*Beginners Mac Assemblye

== Chapter 61%.
Sprites+Games

In chapter five we got as far as directly addressing the screen for Macs with
Ram Based Video (RBV). In chapter 6 we continue with the graphics theme and
introduce sprites. We also have to assume a basic knowledge of assembler by
now - although we’ve included a sprite package with Fantasm, the concepts
and the driving code are not so trivial as a simple program to scroll the
screen. You will need Fantasm V2 to use the sprite routines and assemble the
example programs, oh and at least an 020 processor.

In chapter 6 we adopt an informal, chatty approach. In this chapter we have
to assume you can at least "read" assembly programs, and would also suggest
you re-read over the other chapters on the Macintosh screen layout for ram
based video machines.

All the routines discussed in this chapter expect 256 colour mode - they
don’t check which mode the Mac is in!

A word about copyright.

Lightsoft sprites are distributed as part of the Fantasm V2.XX package.

They are copyright Lightsoft 1994. Irrespective of whether you own a
registered copy of Fantasm or are using an unregistered version, all source
code and binary files included with Fantasm V2 are and remain copyright of
Lightsoft. A registered user of Fantasm may use and modify the source code
for the production of an independant program, but in the programs' title or
"about box" or somewhere equally appropriate, the words "Part of this code is
copyright Lightsoft 1994" must appear.

Sprites - eh?

Games programmers think of a sprite as the mainstay of they’re games.



A sprite is a graphic object, that can be easily controlled by the
programmer. Sprites are something the programmer doesn’t have to know how it
works to use them - they just tell the sprites where to go and forget them.

Sprites come in two varieties - hardware (Commodore 64, Amiga, SNES,
Megadrive etc), and software sprites.

The Mac does not have hardware sprites, they are simulated with software. The
best way of getting an idea of sprites is to run the demo game “lander.app”
in the lander folder of Fantasm V2.00 - NOTE it expects your Mac to be in 256
colour mode - it doesn’t check.

This is a simple copy of the old lunar lander games whereby you have to land
the spaceship safely. In this partially completed demo you cannot safely land
the craft, as the code to do that isn’t there - however it does get across
all that we want to cover in this chapter. You control the ship with the
arrow keys to fire the thrusters - "Q" will end the demo.

When the ship crashes the game simply restarts.

Sprite priorities and transparency.

An important aspect of sprites is that they have priorities - they are
numbered from 1 upwards, where 1 is the lowest priority. Why? Well what
happens if two sprites cross on the screen - do they just merge into a
multicolour mess? Well, no, the sprites have priorities so that the highest
numbered sprite moves in front of the lower numbered one. You can see this in
the demo when the vehicle passes the table that is moving up and down.

This highlights the other nicety of sprites - transparency. Lightsoft sprites
define colour zero as being transparent - that is wherever a pixel is colour
zero (the first colour in the palette), whatever is behind shows through the
sprite.

How sprites work.

Assume we have a ‘“sprite” we want to move across the screen. The simplest
way of doing it is to print the sprite on the screen, wait a while, then
remove the old sprite and print the new one in the next position. In reality
it is a little more complex than that because of the background. If the
background is all black, then to remove a sprite, you just clear the VRAM.
However, if we have a background, then we have to print the old background in
place of the sprite, so as the sprite moves, the background is not
destroyed.. To be able to do this the routines keep a copy of the background
in memory, so it can be printed over the old sprite to delete it. Then the
sprite is printed at its new location, after the routine has copied the
background (so the sprite can be subsequently deleted on the next frame).

Take the spaceship as an example: it starts at the top of the screen, and
assuming no thrusters are fired, it drifts slowly down under the influence of
"gravity".

Initially, the program has to put the sprite at the top of the screen.
The program assigns a shape to a sprite - in this case a ship shape is



assigned to sprite 1.
Next the program defines the sprites' x and y coordinates on the screen - for
example 50 x and 40 y, where the top left of the screen is 0,0.

That's all the information the system needs to be able to draw this sprite.
Now the program can call the sprite routine to draw the ship at these
coordinates, then increment the y coordinate, and call the sprite routine
again, and again and again - the result is the ship moves down the screen.

The sprite routines carry out the following actions:
1. Wait for the Vertical BLanking interrupt.
2. If this is the first time this sprite has been used, goto step 4.

3. Put the background for the old position of this sprite back onto the
screen.

4. Copy the background at 50x, 40y as a 32 by 32 pixel rectangle into a
buffer.

5. Print the shape assigned to sprite 1 at 50x, 40y
6. Any more sprites to do? If yes, goto to step 1, if no, end.

Step 1 - wait for the VBL - the VBL is an interrupt generated by the Mac
every time the electron beam in the monitor gets to the bottom of the screen.
Its important to wait for the VBL because we hope to be able to print the old
backgrounds, copy the new backgrounds and print the sprites in their new
places before the monitor starts drawing the next frame - if we don’t do this
then some or all sprites will flicker as the Mac prints the old backgrounds
and updates the sprite positions. Hence sprite code has to be extremely fast!



