golfer The ID for the golfer who took part in the competition. All
values are taken from the domain, GolfersID. A foreign key
for the table is defined on this column.

Round The number of the round, in which this hole was played.
All values are taken from the domain, RoundNO.

Hole The number of the hole played.

Key This is a composite column, which takes its values from
the simple columns, Year, Competition, Golfer, Round, and
Hole. The primary key for the table is defined on this col-
umn, as is the index.

Score The number of strokes it took the golfer to play the hole.
There is a rule defined on this column, that states that all
values must be greater than zero.

HoledOut This is a column of BOOLEAN type. If FALSE, this means
that the player did not complete the hole. In a medal com-
petition this would disqualify the player, but in other types
of Competitions, this would only mean the player obtains
the worst possible score for the hole.

Points The number of points achieved at the hole. The value here
depends on the coring system used in the competition.
PrimeBase Reference Manual 251

APPENDIX C: GOLFERS DATABASE
CREATE SCRIPT

This script creates the golfers database:

/* GOLFERS: */

CREATE DATABASE "Golfers";

OPEN DATABASE "Golfers";

CREATE COUNTER INTEGER GolferCnt = 1;

CREATE COUNTER INTEGER ClubCnt = 1;

CREATE COUNTER INTEGER CompetitionCnt = 1;

CREATE DOMAIN GolferID INTEGER NOT NULL;

CREATE DEFAULT GolferDef ON DOMAIN GolferID AS SERIAL GolferCnt;

CREATE DOMAIN CompetitionID INTEGER NOT NULL;

CREATE DEFAULT CompetitionDef ON DOMAIN CompetitionID AS SERIAL

CompetitionCnt;

CREATE DOMAIN ClubID INTEGER;

CREATE DEFAULT ClubDef ON DOMAIN ClubID AS SERIAL ClubCnt;

CREATE DOMAIN NameType VARCHAR[55] AS CASE INSENSITIVE;

CREATE DOMAIN StatusType CHAR[8];

CREATE RULE StatusRule ON StatusType AS StatusType IN ('Ama-

teur', 'Pro', 'Pro/Am');

CREATE DOMAIN CourseNO SMINT;

CREATE RULE CourseRule ON CourseNO AS CourseNO > 0;

/* Handicaps are stored as value that is subtracted from the

final score: */

CREATE DOMAIN HandicapType SMINT;
252 PrimeBase Reference Manual

APPENDIX C: GOLFERS DATABASE
CREATE RULE HandicapRule ON HandicapType AS HandicapType BETWEEN

36 AND -5;

CREATE DOMAIN RoundNO SMINT;

CREATE RULE RoundRule ON RoundNO AS RoundNO BETWEEN 1 AND 4;

CREATE DOMAIN HoleNO SMINT;

CREATE RULE HoleRule ON HoleNO AS HoleNO BETWEEN 1 AND 18;

/* The golfers table contains one entry for each golfer.

CREATE TABLE Golfers

(

ID GolferID NOT NULL,

SurName NameType NOT NULL,

FirstNames NameType NOT NULL,

Name (SurName, FirstNames),

Title CHAR[10],

Gender CHAR[1] NOT NULL,

Nationality NameType,

DateOfBirth DATE,

Status StatusType,

Handicap HandicapType,

MemberOfClub ClubID,

Earnings MONEY[12,2]

);

CREATE PRIMARY KEY GolfersPk ON Golfers.ID;

CREATE CANDIDATE KEY GolferNameCk ON Golfers.Name;

CREATE FOREIGN KEY GolferClubFk ON Golfers.MemberOfClub;

CREATE INDEX GolfersIndex ON Golfers (ID);

CREATE RULE GenderRule ON Golfers AS Gender IN ('M', 'F');

/* The Clubs table contains one entry for each club to which

golfers belong, or at which competitions take place.
PrimeBase Reference Manual 253

APPENDIX C: GOLFERS DATABASE
CREATE TABLE Clubs

(

ID ClubID NOT NULL,

Name NameType NOT NULL,

Address VARCHAR[120],

City NameType,

Country NameType,

Founded DATE,

Professional GolferID,

NoOfCourses SMINT NOT NULL,

NoOfMembers INTEGER NOT NULL

);

CREATE PRIMARY KEY ClubsPk ON Clubs.ID;

CREATE CANDIDATE KEY ClubNameCk ON Clubs.Name;

CREATE FOREIGN KEY ClubProFk ON Clubs.Professional ON UPDATE

CASCADE ON DELETE CASCADE;

CREATE INDEX ClubsIndex ON Clubs (ID);

/* Each club has a number of courses. The details of each hole

of each course, are stored in the Courses table */

CREATE TABLE Courses

(

Club ClubID NOT NULL,

Course CourseNO NOT NULL,

Hole HoleNO NOT NULL,

Key (Club, Course, Hole),

Distance SMINT,

Par SMINT,

Stroke HoleNO,

Description VARCHAR[120]

);

CREATE PRIMARY KEY CoursesPk ON Courses.Key;

CREATE FOREIGN KEY CourseClubFk ON Courses.Club;
254 PrimeBase Reference Manual

APPENDIX C: GOLFERS DATABASE
CREATE INDEX CoursesIndex ON Courses (Club, Course, Hole);

CREATE RULE ParRule Courses AS Par IN (3, 4, 5);

CREATE DEFAULT ParDef ON Courses.Par AS 4;

/* The Competitions table contains information of all competi-

tions played by the golfers.*/

CREATE TABLE Competitions

(

ID CompetitionID NOT NULL,

Name NameType NOT NULL,

Status StatusType NOT NULL,

Month SMINT,

Day SMINT,

Club ClubID,

Course CourseNO,

NoOfRounds RoundNO,

Scoring CHAR[20]

);

CREATE PRIMARY KEY CompetitionsPk ON Competitions.ID;

CREATE CANDIDATE KEY CompetitionNameCk ON Competitions.Name;

CREATE FOREIGN KEY CompetitionClubFk ON Competitions.Club;

CREATE INDEX CompetitionsIndex ON Competitions (ID);

CREATE DEFAULT NoOfRoundsDef ON Competitions.NoOfRounds AS 4;

CREATE RULE ScoringRule ON Competitions AS Scoring IN

('Medal', 'Stableford', 'Skins', 'Plus-Minus');

/* Each competition has a number of results. The details are

stored in the Results table. */

CREATE TABLE Results

(

Year SMINT NOT NULL,
PrimeBase Reference Manual 255

APPENDIX C: GOLFERS DATABASE
Competition CompetitionID NOT NULL,

Placing SMINT NOT NULL,

Key (Year, Competition, Placing),

Golfer GolferID,

TotalScore SMINT,

Points SMINT,

Winnings MONEY[10,2]

);

CREATE PRIMARY KEY ResultsPk ON Results.Key;

CREATE FOREIGN KEY ResultGolferFk ON Results.Golfer;

CREATE INDEX ResultsIndex ON Results (Year, Competition, Plac-

ing);

/* The Scores table contains the score for each hole obtained by

each player in each competition. */

CREATE TABLE Scores

(

Year SMINT NOT NULL,

Competition CompetitionID NOT NULL,

Golfer GolferID NOT NULL,

Round RoundNO NOT NULL,

Hole HoleNO NOT NULL,

Key (Year, Competition, Golfer, Round, Hole),

Score SMINT,

HoledOut BOOLEAN,

Points SMINT

);

CREATE PRIMARY KEY ScoresPk ON Scores.Key;

CREATE FOREIGN KEY ScoreGolferFk ON Scores.Golfer;

CREATE INDEX ScoresIndex ON Scores (Year, Competition, Golfer,

Round, Hole);

CREATE RULE ScoreRule ON Scores AS Score > 0;
256 PrimeBase Reference Manual

APPENDIX C: GOLFERS DATABASE
/*The View, GolfersAmateurs, includes all those golfers who have

the Status, "Amateur"*/

CREATE VIEW GolfersAmateurs

AS SELECT ID, Name, Title, Handicap, Status

FROM Golfers

WHERE Status = "Amateur" WITH CHECK OPTION;
PrimeBase Reference Manual 257

APPENDIX C: GOLFERS DATABASE
258 PrimeBase Reference Manual

Index
INDEX

Symbols

$ampm .. 196
$colcnt ... 201
$cursor .. 201
$datefmt .. 195
$day ... 195
$decfmt ... 198
$locktimeout201, 202, 203, 204, 205
$maxrows ... 201
$moneyfmt.. 199
$month .. 195
$rowcnt ... 201
$rowsaffected ... 206
$rowsperpage... 206
$sqlcode .. 201
$switch .. 201
$timefmt.. 196
$tsfmt .. 197

A

A_BADTYPE .. 163
A_BREAK... 163
A_DISCARD... 164
A_ERROR... 157
A_EXEC ... 159
A_NULL ... 158
A_OK.. 157
A_READY... 163
A_SESSMAX... 159
A_VALUE... 158
ABORT... 19
ABSOLUTE

fetch .. 120
ADD

USER... 18
AGGFCNS ... 67
ALIAS

open database.. 81
ALIASES .. 104
ALTER

TABLE ... 20
USER... 21

API FUNCTIONS ... 151
APPEND

alter table.. 21
ARGUMENT

declare procedure 114
ASC | DESC ... 141

B

BACKUP
DATABASE ... 23

BEGIN .. 109
BIN ... 13
BINARY.. 13
BOOLEAN.. 12
BREAK ... 109
BRPARMS ... 59
PrimeBase Reference Manual I-259

Index
C

CALL .. 110
CANDIDATE .. 39
CASCADES.. 40
CASE

switch.. 145
CASE INSENSITIVE 36
CHAR ... 13
CHARACTER ... 13
cl1_error .. 172
cl1_id ... 172
cl1_message ... 172
cl1_status .. 172
cl1_status2 .. 172
CL1End .. 172
CL1Exec... 173
CL1GetList ... 173
CL1Getstat... 174
CL1Getval.. 174
CL1Init ... 175
CL1Putval .. 176
CL1Send .. 177
CL1State .. 177
CLBreak() ... 156
CLConInfo() ... 157
CLExec() .. 159
CLGetErr() ... 160
CLGetItem()... 161
CLGetSn() .. 164
CLInit() ... 165
CLOSE

DATABASE ... 25
DBMS.. 26
TABLE ... 27

CLSend().. 166
CLSendItem() .. 167
CLState().. 168
CLUnGetItem().. 169
COLLATING SEQUENCE

variable ... 47
Collating Sequences

reference... 35
COLUMN

comment on ... 28
create default.. 31

Column Alias .. 105
Column of Table Reference 107
Column Reference...................................... 106
COMMENT ON ... 27
COMMIT .. 111
comparison_order

variable ... 47
CONTINUE .. 111
conversion_spec

printctl... 133
COUNTER

variable ... 48
CREATE

DATABASE ... 28
DEFAULT .. 30
DOMAIN.. 32
GROUP.. 37
INDEX.. 37
KEY.. 39
RULE ... 42
TABLE ... 44
VARIABLE ... 46
VIEW.. 51

CREATOR
add user .. 18

D

DATA
backup database 23
create database 29
mount database 80

Database Alias .. 105
DATE.. 12
Date

system variable 195
Date and Time

system variable 197
I-260 PrimeBasePrimeBase Reference Manual

Index
DATETIME... 12
DBA

privileges .. 76
DBPARMS ... 60
DECIMAL ... 11
Decimal and Money Formats 198, 201
DECLARE... 112

CURSOR.. 113
PROCEDURE... 113

DEFAULT
switch.. 146

DELETE (positioned) 115
DELETE (searched) 116
DESCRIBE

COLUMNS .. 52
DATABASES... 54
DBMS.. 56
LINKSETS ... 69
OPEN DATABASES................................ 70
OPEN DBMS... 71
TABLES... 72

DESELECT ... 116
DO.. 117
DOMAIN

create default.. 31
DROP

... 75
GROUP.. 75

E

ELSE .. 124
END PROCEDURE....................................... 114
equivalent_sequence

variable ... 47
ERRORCTL .. 118
EXCLUSIVE ... 84
EXECUTE... 118

FILE.. 119
EXTRACT... 142

F

FETCH.. 120
FIRST

fetch .. 120
FLOAT.. 12
FOR .. 121
FOR EACH ... 122
FOREIGN ... 39

G

GENERIC ... 13
Global Variables ... 172
GOLFERS DATABASE 245
GOTO... 123
GRANT .. 76

I

IDENTIFIERS ... 103
IF .. 123
IGNORE DIACRITICAL MARKS.................... 36
INDEX

backup database 23
create database 29
mount database 80

init_assign ... 122
INSERT .. 124
INT ... 11
INTEGER.. 11

L

LABEL .. 126
LAST

fetch .. 120
LOCATION

backup database 23
create database 29
describe databases 55
mount database 80
PrimeBase Reference Manual I-261

Index
M

MONEY.. 11
MOUNT

DATABASE ... 79

N

NEXT
fetch .. 120

NOW
create default.. 31

NUMERIC .. 11

O

Object Reference .. 106
object_privileges .. 77
OBJNAME ... 13
ON DELETE ... 40
ON UPDATE .. 40
OPEN

DATABASE ... 80
DBMS.. 82
TABLE ... 84

ORDER APPLICABLE 34
ORDER BY ... 141

P

PARAMETER 1
pinkctl.. 127

PARAMETER 2
pinkctl.. 128

PARAMETER 3
pinkctl.. 129

PARAMETER 4
pinkctl.. 130

PARAMETER 5
pinkctl.. 130

PARAMETER 6
pinkctl.. 131

PASSWORD
add user .. 19

PINKCTL .. 126
PRIMARY... 39
PRINT... 131
PRINTALL .. 132
PRINTCTL .. 133
PRINTF... 135
PRINTINFO .. 136
PRINTROW.. 136
Program-execution functions.................... 152
PROTECTED .. 84
PUBLIC .. 78

Q

QUERIES ... 66
QUERY SPECIFICATION............................. 137

R

READONLY ... 85, 142
REAL .. 12
REAL10 .. 12
REAL12 .. 12
REFERENCES .. 105
RELATIVE

fetch .. 121
REMOVE

USER... 86
RENAME

... 87
alter table.. 21

RESOURCE
privileges .. 77

RESTORE
DATABASE ... 88

RESTRICTED ... 40
Results-processing functions 152
RETURN .. 140
RETURNING

call ... 110
insert ... 125

RETURNS
declare procedure 114
I-262 PrimeBasePrimeBase Reference Manual

Index
REVOKE... 89
ROLLBACK .. 140

S

SA
privileges .. 76

SCROLLING... 142
SELECT.. 141
SERIAL

create default.. 31
SERVER RESTART.. 93
SERVER RESTORE.. 96
SERVER SHUTDOWN 97
Session-control functions.......................... 151
SET .. 144
SET DEFAULT ... 41
SET NULL.. 40
SET VARIABLE...................................... 99, 100
SHARED .. 84
SMALLFLOAT ... 12
SMALLINT... 11
SMFLOAT.. 12
SMINT ... 11
STMTS... 65
STRUCT... 61
SUPPRESS NULL.. 38
SUPPRESS ZERO.. 38
SWITCH ... 145
SYSTEM VARIABLES 195

T

Table Alias .. 105
TBPARMS.. 61
TIME .. 12

system variable 196
TIMESTAMP.. 12
TINYINT... 11
TXNS ... 62
TYPES.. 63

U

UNIQUE... 39
UNMOUNT

DATABASE ... 100
UPDATE... 85, 142
UPDATE (positioned) 146
UPDATE (searched).................................... 148
Update modes .. 142
USE

DBMS.. 102
USER

create default.. 31
user_counter

variable ... 47
user_variable .. 48

V

VAR.. 13
VARBINARY .. 13
VARCHAR.. 13

W

WHERE CURRENT OF 115, 147
WHILE.. 149
WITH | WITHOUT INDEX

backup database 23
WITH CHECK OPTION 51
WITH GRANT OPTION 78
WORK | TRANSACTION | TRANS

begin ... 109
commit.. 111
PrimeBase Reference Manual I-263

Index
I-264 PrimeBasePrimeBase Reference Manual

	PrimeBase™
	Reference Manual
	3.0
	 SNAP Innovation Softwareentwicklungsgesellschaft...
	Virchowstr. 17
	22767 Hamburg

	CONTENTS
	DATA TYPES
	Integer types
	Decimal types
	Floating-point types
	Boolean types
	Time types
	Character types
	Binary types
	Special types

	DDL REFERENCE MANUAL
	DBMS Statements
	Database Manipulation Statements
	Information Statements
	Object Manipulation Statements
	Database Privileges Statements
	Server Control Statements
	ADD USER
	ALTER TABLE
	ALTER USER
	BACKUP DATABASE
	BACKUP TABLE
	CLOSE DATABASE
	CLOSE DBMS
	CLOSE TABLE
	COMMENT ON
	CREATE DATABASE
	CREATE DEFAULT
	CREATE DOMAIN
	CREATE GROUP
	CREATE INDEX
	CREATE KEY
	CREATE RULE
	CREATE TABLE
	CREATE VARIABLE
	CREATE VIEW
	DESCRIBE COLUMNS
	col#
	Data Type
	Name
	Description
	DESCRIBE DATABASES

	col#
	Data Type
	Name
	DESCRIBE DBMS

	col#
	Data Type
	Name
	Information
	BRPARMS

	Position
	PrimeBase Value
	Meaning
	DBPARMS

	Position
	PrimeBase Value
	Meaning
	TBPARMS

	Position
	PrimeBase Value
	Meaning
	STRUCT

	Position
	PrimeBase Value
	Meaning
	TXNS

	Position
	PrimeBase Value
	Meaning
	TYPES

	Position
	PrimeBase Value
	Meaning
	STMTS

	Position
	PrimeBase Value
	Meaning
	QUERIES

	Position
	PrimeBase Value
	Meaning
	AGGFCNS

	Position
	PrimeBase Value
	Meaning
	BRTYPE
	PROT
	OPTIONS
	ZONE
	SERVER
	DESCRIBE LINKSETS
	DESCRIBE OPEN DATABASES

	col#
	Data Type
	Name
	Description
	DESCRIBE OPEN DBMS
	DESCRIBE TABLES

	col#
	Data Type
	Name
	Description
	DROP GROUP
	DROP <object>
	GRANT
	MOUNT DATABASE
	OPEN DATABASE
	OPEN DBMS
	OPEN TABLE
	REMOVE USER
	RENAME <object>
	REORG TABLE
	RESTORE DATABASE
	REVOKE
	SERVER CHECKPOINT
	SERVER COMMENT
	SERVER ERROR

	col#
	Data Type
	Name
	Information
	FunctionName
	SeekPosition
	TransferSize
	SERVER RESTART
	SERVER RESTORE
	SERVER SHUTDOWN
	SET VARIABLE
	TRANS ERROR
	TRANS RESTART
	TRANS SHUTDOWN
	UNMOUNT DATABASE
	USE DATABASE
	USE DBMS

	IDENTIFICATION
	IDENTIFIERS
	ALIASES
	Database Alias
	Table Alias
	Column Alias

	REFERENCES
	Object Reference
	Column Reference
	Column of Table Reference

	DAL LANGUAGE REFERENCEPrimeBase
	BEGIN
	BREAK
	CALL
	COMMIT
	CONTINUE
	DECLARE
	DECLARE CURSOR
	DECLARE PROCEDURE
	DELETE (positioned)
	DELETE (searched)
	DESELECT
	DO
	ERRORCTL
	EXECUTE
	EXECUTE FILE
	FETCH
	FOR
	FOR EACH
	GOTO
	IF
	INSERT
	LABEL
	PINKCTL
	Col#
	Data Type
	Name
	Col#
	Data Type
	Name
	Col#
	Data Type
	Name
	Col#
	Data Type
	Name
	Mode
	1
	2
	3
	PRINT
	PRINTALL
	PRINTCTL

	Type
	Code
	System variable name
	PRINTF
	PRINTINFO

	Col#
	Data Type
	Name
	PRINTROW
	QUERY SPECIFICATION
	RETURN
	ROLLBACK
	SELECT
	SET
	SWITCH
	UPDATE (positioned)
	UPDATE (searched)
	WHILE

	API FUNCTIONS
	API function groups
	Session-control functions
	Program-execution functions
	Results-processing functions

	Return Values
	Integer Values for Return on Codes

	Symbol
	Value
	Description
	Integer Values for Data Type Codes

	Symbol
	Data Type
	Value
	len
	places
	Results Processing
	API Functions and NULLs
	CLBreak() Function
	CLConInfo() Function
	CLExec() Function
	CLGetErr() Function
	CLGetItem() Function
	CLGetSn() Function
	CLInit() Function
	CLSend() Function
	CLSendItem() Function
	CLState() Function
	CLUnGetItem() Function

	HyperCard XCMDs & XFCNs
	Session Control
	Program Execution
	Results Processing
	Global Variables
	CL1End XCMD
	CL1Exec XCMD
	CL1GetList XFCN
	CL1Getstat XFCN
	CL1Getval XFCN
	CL1Init XCMD
	CL1Putval XCMD
	CL1Send XCMD
	CL1State XFCN

	SYSTEM FUNCTIONS
	String Functions
	$left and $right
	$locate
	$substr
	$trim, $ltrim, and $rtrim
	$toupper, $tolower - PrimeBase Extersion

	Cursor Functions
	Variable Functions
	$len
	$typeof

	$format Function
	The Format String
	Conversion Specifications
	Minus Sign
	Width and Precision
	Format Character Values

	File Functions - PrimeBase Extensions
	$open
	$close
	$readline
	$writeline

	Utility Functions - PrimeBase Extensions
	$now
	$errorstring

	SYSTEM VARIABLES
	Date and Time Formats
	Date
	TIME
	Date and Time

	Decimal and Money Formats
	DAL System Variables
	DAL System Constants
	Lock Settings - PrimeBase Extension
	DBMS Lookup Parameters - PrimeBase Extension
	Login Information - PrimeBase Extension
	Cursor Information - PrimeBase Extension

	SYSTEM PROCEDURES
	Syntax
	1. The procedure may return no values. In this cas...
	2. The procedure returns values. If a <returning_v...
	3. The procedure returns a rowset. If an INTO clau...

	DEVICES
	Add Device
	Required parameters:
	Optional parameters:

	Alter Device
	Required parameters:
	Optional parameters:

	Remove Device
	Required parameters:

	LOCATIONS
	Add Location
	Required parameters:
	Optional parameters:

	Alter Location
	Required parameters:
	Optional parameters:

	Remove Location
	Required parameters:

	PARTITIONS
	Add Partition
	Required parameters:
	Optional parameters:

	Alter Partition
	Required parameters:
	Optional parameters:

	Remove Partition
	Required parameters:

	System parameters
	TransactionLimit
	SystemFileLimit
	LogBufferSize
	LogThreshold
	CheckpointThreshold
	CacheSize
	VirtualCacheSize
	OfflineFunction
	DataServerName
	ConnectionLimit
	ConnectionTotal
	SerialNumber
	ActivationKey
	ExpiryDate
	IdentificationString
	InitialMemoryBlockSize
	MemoryBlockSize
	MemoryBlockTotal

	APPENDIX A: SYSTEM DATABASE
	Model DATABASE
	Domains
	Tables
	1. SysUsers
	2. SysMembers
	3. SysDataTypes
	4. SysObjects
	5. SysDomains
	6. SysDomainComps
	7. SysTables
	8.SysColumns
	9. SysColumnComps
	10. SysKeys
	11. SysReferences
	12. SysDefaults
	13. SysRules
	14. SysViews
	15. SysIndices
	16. SysIndexComps
	17. SysVariables
	18. SysPrivileges
	19. SysColumnPrivs

	APPENDIX B: ERROR CODES
	DATA DEFINITION ERRORS
	Database related errors
	Database alias related errors
	Database objects:
	Database users and groups:

	DATA MANIPULATION ERRORS
	PRIVILEGE VIOLATIONS
	Primary errosr
	Secondary errors

	CALCULATION AND CONVERSION ERRORS
	Invalid literal (string) values in conversion
	String to floating point conversion errors
	Invalid conversions
	Error in calculations

	TRAPABLE PROGRAMER ERRORS
	Symbol related errors
	Cursor related errors
	Connection related errors

	APPENDIX C: GOLFERS DATABASE
	DATABASE DESCRIPTION
	Golfers
	Clubs
	Courses
	Competitions
	Results
	Scores

	CREATE SCRIPT

	INDEX
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

