
Welcome

Welcome to the AutoMate™ COM Objects Help.

The AutoMate™ COM Objects provide a programmatic interface to the power of AutoMate™.    Use
these objects to change task properties.

CurrentTask Object
Properties Methods

NOTE: The CurrentTask object has been deprecated. Use the CurrentTask2 object instead.

The CurrentTask object encapsulates the properties of a task, and methods that act upon that task.

Description
The CurrentTask object contains properties and methods to allow you to view and modify attributes of
the currently executing task. Use this object to control specific parts of the executing task “on- the-fly.”

When a script is started, AutoMate™ automatically instantiates an CurrentTask object and populates it
with the properties of the currently running task. This object is referred to as “CurrentTask.”    Use
CurrentTask to access and modify the properties of the currently running task, as well as performing
actions on the task, such as rescheduling and saving it to a file.

CurrentTask Properties
CurrentTask Legend

    TaskName
    LaunchDate

LaunchTime
Frequency
Interval
IntervalType
RunLate
ScheduleLate
Active
Triggers
Hotkey
WindowName

 StepCount
Details

 FrequencyString
Events

TaskName Property
CurrentTask Example

Specifies the name of the currently executing task.

Declaration
Dim TaskName As Variant

Description
Use the TaskName property to retrieve or set the name of the currently running task. If you change the
name of the task during execution of your script, be sure it is unique. Problems may arise in the
AutoMate™ Configuration Manager if you attempt to set the task to a name that already exists in your
tasklist.

Accessibility

 Read Only Property

LaunchDate Property
CurrentTask Example

Specifies the date the task is next scheduled to launch.

Declaration
Dim LaunchDate As Variant

Description
Use the LaunchDate property to retrieve or set the date the task is scheduled to launch. The property
is set when the task begins execution. The date format must follow the format set in Regional Settings.
The new LaunchDate is set when the task finishes executing.

To view the format required for your regional settings, view Regional Settings from the Control Panel.
Click the “Date” tab and note the “Short Date Format.” This is the format that AutoMate™ expects.

NOTE: Be careful when changing the LaunchDate of a task that uses the Schedule trigger.    Because
the LaunchDate is set when the task starts executing, the schedule trigger may change the date on
you while the task is executing. Therefore, use caution when adjusting the LaunchDate relative to its
initial value.

LaunchTime Property
CurrentTask Example

Specifies the time the task is next scheduled to launch.

Declaration
Dim LaunchTime As Variant

Description
Use the LaunchTime property to retrieve or set the time the task is scheduled to launch. The property
is set when the task begins execution. The time format must follow the format set in Regional Settings.
The new LaunchTime is set when the task finishes executing.

To view the format required for your regional settings, view Regional Settings from the Control Panel.
Click the “Time” tab and note the “Time Style.” This is the format that AutoMate™ expects.

NOTE: Be careful when changing the LaunchTime of a task that uses the Schedule trigger.    Because
the LaunchTime is set when the task starts executing, the schedule trigger may change the time on
you while the task is executing. Therefore, use caution when adjusting the LaunchTime relative to its
initial value.

Frequency Property
CurrentTask Example

Specifies the how often the schedule task runs.

Declaration
Dim Frequency As Integer

Description
Use the Frequency property to specify how often the task will run.

The Frequency property is an integer value. Use one of the following three integer values to specify
how the task reschedules.

Value Meaning Description
0 Once The task will run once, and become inactive afterwards
1 Every After running, the task will reschedule itself based on the values

on IntervalType, Interval, RunLate and ScheduleLate properties)
2 Manual Will run only when explicitly told to do so, ignoring the schedule.

IntervalType Property
CurrentTask Example

Specifies the interval at which the task will be rescheduled.

Declaration
Dim IntervalType As Integer

Description
Use the IntervalType property to specify the denomination at which the task is to be rescheduled. Use
in conjunction with the Frequency property set to “Every” (integer value 1).
Set IntervalType to one of the following integer values to specify how the task is rescheduled:

Value Meaning Description
0 Minute Schedules the task every x minutes
1 Hour Schedules the task every x hours
2 Day Schedules the task every x hours
3 Week Schedules the task every x weeks
4 Weekday Schedules the task every x weekdays
5 Weekend Schedules the task every x weekend
6 Bi-week Schedules the task every x bi-weeks (i.e. every 2(x) weeks)
7 Month Schedules the task every x months
8 Quarter Schedules the task every x quarters (i.e., every 4(x) months)
9 Year Schedules the task every x years
10 Seconds Schedules the task every x seconds

  where x is the interval specified by the Interval property.

Interval Property
CurrentTask Example

Specifies the scalar at which to reschedule the task. Used in conjunction with the IntervalType.

Declaration
Dim Interval As Integer

Description
Set Interval to the integer value specifying the scalar amount to use with the IntervalType. For
example, if IntervalType is set to “3” (for “Weeks”), setting the Interval to “2” will cause the task to
reschedule every 2 weeks.

RunLate Property
CurrentTask Example

Controls run action when the task is overdue.

Declaration
Dim RunLate As Integer

Description
Set RunLate to one of the following integer values to specify how the task should react to being late:

Value Meaning Description
0 Immediately The task is run immediately when the task becomes late.
1 Don’t Run The task is not to run at all.
2 Prompt A dialog box appears, asking whether or not to run the task.

Use with ScheduleLate to specify how the task is reschedule when the task is late.

ScheduleLate Property
CurrentTask Example

Controls reschedule when the task is overdue.

Declaration
Dim ScheduleLate As Integer

Description
Set ScheduleLate to one of the following integer values to specify how the task should be reschedule
when the task is late:

Value Meaning Description
0 Relative to

original
date/time

The task is rescheduled relative to the original date and time the
task was set to launch. (For example. if the task was scheduled
to launch at 10:51, and reschedule every 2 hours, but actually
launches at 11:01, the task will reschedule to 12:51

1 Relative to
launch
date/time

The task is schedules relative to the time the task was launch.   
(For example, if the task was scheduled to launch at 9:51, and
reschedule every 2 hours, but actually launches at 10:01, the
task will reschedule to 12:01)

2 Don’t
reschedule

The task will not reschedule itself, and instead set itself to an
inactive state.

Active Property
CurrentTask Example

Specifies whether or not the task is active.

Declaration
Dim Active As Integer

Description
An active task is one that responds to a trigger. A task set to launch on a schedule or hotkey or any
other trigger will not trigger if it is set to an inactive state. Inactive tasks, however, can still be launched
manually through the AutoMate™ Configuration Manager.

Setting the Active property of a task while the task is executing an AutoMate™ BASIC script will stop
the task from running any steps after a SCRIPT step.

Set the Active property to one of the following integer values to specify its active state:

Value Meaning Description
0 Inactive The task is inactive (or stops, if it is currently running)
1 Active The task is active and responds to triggers

TaskTriggers Property
CurrentTask Example

Specifies the triggers that will launch the task.

Declaration
Dim TaskTriggers As Integer

Description
The TaskTriggers property is an integer value that specifies which triggers will launch the task. To set
the triggers, add the following values together from the table below:

Value Trigger Associated Properties
0 No Trigger None; the task is launched manually only
1 Scheduled LaunchDate, LaunchTime, Frequency, IntervalType,

Interval, RunLate, ScheduleLate
2 Windows Events Events
4 Wait for a Window WindowName
8 Hotkey Hotkey

For example, to set the task to launch on a schedule and a hotkey, the value of the TaskTriggers
property would be 9    (1 + 8 = 9).

Hotkey Property
CurrentTask Example

Specifies the hotkey that is used with the hotkey trigger to launch the task.

Declaration
Dim Hotkey As Variant

Description
Set the Hotkey property to the hotkey to be used to launch the task when one of the triggers is the
Hotkey trigger.

The Hotkey text must be specified in AutoMate’s “Send Keystrokes” format:

Modifier Character to Use
ALT ^

CTRL %
SHIFT &

For example, to use Ctrl-Alt H for a hotkey, the property should be set to %^H.
Remarks
Please note that the characters used to specify a hotkey are different than the characters used to send
the specific key. In other words, in AutoMate and VBA “^c” will send CTRL + c. If you set the hotkey to
“^c” it will be the key combination ALT + c.

WindowName Property
CurrentTask Example

Specifies what window to wait for when the Wait For Window trigger is specified for the task.

Declaration
Dim WindowName As Variant

Description
Set the WindowName property to the full string of the window to wait for to launch the task.

StepCount Property
CurrentTask READ ONLY Example

The number of steps in the task.

Declaration
Dim StepCount As Integer

Description
Read the StepCount property to find out the number of steps in the current task.

Details Property
CurrentTask Example

Stores the details of the task in one continuous string.

Declaration
Dim Details As Variant

Description
The Details property stores the details of the task. The return value is a continuous string, with
individual lines separated by a CR-LF combination.

FrequencyString Property
CurrentTask READ ONLY Example

Contains the frequency and scheduling information about the task in a readable format.

Declaration
Dim FrequencyString As Variant

Description
The FrequencyString property combines the scheduling properties of the task and formats it into a
sentence form for easier reading.

Events Property
CurrentTask

Specifies the window event triggers that will launch the task. Use in conjunction with the “Windows
Events” value added to the Triggers property of the task.

Declaration
Dim Events As Integer

Description
The Events property is an integer value that specifies which windows’ system events will launch the
task. To set the window event triggers, add the following values together from the table below:

Value Trigger Associated Properties
0 None No Windows Events triggers
1 System Time System time has changed (NOTE: Windows will trigger this

event each time you click on the System Calendar, regardless
of whether or not you click “OK”, “Apply” or “Cancel” when
setting the system time.

2 Low Memory The system is getting low on memory.
4 System Device A system device has been added, removed or its properties

have been changed.
8 Display Mode The display mode (resolution or driver) has changed.
16 Color Palette The color palette has changed.
32 Spooler A print job has been added or removed from a printer queue.

For example, to set the task to launch on a system time change and a display mode change, the value
of the property would be 9    (1 + 8 = 9).

CurrentTask methods
CurrentTask

GetTaskStep
GetStepCommand
GetStepParamCount
SetTaskStep
GetStepParameter
AppendTaskStep
InsertTaskStep
DeleteTaskStep
GetStepStatus
SetStepStatus
ClearSteps
SaveToFile
LoadFromFile

GetTaskStep Method
CurrentTask Example

Retrieves the string containing the specified task step.

Declaration
Function GetTaskStep (StepNo As Integer) As Variant

Description
The first step is numbered 0. The string contains the task step command and parameters in the format
that appears in the AutoMate™ step windows.

GetStepCommand Method
CurrentTask Example

Retrieves the string containing the specified task step command.

Declaration
Function GetStepCommand (StepNo As Integer) As Variant

Description
The first step is numbered 0. The string contains the task step command in the format that appears in
the AutoMate™ step windows.

GetStepParamCount Method
CurrentTask Example

Returns the number of parameters in the specified task step.

Declaration
Function GetStepParamCount (StepNo As Integer) As Variant

Description
The first step is numbered 0. Use this function to return the number of parameters in the task step
number specified by StepNo.

SetTaskStep Method
CurrentTask Example

Changes the specified task step.

Declaration
Sub SetTaskStep (StepNo As Integer, NewAction As Variant)

Description
Changes the step number specified by StepNo to the contents of the NewAction parameter.    The
NewAction parameter must be passed in the correct format for the new step to be valid.

GetStepParameter Method
CurrentTask Example

Returns a string containing the specified task step parameter.

Declaration
Function GetStepParameter (StepNo As Integer, Parameter as Integer) As Variant

Description
The first step is numbered 0 and the first parameter is numbered 0.

AppendTaskStep Method
CurrentTask Example

Adds a new task step.

Declaration
Sub AppendTaskStep (Action As Variant)

Description
Adds the new task step specified by the Action parameter to the end of the task step. The Action
parameter must be in the correct format for the new step to be valid.

InsertTaskStep Method
CurrentTask Example

Inserts a new task step before the specified step.

Declaration
Function GetStepParamCount (StepNo As Integer) As Variant

Description
Inserts the new task step specified by the Action parameter before the step specified by BeforeStep.
The Action parameter must be in the correct format for the new step to be valid.

DeleteTaskStep Method
CurrentTask Example

Deletes the specified step.

Declaration
Sub DeleteTaskStep (StepNo As Integer)

Description
Deletes the step specified by the StepNo parameter.

GetStepStatus Method
CurrentTask Example

Retrieves the status flag for the specified step.

Declaration
Function GetStepStatus (StepNo As Integer) As Integer

Description
Returns a value whether or not the step specified by StepNo is active or not. If the status is “0”, the
step is disabled (i.e., the step will be skipped when the task is executed); if the status is “1”, the step is
enabled.

SetStepStatus Method
CurrentTask Example

Retrieves the status flag for the specified step.

Declaration
Function SetStepStatus (StepNo As Integer)

Description
Specifies whether or not the step specified by StepNo is active or not. Setting the status to “0” means
the step is disabled (i.e., the step will be skipped when the task is executed); setting the status to “1”
means the step is enabled.

ClearSteps Method
CurrentTask Example

Clears all the steps in the task.

Declaration
Sub ClearSteps

Description
Deletes all the steps from the task and sets the StepCount to 0.

SaveToFile Method
CurrentTask Example

Saves the task to a file.

Declaration
Sub SaveToFile (FileName As Variant)

Description
Use SaveToFile to export the task in an AMOLE readable format to the filename specified by
FileName. (The AMOLE architecture currently does not support the new STFF file format.) The task
can then be imported to another installation of AutoMate™ on another machine using the
LoadFromFile method of the CurrentTask object.

LoadFromFile Method
CurrentTask Example

Loads the task data from a file.

Declaration
Sub LoadFromFile (FileName As Variant)

Description
Use LoadFromFile to import a task specified in the FileName parameter into the task. The task to be
loaded must have previously been saved in an AMOLE compatible format using the SaveToFile
method. The task’s information is overwritten by the information from the task file.

LoadFromFile Example

The following example loads the STFF file “c:\sample_task.amt”, replacing the current contents of the
CurrentTask object with the contents of the sample_tast.amt file.

Sub Main
CurrentTask.LoadFromFile(“c:\sample_task.amt”)

End Sub

SaveToFile Example

The following example saves the task contents of the CurrentTask object to a STFF file named “c:
\my_task.amt”.    The task can then be imported to another AutoMate™ installation.

Sub Main
CurrentTask.SaveToFile(“c:\my_task.amt”)

End Sub

SetStepStatus Example

The following example sets the second step of the task to a “disabled” step, meaning it will be skipped
when the task is executed.

Sub Main
CurrentTask.SetStepStatus (1, 0)

End Sub

GetStepStatus Example

The following example stores the current status of the second step of the task and displays a message
box with the result. A “0” result means the step is inactive, while a “1” result means it is active.

Sub Main
Dim Status As Integer

Status = CurrentTask.GetStepStatus (1)
MsgBox Status

End Sub

DeleteTaskStep Example

The following example will delete the fourth step of the task. (Note that step indexing starts at “0.”
Therefore, a value of “3” in DeleteTaskStep will remove the fourth step in the task.)

Sub Main
CurrentTask.DeleteTaskStep (3)

End Sub

InsertTaskStep Example

The following example will insert a “Send Keystrokes” step into the current task as the fourth step.

Sub Main
CurrentTask.InsertTaskStep (3, “SEND: AutoMate™ Version 4”)

End Main

This example will copy the third step, and place the copy above itself.

Sub Main
Dim StepToCopy As Variant

StepToCopy = CurrentTask.GetTaskStep (2)
CurrentTask.InsertTaskStep (2, StepToCopy)

End Sub

AutoMate Object
Properties Methods

NOTE: The AutoMate object has been deprecated. Use the AutoMate2 object instead.

The AutoMate object encapsulates the properties of the AutoMate™ Configuration Manager and
provides methods to manipulate the execution of a task.

Description
The AutoMate object provides properties that provide information about the current state of the
AutoMate™ Configuration manager and the current task list. It also provides methods that allow you to
change the running and execution flow of the current task, such as waiting for a window to appear or
running another task.

AppendTaskStep Example

The following example will append a “SEND: AutoMate” action to the end of the list of steps of the
current task.

Sub Main
CurrentTask.AppentTaskStep (“SEND: AutoMate”)

End Sub

GetStepParameter Example

The following example stores the first parameter of the second step into a variable called “Param” and
then displays the parameter in a message box.

Sub Main
Dim Param As Variant

Param = CurrentTask.GetStepParameter (1, 0)
MsgBox Param

End Sub

SetTaskStep Example

The following example changes the second step of the task to a “Send Keystrokes” action.

Sub Main
CurrentTask.SetTaskStep (1, “SEND: AutoMate”)

    End Sub

GetTaskStep Example

The following example stores the first step of the task into a variable called “FirstStep” and displays
the result in a message box.

Sub Main
Dim FirstStep As Variant

FirstStep = CurrentTask.GetTaskStep (0)
MsgBox FirstStep

End Sub

AutoMate properties
AutoMate Legend

LastRASErrorCode
LastRASErrorText
RASHandle
SystemDir
TaskCount
TaskList
WindowsDir

AutoMate methods
AutoMate

FindWindowByTitle
FindWindowByClass
FindWindowContaining
RASConnect
RASDisconnectEx
RunTask

LastRASErrorCode Property
AutoMate READ ONLY

Contains the error code of the last RAS command attempted.

Declaration
Dim LastRASErrorCode As Integer

Description
The LastRASErrorCode property contains the integer error code of the last RAS command attempted
in the script. Use LastRASErrorCode to find out why a particular RAS command, such as RASConnect
or RASDisconnect, failed.

LastRASErrorCode returns “0” if the last RAS command was successful; otherwise it returns a non-
zero value.

LastRASErrorText Property
AutoMate READ ONLY

Contains the error text of the last RAS command attempted.

Declaration
Dim LastRASErrorText As Variant

Description
The LastRASErrorText property contains a textual explanation of the error code of the last RAS
command attempted.

RASHandle Property
AutoMate READ ONLY

NOTE: This method has been deprecated. Use the DialUp method instead.

Contains the RAS handle to a previously established dial-up connection.

Declaration
Dim RASHandle As Integer

Description
The RASHandle property contains a handle to an active dial-up connection established using the
RASConnect method. The property is “0” if no active dial-up connection is present for this task.

SystemDir Property
AutoMate READ ONLY

Contains the System directory of the system.

Declaration
Dim SystemDir As Variant

Description
The SystemDir property contains the fully qualified path to the System directory of the current
installation.

TaskCount Property
AutoMate

Contains the number of tasks in the current task list.

Declaration
Dim TaskCount As Integer

Description
Read TaskCount to obtain the total number of tasks in the task list currently in use by AutoMate™.

TaskList Property
AutoMate READ ONLY

Contains the path to the task list in use by AutoMate™.

Declaration
Dim TaskList As Variant

Description
Use the TaskList property to obtain the fully qualified path to the task list file AutoMate™ is currently
using. A task list is a collection of tasks.

WindowsDir Property
AutoMate READ ONLY

Contains the Windows directory of the system.

Declaration
Dim WindowsDir As Variant

Description
The WindowsDir property contains the fully qualified path to the Windows directory of the current
installation.

FindWindowByTitle Method
AutoMate Example

Returns the handle of the window that matches a specified window title.

Declaration
Function FindWindowByTitle (WindowTitle As Variant) As Integer

Description
Use FindWindowByTitle to obtain a handle to the window with the title specified in WindowTitle.    The
window must be open for this method to be successful. The method returns “0” if the window is not
found, or it returns a non-zero value (the window handle) if the window is located.

FindWindowByClass Method
AutoMate Example

Returns the handle of the window that matches a specified class name.

Declaration
Function FindWindowByClass (WindowClass As Variant) As Integer

Description
Use FindWindowByClass to obtain a handle to the window with the class name specified in
WindowClass. The window must be open for this method to be successful. If multiple windows with the
specified class name are open, FindWindowByClass will return the handle to the first window it
enumerates. The method returns “0” if the window is not found, or it returns a non-zero value (the
window handle) if the window is located.

FindWindowContaining Method
AutoMate Example

Returns the handle of the window that contains a specified text.

Declaration
Function FindWindowContaining (TextToFind As Variant) As Integer

Description
Use FindWindowContaining to obtain a handle to the window that contains the text specified by
TextToFind. The window must be open for this method to be successful. If multiple windows containing
the specified text are open, the method will return the handle to the first window it finds. The method
returns “0” if there are no windows with the text, or it returns a non-zero value (the window handle) if
the window is located.

RASConnect Method
AutoMate Example

NOTE:    This method has been deprecated. Use the DialUp method instead.

Attempts a dial-up connection using a specified phonebook entry, and returns a handle to the
connection on success.

Declaration
Function RASConnect (PhonebookEntry As Variant) As Integer

Description
Use RASConnect to attempt to establish a dial-up connection using the phonebook entry supplied in
PhonebookEntry.

On success, RASConnect returns a handle to a RAS object, which can be used in subsequent FTP
related calls such as FTPUpload. RASConnect returns “0” if the connection fails. In this case, use
RASLastErrorCode and RASLastErrorText for information about why the method failed.

RASDisconnectEx Method
AutoMate Example

NOTE:    This method has been deprecated.    Use the DialUp method instead.

Attempts to disconnect a previously established dial-up connection.

Declaration
Function RASDisconnectEx (PhonebookEntry As Variant) As Integer

Description
Use RASDisconnectEx to disconnect an active dial-up connection. The connection does not have to
have been established by AutoMate™. Pass the name of the connection to be disconnected in the
PhonebookEntry variable.

RunTask Method
AutoMate Example

Runs another task.

Declaration
Sub RunTask (TaskName As Variant)

Description
Use RunTask to start another task. The task specified in TaskName must be in the current TaskList
(use the TaskList property to obtain the path to the current task list in use by the AutoMate object). The
task run by RunTask executes asynchronously with other tasks (i.e., the execution of the script using
the RunTask method will not stop).

Action Object
Properties Methods

NOTE: The Action Task object has been deprecated. Use the Action2 object instead.

The Action object encapsulates the actions available from the Step Builder (i.e. the available actions in
AutoMate™).

Description

The Action object provides an interface to the available actions in AutoMate™. This enables a task
developer to utilize variables from the BASIC language and pass them into the AutoMate™ action
parameters.

There are a few limitations to be aware of in the Action object:
1) 1) No return codes for success or failure.
2) 2) All methods run asynchronously (i.e., they return immediately). Therefore, you should not

perform a loop on an action without adding a delay to account for the amount of time it may take
for the action to complete.

Action Properties
Action Legend

No properties

Action Methods
Action

ChDir
CloseWind
CopyFile
DDE
DeleteFile
FindText
Focus
FocusEx
FTPDownload
FTPUploadEx
Hide
MakeDir
Maximize
Minimize
MoveFile
OpenFile
OSCommand
PlaySound
PrintFile
RemDir
RenameFile
Restore
RunScript
SendKeys
SendMail
Start
Unhide

PlaySound Method
Action Example

Encapsulates the AutoMate™ action “Play a sound.”    Plays a WAV file.

Declaration
Procedure PlaySound(FileName, Wait: OleVariant); safecall;

Description
Specify the path and filename in the FileName parameter of the sound to be played.

PlaySound Example

This example will play a .wav file named “2010_09.wav” from the AutoMate™ directory.

Sub Main
'Play the sound file from the AutoMate™ directory
'the %AMDIR% is an AutoMate™ system constant that
'can only be used with the AutoMate™ task interpreter
'we could have also used a literal path

Action.PlaySound("%AMDIR%\2010_09.wav", "1")
End Sub

Focus Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Focus.” Brings a window in front of all
the other windows on the system based on the window’s title caption.

Declaration
Procedure Focus(WindowTitle: OleVariant); safecall;

Description
Specify the title of the window to focus in the Window Parameter. This call does not support substring
matches. To perform substring matches, use Action.FocusEx.

NOTE: To focus a window based on the handle of a launched EXE file, use the BASIC language
command AppActivate in conjunction with the Shell command.

Focus Example

This example will focus the Notepad window using the AutoMate™ Focus Action.

Sub Main
'This script will focus the Notepad window
'using the AutoMate™ Focus Action
Action.Focus("Untitled - Notepad")

End Sub

FocusEx Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Focus.” Same as Action.Focus, except
contains support for partial title matches. Brings a window in front of all the other windows on the
system based on the window’s title caption.

Declaration
Procedure FocusEx(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant);
safecall;

Description
Specify the title of the window to focus in the Window Parameter. Set “ExactMatch” to “0” for a
substring search or “1” for an exact search.

NOTE: To focus a window based on the handle of a launched EXE file, use BASIC language command
AppActivate in conjunction with the Shell command.

FocusEx Example

This example will focus a window that has a window title beginning with the text    “Note”.

Sub Main
'This script will focus the Notepad window
'using the AutoMate™ Focus Action, note that
'only a partial title was specified
Action.FocusEx("Note", "0", "")

End Sub

Minimize Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Minimize.” Minimizes a window so that it
is not displayed anywhere except the task tray.

Declaration
Procedure Minimize(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant);
safecall;

Description
Specify the title of the window to minimize in the Window Parameter. Set “ExactMatch” to “0” for a
substring search or “1” for an exact search.

Minimize Example

This example will minimize a window with a window title beginning with the text “Note”.

Sub Main
'This script will minimize the Notepad window
'using the AutoMate™ Focus Action, note that
'only a partial title was specified
Action.Minimize("Note", "0", "")

End Sub

Maximize Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Maximize.” Maximizes a window so that
it occupies the full screen.

Declaration
Procedure Maximize(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant);
safecall;

Description
Specify the title of the window to maximize in the Window Parameter. Set “ExactMatch” to “0” for a
substring search or “1” for an exact search.

Maximize Example

This example will maximize a window with a window title beginning with the text “Note.”

Sub Main
'This script will maximize the Notepad window
'using the AutoMate™ Maximize Action, note that
'only a partial title was specified
Action.Maximize("Note", "0", "")

End Sub

Restore Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Restore.” Restores a window to its
normal state so that it is sizable. When a window is restored, it is neither minimized nor maximized.

Declaration
Procedure Restore(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant); safecall;

Description
Specify the title of the window to minimize in the Window Parameter. Set “ExactMatch” to “0” for a
substring search or “1” for an exact search.

Restore Example

This example will restore a window with a window title beginning with the text “Note.”

Sub Main
'This script will restore the Notepad window
'using the AutoMate™ Restore Action, note that
'only a partial title was specified
Action.Restore("Note", "0", "")

End Sub

CloseWind Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Close.”    Sends a close message to a
window. This will usually result in the closing of the window, and in some instances, shutting down the
application.

Declaration
Procedure CloseWind(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant);
safecall;

Description
Specify the title of the window to minimize in the Window Parameter. Set “ExactMatch” to “0” for a
substring search or “1” for an exact search.

You can attempt to close an application by trying to close an application’s main window.

CloseWind Example

This example will close a window with a window title beginning with the word “Note.”

Sub Main
'This script will close the Notepad window
'using the AutoMate™ CloseWind Action, note that
'only a partial title was specified
Action.CloseWind("Note", "0", "")

End Sub

Hide Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Hide.” Hidden windows can be un-
hidden by using the Action.UnHide method.

Declaration
Procedure Hide(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant); safecall;

Description
Specify the title of the window to minimize in the Window Parameter. Set “ExactMatch” to “0” for a
substring search or “1” for an exact search.

Hide Example

This example will hide a window with a window title beginning with the word “Note.”

Sub Main
'This script will hide the Notepad window
'using the AutoMate™ Hide Action, note that
'only a partial title was specified
Action.Hide("Note", "0", "")

End Sub

UnHide Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “UnHide.” Makes a window previously
hidden with the Action.Hide method visible again.

Declaration
Procedure Unhide(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant); safecall;

Description
Specify the title of the window to minimize in the Window Parameter. Set “ExactMatch” to “0” for a
substring search or “1” for an exact search.

UnHide Example

This example will unhide a window with a window title beginning with the word “Note.”

Sub Main
'This script will unhide the Notepad window
'using the AutoMate™ UnHide Action, note that
'only a partial title was specified
Action.UnHide("Note", "0", "")

End Sub

FindText Method
Action Example

Encapsulates the AutoMate™ action in the “Window” group, “Focus Window Containing.”    Same as
Action.FocusEx, except contains support for checking the text contents inside a window. If the text is
found, the method brings the window in front of all the other windows on the system.

Declaration
procedure FindText(Window_: OleVariant; ExactMatch: OleVariant; HandlePassed: OleVariant;
SearchText: OleVariant; SearchExact: OleVariant); safecall;

Description
Specify the title of the window to focus in the Window Parameter, the text to search for inside the dialog
box in the SearchText parameter, and whether it should match exactly in the SearchExact parameter.

NOTE: To focus a window based on the handle of a launched EXE file, use BASIC language command
AppActivate in conjunction with the Shell command.

FindText Example

This example will attempt to locate a window with a title with the word “note” in it, and containing the
text “Do you want to save the changes?”    If such a window exists, it is focused.

    Sub Main
Action.FindText("note", "0", "", "Do you want to save the changes?", "0")

    End Sub

DDE Method
Action Example

Encapsulates the AutoMate™ action “DDE Command.” Performs a DDE request to another
application.

Declaration
Procedure DDE(Service: OleVariant; Topic: OleVariant; Item: OleVariant); safecall;

Description
Use of this method is not recommended, instead use the BASIC language DDE commands such as
DDEExecute and DDERequest.

DDE Example

The following example illustrates how to use AutoMate’s DDE Action to send a DDE Command to the
Windows Program Manager.

Sub Main
        Action.DDE("PROGMAN", "PROGMAN","[CreateGroup(XXX)]")
End Sub

The following example illustrates an alternate way to perform the above example using AutoMate™
Basic native commands.

Sub Main        ChanNum = DDEInitiate("PROGMAN","PROGMAN")        DDEExecute
ChanNum,"[CreateGroup(XXX)]"        DDETerminate ChanNumEnd Sub

Start Method
Action Example

Encapsulates the AutoMate™ action “Start an application.”    Starts an application and sets associated
window flags.

Declaration
procedure Start(FileName: OleVariant; Parameters: OleVariant; ShowFlag: OleVariant;
  DefaultDir: OleVariant); safecall;

Description
Starts an application using the AutoMate™ task interpreter engine. Use of this method is not
recommended, instead use the BASIC language commands such as Shell() or the ShellExecute
Windows API call.

Start Example

This example will attempt to open notepad and send a series of keystrokes to it.

Sub Main
'This script will start Notepad and then type some text and then access the file menu
Action.Start("Notepad","","0","")
Wait 1
Action.SendKeys("1","100","These are the keys to be sent~")
Wait 1
Action.SendKeys("1","500","You can also use AutoMate™ keystroke commands like ALT{+}F~")
Wait 1
Action.SendKeys("1","500","Watch as AutoMate™ accesses the File Menu and chooses save")
Wait 2
Action.SendKeys("1","500","%fs")

End Sub

OSCommand Method
Action Example

Encapsulates the AutoMate™ actions under the “System” group. Performs a system reboot, shutdown
or logout. OSCommand can also be used to programmatically shutdown the AutoMate™ Task Service.

Declaration
procedure OSCommand(Command: OleVariant); safecall;

Description
Set Command to one of the following integer values to specify which system command to perform:

Value Description
REBOOT Reboots the system
SHUTDOWN Shuts the system down
LOGOUT Logs-out of the system
QUIT Shuts down AutoMate™

OSCommand Example

This example will shut down the AutoMate™ Task Service.

Sub Main
‘Shuts the AutoMate™ task service down right now

Action.OSCommand(“4”)

End Sub

SendKeys Method
Action Example

Encapsulates the AutoMate™ action “Send Keystrokes”

Declaration
Procedure SendKeys(PauseEnabled: OleVariant; PauseTime: OleVariant; Keystrokes: OleVariant);
safecall;

Description
Sends the keystrokes specified by the keystrokes parameter to the currently active window.

Although the BASIC language contains its own sendkeys command, you may wish to use AutoMate’s
native sendkeys engine.

The PauseEnabled parameter controls whether AutoMate™ will respect the settings of the Pause time
parameter. If Pause enabled is set to “0”, AutoMate™ will execute the keystrokes immediately.

SendKeys Example

This example will open notepad, and send keystrokes to it after a 50 millisecond pause.

Sub Main
Shell "notepad.exe", 1
'Pause for 50 milliseconds before send
Action.SendKeys("1", "50", "this is a test of the AutoMate™ send keystrokes engine")

End Sub

RunScript Method
Action Example

Encapsulates the AutoMate™ action “Run a Basic Script.”

Declaration
procedure RunScript(FileName: OleVariant); safecall;

Description
Use of this encapsulated action is not advised as developers can easily include and call other BASIC
subroutines using the BASIC commands Call or MacroRun.

RunScript Example

The following example will run an AutoMate™ BASIC Script.

Sub Main
Action.RunScript(“c:\mytest.bas”)

End Sub

OpenFile Method
Action Example

Encapsulates the AutoMate™ action “Open a document.” Opens any documents type that is
registered on the system (i.e. DOC file, TXT file, XLS, or Web Site address).

Declaration
procedure OpenFile(FileName: OleVariant); safecall;

Description
Allows opening of a registered document type by specifying the path and filename in the Filename
parameter.

OpenFile Example

The following example will open the file “readme.txt” in the AutoMate™ directory using the viewer for
text files (Windows sets this to Notepad.exe by default).

Sub Main

'This script uses the AutoMate™ system constant %AMDIR%
'but we could have used a literal path such as C:\test.txt

Action.OpenFile("%AMDIR%\readme.txt")

End Sub

PrintFile Method
Action Example

Encapsulates the AutoMate™ action “Print a document.” Prints any registered document type using
the application that is registered to process this type of request.

Declaration
procedure PrintFile(FileName: OleVariant); safecall;

Description
Allows printing of a registered document type by specifying the path and filename in the Filename
parameter.

Note: Not all applications support PRINT, so this method may not work with your document type.

PrintFile Example

The following example prints the file “readme.txt” using the default editor for text files (usually
Notepad).

Sub Main

'This script uses the AutoMate™ system constant %AMDIR%
'but we could have used a literal path such as C:\test.txt

Action.PrintFile("%AMDIR%\readme.txt")

End Sub

MoveFile Method
Action Example

Encapsulates the AutoMate™ action under the “File” group, “Move file(s).”

Declaration
procedure MoveFile(Source: OleVariant; Destination: OleVariant); safecall;

Description
The action copies one or more files from the specified Source to the specified Destination. MoveFile
supports wildcards. After copying, the source file(s) are deleted.

MoveFile Example

The following example moves the file “test1.txt” from the c: drive to the d: drive as “test2.txt”

Sub Main

'you must have a file called c:\test1.txt created to use this
Action.MoveFile("c:\test1.txt", "c:\test2.txt")

End Sub

This example moves all the files in the c:\onetemp directory to the c:\nexttemp directory.

Sub Main

'you must have directories with files in them called c:\onetemp and c:\nexttemp
Action.MoveFile("c:\onetemp*.*", "c:\nexttemp*.*")

End Sub

RenameFile Method
Action Example

Encapsulates the AutoMate™ action under the “File” group, “Rename files.”

Declaration
procedure RenameFile(OldName: OleVariant; NewName: OleVariant); safecall;

Description
The action renames the file specified in the Source parameter to the name specified in Destination.
Rename does not currently support wildcards.

RenameFile Example

The following example renames the file “c:\test1.txt” to “test2.txt”

Sub Main

'you must have a file called c:\test1.txt created to use this
Action.RenameFile("c:\test1.txt", "c:\test2.txt")

End Sub

CopyFile Method
Action Example

Encapsulates the AutoMate™ action under the “File” group, “Copy file(s).”

Declaration
procedure CopyFile(Source: OleVariant; Destination: OleVariant); safecall;

Description
The action copies one or more files from the specified Source to the specified Destination.    CopyFile
supports wildcards.

CopyFile Example

The following example copies the file named “test1.txt” to “test2.txt.”

Sub Main

'you must have a file called c:\test1.txt created to use this
Action.CopyFile("c:\test1.txt", "c:\test2.txt")

End Sub

This example will copy all the files from the “onetemp” directory into the “nexttemp” directory.    Note
that the “nexttemp” directory must exist for the action to work correctly.

Sub Main

'you must have directories with files in them called c:\onetemp and c:\nexttemp
Action.CopyFile ("c:\onetemp*.*", "c:\nexttemp*.*")

End Sub

DeleteFile Method
Action Example

Encapsulates the AutoMate™ action under the “File” group, “Delete file(s).”

Declaration
procedure DeleteFile(FileName: OleVariant); safecall;

Description
The action deletes the filename specified in the Filename parameter. DeleteFile supports wildcards.

DeleteFile Example

The following example deletes the file named “test1.txt” from the c: drive.

Sub Main

'you must have a file called c:\test1 with any extension created to use this
Action.DeleteFile ("c:\test1.txt")

End Sub

This example will delete all the files named “test1”, regardless of their extension.

Sub Main

'you must have a file called c:\test1 with any extension created to use this
Action.DeleteFile ("c:\test\test1.*")

End Sub

MakeDir Method
Action Example

Encapsulates the AutoMate™ action under the “File” group, “Create Directory.”

Declaration
procedure MakeDir(Directory: OleVariant); safecall;

Description
The action creates a folder on the file system named by the value specified in the Directory parameter.

MakeDir Example

The following example makes a directory called “tester” on the c: drive.

Sub Main

'you must have a file called c:\test1 with any extension created to use this
Action. MakeDir ("c:\tester\")

End Sub

RemDir Method
Action Example

Encapsulates the AutoMate™ action under the “File” group, “Remove Directory.”

Declaration
procedure RemDir(Directory: OleVariant); safecall;

Description
The action deletes a folder on the file system named by the value specified in the Directory parameter.

RemDir Example

The following example removes the “tester” directory from the c: drive. Note that the directory “tester’
must exist before this task is run to work properly.

Sub Main

'you must have a file called c:\test1 with any extension created to use this
Action. RemDir ("c:\tester\")

End Sub

ChDir Method
Action Example

Encapsulates the AutoMate™ action under the “File” group, “Change Directory.”

Declaration
procedure ChDir(Directory: OleVariant); safecall;

Description
The action changes the current directory of the system to the folder named by the value specified in
the Directory parameter.

ChDir Example

The following example changes the current AutoMate™ directory to the c:\windows directory.

Sub Main
Action. ChDir ("c:\windows\")

End Sub

FTPDownload Method
Action Example

Encapsulates the AutoMate™ action under the “Internet | FTP” group, “Quick Retrieve.”

Declaration
procedure FTPDownload(SourceFile: OleVariant; DestinationFile: OleVariant; TransferType: OleVariant;
CheckType: OleVariant; CheckTime: OleVariant); safecall;

Description
Specifies file(s) to download from an FTP Server. This command performs a three-step operation of
logging into the server, downloading files, and logging out of the server.

FTPDownload Example

The following example downloads a file named “test.txt” from the FTP server onto the local c: drive as
“test.txt.”

Sub Main
'This script will download one file called test.txt.
'Note that the full path to the file may have to be included in both source
'and destination depending on your server
Action.FTPDownload("your.ftp.server","username","password","21","/test.txt","c:\test.txt","","0")

End Sub

SendMail Method
Action Example

Encapsulates the AutoMate™ action under the “Internet | E-Mail” group, “Send Message.”

Declaration
procedure SendMail(Server: OleVariant; Sender: OleVariant; Recipient: OleVariant; CCRecipient:
OleVariant; Subject: OleVariant; FileName: OleVariant); safecall;

Description
Sends a MIME encoded message using the Internet standard SMTP protocol. The body of the
message to be sent should be located in a text file – the path to the text file should be specified in the
parameter FileName.

NOTE: SMTP user authentication is not currently supported.

NOTE: File attachments are not currently supported.

SendMail Example

The following example sends the contents of the text file “c:\message.txt” to the recipient via
your.smtp.server.

Sub Main

Action.SendMail("your.smtp.server","youraddress@domain.com","recipientsaddress@domain.com","","
this is a test","c:\message.txt")

End Sub

FTPUpload Method
Action Example

Encapsulates the AutoMate™ action under the “Internet | FTP” group, “Quick Send.”

Declaration
procedure SendMail(Server: OleVariant; Sender: OleVariant; Recipient: OleVariant; CCRecipient:
OleVariant; Subject: OleVariant; FileName: OleVariant); safecall;

Description
Specifies file(s) to upload to an FTP Server. This command performs a three-step operation of logging
into the server, downloading files, and logging out of the server.

FTPUpload Example

The following example uploads a file to the FTP server.

Sub Main
'This script will upload one file called test.txt.
'Note that the full path to the file may have to be included in both source
'and destination depending on your server
Action.FTPUpload("your.ftp.server","username","password","21","c:\test.txt","/test.txt","","0")

End Sub

TaskName Example

The following example displays the name of the currently executing task in a message box.

Sub Main
Dim RunningTask As Variant

RunningTask = CurrentTask.TaskName
MsgBox RunningTask

End Sub

LaunchDate Example

The following example sets the launch date of the current task to September 14, 1999. Note that, for
this example, we are assuming the Regional Settings to be “English (United States).”

Sub Main
CurrentTask.LaunchDate = “09/14/1999”

End Sub

LaunchTime Example

The following example sets the launch time of the current task to 11:56 AM. Note that, for this example,
we are assuming the Regional Settings to be “English (United States).”

Sub Main
CurrentTask.LaunchTime = “11:56 AM”

End Sub

Frequency Example

The following example will set the current task to run only when manually launched.

Sub Main
CurrentTask.Frequency = 2

End Sub

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask.Interval = 3

‘ If we are late, don’t run at all
CurrentTask.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask.ScheduleLate = 0

End Sub

Setting Task Properties

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to trigger by schedule and hotkey
CurrentTask.TaskTriggers = 9

‘ Set the task to “every”

CurrentTask.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask.Interval = 3

‘ If we are late, don’t run at all
CurrentTask.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask.ScheduleLate = 0

‘ Set the hotkey trigger to Ctrl-Shift H
CurrentTask.Hotkey = “%&H”

End Sub

Active Example

The following example sets the task to inactive. This will prevent the task from executing the
rest of the task.

Sub Main
CurrentTask.Active = 0

End Sub

WindowName Example

The following example sets the current task to trigger only when the window with the title of “Untitled –
Notepad” appears.

Sub Main
CurrentTask.Triggers = 4
CurrentTask.WindowName = “Untitled – Notepad”

End Sub

StepCount Example

The following example will display the current number of steps in a message box.

Sub Main
MsgBox CurrentTask.StepCount

End Sub

Details Example

The following example sets the task’s details to “This task is wonderful.”

Sub Main
CurrentTask.Details = “This task is wonderful.”

End Sub

FrequencyString Example

The following example displays the current task’s scheduling parameters in a friendly, sentence form.

Sub Main
MsgBox CurrentTask.FrequencyString

End Sub

Events Example

The following example sets the current task to trigger only when the spooler changes (i.e. when a print
job is added, removed or completed from the printer queue) or the system date/time changes

Sub Main
‘ Set the task to trigger on Windows Events
CurrentTask.Triggers = 2

‘ Set to trigger on spooler or time change
CurrentTask.Events = 33

End Sub

GetStepCommand Example

The following example displays the step command of step #2 in a message box.

Sub Main
MsgBox CurrentTask.GetStepCommand (1)

End Sub

GetStepParamCount Example

The following example displays the total number of parameters of step #2 in a message box.

Sub Main
MsgBox CurrentTask.GetStepParamCount (2)

End Sub

ClearSteps Example

The following example clears the current task of all its steps.

Sub Main
CurrentTask.ClearSteps

End Sub

PlayRecording Method
Action Example

Encapsulates the AutoMate™ action “Record Events” under the “Recorder” branch.

Declaration
procedure PlayRecording (FileName: OleVariant); safecall;

Description
Plays the mouse movements recorded in the file specified by Filename. Use the Step Builder to record
a series of mouse movements to a file.

PlayRecording Example

The following example plays back the recorded mouse movements from the file “mousey.dat.”

Sub Main
CurrentTask.PlayRecording (“c:\mousey.dat”)

End Sub

Action2
Properties Methods

The Action2 object encapsulates the actions available in AutoMate™. The Action2 object contains
updated methods of the Action object, as well as extended methods and actions made available since
AutoMate™ 4.06d.

Description
The CurrentTask object contains methods that invoke AutoMate™ actions through the AutoMate™
Task Service. Use this object to execute any of the actions that AutoMate™ supports through the
AutoMate™ Step Builder.

When a script is started, AutoMate™ automatically instantiates an Action2 object as “Action2”.

The methods of Action2 take the parameters of the method and wrap them into an AutoMate™
compatible command. This command is then marshaled to the AutoMate™ Configuration Manager to
be run in the context of the same task that started the script. Every method returns an integer value as
a result of the step’s execution in AutoMate™:

Return Value Meaning
0 The action failed. Use the LastErrorMessage Property to get the error

message.
1 The action completed successfully.
2 The action told AutoMate™ to stop the task.

Because every method in the Action2 uses the same return codes, you can easily create more
elaborate and complex tasks using AutoMate™ steps.

Action2 Methods
Action2 Legend Alphabetical Listing

General
StartApplication
OpenDocument
SendKeystrokes
PasteKeys
PrintDocument
Message
Reminder
PlaySound
StopSound
DDECommand

Window
WindowFocus
WindowMaximize
WindowMinimize
WindowRestore
FocusWindowContaining
WindowClose
WindowHide
WindowUnhide
GetFocusedWindowName

Internet
DialUp
OpenWebpage
PingMachine

FTP
FTPQuickSend
FTPQuickRetrieve
FTPLogin
FTPRename
FTPUpload
FTPDownload
FTPDelete
FTPMakeDirectory
FTPRemoveDirectory
FTPLogout
FTPChangeDirectory

E-Mail
CheckForMail

SendEmail

Mouse
MoveMouse
LeftClick
LeftDblClick
LeftMouseDown
LeftMouseUp
RightClick
RightDblClick
RightMouseDown
RightMouseUp
MiddleClick
MiddleDblClick
MiddleMouseDown
MiddleMouseUp

File System
AMCopyFile
AMMoveFile
AMRenameFile
AMDeleteFile
AMMakeDir
AMRemoveDir
AMChangeDir

Zip
Zip
Unzip

Clipboard
ClipboardCut
ClipboardCopy
ClipboardPaste
ClipboardClear

System
Login
RebootMachine
ShutdownMachine
QuitAutoMate™
LogoffMachine
UpdateAutoMate™

Control Panel
Services
StartService

StopService
PauseService
ContService
InstallService
RemoveService

Flow Control
Wait
PromptUser
WaitForWindow
WaitForWindowToDisappear
StartTask
DisableThisTask

Security
LockKeyboard
LockMouse
UnlockKeyboard
UnlockMouse
Password

    Recorder
PlayMouse

BASIC Scripting
RunScript

Others
SendRawStep
GetFocusedWindowName

WindowFocus Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Focus.” Finds the window with the title
text indicated, focuses the window, and attempts to bring it to the foreground.

Declaration
function WindowFocus(varWindowTitle As Variant,
        intExactMatch As Integer) As Integer

Parameters
varWindowTitle

The text of the window title to be focused.

intExactMatch
Whether or not the title bar text should match varWindowTitle exactly, or partially. Use “0” for a

partial match or “1” for an exact match.

Description
The WindowFocus method will attempt to locate a window with the title specified in the varWindowTitle
parameter. If a window exists, AutoMate™ will attempt to focus the window and bring it to the
foreground. If a window cannot be found, the method returns “1”, indicating a failed step.

If multiple windows are found matching varWindowTitle, AutoMate™ will attempt to focus the first one it
eternally enumerates.

WindowMinimize Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Minimize.” Finds the window with the
title text indicated and minimizes the window.

Declaration
function WindowMinimize(varWindowTitle As Variant,
        intExactMatch As Integer) As Integer

Parameters
varWindowTitle

The text of the window title to be minimized.

intExactMatch
Whether or not the title bar text should match varWindowTitle exactly or partially. Use “0” for a

partial match or “1” for an exact match.

Description
The WindowMinimize method will attempt to locate a window with the title specified in the
varWindowTitle parameter. If a window exists, AutoMate™ will attempt to minimize the window as if a
user clicked the “minimize” button from the titlebar pane of the window. If a window cannot be found,
the method returns “1”, indicating a failed step.

If multiple windows are found matching varWindowTitle, AutoMate™ will attempt to minimize the first
window it eternally enumerates.

WindowMaximize Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Maximize.” Finds the window with the
title text indicated and maximizes the window.

Declaration
function WindowMaximize(varWindowTitle As Variant,
        intExactMatch As Integer) As Integer

Parameters
varWindowTitle

The text of the window title to be maximized.

intExactMatch
Whether or not the title bar text should match varWindowTitle exactly or partially. Use “0” for a

partial match or “1” for an exact match.

Description
The WindowMaximize method will attempt to locate a window with the title specified in the
varWindowTitle parameter. If a window exists, AutoMate™ will attempt to maximize the window as if a
user clicked the “maximize” button from the titlebar pane of the window. If a window cannot be found,
the method returns “1”, indicating a failed step.

If multiple windows are found matching varWindowTitle, AutoMate™ will attempt to minimize the first
window it eternally enumerates.

WindowHide Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Hide.” Finds the window with the title
text indicated and hides the window.

Declaration
function WindowHide(varWindowTitle As Variant,
        intExactMatch As Integer) As Integer

Parameters
varWindowTitle

The text of the window title to be hidden.

intExactMatch
Whether or not the title bar text should match varWindowTitle exactly or partially. Use “0” for a

partial match or “1” for an exact match.

Description
The WindowHide method will attempt to locate a window with the title specified in the varWindowTitle
parameter. If a window exists, AutoMate™ will attempt to hide the window.    The window will not
appear in the taskbar if hidden. If a window cannot be found, the method returns “1”, indicating a failed
step.

If multiple windows are found matching varWindowTitle, AutoMate™ will attempt to hide the first
window it eternally enumerates.

WindowUnhide Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Unhide.” Finds the window with the title
text indicated and unhides the window.

Declaration
function WindowUnhide(varWindowTitle As Variant,
        intExactMatch As Integer) As Integer

Parameters
varWindowTitle

The text of the window title to be revealed.

intExactMatch
Whether or not the title bar text should match varWindowTitle exactly or partially. Use “0” for a

partial match “1” for an exact match.

Description
The WindowUnhide method will attempt to locate a hidden window with the title specified in the
varWindowTitle parameter. If a window exists, AutoMate™ will attempt to unhide the window. If a
window cannot be found, the method returns “1”, indicating a failed step.

If multiple windows are found matching varWindowTitle, AutoMate™ will attempt to unhide the first
window it eternally enumerates.

WindowRestore Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Restore.” Finds the window with the title
text indicated and restores the window.

Declaration
function WindowRestore(varWindowTitle As Variant,
        intExactMatch As Integer) As Integer

Parameters
varWindowTitle

The text of the window title to restore.

intExactMatch
Whether or not the title bar text should match varWindowTitle exactly or partially. Use “0” for a

partial match or “1” for an exact match.

Description
The WindowRestore method will attempt to locate a window with the title specified in the
varWindowTitle parameter. If a window exists, AutoMate™ will attempt to restore the window to its
default show state. If a window cannot be found, the method returns “1”, indicating a failed step.

If multiple windows are found matching varWindowTitle, AutoMate™ will attempt to restore the first
window it eternally enumerates.

WindowClose Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Close.” Finds the window with the title
text indicated and closes the window.

Declaration
function WindowClose(varWindowTitle As Variant,
        intExactMatch As Integer) As Integer

Parameters
varWindowTitle

The text of the window title to be hidden.

intExactMatch
Whether or not the title bar text should match varWindowTitle exactly or partially. Use “0” for a

partial match or “1” for an exact match.

Description
The WindowClose method will attempt to locate a window with the title specified in the varWindowTitle
parameter. If a window exists, AutoMate™ will attempt to close the window.    The window will not
appear in the taskbar if hidden. If a window cannot be found, the method returns “1”, indicating a failed
step.

If multiple windows are found matching varWindowTitle, AutoMate™ will attempt to close the first
window it eternally enumerates.

NOTE: Most applications will terminate once their main window is closed. Therefore, try using the
WindowClose command to terminate applications through the AutoMate™ scripting language.

Message Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Message.” The method displays a
standard message box with the desired text, and optionally waits for a response before continuing.

Declaration
function Message(varMessageText As Variant,
        intModal As Integer) As Integer

Parameters
varMessageText

The text to be displayed inside the message box.

intModal
Whether the message box is displayed modally or not. If the message box is modal, AutoMate™ will

wait until the user clicks the OK button before the function returns. Set intModal to “1” for a modal
message box or “0” otherwise.

Description
The Message method will display a standard Windows message box with an OK button, and
varMessageText as the text within the message box. Use Message to display a message to a user
while the task is running.

StartApplication Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Start an application.” The method
attempts to start the given application using the specified commandline.

Declaration
function StartApplication (varCommandLine As Variant,
        varParameters As Variant,
        varDefaultDir As Variant,
        intWindowState As Integer,
        intWaitUntilReady As Integer,
        intWaitUntilDone As Integer) As Integer

Parameters
varCommandLine

The commandline AutoMate™ should use to start the application (e.g. C:\Program
Files\Unisyn\AutoMate4\Settings.exe). Note that the commandline is not case sensitive.

varParameters
Any additional parameters that may be needed to run the program.

varDefaultDir
Path to the directory where AutoMate™ should start the program.

intWindowState
An integer specifying how AutoMate™ should attempt to display the window:

Value Meaning
0 Normal
1 Maximized
2 Minimized
3 Hidden

intWaitUntilReady
Specifies whether or not AutoMate™ should wait until the application is finished its startup

procedures and signals it is ready to accept input before continuing.    Set to “1” to have AutoMate™
wait or “0” otherwise.

intWaitUntilDone
Specifies whether or not AutoMate™ should wait until the started application closes before

returning.    Set to “1” to make the method wait until the application has completed before returning or
“0” otherwise.

Description
The StartApplication method attempts to start a standard Windows or DOS-based program at the path
specified by varCommandLine. AutoMate™ can be told to wait until the application is ready for input or

wait until the application is done, before continuing with the next line in the script. Setting both
intWaitUntilReady and intWaitUntilDone to “1” is undefined.

If the program pointed to by varCommandLine cannot be started for whatever reason, the method will
return “1.” Use the GetLastError property for more information about why the method failed.

PrintDocument Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Print a document.” The method attempts
to print the specified document using the document’s registered data and program type.

Declaration
function PrintDocument (varDocument As Variant) As Integer

Parameters
varDocument

The full path to the document to be printed.

Description
The PrintDocument method attempts to print out the document at the specified path using the file’s
associated file type. For example, pointing to a file with a .txt extension will print the document using
Notepad.

OpenDocument Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Open a document.” The method
attempts to open the specified document using the document’s registered data and program type.

Declaration
function OpenDocument (varDocument As Variant) As Integer

Parameters
varDocument

The full path to the document to be opened.

Description
The OpenDocument method attempts to open the document at the specified path using the file’s
associated file type. For example, pointing to a file with a .txt extension will open the document using
Notepad, and opening a website address will use Internet Explorer (on systems where IE is the default
browser).

If the function fails, check to ensure the file you are pointing to has an associated file type.

SendKeystrokes Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Send keystrokes.” The method sends
keystrokes to the currently focused window as if a user where typing them on the keyboard.

Declaration
function SendKeystrokes (varKeystrokes As Variant,
        intPauseFirst As Integer,
        intPauseLength As Integer) As Integer

Parameters
varKeystrokes

The keystrokes to send.

intPauseFirst
Specifies whether or not AutoMate™ should pause before sending the keystrokes. If set to “1”,

AutoMate™ will pause for the number of milliseconds specified by PauseLength.    If set to “0”, the
PauseLength parameter is ignored.

intPauseLength
The number of milliseconds to wait before AutoMate™ attempts to send the keystrokes specified by

varKeystrokes. This parameter is used only if intPauseFirst is “1.”

Description
The SendKeystrokes method will send keys to the currently focused application or window, mimicking
a user at the keyboard. Use intPauseFirst and intPauseLength to specify if AutoMate™ should pause
before attempting to send the keystrokes and for how long.

AutoMate™ does not do any checks before sending the keystrokes – it will blindly write to the keyboard
buffer regardless of the current system state. Because of this, ensure that the proper window to receive
the keyboard focus is selected (using the WindowFocus method) before using the SendKeystrokes
method.

PasteKeys Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Paste Keys.” The method first copies the
desired key sequence to the system clipboard, then pastes them to the focused window.

Declaration
function PasteKeys (varKeysToPaste As Variant) As Integer

Parameters
varKeysToPaste

The keystrokes (or text) to be pasted to the focused application.

Description
The PasteKeys method first copies the text specified in varKeysToPaste to the system clipboard, then
copies it to the currently focused window.

PasteKeys is faster than SendKeystrokes because it copies the contents from the system clipboard in
one step, whereas SendKeystrokes emulates a user typing each key individually on the keyboard. The
disadvantage to this is that PasteKeys does not support special keys (such as the arrow keys or
HOME key). If you need to send anything other than straight text, use SendKeystrokes instead.

Reminder Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Reminder.” The method displays an
AutoMate™ Reminder dialog box with the desired text and allows the user to optionally specify a
“sleep” time.

Declaration
function Reminder (varReminderText As Variant,
        intReschedule As Integer) As Integer

Parameters
varReminderText

The text to be displayed inside the reminder dialog box when it appears.

intReschedule
The number of minutes to display as the default reschedule time.

Description
The Reminder Method will show an interactive reminder dialog box with the text in varReminderText
and populate the “reschedule time” with intReschedule. The user can then choose Ok, which resets
the reminder’s timer to the time the user entered in the dialog and reshows the reminder when the
timer expires. The function does not return until the user clicks Cancel from the reminder dialog.

PlaySound Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Play A Sound.” The method plays the
wav sound specified by the filename.

Declaration
function PlaySound (varSoundToPlay As Variant,
        intWaitUntilFinished As Integer) As Integer

Parameters
varSoundToPlay

The full path to the sound to be played.

intWaitUntilFinished
Specifies whether or not the method should return before the sound is finished playing.    If

intWaitUntilFinished is “1”, the method returns after the sound is finished playing. Otherwise, the
method returns immediately.

Description
The PlaySound method will play the sound pointed to by varSoundToPlay. Use the StopSound method
to stop a playing sound.

StopSound Method
Action2 Example

Immediately stops a playing sound.

Declaration
function StopSound () As Integer

Parameters
none

Description
The StopSound method stops any and all playing sounds on the system, not just one started by
AutoMate™.

OpenWebpage Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “Open webpage.” The method opens a
webpage in the default browser.

Declaration
function OpenWebpage (varWebpageAddress As Variant) As Integer

Parameters
varWebpageAddress

The URL of the webpage to open.

Description
The OpenWebpage method attempts to open the webpage pointed to by varWebpageAddress in the
system’s default browser.

If the default web browser cannot be opened, the method returns “1.” Otherwise, it returns “0.”    Note
that the function will therefore return a success regardless of whether or not the page was successfully
opened.

FocusWindowContaining Method
Action2 Example

Encapsulates the AutoMate™ action in the “Window” group, “Focus Window Containing.” The method
attempts to find and focus a window that contains the specified text.

Declaration
function FocusWindowContaining(varWindowTitle As Variant,
        intExactTitleMatch As Integer,
        varTextToFind As Variant,
        intExactTextMatch As Integer) As Integer

Parameters
varWindowTitle

The title bar text of the window to search for the specified text. Use “*” here to search all open
windows in the system.

intExactTitleMatch
Specifies whether or not the varWindowTitle must be matched exactly. Set to “1” if yes or “0” if a

substring match is preferred.

varTextToFind
The text within the window specified by varWindowTitle to be searched for.

    varExactTextMatch
Specified whether or not the text inside the window must match varTextToFind exactly.    Set to “1”

for an exact search or “0” for a substring search.

Description
The FocusWindowContaining method will search the window with the titlebar text specified by
varWindowTitle for the text specified by varTextToFind. If the text is located, AutoMate™ will attempt to
focus the window and bring it to the foreground.

To search all the open windows in the system for varTextToFind, set varWindowTitle to “*”.

The method returns”1” if a window containing the specified text cannot be found and “0” if the window
is found and focused successfully.

PingMachine Method
Action2 Example

Encapsulates the AutoMate™ action in the “Internet” group, “Ping Machine.” The method attempts to
ping the specified host and places the roundtrip time into an AutoMate™ variable.

Declaration
function PingMachine (varMachineAddress As Variant,
        intPingTimeout As Integer,
        varVarToSet As Variant,
        intPingAction As Integer,
        varPingTaskToStart As Variant,
        intNoPingAction As Integer,
        varNoPingTaskToStart As Variant) As Integer

Parameters
varMachineAddress

The hostname or IP address of the machine to be pinged.

intPingTimeout
The amount of time (in milliseconds) to wait for a ping response before the ping times out.

varVarToSet
The variable name AutoMate™ is to put the ping response time.

    intPingAction
The course of action AutoMate™ should take if the ping is responded to successfully (i.e. the ping is

returned before the timeout expires):

Value Meaning
0 Start the task specified by varPingTaskToStart
1 Stop the current task (the method returns 2)
2 Continue the current task (the method returns 0)

varPingTaskToStart
The name of the task AutoMate™ should start if the ping is successful. This parameter is ignored

unless intPingAction is set to “0.”

intNoPingAction
The course of action AutoMate™ should take if the ping fails (i.e., there is no response from the

destination before the timeout expires)

Value Meaning
0 Start the task specified by varNoPingTaskToStart
1 Stop the current task (the method returns 2)
2 Continue the current task (the method returns 0)

varNoPingTaskToStart
The name of the task AutoMate™ should start if the ping is unsuccessful.    This parameter is

ignored unless intNoPingAction is set to “0.”

Description
The PingMachine method will send an ICMP ping to the machine specified by varMachineName and
wait for a response for the time indicated by intPingTimeout. The method returns different integer
values based on the settings of intPingAction and intNoPingAction and if the machine responds to the
ping in time.

FTPQuickSend Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Quick Send.” The method attempts to
login to an FTP server, upload a file, and disconnect in one step.

Declaration
function FTPQuickSend (varHost As Variant,
        varUsername As Variant,
        varPassword As Variant,
        intPort As Integer,
        varLocalFile As Variant,
        varRemoteFile As Variant,
        varFTPLogFile As Variant,
        intOverwriteLog As Integer) As Integer

Parameters
varHost

The hostname or IP address of the FTP server to upload the file to.

varUsername
The username used to log in to the server. For anonymous login, try “anonymous”

varPassword
The clear text password to be used to login to the server. For anonymous logins, try your email

address (e.g. user@rockon.com)

    intPort
The port number to connect to on the FTP server. Most FTP servers use port 23.

    varLocalFile
The full path of the file on the local system to be uploaded to the FTP server.

    varRemoteFile
The full path to place the file on the FTP server.

    varFTPLogFile
The full path to a logfile on your local system that AutoMate™ can use to write session information

to. If the file does not exist, AutoMate™ will create it first.

    intOverwriteLog
Specifies whether or not AutoMate™ should overwrite the file specified by varFTPLogFile if the file

already exists. Set to “1” to overwrite the file or set to “0” if you wish to append logging to the end of the
file.

Description
The FTPQuickSend method attempts to logon to an FTP server on the specified port, login using the

specified username and password, upload the desired file, and disconnect from the server, all in one
function call.

FTPQuickRetrieve Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Quick Retrieve.” The method attempts
to login to an FTP server, download a file, and disconnect in one step.

Declaration
function FTPQuickSend (varHost As Variant,
        varUsername As Variant,
        varPassword As Variant,
        intPort As Integer,
        varLocalFile As Variant,
        varRemoteFile As Variant,
        varFTPLogFile As Variant,
        intOverwriteLog As Integer) As Integer

Parameters
varHost

The hostname or IP address of the FTP server to download the file from.

varUsername
The username used to log in to the server. For anonymous login, try “anonymous”

varPassword
The clear text password to be used to login to the server. For anonymous logins, try your email

address (e.g. user@rockon.com)

    intPort
The port number to connect to on the FTP server. Most FTP servers use port 23.

    varLocalFile
The full path (including filename) of where to place the downloaded file on the local system.

    varRemoteFile
The full path of the file on the FTP server to download.

    varFTPLogFile
The full path to a logfile on your local system that AutoMate™ can use to write session information

to. If the file does not exist, AutoMate™ will create it first.

    intOverwriteLog
Specifies whether or not AutoMate™ should overwrite the file specified by varFTPLogFile if the file

already exists. Set to “1” to overwrite the file or set to “0” if you wish to append logging to the end of the
file.

Description
The FTPQuickRetrieve method attempts to logon to an FTP server on the specified port, login using

the specified username and password, download the desired file to the local machine, and disconnect
from the server, all in one function call.

FTPLogin Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Login.” The method attempts to
connect AutoMate™ to an FTP server.

Declaration
function FTPLogin (varHost As Variant,
        varUsername As Variant,
        varPassword As Variant,
        intPort As Integer,
        varFTPLogFile As Variant,
        intOverwriteLog As Integer,
        intPassiveMode As Integer) As Integer

Parameters
varHost

The hostname or IP address of the FTP server to connect to.

varUsername
The username used to log in to the server. For anonymous login, try “anonymous”

varPassword
The clear text password to be used to login to the server. For anonymous logins, try your email

address (e.g. user@rockon.com)

    intPort
The port number to connect to on the FTP server. Most FTP servers use port 23.

    varFTPLogFile
The full path to a logfile on your local system that AutoMate™ can use to write session information

to. If the file does not exist, AutoMate™ will create it first.

    intOverwriteLog
Specifies whether or not AutoMate™ should overwrite the file specified by varFTPLogFile if the file

already exists. Set to “1” to overwrite the file or set to “0” if you wish to append logging to the end of the
file.

    intPassiveMode
If the local machine or remote machine is behind a firewall, it may be necessary to use the FTP

commands in passive mode. To do this, set intPassiveMode to “1.”    Otherwise, set to “0.”

Description
The FTPLogin method attempts to connect to the FTP server specified by varHost on the port intPort,
using the username specified by varUsername and the password specified by varPassword.

Use the FTPLogin method to establish a persistent connection to an FTP server. Once a connection is

made, you can use the other FTP commands to upload, download, rename, and delete files on the
FTP server. This differs from the FTPQuickUpload and FTPQuickDownload methods, which connect to
a server, perform one action, and then disconnect.

When finished with the FTP server, call the FTPLogout method to cleanly disconnect from the server.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPLogout Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Logout.” The method disconnects a
connection to an FTP server previously established using the FTPLogin method.

Declaration
function FTPLogout () As Integer

Parameters
None

Description
The FTPLogout method attempts to disconnect from an FTP server previously connected to using the
FTPLogin method.

Use this command when you are finished with a previously established FTP connection to cleanly
disconnect from the server.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPRename Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Rename.” The method attempts to
rename a file on the FTP server.

Declaration
function FTPRename (varFTPOldName As Variant,
        varFTPNewName As Variant,
        intIncludeSubDirs As Integer) As Integer

Parameters
varFTPOldName

The full path of the file on the FTP server to be renamed.

varFTPNewName
The new name (including path, if relevant) of the file on the FTP server.

intIncludeSubDirs
If set to “0”, the rename command applies to only the current directory. If set to “1”, the rename

command will go through all subdirectories as well.

Description
The FTPRename method attempts to rename a file on the FTP server specified by varFTPOldName to
the filename varFTPNewName.

A connection to the FTP server must have been previously established by a successful called to
FTPLogin.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPDelete Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Delete.” The method attempts to delete
a file on the FTP server.

Declaration
function FTPDelete (varFTPFilename As Variant,

intIncludeSubDirs As Integer) As Integer

Parameters
varFTPFilename

The full path of the file on the FTP server to be deleted.

intIncludeSubDirs
If set to “0”, the delete command applies to only the current directory. If set to “1”, the delete

command will go through all subdirectories as well.

Description
The FTPDelete method attempts to delete a file on the FTP server specified by varFTPFilename.

A connection to the FTP server must have been previously established by a successful called to
FTPLogin.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPRemoveDirectory Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Remove Directory.” The method
attempts to delete a directory on the FTP server.

Declaration
function FTPRemoveDirectory (varDirectory As Variant,

intIncludeSubDirs As Integer) As Integer

Parameters
varDirectory

The full path of the directory on the FTP server to be deleted.

intIncludeSubDirs
If set to “0”, the remove directory command applies to only the current directory. If set to “1”, the

remove directory command will go through all subdirectories as well.

Description
The FTPRemoveDirectory method attempts to delete a directory on the FTP server specified by
varDirectory.

The directory must be empty for the function to succeed.

A connection to the FTP server must have been previously established by a successful called to
FTPLogin.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPMakeDirectory Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Make Directory.” The method attempts
to create a directory on the FTP server.

Declaration
function FTPMakeDirectory (varDirectory As Variant) As Integer

Parameters
varDirectory

The full path of the directory on the FTP server to be created.

Description
The FTPMakeDirectory method attempts to create a directory on the FTP server specified by
varDirectory.

A connection to the FTP server must have been previously established by a successful called to
FTPLogin.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPChangeDirectory Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Change Directory.” The method
attempts to change the current default directory of AutoMate™ actions performed on the FTP server.

Declaration
function FTPChangeDirectory (varNewDirectory As Variant) As Integer

Parameters
varNewDirectory

The full path of the directory on the FTP server to be used as the default directory.

Description
The FTPChangeDirectory changes the default directory to the directory specified by varDirectory. Once
this method is successfully executed, all following AutoMate™ FTP commands that work with paths
work relative to this directory.

A connection to the FTP server must have been previously established by a successful called to
FTPLogin.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPDownload Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Download.” The method attempts to
download the specified file from the FTP server previously connected to using the FTPLogin method.

Declaration
function FTPDownload (varFTPSource As Variant,
        varFTPDest As Variant,
        intTransType As Integer,
        intIncludeSubDirs As Integer) As Integer

Parameters
varFTPSource

The full path of the file on the FTP server to be downloaded.
 
    varFTPDest

The full path on the local machine of where the file should be downloaded to.

    intTransType
The transfer type AutoMate™ should use to download the file:

Value Meaning
1 Default (Auto-detect)
2 ASCII/Text
3 Binary

intIncludeSubDirs
If set to “0”, the download command applies to only the current directory.    If set to “1”, the

download command will go through all subdirectories as well.

Description
The FTPDownload method will attempt to download the file specified by varFTPSource to the local
machine.

A connection to the FTP server must have been previously established by a successful called to
FTPLogin.

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

FTPUpload Method
Action2 Example

Encapsulates the AutoMate™ action in the “FTP” group, “FTP Upload.” The method attempts to
upload the specified file to the FTP server previously connected to using the FTPLogin method.

Declaration
function FTPUpload (varFTPSource As Variant,
        varFTPDest As Variant,
        intTransType As Integer,
        intIncludeSubDirs As Integer) As Integer

Parameters
varFTPSource

The full path of the local file to be uploaded to the FTP server.
 
    varFTPDest

The full path on the FTP server of where the file should be placed.

    intTransType
The transfer type AutoMate™ should use to download the file:

Value Meaning
1 Default (Auto-detect)
2 ASCII/Text
3 Binary

intIncludeSubDirs
If set to “0”, the upload command applies to only the current directory.    If set to “1”, the upload

command will go through all subdirectories as well.

Description
The FTPUpload method will attempt to upload the file specified by varFTPSource to the FTP server
using the filename varFTPDest.

A connection to the FTP server must have been previously established by a successful called to
FTPLogin .

NOTE: The Action2 FTP methods (with the exception of FTPQuickSend and FTPQuickRetrieve) may
not function properly in the AutoMate™ BASIC IDE. To more accurately use these functions, run the
script from within an AutoMate™ task using the “Run a BASIC Script” action.

CheckForMail Method
Action2 Example

Encapsulates the AutoMate™ action in the “Email” group, “Check For Mail.” The method attempts to
contact a POP3 server, login as the requested user, and check if any messages are waiting for
retrieval.

Declaration
function CheckForMail (varServer As Variant,
        varUsername As Variant,
        varPassword As Variant,
        intWaitingMailAction As Integer,
        intNoWaitingMailAction As Integer) As Integer

Parameters
varServer

The hostname or IP address of the POP3 server to connect to.
 
    varUsername

The username to use when connecting to the POP3 server.

    varPassword
The clear text password to use for the username connecting to the POP3 server.

    intWaitingMailAction
The action for AutoMate™ to take if there are any messages waiting for retrieval on the POP3

server:

Value Meaning
0 Stop this task (method returns 2)
1 Continue this task (method returns 0)

intNoWaitingMailAction
The action for AutoMate™ to take if there are no messages waiting for retrieval on the POP3 server.

Value Meaning
0 Stop this task (method returns 2)
1 Continue this task (method returns 0)

Description
The CheckForMail method will attempt to connect to the POP3 mail server specified by varServer as
the user varUsername. It will then ask the POP3 server how many messages are in the user’s mailbox.
If there are any messages waiting, AutoMate™ carries out the action specified by intWaitingMailAction.
If there are no messages waiting, AutoMate™ carries out the action specified by
intNoWaitingMailAction.

The CheckForMail method performs the intWaitingMailAction parameter if there are any messages
waiting on the server, not necessarily if there are any unread messages.

The method returns different values based on the state of the POP3 mailbox and the parameters of
intWaitingMailAction and intNoWaitingMailAction (see above). It return “1” if the POP3 server cannot
be contacted.

SendEmail Method
Action2 Example

Encapsulates the AutoMate™ action in the “Email” group, “Send Message.” The method attempts to
send an email message through the specified SMTP server.

Declaration
function SendEmail (varServer As Variant,
        varUsername As Variant,
        varTo As Variant,
        varCC As Variant,
        varSubject As Variant,
        varBodyFilename As Variant,
        varAttachmentFilename As Variant) As Integer

Parameters
varServer

The hostname or IP address of the SMTP server to use to send the email message.

varUsername
The username of the user with forwarding privileges on the SMTP server.

varTo
The email address (e.g. cowpoke@cowboy.com) of the primary recipient for the email message.

varCC
The email address or addresses of CC recipients of the message. Multiple email addresses can be

supplied by separating each one with a semi-colon (e.g.
ranchmaster@cowboy.com;masterchef@ranchhouse.com)

varSubject
The subject of the email message. This will appear in the Subj section of the sent message. This

can be blank.

varBodyFilename
The full path and filename of the file which contains the contents of the message to be sent.

varAttachmentFilename
The full path to the binary attachment to send with the message. AutoMate™ currently supports only

one attachment.

Description
The SendEmail method attempts to send the contents of text file varBodyFilename as an email
message using the SMTP server supplied by varServer.

To send a message, first create a text file using your favorite text editor. Inside the text file, type out the
message body of the email message. The body can contain AutoMate™ variables and constants; the

body will be parsed and processed by AutoMate™ before it is sent. Save the file and make note of its
location.

Next, use the SendEMail method, supplying the primary recipient in the varTo address, and any
carbon-copy recipients in the varCC parameter, separating their address with a semi-colon.   
Optionally, you can supply a subject heading for the message using the varSubject parameter.    Use
the path to the text file you previously created with the message contents in varBodyFilename, and a
path to any attachment you wish to send in varAttachmentFilename.

The method returns “0” if the message was submitted to the SMTP server properly; otherwise it
returns “1.” Note that the function succeeds if the message is successfully submitted, not whether or
not the message necessarily received by the recipient(s).

MoveMouse Method
Action2 Example

Encapsulates the AutoMate™ action in the “Mouse” group, “Move To Location.” The method attempts
to move the mouse pointer to a specific point on the desktop.

Declaration
function MoveMouse (intXPos As Integer,
        intYPos As Integer) As Integer

Parameters
intXPos

The X-coordinate to place the mouse pointer.

varYPos
The Y-coordinate to place the mount pointer.

Description
The MoveMouse method moves the mouse to the x, y point specified by the intXPos and intYPos
parameters.

LeftClick Method
Action2 Example

Encapsulates the AutoMate™ action in the “Mouse” group, “Left Click.” The method simulates a single
click of the left mouse button.

Declaration
function LeftClick () As Integer

Parameters
None

Description
The LeftClick method simulates a user pressing the left mouse button once at the current location of
the mouse pointer.

LeftDblClick Method
Action2 Example

Encapsulates the AutoMate™ action in the “Mouse” group, “Left Double Click.” The method simulates
a double click of the left mouse button.

Declaration
function LeftDblClick () As Integer

Parameters
None

Description
The LeftDblClick method simulates a user double-clicking the left mouse button at the current location
of the mouse pointer.

RightClick Method
Action2 Example

Encapsulates the AutoMate™ action in the “Mouse” group, “Right Click.” The method simulates a
single click of the right mouse button.

Declaration
function RightClick () As Integer

Parameters
None

Description
The RightClick method simulates a user pressing the right mouse button once at the current location of
the mouse pointer.

MiddleClick Method
Action2 Example

Encapsulates the AutoMate™ action in the “Mouse” group, “Middle Click.” The method simulates a
single click of the middle mouse button.

Declaration
function MiddleClick () As Integer

Parameters
None

Description
The MiddleClick method simulates a user pressing the middle mouse button once at the current
location of the mouse pointer.

RightDblClick Method
Action2 Example

Encapsulates the AutoMate™ action in the “Mouse” group, “Right Double Click.” The method
simulates a double click of the right mouse button.

Declaration
function RightDblClick () As Integer

Parameters
None

Description
The RightDblClick method simulates a user double-clicking the right mouse button at the current
location of the mouse pointer.

MiddleDblClick Method
Action2 Example

Encapsulates the AutoMate™ action in the “Mouse” group, “Middle Double Click.” The method
simulates a double click of the middle mouse button.

Declaration
function MiddleDblClick () As Integer

Parameters
None

Description
The MiddleDblClick method simulates a user double-clicking the middle mouse button at the current
location of the mouse pointer.

AMCopyFile Method
Action2 Example

Encapsulates the AutoMate™ action in the “File I/O” group, “Copy a file.” The method attempts to
copy the specified file from one location to another.

Declaration
function AMCopyFile (varSourceFile As Variant,
        varDestFile As Variant) As Integer

Parameters
varSourceFile

The full path to the file to be copied.

varDestFile
The full path to the destination.

Description
The AMCopyFile method attempts to copy the source file varSourceFile to the location and name
specified by varDestFile.

If the file is successfully copied, AMCopyFile returns “0.” If an error occurs, AMCopyFile returns “1.”   
In this case, use the GetLastError property to retrieve the error message AutoMate™ generated when
trying to copy the file.

The AMCopyFile method supports wildcards.

AMMoveFile Method
Action2 Example

Encapsulates the AutoMate™ action in the “File I/O” group, “Move a file.” The method attempts to
move the specified file from one location to another.

Declaration
function AMMoveFile (varSourceFile As Variant,
        varDestFile As Variant) As Integer

Parameters
varSourceFile

The full path to the file to be moved.

varDestFile
The full path to the destination.

Description
The AMMoveFile method attempts to move the source file varSourceFile to the location and name
specified by varDestFile.

If the file is successfully moved, AMMoveFile returns “0.” If an error occurs, AMMoveFile returns “1.” In
this case, use the GetLastError property to retrieve the error message AutoMate™ generated when
trying to move the file.

The AMMoveFile method supports wildcards and can move files between drives.

The AMMoveFile method is identical to the AMRenameFile method.

AMRenameFile Method
Action2 Example

Encapsulates the AutoMate™ action in the “File I/O” group, “Rename a file.” The method attempts to
rename the specified file from one filename to another.

Declaration
function AMRenameFile (varOldName As Variant,
        varNewName As Variant) As Integer

Parameters
varOldName

The full path to the file to be renamed.

varNewName
The full path and new name of the file.

Description
The AMRenameFile method attempts to rename the source file varOldName to varNewName.

If the file is successfully renamed, AMRenameFile returns “0.” If an error occurs, AMRenameFile
returns “1.” In this case, use the GetLastError property to retrieve the error message AutoMate™
generated when trying to rename the file.

The AMRenameFile method supports wildcards.

The AMRenameFile method is identical to the AMMoveFile method.

AMDeleteFile Method
Action2 Example

Encapsulates the AutoMate™ action in the “File I/O” group, “Delete a file.” The method attempts to
delete the specified file.

Declaration
function AMDeleteFile (varFilename As Variant) As Integer

Parameters
varFileName

The full path to the file to be deleted.

Description
The AMDeleteFile method attempts to delete the file specified by varFilename.

Use the AMDeleteFile method with caution. The method permanently deletes the file from the system.
It does not move the file to the recycle bin.

The AMDeleteFile method supports wildcards.

If the file is successfully deleted, AMDeleteFile returns “0.” If an error occurs, AMDeleteFile returns
“1.” In this case, use the GetLastError property to retrieve the error message AutoMate™ generated
when trying to delete the file.

AMMakeDir Method
Action2 Example

Encapsulates the AutoMate™ action in the “File I/O” group, “Create a directory.”    The method
attempts to create the specified directory.

Declaration
function AMMakeDir (varDirectory As Variant) As Integer

Parameters
varDirectory

The name of the directory to be created (including path, if necessary)

Description
The AMMakeDir method attempts to create the directory specified by varDirectory.

If the directory is successfully created, AMMakeDir returns “0.” If an error occurs, AMMakeDir returns
“1.” In this case, use the GetLastError property to retrieve the error message AutoMate™ generated
when creating the directory.

AMRemoveDir Method
Action2 Example

Encapsulates the AutoMate™ action in the “File I/O” group, “Remove a directory.” The method
attempts to remove the specified directory.

Declaration
function AMRemoveDir (varDirectory As Variant) As Integer

Parameters
varDirectory

The name of the directory to be removed (including path, if necessary)

Description
The AMMakeDir method attempts to remove the directory specified by varDirectory.

If the directory is successfully removed, AMRemoveDir returns “0.” If an error occurs, AMRemoveDir
returns “1.” In this case, use the GetLastError property to retrieve the error message AutoMate™
generated when creating the directory.

The directory to be removed must be empty before calling AMRemoveDir.

AMChangeDir Method
Action2 Example

Encapsulates the AutoMate™ action in the “File I/O” group, “Change directory.” The method attempts
to change the current default directory to the specified directory.

Declaration
function AMChangeDir (varDirectory As Variant) As Integer

Parameters
varDirectory

The name of the directory to be changed to.

Description
The AMChangeDir method attempts to change the current default directory to varDirectory. If
successful, all subsequent file I/O commands use this directory as their relative path.

DDECommand Method
Action2 Example

Encapsulates the AutoMate™ action in the “General” group, “DDE Command.” The method attempts
to send a DDE Command.

Declaration
function DDECommand (varText As Variant,
        varTopic As Variant,
        varItem As Variant) As Integer

Parameters
varText

The text property of the DDE Command structure.

varTopic
The topic property of the DDE Command.

varItem
The item property of the DDE Command.

Description
The DDECommand method will issue a DDE command to the requested application.

See the Win32 SDK for more information on DDE Commands and their use.

ClipboardCut Method
Action2 Example

Encapsulates the AutoMate™ action in the “Clipboard” group, “Cut.” The method cuts the current user
selection to the system clipboard.

Declaration
function ClipboardCut () As Integer

Parameters
None

Description
The ClipboardCut method cuts the current user selection to the system clipboard. AutoMate™ does
this by simulating a “Ctrl-X” keyboard sequence. It is up to the user to first select the appropriate text
or object to be cut to the clipboard before calling the ClipboardCut method, and to ensure that the
focused application supports “Ctrl-X” as the cut command.

ClipboardCopy Method
Action2 Example

Encapsulates the AutoMate™ action in the “Clipboard” group, “Copy.” The method copies the current
user selection to the system clipboard.

Declaration
function ClipboardCopy () As Integer

Parameters
None

Description
The ClipboardCopy method copies the current user selection to the system clipboard.    AutoMate™
does this by simulating a “Ctrl-C” keyboard sequence. It is up to the user to first select the appropriate
text or object to be copies to the clipboard before calling the ClipboardCopy method, and to ensure that
the focused application supports “Ctrl-C” as the cut command.

ClipboardPaste Method
Action2 Example

Encapsulates the AutoMate™ action in the “Clipboard” group, “Paste.” The method pastes the current
contents of the system clipboard at the user-selected location.

Declaration
function ClipboardPaste () As Integer

Parameters
None

Description
The ClipboardPaste method pastes the contents of the system clipboard to the current user selection.
AutoMate™ does this by simulating a “Ctrl-V” keyboard sequence. It is up to the user to ensure the
desired contents are on the clipboard and the selection (e.g., cursor or pointer) is in the appropriate
place before calling the ClipboardPaste method.

ClipboardClear Method
Action2 Example

Encapsulates the AutoMate™ action in the “Clipboard” group, “Clear.” The method clears the system
clipboard.

Declaration
function ClipboardClear () As Integer

Parameters
None

Description
The ClipboardClear method clears the contents of the system clipboard.

RebootMachine Method
Action2 Example

Encapsulates the AutoMate™ action in the “System” group, “Reboot.” The method forcibly reboots the
machine.

Declaration
function RebootMachine () As Integer

Parameters
None

Description
The RebootMachine method forcibly and immediately reboots the machine. The system does not
prompt to save contents of open applications.

NOTE: Use the RebootMachine method with caution. Because it is a forcible reboot, the user may lose
any unsaved data without warning once the function is executed.

ShutdownMachine Method
Action2 Example

Encapsulates the AutoMate™ action in the “System” group, “Shutdown.” The method forcibly shuts
down the machine.

Declaration
function ShutdownMachine () As Integer

Parameters
None

Description
The ShutdownMachine method forcibly and immediately shuts down the machine. The system does
not prompt to save contents of open applications.

NOTE: Use the ShutdownMachine method with caution. Because it is a forcible shutdown, the user
may lose any unsaved data without warning once the function is executed.

LogoffMachine Method
Action2 Example

Encapsulates the AutoMate™ action in the “System” group, “Logout.” The method forcibly logs off the
current user.

Declaration
function LogoffMachine () As Integer

Parameters
None

Description
The LogoffMachine method forcibly and immediately logs the current user off. The system does not
prompt to save contents of open applications.

NOTE: Use the LogoffMachine method with caution. Because it is a forcible log off, the user may lose
any unsaved data without warning once the function is executed.

UpdateAutoMate™ Method
Action2 Example

Encapsulates the AutoMate™ action in the “System” group, “Update AutoMate™.” The method
attempts to check for a newer version of AutoMate™, and if one exists, updates the executables to the
newest version.

Declaration
function UpdateAutoMate™ (intUpdateLocation As Integer,
        varFTPServer As Variant,
        varNetworkPath As Variant,
        intShowProgress As Integer,
        intForceReboot As Integer) As Integer

Parameters
intUpdateLocation

Indicates whether AutoMate™ should check an FTP site for an updated version, or use an
installation that already exists on a local path:

Value Meaning
0 Check the Unisyn site for a new version
1 Use an installation on a local path

varFTPServer
Checks the Unisyn FTP site for an updated version of AutoMate™. If left blank, AutoMate™ will

attempt to contact ftp.unisyn.com for an update. This is only used if the intUpdateLocation parameter is
set to “0.”

varNetworkPath
The path to the installation to use. This is parameter is ignored unless intUpdateLocation is set to

“1.”

intShowProgress
Specifies whether or not to display a progress meter indicating the status of the download and

update. Set to “1” to show a progress meter or “0” for silent upgrade.

intForceReboot
Some updates of AutoMate™ require that the system be rebooted before the changes take effect. If

intForceReboot is set to “1”, AutoMate™ will forcibly reboot the machine when the update is finished. If
intForceReboot is set to “0”, AutoMate™ will wait until the next reboot by the user before the changes
take effect.

Description
The UpdateAutoMate™ method is used to automatically update AutoMate™ to the latest version
available from the Unisyn FTP site. Setting intUpdateLocation to “0” and the varFTPServer to
ftp.unisyn.com (or “” for default) will cause AutoMate™ to contact the Unisyn site, check for a newer
version, and if one is present, download it and automatically install it.

The UpdateAutoMate™ method can also forcibly install a pre-existing or older installation over itself. To
do this, set intUpdateLocation to “1” and set varNetworkPath to the location of the AutoMate™ setup
file.

Note that the upgrade process requires that AutoMate™ shut itself down, run the setup executable,
and then restart. Therefore, running the UpdateAutoMate™ method will cause the script and any
running tasks to stop.

RemoveService Method
Action2 Example

Windows NT Machines Only

Encapsulates the AutoMate™ action in the “Services” group, “Remove a service.” The method
attempts to remove the specified service from the Windows NT Service Control Manager (SCM).

Declaration
function RemoveService (varServiceName As Variant,
        intStopFirst As Integer) As Integer

Parameters
varServiceName

The name of the service (as it appears in the SCM) to be removed.

intStopFirst
Specifies whether or not AutoMate™ should attempt to stop the service before removing it. Set to

“1” to attempt to stop the service first or set to “0” to remove the service.

Description
The RemoveService method attempts to locate the service varServiceName in the Service Control
Manager and remove it.

Services should be stopped before attempting to remove them from the SCM. AutoMate™ may,
however, take a longer period of time to remove the service if it attempts to stop a service that is
already stopped. Therefore, you should set intStopFirst to “1” only if you know the service is running to
avoid a performance hit.

RemoveService returns “0” if the service was successfully removed; otherwise, it returns “1.” Use the
GetLastError property to retrieve the error message generated by a failed removal attempt.

The function is applicable only to AutoMate™ installations running on Windows NT and Windows 2000
systems.

StartService Method
Action2 Example

Windows NT Machines Only

Encapsulates the AutoMate™ action in the “Services” group, “Start a service.” The method attempts
to start the specified service.

Declaration
function StartService (varServiceName As Variant) As Integer

Parameters
varServiceName

The name of the service (as it appears in the SCM) to be started.

Description
The StartService method attempts to start the service named varServiceName.

The method returns “0” if the service was started successfully; otherwise, it returns “1.” Use the
GetLastError property to retrieve the error message generated by a failed start attempt.

PauseService Method
Action2 Example

Windows NT Machines Only

Encapsulates the AutoMate™ action in the “Services” group, “Pause a service.” The method attempts
to pause the specified service.

Declaration
function PauseService (varServiceName As Variant) As Integer

Parameters
varServiceName

The name of the service (as it appears in the SCM) to be paused.

Description
The PauseService method attempts to pause the service named varServiceName. The service must
have the ability to be paused and unpaused. Check the documentation for the service if you are unsure
whether or not it supports pausing.

Use the ContService method to continue a service that has been paused.

The method returns ”0” if the service was paused successfully; otherwise it returns “1.” Use the
GetLastError property to retrieve the error message generated by a failed pause attempt.

ContService Method
Action2 Example

Windows NT Machines Only

Encapsulates the AutoMate™ action in the “Services” group, “Continue a service.” The method
attempts to continue a paused service.

Declaration
function ContService (varServiceName As Variant) As Integer

Parameters
varServiceName

The name of the service (as it appears in the SCM) to be continued.

Description
The ContService method attempts to continue the service named varServiceName. The service must
have been previously paused, either through the SCM or by the PauseService method.

The method returns “0” if the service was continued successfully; otherwise it returns “1.” Use the
GetLastError property to retrieve the error message generated by a failed continue attempt.

InstallService Method
Action2 Example

Windows NT Machines Only

Encapsulates the AutoMate™ action in the “Services” group, “Install a service.” The method attempts
to install a service application into the Service Control Manager (SCM).

Declaration
function InstallService (varExecutable As Variant,
        varDisplayName As Variant,
        varUsername As Variant,
        varPassword As Variant,
        intErrorType As Integer,
        intServiceType As Integer,
        intRunType As Integer,
        intInteractive As Integer) As Integer

Parameters
varExecutable

The full path, including any command line parameters, to the service executable associated with this
service entry.

varDisplayName
The name of the service as it is to appear in the SCM.

varUsername
If the service is to be run in the context of a specific user, supply the Username here.

varPassword
If the service is to be run in the context of a specific user, supply the password to varUsername

here.

intErrorType
Specified the type of error control to associate with this service:

Value Meaning
0 Ignore Error
1 Normal Error
2 Critical Error
3 Severe Error

intServiceType
The type of service to install:

Value Meaning
0 Runs in own process

1 Shared process
2 Kernel driver
3 File system driver

intRunType
The run type of the service:

Value Meaning
0 Automatic
1 Manual
2 Disabled
3 Boot
4 System

intInteractive
Specifies whether or not the service should be run as interactive. If it is an interactive process, set

intInteractive to “1”; otherwise, set to “0.” Note that if the process is interactive, the varUsername and
varPassword variables are ignored.

Description
The InstallService method attempts to install a service application into the SCM in one simple to use
step.

The use of services and the Service Control Manager, however, are beyond the scope of this help file.
Please consult the Microsoft Win32 SDK under “Services” for more complete information about
services and their use in the Windows NT platform.

The method returns “0” if the service was installed successfully; otherwise, it returns “1.” Use the
GetLastError property to retrieve the error message generated by a failed start attempt.

Wait Method
Action2 Example

Encapsulates the AutoMate™ action in the “Flow Control” group, “Pause.” The method causes
AutoMate™ to suspend task execution for the specified number of seconds.

Declaration
function Wait (intTimeToWait As Integer) As Integer

Parameters
intTimeToWait

The number of seconds AutoMate™ should wait before executing the next step or line of code.

Description
The Wait method pauses the execution of AutoMate™ for the number of seconds specified by
intTimeToWait.

Login Method
Action2 Example

AutoMate™ NT Service Edition Only

Encapsulates the AutoMate™ action in the “System” group, “Login.” The method attempts to set the
security context of the currently running task to that of another user.

Declaration
function Login (varUsername As Variant,
        varPassword As Variant,
        varDomainName As Variant,
        intNewDesktop As Integer,
        intInteractive As Integer,
        intLaunchExplorer As Integer,
        intLockMouse As Integer,
        intLockKeyboard As Integer) As Integer

Parameters
varUsername

The name of the user the AutoMate™ task should act as.

varPassword
The password of the user the AutoMate™ task should act as.

varDomainName
The domain that varUsername is a part of.

intNewDesktop
Set to “1” if AutoMate™ should login the user in a new interactive workspace and setup their default

desktop. Set to “0” if no new interactive session is required.

intInteractive
Specified whether or not the new login session should allow the user to interactively work with the

desktop. If set to “0”, the session logins in the background, refusing user input and carrying out the
task securely. Set to “1” if the user should access the new desktop.

intLaunchExplorer
Set to “1” if explorer.exe should be run on the new interactive desktop This establishes a new

desktop. Set to “0” if no desktop is required.

intLockMouse
Set to “1” to stop the mouse from being accessed during the login session. Set to “0” to allow

access to the mouse.

intLockKeyboard
Set to “1” to lock the keyboard during the login session. Set to “0” to allow access to the keyboard.

Description
The AutoMate™ NT Service edition starts each individual task in the space of a specific user.    Usually,
this user is the one set by the Default Login, set in Preferences. Sometimes it is necessary to override
the default user and have the task operate in the security context of another user, for example the
administrator.

In these cases, use the Login method to change the security context of the task to that of a different
user. AutoMate™ will log the user on in the background, and each subsequent step will be executed as
if the new user were at the computer.

See the AutoMate™ Help File under “NT Service Edition Notes” for more information about user logins
and security contexts.

PromptUser Method
Action2 Example

Encapsulates the AutoMate™ action in the “Flow Control” group, “Prompt.” The method shows a
dialog box specified text and a selection of buttons and performs variable defined actions based on
their selection.

Declaration
function PromptUser (varText As Variant,
        intType As Integer,
        intActionOnOK As Integer,
        intFailOnCancel As Integer,
        intFailOnNo As Integer,
        varTaskToStart As Variant) As Integer

Parameters
varText

The text to display inside the dialog box.

intType
Specifies which buttons are to be available on the dialog box:

Value Meaning
0 OK only
1 OK and Cancel
2 Yes and No
3 Yes, No, and Cancel

intActionOnOK
Specifies the action AutoMate™ should take if the user clicks the OK or Yes button:

Value Meaning
0 Start another task (specified by varTaskToStart)
1 Stop the task (method returns 2)
2 Continue the task (method returns 0)

intFailOnCancel
Specifies whether the method should return a “1”, indicating a step failure, if the user clicks the

Cancel button (applicable only if the intType parameter is 1 or 3)

intFailOnNo
Specifies whether the method should return a “1”, indicating a step failure, if the user clicks the No

button (applicable only if the intType parameter is 2 or 3)

varTaskToStart
The name of the task AutoMate™ should start if the user clicks the OK or Yes button, and

intActionOnOK is set to “0.”

Description
The PromptUser method displays a user interactive dialog bog with the text varText and waits for the
user to make a selection. The return value of the method depends on the intActionOnOK,
intFailOnCancel and intFailOnNo parameters.

Use the PromptUser method to allow a user to interactively select the flow of a running task.

WaitForWindow Method
Action2 Example

Encapsulates the AutoMate™ action in the “Flow Control” group, “Wait for a window.” The method
pauses AutoMate™ for a specified period of time or until a window with the specified text appears.

Declaration
function WaitForWindow (varWindowText As Variant,
        intExactMatch As Integer,
        intIncludeChildren As Integer,
        intWaitTime As Integer,
        intCheckInterval As Integer,
        intNoWindowAction As Integer,
        varTaskToStart As Variant) As Integer

Parameters
varWindowText

The title bar text of the window to wait for.

intExactMatch
Specifies whether or not varWindowText must be matched exactly by any appearing window. Set to

“1” if varWindowText must be matched exactly or “0” for a substring or partial match.

intIncludeChildren
Set to “1” to check all windows in the system for varWindowText. Set to “0” to just check top level or

main application windows.

intWaitTime
The number of seconds AutoMate™ should wait for the window to appear.    If the window does not

appear, AutoMate™ checks the intNoWindowAction parameter for what to do.    To wait an infinite time,
set to –1.

intCheckInterval
The number of seconds between times AutoMate™ will enumerate all system windows in search for

the wanted window. Setting this to a low value (e.g., 1-second) slightly increases CPU utilization.

intNoWindowAction
Specifies what action AutoMate™ should take if intWaitTime expires and the specified window still

has not appeared:

Value Meaning
0 Start another task (specified by varTaskToStart)
1 Stop the task (method returns 2)
2 Continue the task (method returns 0)

varTaskToStart
The task AutoMate™ should start if the window does not appear within intWaitTime, and

intNoWindowAction is set to “0.”

Description
The WaitForWindow method pauses AutoMate™ until a window with the specified text appears.

Use WaitForWindow to wait for the system to enter a specific state (for example, an error message box
appears) before continuing to the next step or next line of code.

WaitForWindowToDisappear Method
Action2 Example

Encapsulates the AutoMate™ action in the “Flow Control” group, “Wait for a window to disappear.”
The method pauses AutoMate™ for a specified period of time or until a window with the specified text
disappears.

Declaration
function WaitForWindowToDisappear (varWindowTitle As Variant,
        intExactMatch As Integer,
        intIncludeChildren As Integer,
        intWaitInfinite As Integer,
        intInterval As Integer,
        intWaitTime As Integer,
        intStillPresentAction As Integer,
        varTaskToStart As Variant) As Integer

Parameters
varWindowText

The title bar text of the window to wait for.

intExactMatch
Specifies whether or not varWindowText must be matched exactly by any appearing window. Set to

“1” if varWindowText must be matched exactly or “0” for a substring or partial match.

intIncludeChildren
Set to “1” to check all windows in the system for varWindowText. Set to “0” to just check top level or

main application windows.

intWaitInfinite
Specifies whether AutoMate™ should wait an infinite period of time for the window to disappear. Set

to “0” to wait an infinite period of time and ignore the intInterval and intWaitTime parameters. Set to
“1” to wait for a specific period of time.

intInterval
The number of seconds between times AutoMate™ will enumerate all system windows in search for

the wanted window. Setting this to a low value (e.g., 1-second) slightly increases CPU utilization.

intWaitTime
The number of seconds AutoMate™ should wait for the window to appear.    If the window does not

appear, AutoMate™ checks the intNoWindowAction parameter for what to do.

intStillPresentAction
Specifies what action AutoMate™ should take if intWaitTime expires and the specified window is still

present:

Value Meaning

0 Start another task (specified by varTaskToStart)
1 Stop the task (method returns 2)
2 Continue the task (method returns 0)

varTaskToStart
The task AutoMate™ should start if the window does not appear within intWaitTime, and

intNoWindowAction is set to “0.”

Description
The WaitForWindowToDisappear method pauses AutoMate™ until a window with the specified text
disappears.

Use WaitForWindowToDisappear to wait for the system to enter a specific state (for example, an
application’s main window closes, indicating the end of a program’s run) before continuing to the next
step or next line of code.

StartTask Method
Action2 Example

Encapsulates the AutoMate™ action in the “Flow Control” group, “Start Another Task.” The method
causes AutoMate™ to start another task.

Declaration
function StartTask (varTaskName As Variant,
        intWaitUntilDone As Integer,
        intFailThis As Integer) As Integer

Parameters
varTaskName

The name of the task to be started. The task must be in the currently loaded task list.

intWaitUntilDone
Specifies whether this script should wait for the new task to complete before continuing.    Set to “1”

to wait for the new task to finish or “0” to continue with this task after the new one starts.

intFailThis
Specifies whether this task should fail as a result of the failure of varTaskName. If intFailThis is set

to “1”, the method returns “1” if varTaskName fails; otherwise, the method returns “0.” This parameter
is ignored unless intWaitUntilDone is set to “1.”

Description
Use the StartTask method to start executing another task alongside the currently running task.   
StartTask can wait until the new task is finished before continuing by setting intWaitUntilDone to “1.”

StartTask returns “0” if the task started successfully, unless intWaitUntilDone is set to “1” and
intFailThis is set to “1.” In this case, StartTask returns “0” if the new task started and ended
successfully, or it returns “1” if the new task either did not start or failed.

DisableThisTask Method
Action2 Example

Encapsulates the AutoMate™ action in the “Flow Control” group, “Disable This Task.” The method
disables the currently running task.

Declaration
function DisableThisTask () As Integer

Parameters
None

Description
Use the DisableThisTask method to disable the currently running task. The task becomes disabled
once the script and any remaining steps are completed.

To stop the task immediately after the script is completed and abort any remaining steps, set
CurrentTask2.Active to “0.”

LockKeyboard Method
Action2 Example

Encapsulates the AutoMate™ action in the “Security” group, “Lock Keyboard.” The method locks the
keyboard.

Declaration
function LockKeyboard () As Integer

Parameters
None

Description
Use the LockKeyboard method to lock the keyboard from user input. Once the method is executed,
any keypress caught by the keyboard are discarded and not echoed to the system, effectively blocking
any user interaction with the system.

To re-enable the keyboard, use the UnlockKeyboard method.

The keyboard automatically unlocks itself at the end of the task to prevent accidentally locking the
keyboard until the next reboot.

LockMouse Method
Action2 Example

Encapsulates the AutoMate™ action in the “Security” group, “Lock Mouse.” The method locks the
mouse.

Declaration
function LockMouse () As Integer

Parameters
None

Description
Use the LockMouse method to lock the mouse from user input. Once the method is executed, any
mouse movements and clicks are discarded and not echoed to the system, effectively blocking any
user interaction with the system.

To reenable the mouse, use the UnlockMouse method.

The mouse automatically unlocks itself at the end of the task to prevent accidentally locking the mouse
until the next reboot.

UnlockKeyboard Method
Action2 Example

Encapsulates the AutoMate™ action in the “Security” group, “Unlock Keyboard.” The method unlocks
the keyboard.

Declaration
function UnlockKeyboard () As Integer

Parameters
None

Description
Use the UnlockKeyboard method to unlock the keyboard after it was previously locked using the
LockKeyboard method.

The keyboard automatically unlocks itself at the end of the task to prevent accidentally locking the
keyboard until the next reboot.

UnlockMouse Method
Action2 Example

Encapsulates the AutoMate™ action in the “Security” group, “Unlock Mouse.” The method unlocks the
mouse.

Declaration
function UnlockMouse () As Integer

Parameters
None

Description
Use the UnlockMouse method to unlock the mouse after it was previously locked using the LockMouse
method.

The mouse automatically unlocks itself at the end of the task to prevent accidentally locking the mouse
until the next reboot.

Password Method
Action2 Example

Encapsulates the AutoMate™ action in the “Security” group, “Password.” The method displays a
dialog box prompting for a password.

Declaration
function Password (varMessageText As Variant,
        varPassword As Variant,
        intMaxRetries As Integer As Integer

Parameters
varMessageText

The text to be displayed inside the password dialog box.

varPassword
The clear text password to wait for. This is the password the user must enter to successfully

proceed.

intMaxRetries
The number of times the user is allowed to retry entering the password before the dialog gives up

and fails the method.

Description
Use the Password method to display a user dialog requested a password. The text entered by the user
is ghosted using asterisks. The user can attempt to reenter the password intMaxRetries times before
the method fails.

The Password method returns “0” if the user enters the password correctly; otherwise, it returns “1.”

PlayMouse Method
Action2 Example

Encapsulates the AutoMate™ action in the “Recorder” group, “Record events.” The method plays the
mouse and keyboard events previously recorded with AutoMate’s mouse recorder.

Declaration
function PlayMouse (varFilename As Variant) As Integer

Parameters
varFilename

The filename of the events recording to play.

Description
The PlayMouse method plays back the system events recorded by the AutoMate™ Configuration
Manager.

To make the series of events to play back, first open the AutoMate™ Configuration Manager.    Make a
new task. From the Step Builder, select “Record Events” from under the “Recorder” group. Enter a
filename for the recording, and click “Record.” This will begin recording the movements of your mouse
and the keystrokes on your keyboard. When finished, press Ctrl-F12. Then, you can use the file you
just created in a call to PlayMouse to playback the events.

SetVar Method
Action2 Example

Encapsulates the AutoMate™ action in the “Variables” group, “Set variable.” The method sets a
previously created AutoMate™ variable to the value specified.

Declaration
function SetVar (varVarName As Variant,
        varNewValue As Variant) As Integer

Parameters
varVarName

The name of the AutoMate™ variable whose value to change.

varNewValue
The new value of the variable.

Description
Use the SetVar method to explicitly set the value of a variable created within AutoMate™ using the
Create Variable step.

When the script starts, AutoMate™ will automatically allocate the variables from your task into the
script using the same names from the task. For example, if before the SCRIPT: step in your task you
have created a variable called MYVAR, the variable MYVAR will be accessible in your script like any
other regular variable. You can safely modify and work with this variable like another other VBA object.
When the script ends, AutoMate™ will automatically write any changes you made to the variable back
to the task.

If, however, you need to create a NEW variable to be passed back to AutoMate™ when the script is
finished, you will need to create the variable before entering the script by using a Create Variable
action. This is because AutoMate™ can only track those variables that were created before the script
started.

CreateVar Method
Action2 Example

Encapsulates the AutoMate™ action in the “Variables” group, “Create variable.” The method creates a
new variable for use in an AutoMate™ task.

Declaration
function CreateVar (varVarName As Variant,
        varInitialValue As Variant) As Integer

Parameters
varVarName

The name of the AutoMate™ variable to create.

varInitialValue
The new variable’s initial value.

Description
Use the CreateVar method to create a new AutoMate™ variable that can be accessed and modified
within the currently executing AutoMate™ task.

When the script starts, AutoMate™ will automatically allocate the variables from your task into the
script using the same names from the task.    For example, if before the SCRIPT: step in your task you
have created a variable called MYVAR, the variable MYVAR will be accessible in your script like any
other regular variable. You can safely modify and work with this variable like another other VBA object.
When the script ends, AutoMate™ will automatically write any changes you made to the variable back
to the task.

If, however, you need to create a NEW variable to be passed back to AutoMate™ when the script is
finished, you will need to use the CreateVar method to first create the variable, and explicitly set any
changes to the variable using the SetVar method. This is because AutoMate™ can only track those
variables that were created before the script started.

SendVar Method
Action2 Example

Encapsulates the AutoMate™ action in the “Variables” group, “Send variable.” The method sends the
contents of an AutoMate™ variable as keystrokes.

Declaration
function SendVar (varVarName As Variant) As Integer

Parameters
varVarName

The name of the AutoMate™ variable to send.

Description
Use the SendVar method to send the contents of an AutoMate™ variable as keystrokes.

This method call is the same as using the SendKeystrokes method and setting the varKeysToSend to
an AutoMate™ variable.

InputToVar Method
Action2 Example

Encapsulates the AutoMate™ action in the “Variables” group, “Input variable.” The method displays a
dialog box for the user to enter a value, which is then stored into the specified AutoMate™ variable.

Declaration
function InputToVar (varVarName As Variant,
        varPromptTitle As Variant,
        varPromptText As Variant) As Integer

Parameters
varVarName

The name of the AutoMate™ variable to input the user response into.

varPromptTitle
The text to display in the title bar of the dialog box.

varPromptText
The text to display within the dialog box.

Description
Use the InputToVar method to allow a user to interactively input a value for a variable.

This method call is the same as using the SendKeystrokes method and setting the varKeysToSend to
an AutoMate™ variable.

RunScript Method
Action2 Example

Encapsulates the AutoMate™ action in the “BASIC Scripting” group, “Run a BASIC Script.” The
method runs another AutoMate™ BASIC Script.

Declaration
function RunScript (varFilename As Variant) As Integer

Parameters
varFilename

The filename of the script to execute.

Description
Use the RunScript method to run another AutoMate™ BASIC script from within the currently executing
script.

If possible, try to avoid running nesting scripts using the RunScript command. Each call to RunScript
allocates memory for a AutoMate™ BASIC interpreter, which uses significant system resources.
Calling RunScript multiple times without allowing the interpreter to clean up its resources could a rapid
loss of memory.

AutoMate2 Object
Action2 Legend Grouped Listing

AMChangeDir
AMCopyFile
AMDeleteFile
AMMakeDir
AMMoveFile
AMRemoveDir
AMRenameFile
CheckForMail
ClipboardClear
ClipboardCopy
ClipboardCut
ClipboardPaste
ContService
DDECommand
DialUp
DisableThisTask
FocusWindowContaining
FTPChangeDirectory
FTPDelete
FTPDownload
FTPLogin
FTPLogout
FTPMakeDirectory
FTPQuickRetrieve
FTPQuickSend
FTPRemoveDirectory
FTPRename
FTPUpload
GetFocusedWindowName
InstallService
LeftClick
LeftDblClick
LeftMouseDown
LeftMouseUp
LockKeyboard
LockMouse
Login
LogoffMachine
Message
MiddleClick
MiddleDblClick
MiddleMouseDown
MiddleMouseUp

MoveMouse
OpenDocument
OpenWebpage
Password
PasteKeys
PauseService
PingMachine
PlayMouse
PlaySound
PrintDocument
PromptUser
QuitAutoMate™
RebootMachine
Reminder
RemoveService
RightClick
RightDblClick
RightMouseDown
RightMouseUp
RunScript
SendEmail
SendKeystrokes
SendRawStep
SendVar
ShutdownMachine
StartApplication
StartService
StartTask
StopService
StopSound
UnlockKeyboard
UnlockMouse
Unzip
UpdateAutoMate™
Wait
WaitForWindow
WaitForWindowToDisappear
WindowClose
WindowFocus
WindowHide
WindowMaximize
WindowMinimize
WindowRestore
WindowUnhide
Zip

StopService Method
Action2 Example

Windows NT Machines Only

Encapsulates the AutoMate™ action in the “Services” group, “Stop a service.” The method attempts to
stop the specified service.

Declaration
function StopService (varServiceName As Variant) As Integer

Parameters
varServiceName

The name of the service (as it appears in the SCM) to stop.

Description
The PauseService method attempts to stop the service named varServiceName. The service must
have the ability to be stopped. Check the documentation for the service if you are unsure whether or
not it supports pausing.

The method returns “0” if the service was stopped successfully; otherwise, it returns “1.” Use the
GetLastError property to retrieve the error message generated by a failed stop attempt.

QuitAutoMate™ Method
Action2 Example

Encapsulates the AutoMate™ action in the “System” group, “Quit AutoMate™.” The method attempts
to stop and shutdown the AutoMate™ Task Service.

Declaration
function QuitAutoMate™ () As Integer

Parameters
None

Description
Use the QuitAutoMate™ method to stop and immediately shutdown the AutoMate™ Task Service. This
automatically stops all running tasks and removes the AutoMate™ Task Service from the system tray.

SendRawStep Method
Action2 Example

Sends a step to AutoMate™ in raw text format.

Declaration
function SendRawStep (varStepText As Variant) As Integer

Parameters
varStepText

The step to be executed in AutoMate™ in raw text format.

Description
Use the SendRawStep format to send a step in raw text format to AutoMate™.

The method returns “0” if the step passed was successfully executed; otherwise, it returns “1.”

GetLastError Property
Action2 Read Only Example

Retrieve the text of the last error generated by AutoMate™.

Declaration
property GetLastError As Variant

Description
When an Action method fails in AutoMate™, AutoMate™ populates the GetLastError property with the
text of the error. Use this property to retrieve the error text.

Action2 properties
Action2 Legend

 GetLastError

CurrentTask2 Properties
CurrentTask2 Legend

Active
Details
Events
Frequency

 FrequencyString
Hotkey
Interval
IntervalType
LaunchDate
LaunchTime
RunLate
ScheduleLate

 StepCount
TaskTriggers

    TaskName
WindowName

CurrentTask2 Object
Properties Methods

The CurrentTask2 object encapsulates the properties of a task, and methods that act upon that task.

Description
The CurrentTask2 object contains properties and methods to allow you to view and modify attributes of
the currently executing task. Use this object to control specific parts of the executing task “on the fly.”

The CurrentTask2 object provides all the functionality of the CurrentTask interface provided with
previous versions of AutoMate™, but also offers extended capabilities that encapsulate the new
features available in newer releases of AutoMate™. The CurrentTask2 interface should be used
instead of the CurrentTask interface in newer scripts. The CurrentTask2 interface is still available for
backward compatibility.

When a script is started, AutoMate™ automatically instantiates an CurrentTask2 object and populates it
with the properties of the currently running task. This object is referred to as “CurrentTask2.” Use
CurrentTask2 to access and modify the properties of the currently running task, as well perform actions
on the task such as rescheduling or saving it to a file.

Remarks
When creating or altering steps for the currently running task the format must be the same as steps
inside the Step Builder.You must make sure that all string paramaters are inside double quotes
correctly. Here is an example of the correct way to format the string for AutoMate™.

varNewStep = "START: ""C:\Windows\Notepad.exe"","""",0,""c:\"",0,1,0,"""""

CurrentTask2.AppendTaskStep(varNewStep)

Notice the use of double quotes around strings. All methods in CurrentTask2 will require this in order
for AutoMate™ to be able to use the new step.

CurrentTask2 Methods
CurrentTask2

AppendTaskStep
ClearSteps
DeleteTaskStep
GetStepCommand
GetStepParameter
GetStepParamCount
GetStepStatus
GetTaskStep
InsertTaskStep
LoadFromFileEx
SaveToFileEx
SetStepStatus
SetTaskStep

TaskName Property
CurrentTask2 Example

Specifies the name of the currently executing task.

Declaration
Dim TaskName As Variant

Description
Use the TaskName property to retrieve or set the name of the currently running task. If you change the
name of the task during execution of your script, be sure it is unique. Problems may arise in the
AutoMate™ Configuration Manager if you attempt to set the task to a name that already exists in your
tasklist.

LaunchDate Property
CurrentTask2 Example

Specifies the date the task is next scheduled to launch.

Declaration
Dim LaunchDate As Variant

Description
Use the LaunchDate property to retrieve or set the date the task is scheduled to launch. The property
is set when the task begins execution. The date format must follow the format set in Regional Settings.
The new LaunchDate is set when the task finishes executing.

To view the format required for your regional settings, view Regional Settings from the Control Panel.
Click the “Date” tab, and note the “Short Date Format”. This is the format AutoMate™ will expect.

NOTE: Be careful when changing the LaunchDate of a task that uses the Schedule trigger.    Because
the LaunchDate is set when the task starts executing, the schedule trigger may change the date on
you while the task is executing. Therefore, use caution when adjusting the LaunchDate relative to its
initial value.

LaunchTime Property
CurrentTask2 Example

Specifies the time the task is next scheduled to launch.

Declaration
Dim LaunchTime As Variant

Description
Use the LaunchTime property to retrieve or set the time the task is scheduled to launch. The property
is set when the task begins execution. The time format must follow the format set in Regional Settings.
The new LaunchTime is set when the task finishes executing.

To view the format required for your regional settings, view Regional Settings from the Control Panel.
Click the “Time” tab, and note the “Time Style”. This is the format AutoMate™ expects.

NOTE: Be careful when changing the LaunchTime of a task that uses the Schedule trigger.    Because
the LaunchTime is set when the task starts executing, the schedule trigger may change the time on
you while the task is executing. Therefore, use caution when adjusting the LaunchTime relative to its
initial value.

Frequency Property
CurrentTask2 Example

Specifies the how often the schedule task runs.

Declaration
Dim Frequency As Integer

Description
Use the Frequency property to specify how often the task will run.

The Frequency property is an integer value.    Use one of the following three integer values to specify
how the task reschedules.

Value Meaning Description
0 Once The task will run once, and become inactive afterwards.
1 Every After running, the task will reschedule itself based on the values

on IntervalType, Interval, RunLate and ScheduleLate
properties).

2 Manual Will run only when explicitly told to do so, ignoring the schedule.

Interval Property
CurrentTask2 Example

Specifies the scalar at which to reschedule the task. Used in conjunction with the IntervalType.

Declaration
Dim Interval As Integer

Description
Set Interval to the integer value specifying the scalar amount to use with the IntervalType. For
example, if IntervalType is set to “3” (for “Weeks”), setting the Interval to “2” will cause the task to
reschedule every 2 weeks.

IntervalType Property
CurrentTask2 Example

Specifies the interval at which the task will be rescheduled.

Declaration
Dim IntervalType As Integer

Description
Use the IntervalType property to specify the denomination at which the task is to be rescheduled. Use
in conjunction with the Frequency property set to “Every” (integer value 1).
Set IntervalType to one of the following integer values to specify how the task is rescheduled:

Value Meaning Description
0 Minute Schedules the task every x minutes
1 Hour Schedules the task every x hours
2 Day Schedules the task every x hours
3 Week Schedules the task every x weeks
4 Weekday Schedules the task every x weekdays
5 Weekend Schedules the task every x weekend
6 Bi-week Schedules the task every x bi-weeks (i.e. every 2(x) weeks)
7 Month Schedules the task every x months
8 Quarter Schedules the task every x quarters (i.e., every 4(x) months)
9 Year Schedules the task every x years
10 Seconds Schedules the task every x seconds

  where x is the interval specified by the Interval property.

RunLate Property
CurrentTask2 Example

Controls run action when the task is overdue.

Declaration
Dim RunLate As Integer

Description
Set RunLate to one of the following integer values to specify how the task should react to being late:

Value Meaning Description
0 Immediately The task is run immediately when the task becomes late.
1 Don’t Run The task is not run at all.
2 Prompt A dialog box appears, asking whether or not to run the task.

Use with ScheduleLate to specify how the task is reschedule when the task is late.

ScheduleLate Property
CurrentTask2 Example

Controls reschedule when the task is overdue.

Declaration
Dim ScheduleLate As Integer

Description
Set ScheduleLate to one of the following integer values to specify how the task should be reschedule
when the task is late:

Value Meaning Description
0 Relative to

original
date/time

The task is rescheduled relative to the date and time the task
was set to launch. (For example, if the task was scheduled to
launch at 10:51, and reschedule every 2 hours, but actually
launches at 11:01, the task will reschedule to 12:51.)

1 Relative to
launch
date/time

The task is scheduled relative to when the task was launched.
(For example, if the task was scheduled to launch at 9:51, and
reschedule every 2 hours, but actually launches at 10:01, the
task will reschedule to 12:01.)

2 Don’t
reschedule

The task will not reschedule itself, and instead set itself to an
inactive state.

Active Property
CurrentTask2 Example

Specifies whether or not the task is active.

Declaration
Dim Active As Integer

Description
An active task is one that responds to a trigger. A task set to launch on a schedule or hotkey or any
other trigger will not trigger if it is set to an inactive state. Inactive tasks, however, can still be launched
manually through the AutoMate™ Configuration Manager.

Setting the Active property of a task while the task is executing an AutoMate™ BASIC script will stop
the task from running any steps after a SCRIPT step.

Set the Active property to one of the following integer values to specify its active state:

Value Meaning Description
0 Inactive The task is inactive (or stops, if it is currently running).
1 Active The task is active and responds to triggers.

TaskTriggers Property
CurrentTask2 Example

Specifies the triggers that will launch the task.

Declaration
Dim TaskTriggers As Integer

Description
The TaskTriggers property is an integer value which specifies which triggers will launch the task. To set
the triggers, add the following values together from the table below:

Value Trigger Associated Properties
0 No Trigger None; the task is launched manually only
1 Scheduled LaunchDate, LaunchTime, Frequency, IntervalType,

Interval, RunLate, ScheduleLate
2 Windows Events Events
4 Wait for a

Window
WindowName

8 Hotkey Hotkey

For example, to set the task to launch on a schedule and a hotkey, the value of the TaskTriggers
property would be 9    (1 + 8 = 9).

Hotkey Property
CurrentTask2 Example

Specifies the hotkey that is used with the hotkey trigger to launch the task.

Declaration
Dim Hotkey As Variant

Description
Set the Hotkey property to the hotkey to be used to launch the task when one of the triggers is the
Hotkey trigger.
The Hotkey text must be specified in AutoMate’s “Send Keystrokes” format:

Modifier Character to Use
ALT ^

CTRL %
SHIFT &

For example, to use Ctrl-Alt H for a hotkey, the property should be set to %^H.
Remarks
Please note that the characters used to specify a hotkey are different than the characters used to send
the specific key. In other words, in AutoMate and VBA “^c” will send CTRL + c. If you set the hotkey to
“^c” it will be the key combination ALT + c.

WindowName Property
CurrentTask2 Example

Specifies what window to wait for when the Wait For Window trigger is specified for the task.

Declaration
Dim WindowName As Variant

Description
Set the WindowName property to the full string of the window to wait for to launch the task.

StepCount Property
CurrentTask2 READ ONLY Example

The number of steps in the task.

Declaration
Dim StepCount As Integer

Description
Read the StepCount property to find out the number of steps in the current task.

Details Property
CurrentTask2 Example

Stores the details of the task in one continuous string.

Declaration
Dim Details As Variant

Description
The Details property stores the details of the task. The return value is a continuous string, with
individual lines separated by a CR-LF combination.

FrequencyString Property
CurrentTask2 READ ONLY Example

Contains the frequency and scheduling information about the task in a readable format.

Declaration
Dim FrequencyString As Variant

Description
The FrequencyString property combines the scheduling properties of the task and formats it into a
sentence form for easier reading.

Events Property
CurrentTask2 Example

Specifies the window event trigger that will launch the task. Use in conjunction with the “Windows
Events” value added to the TaskTriggers property of the task.

Declaration
Dim Events As Integer

Description
The Events property is an integer value that specifies which windows’ system events will launch the
task.    To set the window event triggers, add the following values together from the table below:

Value Trigger Associated Properties
0 None No Windows Events triggers.
1 System Time System time has changed (NOTE: Windows will trigger this

event each time you click on the System Calendar,
regardless of whether or not you click “OK”, “Apply” or
“Cancel” when setting the system time.

2 Low Memory The system is getting low on memory.
4 System Device A system device has been added, removed or its properties

has changed.
8 Display Mode The display mode (resolution or driver) has changed.

16 Color Palette The color palette has changed.
32 Spooler A print job has been added or removed from a printer queue.
64 Logout A user is about to log off the workstation

128 Screensaver Occurs just before the screensaver starts

For example, to set the task to launch on a system time change and a display mode change, the value
of the property would be 9    (1 + 8 = 9).

GetTaskStep Method
CurrentTask2 Example

Retrieves the entire step from the text at the step number specified.

Declaration
function GetTaskStep(StepNo As Integer) As Variant

Parameters
StepNo

The step number, as an integer, to be retrieved.

Return Values
The function returns a string variant with the text of the step at step number StepNo.

Description
The GetTaskStep method returns the entire step string at the step number StepNo as it appears in the
step builder. Use the return value is calls to GetStepCommand and GetStepParameter to parse
through the step and extract the step’s command and parameters.

GetStepCommand Method
CurrentTask2 Example

Retrieves the command portion of the step at the step number specified.

Declaration
function GetStepCommand(StepNo As Integer) As Variant

Parameters
StepNo

The step number, as an integer, of the command to be retrieved.

Return Values
The function returns a string variant with the text of the command at step number StepNo.

Description
The GetStepCommand method returns the command portion of the step at step number StepNo.

GetStepParamCount Method
CurrentTask2 Example

Retrieves the number of parameters at the step number specified.

Declaration
function GetStepParamCount(StepNo As Integer) As Integer

Parameters
StepNo

The step number, as an integer, of the parameter total to be calculated.

Return Values
The function returns the number of parameters at the step number.

Description
The GetStepParamCount method returns the number of parameters present or required at the step
number specified. Depending on the step command, the number of parameters may change. Use
GetStepParamCount to calculate how many parameters are required to satisfy the current command at
that step number.

SetTaskStep Method
CurrentTask2 Example

Modifies a step to the specified text.

Declaration
procedure SetTaskStep(StepNo As Integer,

Value As Variant)

Parameters
StepNo

The step number to be modified.

Value
The step’s new text.

Description
The SetTaskStep is used to change the current value of a step in a task. Use SetTaskStep to change
the step at StepNo to a different command.

It is the caller’s responsibility to ensure the text passed to SetTaskStep is properly formatted and
contains a valid command and parameters for that command. Setting a task step to an improper value
could cause the task to fail in subsequent runs.

GetStepParameter Method
CurrentTask2 Example

Retrieves the parameter at the step and position specified.

Declaration
function GetStepParameter(StepNo As Integer,

Parameter As Integer) As Variant

Parameters
StepNo

The step number, as an integer, of where the parameters are to come from.

Parameter
The parameter number, starting at “0”, of the parameter to retrieve.

Return Values
The function returns the parameter of StepNo at position Parameter.

Description
The GetStepParameter method is used to retrieve a specific parameter from an existing step of a task.
For example, consider the following step:

MESSAGE: “This is a message box”, 1

Calling GetStepParameter (0,1) would return the value “1”, since it is the second parameter of step 0
(the only existing step in our example).

AppendTaskStep Method
CurrentTask2 Example

Adds a new step to the end of existing task.

Declaration
procedure AppendTaskStep(Action As Variant)

Parameters
Action

The step text to be added to the end of the existing task.

Description
The AppendTaskStep adds the text Action to the end of the currently executing task. The Action
parameter must be a properly formatted step as it would appear in the Step Builder, and consist of a
command and its associated parameters.

It is the responsibility of the method caller to ensure the Action parameter is properly formatted.   
Adding an invalid step to an existing task could cause it to fail on subsequent calls.

New steps added to the task do not take effect until next time the task is run.

InsertTaskStep Method
CurrentTask2 Example

Inserts a new step before the position specified.

Declaration
procedure InsertTaskStep(Before As Integer,

Action As Variant)

Parameters
Before

The step number where the step is to be inserted.

Action
The step text to be inserted.

Description
The InsertTaskStep method inserts the text Action at the position specified by Before. The Action
parameter must be a properly formatted step as it would appear in the Step Builder, and consist of a
command and its associated parameters.

It is the responsibility of the method caller to ensure the Action parameter is properly formatted.   
Adding an invalid step to an existing task could cause it to fail on subsequent calls.

New steps added to the task do not take effect until next time the task is run.

DeleteTaskStep Method
CurrentTask2 Example

Deletes the step at the step number specified.

Declaration
procedure DeleteTaskStep(StepNo As Integer)

Parameters
StepNo

The step number to be deleted.

Description
The DeleteTaskStep method deletes the step at step number StepNo.

Use DeleteTaskStep to remove unwanted steps from the currently executing task.

Changes to the task do not take effect until the next time the task is run.

GetStepStatus Method
CurrentTask2 Example

Returns if the step is active or not.

Declaration
function GetStepStatus(StepNo As Integer) As Integer

Parameters
StepNo

The step number to be checked.

Return Value
Returns “0” if the step is going to be skipped or “1” if it is executable.

Description
The GetStepStatus method returns “0” if the step at StepNo is marked to be skipped or not.

SetStepStatus Method
CurrentTask2 Example

Sets the active flag for the specified step.

Declaration
Function SetStepStatus (StepNo As Integer, ActiveState As Integer)

Description
Specifies whether or not the step specified by StepNo is active or not. Setting the status to “0” means
the step is disabled (i.e., it will be skipped when the task is executed); setting it to “1” means the step
is enabled.

ClearSteps Method
CurrentTask2 Example

Clears all the steps in the task.

Declaration
Sub ClearSteps

Description
Deletes all the steps from the task, and sets the StepCount to 0.

SaveToFileEx Method
CurrentTask2 Example

Saves the task to a file.

Declaration
Sub SaveToFileEx (FileName As Variant)

Description
Use SaveToFileEx to export the task new STFF file format. This file can then be imported into another
AutoMate™ installation through AutoMate’s Import Task file command or by using the LoadFromFileEx
method of the CurrentTask2 object.

LoadFromFileEx Method
CurrentTask2 Example

Loads the task data from a file.

Declaration
Sub LoadFromFileEx (FileName As Variant, ExtractDeployables As Integer)

Description
Use LoadFromFileEx to import a task specified in the FileName parameter into the task. The task to be
loaded must have previously been saved in STFF format by using the SaveToFileEx method or by
previously exporting the task to be loaded. The task’s information is overwritten by the information from
the task file.

LastRASErrorCode Property
AutoMate2 READ ONLY Example

Contains the error code of the last RAS command attempted.

Declaration
Dim LastRASErrorCode As Integer

Description
The LastRASErrorCode property contains the integer error code of the last RAS command attempted
in the script. Use LastRASErrorCode to find out why a particular RAS command, such as RASConnect
or RASDisconnect, failed.

LastRASErrorCode returns “0” if the last RAS command was successful; otherwise, it returns a non-
zero value.

LastRASErrorText Property
AutoMate2 READ ONLY Example

Contains the error text of the last RAS command attempted.

Declaration
Dim LastRASErrorText As Variant

Description
The LastRASErrorText property contains a textual explanation of the error code of the last RAS
command attempted.

RASHandle Property
AutoMate2 READ ONLY Example

Contains the RAS handle to a previously established dial-up connection.

Declaration
Dim RASHandle As Integer

Description
The RASHandle property contains a handle to an active dial-up connection established using the
RASConnect method. The property is “0” if no active dial-up connection is present for this task.

SystemDir Property
AutoMate2 READ ONLY Example

Contains the System directory of the system.

Declaration
Dim SystemDir As Variant

Description
The SystemDir property contains the fully qualified path to the System directory of the current
installation.

TaskCount Property
AutoMate2 READ ONLY Example

Contains the number of tasks in the current task list.

Declaration
Dim TaskCount As Integer

Description
Read TaskCount to obtain the total number of tasks in the task list currently in use by AutoMate™.

TaskList Property
AutoMate2 READ ONLY Example

Contains the path to the task list in use by AutoMate™.

Declaration
Dim TaskList As Variant

Description
Use the TaskList property to obtain the fully qualified path to the task list file AutoMate™ is currently
using. A task list is a collection of tasks.

WindowsDir Property
AutoMate2 READ ONLY Example

Contains the Windows directory of the system.

Declaration
Dim WindowsDir As Variant

Description
The WindowsDir property contains the fully qualified path to the Windows directory of the current
installation.

AutoMate2
Properties Methods

The AutoMate2 object encapsulates the global properties of the AutoMate™ and provides methods to
manipulate the execution of a task or tasks.

Description
The AutoMate2 object provides properties that provide information about the current state of
AutoMate™, the current task list, and any running tasks. It also provides methods that allow you the
change the running and execution flow of the current task, such as waiting for a window to appear or
running another task.

AutoMate2 properties
AutoMate2 Legend

SystemDir
TaskCount
TaskList
WindowsDir

AutoMate2 methods
AutoMate2

FindWindowByTitle
FindWindowByClass
FindWindowContaining

FindWindowByTitle Method
AutoMate2 Example

Returns the handle of the window that matches a specified windowk title.

Declaration
Function FindWindowByTitle (WindowTitle As Variant) As Integer

Description
Use FindWindowByTitle to obtain a handle to the window with the title specified in WindowTitle.    The
window must be open for this method to be successful. The method returns “0” if the window is not
found, or it returns a non-zero value (the window handle) if the window is located.

FindWindowByClass Method
AutoMate2 Example

Returns the handle of the window that matches a specified class name.

Declaration
Function FindWindowByClass (WindowClass As Variant) As Integer

Description
Use FindWindowByClass to obtain a handle to the window with the class name specified in
WindowClass. The window must be open for this method to be successful. If multiple windows with the
specified class name are open, FindWindowByClass will return the handle to the first window it
enumerates. The method returns “0” if the window is not found, or it returns a non-zero value (the
window handle) if the window is located.

FindWindowContaining Method
AutoMate2 Example

Returns the handle of the window that contains a specified text.

Declaration
Function FindWindowContaining (TextToFind As Variant, WindowClass As Variant) As Integer

Description
Use FindWindowContaining to obtain a handle to the window that contains the text specified by
TextToFind. The window must be open for this method to be successful. If multiple windows that
contain the specified text are open, the method will return the handle to the first window it finds.    The
method returns “0” if there are no windows with the text, or it returns a non-zero value (the window
handle) if the window is located.

The WindowClass parameter is only needed if there is a need to specify the Window class that the
window belongs to. Normally this should just be left as empty quotes.

RASConnect Method
AutoMate2 Example

Attempts a dial-up connection using a specified phonebook entry and returns a handle to the
connection on success.

Declaration
Function RASConnect (PhonebookEntry As Variant) As Integer

Description
Use RASConnect to attempt to establish a dial-up connection using the phonebook entry name
supplied in PhonebookEntry parameter.

On success, RASConnect returns a handle to a RAS object. RASConnect returns “0” if the connection
fails. On failure, use RASLastErrorCode and RASLastErrorText for information about why the method
failed.

RASDisconnectEx Method
AutoMate2 Example

Attempts to disconnect a previously established dial-up connection.

Declaration
Function RASDisconnectEx (PhonebookEntry As Variant) As Integer

Description
Use RASDisconnectEx to disconnect an active dial-up connection. The connection does not have to
have been established by AutoMate™. Pass the name of the connection to be disconnected in the
PhonebookEntry variable.

RunTask Method
AutoMate2 Example

Runs another task.

Declaration
Sub RunTask (TaskName As Variant)

Description
Use RunTask to start another task. The task specified in TaskName must be in the current TaskList
(use the TaskList property to obtain the path to the current task list in use by the AutoMate object). The
task run by RunTask executes asynchronously with other tasks (i.e., the execution of the script using
the RunTask method will not stop).

Active Example

The following example sets the task to inactive. This will prevent the task from executing the rest of the
task (but not the next line of the script).

Sub Main
CurrentTask2.Active = 0

End Sub

Details Example

The following example displays the task’s details in a message box:

Sub Main
MsgBox CurrentTask2.Details

End Sub

This example sets the task’s details to “This task is responsible for rebooting the server at 5AM each
morning.”

Sub Main
CurrentTask2.Details = “This task is responsible for rebooting the server at 5AM each morning.”

End Sub

This example sets the task’s details to “You love AutoMate™.”

Sub Main
CurrentTask2.Details = “You love AutoMate™.”

End Sub

Events Example

The following example sets the current task to trigger only when the spooler changes (i.e., when a print
job is added, removed or completed from the printer queue) or the system date/time changes

Sub Main
‘ Set the task to trigger on only Windows Events
CurrentTask2.TaskTriggers = 2

‘ Set the window events to spooler or time change
CurrentTask2.Events = 33

End Sub

Frequency Example

The following example will set the current task to run only when manually launched.

Sub Main
CurrentTask2.Frequency = 2

End Sub

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask2.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask2.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask2.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask2.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask2.Interval = 3

‘ If we are late, don’t run at all
CurrentTask2.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask2.ScheduleLate = 0

End Sub

FrequencyString Example

The following example displays the current task’s scheduling parameters in a friendly, textual form.

Sub Main
MsgBox CurrentTask2.FrequencyString

End Sub

Hotkey Example

The following example sets the task to trigger on a hotkey and sets the hotkey to Ctrl-S.

Sub Main
‘ Set the hotkey to Ctrl-S
CurrentTask2.Hotkey = “%s”

‘ Set to trigger on a hotkey
CurrentTask2.TaskTriggers = 8

End Sub

Interval Example

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask2.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask2.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask2.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask2.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask2.Interval = 3

‘ If we are late, don’t run at all
CurrentTask2.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask2.ScheduleLate = 0

End Sub

IntervalType Example

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask2.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask2.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask2.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask2.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask2.Interval = 3

‘ If we are late, don’t run at all
CurrentTask2.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask2.ScheduleLate = 0

End Sub

LaunchDate Example

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask2.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask2.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask2.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask2.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask2.Interval = 3

‘ If we are late, don’t run at all
CurrentTask2.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask2.ScheduleLate = 0

End Sub

LaunchTime Example

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask2.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask2.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask2.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask2.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask2.Interval = 3

‘ If we are late, don’t run at all
CurrentTask2.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask2.ScheduleLate = 0

End Sub

RunLate Example

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask2.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask2.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask2.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask2.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask2.Interval = 3

‘ If we are late, don’t run at all
CurrentTask2.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask2.ScheduleLate = 0

End Sub

ScheduleLate Example

This example sets the current task to run itself every 3 days starting on September 15, 1999 at
11:29AM. When the task runs, it will reschedule itself relative to the time it was originally set to launch.
If the task is late, it will not run at all.

Sub Main
‘ Set the task to “every”

CurrentTask2.Frequency = 1

‘ Start launching on September 15, 1999
CurrentTask2.LaunchDate = “09/15/1999”

‘ At 11:59 AM
CurrentTask2.LaunchTime = “11:29 AM”

‘ Set the interval type to “days”

CurrentTask2.IntervalType = 2

‘ Set the interval to 3, for every three days
CurrentTask2.Interval = 3

‘ If we are late, don’t run at all
CurrentTask2.RunLate = 1

‘ Reschedule the task relative to the launch date/time if we are late
CurrentTask2.ScheduleLate = 0

End Sub

StepCount Example

This example displays the number of steps in the current task in a message box.

Sub Main
MsgBox CurrentTask2.StepCount

    End Sub

TaskTriggers Example

The following example sets the task to trigger on a hotkey and sets the hotkey to Ctrl-S.

Sub Main
‘ Set the hotkey to Ctrl-S
CurrentTask2.Hotkey = “%s”

‘ Set to trigger on a hotkey
CurrentTask2.TaskTriggers = 8

End Sub

TaskName Example

The following example displays the name of the currently running task in a message box.

Sub Main
MsgBox CurrentTask2.TaskName

End Sub

This example displays the original name of the running task, changes it to “New Task Name”, and
displays the new task name in a message box.

Sub Main
‘ Display the task’s current name

MsgBox CurrentTask2.TaskName

‘ Change it to something else
CurrentTask2.TaskName = “New Task Name”

‘ Now display the task’s name again
MsgBox CurrentTask2.TaskName

    End Sub

WindowName Example

The following example sets the current task to trigger only when the window with the title of “Untitled –
Notepad” appears.

Sub Main
‘ Turn on the “Window Watcher” trigger
CurrentTask2.TaskTriggers = 4

‘ Set the only property of the “Window Watcher”
CurrentTask2.WindowName = “Untitled – Notepad”

End Sub

AppendTaskStep Example

The following example will append a step to the current task that displays a message box with the
words “This is AutoMate™.” and make it pop to the front.

Sub Main
CurrentTask2.AppendTaskStep (“MESSAGE: “ + Chr$(13) + “ This is AutoMate™. “ + Chr$(13) +

“,1”

End Sub

ClearSteps Example

The following example will erase all the steps in the current task, which consequently sets the
TaskCount property to zero.

Sub Main
CurrentTask2.ClearSteps

End Sub

DeleteTaskStep Example

The following example deletes the second step of the currently running task (note that, since
AutoMate™ uses a zero based index for steps, step two in the step builder is actually index 1 in the
scripting language).

Sub Main
CurrentTask2.DeleteTaskStep (2)
MsgBox “Step 2 deleted.”

End Sub

GetStepCommand Example

The following example returns the command of step 2 into the variable varStepCommand, then
displays it in a message box.

Sub Main
Dim varStepCommand As Variant

varStepCommand = CurrentTask2.GetStepCommand (1)
MsgBox varStepCommand

End Sub

GetStepParameter Example

The following example returns the number of parameters in step 2 into the variable iNumOfSteps. It
then goes into a loop and displays each parameter, one by one, in a message box.

Sub Main
Dim iNumOfSteps As Integer
Dim varParameter As Variant

iNumOfSteps = CurrentTask2.GetStepParamCount (1)

for iIndex = 0 to iNumOfSteps
varParameter = CurrentTask2.GetStepParameter (1, iIndex)
MsgBox varParameter

next iIndex
    End Sub

GetStepParamCount Example

The following example returns the number of parameters in step 2 into the variable iNumOfSteps. It
then goes into a loop and displays each parameter, one by one, in a message box.

Sub Main
Dim iNumOfSteps As Integer
Dim varParameter As Variant

iNumOfSteps = CurrentTask2.GetStepParamCount (1)

for iIndex = 0 to iNumOfSteps
varParameter = CurrentTask2.GetStepParameter (1, iIndex)
MsgBox varParameter

next iIndex
    End Sub

GetStepStatus Example

The following example displays a message box with the text “Step will be skipped” if step 2 is set to be
skipped during execution, and “Step will be executed” otherwise.

Sub Main
Dim iStepStatus As Integer

iStepStatus = CurrentTask2.GetStepStatus (1)

if iStepStatus = 0 then
MsgBox “Step will be skipped”

else
MsgBox “Step will be executed”

End if
End Sub

GetTaskStep Example

The following example will display step 2 of the task in a message box.

Sub Main
Dim varStep As Variant

varStep = CurrentTask2.GetTaskStep (1)

MsgBox varStep
End Sub

InsertTaskStep Example

The following example will add a step as the second step of the task that displays a message box with
the words “This is AutoMate™.” and make it pop to the front.

Sub Main
CurrentTask2.InsertTaskStep (2, “MESSAGE: “ + Chr$(13) + “ This is AutoMate™. “ + Chr$(13) +

“,1”

End Sub

LoadFromFileEx Example

This example loads the STFF found at c:\mytasks\example.amt”, overwriting the contents of the
current task with the steps and properties of the example.amt task file.

Sub Main
CurrentTask2.LoadFromFileEx (“c:\mytasks\example.amt”, 0)

End Sub

SaveToFileEx Example

The example saves the properties and steps of the current task as an STFF file called “example.amt”,
and places it in the “c:\mytasks\” directory. The file can then be loaded by another script using the
CurrentTask2.LoadFromFile method.

Sub Main
CurrentTask2.SaveToFileEx (“c:\mytasks\example.amt”, 0)

End Sub

SetStepStatus Example

The following example sets all the steps in the current task to “active”, so that no steps are skipped the
next time the task is executed.

Sub Main
Dim iTotalSteps As Integer

iTotalSteps = CurrentTask2.StepCount

For iIndex = 0 To iTotalSteps
CurrentTask2.SetStepStatus (iTotalSteps, 1)

Next iIndex
End Sub

SetTaskStep Example

This example sets step 2 to display a message box with the text “This is AutoMate™”, overwriting
whatever the contents of step 2 was before.

Sub Main
CurrentTask2.SetTaskStep (1, “MESSAGE: “ + Chr$(13) + “ This is AutoMate™. “ + Chr$(13) + “,1”

End Sub

LastRASErrorCode Example

This example demonstrates the use of a number of the AMOLE’s methods and properties:
RASConnect, RASDisconnectEx, RASHandle, LastRASErrorCode, and LastRASErrorText.

The example attempts to dial the connection named “MyConnection.”    If the connection succeeds, the
script waits for the user to click the Ok button on the message box that appears, then disconnects. If
the connection fails, a message box with the error code and error text is displayed.

Sub Main
Dim iSuccess As Integer

iSuccess = AutoMate2.RASConnect (“MyConnection”)

If iSuccess > 0 Then
MsgBox “Connection successful with RAS handle “ + AutoMate2.RASHandle + “. Click Ok to

disconnect.”
AutoMate2.RASDisconnectEx (“MyConnection”)

Else
MsgBox “Connection failed with code “ + AutoMate2.LastRASErrorCode + “ and message: “ +

AutoMate2.LastRASErrorText
End If

End Sub

LastRASErrorText Example

This example demonstrates the use of a number of the AMOLE’s methods and properties:
RASConnect, RASDisconnectEx, RASHandle, LastRASErrorCode, and LastRASErrorText.

The example attempts to dial the connection named “MyConnection.”    If the connection succeeds, the
script waits for the user to click the Ok button on the message box that appears, then disconnects. If
the connection fails, a message box with the error code and error text is displayed.

Sub Main
Dim iSuccess As Integer

iSuccess = AutoMate2.RASConnect (“MyConnection”)

If iSuccess > 0 Then
MsgBox “Connection successful with RAS handle “ + AutoMate2.RASHandle + “. Click Ok to

disconnect.”
AutoMate2.RASDisconnectEx (“MyConnection”)

Else
MsgBox “Connection failed with code “ + AutoMate2.LastRASErrorCode + “ and message: “ +

AutoMate2.LastRASErrorText
End If

End Sub

RASHandle Example

This example demonstrates the use of a number of the AMOLE’s methods and properties:
RASConnect, RASDisconnectEx, RASHandle, LastRASErrorCode, and LastRASErrorText.

The example attempts to dial the connection named “MyConnection.”    If the connection succeeds, the
script waits for the user to click the Ok button on the message box that appears, then disconnects. If
the connection fails, a message box with the error code and error text is displayed.

Sub Main
Dim iSuccess As Integer

iSuccess = AutoMate2.RASConnect (“MyConnection”)

If iSuccess > 0 Then
MsgBox “Connection successful with RAS handle “ + AutoMate2.RASHandle + “. Click Ok to

disconnect.”
AutoMate2.RASDisconnectEx (“MyConnection”)

Else
MsgBox “Connection failed with code “ + AutoMate2.LastRASErrorCode + “ and message: “ +

AutoMate2.LastRASErrorText
End If

End Sub

SystemDir Example

This example displays the system directory in a message box.

Sub Main
MsgBox AutoMate2.SystemDir

End Sub

TaskCount Example

The following example displays the path to the current task list and the total number of tasks in it.

Sub Main
MsgBox (AutoMate2.TaskList + “ has “ + AutoMate2.TaskCount + “ task(s).”)

End Sub

TaskList Example

The following example displays the path to the current task list and the total number of tasks in it.

Sub Main
MsgBox (AutoMate2.TaskList + “ has “ + AutoMate2.TaskCount + “ task(s).”)

End Sub

WindowsDir Example

This example displays the windows directory in a message box.

Sub Main
MsgBox AutoMate2.WindowsDir

End Sub

FindWindowByTitle Example

The following example attempts to find a window with the title bar text “Untitled – Notepad.” If it is
found, a message box is displayed with the text “Notepad is open”, otherwise a message box with the
text “Notepad is not open” is displayed.

Sub Main
If AutoMate2.FindWindowbyTitle (“Untitled – Notepad”) > 0

MsgBox “Notepad is open”

Else
MsgBox “Notepad is not open”

End Sub

FindWindowByClass Example

The following example attempts to find a window with the classname of “Notepad.” If it is found, a
message box is displayed with the text “Notepad class exists”, otherwise a message box with the text
“Notepad class does not exist” is displayed.

Sub Main
If AutoMate2.FindWindowbyClass (“Notepad”) > 0

MsgBox “Notepad class exists”

Else
MsgBox “Notepad class does not exist”

End Sub

FindWindowContaining Example

The following example tries to find a window that contains the text “Access violation.”    If a window is
found, a message box is displayed with the text “Window found.” Otherwise, a message box with the
text “Window NOT found” is displayed.

Sub Main
If AutoMate2.FindWindowContaining (“Access violation”, “”) > 0

MsgBox “Window found”

Else
MsgBox “Window NOT found”

End If
End Sub

RASConnect Example

This example demonstrates the use of a number of the AMOLE’s methods and properties:
RASConnect, RASDisconnectEx, RASHandle, LastRASErrorCode, and LastRASErrorText.

The example attempts to dial the connection named “MyConnection.” If the connection succeeds, the
script waits for the user to click the Ok button on the message box that appears, then disconnects. If
the connection fails, a message box with the error code and error text is displayed.

Sub Main
Dim iSuccess As Integer

iSuccess = AutoMate2.RASConnect (“MyConnection”)

If iSuccess > 0 Then
MsgBox “Connection successful with RAS handle “ + AutoMate2.RASHandle + “. Click Ok to

disconnect.”
AutoMate2.RASDisconnectEx (“MyConnection”)

Else
MsgBox “Connection failed with code “ + AutoMate2.LastRASErrorCode + “ and message: “ +

AutoMate2.LastRASErrorText
End If

End Sub

RASDisconnectEx Example

This example demonstrates the use of a number of the AMOLE’s methods and properties:
RASConnect, RASDisconnectEx, RASHandle, LastRASErrorCode, and LastRASErrorText.

The example attempts to dial the connection named “MyConnection.” If the connection succeeds, the
script waits for the user to click the Ok button on the message box that appears, then disconnects. If
the connection fails, a message box with the error code and error text is displayed.

Sub Main
Dim iSuccess As Integer

iSuccess = AutoMate2.RASConnect (“MyConnection”)

If iSuccess > 0 Then
MsgBox “Connection successful with RAS handle “ + AutoMate2.RASHandle + “. Click Ok to

disconnect.”
AutoMate2.RASDisconnectEx (“MyConnection”)

Else
MsgBox “Connection failed with code “ + AutoMate2.LastRASErrorCode + “ and message: “ +

AutoMate2.LastRASErrorText
End If

End Sub

RunTask Example

This example attempts to run a task called “Focus Notepad.”

Sub Main
AutoMate2.RunTask (“Focus Notepad”)

End Sub

AMCopyFile Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varSourceFile As Variant
Dim varDestFile As Variant

varSourceFile = "C:*.txt"
varDestFile = "C:\AnotherDir*.bak"

intReturn = Action2.AMCopyFile (varSourceFile, varDestFile)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

AMChangeDir Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varDirectory As Variant

varDirectory = "c:\My Documents\"

intReturn = Action2.AMChangeDir (varDirectory)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

AMDeleteFile Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varFileName As Variant

varFileName = "C:*.txt"

intReturn = Action2.AMDeleteFile (varFilename)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

AMMakeDir Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varDirectory As Variant

varDirectory = "c:\DirToMake"

intReturn = Action2.AMMakeDir (varDirectory)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

AMRemoveDir Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varDirectory As Variant

varDirectory = "c:\DirToRemove"

intReturn = Action2.AMRemoveDir(varDirectory)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

AMRenameFile Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varOldName As Variant
Dim varNewName As Variant

varOldName = "C:*.txt"
varNewName = "C:*.bak"

intReturn = Action2.AMRenameFile (varOldName, varNewName)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

CheckForMail Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varServer As Variant
Dim varUsername As Variant
Dim varPassword As Variant
Dim intWaitingMailAction As Integer
Dim intNoWaitingMailAction As Integer

varServer = "mail.mailserver.com"
varUsername = "username"
varPassword = "password"
intWaitingMailAction = 1
intNoWaitingMailAction = 0

intReturn = Action2.CheckForMail (varServer, varUsername, varPassword, intWaitingMailAction,
intNoWaitingMailAction)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

ClipboardClear Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.ClipboardClear

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

ClipboardCopy Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.ClipboardCopy

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

ClipboardCut Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.ClipboardCut

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

ClipboardPaste Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.ClipboardPaste

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

ContService Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varServiceName As Variant

varServiceName = "ServiceToContinue"

intReturn = Action2.ContService (varServiceName)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

CreateVar Example

TO DO: Enter topic text here!

DDECommand Example

TO DO: Enter topic text here!

DisableThisTask Example

This example checks to see if the name of the window the user is currently working with is “Untitled –
Notepad.” If not, the task disables itself.

Sub Main
If Action2.GetFocusedWindowName <> “Untitled – Notepad” Then

Action2.DisableThisTask
End If

End Sub

FocusWindowContaining Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactTitleMatch As Integer
Dim varTextToFind As Variant
Dim intExactTextMatch As Integer

varWindowTitle = "This is the window title to look for"
intExactTitleMatch = 0
varTextToFind = "This is the text on the dialog window to look for"
intExactTextMatch = 1

intReturn = Action2.FocusWindowContaining(varWindowTitle, intExactTitleMatch, varTextToFind,
intExactTextMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPChangeDirectory Example

Option Explicit
Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varLocalFile As Variant
Dim varRemoteFile As Variant
Dim intTransType As Integer
Dim varNewDirectory As Variant

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varLocalFile = "C:*.txt"
varRemoteFile = "*.bak"
varNewDirectory = "/MyDirectory"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPChangeDirectory(varNewDirectory)
Action2.FTPUpload (varLocalFile, varRemoteFile, intTransType)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then

MsgBox "Success"
End If

End Sub

FTPDelete Example

Option Explicit
Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varFTPFilename As Variant
Dim intTransType As Integer

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varFTPFilename = "/*.txt"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPDelete (varFTPFilename)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPDownload Example

Option Explicit
Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varLocalFile As Variant
Dim varRemoteFile As Variant
Dim intTransType As Integer

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varLocalFile = "c:\"
varRemoteFile = "/*.txt"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPDownload (varRemoteFile, varLocalFile, intTransType)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPLogin Example

Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varLocalFile As Variant
Dim varRemoteFile As Variant
Dim intTransType As Integer

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varLocalFile = "c:\"
varRemoteFile = "/*.txt"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPDownload (varRemoteFile, varLocalFile, intTransType)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPLogout Example

Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varLocalFile As Variant
Dim varRemoteFile As Variant
Dim intTransType As Integer

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varLocalFile = "c:\"
varRemoteFile = "/*.txt"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPDownload (varRemoteFile, varLocalFile, intTransType)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPMakeDirectory Example

Option Explicit
Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varDirectory As Variant

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varDirectory = "/NewDir"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPMakeDirectory(varDirectory)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPQuickRetrieve Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varLocalFile As Variant
Dim varRemoteFile As Variant
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer

varHost = "www.hostname.com"
varUserName = "username"
varPassword = "password"
intPort = 21
varLocalFile = "C:\mytest.txt"
varRemoteFile = "/mytest.txt"
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

intReturn = Action2.FTPQuickRetrieve(varHost, varUsername, varPassword, intPort, varLocalFile,
varRemoteFile, varFTPLogFile, intOverwriteLog)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPQuickSend Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varLocalFile As Variant
Dim varRemoteFile As Variant
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer

varHost = "www.hostname.com"
varUserName = "username"
varPassword = "password"
intPort = 21
varLocalFile = "C:\mytest.txt"
varRemoteFile = "/mytest.txt"
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

intReturn = Action2.FTPQuickSend (varHost, varUsername, varPassword, intPort, varLocalFile,
varRemoteFile, varFTPLogFile, intOverwriteLog)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPRemoveDirectory Example

Option Explicit
Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varDirectory As Variant

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varDirectory = "/DirToRemove"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPRemoveDirectory(varDirectory)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPRename Example

Option Explicit
Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varFTPOldName As Variant
Dim varFTPNewName As Variant

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varFTPOldName = "/mytest.txt"
varFTPNewName = "newname.txt"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPRename(varFTPOldName, varFTPNewName)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

FTPUpload Example

Option Explicit
Sub Main
Dim intReturn As Integer

‘ The Action2 FTP methods (with the exception of
‘ FTPQuickSend and FTPQuickRetrieve may not
‘ function properly in the AutoMate™ BASIC IDE.    To
‘ more accurately use these functions, run the script from
‘ within an AutoMate™ task using the “Run a BASIC
‘ Script” action.

Dim varHost As Variant
Dim varUserName As Variant
Dim varPassword As Variant
Dim intPort As Integer
Dim varFTPLogFile As Variant
Dim intOverwriteLog As Integer
Dim intPassiveMode As Integer
Dim varLocalFile As Variant
Dim varRemoteFile As Variant
Dim intTransType As Integer

varHost = "www.hostname.com"
varUsername = "username"
varPassword = "password"
intPort = 21
varFTPLogFile = "c:\ftp.log"
intOverwriteLog = 1

varLocalFile = "c:\mytest.txt"
varRemoteFile = "/MyDir/"

Action2.FTPLogin (varHost, varUsername, varPassword, intPort, varFTPLogFile, intOverwriteLog,
intPassiveMode)

intReturn = Action2.FTPUpload (varLocalFile, varRemoteFile, intTransType)
Action2.FTPLogout

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

InputToVar Example

TO DO: Enter topic text here!

InstallService Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varExecutable As Variant
Dim varDisplayName As Variant
Dim varUsername As Variant
Dim varPassword As Variant
Dim intErrorType As Integer
Dim intServiceType As Integer
Dim intRunType As Integer
Dim intInteractive As Integer

varExecutable = "c:\Program Files\Program\program.exe"
varDisplayName = "MyProgram"
varUsername = "username"
varPassword = "password"
intErrorType = 1
intServiceType = 1
intRunType = 0
intInteractive = 0

intReturn = Action2.InstallService (varExecutable, varDisplayName, varUsername, varPassword,
intErrorType, intServiceType, intRunType, intInteractive)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

LeftClick Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.LeftClick

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

LeftDblClick Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.LeftDblClick

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

LockKeyboard Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.LockKeyboard

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success(use mouse to clear this message)"

End If

End Sub

LockMouse Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.LockMouse

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success(use keyboard to clear this message)"

End If

End Sub

Login Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varUsername As Variant
Dim varPassword As Variant
Dim varDomainName As Variant
Dim intNewDesktop As Integer
Dim intInteractive As Integer
Dim intLaunchExplorer As Integer
Dim intLockMouse As Integer
Dim intLockKeyboard As Integer

varUsername = "username"
varPassword = "password"
varDomainName = "domainname"
intNewDesktop = 1
intInteractive = 1
intLaunchExplorer = 0
intLockMouse = 0
intLockKeyboard = 0

intReturn = Action2.Login (varUsername, varPassword, varDomainName, intNewDesktop,
intInteractive, intLaunchExplorer, intLockMouse, intLockKeyboard)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

LogoffMachine Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.LogoffMachine

If intReturn = 0 Then
MsgBox "LogOff failed"
MsgBox(Action2.GetLastError)

End If

End Sub

Message Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varMessageText As Variant
Dim intModal As Integer

varMessageText = "This is an example of the Action2.Message command"
intModal = 1

intReturn = Action2.Message(varMessageText, intModal)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

MiddleClick Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.MiddleClick

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

MiddleDblClick Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.MiddleDblClick

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

MoveMouse Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim intXPos As Integer
Dim intYPos As Integer

intXPos = 10
intYPos = 10

intReturn = Action2.MoveMouse (intXPos, intYPos)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

OpenDocument Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varDocument As Variant

varDocument = "c:\mytest.txt"

intReturn = Action2.OpenDocument (varDocument)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

OpenWebpage Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWebpageAddress As Variant

varWebpageAddress = "www.unisyn.com"

intReturn = Action2.OpenWebpage (varWebpageAddress)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

Password Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varMessageText As Variant
Dim varPassword As Variant
Dim intMaxRetries As Integer

varMessageText = "Enter Password"
varPassword = "password"
intMaxRetries = 3

intReturn = Action2.Password (varMessageText, varPassword, intMaxRetries)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PasteKeys Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varKeysToPaste As Variant

varKeysToPaste = "Paste these keys"

intReturn = Action2.PasteKeys (varKeysToPaste)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PauseService Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varServiceName As Variant

varServiceName = "ServiceToPause"

intReturn = Action2.PauseService (varServiceName)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PingMachine Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varMachineAddress As Variant
Dim intPingTimeout As Integer
Dim varVarToSet As Variant
Dim intPingAction As Integer
Dim varPingTaskToStart As Variant
Dim intNoPingAction As Integer
Dim varNoPingTaskToStart As Variant

varMachineAddress = "www.unisyn.com"
intPingTimeOut = 1500
varVarToSet = ""
intPingAction = 2
varPingTaskToStart = ""
intNoPingAction = 1
varNoPingTaskToStart    = ""

intReturn = Action2.PingMachine (varMachineAddress, intPingTimeout, varVarToSet, intPingAction,
varPingTaskToStart, intNoPingAction, varNoPingTaskToStart)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PlayMouse Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varFilename As Variant

varFilename = "C:\RecordTest.dat"

intReturn = Action2.PlayMouse (varFilename)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PlaySound Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varSoundToPlay As Variant
Dim varSound As Variant
Dim intWaitUntilFinished As Integer

varSoundToPlay = "c:\somewavefile.wav"
intWaitUntilFinished = 0

intReturn = Action2.PlaySound (varSoundToPlay, intWaitUntilFinished)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PrintDocument Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varDocument As Variant

varDocument = "c:\mytest.txt"

intReturn = Action2.PrintDocument (varDocument)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PromptUser Example

Sub Main
Dim intReturn As Integer

Dim varText As Variant
Dim intType As Integer
Dim intActionOnOK As Integer
Dim intFailOnCancel As Integer
Dim intFailOnNo As Integer
Dim varTaskToStart As Variant

varText = "Text to prompt the user"
intType = 1
intActionOnOK = 0
intFailOnCancel = 1
intFailOnNo = 1
varTaskToStart = "TaskToStartOnCancel"

intReturn = Action2.PromptUser (varText, intType, intActionOnOK, intFailOnCancel, intFailOnNo,
varTaskToStart)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

ElseIf intReturn = 2 Then
MsgBox "Task Was Stopped"

End If

End Sub

QuitAutoMate™ Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.QuitAutoMate

If intReturn = 0 Then
MsgBox "QuitAutoMate failed"
MsgBox(Action2.GetLastError)

End If

End Sub

RebootMachine Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.RebootMachine

If intReturn = 0 Then
MsgBox "Reboot failed"
MsgBox(Action2.GetLastError)

End If

End Sub

Reminder Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varReminderText As Variant
Dim intReschedule As Integer

varReminderText = "This is a reminder"
intReschedule = 5

intReturn = Action2.Reminder (varReminderText, intReschedule)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

RemoveService Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varServiceName As Variant
Dim intStopFirst As Integer

varServiceName = "ServiceToRemove"
intStopFirst = 1

intReturn = Action2.RemoveService (varServiceName, intStopFirst)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

RightClick Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.RightClick

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

RightDblClick Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.RightDblClick

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

RunScript Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varFilename As Variant

varFilename = "c:\My Script.BAS"

intReturn = Action2.RunScript (varFilename)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

SendEmail Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varServer As Variant
Dim varUsername As Variant
Dim varTo As Variant
Dim varCC As Variant
Dim varSubject As Variant
Dim varBodyFileName As Variant
Dim varAttatchmentFilename As Variant

varServer = "mail.mailserver.com"
varUsername = "user@domain.com"
varTo = "recipient@anotherdomain.com"
varCC = ""
varSubject = "Subject"
varBodyFilename = "c:\Message.amm"
varAttachmentFilename = "c:\bakup.zip"

intReturn = Action2.SendEmail (varServer, varUsername, varTo, varCC, varSubject,
varBodyFilename, varAttachmentFilename)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

SendKeystrokes Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varKeystrokes As Variant
Dim intPauseFirst As Integer
Dim intPauseLength As Integer

varKeystrokes = "Send these keystrokes"
intPauseFirst = 1
intPauseLength = 2000

intReturn = Action2.SendKeystrokes (varKeystrokes, intPauseFirst, intPauseLength)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

SendRawStep Example

This example sends a message box step in raw format to the AutoMate™ Task Service. Note that you
must exercise caution when using this approach; AutoMate™ will not check your syntax, but instead
passes the step verbatim to the interpreter for processing.

Sub Main
Action2.SendRawStep (“MESSAGE: “ + Chr$(13) + “This is a step.” + Chr$(13) + “, 1”)

End Sub

SendVar Example

TO DO: Enter topic text here!

SetVar Example

TO DO: Enter topic text here!

ShutdownMachine Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.ShutdownMachine

If intReturn = 0 Then
MsgBox "Shutdown failed"
MsgBox(Action2.GetLastError)

End If

End Sub

StartApplication Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varCommandLine As Variant
Dim varParameters As Variant
Dim varDefaultDir As Variant
Dim intWindowState As Integer
Dim intWaitUntilReady As Integer
Dim intWaitUntilDone As Integer

varCommandLine = "notepad"
varParameters = ""
varDefaultDir = ""
intWindowState = 0
intWaitUntilReady = 1
intWaitUntilDone = 0

intReturn = Action2.StartApplication (varCommandLine, varParameters, varDefaultDir,
intWindowState, intWaitUntilReady, intWaitUntilDone)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

StartService Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varServiceName As Variant

varServiceName = "ServiceToStart"

intReturn = Action2.StartService (varServiceName)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

StartTask Example

This example first checks to see if the currently active window is titled “Untitled – Notepad.” If it is, it
starts the task “Close Notepads”, and waits for that task to complete before displaying a message box
that says “Close Notepads Task Complete.”

Sub Main
If Action2.GetFocusedWindowName = “Untitled – Notepad” Then

Action2.StartTask (“Close Notepads”, 1, 0)
MsgBox “Close Notepads Task Complete”

End If
End Sub

StopService Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varServiceName As Variant

varServiceName = "ServiceToStop"

intReturn = Action2.StopService (varServiceName)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

StopSound Example

Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.StopSound

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

UnlockKeyboard Example

Option Explicit
Sub Main
Dim intReturn As Integer

Action2.LockKeyboard
Wait 1
intReturn = Action2.UnlockKeyboard

If intReturn = 0 Then
MsgBox "Failure(use mouse to clear this message)"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success(use keyboard to clear this message)"

End If

End Sub

UnlockMouse Example

Option Explicit
Sub Main
Dim intReturn As Integer

Action2.LockMouse
Wait 1
intReturn = Action2.UnlockMouse

If intReturn = 0 Then
MsgBox "Failure(use keyboard to clear this message)"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success(use mouse to clear this message)"

End If

End Sub

UpdateAutoMate™ Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim intUpdateLocation As Integer
Dim varFTPServer As Variant
Dim varNetworkPath As Variant
Dim intShowProgress As Integer
Dim intForceReboot As Integer

intUpdateLocation = 0
varFTPServer = "ftp.unisyn.com"
varNetworkPath = ""
intShowProgress = 1
intForceReboot = 0

intReturn = Action2.UpdateAutoMate (intUpdateLocation, varFTPServer, varNetworkPath,
intShowProgress, intForceReboot)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

Wait Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim intTimeToWait As Integer

intTimeToWait = 3

intReturn = Action2.Wait (intTimeToWait)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

WaitForWindow Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowText As Variant
Dim intExactMatch As Integer
Dim intIncludeChildren As Integer
Dim intWaitTime As Integer
Dim intCheckInterval As Integer
Dim intNoWindowAction As Integer
Dim varTaskToStart As Variant

varWindowText = "Untitled - Notepad"
intExactMatch = 0
intIncludeChildren = 0
intWaitTime = 5
intCheckInterval = 1
intNoWindowAction = 0
varTaskToStart = "TaskNameToStart"

intReturn = Action2.WaitForWindow (varWindowText, intExactMatch, intIncludeChildren,
intWaitTime, intCheckInterval, intNoWindowAction, varTaskToStart)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

ElseIf intReturn = 2 Then
MsgBox "Task Was Stopped"

End If

End Sub

WaitForWindowToDisappear Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer
Dim intIncludeChildren As Integer
Dim intWaitInfinite As Integer
Dim intInterval As Integer
Dim intWaitTime As Integer
Dim intStillPresentAction As Integer
Dim varTaskToStart As Variant

varWindowTitle = "Untitled - Notepad"
intExactMatch = 0
intIncludeChildren = 0
intWaitInfinite = 1
intInterval = 1
intWaitTime = 5
intStillPresentAction = 0
varTaskToStart = "TaskNameToStart"

intReturn = Action2.WaitForWindowToDisappear (varWindowTitle, intExactMatch,
intIncludeChildren, intWaitInfinite, intInterval, intWaitTime, intStillPresentAction,    varTaskToStart)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

ElseIf intReturn = 2 Then
MsgBox "Task Was Stopped"

End If

End Sub

WindowClose Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer

varWindowTitle = "Untitled - Notepad"
intExactMatch = 0

intReturn = Action2.WindowClose(varWindowTitle, intExactMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

WindowFocus Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer

varWindowTitle = "Untitled - Note"
intExactMatch = 0

intReturn = Action2.WindowFocus(varWindowTitle, intExactMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

WindowHide Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer

varWindowTitle = "Untitled - Notepad"
intExactMatch = 0

intReturn = Action2.WindowHide(varWindowTitle, intExactMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

WindowMaximize Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer

varWindowTitle = "Untitled - Notepad"
intExactMatch = 0

intReturn = Action2.WindowMaximize(varWindowTitle, intExactMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

WindowMinimize Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer

varWindowTitle = "Untitled - Notepad"
intExactMatch = 0

intReturn = Action2.WindowMinimize(varWindowTitle, intExactMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

WindowRestore Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer

varWindowTitle = "Untitled - Notepad"
intExactMatch = 0

intReturn = Action2.WindowRestore(varWindowTitle, intExactMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

WindowUnhide Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varWindowTitle As Variant
Dim intExactMatch As Integer

varWindowTitle = "Untitled - Notepad"
intExactMatch = 0

intReturn = Action2.WindowUnhide(varWindowTitle, intExactMatch)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

AMMoveFile Example

Option Explicit
Sub Main
Dim intReturn As Integer

Dim varSourceFile As Variant
Dim varDestFile As Variant

varSourceFile = "C:*.txt"
varDestFile = "C:\AnotherDir\"

intReturn = Action2.AMMoveFile (varSourceFile, varDestFile)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

PopulateFromClipboard Method
Action2 Example

Encapsulates the AutoMate™ action in the “Variables” group, “Populate variable with clipboard.” The
method will populate the variable name you pass into it with the current contents of the clipboard.

Declaration
function PopulateFromClipboard (varVariableName As Variant) As Integer

Parameters
varVariableName

The name of the AutoMate™ variable to populate with the clipboard’s contents

Description
The PopulateFromClipboard method will copy the current contents of the Windows System clipboard
and put them into the variable passed by varVariableName.

The variable must already exist before the script begins by using a Create Variable step in the step
building, or the CreateVar method.

The clipboard must have valid text or else the action will fail.

Zip Method
Action2 Example

Encapsulates the AutoMate™ action in the “Zip” group, “Zip files”.    he method zips the files you
specify into a valid zip file.

Declaration
function Zip (varFilesToZip As Variant,

varFilesToExclude As Variant,
varZipFilename As Variant,
intIncludeSubDirs As Integer,
intPreservePaths As Integer) As Integer

Parameters
varFilesToZip

Contains the filenames (including paths) to be included in the zip file.    Separate multiple files with a
semi-colon (;)

varFilesToExclude
Contains the filenames (including paths) to be excluded from the list provided in varFilesToZip.    See

description below for more details.

varZipFilename
The filename and path of the zip file to create.

intIncludeSubDirs
Set this parameter to “0” if you do not want to include subdirectories in the zip file, or set it to “1” if

you do.

intPreservePaths
Set this parameter to “0” if you do not want to preserve the paths of the zip files that are being

added (i.e., they all become relative to wherever the zip file is extracted to). Or set it to “1” if you want
to keep the directory information in the zip file

Description
The Zip method compresses the files contained in varFilesToZip into one valid zip archive with the
filename varZipFilename. You may use any number of wildcards in varFilesToZip to compress one or
more directories. In this case, you can use varFilesToExclude to exclude certain files that match
another mask. For example, if you want to compress everything in the directory “C:\scripts” except files
ending with .txt, you would set varFilesToZip to “C:\scripts”, and varFilesToExclude to “C:*.txt.”

Setting intIncludeSubDirs to “1” will cause the Zip method to compress the directories you specify as
well as any directories contained within. Setting it to “0” will cause the Zip action to ignore any
directories it encounters.

Setting intPreservePaths will cause the Zip method to store information about the path of the file being
compressed into the zip archive. This path can then be used when unzipping the archive to restore the
same file structure as it existed when the file was compressed. Setting intPreservePaths to “0” will

cause all the files to be compressed into one area, and unzipping the archive will unzip all the files into
the same directory.

Unzip Method
Action2 Example

Encapsulates the AutoMate™ action in the “Zip” group, “Unzip files.” The method unzips a valid
archive in .zip format into the specified directory.

Declaration
function UnZip (varFileToUnzip As Variant,

varUnzipPath As Variant,
intOverwriteExisting As Integer,
intPreservePath As Integer) As Integer

Parameters
varFileToUnzip

The filename (including path) of the zip file to uncompress.

varUnzipPath
A valid and existing path to where the contents of the zip file should be extracted to.

intOverwriteExisting
If set to “1”, any existing files will be automatically overwritten by the contents of the zip file without

warning. If set to “0”, existing files will be skipped and not uncompressed.

intPreservePath
If set to “1”, AutoMate™ unzips the files into the directories contained in the zip file, restoring

directories as necessary. If set to “0”, AutoMate™ will unzip the contents of the zip file into the same
directory (as specified by varUnzipPath) without restoring any directories, effectively ignoring any
directory information contained in the zip file.

Description
Use the Unzip method to unzip a valid zip file (created using any of the popular zip compressors, or the
AutoMate™ Zip method) into a directory of your choice.

GetFocusedWindowName Method
Action2 Example

Returns the title of the top most, focused window.

Declaration
function GetFocusedWindowName () As Variant

Parameters
None

Description
The GetFocusedWindowName method will return the name of the current foreground window (i.e., the
title bar text of the window the user is currently working with). This is almost always the top-level
window.

DialUp Method
Action2 Example

Attempts to establish or end a dial up connection.

Declaration
function DialUp (varConnectionName As Variant,

intAction As Integer) As Variant

Parameters
varConnectioName

The name of the phonebook entry to dial.

intAction
If set to “0”, AutoMate™ will attempt to disconnect the connection. If set to “1”, AutoMate™ will

attempt to make a connection using varConnectionName.

Description
The DialUp method attempts to establish or end a dial-up session by dialing the phonebook entry
pointed to by varConnectionName. The phonebook entry must already exist in your Dial-Up
Networking preferences before running the step.

If intAction is set to “0”, AutoMate™ will attempt to find a connection already made using
varConnectionName and, if found, will try to disconnect the session. If this can be done successfully,
the step returns “1.” Otherwise, it returns “0.”

If intAction is set to “1”, AutoMate™ will attempt to start a dial-up session using the parameters of the
phonebook entry varConnectionName. If the connection is established, the method returns “1.”
Otherwise, it will return “0.”

DialUp Example

This example will attempt to start a dial-up session using the phonebook entry “My ISP.” If successful,
it will open a webpage to Yahoo!, then disconnect.

Sub Main
int iConnectionOkay As Integer

iConnectionOkay = Action2.DialUp (“My ISP”, 1)
If iConnectionOkay = 1 Then

‘ Connection established!    Try to open a webpage and disconnect
Action2.OpenWebpage (http://www.yahoo.com);
Action2.DialUp (“My ISP”, 0)

Else
MsgBox “Connection could not be established.”

End If
End Sub

Unzip Example

Sub Main
Dim intReturn As Integer

Dim varFileToUnzip As Variant
Dim varUnzipPath As Variant
Dim intOverwriteExisting As Integer
Dim intPreservePaths As Integer

varFileToUnzip = "c:*.zip"
varUnzipPath = "c:\My Documents\"
intOverwriteExisting = 1
intPreservePaths = 1

intReturn = Action2.Unzip (varFileToUnzip, varUnzipPath, intOverwriteExisting, intPreservePaths)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

Zip Example

Sub Main
Dim intReturn As Integer

Dim varFilesToZip As Variant
Dim varFilesToExclude As Variant
Dim varZipFilename As Variant
Dim intIncludeSubDirs As Integer
Dim intPreservePaths As Integer

varFilesToZip = "c:\My Documents*.*"
varFilesToExclude = "*.zip"
varZipFilename ="c:\TodaysZip.zip"
intIncludeSubDirs = 1
intPreservePaths = 1

intReturn = Action2.Zip (varFilesToZip, varFilesToExclude, varZipFilename, intIncludeSubDirs,
intPreservePaths)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

LeftMouseUp Method
Action2 Example

Simulates releasing the left mouse button after being held down by a call to the LeftMouseDown
method.

Declaration
function LeftMouseUp () As Variant

Parameters
None

Description
Use the LeftMouseUp method to simulate releasing the left hand mouse button after it has been held
down by a call to LeftMouseDown .

LeftMouseDown Method
Action2 Example

Simulates pressing and holding down the left mouse button.

Declaration
function LeftMouseDown () As Variant

Parameters
None

Description
Use the LeftMouseDown method to simulate holding down the left hand mouse button.    Use the
LeftMouseUp method to simulate releasing the left mouse button..

MiddleMouseUp Method
Action2 Example

Simulates releasing the middle mouse button after being held down by a call to the
MiddleMouseDownmethod.

Declaration
function MiddleMouseUp () As Variant

Parameters
None

Description
Use the MiddleMouseUp method to simulate releasing the middle mouse button after it has been held
down by a call to MiddleMouseDown .

MiddleMouseDown Method
Action2 Example

Simulates pressing and holding down the middle mouse button.

Declaration
function MiddleMouseDown () As Variant

Parameters
None

Description
Use the MiddleMouseDown method to simulate holding down the middle mouse button.    Use the
MiddleMouseUp method to simulate releasing the middle mouse button..

RightMouseUp Method
Action2 Example

Simulates releasing the right mouse button after being held down by a call to the RightMouseDown
method.

Declaration
function RightMouseUp () As Variant

Parameters
None

Description
Use the RightMouseUp method to simulate releasing the right hand mouse button after it has been
held down by a call to RightMouseDown .

RightMouseDown Method
Action2 Example

Simulates pressing and holding down the right mouse button.

Declaration
function RightMouseDown () As Variant

Parameters
None

Description
Use the RightMouseDown method to simulate holding down the right hand mouse button.    Use the
RightMouseUp method to simulate releasing the right mouse button..

LeftMouseUp Example
Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.LeftMouseUp

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

LeftMouseDown Example
Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.LeftMouseDown

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

MiddleMouseUp Example
Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.MiddleMouseUp

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

MiddleMouseDown Example
Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.MiddleMouseDown

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

RightMouseUp Example
Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.RightMouseUp

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

RightMouseDown Example
Option Explicit
Sub Main
Dim intReturn As Integer

intReturn = Action2.RightMouseDown

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

End Sub

GetLastError Example IAMAction2
Option Explicit
Sub Main
Dim intReturn As Integer
Dim varDocument as Variant

varDocument = “c:\NoFile.txt”
IntReturn = Action2.OpenDocument (varDocument)

If intReturn = 0 Then
MsgBox "Failure"
MsgBox(Action2.GetLastError)

ElseIf intReturn = 1 Then
MsgBox "Success"

End If

GetFocusedWindowName Example IAMAction2
Option Explicit
Sub Main
Dim varFocusedWindow As Variant
Dim x As Integer

For x = 1 To 10
varFocusedWindow = Action2.GetFocusedWindowName
If varFocusedWindow = "" Then

Exit For
Else

Action2.WindowMinimize(varFocusedWindow, 0)
End If

Next x

End Sub

