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;This program claims the mouse, setting up an interrupt routine to note the mouse information as it comes

;in.  The main program prints out the current state of the mouse continually until both mouse buttons are

;depressed.  We then release the mouse and exit gracefully.

;  To produce a .EXE file use DRI tools

;

;  RASM86.EXE MOUSE

;  LINK86.EXE MOUSE

;

Cr equ 13

Lf equ 10

Bdos equ 21h

Print_string equ 9

Exit equ 4c00h

Mouse_button_exit equ 5 ; both buttons down

OEM_Mouse equ 134

Claim_Mouse equ 0

Release_Mouse equ 1

XIOS_ENTRY equ dword ptr .0028h

dos_plus_RLR equ word ptr .4eh

cseg

mov dx, offset msg_header

mov ah, Print_string

int Bdos ; say hello

call init_xios_calls ;initialist the XIOS routine

call install_mouse ; install mouse interrupt handler

print_loop:

call display_info ;display state of the mouse

cmp cs: mouse_buttons, Mouse_button_exit

jne print_loop ; should we exit?

call remove_mouse ; remove mouse interrupt handler

mov ax, Exit ; and exit the program

int Bdos

;

;  This interrupt routine is called by Dos Plus with the current state of the mouse.  Save this information and 

;  return with a RETF, all registers should be preserved.

i_mouse:

;-----------

; On entry AX = mouse buttons

; CX = mouse X coordinates
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; DX = mouse Y coordinates

;

; Note that you cannot make DOS system calls from within an interrupt safely, so the information is simply

; stored for display later

;

mov cs: mouse_buttons, ax

mov cs: mouse_x_loc, cx

mov cs: mouse_y_loc, dx

retf

mouse_buttons dw 0

mouse_x_loc dw 0

mouse_y_loc dw 0

display info:

;--------------

;

; Print mouse status in the form

; "X = nnnn Y = nnnn Buttons = nnnn"

;

mov dx, offset msg_x_coord

mov ah, Print_string

int Bdos

mov ax, cs: mouse_x_loc

call display_word

mov dx, offset msg_y-coord

mov ah, Print_string

int Bdos

mov ax, cs: mouse_y_loc

call display_word

mov dx, offset msg_buttons

mov ah, Print_string

int Bdos

mov ax, cs: mouse_buttons

call display_word

mov dx, offset msg_return

mov ah, Print_string

int Bdos

ret

display_word:

;----------------

;

; Display the contents of AX in as a Hex word of the form "nnnn"

;

push ax
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mov al, ah

call display_byte

pop ax

display_byte:

push ax

mov cl, 4

shr al, cl

call display_nibble

pop ax

display_nibble:

and al, 0fh

mov bx, offset bin_to_ascii

xlat al

mov dl, al

mov ah, 2

int 21h

ret

ini5_xios_calls:

;------------------

int 0feh ; get @sysdat address

mov sysdat, ax ; and save for later

ret

xios:

;-----

push ds ; we must first

mov ds, sysdat ; point DS at the SYStem DATa

push es   area

mov es, DOS_PLUS_rlr ; point ES at User Data Area

; which is in Ready List Root

callf XIOS_ENTRY ; and we can then call the XIOS

pop es

pop ds

ret

install_mouse:

;-----------------

pushf ; turn off interrupts

cli

mov ax, OEM_Mouse

mov cl, Clain_Mouse ; take over the mouse

mov bx, cs ; BX:DX = address of our interrupt routine

mov dx, offset i_mouse

call xios

popf ; interrupts OK now
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ret

remove_mouse:

;------------------

pushf ; no interrupts

cli

mov ax, OEM_Mouse

mov cx, Release_Mouse ; release mouse

call xios

popf

ret

dseg

msg_header db 'Mouse Demo Program', cr, lf, '$'

msg_x_coord db '  X = $ '

msg_y_coord db '  Y = $ '

msg_buttons db '  Buttons = $ '

msg_return db Cr, '$'

bin_to_ascii db '0123456789ABCDEF'

sysdat dw 0

sseg

rw 200 ; some stack for the program

end
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