

Master 512:

Mouse Driver Demo Program

This program demonstrates how to interface to the Acorn Master 512 mouse.

Applicable

Hardware :
BBC Master 512

Support Group

Acorn Computers Limited

Acorn House

Vision Park

Histon

Cambridge CB4 4AE

Related

Application

Notes:

Copyright © Acorn Computers Limited 1992

Every effort has been made to ensure that the information in this leaflet is true and correct at

the time of printing. However, the products described in this leaflet are subject to continuous

development and improvements and Acorn Computers Limited reserves the right to change

its specifications at any time. Acorn Computers Limited cannot accept liability for any loss

or damage arising from the use of any information or particulars in this leaflet. ACORN,

ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited.

7th August 1992

Support Group Application Note

Number: 051

Issue: 1

Author:

;This program claims the mouse, setting up an interrupt routine to note the mouse information as it comes

;in. The main program prints out the current state of the mouse continually until both mouse buttons are

;depressed. We then release the mouse and exit gracefully.

; To produce a .EXE file use DRI tools

;

; RASM86.EXE MOUSE

; LINK86.EXE MOUSE

;

Cr equ 13

Lf equ 10

Bdos equ 21h

Print_string equ 9

Exit equ 4c00h

Mouse_button_exit equ 5 ; both buttons down

OEM_Mouse equ 134

Claim_Mouse equ 0

Release_Mouse equ 1

XIOS_ENTRY equ dword ptr .0028h

dos_plus_RLR equ word ptr .4eh

cseg

mov dx, offset msg_header

mov ah, Print_string

int Bdos ; say hello

call init_xios_calls ;initialist the XIOS routine

call install_mouse ; install mouse interrupt handler

print_loop:

call display_info ;display state of the mouse

cmp cs: mouse_buttons, Mouse_button_exit

jne print_loop ; should we exit?

call remove_mouse ; remove mouse interrupt handler

mov ax, Exit ; and exit the program

int Bdos

;

; This interrupt routine is called by Dos Plus with the current state of the mouse. Save this information and

; return with a RETF, all registers should be preserved.

i_mouse:

;-----------

; On entry AX = mouse buttons

; CX = mouse X coordinates
2

7th August 1992Support Group Application Note No. 051, Issue 1

Support Group Application Note No. 051, Issue 1

; DX = mouse Y coordinates

;

; Note that you cannot make DOS system calls from within an interrupt safely, so the information is simply

; stored for display later

;

mov cs: mouse_buttons, ax

mov cs: mouse_x_loc, cx

mov cs: mouse_y_loc, dx

retf

mouse_buttons dw 0

mouse_x_loc dw 0

mouse_y_loc dw 0

display info:

;--------------

;

; Print mouse status in the form

; "X = nnnn Y = nnnn Buttons = nnnn"

;

mov dx, offset msg_x_coord

mov ah, Print_string

int Bdos

mov ax, cs: mouse_x_loc

call display_word

mov dx, offset msg_y-coord

mov ah, Print_string

int Bdos

mov ax, cs: mouse_y_loc

call display_word

mov dx, offset msg_buttons

mov ah, Print_string

int Bdos

mov ax, cs: mouse_buttons

call display_word

mov dx, offset msg_return

mov ah, Print_string

int Bdos

ret

display_word:

;----------------

;

; Display the contents of AX in as a Hex word of the form "nnnn"

;

push ax
3

7th August 1992Support Group Application Note No. 051, Issue 1

Support Group Application Note No. 051, Issue 1

mov al, ah

call display_byte

pop ax

display_byte:

push ax

mov cl, 4

shr al, cl

call display_nibble

pop ax

display_nibble:

and al, 0fh

mov bx, offset bin_to_ascii

xlat al

mov dl, al

mov ah, 2

int 21h

ret

ini5_xios_calls:

;------------------

int 0feh ; get @sysdat address

mov sysdat, ax ; and save for later

ret

xios:

;-----

push ds ; we must first

mov ds, sysdat ; point DS at the SYStem DATa

push es area

mov es, DOS_PLUS_rlr ; point ES at User Data Area

; which is in Ready List Root

callf XIOS_ENTRY ; and we can then call the XIOS

pop es

pop ds

ret

install_mouse:

;-----------------

pushf ; turn off interrupts

cli

mov ax, OEM_Mouse

mov cl, Clain_Mouse ; take over the mouse

mov bx, cs ; BX:DX = address of our interrupt routine

mov dx, offset i_mouse

call xios

popf ; interrupts OK now
4

7th August 1992Support Group Application Note No. 051, Issue 1

Support Group Application Note No. 051, Issue 1

ret

remove_mouse:

;------------------

pushf ; no interrupts

cli

mov ax, OEM_Mouse

mov cx, Release_Mouse ; release mouse

call xios

popf

ret

dseg

msg_header db 'Mouse Demo Program', cr, lf, '$'

msg_x_coord db ' X = $ '

msg_y_coord db ' Y = $ '

msg_buttons db ' Buttons = $ '

msg_return db Cr, '$'

bin_to_ascii db '0123456789ABCDEF'

sysdat dw 0

sseg

rw 200 ; some stack for the program

end

5

7th August 1992Support Group Application Note No. 051, Issue 1

Support Group Application Note No. 051, Issue 1

