
The First Unix Port

Richard Miller

Miller Research Ltd

r.miller@acm.org

1 Prelude

The story of the �rst Unix port begins with a letter

I received in April 1976 from Professor Juris Rein-

felds, head of the newly created Computing Science

Department at the University of Wollongong, Aus-

tralia. At the time I was a 
edgling systems pro-

grammer at SDL, an Ottawa computer service bu-

reau which provided a remote batch and timeshar-

ing service on large IBM mainframes for clients in

Canada and the U.S. I was preparing to join Juris

later that year as the department's second member

of sta�, to set up and run a laboratory for software

teaching and research.

Juris's idea of creating an interactive software lab-

oratory, using timeshared terminals connected to a

departmental minicomputer, was a progressive one

for the time. The usual experience for students in

computing was to queue up at a university com-

puter centre to submit their programs and data on

punched cards, and return some hours later to col-

lect the printed output. Being constrained to two

or three attempts per day at compiling and running

a program may have encouraged a more disciplined

approach to programming than is common nowa-

days, but it strictly limited the size of projects which

students could be expected to tackle, and made it

di�cult to teach computing as an experimental sci-

ence.

The plan had been to buy a DEC PDP-11 mini-

computer to run Unix, a novel operating system

from Bell Labs which was acquiring a cult follow-

ing at universities around the world. Juris was im-

pressed by the positive experience of the nearby Uni-

versity of New South Wales in Sydney, where Unix

was used enthusiastically in programming courses as

well as being itself an object of study in an Op-

erating Systems course taught by John Lions. Ju-

ris had sent me a copy of Ritchie and Thompson's

1974 CACM paper The UNIX Time-Sharing Sys-

tem, which I found tremendously exciting. After the

dispiriting experience of trying to use (and debug)

early versions of IBM's TSO timesharing system, the

simplicity and elegant minimalism of Unix seemed a

brave new world indeed.

But Juris's letter brought a disappointment: the

price of a PDP-11 was out of reach. Instead, he

wrote, \unless you voice your objections loudly we

will probably have an Interdata 7/32 with 10Mbyte

disk and 192kbyte core as our lab computer... Since

Interdata assembler is like IBM's it should be to your

liking." As Unix was a PDP-11 operating system,

no PDP-11 meant no Unix; we would have to build

our software laboratory using Interdata's own OS/32

operating system.

2 The Interdata 7/32

I began work at Wollongong, and soon afterwards

the Interdata minicomputer was installed: a 32-bit

machine with a peak execution speed of somewhat

less than 1 million instructions per second, along

with seven \glass teletype" terminals, and a daisy-

wheel typewriter which served as both system con-

sole and printer.

It did not take long to realise that OS/32 was not

going to help us to build the kind of interactive sys-

tem we wanted. Although it was a multi-tasking

system, able to execute several programs at once, it

could not really be considered to be multi-user or

even timesharing in the usual sense. The terminals

were strictly passive peripheral devices: you could

run a program using a speci�c terminal for input and

output, but programs (including system utilities like

the text editor and compiler) could only be started

from the central system console. If something went

wrong with a program, the error messages would

appear only on the system console. There was no

concept of user names or logging in, no �le protec-



tion of any kind, and a single linear directory of �les

on each disk device | a recipe for confusion with

thirty students all wanting to call their �rst program

LESSON1.BAS.

Clearly something had to be done before the Inter-

data would be usable in a student environment. As

an emergency measure, I cobbled together a proto-

timesharing system to run on top of OS/32, which

I modestly named MOTH (My Own Terminal Han-

dler). Essentially this was a simple multi-user shell,

which would prompt for a user login at each termi-

nal, and then read and execute simple commands

on the user's behalf, with input and output auto-

matically directed to the user's terminal. (I can't

recall whether I succeeded in redirecting error mes-

sages as well.) Some measure of �le protection was

obtained by intercepting system calls from user pro-

grams, transforming create and open requests to

make �le names unique to each user. There was

also a simple (voluntary) queuing mechanism which

could be used to request exclusive use of the console

printer before sending output there.

With MOTH in place, the �rst programming class

were able to use the lab for their assignments. But

the service was far from ideal. MOTH's control

was not complete: for example, a program which

entered an in�nite loop (not uncommon in student

programs), could not be interrupted but would have

to be cancelled from the system console. OS/32 at

that time had only a primitive memory allocation

scheme with �xed-size partitions to share our 192

kilobytes of memory among seven users, with no ca-

pability of swapping to disk | it was very cramped.

Among other quirks, the Interdata would crash in-

stantly if the system console was taken o�ine. Since

the console was our only hardcopy device, this hap-

pened frequently as students attempted to eject a

page to remove their printout.

As our frustration with the OS/32 environment

grew, Unix looked more and more attractive. Could

we possibly return to the original plan of using Unix,

even without a PDP-11? Why not attempt to make

Unix run on the Interdata?

In the case of a typical computer manufacturer's

operating system, the idea of portability to a new

machine would have been preposterous. Conven-

tionally operating systems were written in assembly

language for a speci�c machine, exploiting low-level

details of the hardware architecture which were of-

ten exposed to the user. For example in OS/360,

disk �les had to be allocated by the user in units

of tracks and cylinders, and for e�cient access one

could write \channel programs" to be executed di-

rectly by the autonomous hardware which controlled

the disks.

But Unix appeared very di�erent. It was writ-

ten in C, a (fairly) high level language for which

compilers already existed for other machines besides

the PDP-11. Also, Unix's device-independent in-

put/output model presented a simpli�ed and ab-

stract view of the underlying hardware, which sug-

gested machine independence as well. A Unix pro-

gram writes a string of bytes onto a disk �le or a

magnetic tape or a terminal screen using exactly

the same simple system call; it should be possible

to write to an Interdata disk or a PDP-11 disk with

equal indi�erence.

There seemed to be no reason in principle why

Unix could not be adapted to a di�erent machine. So

in late 1976 the University of Wollongong ordered a

source code licence for Unix (6th Edition), and I took

on the project of making it run on the Interdata.

3 Porting the C Compiler

As most of the Unix kernel and nearly all the com-

mands and utilities were written in C, the �rst task

was to produce a C compiler for the 7/32. The ob-

vious starting point was Dennis Ritchie's PDP-11

C compiler, which was itself written in C. I spent

a few weeks learning the C language by reading a

printed copy of the compiler source, and unravel-

ling its structure. There was no internal documen-

tation and the comments were sparse, but the clear

and concise style made it quite easy to �nd one's

way around. The compiler was in two sections: a

syntactic front end which was fairly machine inde-

pendent, and a code generating back end which for-

tunately was mostly table driven. I devised a new

set of tables with code generation templates for the

Interdata's instruction set, and wrote new versions

of routines which performed storage layout, analysis

of addressing modes, and other machine dependent

functions.

I now had (I believed) an Interdata C compiler in

C source code form, but I needed a running Interdata

C compiler before I could compile it. This seeming

paradox appears whenever a compiler is written in

the language which it is meant to compile, and its

solution is known as bootstrapping (a term which

refers to lifting oneself up by one's own bootstraps).

In this case I planned a half bootstrap, involving a

second computer: I would use the PDP-11 C com-

piler running on a Unix machine at the University of

New South Wales, to compile my Interdata C com-

piler.

On December 14 1976, I made the 80 kilome-



tre journey from Wollongong to Sydney with the

proposed changes to the C compiler on a deck of

punched cards, and spent two days editing, compil-

ing and debugging. This was my �rst actual expe-

rience as a user of Unix, but with some guidance

from local gurus Peter Ivanov and Ian Johnstone,

I soon felt at home. I quickly learned about the

Unix principle of \trusting users to know what they

are doing", when I mistyped a �lename and inadver-

tently deleted several hours' work. But by Decem-

ber 16 the compiler was able to translate a handful

of short test programs into what looked like correct

Interdata assembly language. Using the compiler to

translate its own source code then resulted in many

thousands of lines of assembly code, which I copied

onto a magnetic tape to take back to Wollongong.

At this point there was a logistical problem: our

7/32 had no tape drive. The Wollongong Univer-

sity computer centre had a Univac 1106 mainframe

with a tape drive, but that was not compatible with

PDP-11 tapes. Fortunately the Sydney o�ce of In-

terdata knew of a client who could do tape conver-

sions. So the translated compiler was copied there

to a Univac-compatible tape to be taken to Wollon-

gong, where it was loaded onto the computer centre's

1106, transmitted to an Interdata 8/16 (a smaller In-

terdata machine which was used as a front end com-

munication processor for the Univac) and copied to

a 5 megabyte removable disk pack which was carried

upstairs and loaded onto the Computing Science De-

partment's 7/32.

The assembly language version of the C compiler

could now be run through the Interdata assembler to

produce an executable program. Well, that was the

theory: in fact, what it produced was pages of as-

sembler syntax error messages. The compiler's own

source code contained many new C constructs which

my trivial test programs had not exercised, so there

were still mistakes in the code generator. Another

week's work on the compiler source followed by a

second trip to Sydney on December 22 for cross-

compilation resulted in a new tape full of assembly

language which was brought back to Wollongong via

the same tortuous route as before | and this time

it passed successfully through the assembler.

One further thing was needed. Because the C

compiler was originally a Unix program it made use

of Unix system calls to perform input/output and

memory allocation. While I was working on the com-

piler, a library of OS/32 routines to emulate some

basic Unix system calls (open, close, read, write,

malloc, and a few others) was being written by Ross

Nealon, a Wollongong computing student. (Years

later, Ross took over my place in the department

when I left Wollongong. He died of cancer, tragi-

cally young, in 1988.)

Combining the assembled compiler with Ross's

Unix compatibility library gave us, at last, an In-

terdata C compiler running on the 7/32. It was still

far from correct, but it could now be maintained on

our own machine without further trips to Sydney.

Over the Christmas break I continued testing and

correcting the compiler. Each time I made a change

to the assembly language code, I would also make the

corresponding change in the C source, which when

eventually compiled would generate exactly the as-

sembly source which I had just written by hand.

After many iterations, on January 5 1977 the com-

piler could successfully compile itself, producing as-

sembly output identical to the running compiler.

4 Unix Tools on OS/32

The C compiler had been moved by a half bootstrap

procedure, with an initial cross-compilation on an-

other machine. Had a PDP-11 been available inWol-

longong, I would doubtless have carried out a similar

half bootstrap of the operating system, using the ex-

isting Unix system as a development environment to

maintain and cross-compile a kernel, for download-

ing and testing on the 7/32. But if a PDP-11 had

been available, I would not be doing the port in the

�rst place! The 80 kilometres separating us from the

nearest PDP-11 seemed to mandate a full bootstrap

of the operating system, performing all the develop-

ment on the target machine itself.

Before starting on the kernel, it seemed worth-

while to get some of the Unix development tools

working on the Interdata. The system call emulation

library, which enabled the Unix C compiler to run on

OS/32, was extended a bit to support other simple

Unix programs such as the editor ed and �le manip-

ulation and comparison commands. Having these

available would be a signi�cant aid to productiv-

ity in comparison with the existing Interdata tools.

(The standard OS/32 text editor, for example, was

only able to move sequentially through a �le in one

direction; after examining or modifying a line, one

could not move to an earlier line of the �le without

exiting from the editor and beginning again.)

Porting Unix tools to the Interdata was a way

of exercising more of the C compiler and increas-

ing con�dence in its reliability, and helped to point

out compatibility problems in C semantics between

the PDP-11 and Interdata. Although in theory a

user level C program can be entirely machine inde-

pendent, in the 6th Edition system rather a lot of



shortcuts had been taken, with assumed knowledge

of properties of the PDP-11 which failed on the In-

terdata. The most common of these were word size,

the order of bytes within words, and sign extension

of characters. I learned to be suspicious of any oc-

currence of the number 2 in a C program | more

often than not, it really meant sizeof(int) which

on the 7/32 should be 4.

5 The Unix Kernel on OS/32

An operating system like Unix can be decomposed

into three layers. At the top is the interface de-

�ned by the repertoire of system calls which provide

operating system services to user programs. In the

middle are the mechanisms which implement these

services and manage the sharing of resources among

processes and users of the system. In Unix this layer

is largely hardware independent; for example, all di-

rect access devices are treated in an abstract way as

indexed collections of �xed-size blocks. At the bot-

tom are device drivers, interrupt handlers and other

low-level routines which deal with the idiosyncrasies

of actual hardware behaviour, and support the sim-

pler view of idealised hardware used by the layer

above.

Because each layer depends on the one below, it

would appear that a new implementation of Unix

would need to be built from the bottom up. But the

7/32 was not a bare machine: it already had an op-

erating system, and in a sense the top layer of Unix

was already working above OS/32 in the form of our

library of emulated system calls. There was a com-

pelling attraction to the idea of continuing from the

top down, beginning with the easier task of porting

and testing the middle layer over an idealised hard-

ware interface provided by the facilities of OS/32,

and leaving the complexities of the real hardware

until the last.

Here I was in
uenced by my experience at SDL,

where IBM's VM/370 operating system had been

used to test multiple versions of OS/360 concur-

rently on the same machine. VM used the IBM 370

paging facilities to divide the computer into several

disjoint virtual machines, each able to run its own

operating system with the illusion of having com-

plete control of the real hardware. Execution of the

virtual machines was timeshared, with privileged in-

structions being intercepted and emulated by the

VM kernel. The virtualisation was so complete that

a VM virtual machine could be used to run another

instance of VM itself.

OS/32 was not quite as sophisticated as VM/370,

but it did have some useful facilities for real-time

programming which could be exploited to build a

kind of virtual machine environment. Like the 370,

the Interdata had a Program Status Word (PSW)

with an instruction pointer and control bits for en-

abling and disabling interrupts and memory protec-

tion and relocation. An interrupt or system call in-

struction would cause the old PSW to be stored in a

�xed location in low memory, and a new PSW (typ-

ically with interrupts disabled) to be loaded from a

table indexed by the type of interrupt.

Under OS/32, each program's address space be-

gan with a reserved area called the UDL, contain-

ing system information about the running program.

This included things like pointers to open �les, and

a Task Status Word (TSW) which was analogous to

the PSW. If a program requested an asynchronous

input/output operation, the operating system would

signal its completion by a TSW exchange, loading a

new TSW and instruction pointer from a table in

the UDL which was analogous to the hardware in-

terrupt table in low memory. An OS/32 program

which was declared at link time to be an E-task (ex-

ecutive task) had extra privileges, and could de�ne

its own system calls by specifying that certain sys-

tem call instructions would load a new TSW from

the program's own UDL instead of the kernel's table.

These mechanisms provided most of what was

needed to emulate the lowest layer of Unix | asyn-

chronous device I/O, process switching, interrupt

handling, and system calls to switch between user

and kernel mode | by manipulating TSWs within

a single OS/32 partition. The missing mechanism

was control over memory management, which I had

to supply by trickery. As an E-task, the virtual Unix

kernel had access to the 7/32's memorymanagement

registers, so it was able to perform its own address

relocation, swapping multiple Unix processes in and

out of its memory partition while maintaining the

illusion of being a single OS/32 process.

Using this simple virtual machine environment on

OS/32, porting the top and middle layers of Unix

proved fairly straightforward. Nearly all the changes

required were due to trivial word size and byte or-

der problems | the program logic remained almost

unaltered. Developing and testing a virtual version

of Unix on OS/32 had practical advantages. There

was no need for exclusive use of the machine; us-

ing MOTH the system could be used by students at

the same time as my kernel testing. And the OS/32

interactive debugger was available for breakpointing

and single-stepping through the Unix kernel just like

any other program.



6 Unix Stands Alone

By February, it was possible to log in to a terminal

assigned to the virtual Unix and run (very slowly)

a Unix program. One of the 7/32's two 5 megabyte

disk drives was initialised as a Unix �le system, by

writing a data-only assembly program whose struc-

ture was the image of an empty �le system, assem-

bling it, and copying the binary result to the disk.

The �le system was gradually populated with Unix

commands, each one being compiled and assembled

under OS/32, converted from OS/32 object to Unix

a.out format, and moved to the Unix disk. At last

it was time to perform the conjuring trick of whip-

ping OS/32 out from underneath, leaving Unix to

stand on its own.

Writing device drivers for the Interdata peripher-

als (disk drive, serial interface, clock) was challeng-

ing as expected: real hardware, unlike the virtual

kind, is always full of surprises. I was able to use

PDP-11 drivers as a pattern, but the Interdata archi-

tecture was rather more complex. Communicating

to the disk drive, for example, involved a disk con-

troller and DMA channel as well as the drive itself,

all needing to be programmed separately and in the

right order, and all generating separate interrupts

(or not, depending on timing conditions). Fortu-

nately the top-down approach meant that I was not

trying to test drivers and interrupt handlers on a

bare machine: I had all the rest of Unix, already

running and stable, to use as a test bed. On April

28, Unix was running in full control of the 7/32.

Of course, the �rst successful \Hello, world" is

not the end of the story. Until this point the C

compiler was still running on OS/32, because the

OS/32 assembler was needed to assemble its output.

When I wrote a new Interdata assembler for Unix

(in C), I was grati�ed to �nd that it was smaller and

much faster than Interdata's own assembler (written

in assembly language) | a victory for the principle

of systems programming in a high level language.

Many other Unix commands and utilities needed

compiling and testing, and most had the odd trivial

PDP-11 dependency to be corrected. Another three

months of work were required until 25 July 1977,

when OS/32 was retired and Unix formally became

the production system on the Wollongong 7/32.

7 The 7th Edition

When Unix �rst began to run as a stand-alone sys-

tem on the Interdata we contacted Bell Labs, ex-

pecting them to be surprised to hear that their op-

erating system was portable. In fact there was a

surprise on both sides: a team at Bell Labs was in

the midst of doing their own port of Unix to an In-

terdata 8/32 (a slightly more powerful 32-bit mini-

computer). They had begun work at the beginning

of 1977 in anticipation of the delivery of their ma-

chine in April, and had a kernel working by June |

less than two months after the Wollongong kernel

�rst ran on the bare 7/32.

The Bell Labs Interdata port was never released

to the public, but it became the basis for the 7th

Edition of Unix, which was speci�cally engineered

to be portable (with Steve Johnson's new portable

compiler, and a much more disciplined approach to

data typing in C). When the PDP-11 version of

the 7th Edition became available, the University of

Wollongong ordered a copy, and I ported that to

the Interdata, with some assistance from Robert Elz

at the University of Melbourne who had been us-

ing the Wollongong 6th Edition system on an 8/32.

The project was somewhat easier the second time

around, but there was still a lot of work because the

kernel had already begin to grow bigger and more

complex, and there were many new commands.

The appearance of the 7th Edition of Unix be-

gan a trickle and then a 
ood of porting projects in

many places to machines of all kinds; by the early

1980's there were at least three companies making a

full-time business of porting Unix. By the 1990's no

computer, from micro to mainframe, could be con-

sidered to be a serious machine if it wasn't able to

run some form of Unix. Now, twenty-one years after

the �rst port, it's di�cult to believe that there once

was a time when operating system portability was

an audacious idea.


