

Writing Toolbox Object

Modules

Applicable

Hardware : All machines running RISC

OS 3.10 and later

Support Group

Acorn Computers Limited

Acorn House

Vision Park

Histon, Cambridge

CB4 4AE

Related

Application

Notes:

Every effort has been made to ensure that the information in this leaflet is true and correct at the time of

printing. However, the products described in this leaflet are subject to continuous development and

improvements and Acorn Computers Limited reserves the right to change its specifications at any time.

Acorn Computers Limited cannot accept liability for any loss or damage arising from the use of any

information or particulars in this leaflet. Acorn, the Acorn Logo, Acorn Risc PC, ECONET, AUN, Pocket

Book and ARCHIMEDES are trademarks of Acorn Computers Limited.

ARM is a trademark of Advance RISC Machines Limited.

All other trademarks acknowledged.

©1994 Acorn Computers Limited. All rights reserved.

281

26th April 1995

Support Group Application Note

Number: 280

Issue: 0.00

Author:IDJ

Contents

1 Introduction

2 Definition of an Object Module

3 Object IDs and Internal Handles

4 Registering with the Toolbox as an Object Module

5 Dealing with Methods on an Object

6 Handling Wimp Events, Wimp Messages and Toolbox Events

7 Finalisation

8 Toolbox Service Calls

9 Object Class Numbers and Toolbox Event codes

10 Interfacing with ResEd, ResCreate and ResTest

11 A Generic Object Module

Appendix 1: Adding a Class Specific Editor to ResEd

1 Introduction

The User Interface Toolbox has been designed to be extensible to support any number of Object Classes by

the creation of Object Modules which implement those Classes. ResEd (the resource file editor supplied

with Acorn C/C++) was also designed so that editors for new Object Templates can be added without the

need to alter the main ResEd binary.

This document describes how to write an Object Module, and how to interface a new editor for the Object

Template with the ResEd Shell program.

2 Definition of an Object Module

Associated with each Object Class, there is a module which implements and manages that Class. Each such

module is called an Object Module and must comply with the set of conventions laid down in the following

sections.

The Toolbox itself knows only about generic Objects, and uses the Object Modules to implement the details

of the Object. For example when a Window Object is created using SWI Toolbox_CreateObject, the

Toolbox merely creates a new entry in its list of Objects for the current task, and returns a unique ID for

that Object; it calls the Window Object Module to actually create the underlying Window Object from its

Object Template description; it is the Window Object Module which will call SWI Wimp_CreateWindow

to actually create the real Wimp window. Similarly when a Window Object is deleted using SWI

Toolbox_DeleteObject, the Toolbox merely removes this entry from its list of Objects for the current task,

and calls the Window Object Module to actually use SWI Wimp_DeleteWindow to delete the real Wimp

window.

An Object Module must deal with the following (at least):

- registering with the Toolbox as an Object Module supporting a given Object Class

- dealing with methods on Objects of the given Class

2

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 - dealing with Wimp Events, Wimp Messages and Toolbox Events

- deregistering with the Toolbox on finalisation

- dealing with client tasks starting up

Typically, an Object Module will register itself with the Toolbox in its initialisation code using SWI

Toolbox_RegisterObjectModule (see the section "Registering with the Toolbox as an Object Module").

This tells the Toolbox how to deal with methods on Objects of the given Class. When a method is applied

to Objects of the given Class, the module's Class SWI will be called (see the section "Dealing with

Methods on an Object"). When the Toolbox itself is initialised it sends round a service call

Toolbox_Starting, and Object Modules should register themselves with the Toolbox (as above) when they

receive this service call.

Whenever a new Toolbox task starts up, the Toolbox sends round a service call Toolbox_TaskBorn to

inform Object Modules of this new task's Wimp task handle. An Object Module should typically keep a

linked list of client tasks (remembering their task handles), where each task descriptor has a linked list of

the Objects for that task. Note that when a Toolbox method is applied to an Object, the task handle of the

calling task is passed to the Object Module thus allowing it to look down its list of task descriptors to find

that task.

When a Toolbox task exits, the Toolbox sends round a service call Toolbox_TaskDied, quoting the task's

Wimp task handle. This allows an Object Module to delete the task descriptor for that task, and also (more

importantly) to delete any Objects which that task owns. the Toolbox will have removed its record of a

dying task's Objects, but does not do this via Toolbox_DeleteObject, so Object Modules must tidy up their

per-task data structures themselves. In particular, an Object Module should ensure that all memory

associated with the dying task is freed, even if it encounters errors while cleaning up.

When the client application polls the Wimp, the Toolbox's Wimp prefilter and postfilter are called. An

Object Module can choose to be put on the chain of Object Modules called in this prefilter by calling SWI

Toolbox_RegisterPreFilter, specifying a SWI entry point (see the section "Handling Wimp Events, Wimp

Messages and Toolbox Events"). Object Modules will use the prefilter mechanism to ensure that the client

application has not masked out events which are needed by that Object Module. An Object Module can

also elect to be called when specific Wimp Events, Wimp Messages or Toolbox Events are delivered to the

client application on exit from SWI Wimp_Poll (ie during the Toolbox's postfilter). This is achieved by

calling SWI Toolbox_RegisterPostFilter (see the section "Handling Wimp Events, Wimp Messages and

Toolbox Events").

When an Object Module's finalisation code is entered (maybe due to RMKill or because another version of

the module has been RMLoaded) it should free up its allocated memory, and call SWI

Toolbox_DeRegisterObjectModule (see the section "Finalisation") to cancel its registration with the

Toolbox. Note that an Object Module should refuse to finalise (and return a suitable error) if it still has

active applications running.

3 Object IDs and Internal Handles

The Toolbox itself maintains a set of data structures associated with each Object for each client task; IDs

for these Objects are unique within a task. Also associated with each Object is its "internal" handle; this is

the value returned by the Object Module when an Object is created. An Object Module is passed this

"internal" handle whenever a method has been applied to one of its Objects.

3

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

Given an Object ID, an Object Module can request its "internal" handle from the Toolbox, using SWI

Toolbox_GetInternalHandle. In general this should not be necessary because the Toolbox passes the

internal handle to an Object module in most cases where it is needed.

SWI Toolbox_GetInternalHandle

Entry:

R0 = flags

R1 = Object ID

Exit:

R0 = "internal" handle

Usage:

This SWI returns the "internal" handle which was passed back to the

Toolbox by the relevant Object Module when the Object was created.

4 Registering with the Toolbox as an Object Module

Associated with each Object Class, there is a SWI number which will be called in order to provide the

fundamental methods on Objects of that Class. This is referred to as the Class SWI.

When an Object Module starts up, it should register itself with the Toolbox, and declare its Class SWI using

SWI Toolbox_RegisterObjectModule.

SWI Toolbox_RegisterObjectModule

Entry:

R0 = flags

R1 = Object Class Number

R2 = Class SWI Number

R3 -> filename where module's resources file is held (or 0 for none).

Exit:

R1-R9 preserved

Usage:

This SWI is called by an Object module to declare that methods on

Objects of the given Class, should be done by calling the specified "Class

SWI".

The resources held in the file whose name is pointed at by R3 are loaded

by the Toolbox, and will be searched when the client makes

Toolbox_CreateObject calls. This is primarily used by modules which

implement a standard dialogue, and need to hold a Window template for

creating the dialogue box itself. For example, the ProgInfo module has a

resource file containing two Window Templates called _ProgInfo1 and

_ProgInfo2, which it uses for calls to Toolbox_CreateObject to create its

underlying Window Objects.

4

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

IMPORTANT NOTE: In the current implementation, the Class SWI Number and the Object Class
Number must be the same.

5 Dealing with Methods on an Object

Whenever a method is called on an Object of a type for which an Object Module has registered itself with

the Toolbox, that Object Module's Class SWI is called.

On entry to the Class SWI, registers R0-R4 have the following contents:

R0 = reason code telling which Toolbox method was called (eg 0 means Toolbox_CreateObject)

R1 = Object ID

R2 = "internal" handle passed back by this Class module when the Object was created

 (will be 0 for Toolbox_CreateObject)

R3 = Wimp task handle of client application

R4 -> block containing the client's R0-R9

IMPORTANT: The Class SWI should only alter the contents of the client's register block for a call to SWI

Toolbox_ObjectMiscOp (ie reason code 6); for all other methods, it is the Toolbox which fills in these

return registers; there is no need to set the client's R0 to point to an error block, in case of an error, since this

will be done by the Toolbox, from the error block passed back by the Class SWI.

Register usage in the client's block is as documented in the User Interface Toolbox Manual supplied with

Acorn C/C++.

Note that in the list given below, reason code 2 is deliberately undefined.

In order to implement its methods, a Class SWI should have the functionality shown below. Note that any

references to registers refer to the register block passed to the Object Module by the Toolbox NOT the user

registers (which are held in the block pointed at by the Toolbox's R4), unless otherwise stated.

Reason Toolbox_CreateObject (0)

Exit:

R0 = "internal" handle of created Object.

Usage:

On entry to this method, the user's R1 register will contain a pointer to a

template description (not its name). If the client specified a named

template to SWI Toolbox_CreateObject, then before calling the Class

SWI, the Toolbox replaces this with a real pointer to the template itself.

The Toolbox checks to see if the Object is a shared one which already

exists, in which case it does not call the Class SWI, but just returns the

appropriate Object ID, and increments the reference count.

This method should create a new instance of an Object of its class, and

5

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

return an "internal" handle for the Object to the Toolbox via R0 (the

Toolbox's R0 that is NOT the client's R0). This "internal" handle is the

one which will be passed back to the Object Module when the client uses

other Toolbox methods on the Object.

If the Object description contains references to other Object templates,

then this method should call Toolbox_CreateObject for these, and record

the returned IDs.

Reason Toolbox_DeleteObject (1)

Exit:

R1-R9 preserved

Usage:

This SWI should remove the data structures associated with the Object

with the given "internal" handle. If this Object contains IDs for other

Objects, then this SWI should call SWI Toolbox_DeleteObject for those

Objects (unless bit 0 is set).

The Toolbox itself deals with reference counts for Shared Objects, so this

method is only called when an Object's reference count reaches 0.

Reason Toolbox_ShowObject (3)

Exit:

If bit 1 of the flags word was set, then R0 should contain a value suitable for

use as a Wimp Menu pointer.

R1-R9 preserved

Usage:

This method should display the given Object on the screen. Exact

semantics will vary for different Object classes.

Reason Toolbox_HideObject (4)

Exit:

R1-R9 preserved

Usage:

This method should remove a previously displayed Object from the

screen. Exact semantics will vary for different Object classes.

Reason Toolbox_GetObjectState (5)

Exit:

R0 = Object state

6

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

Usage:

This SWI should fill in R0 with state information for the given Object.

Reason Toolbox_MiscOp (6)

Exit:

R1-R9 preserved.

The user register block (pointed at by R4) should be filled in as

appropriate for this particular method.

Usage:

This SWI is used to implement all of the Toolbox_MiscOp methods which

are Object-specific.

6 Handling Wimp Events, Wimp Messages and Toolbox Events

The Toolbox registers a single PostFilter and a single PreFilter with the Wimp. Object Modules should

register interest in Wimp Events, Wimp Messages and Toolbox Events with the Toolbox, so that their

appropriate handler SWIs can be called in the PostFilter. This is done using SWI

Toolbox_RegisterPostFilter as documented below. An Object Module can choose to be called in the

PreFilter by using SWI Toolbox_RegisterPreFilter. This is useful for modifying the mask passed to SWI

Wimp_Poll in case the client application has not enabled a particular Wimp event which is needed by this

Object Module.

SWI Toolbox_RegisterPostFilter

Entry:

R0 = flags

bit 0 set means no longer interested in being called by post-filter, for the list of

pairs pointed at by R4, and the given SWI number, and the given R2

value.

R1 = SWI number to be called by filter

R2 = one-word value to be passed to the postfilter SWI in R2

R3 = filter type

1 => Wimp Events

2 => Wimp Messages

3 => Toolbox Events

R4 = -> list of pairs of either:

Wimp Event code, Object Class

Wimp Message number, Object Class or

Toolbox Event code, Object Class

depending on the value of R3.

 The list is terminated by two words containing -1.

Exit:

R1-R9 preserved

7

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

Usage:

This SWI is used to get Wimp Events, Wimp Messages or Toolbox Events

delivered to an Object Module. It is used by that module to vet events

before they are passed to the client application.

If an Object Module registers for a Wimp Message, then that message is

added to those received by the client using SWI Wimp_AddMessages,

unless the client was receiving all Wimp Messages anyway. NOTE: an

Object Module should not call SWI Wimp_AddMessages itself.

Modules which have registered themselves to receive a particular event

are called when that event occurs, when the Object ID field in the

application's poll block is one for an Object of the specified Class (an

Object Class value of 0 means that the Object Module is interested in

events on underlying Wimp objects, and an Object Class value of -1

means that the Object Module is interested in events on Objects of ALL

classes). For example, the Window Module registers interest in all Wimp

Events which can happen on a Window, in order to fill in the Object ID of

that Window in the client's ID block; this is done by registering for those

Events on underlying Wimp objects using the special value 0, ie:

EventInterest events_of_interest[] =
 {{ Wimp_ERedrawWindow , 0},
 {Wimp_EOpenWindow , 0},
 {Wimp_ECloseWindow , 0},
 {Wimp_EPointerLeavingWindow , 0},
 {Wimp_EPointerEnteringWindow , 0},
 {Wimp_EMouseClick , 0},
 {Wimp_EKeyPressed , 0},
 {Wimp_EUserDrag , 0},
 {Wimp_EScrollRequest , 0},
 {Wimp_ELoseCaret , 0},
 {Wimp_EGainCaret , 0},
 {Wimp_EUserMessage , 0},
 {Wimp_EUserMessageRecorded , 0},
 {- 1 , -1}
 };

It also registers interest for Toolbox Events on Objects of the Window

Class and Menu Class in order to implement composite Gadgets (eg the

code to deal with Number Ranges needs to receive Adjuster_Clicked

Events, and the code to deal with String Sets needs to receive

Menu_Selection Events), so it uses the following block:

EventInterest toolbox_events_of_interest[] =
 {{Window_AboutToBeShown , Window_ObjectClass},
 {Adjuster_Clicked , Window_ObjectClass},
 {Slider_ValueChanged , Window_ObjectClass},
 {WritableField_ValueChanged , Window_ObjectClass},
 {PopUp_AboutToBeShown , Window_ObjectClass},

8

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 {StringSet_AboutToBeShown , Window_ObjectClass},
 {Menu_Selection , Menu_ObjectClass},
 {- 1 , -1}
 };

The SWI whose number is passed in R1 to SWI Toolbox_RegisterPostFilter should have the following

behaviour:

Entry:

R0 = Wimp Event reason code returned from Wimp_Poll

R1 = pointer to event block as returned from SWI Wimp_Poll

R2 = value passed in R2 to SWI Toolbox_RegisterPostFilter.

R3 -> 6-word "ID block" as passed to Toolbox_Initialise by the client.

Exit:

R0 contains the Wimp Event reason code returned from Wimp_Poll. In

the case of a Toolbox Event, this will be 0x200, and for a Wimp Message

it will be the standard values User_Message (0x11) or

User_Message_Recorded (0x12). In the case of a Toolbox Event, the

event details are held in the event block passed in R1.

If the Wimp Event, Wimp Message or Toolbox Event is for an Object

maintained by this Object module and it wishes to indicate which Object it

is, this is done by filling in the "self" field in the client's "ID Block". If the

Object module has updated the "ID block" then it MUST return a non-

zero value in R0, to indicate that it has "claimed" the event, otherwise it

should set R0 to zero. The Toolbox will deal with filling in the Parent and

Ancestor fields in the client's "ID Block", so the Object Module should not

alter these fields.

Only one module can claim a particular event on an Object of a particular

type. If more than one claim is attempted, then an error is raised. Note,

however, that after an event is claimed, that event is still passed on to

other modules interested in the event.

The Toolbox will continue to repeatedly pass the event to Object Modules

whose criteria passed to SWI Toolbox_RegisterPostFilter are met, and as

long as one of these Modules indicates that it has updated the ID block.

Great care must be taken here by Object Modules to avoid an infinite loop.

No changes can be made to the event block itself. If the module wishes
to cause further events to happen this should be done using

Wimp_SendMessage or by raising a Toolbox Event via SWI

Toolbox_RaiseToolboxEvent. Before the Toolbox returns to the client, all

original register contents are restored, and the Parent and Ancestor fields

of the "ID Block" are filled in by the Toolbox.

Example:

The Iconbar module contains the following code:

9

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

EventInterest messages_of_interest[] =
 {{ Wimp_MHelpRequest , 0},
 {- 1 ,-1}
 };

EventInterest events_of_interest[] =
 {{ Wimp_EMouseClick , 0},
 {- 1 ,-1}
 };

EventInterest toolbox_events_of_interest[] =
 {{ Iconbar_SelectAboutToBeShown, Iconbar_ObjectClass},
 { Iconbar_AdjustAboutTobeShown , Iconbar_ObjectClass},
 {- 1 , -1}
 };

These data blocks are passed to SWI Toolbox_RegisterPostFilter and mean that the Iconbar module is

interested in being called in the PostFilter when a Help Request message is received on any Wimp object,

when a Mouse Click event is received on any Wimp object, and when the Iconbar_SelectAboutToBeShown

and Iconbar_AdjustAboutToBeShown Toolbox Events are received on Objects of the Iconbar Object Class.

Note: The Iconbar Module registers interest in the AboutToBeShown events to ensure that the client is

delivered this event BEFORE the attached Object is shown. It does this by noting that the

AboutToBeShown event has been delivered (in the PostFilter) to the client, and then actually showing the

attached Object on the next call to the Iconbar Module's PreFilter. In the PreFilter we are thus assured that

the AboutToBeShown event has been delivered, and that the client has called SWI Wimp_Poll since

delivery of the event.

For efficiency reasons, we realise that these events can only happen for an Iconbar Object, when that Object

is actually showing on the Iconbar, so the Iconbar Object Module registers interest in the above events in its

function which deals with showing an Iconbar Object, ie:

 regs.r[0] = 0;
 regs.r[1] = Iconbar_PostFilter;
 regs.r[2] = (int)iconbar_icon;
 regs.r[3] = Toolbox_RegisterPostFilter_WimpEvent;
 regs.r[4] = (int)events_of_interest;

 if ((e = _kernel_swi (Toolbox_RegisterPostFilter, ®s, ®s)) != NULL)
 return e;

 regs.r[0] = 0;
 regs.r[1] = Iconbar_PostFilter;
 regs.r[2] = (int)iconbar_icon;
 regs.r[3] = Toolbox_RegisterPostFilter_WimpMessage;
 regs.r[4] = (int)messages_of_interest;

 if ((e = _kernel_swi (Toolbox_RegisterPostFilter, ®s, ®s)) != NULL)
 return e;

 regs.r[0] = 0;

10

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 regs.r[1] = Iconbar_PostFilter;
 regs.r[2] = (int)iconbar_icon;
 regs.r[3] = Toolbox_RegisterPostFilter_ToolboxEvent;
 regs.r[4] = (int)toolbox_events_of_interest;

 if ((e = _kernel_swi (Toolbox_RegisterPostFilter, ®s, ®s)) != NULL)
 return e;

Then in the function which deals with hiding an Iconbar Object, the PostFilters are deregistered:

 regs.r[0] = Toolbox_RegisterPostFilter_Remove;
 regs.r[1] = Iconbar_PostFilter;
 regs.r[2] = (int)iconbar_icon;
 regs.r[3] = Toolbox_RegisterPostFilter_WimpEvent;
 regs.r[4] = (int)events_of_interest;

 if ((e = _kernel_swi (Toolbox_RegisterPostFilter, ®s, ®s)) != NULL)
 return e;

 regs.r[0] = Toolbox_RegisterPostFilter_Remove;
 regs.r[1] = Iconbar_PostFilter;
 regs.r[2] = (int)iconbar_icon;
 regs.r[3] = Toolbox_RegisterPostFilter_WimpMessage;
 regs.r[4] = (int)messages_of_interest;

 if ((e = _kernel_swi (Toolbox_RegisterPostFilter, ®s, ®s)) != NULL)
 return e;

 regs.r[0] = Toolbox_RegisterPostFilter_Remove;
 regs.r[1] = Iconbar_PostFilter;
 regs.r[2] = (int)iconbar_icon;
 regs.r[3] = Toolbox_RegisterPostFilter_ToolboxEvent;
 regs.r[4] = (int)toolbox_events_of_interest;

 if ((e = _kernel_swi (Toolbox_RegisterPostFilter, ®s, ®s)) != NULL)
 return e;

In the registration calls, the SWI Iconbar_PostFilter will be called when any of the specified events happen

on Objects of the specified classes. The value passed in R2 to SWI Iconbar_PostFilter is actually the

internal handle of the Iconbar Object; in the Iconbar Module we chose to have one handler registered for

each Object since in general, each task will not have a great number of Iconbar Objects showing at any one

time. When Iconbar_PostFilter is called it does the following check to see if the event is actually for this

Iconbar Object or not; if not it just returns without dealing with the event:

extern _kernel_oserror *events_postfilter (_kernel_swi_regs *r)
{
 /*
 * called from the main Toolbox postfilter, when an event happens which
 * this module has expressed an interest in.
 * R0 = Wimp event reason code
 * R1 ->client's Wimp event block

11

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 * R2 = pointer to icon object
 * R3 ->6-word "ID block" as passed to Toolbox_Initialise
 *
 */

 /*
 * This function gets a pointer to an Iconbar Object in
 * R2 (since this was the value passed to Toolbox_RegisterPostFilter).
 * If the event is dealt with by this module (ie ID block gets updated).
 * then set R0 to non-null before return.
 */

 int event_code = r->r[0];
 WimpPollBlock *block = (WimpPollBlock *)r->r[1];
 IdBlock *id_block = (IdBlock *)r->r[3];
 _kernel_oserror *e = NULL;
 Object *icon = (Object *)r->r[2];

 r->r[0] = 0; /* default is "we haven't handled the event" */

 /*
 * for safety we return if NULL handle passed in
 */

 if (icon == NULL)
 return NULL;

 /*
 * deal with the event
 */

 switch (event_code)
 {
 case Wimp_EMouseClick:
 if (block->mouse_click.window_handle != WimpWindow_Iconbar)
 break;

 /*
 * first find if it's one of our icons. If so process the mouse click.
 */

 if (icon->wimp_icon_handle == block->mouse_click.icon_handle)
 e = events__button_click (icon, block, id_block, r);

 break;

 etc............

In the events__button_click function we actually deal with the mouse click, and update the ID Block with

the Toolbox Object ID of this Iconbar Object, as shown below:

12

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

static _kernel_oserror *events__button_click (Object *icon,
 WimpPollBlock *block,
 IdBlock *id_block,
 _kernel_swi_regs *r)
{
 _kernel_oserror *e = NULL;

 if (block->mouse_click.buttons & Wimp_MouseButtonMenu)
 {
 /*
 * if iconbar object has attached menu, then show it.
 */

 if (icon->menu != NULL)
 if ((e = events__show_menu (icon, block->mouse_click.x, block->mouse_click.y))
 != NULL)
 return e;

 /*
 * update the id block to say which object the original click was
 * on, so return non-zero R0 to show this.
 */

 id_block->self_id = icon->id; /* we have remembered the object id here */
 id_block->self_component = NULL_ComponentId;

 r->r[0] = 1;
 }
 else if (block->mouse_click.buttons &
 (Wimp_MouseButtonSelect | Wimp_MouseButtonAdjust))
 {
 IconbarClickedEvent clicked_event ;
 _kernel_swi_regs regs;

 if (((icon->flags & Iconbar_GenerateSelectClickedEvent) &&
 (block->mouse_click.buttons & wimp_SELECT_BUTTON))
 ||
 ((icon->flags & Iconbar_GenerateAdjustClickedEvent) &&
 (block->mouse_click.buttons & wimp_ADJUST_BUTTON))
)
 {
 /*
 * raise Toolbox Event to client (default is Iconbar_Clicked)
 */

 clicked_event.hdr.size = sizeof(IconbarClickedEvent);
 clicked_event.hdr.event_code = Iconbar_Clicked;

 clicked_event.hdr.flags = block->mouse_click.buttons & 0x0f;

 if (icon->select_event != 0 &&

13

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 (block->mouse_click.buttons & wimp_SELECT_BUTTON))
 clicked_event.hdr.event_code = icon->select_event;
 else if (icon->adjust_event != 0 &&
 (block->mouse_click.buttons & wimp_ADJUST_BUTTON))
 clicked_event.hdr.event_code = icon->adjust_event;

 regs.r[0] = 0;
 regs.r[1] = (int)icon->id; /* object id of this iconbar icon */
 regs.r[2] = NULL_ComponentId; /* no component id */
 regs.r[3] = (int)&clicked_event;

 if ((e = _kernel_swi (Toolbox_RaiseToolboxEvent, ®s, ®s)) != NULL)
 return e;
 }

 /*
 * if there is an Object specified to be shown on this click, either
 * raise a Toolbox event to get it shown, or show it immediately
 * depending on flags settings for iconbar Object
 */

 if ((block->mouse_click.buttons & wimp_SELECT_BUTTON) &&
 icon->select_show != NULL)
 {
 if (icon->flags & Iconbar_GenerateSelectAboutToBeShown)
 e = events__raise_about_to_be_shown (icon,
 icon->select_show,
 Iconbar_SelectAboutToBeShown);
 else
 e = events__show_attached_object (icon, Iconbar_SelectAboutToBeShown);
 }
 else if ((block->mouse_click.buttons & wimp_ADJUST_BUTTON) &&
 icon->adjust_show != NULL)
 {
 if (icon->flags & Iconbar_GenerateAdjustAboutToBeShown)
 e = events__raise_about_to_be_shown (icon,
 icon->adjust_show,
 Iconbar_AdjustAboutToBeShown);
 else
 e = events__show_attached_object (icon, Iconbar_AdjustAboutToBeShown);
 }

 if (e != NULL)
 return e;

 /*
 * update the id block to say which object the original click was
 * on, so return non-zero R0 to show this
 */

14

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 id_block->self_id = icon->id;
 id_block->self_component = NULL_ComponentId;

 r->r[0] = 1;
 }

 return NULL;
}

A different approach was taken in the Window Module, since many Windows may be created and shown at

any one time; in the Window Module, there is a single PostFilter registered which scans its linked list of

Windows whenever an event is delivered to see which Window the event is for. Note that the calling of an

Object Module's PostFilter is via a SWI, so this decision was taken for efficiency reasons.

SWI Toolbox_RegisterPreFilter

Entry:

R0 = flags

bit 0 set means no longer interested in being called by pre-filter, for the given

value in R2.

R1 = SWI number to be called by filter

R2 = one-word value to be passed to the SWI (in R2).

Exit:

R1-R9 preserved.

Usage:

This SWI is used indicate that a particular SWI is to be called before the

Toolbox PreFilter allows SWI Wimp_Poll to continue.

The given SWI is called with register contents as they will be when

Wimp_Poll is called. The SWI can enable any Wimp events which it

needs, by zero-ing appropriate bits in R0 (the Wimp_Poll mask). R2 is set

to the value passed in R2 to Toolbox_RegisterPreFilter. Note that the

value of R0 on return from the given SWI will be passed on to the next

SWI in the chain, and will finally be passed to Wimp_Poll.

The purpose of this SWI is to allow Object Modules to be informed when

the application calls SWI Wimp_Poll. It may be used to free up memory

which is only needed between calls to SWI Wimp_Poll, or to set internal

state appropriately.

IMPORTANT NOTE: if an Object Module enables a particular Wimp

event which the client was not expecting, then if this event happens, it is

delivered to all postfilters, but is NOT passed back to the client. This is

important since the client may have problems caused by receiving an

event it thinks it masked out!

15

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

7 Finalisation

During an Object module's finalisation code, it should do the following:

- refuse to finalise if it has tasks active, otherwise:

- close its messages file

- deregister its messages file from ResourceFS

- deregister its resources file from ResourceFS (if it has one)

- deregister itself from the Toolbox using SWI Toolbox_DeRegisterObjectModule

- free up all its allocated memory.

SWI Toolbox_DeRegisterObjectModule

Entry:

R0 = flags

R1 = Object Class

Exit:

R1-R9 preserved

Usage:

This SWI deregisters a previously registered Object module.

8 Toolbox Service Calls

The Toolbox issues service calls to keep Object Class modules informed of the state of the system. All such

modules should listen for these service calls and take appropriate action.

Toolbox_Starting (0x44ec1)

Entry:

R1 = 0x44ec1 (Toolbox_Starting)

Exit:

Do not claim.

Usage:

This service call is passed round when the Toolbox is initialised; it allows

Toolbox object modules to call SWI Toolbox_RegisterObjectModule.

Toolbox_TaskBorn (0x44ec2)

Entry:

R0 = Wimp Task handle of newly created task.

R1 = 0x44ec2 (Toolbox_TaskBorn)

16

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

Exit:

Module should have noted task's handle.

Do not claim.

Usage:

This service call is passed round after the Toolbox has called

Wimp_Initialise on behalf of the client application. It can be used by

Object modules to create a new data structure for a client task.

It is also passed round when Toolbox_RegisterObjectModule is called, for

each task which the Toolbox currently knows about.

Toolbox_TaskDied (0x44ec3)

Entry:

R0 = Wimp Task handle of dead task.

R1 = 0x44ec3 (Toolbox_TaskDied).

Exit:

Module should have deleted its per-task info.

Do not claim.

Usage:

This service call is passed round when the Wimp_CloseDown service call

is received for a Toolbox application.

9 Object Class Numbers and Toolbox Event Codes

Each Object Class has its own Class Number. These numbers are centrally allocated by Acorn; in fact a

Class Number is the Class SWI of the Object Module which implements Objects of that Class. For example

the Iconbar Module has a SWI chunk starting at 0x82900, and so defines the following SWIs:

#define Iconbar_SWIChunkBase 0x82900
#define Iconbar_ObjectClass Iconbar_SWIChunkBase
#define Iconbar_ClassSWI (Iconbar_SWIChunkBase + 0)
#define Iconbar_PostFilter (Iconbar_SWIChunkBase + 1)
#define Iconbar_PreFilter (Iconbar_SWIChunkBase + 2)

Iconbar_ClassSWI is the SWI which will be called for all methods on Objects of the Iconbar Class.

Iconbar_PostFilter and Iconbar_PreFilter are the two SWIs which wil be registered with the Toolbox to be

called during the Toolbox's PostFilter and PreFilter respectively.

Note that a single Object Module may implement more than one Class, by registering more than one Class

SWI from its chunk with the Toolbox, for example the DCS Module implements both the DCS and Quit

objects by specifying the following SWIs:

17

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

#define DCS_SWIChunkBase 0x82a80
#define DCS_ObjectClass DCS_SWIChunkBase
#define DCS_ClassSWI (DCS_SWIChunkBase + 0)
#define DCS_PostFilter (DCS_SWIChunkBase + 1)
#define DCS_PreFilter (DCS_SWIChunkBase + 2)

#define Quit_SWIChunkBase 0x82a90 /* &10 + DCSSWIChunk */
#define Quit_ObjectClass Quit_SWIChunkBase
#define Quit_ClassSWI (Quit_SWIChunkBase + 0)
#define Quit_PostFilter (Quit_SWIChunkBase + 1)
#define Quit_PreFilter (Quit_SWIChunkBase + 2)

Toolbox Events should also be based on the Class Number. For example the Iconbar Module defines the

following Toolbox Events:

#define Iconbar_Clicked (Iconbar_SWIChunkBase + 0)
#define Iconbar_SelectAboutToBeShown (Iconbar_SWIChunkBase + 1)
#define Iconbar_AdjustAboutToBeShown (Iconbar_SWIChunkBase + 2)

Error numbers will also be allocated at the same time as the Class Number.

In order to be allocated a Class number you will need to supply:

- details of the Object's Template format

- the API used for Toolbox_MiscOp methods for your Object

- the API for any extra SWIs which the Object Module implements

- the Object Module binary

During development you can use one of the available User SWIs as your Class Number.

The IPR for an Object Module resides with its author, but we encourage free sharing of such Object

Modules to ease application development.

10 Interfacing with ResEd, ResCreate and ResTest

ResEd

From version 0.33 onwards, when ResEd is given a template for an Object Class for which it does not have

a registered Class Specific Edtior (CSE - see Appendix 1 for more details), it displays a generic Object

editing dialogue box which allows the editing of fields of the Object Template using word offsets from the

beginning of the Object's body. The Object Template's Class and name will appear in the title bar of the

dialogue box used to edit that Template.

If a CSE is required which gives a more WYSIWYG style of editing, then one can be written by following

the protocols laid down in Appendix 1, however in most cases this should not prove necessary.

Note that ResEd 0.28 (released with Acorn C/C++) will fault Templates of unknown Object Class. Note

also that in future versions of ResEd, we intend to make editing of Object Templates table-driven, thus

18

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

making the "word offset" approach described above more user-friendly.

It is conventional to use names which start with an underscore for Object Templates which are used by an

Object Module (eg the SaveAs module has Window Objects called "_SaveAs1" and "_SaveAs2). Normally

!ResEd will fault Template names which do not start with a letter; by changing the !ResEd !Run file to pass

the "-private" flag on the command line to !ResEd's !RunImage, underscores are permitted, ie:

Run <ResEd$Dir>.!RunImage %*0 -private

ResCreate

ResEd is purely an editor of Object Templates and cannot be used to create new Templates; the palette of

Object Templates is just a read-only resource file which is created by merging all files named 'Palette' found

in its CSE directories.

ResCreate is an application which allows the user to create a "blank" Object Template. Such a Template

will have null StringReferences and MsgReferences (see the Resource File Format section of the Acorn C/

C++ User Interface Toolbox Manual). This will allow ResEd to be used to edit the Template once it has

been created. Typically, a creator of a new Object Module will use this bootstrap mechanism to add

knowledge of new Object Template prototypes to ResEd. This can be done as follows:

1. Use ResCreate to create a blank Object Template in a Resource File.

2. Load this file into ResEd, and set up a suitable 'prototype' Object Template, saving this

 back to the Resource File you have just created.

3. Merge this Resource File into the ResEd !Misc.Palette file.

4. Add a line to ResEd's !Misc.!Config file for the new Object Template of the form:

<class number>,<template name>,<sprite name>

 where sprite name is the name of a sprite to use in ResEd's prototype window.

5. Create a sprite suitable for this Template and merge it into ResEd's !Misc.!Icons and

 !Misc.!Icons22 sprite files. The sprite should be called "obj_<name>" following the

 convention used for existing Object Classes.

ResTest

ResTest can display Toolbox Events for new Object Classes by modifying its Standard and TBlockMess

files. This process is explained in Application Note 281 (Writing Tooolbox Gadgets) in the section

"Modifying !ResTest".

11 A Generic Object Module

Included with this Application Note is a floppy disc containing an example "Generic" Object Module which

doesn't actually implement a new Object Class, but is the skeleton for such a Module. It deals with

initialisation, service call handling, SWI dispatching, event handling, task handling, registering with

19

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

Toolbox, resource file handling, and message file handling.

The example has a makefile for use when building it. Also on the disc is a program called ResGen (in the

library directory) which you should copy onto your Run$Path. This program creates an AOF file given an

arbitrary input file, containing an AOF Area and a function to call by which to reference that area. The

return value of this function can then be used to register a file with ResourceFS. The Generic Object

Module contains an empty Resource File into which an Object Module which uses underlying Objects could

place its Templates. For example the SaveAs Module uses a Resource File to store its underlying Window

Templates. Many Object Modules will not need an embedded Resource File (eg Iconbar, Menu etc), so this

can be removed from such Modules if they are based on Generic.

The code for Generic is supplied "as is" and no guarantees are given as to its correctness, it is purely there to

serve as supporting material for this text.

Note: the Object Modules which were released with Acorn C/C++ use a module called TinyStubs to reduce

their size by sharing a single copy of the "Stubs" object file, and sharing library static data. This requires a

special version of the linker, and may be made available to developers at a later date.

Appendix 1: Adding a Class Specific Editor to ResEd

The ResEd shell provides facilities for creating, copying and moving objects, but does not directly provide

facilities for displaying and altering the class-specific data attached to objects. This work is delegated to a

number of Class Specific Editors (CSEs). A CSE is a small and specialised WIMP application that provides

editing operations appropriate to one or more ToolBox object classes. This architecture has several

advantages over the simpler approach of having one big program: each program is manageable in terms of

size and complexity; the programs can be loaded incrementally; and new CSEs can be added later as new

classes become available.

ResEd communicates with its CSEs by means of a simple message protocol, described fully later in this

section. As far as the user is concerned, the separation between the ResEd shell and the various CSEs is not

apparent; CSEs are started automatically as required, the intention being to make CSEs look like windows

and dialogue boxes of the main ResEd application. As such, CSEs have certain differences from normal

WIMP applications:-

 - Started automatically by ResEd

 - No icon-bar icon

 - No explicit loading and saving of data

When the user double-clicks on an object's icon in the document display, ResEd first looks up the object's

class number. It generates a command to run the correct CSE based on this number (see later). This

command is passed to Wimp_StartTask. ResEd caches the task ID of the resulting task, so that future

attempts to edit objects of this class can be passed to the same invocation of the CSE.

ResEd then asks the CSE to edit the object. It does this by sending a message to the CSE; see later for

details. The data format used for transferring an object to and from the CSE is identical to the data that

would represent the object within a Resource file on disk.

On receiving the object data, the CSE displays whatever editing window or dialogue box is appropriate for

the object. As the user makes changes, the CSE informs ResEd that the object has been modified by means

20

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

of a message. ResEd uses this information to record which objects are out of date in its own data structures.

The CSE does not send the updated object back to ResEd (unless explicitly requested to do so by the Shell)

until the user clicks on its OK button (or closes the window, for CSEs that feature "direct manipulation" of

the object). Transfer back to the ResEd shell is in Resource file format using the same message protocol

that was used for loading the object.

Each CSE is capable of editing more than one object at a time. To keep track of objects in the system, the

ResEd shell associates an opaque "Document ID" with each loaded Resource file, and an opaque "Object

ID" with each object. These IDs are quoted in all messages and together uniquely identify an object in the

message protocols between ResEd shell and CSE.

9.1 Document Modified flag

CSE windows fall into two categories according to the style of interaction they use. Simple CSEs are

merely dialogue boxes with OK and Cancel buttons. The object data is sent back to the shell when the user

clicks OK. Until then, the document window's modified flag is not set. If the user invokes a Save operation

from the shell while there are unconfirmed changes in the dialogue box, it is the old copy of the data that

gets saved.

More complex CSEs offer direct manipulation of an object's representation (for example, the Window

CSE). To give the illusion of the document being changed as the user works, the CSE sends a message to

the shell when the first change is made and the shell updates the document's title bar to show the "modified"

flag. The modified data is not normally transmitted back to the shell until the user closes the CSE window.

However, if the user invokes a Save operation from the shell while there are unconfirmed changes in the

window, the shell retrieves the latest version of the object automatically.

It is noted that there is inconsistency between these two categories of CSE window. It is hoped the user's

perception that the first type is a "dialogue box" and the second type a "window" will minimise confusion.

9.2 Sprite relocations

Sprite Area Reference relocations in the Resource file format indicate which words in the data need to be set

to point to the application's private sprite area when loaded by the ToolBox. CSEs like the Window CSE

that allow the user to specify an indirected sprite icon should include a "Private Sprite Pool" option button

which controls where the sprite is to be found. If the button is on, the sprite is to be sought in the

application's sprite area before looking in the Wimp sprite pool.

If the button is on, the CSE sets the sprite area reference to 0; if it is off, a NULL reference (-1) is stored. In

both cases, a corresponding sprite area reference relocation is recorded. When loading the Resource file, the

Toolbox will replace a non-NULL sprite area reference by a pointer to the client application's sprite area,

and will replace a NULL reference by 1 (meaning the Wimp Sprite pool).

9.3 Multiple versions of classes

The standard object header includes a version number for the object's class. This is included so that future

releases of a class module can remain compatible with old object data. The CSE should check the version

number of each object it loads, and interpret the object data accordingly, thus offering the same degree of

backwards compatibility as the class module. If the object version is more recent than the CSE, the latter

21

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

should issue an error and refuse to load the object. It is then up to the user to obtain and install a more

recent version of the CSE.

9.4 Message Protocols

The interaction between the ResEd shell and the CSEs is managed by a simple message protocol.

The ResEd shell starts CSEs on demand. The first time it needs to edit an object of a particular class, it

starts the appropriate CSE as a new task. It records the task ID of the CSE in a table mapping class IDs to

CSE task IDs. When the user subsequently double-clicks on another object that can be edited by the CSE,

the shell sends the editing request to the same CSE task rather than starting a new one. Thus CSEs must be

prepared to edit more than one object at a time.

A CSE can provide editing facilities for a number of classes. This is useful where several different classes

have similar characteristics, as they can share a common editor thus reducing memory usage, etc.

Data transfer from the shell to the CSE

RESED_OBJECT_LOAD (Recorded delivery)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_OBJECT_LOAD

R1+20 Flags:

 Bit 0 set: force re-loading even if object currently open

 All other bits reserved (should be zero)

R1+24 Document ID: opaque handle chosen by shell

R1+28 Object ID: opaque handle chosen by shell; unique within a document

R1+32 Object's class

R1+36 Object's version

R1+40 Object's address: position of object data in sender's address space

R1+44 Object size: length of object data in bytes

R1+48 Object name (NUL-terminated)

This message is sent by the shell to a CSE to ask it to load an object for editing. This message is sent

directly to the CSE (after the the shell has started it, if necessary). The message is sent recorded delivery,

and the CSE is expected to reply. If the message bounces, the shell assumes that the CSE has died; it posts

a warning message for the user but does not attempt to restart the CSE (to prevent possible looping).

The Document ID and Object ID are opaque handles that uniquely identify the object to the CSE. These

IDs are used to identify objects in the following messages, rather than object names.

On receiving this message the CSE should allocate a block of memory of sufficient size, and then obtain the

data using Wimp_TransferBlock with the address and size information provided. It should make a note of

the document and object IDs so that the object can be looked up in response to future messages. Note in

particular that the CSE does NOT use the object's name for this purpose, as this would fail when objects are

renamed.

22

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

If the CSE receives this message when it already has the specified object loaded, then it should merely raise

its editing window to the top of the window stack. However, if bit 0 of the flags word is set, it should re-

load the object's data, and update its data structures and windows to reflect this. This is because the shell

needs to flush changes after the "edit messages" option is used - see later.

The object name is for the CSE's information only - it may display the name in window titlebars, etc, but

must not provide a user-interface for changing the name.

When the CSE has loaded the object data, it should reply with the message RESED_OBJECT_LOADED

(even if it merely raised an existing window). If for any reason it was unable to load the data, it should still

reply with RESED_OBJECT_LOADED, setting flags bit 0 as described below.

RESED_OBJECT_LOADED (Normal message)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (copied from my_ref of RESED_OBJECT_LOAD)

R1+16 RESED_OBJECT_LOADED

R1+20 Flags:

 Bit 0 set: load failed, error code is at R1+32

 All other bits reserved (should be zero)

R1+24 Document ID: as quoted in RESED_OBJECT_LOAD

R1+28 Object ID: as quoted in RESED_OBJECT_LOAD

If flags bit 0 is set, the following additional field applies:-

R1+32 Error code

When the CSE has successfully loaded an object in response to RESED_OBJECT_LOAD, it should reply

with RESED_OBJECT_LOADED with flags bit 0 clear. This message tells the shell that the transfer was

successful.

If the transfer was unsuccessful, the CSE should still reply with this message, setting bit 0 of the flags word

to inform the shell that the load failed. The error code may be used by the shell to determine how to handle

the error. Valid error codes are:-

0 - out of memory

1 - CSE cannot handle the requested version of this object

2 - invalid or corrupt data

3 - non-fatal internal error

4 - fatal internal error

The CSE should also display an error message to the user explaining why the object was not loaded. The

shell will not display any error message in this instance.

Data transfer from the CSE to the shell

Transfer of object data back from the CSE to the shell may be initiated by either party.

23

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

i) Initiated by the CSE

RESED_OBJECT_SENDING (Recorded delivery)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_OBJECT_SENDING

R1+20 Flags:

 Bit 0 set: cannot send object, error code is at R1+32

 All other bits reserved (should be zero)

R1+24 Document ID: opaque handle chosen by shell

R1+28 Object ID: opaque handle chosen by shell; unique within a document

R1+32 Address of object data in CSE's address space

R1+36 Size of object data

If flags bit 0 is set, the following additional field applies:-

R1+40 Error code

When the user clicks the OK button or the Close icon of a CSE window, the CSE needs to transmit the

object back to the shell (if it has changed). The CSE sends RESED_OBJECT_SENDING to the ResEd

shell task that owns the object, quoting the correct document ID and object ID, and the address and size of

the object data. Flags bit 0 of the message shall be clear.

The shell determines which object is being updated. It allocates a buffer of the size quoted in the

RESED_OBJECT_SENDING message, and then transfers the data with Wimp_TransferBlock. If this is

successful, it then de-allocates the old data associated with the object and stores the newly-received data

instead. It clears its internal modified flag for the object and sets the modified flag on the document,

placing a "*" in the titlebar.

The shell then replies to the RESED_OBJECT_SENDING message with RESED_OBJECT_LOADED so

that the CSE is aware that the transfer was successful. The CSE can now clean up its data structures, close

its window etc. If the CSE does not receive a reply to the message, it should just deallocate any temporary

storage that it allocated for the transaction.

If the shell is unable to load the object - for example, if it cannot allocate memory - it replies with

RESED_OBJECT_LOADED, setting flags bit 0 and inserting a suitable error code into the reply. The shell

then displays the error message. This will typically say "There was not enough memory for this operation -

please free some memory and try again". On receipt of RESED_OBJECT_LOADED with the error

indication, the CSE tidies up any temporary store allocated for the transaction, but does not close the object.

ii) Initiated by the shell

When the shell needs to save the document (or part thereof) it must reclaim the latest version of any objects

that are currently being modified in CSEs. This is only done for objects which are known to have been

modified (ie RESED_OBJECT_MODIFIED has been received), or for certain "force-loaded" objects (see

24

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

section 5.2.3). The shell requests the updated object using the following message:-

RESED_OBJECT_SEND (Recorded delivery)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_OBJECT_SEND

R1+20 Flags:

 Bit 0 set: delete after successful send (see section 5.2.3)

 All other bits reserved (should be zero)

R1+24 Document ID: opaque handle chosen by shell

R1+28 Object ID: opaque handle chosen by shell; unique within a document

The CSE should reply to this message using RESED_OBJECT_SENDING sent recorded delivery, passing

the address and size of the object data back to the shell. The transfer then proceeds as detailed in 5.1.1. The

shell will reply with RESED_OBJECT_LOADED sent as a normal message (not recorded delivery). The

shell should clear it's modified flag for the object, and set the modified flag for the document. When the

CSE receives the RESED_OBJECT_LOADED message, it should clear its internal "modified" flags for the

object, and deallocate any temporary storage that was used for the transfer. If bit 0 was set in the original

RESED_OBJECT_SEND message, the object should now be deleted from the CSE; if not, no further action

is necessary (and the window for the object should be left open).

There are several points at which the above transaction could fail.

a) If the CSE is unable to honour the shell's RESED_OBJECT_SEND

message, it should reply with RESED_OBJECT_SENDING (sent as a normal message, not recorded

delivery). It should set flags bit 0 of this message, and insert an error code. The CSE should also display an

error message to the user. The error code may be used by the shell to determine how to handle the error.

Valid error codes are:-

0 - out of memory

1 - object is unknown

3 - non-fatal internal error

4 - fatal internal error

On receipt of this message, the shell cancels the operation that caused the object recovery to take place

(save, export messages, etc).

b) If the shell is unable to honour the CSE's RESED_OBJECT_SENDING message, it should reply with

RESED_OBJECT_LOADED setting flags bit 0 and inserting an error code as described in section 5.1. The

shell should then display an error message to the user and cancel the transaction. The CSE should

deallocate any temporary storage that was used for the transfer. The CSE may use the error code to

determine what went wrong, but it should not display an error message because the shell has already done

so.

c) If the shell's RESED_OBJECT_SEND message bounces, it is probably because the CSE has died. It

should move on to the next object requiring recovery; tidying up after the dead CSE is done in response to

the Wimp_TaskCloseDown message.

25

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

d) If the CSE's RESED_OBJECT_SENDING message bounces, it should just deallocate any temporary

storage that it allocated for the transaction.

Note: Dialogue-box style CSEs that do not send the message RESED_OBJECT_MODIFIED will only

receive RESED_OBJECT_SEND under the circumstances described in section 5.2.3 below.

iii) Importing revised messages

If an object's messages have been changed as a result of importing a revised messages file, then that object

must be processed by its CSE to ensure that all associated length fields are consistent with the new

messages.

For example, suppose a window's 'helpmessage' field has been changed from "Hello" to "Welcome to my

world"; the associated length field 'maxhelp' must now be at least 20, whereas previously 6 bytes were

sufficient.

The protocol associated with this process is as follows:

The Shell sends RESED_OBJECT_LOAD to the CSE with flag bit 0 set (force load).

If the CSE already holds a copy of the object, it replaces that copy by the new version and refreshes the

associated editing window or main dialogue box, and refreshes or hides any subsidiary dialogue boxes.

If the CSE does not already hold a copy of the object, it loads the object but does not display it (ie no editing

window or main dialogue box is opened).

Note that any length fields are modified to be consistent with their associated message fields as part of this

(re)loading process.

The CSE replies with a RESED_OBJECT_LOADED message.

If the object concerned was, in any case, being edited by the CSE at the time of message import, no further

action is necessary other than for the shell to note that its copy of the object may now be out-of-date.

If, on the other hand, the object was force-loaded into the CSE just to check its length fields, it must now be

immediately retrieved - so the shell sends RESED_OBJECT_SEND to the CSE with flag bit 0 set (delete

after sending).

The CSE replies with a RESED_OBJECT_SENDING message. It should set the your_ref field of this

message from the my_ref field of the RESED_OBJECT_SEND message which was just received.

The shell recovers the revised object data, and replies with a RESED_OBJECT_LOADED message.

The CSE deletes the object, and sends a RESED_OBJECT_CLOSED message to the shell.

Upon receipt of this message the shell marks the object as not being edited and the protocol is complete.

Object status messages

26

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

RESED_OBJECT_RENAMED (Normal message)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_OBJECT_RENAMED

R1+20 Flags: all bits reserved (should be zero)

R1+24 Document ID: as quoted in RESED_OBJECT_LOAD

R1+28 Object ID: as quoted in RESED_OBJECT_LOAD

R1+32 New name: NUL-terminated string

Sent to the CSE by the shell when the user renames an object. If the CSE is holding state for this object it

should update its record of the object's name, and redraw titlebars etc as necessary. Despite the presence of

this message, the CSE should not provide a user-interface to renaming objects, as this is handled centrally

by the shell.

RESED_OBJECT_DELETED (Normal message)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_OBJECT_DELETED

R1+20 Flags: all bits reserved (should be zero)

R1+24 Document ID: as quoted in RESED_OBJECT_LOAD

R1+28 Object ID: as quoted in RESED_OBJECT_LOAD

Sent to the CSE by the shell when the user deletes an object. If the CSE is holding state for this object it

must delete any windows, de-allocate memory, etc. It should do this silently, without asking about unsaved

changes, as this is the responsibility of the shell.

This message is also sent when the user moves a resource from one document to another, or when the

document containing the resource is closed. As far as the CSE is concerned, this is indistinguishable from

deletion.

The given (Document ID, Object ID) pair will not be re-used.

RESED_OBJECT_MODIFIED (Normal message)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_OBJECT_MODIFIED

R1+20 Flags: all bits reserved (should be zero)

R1+24 Document ID: as quoted in RESED_OBJECT_LOAD

R1+28 Object ID: as quoted in RESED_OBJECT_LOAD

27

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

This message allows the shell to track the state of objects when they are altered in a CSE. The shell uses

this information to decide whether it needs to recover the object data when the document (or the object's

messages) is saved. The message is sent from the CSE to the shell when the user modifies the CSE's copy

of an object. The shell records this fact in its data structure describing the object, and also sets the modified

flag for the whole document. The CSE should only send this message when the object's state goes from

"unmodified" to "modified".

Note: CSEs which have "dialogue box-like" behaviour should never send this message. The transfer of

object data from such CSEs is always initiated by the user clicking OK, and the document's "modified" flag

is not set until this is done.

RESED_OBJECT_CLOSED (Normal message)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_OBJECT_CLOSED

R1+20 Flags: all bits reserved (should be zero)

R1+24 Document ID: as quoted in RESED_OBJECT_LOAD

R1+28 Object ID: as quoted in RESED_OBJECT_LOAD

Sent from the CSE to the shell when the object's editing window is closed. This also happens when the user

clicks SELECT on the "Cancel" button or presses ESCAPE, and also when the user SELECT-clicks on the

"OK" button. In the latter case the message should be sent in reply to the RESED_OBJECT_LOADED

message sent by the shell.

The CSE should not send this message in response to RESED_OBJECT_DELETED, as the shell expects

the window to be closed in response to that message.

Other messages

RESED_SPRITES_CHANGED (Broadcast)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_SPRITES_CHANGED

R1+20 Flags: all bits reserved (should be zero)

Broadcast by the Shell when the user has loaded a Sprites file by dragging it to the iconbar icon. CSEs that

are displaying user-specified sprites should redraw their windows on receipt of this message.

RESED_OBJECT_NAME_REQUEST (Normal message)

R1+0 length of block

28

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (copied from my_ref of DataSave message)

R1+16 RESED_OBJECT_NAME_REQUEST

R1+20 Flags: all bits reserved (should be zero)

R1+24 Document ID of requesting object

R1+28 Object ID of requesting object

R1+32 Window handle of destination window

R1+36 Icon handle in destination window (-1 for none)

RESED_OBJECT_NAME (Normal message)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (copied from my_ref of RESED_OBJECT_NAME_REQUEST)

R1+16 RESED_OBJECT_NAME

R1+20 Flags:

 Bit 0 set: request refused

 All other bits reserved (should be zero)

R1+24 Document ID of requesting object (PRESERVED)

R1+28 Object ID of requesting object (PRESERVED)

R1+32 Window handle of destination window (PRESERVED)

R1+36 Icon handle in destination window (-1 for none) (PRESERVED)

R1+40 Class of dragged object

R1+44 Object name: NUL-terminated string

Many CSE dialogue boxes offer a writable icon for the input of an object name (for example the name of an

object to open when an action button is pressed). The user can fill these in by dragging the object's icon

from the shell's document display window into the writable icon (or onto an associated option icon if the

writable is faded).

When such a drag is initiated by the user, the shell does not know that the destination is such a field, so the

shell sends a DataSave message as normal. If the CSE spots that the drag was to an object name writable

field, it replies with RESED_OBJECT_NAME_REQUEST rather than the usual DataSaveAck or RamFetch

messages. When the shell receives this message, it replies with RESED_OBJECT_NAME. It then

considers the DataSave operation complete.

The shell will reply with flags bit 0 set after displaying an error message under the following

circumstances:-

- the document ID quoted in RESED_OBJECT_NAME_REQUEST is different from that of the document

the object was dragged from

- more than one object was dragged

In this case the shell will abort the DataSave operation, and the CSE should leave the writable field

unaltered.

The CSE may check the class field of the reply to ensure that the dragged object was of a suitable type. It

may also check the Object ID field to guard against self-referential links.

29

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

The "Document ID", "Object ID", "Window handle" and "Icon handle" fields are for the CSE's use - the

shell must preserve the contents of these fields when building its reply.

RESED_KEYCUT_DETAILS (Normal message)

R1+0 length of block

R1+4 task handle of sender (filled in by Wimp)

R1+8 my_ref (filled in by Wimp)

R1+12 your_ref (0)

R1+16 RESED_KEYCUT_DETAILS

R1+20 Flags:

 Bit 0 set: this keyboard shortcut raises an event

 Bit 1 set: this keyboard shortcut shows an object

 Bit 2 set: any object shown by this keyboard shortcut is shown transiently

 All other bits reserved (should be zero)

R1+24 Task id of shell

R1+28 Window handle of destination window

R1+32 Key code

R1+36 Event code (valid only if flag bit 0 set)

R1+40 Key name: NUL-terminated string

 Object name: NUL-terminated string - required only if flag bit 1 set

This specialised message is sent from the Window CSE to the Menu CSE after the user has dragged a

keyboard shortcut entry from the Window editor's Keyboard shortcuts scrolling pane to the Menu editor's

Menu entry properties dialogue box (see the relevant Functional Specifications for more details of these

windows). The purpose of the message is to transmit details of a keyboard shortcut from the Window CSE

to the Menu CSE, so that it is easy to make sure that the actions associated with a keypress on a window are

the same as those associated with a menu choice.

9.5 CSE start-up

The CSEs are stored inside a subdirectory of the ResEd application. Each contains a file called !Config

which the shell uses to determine which CSEs offer editing facilities for which classes.

A CSE is started automatically by the shell the first time it is required. The CSE is started by calling

Wimp_StartTask, passing as a parameter the task ID of the shell expressed as a decimal numeric string.

If Wimp_StartTask returns 0, it was not possible to start the task, possibly because there is insufficient free

memory. In this case the shell issues a warning to the user and aborts the operation.

Otherwise the value returned by Wimp_StartTask is the task ID of the newly-started CSE. The shell

immediately sends RESED_OBJECT_LOAD to the task and remembers the task ID for future editing

requests on this class (or any of the other classes that the CSE can handle).

When a CSE is executed, it initially has very little work to do. It first makes a note of the task ID of its

parent shell (passed in on the command line). It will need this information to ensure that it only responds to

messages from its parent task. Next it calls Wimp_Initialise to register itself as a Wimp task. It next

performs any initialisation that it needs for its own internal data structures, and then calls Wimp_Poll. At

30

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

this point the ResEd shell regains control and is told the task ID of the CSE.

CSEs should use an OS variable of the form <CSE{class }$Dir> to communicate their application directory

name from the !Run file into the application, and the application should expand the value and store it before

first calling Wimp_Poll. It should use this expanded value rather than the variable itself when referring to

the contents of its application directory. This precaution is needed to ensure that CSEs from two different

versions of ResEd can co-exist.

9.6 Multiple-class CSEs

To avoid needless code duplication, CSEs may provide editing facilities for more than one class. The shell

uses the information in the CSE's !Config file (see Implementation Notes) to determine which classes it can

edit.

9.7 CSE death

When the shell receives the broadcast message Wimp_TaskCloseDown, it checks the task ID against all the

CSE task IDs it has cached. If the ID matches any of these, then one of the CSEs has unexpectedly died.

The shell removes references to this task ID from its lookup table and resets its private "being edited" flag

on any objects that were currently being edited by that task. Subsequent attempts to edit objects of the class

handled by the dead CSE will result in the task being restarted. Another circumstance when the shell

detects and act on CSE death is when an attempt to send a message to the CSE returns an error.

9.8 Shell death

CSEs should check any Wimp_TaskCloseDown messages they receive. If the task that exited was their

parent, they should immediately exit silently. This is the only mechanism to ensure that CSEs do not

outlive the shell.

9.9 Drag and drop

Drag-and-drop within a particular CSE can be provided as the author of the CSE sees fit. The only drag-

and-drop interaction supported between the shell and the CSE is the dragging of an object from the

document window into a CSE dialogue box in order to enter the object's name in a writable field. The

messages RESED_OBJECT_NAME_REQUEST and RESED_OBJECT_NAME should be used, as

described in an earlier section.

9.10 Standard message protocols

The ResEd shell and its CSEs respond to the following standard message protocols as documented in the

PRM:-

 - Quit protocol

 - Desktop Save protocol

 - Shutdown protocol

31

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 - Interactive Help protocol

9.11 Implementation notes

i) Filetypes and message numbers

The filetype registered for a Resource file is &fae.

Registered message numbers are:

 &83340 MESSAGE_RESED_OBJECT_LOAD

 &83341 MESSAGE_RESED_OBJECT_LOADED

 &83342 MESSAGE_RESED_OBJECT_SEND

 &83343 MESSAGE_RESED_OBJECT_SENDING

 &83344 MESSAGE_RESED_OBJECT_RENAMED

 &83345 MESSAGE_RESED_OBJECT_DELETED

 &83346 MESSAGE_RESED_OBJECT_MODIFIED

 &83347 MESSAGE_RESED_OBJECT_CLOSED

 &83348 MESSAGE_RESED_SPRITES_CHANGED

 &83349 MESSAGE_RESED_OBJECT_NAME_REQUEST

 &8334a MESSAGE_RESED_OBJECT_NAME

 &8334b MESSAGE_RESED_KEYCUT_DETAILS

ii) Directory structure

The structure of !ResEd's directory hierarchy is as follows:-

!ResEd Top-level application run by user

 !Boot !Boot file for the shell

 !Help !Help file for the shell

 !Run !Run file for the shell

 !RunImage !RunImage file for the shell

 Templates Wimp templates for the shell

 Messages Messages and interactive help for the shell

 !Sprites, !Sprites22 Resource filetype and application icon sprites

 Sprites, Sprites22 Sprites used by the shell

 CSE Directory containing CSEs

 !Menu CSE for class Menu

 !Help its !Help file

 !Run its !Run file

 !RunImage its !RunImage file

 !Config CSE description file - see below

 !Palette Palette entries for the shell - see below

 !Icons, !Icons22 Sprites file containing class icon(s) - see below

 Templates Wimp templates for the CSE

 Sprites its sprites (if any)

 Messages its messages and interactive help

 Palette Palette entries for its palette (if any)

 !Window CSE for class Window

32

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

 <as for !Menu>

 !Misc CSE for other classes

 <as for !Menu>

!ResEd.Sprites contains all the sprites used internally by the shell. It does not contain the sprites to be used

for the various object's icons; these are loaded from the individual CSEs.

The !ResEd.CSE directory contains all the CSE applications. The names assigned to these are arbitrary.

CSE apps contain three special files used by the Shell to determine information about the CSE before it has

been started. The shell walks the CSE directory and reads the following files from each:-

!Config: a text file describing this CSE. The file contains one line for each class handled by the CSE,

containing three comma-separated fields: the hexadecimal class ID, the human-readable class name, and the

sprite name to be used when looking up the class' icon sprite.

eg 0x828c0,Menu,obj_menu

!Icons: sprites file containing the icon sprites for the class(es) edited by the CSE. The shell loads this with

*iconsprites.

!Palette: a Resource file containing prototype objects for the classes edited by the CSE. The shell merges

the !Palette files from all the CSEs to create its palette.

9.12 General behaviour and standards

ResEd's user interface adheres to the recommendations in the second edition of the RISC OS Style Guide.

Also, its editing capabilities are designed to encourage the creation of Style Guide compliant applications.

ResEd's selection model and drag-and-drop system operate according to the following Support Group

application notes:-

 The RISC OS Selection Model and Clipboard

 The RISC OS Drag and Drop System

In particular (and in addition) the following general dialogue box ("dbox") behaviour is supported wherever

possible by both the Shell and all CSEs:

Clicking ADJUST on the default action button (eg on "OK") applies a dbox but does not remove

it from the screen.

Clicking ADJUST on the cancel action button (eg on "Cancel") resets the state of the dbox to

that which it had when it was last opened (or when ADJUST was last clicked on its default

action button).

Wherever option or radio buttons control the relevance of other icons in the dbox, these icons

are unfaded only when it is sensible to use them; for example, the writable into which Help Text

is written is unfaded only when the corresponding option button is ticked.

When a dbox has the input focus:

33

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

TAB/SHIFT-TAB or DOWN/UP CURSOR keys will cycle the caret through any

unfaded writables.

Pressing RETURN has the same effect as clicking SELECT on the default action button.

Pressing SHIFT-RETURN has the same effect as clicking ADJUST on the default action button.

Pressing ESCAPE has the same effect as clicking SELECT on the cancel action button.

Pressing SHIFT-ESCAPE has the same effect as clicking ADJUST on the cancel action button

(but note that the Wimp does not allow this for transient dialogue boxes).

Clicking in any dbox gives it input focus (even if it has no writables).

When a dbox is first opened, input focus is given to it and the caret is placed in the first

unfaded writable, if any.

When the state of an option or radio button is changed in such a way that some corresponding

writable containing the caret is faded, then the caret is removed from that faded icon and placed in

the next unfaded writable, if any.

If an option or radio button associated with a writable is switched on, then the caret is

immediately placed in that writable.

When a dialogue box is closed, the input focus is returned to its "parent" window.

Numeric values can normally be entered in either hexadecimal or decimal: the former is indicated

by an initial "&". Many values, such as event codes and component ids, are displayed in

hexadecimal, this being indicated once more by an initial "&".

Any message or string field inside an object template contains either a string or a NULL value. In some

cases there is no difference in behaviour between a NULL value and an empty string, and in such situations

ResEd will always save a NULL value (rather than an empty string) since this occupies less space in the

Resource File. When there *is* a difference, the CSE will provide an option or radio button whose state

determines whether the field is set to an explicit string value or to NULL.

Many object templates include message or string fields which have length fields associated with them. For

example, a window object template has a "helpmessage" field with an associated "maxhelp" field. In such

cases, the length field determines the size of buffer allocated for the text field whenever an object is created

from the template; in other words, it determines the size of the longest string that can ever be assigned to the

text field of that object at run-time. Continuing the example, if "maxhelp" is set to 20, then any string set by

the Window_SetHelpMessage method must always be at most 19 characters long (one byte must be allowed

for the NULL terminator).

In many cases, the client application will never wish to change the text field at run-time, and so the buffer

length should be chosen so that the fixed string just fits. To make this easy to do, each CSE allows the user

to specify "*" as the value of a length field - and will then set the corresponding field of the object template

according to the length of the associated text field value. The precise rules are as follows:

Let N be the value of the length field inside the object template,

and let L, the length of the corresponding text field, be defined as follows:

34

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

If the text field is NULL, L = 0.

If the text field contains the string s, then L = strlen(s) + 1.

(Note that it is possible to have a NULL text field with a non-zero length field.)

During the editing process, the value of N can be an integer >= 0 or can be the special value "*".

But "*" cannot be represented inside the object template itself, and so translation has to take

place when the object is loaded into the CSE, and when it is returned to the shell.

When an object is loaded into a CSE for editing, N is set to "*" if and only if N = L.

When an object is returned to the shell, any "*" value is replaced by 0 (if the text field is NULL) or

by strlen(s) + 1 (if the text field contains a non-NULL value s).

The loading process also makes sure that every length field is at least large enough to contain

its corresponding string: if N < L, then N is set to "*". (This is how CSEs restore consistency

after message import.)

When editing a length field in a dialogue box, the user may enter any positive integer or an

asterisk. When he applies the dbox (by clicking on OK) the CSE again ensures that the field is

large enough for the corresponding string: any numerical value entered by the user that is too small

is replaced by the minimum value necessary (ie strlen(s) + 1).

Other user interface behaviour common to all components of ResEd includes:

Pressing ESCAPE will cancel any user drag or "lassoo" operation, and will hide any menu on display.

Keyboard shortcuts are inoperative during a drag or lassoo interaction, and will cancel any menu

on display.

Pressing any one of the four cursor keys during a drag or lassoo interaction will "nudge" the pointer

in the corresponding direction by 4 OS units.

All coordinates (position and size) are forced to be exact multiples of 4 OS units.

"Auto-scrolling" is supported for all drag and lassoo operations. If the mouse pointer remains close

to the edge of a window for long enough, the pointer changes shape and the window will scroll in

that direction; the speed of scrolling increases as the pointer gets closer to the edge of the

window. This means that the user must drag decisively in order to move an object from one window

to another.

Clicking on an adjuster arrow changes the associated numerical value by a small amount (usually 1);

if SHIFT is held down at the same time, the associated value is changed by a larger amount

(usually 10).

35

26th April 1995Support Group Application Note No. 280, Issue 0.00

Support Group Application Note No. 280, Issue 0

