
Macintosh Technical Notes

Macintosh
Technical Notes

Developer Technical Support


®

#307: MPW C++ Pitfalls

New version by: Kent Sandvik May 1992
Original by: Kent Sandvik, Kim Coleman, and Preston Gardner

January 1992

This Technical Note covers most of the common and serious subtle
problems that a MPW C++ user might encounter. For more information
consult the current C++ literature. This Note will be updated periodically
to reflect changes in the language and the compiler. Always read the
release notes included with the MPW C++ to find out the latest status for
known bugs and restrictions.

Changes since January 1992: The original inline C++ Tech Note is now
part of an overall MPW C++ problem Tech Note.

1. Introduction

C++, like any other computer language, has its own subtle problems, traps, and pitfalls. It is
impossible to figure out all the possible pitfalls that may occur, but this Tech Note covers the
most frequently asked questions about MPW C++ problems.

2. Class Protection and Inheritance

Access Control Problems

The C++ compiler assumes private access control if any of the access control keywords are
omitted. For instance, in the following case the member function Run is declared private,
and thus is not accessible from the outside the class:

Developer Technical Support May 1992

Macintosh Technical Notes

class TClass
{

TClass() {/* constructor code *}
void Run(); // private member function

// ...
};

This is also true when using inheritance; if no keywords are included, the compiler assumes that the base class is inherited as a private member:

class TFoo : TClass
{
// ...
};

Always exercise special care when using inheritance, and use the keywords private, protected, or public to avoid unexpected problems.

Derived Classes

Every member function must function properly for the same range of arguments accepted by the base class. If not, then the derived class is not a true
subtype of the base and you may encounter subtle and bizarre problems that are hard to find.

Note that if you inherit the base class as a private class, it is the same as if the class were a private member of the derived class. Thus there are few
cases where one needs to import a base class as a private class.

Be especially careful to avoid changing the meaning of a base class’s public interface. Any public member function of the base class should not have
its semantics changed by the derived class. Fortunately the MPW C++ compiler warns you if this is done.

Here’s an example: if a class TBase has an overloaded operator == for comparison that takes a const TBase& as an argument, then any
override of this function by a derived class TDerived must preserve its semantics. In particular the TDerived class override may not assume that
the argument is of type const TDerived&, as that changes the meaning of the member function that is inherited from TBase’s public interface.

In this case it would be better to overload operator == to accept an argument of type const TDerived&, and to reexport the inherited
operator ==. Thus you need to overload the derived class’s operator if the comparison overload will make use of a new data structure. Another
solution would be to use a pointer to a function/member function to define the actual comparison routine instead of assuming there is a fixed
comparison routine. Careful analysis of the use of data structures should help you avoid these problems. Bugs related to this particular problem are
extremely difficult to track down, especially when the class inherits from two or more base classes, each of which defines a function with the same
name but with different semantics.

Derived Classes as Variables

Any member function that accepts a reference or pointer to a class must be prepared to receive a derived class as an actual argument. Therefore the
recipient function must deal with the argument through an interface that is guaranteed to be preserved in derived classes. If this is not the case the
function call will fail when used with derived classes. If this is not feasible, then the class documentation should state that it cannot be used as a
public base class.

Scoping Issues

The scope rules in C++ are in flux. The earlier C++ compilers did not protect the name space concerning scoping of types declared inside classes.
This has changed in MPW C++ 3.2. You are now able to define typedefs, enums, and classes/structs with a class scope. However, read the release
notes for your MPW C++ version for possible known bugs and limitations concerning this new feature.

3. Type Casting

The Problem: Conversion Versus Coercion Type Casting

Type casting is occasionally necessary in C and C++, but you should be aware of the
consequences every time you need to use it. Casts are very uncontrolled and dangerous, and
you should ask yourself if you really need to do one every time you catch yourself in the act.

Developer Technical Support May 1992

Macintosh Technical Notes

There are two types of casts in C++. The first one merely changes an object from one type to
another. This includes casts between the built-in arithmetic types and casts involving class
objects (not pointers to classes). These are in general fairly safe, since an actual conversion is
taking place.

The other type of cast involves pointers, and these casts are dangerous. This type of cast
involves so-called type coercion: the bit pattern of one type is interpreted as another type. This
is very unsafe, and could cause the code to die mysteriously and subtly.

Unfortunately, some C++ constructs can be interpreted as either of the two types of casts. A cast
from one class pointer to another is interpreted as a conversion cast if the two types are related
by type inheritance and as coercion casts if they are not. The C++ compiler does not warn you if
you intend the first cast but wind up with the second. Worse, a cast between pointers to member
functions may be a conversion on the class part but a coercion on the function prototype part.

Casting Cases

Some casts are always of the coercion type. For instance, casting a const (and a future volatile)
pointer to one without those attributes is always a coercion. Avoid performing such casts. If you
make a member function const because it does not change the object semantics, then you must
cast your this pointer to non-const to make changes to the internal object state. However, this
technique is not recommended; instead you should overload the function or make another
design decision.

There are also casts to and from void*. These are dangerous. Avoid such casts, even if the
void* is a useful construct. For instance, do not use void* to avoid assigning a type to a
variable or parameter. Use it only for manipulation of raw storage.

Even if casts from a base class pointer to a derived class pointer are conversions, you should
avoid these. First, if you accidentally specify types not related by inheritance, you will get a
silent coercion. Second, this is a poor programming technique and removes vital information
used for type checking. The future template support in C++ should obviate the need for most
such casts.

In general the only normally acceptable cast is the conversion type. Avoid all casts involving
pointers unless absolutely necessary. Note that nonpointer casts can never silently become
coercions.

4. General Class Issues

Handling Failing Constructors

Developer Technical Support May 1992

Macintosh Technical Notes

Constructors and destructors do not return any values, so a returned error code is not possible.
There are many ways to provide error handling with constructors/destructors.

For instance, the class could have an internal field that signals whether the construction of the
class succeeded, as well as a special test method or invariant method that checks whether the
state of the newly created class is valid. Failing to figure out if a class is properly constructed
could lead to many subtle bugs. If possible the class should be constructed to a known state so
that it can be destructed without problems.

You should also save information about why the construction failed, which could be useful for
future class operations. The future C++ exception handling scheme will solve this problem.
Also one might use the MacApp FailInfo exception handling files in other non-MacApp
projects.

Operator Overload Issues

Assignment operators should always start with a test that checks whether the object (by
mistake) wants to assign to itself, as in aFoo = aFoo;, which could cause subtle problems.
This is done as in the following:

TFoo& TFoo::operator=(const TFoo& aFoo)
{

if (this == &aFoo) return *this;
 //...normal assignment duties...
 return *this;

}

Also, always overload all cases of the operator use, for instance both the ‘x = x + y’ and the ‘x += y’ operations.

If you are overloading certain operators, make sure that you know whether they have already been overloaded, and what they
return/pass as values. Otherwise the compiler will complain about mismatch between formal and actual parameter types. For instance,
new is overloaded with PascalObject and HandleObject base classes, and returns a Handle instead of a void*. Note also
that if two programmers independently change the behavior of new, the resulting program might not work as expected.

Also, you need to inherit publicly from your base classes if you want the behavior of any new operator overload in the base class.

5. Inlining Issues

General

The C++ inlining feature is purely a hint to the compiler indicating that inline substitution of
the function body is to be preferred to the usual function implementation. Inline code is usually
used for code optimization: instead of calling a function, the whole body is inlined at the point
of call, thus saving the cost of a function call.

Developer Technical Support May 1992

Macintosh Technical Notes

Here’s a simple example:

class TClass {
public:

long GetField(void) {return this->fField;};
void SetField(long);

private:
long fField;

};

inline void TClass::SetField(long theValue)
{

this->fField = theValue;
}

Note that there are two different ways inline is indicated: by placing the function specifier inline in front of the function (or member function)
declarator, or by defining the code directly in the class (by which the statements are automatically considered to be inlined). See Section 7.2.1 of The
Annotated C++ Reference Manual for more information on inline function declarations.

As inlining is purely an optimization issue, it should be used only when the benefits in run-time or space outweigh the costs and inconveniences
imposed by its use. The major cost of a function call is usually the cost of executing the function body, not the cost of making the call. Therefore,
inlining should be used mostly for simple functions. Examples of such functions are functions that set or get a value, increment or decrement a value,
or directly call another function. A function consisting of one or two simple expressions is usually a good inline candidate.

Compiler Considerations Concerning Inline Statements

The MPW C++ compiler has a set of rules by which it determines if an inline statement will be inlined or not. Some of the rules are easily quantified,
such as the fact that recursive functions are never inlined; others vary depending upon whether or not the inline function return type is void, and upon
the calling context. An inline function invoked in an expression context other than a call statement cannot be inlined if it contains code that cannot be
reduced to one or more expressions. For instance, an if-then-else statement is only acceptable in such a calling context if it can be successfully
converted to a conditional (?:) expression.

The following rules concern Apple’s AT&T CFront port, MPW C++ 3.2 (and should also cover most cases with MPW C++ 3.1):

Recursive Functions

Recursive functions are never inlined.

Large Functions

Any function containing 12 or more assignments will not be inlined. Otherwise, size is less of an issue than complexity. For example,
a function containing 5 or more calls will not be inlined, but the compiler may also refuse to inline a function containing fewer calls if
there are other statements adding to the complexity. You can override the compiler’s decision not to inline something based on size by
using the -z17 option, but caution should be exercised.

Functions Invoked Before Defined

If an inline function is called before it is defined, it cannot be inlined. For example:

static int an_inline_function();

int an_outline()
{

return (an_inline_function());
}

static inline int an_inline_function()
{

return 1;
}

Developer Technical Support May 1992

Macintosh Technical Notes

Because the compiler had not seen the inline body of "an_inline" when it encountered the first call, it will generate a call in "an_outline" and an out-
of-line copy of "an_inline".

Functions Invoked Twice or More Within an Expression

Typically, in this case, the compiler will inline the body of the function for the first usage and then use calls for subsequent uses within
the same expression. For instance:

i = some_inline() + some_inline();
An out-of-line copy of "some_inline" will be generated and called for the right operand of the addition, in most cases. The compiler may still be able
to inline the function in both places if it declares no variables and if either it has no parameters or the actual parameter expressions are sufficiently
simple.

Functions Containing loop, switch, goto, label, break, or continue Statements

Value-returning inline functions will not be inlined if they contain any of the statement types listed above. Even non-value-returning
inline functions cannot be inlined if they contain such statements and are invoked in the middle of an expression; the only control flow
statement that can be inserted into the middle of an expression is the if-then-else statement.

Taking the Address of an Inline Function

An out-of-line copy will be generated for any inline function whose address is needed, either because it is the explicit target of the
unary ‘&’ operator or because it is used to initialize a function pointer. Virtual calls of virtual inline functions fall into this category as
well.

Non-Value-Returning Inline Functions Containing a Return Statement

These are never inlined.

Functions Declaring Static Variables

These are never inlined.

Functions Containing Statements After a Return

An out-of-line copy will be generated for any inline function with one or more statements after the return statement. This applies
primarily to value-returning functions, since non-value-returning functions containing any return statement will never be inlined. For
example:

inline int an_inline(void)
{

if (condition)
return 0;

do_something(); // will suppress inlining
return something;

}

Segmentation Issues Concerning Non-Inlined Statements—Which Segment
Do Unexpectedly Outlined Functions Appear In?

Inlined code, which is suddenly outlined by the compiler, usually ends up in whichever segment
that is actual for the call that caused the inline code to be outlined. Typically the outlined code
ends up at the end of the object file.

If you want to control in what segment the code will be placed, bracket all the header files with
'#pragma segment HeaderFiles',in combination with #pragma push and

Developer Technical Support May 1992

Macintosh Technical Notes

#pragma pop. This way you are able to control into what segment the inline code will end in
if it’s suddenly outlined. Here’s an example of how this is done:

// push the pragma state information
#pragma push

// define segment name for suddenly outlined inline-code
#pragma segment IfOutlinedItGoesHere

class TFoo{
public:

TFoo(){/* ...*/}
long InlineMeMaybe(long x){/* ...*/}

// ...
};

// pop back the original pragma information
#pragma pop

Compiler Directives

• Suppression of No Inline Code
The MPW C++ compiler has a -z0 switch, which forces all inline code to be non-inline. This
switch is useful when trying to track down problems that are eventually related to inline code
generation.

• Forced Inlining of Large Functions
The MPW C++ compiler has a -z17 switch that will force inlining of functions that would
normally be rejected because of size considerations. Consider carefully before using this switch
as it can lead to large code. It may also cause CFront to generate expressions larger than the
MPW C compiler can handle.

Warnings

The new MPW 3.2 C++ compiler (available on ETO CD #5 forward) is based on CFront 2.1
(AT&T), and the -w flag in this release will now indicate when the compiler chooses not to
inline a function declared inline.

Conclusion

Inline-defined functions are just hints to the compiler, and the inline code generation rules will
vary from implementation to implementation. The rules described in this document are true for
the Apple MPW C++ compiler. Some of them are limitations resulting from the fact that MPW
C++ generates C code; other inlining problems will also apply to native compilers. One needs to
realize that inline statements are not always inlined by C++ compilers, and that inlining rules
are C++ /C compiler implementation dependent.

Developer Technical Support May 1992

Macintosh Technical Notes

6. Memory Leakage

General

Memory leakage usually occurs when space is dynamically allocated on the heap and, usually
because of a programming error, the heap space is never deallocated. Unfortunately, with C++
hidden memory leaks can happen, which in the Macintosh memory system will trigger a heap-
stack collision and a bomb. Here’s a list of possible memory leaks and memory allocation
problems, and ways to avoid them:

• Nonpaired New/Deletes
If you allocate data on the heap with new, it usually should be deleted with a subsequent delete
call. This usually happens when the object goes out of scope, but if the data is explicitly
allocated in the heap the compiler doesn’t know how to purge this when the object goes out of
scope. This problem comes up especially when an object creates space for data on the heap as
part of its class structure, as in the following:

class TFoo{
public:

TFoo(char* name); // forgot to declare a ~TFoo() which would
// delete the fName structure

private:
char* fName;

};

TFoo::TFoo(char* name)
{

fName = new char[strlen(name) + 1];
strcpy(fName, name);

}

The fName data structure will be on the heap until delete is called. If you delete the fName string in the destructor then you will avoid the memory
leak.

• Object Pointers That Are Nested Inside Classes
If the class makes use of objects that are referenced via pointers, they need to be deleted; otherwise the data will stay in the heap, as in the following:

class TBar{
public:

TBar(char* type);
~TBar();

private:
TFoo* fFoo; // from the earlier example
char* fType;

};

TBar::TBar(char* type)
{

fFoo = new TFoo("Willie");

Developer Technical Support May 1992

Macintosh Technical Notes

fType = new char[strlen(type) + 1];
strcpy(fType, type);

}

TBar::~TBar()
{

delete fType; // this is OK
// but you also need to delete the fFoo, as in:

 // delete fFoo;
}

TBar

Ptr• TFoo

Figure 1 Nested Objects

• Missing Size Arguments to the Delete Function
The delete function needs the size of the deleted data structures, especially in the case of deletion or arrays of objects. Note that this
problem will go away with MPW C++ compilers (MPW 3.2 C++ and later ones) where the general [] notation keeps track of the
sizes of the arrays. For example:

main()
{

TFoo* fooArray = new TFoo[10];
// create an array of 10 TFoo:s
// do something
// delete the array
delete [] fooArray; // should be delete [10] fooArray with MPW C++ 3.1;

}

• Problems With Arrays of Pointers Versus Arrays of Objects
There is a subtle but important difference between an array of pointers to objects, and an array of objects themselves. The use of the
delete operator is different in either case, as in the following:

main()
{

TFoo** fooArray = new TFoo[10]; // array of pointers to objects

for(int i=0;i<10;i++) // create the objects in the array
fooArray[i] = new TFoo("Steve");

// do something

// now clean up the array
delete [10] fooArray; // this only cleans up the

// pointers, not the objects
// themselves

// the following code should be used instead:
for(i=0;i<10;i++)

delete fooArray[i];

delete [] fooArray;

Developer Technical Support May 1992

Macintosh Technical Notes

return 0;
}

Array Object

Sub-Objects

pointers to subobjects

Destructor

these objects are left in memory!!!

 Figure 2 Objects Left Due to Missing Arguments

Memory leaks such as this becomes even more dangerous with object-oriented databases and persistence cases, where a leak could
address more and more hard disk space on a server.

• Missing Copy Constructor
When operator overloading occurs, dynamically allocated memory for temporary data storage can suddenly develop a subtle leak that
eats memory slowly. For instance an implicit call to an undefined copy constructor could be dangerous. These kinds of constructors
are called whenever an initialization is done in code, when objects are passed by value on the stack, or when objects are returned by
value. For example:

class TFoo{
public:

TFoo(char* name, int age);
// TFoo(const TFoo&); note, no copy constructor defined!!
~TFoo();

TFoo Copy(TFoo); // copy function, will call default
// copy constructor

private:
char* fName;
int fAge;

};

TFoo::TFoo(char* name, int age)
{

fName = new char[strlen(name) + 1];
strcpy(fName,name);
fAge = age;

}

TFoo::~TFoo()
{

delete fName;
}

TFoo TFoo::Copy(TFoo orig) // note that this code is the same as the code
// which the compiler would create for a default
// copy constructor (i.e. field-wise copy).

{
fAge = orig.fAge; // plain pointer copy
fName = orig.fName;
return *this;

}

Developer Technical Support May 1992

Macintosh Technical Notes

main()
{

// create two objects
TFoo f1("James", 25);
TFoo f2("Michael", 29);

TFoo f3 = f2; // this calls the copy constructor
// TFoo f3(f2) would also trigger this

// do something
f1.Copy(f2); // this causes two implicit calls

// to the default copy constructor

// we have a problem, fName is deleted twice, once when f1 is destructed,
// and the second time when d2 is destructed

return 0;
}

// solution, create a specific copy constructor, as in:

TFoo::TFoo(const TFoo& orig)
{

fAge = orig.fAge;
fName = new char[strlen(orig.fName) + 1];
strcpy(fName, orig.fName);

}

In general, if the class constructor assigns dynamic data, there should be a copy constructor that does the same as well. Note also that
call by reference does not generate a copy constructor, so use of references is both faster and should generate fewer unexpected
memory leak problems.

• Missing Overload Assignment Operator (operator=)
Every class that dynamically allocate storage for members should also have a defined overload assignment operator. If this operator is
not clearly designed, there can be memory leaks due to assignment of dynamic data. For example,

class TFoo{
public:

TFoo(char* name, int age);
TFoo(const TFoo&);
// const TFoo& operator=(const TFoo& orig); // note missing operator

// overload operator
~TFoo();

private:
char* fName;
int fAge;

};

TFoo::TFoo(char* name, int age)
{

fName = new char[strlen(name) + 1];
strcpy(fName,name);
fAge = age;

}

TFoo::~TFoo()
{

delete fName;

Developer Technical Support May 1992

Macintosh Technical Notes

}

TFoo::TFoo(const TFoo& orig)
{

fAge = orig.fAge;
fName = new char[strlen(orig.fName) + 1];
strcpy(fName, orig.fName);

}

main()
{

// create two objects
TFoo f1("James", 25);
TFoo f2("Michael", 29);

// do something

f2 = f1; // this calls the default operator
// = overload, does not take into
// account the dynamic data (fName)

return 0;
}

// The solution is to define an operator=:

const TFoo&
TFoo::operator=(const TFoo& orig)
{

// avoid assignment to itself, as in aFoo = aFoo
if(this ==&orig) // same address?

return *this;

fAge = orig.fAge;
delete fName; // purge the dynamic memory slot
fName = new char[strlen(orig.fName) + 1];
strcpy(fName,orig.fName);

return *this;
}

• Incorrectly Overloaded Operators
In general, try to make overloaded operators return references to objects to avoid overhead associated with calls to copy constructors. So how should
you overload the operators in order to achieve this?

ex: P + Q; // '+' is overloaded

P Q

PQ

+ Don't change the internals of P and Q!

 Figure 4 Correct Overload of Operators

Developer Technical Support May 1992

Macintosh Technical Notes

Here’s a good solution, we will return a real object instead of a reference in operator+:

class TFoo{
public:

TFoo() {}
TFoo(char* name, int age);
TFoo(const TFoo&);
const TFoo& operator=(const TFoo& orig);
~TFoo();
// here's the example of operator+ overload:
TFoo operator+(const TFoo&); // return TFoo by value!

// don't forget to overload += also!

private:
char* fName;
int fAge;

};

TFoo::TFoo(char* name, int age)
{

fName = new char[strlen(name) + 1];
strcpy(fName,name);
fAge = age;

}

TFoo::~TFoo()
{

delete fName;
}

TFoo::TFoo(const TFoo& orig)
{

fAge = orig.fAge;
fName = new char[strlen(orig.fName) + 1];
strcpy(fName, orig.fName);

}

const TFoo&
TFoo::operator=(const TFoo& orig)
{

// avoid assignment to itself, as in aFoo = aFoo
if(this ==&orig) // same address?

return *this;

fAge = orig.fAge;
delete fName; // purge the dynamic memory slot
fName = new char[strlen(orig.fName) + 1];
strcpy(fName,orig.fName);

return *this;
}

TFoo
TFoo::operator+(const TFoo& orig)
{

TFoo temp; // create TFoo on the stack
temp.fAge = fAge + orig.fAge; // add ages, heh!

temp.fName = new char[strlen(fName) + strlen(orig.fName) + 1];
sprintf(temp.fName,"%s%s", fName, orig.fName);

// concatenate names, heh!
return temp;

}
main()
{

Developer Technical Support May 1992

Macintosh Technical Notes

// create two objects
TFoo f1("James", 25);
TFoo f2("Michael", 29);

TFoo f3 = f1 + f2;

return 0;
}

Tricks to Help You Find Memory Leaks

In general, you need to go through the code carefully and analyze any possible subtle memory leaks. Another trick is to override the
new and delete operators, and have them print status information to a log file (using for instance the __FILE__ and __LINE__
macros), and after running the program you can check to see whether each created data structure on the heap is deleted or not.

Here’s an example of a possible tracer class, which could be used as the “stamp” for keeping track of class construction and
destruction:

#include <stream.h>

#define TRACEPOINT __FILE__,__LINE__
// make use of the ANSI __FILE__ and __LINE__ macros

class TTracer {
public:

TTracer(const char* className, const char* = 0, int = 0);
virtual ~TTracer();

private:
const char* fLabel;
const char* fFile;
int fLine;
static int fReferenceCount; // keep track of how many TTracers we

// construct
};

TTracer::TTracer(const char* label, const char* file, int line) :
fLabel(label), fFile(file), fLine(line)

{
fReferenceCount++;
cerr << "File " << fFile <<" ; Line " << fLine

<<" #+++ constructor event in " << fLabel
<< " (reference count = " << fReferenceCount << ")\n";

}

TTracer::~TTracer()
{

fReferenceCount--;
cerr << "File " << fFile <<" ; Line " << fLine

<< " #--- destructor event in " << fLabel
<< " (reference count = " << fReferenceCount << ")\n";

}

int TTracer::fReferenceCount = 0; // initialize with 0 value

TTracer gGlobalTracer("gGlobalTracer", TRACEPOINT);
// this will construct a global/universal tracer

// example of use:

void InvertPermutation(int* perm, int* inv, int max)
{

TTracer autoTracer("InvertPermutation function", TRACEPOINT);
Developer Technical Support May 1992

Macintosh Technical Notes

if(perm && (new TTracer("temp", TRACEPOINT))
// show TTracer in action
&& inv
&& (new TTracer("temp2", TRACEPOINT))
// these two are never destructed = memory leak!
&& (max > 0))

{
TTracer otherTracer("otherTracer", TRACEPOINT);

for(int i = 0; i < max; i++)
{

TTracer thirdTracer("iterationTracing...",TRACEPOINT);
inv[perm[i]] = i;

}
}

}

// array declarations
int perm [] = {1, 2, 3, 6, 7};
int max = 5;

main()
{

int* inv = new int[max];
InvertPermutation(&perm[0], inv, max);

return 0;
}

The result should look like this (note the output; you can double-click from MPW to get
to the source code line in action):

File TTracer.cp ; Line 52 #+++ constructor event in InvertPermutation
function (reference count = 1)

File TTracer.cp ; Line 54 #+++ constructor event in temp (reference count =
2)

File TTracer.cp ; Line 56 #+++ constructor event in temp2 (reference count =
3)

File TTracer.cp ; Line 59 #+++ constructor event in otherTracer (reference
count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...
(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...
(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...
(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...
(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...
(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...
(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...
(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...
(reference count = 4)

File TTracer.cp ; Line 62 #+++ constructor event in iterationTracing...
(reference count = 5)

File TTracer.cp ; Line 62 #--- destructor event in iterationTracing...
(reference count = 4)

File TTracer.cp ; Line 59 #--- destructor event in otherTracer (reference
count = 3)

File TTracer.cp ; Line 52 #--- destructor event in InvertPermutation
function (reference count = 2)

Developer Technical Support May 1992

Macintosh Technical Notes

7. Virtual Functions

Virtual Base Classes

As part of the multiple inheritance semantics, MPW C++ contains a feature called virtual base
classes. As you can see in figure 5, if both class B and C are subclasses of A, and class D has
both B and C as base classes, then D unfortunately will have two A’s subobjects if A is not a
virtual base class.

Class A

Class B Class C

Class D

SaveFunc

SaveFunc SaveFunc

SaveFunc

SaveFunc
class D will inherit
2 SaveFunc!

 Figure 5 Virtual Base Classes

Try to avoid this confusing situation, because outside programmers might have a hard time trying to understand the new derived class.
Also, virtual base classes have a problem: once you have a pointer to a virtual base, there is no way to convert it back into a pointer to
its enclosing class.

So, if you have TFoo as a virtual base, and stick this class into an array or another collection, there’s no way to convert it back to the

right type via a cast when you get it out from the generic collection container .1 Anyway, you should avoid casting base classes to
derived classes if possible.

Also, see Annotated C++ Reference Manual, Section 10, for more information about virtual base classes.

Missing Virtual Functions

1This problem will disappear with future template support.
Developer Technical Support May 1992

Macintosh Technical Notes

If you declare a virtual function in a class, you also need to implement the function. Otherwise the linker will complain about
undefined entry, name: (Error 28) "_ptbl_4TFoo", for example. This might happen if you define a function as virtual, but
don’t create the function until it’s part of a subclass.

The exception to this is pure virtual functions.

Virtual Destructor Use

Destructors are not implicitly virtual whether the class has other virtual functions or not. This means that if you delete such an object
via a pointer to one of its bases, the derived class destructors will not be called. This is bad, because it is important to call the right
destructor.

If you wish the right destructor to be called during run-time, declare the destructor virtual. A good rule is to declare all destructors
virtual by default, and deviate from this rule only if you don’t want to have a vtable (that is, no other virtual functions in the class), or
if you want to save some run-time lookup by providing a simple class.

Virtual Functions Are Not Real Functions

Virtual functions are references to virtual function resolve to vtable entries. Be aware that they
are not similar to normal functions in all cases; for instance, you can’t use them when unloading
segments, as in

UnloadSeg((ProcPtr)&(TFoo::Method));

The workaround is to place an empty function stub in the same segment, and use this function name when calling UnloadSeg.

8. Compiler Issues

Declarations

The definition of C++ requires that data structures and functions have to be declared before they
are used.Understanding this should eliminate a lot of obscure syntax problems. Note that when
writing a particular class at the beginning of the header file you can use the class before the
class is defined, as in the following:

class TFoo; // forward declare this class

class TBar{
// ...

TFoo* fFooPtr; // use the class!
// ...
};

Also, if you are using an enum or typedef in the class, it has to be defined before used, as in the following:

class TFoo{
public:
// Constructors/Destructors

TFoo();
const TFoo& TFoo(const TFoo&);
virtual ~TFoo();

Developer Technical Support May 1992

Macintosh Technical Notes

// Enums and Typedefs
enum EPriority {kLow, kMedium, kHigh};

// Accessors and mutators
TFoo& SetPriority(EPriority);
EPriority GetPriority();

// ...
};

Exception Handling and Register Optimization

The MPW C++/C compiler usually tries to move frequently updated variables to registers. This is important to know if you are using exception
handling, either the MacApp provided calls or something based on setting/restoring registers after an exception has occurred.

The following piece of code shows the problem:

void ProblemCase(void)
{

int nCount;
int nElements;
TFoo* temp;

TRY
{

for(nCount= 0; nCount < nElements; ++nCount){
temp = new TFoo;
temp->Initialize();
gApplication->AddTFoo(temp);

}
}
RECOVER
{

if(temp != NULL) temp->Free(); // clean up
if(count == 0) ExitApplication() // exit application

}
ENDTRY

}

In this case the nCount integer and the temp pointer will most likely be optimized into a register allocation. If an exception occurs
while the count it updated inside the register, there’s no way for the exception handler to roll back the old values, because it assumes
the stack based values are OK. Thus any RECOVER action that assumes that the values are OK might not work as expected.

Unfortunately MPW 3.2 C++ has not implemented the volatile keyword (because it requires a full implementation). However we
can emulate the volatile behavior with a macro. We are interested in making sure the changed variable is never placed into a register:

#define VOLATILE(a) ((void) &a)

What we need to do is to make sure any possible variable that is subject to change is wrapped inside the VOLATILE macro before it’s
used inside TRY/RECOVER , as in

// ...

VOLATILE(nCount);
VOLATILE(temp);

TRY
{

for(nCount= 0; nCount < nElements; ++nCount){
temp = new TFoo;

//

Developer Technical Support May 1992

Macintosh Technical Notes

9. Testing/Debugging

General Issues

Do empirical testing/debugging sessions; eliminate one module at a time until you have
pinpointed the problem. Write incremental code, and test the new features before continuing
with the code writing.

Don’t change too many variables at once when you are testing the code. All in all, a controlled
test experiment helps you understand how certain parts interact with each other. If possible, use
debugging code that can be turned on and off with a compiler flag.

10. Conclusion

Careful consideration of any possible side effects will help a lot when using any computer
language. A good motto for programmers is Prepare for the worst, and plan for the best.

Further Reference:
• MPW C++ 3.1 Reference
• MPW C++ 3.1 Release Notes
• The Annotated C++ Reference Manual, Ellis and Stroustrup, Addison-Wesley
• C Traps and Pitfalls, A. Koenig, Addison-Wesley

Developer Technical Support May 1992

