
 Copyright (C) 1989 Aladdin Enterprises. All rights reserved.

This file is part of Ghostscript.

Ghostscript is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY. No author or distributor accepts responsibility
to anyone for the consequences of using it or for whether it serves any
particular purpose or works at all, unless he says so in writing. Refer
to the Ghostscript General Public License for full details.

Everyone is granted permission to copy, modify and redistribute
Ghostscript, but only under the conditions described in the Ghostscript
General Public License. A copy of this license is supposed to have been
given to you along with Ghostscript so you can know your rights and
responsibilities. It should be in a file named COPYING. Among other
things, the copyright notice and this notice must be preserved on all
copies.

- -

This file, lib.doc, describes the Ghostscript library, a collection of C
procedures that implement the primitive graphic operations of the
Ghostscript language.

For an overview of Ghostscript and a list of the documentation files, see
README.

******** The Ghostscript library ********

Ghostscript is actually two programs: a language interpreter, and a
graphics library. The library provides, in the form of C procedures, all
the graphics functions of the language, i.e., approximately those
facilities listed in section 6.2 of the PostScript manual starting with
the graphics state operators. In addition, the library provides some
lower-level graphics facilities that offer higher performance in exchange
for less generality.

To be specific, the highest level of the library implements all the
operators in the "graphics state", "coordinate system and matrix", "path
construction", "painting", "character and font", and "font cache" sections
of the PostScript manual, with the following deliberate exceptions:

settransfer, currenttransfer
definefont, findfont
FontDirectory, StandardEncoding

The following "device" operators are implemented:
showpage (synchronizes the display)
nulldevice

There are slight differences in the operators that return multiple values,
since C's provisions for this are awkward. Also, the control structure
for the operators involving (an) auxiliary procedure(s) (setscreen,
pathforall, image, imagemask) is partly inverted: the client calls a
procedure to set up an enumerator object, and then calls another procedure
for each iteration. The ...show operators, charpath, and stringwidth
also use an inverted control structure.

Files named gs*.c implement the higher level of the graphics library.

To use the facilities of gs?.c, a client program should include
gs?.h. As might be expected, all procedures, variables, and
structures available at this level begin with gs_. Structures that
appear in these interfaces, but whose definitions may be hidden from
clients, also have names beginning with gs_, i.e., the prefix
reflects at what level the abstraction is made available, not the
implementation.

Files named gx*.c implement the lower level of the graphics library.
To use the facilities of gx?.c, a client program should include
gx?.h. The interfaces at the gx level are less stable, and expose
more of the implementation detail, than those at the gs level: in
particular, the gx interfaces generally use device coordinates in an
internal fixed-point representation, as opposed to the gs interfaces
that use floating point user coordinates. Named entities at this
level begin with gx_.

Files named gz*.c and gz*.h are internal to the Ghostscript
implementation, and not designed to be called by clients.

