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1. INTRODUCTION

"Man is exposed to many chemicals of natural and synthetic origin. An urgent ques-
tion concerns their potential negative effects on human health. To identify chemi-
cals inducing toxicity and to limit the incidence of human cancers and other diseases,
rodent bioassays are the principal methods used today. However, this approach is not
altogether problem-free, on several accounts: (1) the cost of the assay (>1 million
U.S. dollars per chemical); (2) the time needed for the tests (3-5 years); (3) ethical
considerations and public pressure to reduce or eliminate the use of animals in rese-
arch and testing; (4) difficulties in the extrapolation to man.

We were interested in the prediction of carcinogenicity, but cancer is not a single
disease. Several mechanisms involved in the various processes leading to the different
tumors. This makes the task of assessing the computational prediction particularly
challenging. Dedicated expert systems have been employed for computerized predic-
tion of carcinogenicity. However, these have limitations. These expert systems work
mainly on the assumption that toxicity is linked to the presence of toxic residues,
either defined by human experts or found by the expert system. In some cases, the
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expert systems also use some simple physicochemical parameters. ...

Another widespread approach for predicting toxicity relies on molecular descriptors,
which refer to global properties or characteristics of the molecule. In recent years a
huge increase in the number of studies of theoretical molecular descriptors has appea-
red in the literature, including their use in toxicity prediction." [Gini et al., 1999]

Using the above data set, we generated several models using self-organising data
mining technologies: Clustering based on Analog Complexing pattern recognition,
GMDH Neural Networks, Fuzzy Rule Induction and Nets of Active Neurons. These
technologies are described in the book: Müller/Lemke, "Self-Organising Data Mining",
Libri, 2000, ISBN 3-89811-861-4, for reference.

All models are obtained from using the entire data set: 104 aromatic compounds and
34 molecular descriptors. This paper is a summary of the initial report and is divided
into the following sections:

2. Clustering
3. GMDH NN
4. Fuzzy Rule Induction
5. Nets of Active Neurons
6. Synthesis
7. Summary

2. Clustering

Analog Complexing can be considered a pattern recognition method for predicting,
clustering and classification of fuzzy objects. Used for clustering, it identifies groups
of similar objects. Picking a representative object from each generated cluster, a so-
called nucleus - a most destinctive subset of objects - can be obtained. Such a nucleus
can form the basis for further modeling activities like GMDH modeling or rule induc-
tion.

Using a pattern length of 104 and a similarity threshold of 95%, e.g., this clustering
was obtained:

19 cluster found
C1: V1 (MW), -V7 (tenergy), V8 (volume), V9 (randic), V12 (chiv0), 
         V13 (chiv1), V14 (chiv2), V28 (Kappa1 ), V31 (kA1), 
C2: V2 (homo), 
C3: V3 (lumo), 
C4: V4 (heat), 
C5: V5 (dipole), 
C6: V6 (polariz), 
C7: V10 (balaban), 
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C8: V11 (wiener), V22 (MOM2), V23 (MOM3), 
C9: V15 (chiv3), V16 (chiv4), 
C10: V17 (flex), V29 (Kappa2), V30 (Kappa3), V32 (kA2), V33 (kA3), 
C11: V18 (pH=2), 
C12: V19 (pH=7.4), 
C13: V20 (pH=10), 
C14: V21 (MOM1), 
C15: V24 (SIZE1), 
C16: V25 (SIZE2), 
C17: V26 (SIZE3), 
C18: V27 (EllipsV ), 
C19: V34 (electrot), 

3. GMDH Neural Networks

This special type of Neural Networks combines the best of both statistics and NNs as
it inductively self-organisies networks of (self-organised) elementary functions syste-
matically and fast. Also, the generated network function of self-selected relevant
input factors is not hidden in the network, it is analytically available on the fly. The
results can be analysed, gaining some insights into the investigated black box.

We extended the given data base of the 34 descriptors xi by adding their invers values

1/xi (where applicable). So the resulting data base we used for GMDH modeling consi-

sted of  65 variables. We generated several linear and nonlinear models, and the best
linear and nonlinear model is below referenced GMDHM1 and GMDHM2 respecti-
vely. The best linear model was:

X74 = 1.7455 + 0.0006X6 -0.9133X66 -0.3383X18 -2.8758X47 
            + 0.0449X33 + 0.0016X23 + 1.2038X60 -0.0333X50 
            -0.0335X8 -29.0323X41 + 3.4761X63 

Prediction Error Sum Of Squares:                   0.1344
Mean Absolute Percentage Error:                    27.33  %
Approximation Error Variance:                       0.5391

OUTPUT VARIABLE: 
X74  -  Carcinogenicity

RELEVANT INPUT VARIABLES: 
X6  -  heat
X66  -  (kA2)^-1
X18  -  chiv4
X47  -  (chiv0)^-1
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X33  -  kA1
X23  -  MOM1
X60  -  (SIZE3)^-1
X50  -  (chiv3)^-1
X8  -  polariz
X41  -  (polariz)^-1
X63  -  (Kappa2)^-1

4. Fuzzy Rule Induction (FRI)

For fuzzy modeling, each descriptor xi (i=1, 2, ..., 34) and the target variable y was

fuzzified into 5 linguistic variables:

negative big  - NB_<descriptori>

negative small  - NS_<descriptori>

zero - ZO_<descriptori>

positive small - PS_<descriptori>

positive big - PB_<descriptori>

We used equidistant Lambda-type membership functions, 0 ≤ µp(x) ≤ 1, where µp(x)=0
indicates no membership and µp(x)=1 indicates full (exclusive) membership to the lin-

guistic variable xp (p=1, 2, ..., 5). Fuzzification was centered around the mean value x-

of descriptor x so that µZO(x-) = 1.
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The resulting data base of 170 linguistic input variables and 5 linguistic target varia-
bles was used then to generate a separate rule for each linguistic target variable, i.e., 5
rules alltogether. A defuzzification model, finally, transforms the fuzzy results back
into the initial data space. Fuzzification, rule induction and defuzzification was pro-
cessed using KnowledgeMiner. We created two sets of fuzzy models: The first uses
AND, OR operators [FM1], and the second model AND, OR, NOT operators [FM2].

Fuzzy models using AND, OR, NOT operators (fuzzy model 2  [FM2])

IF  NB_homo & NB_lumo & NS_MOM3   OR   NOT_PB_balaban & NB_pH=10 
       & NS_kA3   OR   NB_wiener & NB_SIZE2 & NS_Kappa2 
         OR   NS_SIZE1 & NB_lumo & NS_chiv2 
THEN  NB_Carcinogenicity
 

Summarized Absolute Error:             7.91
Mean Absolute Percentage Error:       7.61 %
Approximation Error Variance:          0.5212

OUTPUT VARIABLE: 
X182  -  NB_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X7  -  NB_homo
X12  -  NB_lumo
X113  -  NS_MOM3
X51  -  NOT_PB_balaban
X97  -  NB_pH=10
X163  -  NS_kA3
X52  -  NB_wiener
X122  -  NB_SIZE2
X143  -  NS_Kappa2
X118  -  NS_SIZE1
X68  -  NS_chiv2

IF  NS_heat & ZO_Kappa1    OR   NOT_PS_SIZE2 & NS_dipole & NB_polariz 
       & NOT_ZO_homo & NOT_ZO_chiv3 
THEN  NS_Carcinogenicity
 

Summarized Absolute Error:             9.88
Mean Absolute Percentage Error:       9.50 %
Approximation Error Variance:          0.6599

OUTPUT VARIABLE: 
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X183  -  NS_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X18  -  NS_heat
X139  -  ZO_Kappa1 
X125  -  NOT_PS_SIZE2
X23  -  NS_dipole
X27  -  NB_polariz
X9  -  NOT_ZO_homo
X74  -  NOT_ZO_chiv3

IF  NOT_NB_pH=10 & NOT_NS_homo & NOT_NB_chiv3 & NOT_ZO_kA2 &
ZO_heat 
       & NOT_NS_MOM2 & NOT_PS_chiv4 & NOT_NB_polariz & NOT_ZO_kA3 
         OR   PB_pH=2   OR   PS_MOM1   OR   NOT_NB_pH=10 
       & NOT_NB_tenergy & NOT_NB_chiv3 & NOT_NS_MOM2 & ZO_heat 
       & NOT_ZO_kA2 & NOT_NB_pH=2 & NOT_NB_polariz & NOT_ZO_kA3 
       & NOT_NS_homo & NOT_PS_chiv4 
THEN  ZO_Carcinogenicity
 

Summarized Absolute Error:             24.21
Mean Absolute Percentage Error:       23.28 %
Approximation Error Variance:          0.8242

OUTPUT VARIABLE: 
X184  -  ZO_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X97  -  NOT_NB_pH=10
X8  -  NOT_NS_homo
X72  -  NOT_NB_chiv3
X159  -  NOT_ZO_kA2
X19  -  ZO_heat
X108  -  NOT_NS_MOM2
X80  -  NOT_PS_chiv4
X27  -  NOT_NB_polariz
X164  -  NOT_ZO_kA3
X91  -  PB_pH=2
X105  -  PS_MOM1
X32  -  NOT_NB_tenergy
X87  -  NOT_NB_pH=2
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IF  PB_heat   OR   PS_chiv1 & NOT_PB_EllipsV    OR   ZO_polariz 
       & ZO_chiv3   OR   NOT_NB_SIZE1 & NOT_NB_pH=7.4 
       & NOT_NB_Kappa2 & NOT_PB_chiv2 & NOT_ZO_homo & NOT_NS_pH=10 
       & NOT_PB_polariz & NS_balaban 
THEN  PS_Carcinogenicity
 

Summarized Absolute Error:             15.20
Mean Absolute Percentage Error:       14.62 %
Approximation Error Variance:          0.4706

OUTPUT VARIABLE: 
X185  -  PS_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X21  -  PB_heat
X65  -  PS_chiv1
X136  -  NOT_PB_EllipsV 
X29  -  ZO_polariz
X74  -  ZO_chiv3
X117  -  NOT_NB_SIZE1
X92  -  NOT_NB_pH=7.4
X142  -  NOT_NB_Kappa2
X71  -  NOT_PB_chiv2
X9  -  NOT_ZO_homo
X98  -  NOT_NS_pH=10
X31  -  NOT_PB_polariz
X48  -  NS_balaban

IF  NB_homo & PB_polariz   OR   PB_balaban & PB_Kappa1  
         OR   PB_flex & PB_volume & PS_balaban 
THEN  PB_Carcinogenicity
 

Summarized Absolute Error:             2.62
Mean Absolute Percentage Error:       2.52 %
Approximation Error Variance:          0.3080

OUTPUT VARIABLE: 
X186  -  PB_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X7  -  NB_homo
X31  -  PB_polariz
X51  -  PB_balaban
X141  -  PB_Kappa1 
X86  -  PB_flex
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X41  -  PB_volume
X50  -  PS_balaban

Defuzzification Model of FM2

5. Nets of Active Neurons

Since the fundamental McCulloch and Pitts work (1943) neurons are considered as
binary, two or three equilibriums’ states components of a Neural Network. The
problem, however, is to organise a process that connects neurons into an effective
ensemble or network known also as network topology optimisation. To solve this
optimisation problem, the neurons have to have a Perceptrons-like structure. Using
Perceptrons or other elements with a self-organisational behaviour as neurons, it is
possible to create optimal Neural Networks. These elements are called Active Neu-
rons.

Each neuron is an elementary system able to handle the same task as the complete
network will do. This means, the transfer functions of active neurons are not fixed,
they are self-organising systems themselves. One goal of nets of Active Neurons is
improving accuracy. A second level of modelling is established using the models of the
first level  represented by their output values along with the initial input variables to
train the network.

5.1 Using GMDH as Active Neuron

We prebuilt a NN topology of 65 input neurons, 4 hidden neurons (2 linear and 2
nonlinear GMDH algorithms) and one output neuron. The final network topology
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consists of  11 input neurons, one hidden neuron and the output neuron. Only one
hidden neuron was selected, mainly because the GMDH algorithm we applied in 3.
works using active neurons already (on the lowest level).

y=X79= f(xj),  j - index of selected relevant input variables

(a very complex nonlinear function)

Prediction Error Sum Of Squares:                    0.0778
Mean Absolute Percentage Error:                     19.59  %
Approximation Error Variance:                        0.3159

OUTPUT VARIABLE: 
X79  -  Carcinogenicity

RELEVANT INPUT VARIABLES: 
X23  -  MOM1
X71  -  GMDHM2(Carcinogenicity)
X55  -  (MOM1)^-1
X22  -  pH=10
X54  -  (pH=7.4)^-1
X49  -  (chiv2)^-1
X40  -  (heat)^-1
X53  -  (pH=2)^-1
X18  -  chiv4
X20  -  pH=2
X48  -  (chiv1)^-1
X17  -  chiv3
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5.2 Using FRI as Active Neuron

Here, the initial topology was 170 input neurons and 2 hidden neurons (FM1 and
FM2). The resulting networks are much easier than corresponding GMDH based net-
works:

IF  NOT_ZO_lumo & NOT_PB_SIZE1 & FM2(NB_Carcinogenicity) 
THEN  NB_Carcinogenicity

Summarized Absolute Error:             7.64
Mean Absolute Percentage Error:       7.34 %
Approximation Error Variance:          0.5165

OUTPUT VARIABLE: 
X192  -  NB_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X14  -  NOT_ZO_lumo
X121  -  NOT_PB_SIZE1
X187  -  FM2(NB_Carcinogenicity)

IF  NOT_NB_pH=2 & NOT_PS_polariz & FM1(NS_Carcinogenicity) 
       & NOT_PS_SIZE3 & NOT_NB_dipole & NOT_PS_chiv0 & NOT_NB_homo 
       & NOT_NS_tenergy 
THEN  NS_Carcinogenicity

Summarized Absolute Error:             7.28
Mean Absolute Percentage Error:       7.00 %
Approximation Error Variance:          0.2499

OUTPUT VARIABLE: 
X193  -  NS_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X87  -  NOT_NB_pH=2
X30  -  NOT_PS_polariz
X178  -  FM1(NS_Carcinogenicity)
X130  -  NOT_PS_SIZE3
X22  -  NOT_NB_dipole
X60  -  NOT_PS_chiv0
X7  -  NOT_NB_homo
X33  -  NOT_NS_tenergy
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IF  NOT_NB_tenergy & NOT_NB_pH=10 & FM2(ZO_Carcinogenicity) 
       & NOT_NB_pH=2 & NOT_ZO_kA2 
THEN  ZO_Carcinogenicity
 

Summarized Absolute Error:             22.77
Mean Absolute Percentage Error:       21.90 %
Approximation Error Variance:          0.7903

OUTPUT VARIABLE: 
X194  -  ZO_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X32  -  NOT_NB_tenergy
X97  -  NOT_NB_pH=10
X189  -  FM2(ZO_Carcinogenicity)
X87  -  NOT_NB_pH=2
X159  -  NOT_ZO_kA2

IF  NOT_PB_chiv2 & NOT_PS_MOM1 & NOT_NB_pH=7.4 
       & FM2(PS_Carcinogenicity) 
THEN  PS_Carcinogenicity
 

Summarized Absolute Error:             14.14
Mean Absolute Percentage Error:       13.60 %
Approximation Error Variance:          0.4072

OUTPUT VARIABLE: 
X195  -  PS_Carcinogenicity

RELEVANT INPUT VARIABLES: 
X71  -  NOT_PB_chiv2
X105  -  NOT_PS_MOM1
X92  -  NOT_NB_pH=7.4
X190  -  FM2(PS_Carcinogenicity)

IF  NOT_PB_chiv3 & FM1(PB_Carcinogenicity) 
THEN  PB_Carcinogenicity

Summarized Absolute Error:             2.3566
Mean Absolute Percentage Error:       2.27 %
Approximation Error Variance:          0.2840

OUTPUT VARIABLE:  X196  -  PB_Carcinogenicity
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RELEVANT INPUT VARIABLES: 
X76  -  NOT_PB_chiv3
X181  -  FM1(PB_Carcinogenicity)

6. Synthesis

All kinds of parametric, nonparametric, algebraic, binary/fuzzy logic models are only
simplified reflections of reality. There are always several models with a sufficient
degree of adequacy for a given data sample. Every model is a specific abstraction, a
one-sided reflection of some important features of reality only. A synthesis of
alternate model results gives a more thorough reflection. 

Averaging the output values of  both Active Neuron models shows this improvements:
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7. Summary

We generated several parametric and nonparametric models  using self-organising data
mining technologies to describe and analyse experimental carcinogenicity values from
molecular descriptors. In particular, the following results are obtained.

1. A clustering in the sample space using all 34 descriptors and decreasing similarity
thresholds results in increasingly distinctive clusterisations. By choosing one descrip-
tor representatively from each cluster, a most important set of descriptors - called
nucleus - is obtained. Such a nucleus can form the basis of a second modeling run. 

2. Generated GMDH models confirm the results obtained from the Backpropagation
NN: Nonlinear relation and comparable input-output behavior. Additionally, GMDH
provides an anlytical model composed of a subset of relevant descriptors. This extrac-
ted information can be used for further analysis (table 7.1). Since this parametric
models are appropriated for moderately noisy data sets, the noise level/ uncertainty of
the target variable is an important factor here. From this perspective, model accuracy
based on some closeness-of-fit measure can be of limited importance only, because
GMDH takes noise into account to not overfit the data. So excluding badly described
(or a priori uncertain) objects (fig. 7.1) from the data set may not only improve
model accuracy, but its descriptive power too.

3. Fuzzy models seem most promising from both predictive and descriptive power.
The models are easy to understand and to analyse, and their predictive behavior do
quasi not differ from that of BP or GMDH NNs.

4. Nets of Active Neurons and a synthesis of model results confirmed being powerful
tools to increase model accuracy beyond that of a single model. A mixed model
approach using GMDH, FRI, and other NN models in the hidden layer might be intere-
sting to test.

5. Concluding from all reported models, a set of 10 descriptors used in more than 80%
of the models can be identified (table 7.1). Compared to the 13 descriptors used in BP
NN modeling as reported in Gini [Gini et al., 1999], only 4 descriptors (homo, lumo,
polariz, chiv3) are included in this selected set here too, while 1 descriptor (MW) was
never used in a model.

6. In table 7.2 and fig. 7.1 the minimum, maximum and mean absolute errors of  8 dif-
ferent models having a MSE < 0.025 are shown. Looking at the max. absolute errors,
a quite clear distinction between good and badly described compounds is possible when
using an abs. error of  0.3 as a threshold (fig. 7.1.a). A very similar picture is shown if
using the mean absolute error of the 8 models and a threshold of 0.18 (fig. 7.1.b).
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Table 7.1: Descriptors used in reported models
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The obtained models and results may not be final. In fact, the knowledge and the con-
clusions gained from the reported set of models should be included into future mode-
ling to improve reliability and understanding.

For questions on this report, self-organising data mining, or our data mining service,
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