
Macintosh Technical Notes

Macintosh
Technical Notes

Developer Technical Support

®

#314: OmegaSANE

Written by: Dave Radcliffe and Colin McMaster
May 1992

System 7.0.1 introduced a new version of SANE (the Standard
Apple Numerics Environment) known as OmegaSANE. This Note
discusses the features of OmegaSANE and the associated
compatibility risks. This note covers:

• OmegaSANE features, including:
• Correctly rounded binary ↔ decimal conversions
• Faster transcendental functions
• Backpatching of Pack 4 SANE traps for faster package entry

• Compatibility risks due to backpatching

Introduction

System 7.0.1 introduced a new version of the Standard Apple Numerics Environment
(SANE) package referred to as OmegaSANE (ΩSANE). While it improves the
performance of SANE, it is not without compatibility risks, which are detailed below.
New binary ↔ decimal conversions have been included that are correctly rounded across the entire range of double
extended. This will result in incompatibility with previous conversion algorithms for a variety of input values; the results
of the ΩSANE conversions are uniformly more accurate, and will be compatible with future releases of SANE.

ΩSANE Features

The ΩSANE release provides a number of performance enhancements while
maintaining conformance with SANE. The following enhancements have been
implemented:

• Correctly rounded binary ↔ decimal conversions
• Faster transcendental functions

Developer Technical Support May 1992

Macintosh Technical Notes

• Backpatching of SANE traps for faster package entry

Tables showing the performance of ΩSANE are given below. A key aspect of the performance gain is the “backpatching”
of SANE traps. This mechanism will be discussed below under “Pitfalls.”

The version of ΩSANE supplied with System 7.0.1 installs only on machines equipped with a Macintosh IIci ROM or
later and also equipped with an FPU. For example, it installs on a Macintosh IIsi running System 7.0.1 and equipped with
an FPU, but not on one without an FPU. On the Macintosh Quadras and the PowerBook 140/170 it is in ROM, although
it doesn’t load on the PowerBook 140 unless it has an optional FPU. On machines where the FPU is optional, addition of
an FPU may require re-installation of System 7.0.1 before the FPU version of ΩSANE will load.

Developer Technical Support May 1992

Macintosh Technical Notes

Table 1 presents configuration information concerning the versions of SANE which may be installed by System 7.0.1.
Information in this table is subject to change. The FPU column states whether the machine has an FPU or if it is optional.
The column labeled “Correctly Rounded Bin ↔ Dec” shows whether improved versions of the binary ↔ decimal
conversion routines (discussed below) are available, and which version (V.1 or V.2) is supplied. The “ΩSANE FPU
Version” column states whether ΩSANE will load on a given configuration.

Note: The information in this table will undoubtedly change in the future. Developers should not assume that any
particular machine/system software combination does or does not have ΩSANE.

 Table 1 SANE Configurations

Macintosh CPU FPU Correctly
Rounded
Bin↔Dec

ΩSANE
FPU Version

Mac Plus No No No
Mac SE No No No
Mac Classic No No No
Mac Classic II Optional V.2 in ROM w/ 7.0.1 & FPU†

Mac LC Optional V.1 in ROM w/ 7.0.1 & FPU†

Mac IIsi Optional V.1 in ROM w/ 7.0.1 & FPU†

Mac SE/30 Yes No No
Mac II Yes No No
Mac IIx Yes No No
Mac IIcx Yes No No
Mac IIci Yes V.2 with 7.0.1 w/ 7.0.1
Mac IIfx Yes V.2 with 7.0.1 w/ 7.0.1
PowerBook 100 Yes No No
PowerBook 140 Optional V.2 in ROM w/ 7.0.1 & FPU†

PowerBook 170 Yes V.2 in ROM Yes
Quadra 700 Yes V.2 in ROM Yes
Quadra 900 Yes V.2 in ROM Yes

† FPU optional systems may require reinstallation of System 7.0.1 after installation of an
FPU before the ΩSANE FPU version will load.

There is no way programmatically to disable ΩSANE in System 7.0.1, nor is it a user option. There is also no way to
reliably detect that ΩSANE is present.

Binary ↔ Decimal Conversions

ΩSANE includes binary ↔ decimal conversion routines that may produce results that differ from previous versions of
SANE. Versions of these routines have been in some machine ROMs since the Macintosh IIsi, and an improved version
(V.2) is in the newest ROMs, as well as ΩSANE. Refer to Table 1 for current configuration information. As a result of
these improved conversion routines, floating-point constants that are used in the body of source code

Developer Technical Support May 1992

Macintosh Technical Notes

will compile differently in the presence of ΩSANE than with older SANE engines. The results are uniformly better, but
may cause unexpected variances from test suites (for instance). Therefore, care must be given to the arithmetic
environment in which compilations are made. One can tell which version of the binary↔decimal conversions is currently
in use by performing the following computation on the Calculator DA: 45/100 – 0.45. On older versions of SANE, the
result is –2.71051E-20. With ΩSANE, the result is 0 as expected.

Performance Improvements

ΩSANE can significantly improve the performance of many floating-point SANE operations. It does this by replacing
_FP68K trap calls with JSR instructions directly into the appropriate SANE code. This is discussed in more detail under
“Pitfalls.” 7.0.1 ΩSANE does not alter _Elems68K trap calls, but internal code improvements are used to increase the
performance of transcendental functions. Finally, ΩSANE does not affect the performance of code compiled to use the
FPU directly, although some library routines used with such code (such as the CSANELib881.o routines NextAfter,
Classify, Scalb, and Remainder) will be backpatched by ΩSANE because they call _FP68K.

Table 2 shows typical performance improvement using ΩSANE on a Macintosh IIci. Of course, actual performance
depends on how heavily you use SANE and the mixture of SANE operations you use.

 Table 2 SANE Performance

Operation Macintosh
IIci

SANE
(in flops)

Macintosh
IIci

ΩSANE (in
flops)

Speedup
Factor

Add/Subtract 18,794 59,259 3.15
Multiply 18,182 53,571 2.95
Divide 18,476 55,300 2.99
Square Root
(Exact)

18,547 65,934 3.55

Square Root
(Inexact)

18,349 59,113 3.22

Cosine 902 7,058 7.82
Sine 1,290 8,108 6.29
Tangent 826 7,185 8.70
Logarithm 820 7,643 9.32
Exponential 723 7,317 10.12
Compound 413 3,324 8.05
Annuity 358 3,191 8.91

Pitfalls

ΩSANE achieves most of its performance improvement through use of a technique
known as “backpatching.” Use of backpatching introduces a number of compatibility
implications. To implement backpatching, the front end of toolbox SANE has been
altered to have multiple entry points corresponding to the most important operations,
and your RAM-based application code is modified on the fly replacing traps with
speedier JSRs to the appropriate entry point.

Developer Technical Support May 1992

Macintosh Technical Notes

Subsequent execution causes the code to bypass the trap dispatcher and call SANE
directly. For example, an archetypal SANE package call looks like this:

pea fooSrc ; Push address of the source operand
pea barDst ; Push the address of the destination operand
move.w #OpCode,-(sp) ; Push a SANE opcode word
_FP68K ; Trap to SANE

Notice that the last two instructions occupy three words, just enough for the desired JSR. ΩSANE modifies the RAM-image of the
application resulting in code like the following:

pea fooSrc ; Push address of the source operand
pea barDst ; Push the address of the dest. operand
jsr ‘SANE entry point’ ; JSR to appropriate SANE entry point

Herein lies a potential problem. There is nothing to guarantee that the instruction immediately prior to the _FP68K trap was
actually executed. A program control operation, such as a BRA, could have caused control to be passed to the _FP68K
operation without executing the preceding move.w. For instance, an execution sequence such as the following:

pea subSrc ; Push source for subtract
pea subDst ; Push destination for subtract
move #$0002,-(sp) ; Push subtract extended opcode word
bra @1 ; Branch to _FP68K trap
.
.
.
pea addSrc2 ; Push source for add
pea addDst2 ; Push destination for add
move #$0000,-(sp) ; Push add extended opcode word

@1 _FP68K ; Trap to SANE

would have the unseemly result of “backpatching” a JSR to the extended add entry point, and future executions of the
subtraction code would branch to the middle of a JSR causing an illegal instruction error (the illegal instruction error
might not occur right away). Note, however, that the following similar code sequence works correctly in the presence of
backpatching:

pea addSrc ; Push source for add
pea addDst ; Push destination for add
bra @1 ; Branch to _FP68K trap
.
.
.
pea addSrc2 ; Push source for add
pea addDst2 ; Push destination for add

@1 move #$0000,-(sp) ; Push add extended opcode word
_FP68K ; Trap to SANE

The type of code sequence that is problematic for backpatching (as above) cannot be emitted by the current MPW C and
Pascal compilers or by current Think™ compilers. It also cannot occur with code generated using the macros contained
in SANEMacs.a.

Warning -- Although the current generation of MPW compilers create ΩSANE-safe code, the earlier, MPW C 2.0.2
compiler may, under limited circumstances, generate code that has problems with ΩSANE. This is discussed in
more detail below.

Additionally, if you have hand coded assembly or code which has been otherwise optimized to use common _FP68K trap
instructions you may be at risk from backpatching. We recommend

Developer Technical Support May 1992

Macintosh Technical Notes

you adjust your code to conform to the prototypical sequence above as there is no performance penalty involved.

Another common programming practice is illustrated in the following example:

move.w #$0000,D0 ; Move extended add opcode word to D0
bra @1 ; Branch to shared backend for SANE trap call
.
.
.
move.w #$0002,D0 ; Move extended subtract opcode word to D0
bra @1 ; Branch to shared backend for SANE trap call
.
.
.

@1 move.w D0,-(SP) ; Push SANE opcode word on stack
_FP68K ; Trap to SANE

This code operates correctly in the presence of ΩSANE, but is clearly not backpatchable. If you have code that does this, you might
consider rewriting it to obtain the performance increase, but the code will work as is.

MPW C 2.0.2

The MPW C 2.0.2 compiler may, under limited circumstances, generate code that works incorrectly under ΩSANE. Apple
recommends that all developers use the latest development tools, but as conversion of source may be difficult and time consuming in
some cases, below is a description and workaround for the problem. Again, this only affects code compiled without the -mc68881
option.

The following code demonstrates the problem

struct foo {
double data;
float num;

};

foobar(f,b)
struct foo *f;
unsigned char b;
{

 extended num;

 num = 3.14159;
 if (b)

f->data = num; /* FP operation ends block */
 else
 f->num = num; /* Another FP operation ends block */

 return;
}

The critical combination of events occurs when more than one block in an if-else or switch statements ends with a floating-point
operation or conversion. The compiler tries to optimize the final floating-point operation by pushing a selector on the stack then
branching to a common _FP68K trap. This is a classic example of code, like that cited above, that works incorrectly under
ΩSANE.

Developer Technical Support May 1992

Macintosh Technical Notes

The workaround is to eliminate the final floating-point operation. Here is one way to do this:

foobar(f,b)
struct *f;
unsigned char b;
{

extended num;
int idummy;

num = 3.14159;
if (b) {

f->data = num;
idummy = 1; /* End if block with a non-FP operation */

} else {
f->num = num;
idummy = 0; /* End else block with a non-FP operation */

}

return;
}

In this case, each floating-point operation gets its own _FP68K trap so there are no problems.

Other Pitfalls

The backpatching performed by ΩSANE can have other implications for developers. For example, applications that
checksum their code segments (perhaps to check for viruses) will detect that the segment has been modified. Such
applications should checksum segments only at application startup or when the segments are loaded, not after they have
been executed.

Likewise, an application must not create a situation which will cause the Resource Manager to write a code segment out
to disk after it has been executed. If such a segment been modified by ΩSANE, it can fail when subsequently loaded into
memory. Since CloseResFile is called when the application quits it will automatically write out changed resources
(i.e. if the resChanged attribute is true) when closing the file.

Further Reference:
• Apple Numerics Manual, Second Edition

Developer Technical Support May 1992

