
rxsocket_english_guide

rxsocket_english_guide ii

COLLABORATORS

TITLE :

rxsocket_english_guide

ACTION NAME DATE SIGNATURE

WRITTEN BY July 31, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

rxsocket_english_guide iii

Contents

1 rxsocket_english_guide 1

1.1 RxSocket 30.0 . 1

1.2 RxSocket Introduction . 1

1.3 RxSocket Author . 2

1.4 RxSocket Warning, Requirements, Introduction and Distribution . 2

1.5 RxSocket Terms . 3

1.6 RxSocket Bugs . 4

1.7 RxSocket Structures . 4

1.8 RxSocket Functions . 5

1.9 RxSocket Functions - accept . 6

1.10 RxSocket Functions - Addr2C . 7

1.11 RxSocket Functions - bind . 7

1.12 RxSocket Functions - CloseRxsCon . 8

1.13 RxSocket Functions - CloseRxSocket . 9

1.14 RxSocket Functions - CloseSocket . 9

1.15 RxSocket Functions - connect . 10

1.16 RxSocket Functions - Dup2Socket . 11

1.17 RxSocket Functions - errno . 12

1.18 RxSocket Functions - ErrorString . 14

1.19 RxSocket Functions - FreeLineRead . 14

1.20 RxSocket Functions - GetHost . 14

1.21 RxSocket Functions - GetHostByAddr . 15

1.22 RxSocket Functions - GetHostByName . 15

1.23 RxSocket Functions - GetHostID . 16

1.24 RxSocket Functions - GetHostName . 16

1.25 RxSocket Functions - GetPeerName . 17

1.26 RxSocket Functions - GetProtoByName . 17

1.27 RxSocket Functions - GetProtoByNumber . 18

1.28 RxSocket Functions - GetServByName . 18

1.29 RxSocket Functions - GetServByPort . 19

rxsocket_english_guide iv

1.30 RxSocket Functions - GetSocketBase . 19

1.31 RxSocket Functions - GetSocketBaseSingle . 20

1.32 RxSocket Functions - GetSocketEvents . 21

1.33 RxSocket Functions - GetSocketName . 22

1.34 RxSocket Functions - GetSockOpt . 22

1.35 RxSocket Functions - help . 25

1.36 RxSocket Functions - HostErrorno . 26

1.37 RxSocket Functions - HostErrorString . 26

1.38 RxSocket Functions - InetAddr . 27

1.39 RxSocket Functions - InetCksum . 27

1.40 RxSocket Functions - InetNTOA . 28

1.41 RxSocket Functions - InitLineRead . 28

1.42 RxSocket Functions - IoctlSocket . 29

1.43 RxSocket Functions - IsDotAddr . 31

1.44 RxSocket Functions - IsLibON . 32

1.45 RxSocket Functions - IsOnSocks . 32

1.46 RxSocket Functions - IsUp . 33

1.47 RxSocket Functions - IsSocket . 33

1.48 RxSocket Functions - LastSocket . 33

1.49 RxSocket Functions - listen . 34

1.50 RxSocket Functions - LineRead . 35

1.51 RxSocket Functions - NextRxsReleased . 36

1.52 RxSocket Functions - ObtainSocket . 36

1.53 RxSocket Functions - OpenConnection . 37

1.54 RxSocket Functions - OpenRxsCon . 39

1.55 RxSocket Functions - QueryInterfaces . 40

1.56 RxSocket Functions - recv . 41

1.57 RxSocket Functions - RecvFrom . 42

1.58 RxSocket Functions - RecvFromUntil . 43

1.59 RxSocket Functions - RecvLine . 44

1.60 RxSocket Functions - ReleaseCopyOfSocket . 44

1.61 RxSocket Functions - ReleaseSocket . 45

1.62 RxSocket Functions - resolve . 45

1.63 RxSocket Functions - RxsCall . 46

1.64 RxSocket Functions - send . 48

1.65 RxSocket Functions - SendTo . 49

1.66 RxSocket Functions - SetRxSocketOpt . 50

1.67 RxSocket Functions - SetSocketBase . 50

1.68 RxSocket Functions - SetSocketBaseSingle . 51

rxsocket_english_guide v

1.69 RxSocket Functions - SetSocketSignals . 51

1.70 RxSocket Functions - SetSockOpt . 52

1.71 RxSocket Functions - ShutDown . 55

1.72 RxSocket Functions - SysLog . 55

1.73 RxSocket Functions - SysLogCtl . 56

1.74 RxSocket Functions - socket . 57

1.75 RxSocket Functions - WaitSelect . 58

1.76 RxSocket Functions - WriteRxsCon . 60

1.77 RxSocket Passing sockets . 60

1.78 RxSocket Inetd support . 61

1.79 RxSocket Thanks . 62

1.80 RxSocket Bibliography . 63

1.81 RxSocket Note . 63

rxsocket_english_guide 1 / 64

Chapter 1

rxsocket_english_guide

1.1 RxSocket 30.0

RxSocket 30.0 © 2000, 2001 Alfonso Ranieri

1. Introduction
2. Author
3. WRID
4. Terms
5. Bugs
6. Structures
7. Functions
8. Passing sockets
9. Inetd support
10. Thanks
11. Note
12. Bibliography

1.2 RxSocket Introduction

Introduction

RxSocket is a complete bridge to bsdsocket.library, so it is a
powerful ARexx API for internet communication programming.

With RxSocket you will be able to create internet applications
in the same way you would do in any high programming languages.

The functions of rxsocket.library directly call bsdsocket.library
ones, named here original functions, but this document
is a guide to rxsocket.library functions and not an introduction
to bsdsocket.library. This mean that you must be familiar with
the commons terms and techniques of the internet programming.

The environment is macro-private: each macro opens the
bsdsocket.library and what else must be private and stores a list

rxsocket_english_guide 2 / 64

of things that must be freed on exit.

The way used to handle arguments and results is:

o when the original function wants a non-structure as
argument, that argument is given to the function;

o when the original function wants a structure as argument, a
valid ARexx variable name is the argument for that
structure: various fields of that stem must be set by the
user;

o when the original function returns an integer, that integer
is returned;

o when the original function returns a structure, a valid
ARexx variable name is passed as argument to the function
and various fields of that stem are set by the function. An
ARexx boolean is returned.

This is a general policy in my ARexx libraries to try to emulate
the AmigaOS tags programming way.

1.3 RxSocket Author

Author

I am Alfonso Ranieri

My e-mail address is alforan@tin.it

My Amiga Home Page is at
http://web.tiscalinet.it/amiga

You can find the last version of RxSocket at
http://web.tiscalinet.it/amiga/english/soft/rxsocket.htm

1.4 RxSocket Warning, Requirements, Introduction and Distribution

Warning, Requirements, Introduction and Distribution

Warning

THIS SOFTWARE AND INFORMATION ARE PROVIDED AS IS. ALL USE IS AT
YOUR OWN RISK, AND NO LIABILITY OR RESPONSIBILITY IS ASSUMED. NO
WARRANTY IS MADE.

Requirements

rxsocket_english_guide 3 / 64

o RxSocket needs:

. AmigaOS version 2 or higher

. a TCP/IP stack

. rmh.library, included in RxSocket archive

o RxSocket was tested with:

. Miami 2.xx 3.xx MiamiDx any beta release

. Genesis (genesis.library 2.xx 3.xx)

. TermiteTCP 1.50: it works, but some
functions are not available with it.

Installation

Run the installation script.

Distribution

RxSocket is Freeware

You are free to distribute it as long as the original archive is
kept intact. Commercial use or its inclusion in other software
package is prohibited without prior written consent from the
Author.

1.5 RxSocket Terms

Terms

The main terms used in this document are:

o var var name stem or stem name: a valid ARexx variable name
e.g. var, var.0, var.name

o socket: the named space created by socket(), Dup2Docket(),
and so on

o socketfd: the socket descriptor id as an integer value

o addr or address: the Internet address, in dotted form.
An Internet address is a 32 bits unsigned long, represented
in the "dotted" form as "a.b.c.d" "a.b.c" "a.b" "a" or as a
symbolic name. In RxSocket addresses are represented in
dotted form, e.g. resolve() returns the dotted form of its
argument or -1.

o Types of arguments:

. D data -- any ARexx data

. N numeric /N integral number

. S symbol /S ARexx valid symbol

rxsocket_english_guide 4 / 64

. V stem name /V as S but with length<20

1.6 RxSocket Bugs

Bugs

None known.

1.7 RxSocket Structures

Structures

The main structures supplied to or set by functions are:

o sockaddr_in passed to and returned from various functions
(e.g. connect() and GetPeerName):

. AddrAddr

. AddrFamily

. AddrPort

o hostent returned by GetHostByName() GetHostByAddr():
. HostName
. HostAddrType
. HostLength
. HostAliases.num
. HostAliases.0, ... ,HostAliases.last

(last = HostaliAses.num-1)
. HostAddrList.num
. HostAddrList.0, ... ,HostAddrList.last

(last = HostaDdrList.num-1)

o servent returned by GetServByName() GetServByPort():
. ServName
. ServPort
. ServProto
. ServAliases.num
. ServAliases.0, ... ,ServAliases.last

(last = ServAliases.num-1)

o protoent returned by GetProtoByName() GetProtoByNumber():
. ProtoName
. ProtoProto
. ProtoAliases.num
. Protoaliases.0, ... ,ProtoAliases.last

(last = ProtoAliases.num-1)

Parameters supplied to functions or set in stem fields can be
specified as number and strings

o Family as in socket(FAMILY,type,protocol) or the field
AddrFamily of sockaddr_in has is one of:

rxsocket_english_guide 5 / 64

. Inet

o Type as in socket(family,TYPE,protocol) is one of:
. Stream
. Dgram
. Raw
. Rdm
. SeqPacket

o Protocol as in socket(family,type,PROTOCOL) if one of:
. ip
. HoPopts
. icmp
. igmp
. ggp
. ipip
. tcp
. egp
. pup
. udp
. idp
. tp
. IPv6
. Routing
. Fragment
. rsvp
. esp
. ah
. Icmpv6
. none
. dstopts
. eon
. encap
. divert
. raw

1.8 RxSocket Functions

Functions

Sockets
accept bind CloseSocket connect
Dup2Socket FreeLineRead GetSocketEvents ←↩

GetSockOpt
InitLineRead IoCtlSocket IsOnSocks IsSocket
LastSocket LineRead listen ←↩

NextRxsReleased
ObtainSocket OpenConnection recv RecvFrom
RecvFromUntil RecvLine ReleaseCopyOfSocket ←↩

ReleaseSocket
send SendTo SetRxSocketOpt ←↩

SetSockOpt
ShutDown socket WaitSelect

rxsocket_english_guide 6 / 64

Databases
addr2c GetHost GetHostByAddr ←↩

GetHostByName
GetHostID GetHostName GetPeerName ←↩

GetProtoByName
GetProtoByNumber GetServByName GetServByPort ←↩

GetSockName
InetAddr InetLNaof InetMakeAddr InetNetOf
InetNtoa IsDotAddr IsUp ←↩

QueryInterfaces
resolve

Errors
errno ErrorString HostErrorno ←↩

HostErrorString

SocketBase
GetSocketBase GetSocketBaseSingle SetSocketBase ←↩

SetSocketBaseSingle
SetSocketSignals

Various
help InetCkSum IsLibOn ←↩

CloseRxSocket
RxsCall SysLog SysLogCtl

RxsConsole
CloseRxsCon OpenRxsCon WriteRxsCon

1.9 RxSocket Functions - accept

accept - accepts connections

Synopsis
sockfd=accept(socketfd,remote)
<socketfd/N>,<remote/V>

Function

The argument ’socketfd’ is a socket, created with socket(), bound
to an address with bind(), and that is listening after a listen().

The function extracts the first connection request on the queue of
pending connections and creates a new socket with the same
properties of socketfd.

If no connection is present on the queue and the socket is not
marked as non-blocking, accept() blocks until a connection comes.
If no connection is present on the queue and the socket is marked
as non-blocking, accept() returns [EWOULDBLOCK].

The returned socket can be used to accept more connections.
The original socket remains opened.

The function fills ’remote’ with the sockaddr_in fields

rxsocket_english_guide 7 / 64

of the connected peer.

The function must be used with STREAM sockets.

WaitSelect() can be used to wait for connection, selecting the
socket for READ.

The function fails if:

o [EBADF] - ’socketfd’ is invalid.

o [EOPNOTSUPP] - The socket is not of type STREAM.

o [EWOULDBLOCK] - The socket is marked as non-blocking
and no connections are present.

Inputs
socketfd - the socket to accept connection on
remote - an ARexx stem name

Result
sockfd - the new connected socketfd or -1 for failure

See
errno()

1.10 RxSocket Functions - Addr2C

Addr2C - converts from dotted to packed chars.

Synopsis
packetAddr=Addr2C(addr)
<addr/N>

Function
Converts an Internet address, e.g. as returned
by resolve() to packed chars.

Useful when you want to export an address into memory.

Inputs
addr - a dotted address

Result
packedChar - the address as a packed chars string

1.11 RxSocket Functions - bind

bind - binds a socket to a name

Synopsis
res=bind(socketfd,name)

rxsocket_english_guide 8 / 64

<socketfd/N>,<locale/V>

Function
Assigns a name to an unnamed socket.

When a socket is created it only exists in the named space
given by the address family.

bind() gives a name to the socket.

’name’ must be set as sockaddr_in.
ADDRADDR may be as 0 or not set at all, e.g. for DGRAM sockets.

The function fails if:

o [EBADF] - ’socketfd’ is invalid.

o [EADDRNOTAVAIL] - The specified address is not available
from the local machine.

o [EADDRINUSE] - The specified address is already in use.

o [EINVAL] - The socket is already bound to an
address.

Inputs
socketfd - the socket to bind to ’name’
name - a sockaddr_in to bind the socket to

Result
res - 0 for success, -1 for failure

Example
sock = socket("INET","DGRAM","IP")
if sock<0 then do

say "cannot open socket:" errno()
exit

end

local.ADDRFAMILY = "INET"
local.ADDRADDR = 0
local.ADDRPORT = 4000
if bind(sock,"LOCAL")<0 then do

say "cannot allocate port 4000:" Errno()
exit

end

See
accept() listen() errno()

1.12 RxSocket Functions - CloseRxsCon

CloseRxsCon - closes the global RxSocket console

rxsocket_english_guide 9 / 64

Synopsis
res=CloseRxsCon(attempt)
<attempt/N>

Function
Closes the global RxSocket console.

’attempt’ is an ARexx boolean:

o if ’attempt’ is omitted it is assumed to be 0

o if ’attempt’ is 0, the function wait till all the console
users release it.

o if ’attempt’ is not 0, the function doesn’t wait and the
console is closed iff it is not busy.

Inputs
attempt - the way the console is closed, see above

Result
res - 0 the console was not closed, 1 it was

See
OpenRxsCon() WriteRxsCon()

1.13 RxSocket Functions - CloseRxSocket

CloseRxSocket - closes local structures

Synopsis
res = CloseRxSocket()
-

Function
When the TCP/IP stack is closed, it sends a ctrl_c to all the
processes that are using its libraries. It means that even if
your macros closed all the sockets it may receive a ctrl_c
and so be compelled to exit. To prevent that, you may use
this function. It will try to close all the libraries bases,
so that you may go on without any problem. CloseRxSocket()
will also close all RxLibnet libraries.

WARNING: all bsdsocket.library options set are lost.

Result
res - an ARexx boolean that indicates if all the libraries

base were closes.

1.14 RxSocket Functions - CloseSocket

rxsocket_english_guide 10 / 64

CloseSocket - closes a socket

Synopsis
res=CloseSocket(socketfd)
<socketfd/N>

Function
Closes a socket.

Sockets are closed when the macro exits, but, because of the
per-macro max number of opened sockets is limited, it is useful
to close a socket when it is not needed anymore.

The function may fail if:

o [EBADF] - ’socketfd’ is invalid

Inputs
socketfd - a socket descriptor

Result
res - 0 for success, -1 for failure

See
ShutDown() errno()

1.15 RxSocket Functions - connect

connect - connects a socket

Synopsis
res=connect(socketfd,remote)
<socketfd/N>,<remote/V>

Function
Connects the socket to the socketaddr_in as defined in ’remote’.

If the socket is DGRAM, the function specified the peer with which
the socket is associated: the address specified is that to which
datagram are sent and from which datagram are received.

If the socket is STREAM, the function tries to make a connection
to another socket as specified in ’remote’.

STREAM sockets may connect only once.

DGRAM sockets may connect multiple times to change their
association and connect to a invalid address to dissolve it.

The function may fail if:

o [EBADF] - ’socketfd’ is invalid.

o [EADDRNOTAVAIL] - The specified address is not available on

rxsocket_english_guide 11 / 64

this machine.

o [EAFNOSUPPORT] - Addresses in the specified address family
cannot be used with this socket.

o [EISCONN] - The socket is already connected.

o [ETIMEDOUT] - Connection timeout.

o [ECONNREFUSED] - The attempt to connect was forcefully
rejected.

o [ENETUNREACH] - The network isn’t reachable from this host.

o [EADDRINUSE] - The address is already in use.

o [EINPROGRESS] - The socket is non-blocking and
the connection cannot be completed
immediately. It is possible to
WaitSelect() for completion by
selecting the socket for writing.

o [EALREADY] - The socket is non-blocking and a previous
connection attempt has not yet been
completed.

Inputs
socketfd - the socket to connect
remote - an ARexx stem name set as a sockaddr_in

Result
res - 0 for success, -1 for failure

Example
sin.addrFamily = "INET"
sin.addrPort = 80
sin.addrAddr = addr
if connect(sockfd,"SIN")<0 then do

say "connect: error" Errno()
exit

end

See
errno()

1.16 RxSocket Functions - Dup2Socket

Dup2Socket - duplicates a socket

Synopsis
sockfd=Dup2Socket(socketfd,newsockfd)
<socketfd/N>,[newsockfd/N]

Function
Duplicates an existing socket and returns the new socketfd.

rxsocket_english_guide 12 / 64

A new internal socket resource is allocated.
If ’newsockfd’ is not given, it is assumed to be -1.

The function may fail if:

o [EBADF] - ’socketfd’ or ’newsockfd’ is invalid

Inputs
socketfd - the socket to duplicate
newsockfd - the new socket descriptor

Result
res - 0 for success, -1 for failure

See
errno()

1.17 RxSocket Functions - errno

errno - returns the current bsdsocket.library error.

Synopsis
error=errno()
-

Function
Returns the current error code, one of:

o EPERM 1 Operation not permitted
o ENOENT 2 No such file or directory
o ESRCH 3 No such process
o EINTR 4 Interrupted system call
o EIO 5 Input/output error
o ENXIO 6 Device not configured
o E2BIG 7 Argument list too long
o ENOEXEC 8 Exec format error
o EBADF 9 Bad file descriptor
o ECHILD 10 No child processes
o EDEADLK 11 Resource deadlock avoided
o ENOMEM 12 Cannot allocate memory
o EACCES 13 Permission denied
o EFAULT 14 Bad address
o ENOTBLK 15 Block device required
o EBUSY 16 Device busy
o EEXIST 17 File exists
o EXDEV 18 Cross-device link
o ENODEV 19 Operation not supported by device
o ENOTDIR 20 Not a directory
o EISDIR 21 Is a directory
o EINVAL 22 Invalid argument
o ENFILE 23 Too many open files in system
o EMFILE 24 Too many open files
o ENOTTY 25 Inappropriate ioctl for device
o ETXTBSY 26 Text file busy
o EFBIG 27 File too large

rxsocket_english_guide 13 / 64

o ENOSPC 28 No space left on device
o ESPIPE 29 Illegal seek
o EROFS 30 Read-only file system
o EMLINK 31 Too many links
o EPIPE 32 Broken pipe
o EDOM 33 Numerical argument out of domain
o ERANGE 34 Result too large
o EAGAIN 35 Resource temporarily unavailable
o EWOULDBLOCK 35 Operation would block
o EINPROGRESS 36 Operation now in progress
o EALREADY 37 Operation already in progress
o ENOTSOCK 38 Socket operation on non-socket
o EDESTADDRREQ 39 Destination address required
o EMSGSIZE 40 Message too long
o EPROTOTYPE 41 Protocol wrong type for socket
o ENOPROTOOPT 42 Protocol not available
o EPROTONOSUPPORT 43 Protocol not supported
o ESOCKTNOSUPPORT 44 Socket type not supported
o EOPNOTSUPP 45 Operation not supported
o EPFNOSUPPORT 46 Protocol family not supported
o EAFNOSUPPORT 47 Address family not supported by protocol family
o EADDRINUSE 48 Address already in use
o EADDRNOTAVAIL 49 Can’t assign requested address
o ENETDOWN 50 Network is down
o ENETUNREACH 51 Network is unreachable
o ENETRESET 52 Network dropped connection on reset
o ECONNABORTED 53 Software caused connection abort
o ECONNRESET 54 Connection reset by peer
o ENOBUFS 55 No buffer space available
o EISCONN 56 Socket is already connected
o ENOTCONN 57 Socket is not connected
o ESHUTDOWN 58 Can’t send after socket shutdown
o ETOOMANYREFS 59 Too many references: can’t splice
o ETIMEDOUT 60 Operation timed out
o ECONNREFUSED 61 Connection refused
o ELOOP 62 Too many levels of symbolic links
o ENAMETOOLONG 63 File name too long
o EHOSTDOWN 64 Host is down
o EHOSTUNREACH 65 No route to host
o ENOTEMPTY 66 Directory not empty
o EPROCLIM 67 Too many processes
o EUSERS 68 Too many users
o EDQUOT 69 Disc quota exceeded
o ESTALE 70 Stale NFS file handle
o EREMOTE 71 Too many levels of remote in path
o EBADRPC 72 RPC struct is bad
o ERPCMISMATCH 73 RPC version wrong
o EPROGUNAVAIL 74 RPC prog. not avail
o EPROGMISMATCH 75 Program version wrong
o EPROCUNAVAIL 76 Bad procedure for program
o ENOLCK 77 No locks available
o ENOSYS 78 Function not implemented
o EFTYPE 79 Inappropriate file type or format
o EAUTH 80 Authentication error
o ENEEDAUTH 81 Need authenticator

Inputs

rxsocket_english_guide 14 / 64

none

Result
error - the current error code

See
ErrorString()

1.18 RxSocket Functions - ErrorString

ErrorString - returns the string associated with an error code.

Synopsis
errorString=ErrorString(code)
[code/N]

Function
Returns the error string associated with ’code’.
If ’code’ is omitted, it is assumed to be the current
error code.

Inputs
code - the id of the error

Result
errorString - the string associated with ’code’

See
errno()

1.19 RxSocket Functions - FreeLineRead

FreeLineRead - free a LineRead

Synopsis
call FreeLineRead(socketfd)
<socketfd/N>

Function
Free all resources allocated with InitLineRead().

Inputs
socketfd - the socket associated with the LineRead to free

See
InitLineRead() LineRead()

1.20 RxSocket Functions - GetHost

rxsocket_english_guide 15 / 64

GetHost - returns host information

Synopsis
res=GetHost(host,name)
<host/V>,<name>

Function
Fills ’host’ with a hostent data, host given as addr or name.

HostErrorno() can be used to get the host-lookup
error code on failure.

Inputs
host - an ARexx stem name
name - a host name or a dotted address to find information about

Result
res - an ARexx boolean

See
GetHostByAddr() GetHostByName()

1.21 RxSocket Functions - GetHostByAddr

GetHostByAddr - returns host information

Synopsis
res=GetHostByAddr(host,addr)
<host/V>,<addr/N>

Function
Fills ’host’ with a hostent data, host given as
dotted address.

HostErrorno() can be used to get the host-lookup
error code on failure.

Inputs
host - an ARexx stem name
addr - a dotted address to find information about

Result
res - an ARexx boolean

See
GetHost() GetHostByName()

1.22 RxSocket Functions - GetHostByName

GetHostByName - returns host information

rxsocket_english_guide 16 / 64

Synopsis
res=GetHostByName(host,hostName)
<host/V>,<hostName>

Function
Fills ’host’ with a hostent, host given as name.

HostErrorno() can be used to get the host-lookup
error code on failure.

Inputs
host - an ARexx stem name
hostName - a host to find information about

Result
res - an ARexx boolean

See
GetHost() GetHostByAddr()

1.23 RxSocket Functions - GetHostID

GetHostID - gets the address of this host

Synopsis
id=GetHostID()
-

Function
Returns the unique identifier of current host.

Inputs
none

Result
id - address of this host

Note
This function is deprecated:

o to get the ip of an interface use IoctlSocket()
o to get the ip of the interface a named socket is

using use GetSocketName()

1.24 RxSocket Functions - GetHostName

GetHostName - gets this host name

Synopsis
res=GetHostName(name)
<name/S>

Function

rxsocket_english_guide 17 / 64

Fills ’name’ with the current host name.

Inputs
name - an ARexx var name, the function will set

with this host name

Result
res - an ARexx boolean.

Note
This function is deprecated:

o to get the ip of an interface use IoctlSocket()
o to get the ip of the interface a named socket is

using use GetSocketName()

1.25 RxSocket Functions - GetPeerName

GetPeerName - gets connected peer information

Synopsis
res=GetPeerName(socketfd,remote)
<socketfd/N>,<remote/V>

Function
Fills ’remote’ with a sockaddr_in of the peer
connected to the socket.

The function may fails if:

o [EBADF] - ’socketfd’ is invalid.

o [ENOTCONN] - The socket is not connected.

o [ENOBUFS] - Insufficient resources were available
in the system to perform the operation.

Inputs
socketfd - the socket
remote - an ARexx stem name, the function will set

as a sockaddr_in

Result
res - an ARexx boolean

Note
The function does not work with TermiteTCP.

See
errno()

1.26 RxSocket Functions - GetProtoByName

rxsocket_english_guide 18 / 64

GetProtoByName - returns protocol info

Synopsis
res=GetProtoByName(stem,protoName)
<stem/V>,<protoName>

Function
Fills ’stem’ with the protoent of
the proto given as name.

Inputs
stem - an ARexx stem name, the function will set

as protoent
protoName - the name of the protocol (lower case)

Result
res - an ARexx boolean

See
GetProtoByNumber()

1.27 RxSocket Functions - GetProtoByNumber

GetProtoByNumber - returns protocol info

Synopsis
res=GetProtoByNumber(stem,protoID)
<stem/V>,<protoID/N>

Function
Fills ’stem’ with the protoent of
the proto given as number.

Inputs
stem - an ARexx stem name, the function will set

as protoent
protoID - the id of the protocol

Result
res - an ARexx boolean

See
GetProtoByName()

1.28 RxSocket Functions - GetServByName

GetServByName - returns service info

Synopsis
res=GetServByName(stem,serviceName,protoName)
<stem/V>,<serviceName>,[protoName]

rxsocket_english_guide 19 / 64

Function
Fills ’stem’ with the servent of
the service given as name and protocol.

Inputs
stem - an ARexx stem name, the function will

set as protoent
serviceName - the name of the service
protoName - the name of a protocol (lower case)

Result
res - an ARexx boolean

Note
The function does not work with TermiteTCP.

See
GetServByPort()

1.29 RxSocket Functions - GetServByPort

GetServByPort - returns service info

Synopsis
res=GetServByPort(stem,portNumber,protoName)
<stem/V>,<potNumber/N>,[protoName]

Function
Fills ’stem’ with the servent of
the service given as port number and protocol.

Inputs
stem - an ARexx stem name, the function will set

as protoent
portNumber - the number of the port
protoName - the name of a protocol (lower case)

Result
res - an ARexx boolean

Note
The function does not work with TermiteTCP.

See
GetServByName()

1.30 RxSocket Functions - GetSocketBase

GetSocketBase - returns global bsdsocket.library parameters

Synopsis

rxsocket_english_guide 20 / 64

res=GetSocketBase(stem)
<stem/V>

Function
Gets some global parameters in the bsdsocket.library base.

The original bsdsocket.library function is SocketBaseTagList,
which is used to get/set; here we split it in 2 as GetSocketBase()
and SetSocketBase().

In ’stem’ you must set the fields you want to get.
The function will fill the fields you set with their current
value.

The parameters that may be read are:

o DTABLESIZE size of the socket descriptor table.
The default is 64.

o BREAKMASK exec signal mask which corresponds to the
EINTR signal (Ctrl-C), typically 2**12.

o SIGEVENTMASK Exec signal mask for asynchronous event
notification (see GetSocketEvents()).

o SIGURGMASK Exec signal mask for out-of-band data.

Inputs
stem - an ARexx stem name

Result
res - 0 for success, -1 for failure

See
GetSocketBaseSingle() errno()

1.31 RxSocket Functions - GetSocketBaseSingle

GetSocketBaseSingle - returns one global bsdsocket.library
parameter

Synopsis
res=GetSocketBaseSingle(opt,var)
<opt>,<var/V>

Function
Just as GetSocketBase() but get a single option.
’var’ is where the value will be written.

Inputs
opt - the parameter to read
var - an ARexx var name

Result
res - 0 for success, -1 for failure

rxsocket_english_guide 21 / 64

See
GetSocketBase() errno()

1.32 RxSocket Functions - GetSocketEvents

GetSocketEvents - returns next async event.

Synopsis
res=GetSocketEvents(stem)
<stem/V>

Function

Returns the next asynchronous events on sockets an remove it from
the internal queue. The socket number for which the event occurred
is returned.

Application are notified of async event through the event signal
with code SIGEVENTMASK. This may be specified with a call to
SetSocketBase().

Several different events may occur on sockets. To enable reporting
of a specific event for a socket, use SetSockOpt() with EVENTMASK.

The function sets the fields:
o ACCEPT
o CLOSE
o CONNECT
o ERROR
o OOB
o READ
o WRITE

of ’stem’ with an ARexx boolean.

The fields represent the events that may occur:

o ACCEPT
A new connection is waiting to be accepted. The kernel keeps
track of each pending connection. If more than one
connection is pending then the kernel immediately generates
a new ACCEPT event until all pending connections are
accounted for.

o CLOSE
The connection was closed. If it was closed due to an error
then the ERROR event is set as well.

o CONNECT
A pending connection has been established. This event is an
indication that a non-blocking connect() has been completed.

o ERROR
An asynchronous error has occurred.

rxsocket_english_guide 22 / 64

o OOB
New out-of-band data is available for reading.

o READ
New data is available for reading.

o WRITE
The socket is able to accept data for writing again without
blocking (only for non-blocking sockets).

Inputs
stem - an ARexx stem name

Result
res - the socket interested in the event or -1 if no socket

Note
errno() can’t be used to get info on failure.

1.33 RxSocket Functions - GetSocketName

GetSocketName - returns socket local name

Synopsis
res=GetSocketName(socketfd,stem)
<socketfd/N>,<stem/V>

Function
Fills ’stem’ as a sockaddr_in of the
current name of the socket.

The function may fail if:

o [EBADF] - socketfd is invalid.

o [ENOBUFS] - Insufficient resources were available in
the system to perform the operation.

Inputs
socketfd - the socket to read the local name of
stem - an ARexx stem name

Result
res - 0 for success, -1 for failure

See
errno()

1.34 RxSocket Functions - GetSockOpt

GetSockOpt - returns socket parameters

rxsocket_english_guide 23 / 64

Synopsis
res=GetSockOpt(socketfd,level,opt,var)
<socketfd/N>,<level>,<opt>,<var/V>

Function
Fills ’var’ with the value of the option ’opt’ associated with
’socketfd’ at level ’level’.

’level’ is one of:
o SOCKET
o IP

Valid options for SOCKET are:

o DEBUG
enables debugging in the underlying protocol modules.

o REUSEADDR
A local address supplied in a bind() can be reused.

o REUSEPORT
A port specified in a bind() can be reused.
This option permits multiple instances of a program to each
receive UDP/IP multicast or broadcast datagrams destined for
the bound port.

o KEEPALIVE
Enables the periodic transmission of messages on a connected
socket. If the connected party fails to respond to these
messages, the connection is considered broken and processes
using the socket receive an error indication when attempting
to send data.

o DONTROUTE
Indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the
appropriate network interface according to the network
portion of the destination address.

o LINGER
Controls the action taken when unsent messages are queued on
socket and a close() is performed. If the socket promises
reliable delivery of data and LINGER is set, the system will
block the process on the close attempt until it is able to
transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger
interval, is specified in seconds in the setsockopt() call
when LINGER is requested). If LINGER is disabled and a close
is issued, the system will process the close in a manner
that allows the process to continue as quickly as possible.
The fields

o ONOFF
o LINGER

of ’var’ are set.

o BROADCAST
Requests permission to send broadcast datagrams on the

rxsocket_english_guide 24 / 64

socket.

o OOBINLINE
With protocols that support out-of-band data, the option
requests that out-of-band data be placed in the normal data
input queue as received; it will then be accessible with
recv calls without the OOB flag. Some protocols always
behave as if this option is set.

o SNDBUF RCVBUF
They are options to adjust the normal buffer sizes allocated
for output and input buffers, respectively. The buffer size
may be increased for high-volume connections, or may be
decreased to limit the possible backlog of incoming data.
The system places an absolute limit on these values.

o SNDLOWAT
It is an option to set the minimum count for output
operations. Most output operations process all of the data
supplied by the call, delivering data to the protocol for
transmission and blocking as necessary for flow control.
Nonblocking output operations will process as much data as
permitted subject to flow control without blocking, but will
process no data if flow control does not allow the smaller
of the low water mark value or the entire request to be
processed. A WaitSelect() operation testing the ability to
write to a socket will return true only if the low water
mark amount could be processed. The default value for
SNDLOWAT is set to a convenient size for network efficiency,
often 1024.

o RCVLOWAT
It is an option to set the minimum count for input
operations. In general, receive calls will block until
any (non-zero) amount of data is received, then return
with the smaller of the amount available or the amount
requested. The default value for RCVLOWAT is 1.
If RCVLOWAT is set to a larger value, blocking receive
calls normally wait until they have received the smaller
of the low water mark value or the requested amount.
Receive calls may still return less than the low water mark
if an error occurs, a signal is caught, or the type of data
next in the receive queue is different than that returned.

o SNDTIMEO
It is an option to set a timeout value for output
operations. It accepts a struct timeval parameter with the
number of seconds and microseconds used to limit waits for
output operations to complete. If a send operation has
blocked for this much time, it returns with a partial count
or with the error [EWOULDBLOCK] if no data were sent.
This timer is restarted each time additional data are
delivered to the protocol, implying that the limit applies
to output portions ranging in size from the low water mark
to the high water mark for output.

o RCVTIMEO

rxsocket_english_guide 25 / 64

It is an option to set a timeout value for input operations.
It accepts a struct timeval parameter with the number of
seconds and microseconds used to limit waits for input
operations to complete. This timer is restarted each time
additional data are received by the protocol, and thus the
limit is in effect an inactivity timer. If a receive
operation has been blocked for this much time without
receiving additional data, it returns with a short count or
with the error [EWOULDBLOCK] if no data were received.

o TYPE
Returns the type of the socket, such as STREAM; it is useful
for servers that inherit sockets on startup.

o ERROR
Returns any pending error on the socket and clears the error
status. It may be used to check for asynchronous errors on
connected datagram sockets or for other asynchronous errors.

Valid options for IP are:

o HDRICL
the packets contain the IP header.

o IPOPTIONS
sets if the IP header contains IP options.

o TTL
time to live

o TOS
type of service

The function may fail if:
o [EBADF] - ’socketfd’ is invalid.
o [ENOPROTOOPT] - ’opt’ is unknown at ’level’.

Inputs
socketfd - the socket to read the parameter of
level - the level of ’opt’
opt - the option to read
stem - an ARexx var name, where to write the value of ’opt’

Result
res - 0 for success, -1 for failure

See
errno()

1.35 RxSocket Functions - help

help - returns RxSocket functions help strings

Synopsis
help=help(funName)

rxsocket_english_guide 26 / 64

<funName>

Function
Returns the arguments mask string of rxsocket.library
function ’funName’.

Inputs
funName - a RxSocket function name

Result
help - the help string associated with ’funName’

1.36 RxSocket Functions - HostErrorno

HostErrorno - returns current host-lookup error.

Synopsis
error=HostErrorno()
-

Function
Returns current host-lookup error, one of:

o HOST_NOT_FOUND 1
No such host is known.

o TRY_AGAIN 2
This is usually a temporary error and means that the local
server did not receive a response from an authoritative
server. A retry at some later time may succeed.

o NO_RECOVERY 3
Some unexpected server failure was encountered.
This is a non-recoverable error.

o NO_DATA 4
The requested name is valid but does not have an IP address;
this is not a temporary error. This means that the name is
known to the name server but there is no address associated
with this name. Another type of request to the name server
using this domain name will result in an answer.

Inputs
none

Result
error - the current host-lookup error

See
HostErrorString()

1.37 RxSocket Functions - HostErrorString

rxsocket_english_guide 27 / 64

HostErrorString - returns the string associated with an host-lookup
error code.

Synopsis
errorString=HostErrorString(code)
[code/N]

Function
Returns string associated with host-lookup error ’code’.

If ’code’ is omitted, it is assumed to be the current host-lookup
error code.

Inputs
code - a host-lookup error code

Result
errorString - the string associated with ’code’

See
HostErrorno()

1.38 RxSocket Functions - InetAddr

InetAddr - converts dotted to integer

Synopsis
inetAddr=InetAddr(addr)
<addr/N>

Function
Converts ’addr’ from dotted to integer.

The result is a STRING of decimal digits and NOT an ARexx number.

Inputs
addr - the dotted address to convert

Result
inetAddr - a string of decimal digits or -1 for failure

(it may fail iff ’addr’ is bad)

See
resolve()

1.39 RxSocket Functions - InetCksum

InetCksum - computes an internet checksum

Synopsis
cksum=InetCksum(data,len)

rxsocket_english_guide 28 / 64

<data>,[len/N]

Function
Computes an Internet checksum on ’data’ for ’len’ bytes.
If ’len’ is omitted, the checksum is computed on all ’data’.

The checksum is "the 16 bit one’s complement of the
one’s complement sum of all 16 bit words of ’data’
for ’len’ bytes"; if ’len’ is odd a padding byte is
added at the end of data.

Inputs
data - the data to compute the checksum on
len - len of ’data’

Result
cksum - the checksum

1.40 RxSocket Functions - InetNTOA

InetNTOA - converts from integer to dotted

Synopsis
addrString=InetNTOA(addr)
<addr>

Function
Converts ’addr’, a string of decimal digits, to dotted.

Inputs
addr - a string of decimal digits

Result
addrString - a dotted address

1.41 RxSocket Functions - InitLineRead

InitLineRead - init a LineRead

Synopsis
res = InitLineRead(socketfd,flag)
<socketfd/N>,[flag]

Function
Init a LineRead.

’flag’ is one of:
o NOTREQ

Newline terminated strings are returned unless
there is no newlines left in currently buffered
input. In this case remaining buffer is returned.

rxsocket_english_guide 29 / 64

o REQLF
If there is no newlines left in currently buffered
input the remaining input data is copied at the
start of buffer. Caller is informed that next
call will fill the buffer (and it may block).
Lines are always returned with newline at the end
unless the string is longer than whole buffer.

o REQNUL
Like REQLF, but remaining newline is removed.
Note here that length is one longer that actual
string length since line that has only one
newline at the end would return length as 0
which indicates string incomplete condition.

Inputs
socketfd - the socket associated with the LineRead to create
flag - control the line read

Result
res - 0 if the socket already had a LineRead, 1 otherwise

See
InitLineRead() LineRead()

1.42 RxSocket Functions - IoctlSocket

IoctlSocket - manipulates socket parameters or gets interface
attributes

The function has 3 different form:

1. IoctlSocket - sets socket attributes.

Synopsis
res = IoctlSocket(socketfd,attr,value)
<socketfd/N>,<attrs>,<value>

Function
Sets a socket attribute.

’attr’ is one of:

o FIOASYNC
Setting the value to 1 enables asynchronous I/O on the
socket. Setting the value to 0 disables asynchronous I/O
on the socket.

o FIONBIO
Setting the value to 1 sets the socket to non-blocking
I/O. Setting the value to 0 sets the socket to blocking
I/O.

Inputs
socketfd - the socket to set an attribute of

rxsocket_english_guide 30 / 64

attr - the attribute to set
value - the value of the attribute

Result
res - 0 for success, -1 for failure

Example
res = IoctlSocket(sock,"FIONBIO",1)

sets the socket non blocking

2. IoctlSocket - reads socket attributes.

Synopsis
res = IoctlSocket(socketfd,attr,var)
<socketfd/N>,<attr>,<var/V>

Function
Reads socket attributes.

’attr’ is on of:

o SIOCATMARK
The kernel sets the value pointed to to 1 if the read
pointer for the socket points to a mark in the data
stream, and to 0 if the read pointer for the socket does
not point to a mark.

o FIONREAD
The kernel sets the value pointed to to the number of
readable characters on the socket.

Inputs
socketfd - the socket to read an attribute of
attr - the attribute to read
var - an ARexx var name where to write the value

of the attribute

Result
res - 0 for success, -1 for failure

Example
res = IoctlSocket(s,"FIONREAD","A")

gets the bytes ready to be read and write it in A

3. IoctlSocket - Reads interface attributes.

Synopsis
res = IoctlSocket(socketfd,attr,name,var)
<socketfd/N>,<attr>,<if>,<var/V>

Function
Reads an interface attribute.

attr is one of:

rxsocket_english_guide 31 / 64

o SIOCGIFADDR
o SIOCGIFDSTADDR
o SIOCGIFBRDADDR
o SIOCGIFNETMASK
o SIOCGIFFLAGS
o SIOCGIFMETRIC
o SIOCGIFMTU
o SIOCGIFPHYS

Inputs
socketfd - an UDP socket
attr - the attribute to read
if - an interface name
var - an ARexx var name where to write the value

of the attribute

Result
res - 0 for success, -1 for failure

Example
res = IoctlSocket(s,"SIOCGIFADDR","mi0","A")

gets the IFAddr of mi0 (if it exists) and write it in A
as a dotted addr.

The function may fail if:

o [EBADF] - ’socketfd’ is invalid.

o [EINVAL] - Request is not valid.

Note
I didn’t want to let user set any interface attributes.
I think this is dangerous. Anyway it might change.

See
errno()

1.43 RxSocket Functions - IsDotAddr

IsDotAddr - checks a dotted address

Synopsis
res=IsDotAddr(addr)
<addr>

Function
Checks if ’addr’ is a "good dotted internet address".

Inputs
addr - the dotted address to check

Result
res - an ARexx boolean

rxsocket_english_guide 32 / 64

1.44 RxSocket Functions - IsLibON

IsLibON - returns the running internet stack

Synopsis
res=IsLibON(name)
[name]

Function
Tests on what stack RxSocket is working on
or if a library is present.

’name’ is a string made of one or more of the following words,
separated by space(s):

o MIAMI running on Miami
o AMITCP running on AmiTCP (~"MIAMI TTCP")
o TTCP running on TermiteTCP
o USERGROUP a usergroup.library is present
o GENESIS Genesis is installed

If no argument is supplied, the function returns a string describing
the stack in use. If no stack is running an empty string is
returned.

Inputs
name - the name of the stack to check, see above

Result
res - an ARexx boolean or the stack running

Nota
Genesis is tested if no stack is running.

1.45 RxSocket Functions - IsOnSocks

IsOnSocks - checks if bsdsocket.library is running under a socks

Synopsis
res=IsOnSocks(wrapper)
[wrapper]

Function
Tests if the stack is running under a socks, e.g. you set a socks
in Miami socks. It works with Miami and Genesis socks wrappers with
no argument.

It flushes memory and searches for the wrapper in ExecBase library
list.

Inputs
wrapper - the name of the socks wrapper

Result

rxsocket_english_guide 33 / 64

res - an ARexx boolean.

1.46 RxSocket Functions - IsUp

IsUp - checks if an interface is up

Synopsis
res=IsUp(if)
<if>

Function
Checks if an interface is up.

Inputs
if - an interface name

Result
res - an integer number:

o -1 the specified interface doesn’t exist
o 0 the interface is down
o 1 the interface is up

See
IoctlSocket()

1.47 RxSocket Functions - IsSocket

IsSocket - checks a socketfd

Synopsis
res=IsSocket(socketfd)
<socketfd/N>

Function
Checks if ’socketfd’ is a valid socket descriptor.

Inputs
socketfd - the socketfd to check

Result
res - an ARexx boolean.

See
LastSocket() Passing sockets

1.48 RxSocket Functions - LastSocket

LastSocket - returns the last socketfd

Synopsis

rxsocket_english_guide 34 / 64

socketfd=LastSocket()
--

Function
Returns the last socketfd active in the macro, or -1 if none.

This function is useful at a beginning of a macro that is supposed
to be started by RxsCall() or inetd, to check if it has a socket
already opened.

Inputs
none

Result
socketfd - -1 no socket active, >=0 the last socketfd

See
IsSocket() Passing sockets

1.49 RxSocket Functions - listen

listen - instructs RxSocket to accept connections

Synopsis
res=listen(socketfd,backlog)
<socketfd/N>,<backlog/N>

Function
To accept connections, a socket is first created with socket(),
a willingness to accept incoming connections and a queue limit
for incoming connections are specified with listen(), and then
the connections are accepted with accept().
The listen() call applies only to sockets of type STREAM or
SEQPACKET.

’backlog’ is the max number of connections accepted.

The function may fail if:

o [EBADF] - ’socketfd’ is invalid.

o [EOPNOTSUPP] - The socket is not of a type that supports
the operation listen().

Inputs
socketfd - the socket
backlog - max number of connections

Result
res - 0 for success, -1 for failure

See
accept() bind() errno()

rxsocket_english_guide 35 / 64

1.50 RxSocket Functions - LineRead

LineRead - reads a line from a LineRead

Synopsis
res=LineRead(socketfd,stem)
<socketfd/N>,<stem/V>

Function
Reads a line from a LineRead. Up to RxSocket 14.5, it
was very difficult to read a line from a connected socket.
Now it is simple with the LineRead mechanism. What you have
to do is to associate a LineRead to a socket via InitLineRead().
It will create an internal buffer where to store partial results.
The size of the buffer is 1024, so just up to 1024 max long line
can be read. To signal a buffer overflow, the var RC is set to an
ARexx boolean. After you are done, the line read maybe be freed
via FreeLineRead().

If the LineRead was not, at this function first call
is is created as REQLF,

The best way to use a LineRead is:

call InitLineRead(s)

sel.read.0=s
do forever

res = WaitSelect("sel")
if res<0 then exit

/* no read event on s */
if ~sel.0.read then iterate

res = LineRead(s,"Buf")
/* res=0 just after select() means EOF */
if res=0 then exit
do while res>0

call writech("STDOUT",buf)
res = LineRead(s,"Buf")

end
if res<0 then exit /* error on recv */

end

Inputs
socketfd - the socket to associate to a LineRead
var/V - where to write the buffer

Result
res - an integer:

<0 means error on recv()
0 means empty buffer, WaitSelect() again
>0 means a line is present

rxsocket_english_guide 36 / 64

See
InitLineRead() LineRead()

1.51 RxSocket Functions - NextRxsReleased

NextRxsReleased - returns next released socket key

Synopsis
key=NextRxsReleased()
-

Function

Supplies the next socket released in a macro called via RxsCall().

The functions returns a key to use with ObtainSocket().
If there are no (more) sockets to get, key is null().

Inputs
none

Result
key - a key to use with ObtainSocket() or null()

Example
call RxsCall(fun,,"OBTAIN")
key=NextRxsReleased()
do i=0 while key~=null()

s.i=ObtainSocket(key)
end

See
RxsCall() ObtainSocket() Passing sockets

1.52 RxSocket Functions - ObtainSocket

ObtainSocket - obtains a released socket

Synopsis
sockfd=ObtainSocket(key,family,type,protocol)
<key>,[family],[type[,[protocol]

Function
The function is needed when you want to pass a socket from a macro
to another. It obtains a previously released socket.
’key’ is the key returned by ReleaseSocket(), ReleaseCopyOfSocket()
or NextRxsReleased().

The way used to handle a safe sockets release-obtain is:

o when a socket is released it is still linked in a
list that belongs to the macro where it was created.

rxsocket_english_guide 37 / 64

o if a released socket is not obtained it is freed at the
exit of the macro where it was created;

o if a release socket was obtained with ObtainSocket()
it belongs to the environment of the macro where it
was obtained;

o if ObtainSocket(), fails for any reasons, the socket is
still in the macro where it was created;

o when a socket is released, it can’t be used before it
is obtained.

o key is the result of ReleaseSocket(), ReleaseCopyOfSocket()
or NextRxsReleased () and it consists of a packed char of
length 8 on success or 4 on failure.

Key can be tested with a comparison to null() as we usually do
with messages from an ARexx port. Keys passed to ObtainSocket()
are checked by the function to test their coherence, anyway,
don’t play with them.

Usually ReleaseSocket() is used in a "concurrent service" after
a accept() and the key is given as argument of a macro that must
handle the new connection. The first thing that macro should do
is to obtain the socket with a call to ObtainSocket() and tell
the "parent macro" about the result of the operation (e.g. with
an ARexx message on an ARexx port).

If you specify one or more of family, type and proto the socket
is obtained only if it matches them.

Inputs
key - the key returned by ReleaseCopyOfSocket(),

ReleaseSocket()or NextRxsReleased()
family - the family of the socket
type - the type of the socket
protocol - the protocol of the socket

Result
res - -1 for failure or the socketfd of the obtained socket.

See
Passing sockets

1.53 RxSocket Functions - OpenConnection

OpenConnection - opens a connection or binds a socket

Synopsis
sockfd=OpenConnection(proto,localPort,host,remotePort,stem)
<proto>,<localPort>,[host],[remoteport],[stem/V]

Function

rxsocket_english_guide 38 / 64

The function has different forms:

Terms:
o ’proto’ can be the string "tcp" or "udp"
o ’port1’ and ’port2’ are service names or port numbers;

if and only if they are service names, they are
resolved with getserbyname()

1. Synopsis
res=OpenConenction(proto,port1)
<proto>,<port>

Function
Creates a socket and binds it:

o resolves ’port1’ if it is a service name
o creates a socket
o binds the socket to ’port1’

Inputs
proto - the protocol to use: "tcp" or "udp"
port1 - a service name or a port number

2. Synopsis
res=OpenConnection(proto,port1,hostName)
<proto>,<port1>,<hostName>

Function
Creates a socket and connect it:

o resolves ’port1’ if it is a service name
o resolves ’hostName’
o creates a socket
o connects the socket to <hostName:port1>

Inputs
proto - the protocol to use: "tcp" or "udp"
port1 - a service name or a port number
hostName - the host to connect the socket to

3. Synopsis
res=OpenConnection(proto,port1,hostName,port2)
<proto>,<port1>,<hostName>,<port2>

Function
Creates a socket, binds and connects it:

o resolves ’port1’ if it is a service name
o resolves ’port2’ if it is a service name
o resolves ’hostName’
o creates a socket
o binds the socket to ’port1’
o connects the socket to <hostName:port2>

Inputs
proto - the protocol to use: "tcp" or "udp"
port1 - a service name or a port number to bind the

rxsocket_english_guide 39 / 64

socket to
port2 - a service name or a port number to connect

the socket to
hostName - the host to connect the socket to

If it is supplied and if the socket is connected, ’stem’ is filled
as socketaddr_in.

Note
Consider the differences between connecting a socket of type TCP or UDP.

Returns:
res - an integer:

o -5 socket can’t be bound, e.g. port already bound
o -4 ’port2’ not resolved
o -3 ’port1’ not resolved
o -2 host-lookup failure
o -1 bsdsocket.library error
o >=0 socketfd

See
errno() HostErrorno()

1.54 RxSocket Functions - OpenRxsCon

OpenRxsCon - open the RxSOcket console

Synopsis
res=OpenRxsCon()
-

Function
Tries to open the global RxSocket console.

The global RxSocket console ("console") is a console to be used
for debugging porpouses.

It’s default description is
CON:0/10/280/120/RXSocket Console/WAIT/AUTO/CLOSE

but if the ENV:RXSCON is found, its content is used.

Once the console is opened, rxsocket.library CANNOT be flushed
until it is closed via CloseRxsCon() .

Inputs
none

Result
res - an ARexx boolean

See
CloseRxsCon() WriteRxsCon()

rxsocket_english_guide 40 / 64

1.55 RxSocket Functions - QueryInterfaces

QueryInterfaces - returns interfaces parameters

Synopsis
res = QueryInterfaces(stem)
<stem/V>

Function
Reads the interface list and writes interfaces attributes in ’stem’.
Returns the number of the found interfaces, so 0 means none, or -1
that means that the function was not able to create the DGRAM
socket needed for the query.

If ’res’ is positive, interface attributes are written in
stem.i,...,stem.j where j=res-1, e.g.

The attributes are:
o Name
o Family the family of the interface as integer
o AFAddr the address of this interface
o PPaddr
o BAddr
o NMask
o Metric
o MTU
o IFWire
o Flags the decimal value of flags, and also:

* up

* broadcast

* debug

* loopback

* pointtopoint

* notrailers

* running

* noarp

* promisc

* allmulti

* oactive

* simplex

* link0

* link1

* link2

* multicast

Inputs
stem - an ARexx stem name

Result
res - an integer:

o <0 bsdsocket.library error
o 0 no interface found
o >0 number of the found interfaces

Example
res = QueryInterface("INTERFACES")

rxsocket_english_guide 41 / 64

if res>=0 then do
say "Found" res "interface(s)"
do i=0 to res-1

say interfaces.i.name
end

end
else say "not able to find any interface"

See
IoctlSocket() errno()

1.56 RxSocket Functions - recv

recv - receives data from a connected socket

Synopsis
res=recv(socketfd,buff,len,flags)
<socketfd/N>,<buff/S>,[len/N],[flags]

Function
Receives data from a connected socket.

It receives max ’len’ bytes and fills ’buff’ with the data
received.

If ’len’ is omitted it is assumed to be 256.

If no messages are available, recv() waits for a message to
arrive, unless the socket is nonblocking (see IoctlSocket()) in
which case the value -1 is returned and the function Errno()
returns [EAGAIN]. The receive calls normally return any data
available, up to the requested amount, rather than waiting for
receipt of the full amount requested; this behavior is affected by
the socket-level options RCVLOWAT and RCVTIMEO described in
GetSockOpt()

Waitselect() may be used to determine when more data
arrive.

’flags’ is one or more of:

o OOB
requests receipt of out-of-band data that would not be
received in the normal data stream. Some protocols place
expedited data at the head of the normal data queue, and
thus this flag cannot be used with such protocols.

o PEEK
causes the receive operation to return data from the
beginning of the receive queue without removing that data
from the queue. Thus, a subsequent receive call will return
the same data.

o WAITALL
requests that the operation block until the full request is

rxsocket_english_guide 42 / 64

satisfied. However, the call may still return less data than
requested if a signal is caught, an error or disconnect
occurs, or the next data to be received is of a different
type than that returned.

The function may fail if:

o [EBADF] - socketfd is invalid.

o [ENOTCONN] - The socket is not connected.

o [EAGAIN] - The socket is marked non-blocking, and the
receive operation would block, or a receive
timeout had been set, and the timeout expired
before data were received.

o [EINTR] - The receive was interrupted by delivery of a
signal before any data were available.

Inputs
socketfd - the socket to receive data from
buff - an ARexx var name where to write the received data
len - number of bytes to receive
flags - see above

Result
res - an integer:

o <0 error
o 0 eof
o >0 number of bytes received

See
RecvFrom() RecvFromUntil() RecvLine() errno()

1.57 RxSocket Functions - RecvFrom

RecvFrom - receives data from a socket

Synopsis
res=RecvFrom(socketfd,buff,len,flags,remote)
<socketfd/N>,<buff/S>,[len/N],[flags],[remote/V]

Function
Receives data from a socket.

If ’remote’ is supplied and the socket is not connection oriented,
it will be set as a sockaddr_in of the source address.

See recv() for a full description.

Inputs
socketfd - the socket to receive data from
buff - an ARexx var name where to write the received data
len - number of bytes to receive
flags - flags

rxsocket_english_guide 43 / 64

remote - an ARexx stem name

Result
res - an integer:

o <0 error
o 0 eof
o >0 number of bytes received

See
recv() RecvFromUntil() RecvLine() errno()

1.58 RxSocket Functions - RecvFromUntil

RecvFromUntil - receives data from a socket until a string is
reached

Synopsis
res=RecvFromUntil(socketfd,buff,len,stopData,flags,remote)
<socketfd/N>,<buff/S>,<len/N>,<stopData>,[flags],[remote/V]

Function
Receives data from a socket until ’stopData’ occurs.

The function waits for a string to occur and then returns the data
received till that string (but without that string). Next receive
call will return data AFTER the stop string.

If ’remote’ is supplied and the socket is not connection oriented,
it will be set as a sockaddr_in of the source address.

See recv() for a full description.

Inputs
socketfd - the socket to receive data from
buff - an ARexx var name where to write the received data
len - number of bytes to receive
stopData - string to wait
flags - see above
remote - an ARexx stem name

Result
res - an integer:

o <0 error
o 0 eof
o >0 number of bytes received

See
recv() RecvFrom() RecvLine() errno()

Note
This function is deprecated. To read a line, please use LineRead().

rxsocket_english_guide 44 / 64

1.59 RxSocket Functions - RecvLine

RecvLine - receives a line from a socket

Synopsis
res=RecvLine(socketfd,buff,len,flags,remote)
<socketfd/N>,<buff/S>,[len/N],[flags],[remote/V]

Function
Receives a line from a socket.
If remote is supplied and the socket is not connection oriented,
it will be set as a sockaddr_in of the source address.

See recv() for a full description.

Inputs
socketfd - the socket to receive data from
buff - an ARexx var name where to write the received data
len - number of bytes to receive
flags - flags
remote - an ARexx stem name

Result
res - an integer:

o <0 error
o 0 eof
o >0 number of bytes received

Note
This is really a bad non buffered readline. Don’t use it so much!
This function doesn’t work on MiamiDx 0.9. It was patched, so that
if no remote is given, it uses recv() rather then recvfrom().
If you are using this function with a STREAM socket don’t supply
’remote’.

See
recv() RecvFrom() RecvFromUntil() errno()

Note
This function is deprecated. Please use LineRead().

1.60 RxSocket Functions - ReleaseCopyOfSocket

ReleaseCopyOfSocket - releases a copy of a socket

Synopsis
key=ReleaseCopyOfSocket(socketfd)
<socketfd/N>

Function
Releases a copy of a socket to the public.
Returns a key string to be used with ObtainSocket().

rxsocket_english_guide 45 / 64

Inputs
socketfd - the socket to releases

Result
key - a key to use with ObtainSocket() or null()

See
ObtainSocket() ReleaseSocket Passing sockets

1.61 RxSocket Functions - ReleaseSocket

ReleaseSocket - releases a socket

Synopsis
key=ReleaseSocket(socketfd)
<socketfd/N>

Function
Releases a socket to the public.
Returns a key string to be used with ObtainSocket().

Inputs
socketfd - the socket to releases

Result
key - a key to use with ObtainSocket() or null()

See
ObtainSocket() ReleaseCopyOfSocket Passing sockets

1.62 RxSocket Functions - resolve

resolve - resolves a name

Synopsis
addr=resolve(host)
<host>

Function
Converts ’host’ to dotted form.

The functions first tries inet_addr() and then GetHosByName()

Inputs
host - the name to resolve

Result
addr - the dotted address of host, or -1 if failure

See
HostErrorno()

rxsocket_english_guide 46 / 64

1.63 RxSocket Functions - RxsCall

RxsCall - call an ARexx macro

Synopsis
res = RxsCall(macro,socketfd,flags,host,ext,input,output)
<macro>,[socketfd/N],[flags],[host],[ext],[input],[output]

Function
Starts a macro and creates a socket by releasing (a copy of)
socketfd.

The function LastSocket() returns the last socketfd created in the
macro, so if the macro was started by this function, LastSocket()
always returns a value>=0.

If ’socketfd’ is negative or it is omitted, no socket is passed.

That means the function may be used for general macro
calling.

Local vars, e.g. created bye rmh.library/SetVar() are passed to
the child macro.

Let’s name the macro in which this function is used "parent" and
the macro called "child".

’flags’ is one or more of:

o SYNC
usually the child is called async; if you specify this flag,
the parent waits for the child to end; note that other flags
may force it;

o STRING
child is a macro-string rather than a macro file name;

o RESULT
a result is expected from child; SYNC is forced;

o OBTAIN
every socket released in child, but not obtained at child
exit, is passed to parent, that can obtain it via
NextRxsReleased() ; this is the suggested way to share
sockets among macros;

o NOERR
if an error occurs in child, it is usually reported to the
parent; with this flag, you will not be bored by errors
occurred in child, and if an error occurred, it is written
in RC; note that this has sense only if SYNC was specified.

o NOIO
sets noio flags in child macro.

o NTCOPY

rxsocket_english_guide 47 / 64

releases socket without copying it. Please, use this
only if you are sure you are runnning with Miami; Genesis
fails to release sockets obtained via GetSocketEvent().
This limits the use of this options only to non-async
sockets.

o OPENCON
if child has no stdin/stdout, forces the global RxSocket
console to be opened, so it will be the stdin/stdout of the
macro

o PROC
the result of the function id the id of the macro
it has sense only if child is called async, otherwise
the process does’nt exist when the function returns
the process id is returned as packed char

o NOREPORT
don’t bother me with requester about child macro errors

o ERR
’output’ is also the stderr

Inputs
macro - the macro to call
socketfd - socket to pass to ’macro’
flags - see above
host - default host for the macro,

otherwise inherit from calling macro
ext - default file extension for the macro,

otherwise inherit from calling macro
input - stdin for the macro, otherwise it is:

o if SYNC
. STDIN logical file of calling macro
. stdin of calling macro
. RxSocket log file
. NIL:

o if not SYNC
. RxSocket log file
. NIL:

output - stdout for the macro, otherwise it is:

o if SYNC
. STDOUT logical file of calling macro
. stdout of calling macro
. RxSocket log file
. CONSOLE:

o if not SYNC
. RxSocket log file
. CONSOLE:

Result:

rxsocket_english_guide 48 / 64

res - an integer (but see PROC):
o a result from child if RESULT was specified
o 0 if child is called async

Note
If NTCOPY is suppleid, socketfd is duplicate, so if parent
does not need it it should immediately be closed, especially
if it is of type STREAM.

The function write in RC the secundary result returned from
child. Obviously, it has sense only if child is called sync.
Note that, if RC is 1, child couldn’t be found.

1.64 RxSocket Functions - send

send - sends data to a connected socket

Synopsis
res=send(socketfd,data,flags)
<socketfd/N>,<data>,[flags]

Function
Sends data to a connected socket.

If the message is too long to pass atomically through the
underlying protocol, the error [EMSGSIZE] is returned, and
the message is not transmitted.

No indication of failure to deliver is implicit in a send().
Locally detected errors are indicated by a return value of -1.

If no messages space is available at the socket to hold the
message to be transmitted, then send() normally blocks, unless
the socket has been placed in non-blocking I/O mode.
WaitSelect() may be used to determine when it is possible to
send more data.

Flags is one or more of:

o OOB
is used to send ‘‘out-of-band’’ data on sockets that support
this notion (e.g. STREAM); the underlying protocol must
also support ‘‘out-of-band’’ data.

o DONTROUTE
is usually used only by diagnostic or routing programs.

The function may fail if:

o [EBADF] - socketfd is invalid

o [EMSGSIZE] - The socket requires that message be sent
atomically, and the size of the message
to be sent made this impossible.

rxsocket_english_guide 49 / 64

o [EAGAIN] - The socket is marked non-blocking and the
requested operation would block.

o [ENOBUFS] - The system was unable to allocate an internal
buffer. The operation may succeed when buffers
become available.

o [ENOBUFS] - The output queue for a network interface was
full. This generally indicates that the
interface has stopped sending, but may
be caused by transient congestion.

Inputs
socketfd - the socket
data - the data to send
flags - see above

Result
res - an integer

o <0 error
o >=0 number of bytes sent

See
SendTo() errno()

1.65 RxSocket Functions - SendTo

SendTo - sends data to a socket

Synopsis
res=SendTo(socketfd,data,flags,remote)
<socketfd/N>,<data>,[flags],[remote/V]

Function
Sends data to a socket.

’remote’ must be set with the address of the target.

See send() for a full description.

Inputs
socketfd - the socket
data - the data to send
flags - see above
remote - the address of the target

Result
res - an integer

o <0 error
o >=0 number of bytes sent

See
send() errno()

rxsocket_english_guide 50 / 64

1.66 RxSocket Functions - SetRxSocketOpt

SetRxSocketOpt - sets RxSocket options

Synopsis
call SetRxSocketOpt(options)
<options>

Function
Sets local parameters in rxsocket.library

options is one or more of:

o HALT
every blocking functions, can be broken via "hi" e.g.
connect() will be broken by "hi" HALT re-sets this option ON
again, after a NOHALT

o NOHALT
set HALT by "hi" OFF

Inputs
options - the options to set

Result
none

1.67 RxSocket Functions - SetSocketBase

SetSocketBase - sets bsdsocket.library options

Synopsis
res=SetSocketBase(stem)
<stem/V>

Function
Sets parameters in the bsdsocket.library base.

The original bdsocket.library function is SocketBaseTagList, which
is use to get/set; here we split it in 2 as GetSocketBase() and
SetSocketBase().

You must set the field of ’stem’ with the value you want to set,
then call the function.

The fields are:

o DTABLESIZE
size of the socket descriptor table.
The default is 64.

o BREAKMASK
exec signal mask which corresponds to the [EINTR]
signal (Ctrl-C), typically 2**12.

rxsocket_english_guide 51 / 64

o SIGEVENTMASK
Exec signal mask for asynchronous event notification
(see GetSocketEvents()).

o SIGURGMASK
Exec signal mask for out-of-band data.

Inputs
stem - an ARexx stem name

Result
res - 0 for success, -1 for failure

See
SetSocketBaseSingle() errno()

1.68 RxSocket Functions - SetSocketBaseSingle

SetSocketBaseSingle - sets a bsdsocket.library option

Synopsis
res=SetSocketBaseSingle(opt,value)
<opt>,<value/N>

Function
Just as SetSocketBase() but sets only one opt.

’opt’ is the option name

’value’ is the value to set, only numeric for now.

Inputs
opt - the option to set
value - the value

Result
res - 0 for success, -1 for failure

See
SetSocketBase() errno()

1.69 RxSocket Functions - SetSocketSignals

SetSocketSignals - sets socket signals

Synopsis
call SetSocketSignals(intrMask,ioMask,urgMask)
[intrMask/N],[ioMask/N],[urgMask/N]

Function
Tells bsdsocket.library which signals to use for

rxsocket_english_guide 52 / 64

SIGINT, SIGIO and SIGURG.

Inputs
intrMask - the signal to use for Ctrl-C
ioMask - the signal to use for event notifications
urgMask - the signal to use for out-of-band data

Result
none

Note
Please, use SetSocketBase() instead.

1.70 RxSocket Functions - SetSockOpt

SetSockOpt - sets socket parameters

Synopsis
res=SetSockOpt(socketfd,level,opt,value,value2)
<socketfd/N>,<level>,<opt>,<value>,[value2/N]

Function
Sets the option ’opt’ associated with ’socketfd’ at level ’level’
to ’value’.

’level’ is one of:
o SOCKET
o IP
o TCP

Valid options for SOCKET are:

o DEBUG/N
enables debugging in the underlying protocol modules.

o REUSEADDR/N
A local address supplied in a bind() can be reused.

o REUSEPORT/N
A port specified in a bind() can be reused.
This option permits multiple instances of a program to each
receive UDP/IP multicast or broadcast datagrams destined for
the bound port.

o KEEPALIVE/N
Enables the periodic transmission of messages on a connected
socket. If the connected party fails to respond to these
messages, the connection is considered broken and processes
using the socket receive an error indication when attempting
to send data.

o DONTROUTE/N
Indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the
appropriate network interface according to the network

rxsocket_english_guide 53 / 64

portion of the destination address.

o LINGER/N
Controls the action taken when unsent messages are queued on
socket and a close() is performed. If the socket promises
reliable delivery of data and LINGER is set, the system will
block the process on the close attempt until it is able to
transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger
interval, is specified in seconds in the setsockopt() call
when LINGER is requested). If LINGER is disabled and a close
is issued, the system will process the close in a manner
that allows the process to continue as quickly as possible.
’value2’ may be passes - default 0.

o BROADCAST/N
Requests permission to send broadcast datagrams on the
socket.

o OOBINLINE/N
With protocols that support out-of-band data, the option
requests that out-of-band data be placed in the normal data
input queue as received; it will then be accessible with
recv calls without the OOB flag. Some protocols always
behave as if this option is set.

o SNDBUF/N RCVBUF/N
They are options to adjust the normal buffer sizes allocated
for output and input buffers, respectively. The buffer size
may be increased for high-volume connections, or may be
decreased to limit the possible backlog of incoming data.
The system places an absolute limit on these values.

o SNDLOWAT/N
It is an option to set the minimum count for output
operations. Most output operations process all of the data
supplied by the call, delivering data to the protocol for
transmission and blocking as necessary for flow control.
Nonblocking output operations will process as much data as
permitted subject to flow control without blocking, but will
process no data if flow control does not allow the smaller
of the low water mark value or the entire request to be
processed. A select() operation testing the ability to write
to a socket will return true only if the low water mark
amount could be processed. The default value for SNDLOWAT is
set to a convenient size for network efficiency, often 1024.

o RCVLOWAT/N
It is an option to set the minimum count for input
operations. In general, receive calls will block until
any (non-zero) amount of data is received, then return
with the smaller of the amount available or the amount
requested. The default value for RCVLOWAT is 1.
If RCVLOWAT is set to a larger value, blocking receive
calls normally wait until they have received the smaller
of the low water mark value or the requested amount.
Receive calls may still return less than the low water mark

rxsocket_english_guide 54 / 64

if an error occurs, a signal is caught, or the type of data
next in the receive queue is different than that returned.

o SNDTIMEO/N
It is an option to set a timeout value for output
operations. It accepts a struct timeval parameter with the
number of seconds and microseconds used to limit waits for
output operations to complete. If a send operation has
blocked for this much time, it returns with a partial count
or with the error [EWOULDBLOCK] if no data were sent.
This timer is restarted each time additional data are
delivered to the protocol, implying that the limit applies
to output portions ranging in size from the low water mark
to the high water mark for output.

o RCVTIMEO/N
It is an option to set a timeout value for input operations.
It accepts a struct timeval parameter with the number of
seconds and microseconds used to limit waits for input
operations to complete. This timer is restarted each time
additional data are received by the protocol, and thus the
limit is in effect an inactivity timer. If a receive
operation has been blocked for this much time without
receiving additional data, it returns with a short count or
with the error [EWOULDBLOCK] if no data were received.

o EVENTMASK/D
defines the bitmask of asynchronous events which are
supposed to trigger a notification and can later be
retrieved by calling GetSocketEvents.
value is one or more of:

. ACCEPT

. CLOSE

. CONNECT

. ERROR

. OOB

. READ

. WRITE
e.g. "CONNECT ERROR".

Valid option for IP are:

o HDRINCL/N
The packets sent contains the ip header as well.

o TTL/N
Time to live.

o TOS/N
Type of service.

Valid options for TCP are:

o NODELAY N
o MAXSEG N
o NOPUSH N
o NOOPT N

rxsocket_english_guide 55 / 64

Inputs
socketfd - the socket
level - the level at which ’opt’ is
opt - the option to set
value - the value of the option
value2 - some option needs a secondary value

Result
res - 0 for success, -1 for failure

See
GetSockOpt() errno()

1.71 RxSocket Functions - ShutDown

ShutDown - closes a sockets

Synopsis
res=ShutDown(socketfd,how)
<socketfd/N>,<how/N>

Function
Causes all or part of a full-duplex connection on the socket to be
shut down.

If ’how’ is
o 0 further receives will be disallowed.
o 1 further sends will be disallowed.
o 2 further sends and receives will be disallowed.

Inputs
socketfd - the socket to shut down
how - see above

Result
res - 0 for success, -1 for failure

See
CloseSocket() errno()

1.72 RxSocket Functions - SysLog

SysLog - logs a message

Synopsis
res=SysLog(message,level,facility,closeRXS)
<message>,[level],[facility],[closeRXS/N]

Function
Writes a message to syslog.

rxsocket_english_guide 56 / 64

’message’ is a string that can’t contain %c if c is different from
o m %m is the string related to the current errno
o % %% is a %

The function checks for other form and generates ARexx error 18 if
it find them.

’level’ is on of:
o EMERG
o ALERT
o CRIT
o ERR
o WARNING
o NOTICE
o INFO
o DEBUG

’facility’ is on of:
o KERN
o USER
o MAIL
o DAEMON
o AUTH
o SYSLOG
o LPR
o NEWS
o UUCP
o CRON
o AUTHPRIV
o FTP

Inputs
message - the message to log
level - see above
facility - see above
closeRXS - if 1, the functions tries to close bsdsocket.library

Result
none

See
SysLogCtl()

1.73 RxSocket Functions - SysLogCtl

SysLogCtl - controls SysLog

Synopsis
res=SysLogCtl(logpointer,logmask,facility,opts,closeRXS)
[logpointer],[logmask],[facility],[opts],[closeRXS/N]

Function
Controls SysLog().

’logpointer’ is a string (copied) to be a tag for the messages

rxsocket_english_guide 57 / 64

that will be logged with SysLog().

’logmask’ - a LOG_UPTO() filter mask - is one of:
o EMERG
o ALERT
o CRIT
o ERR
o WARNING
o NOTICE
o INFO
o DEBUG

’facility’ is one of:
o KERN
o USER
o MAIL
o DAEMON
o AUTH
o SYSLOG
o LPR
o NEWS
o UUCP
o CRON
o AUTHPRIV
o FTP

’opts’ is one or more - separated by space(s) - of:
o PID
o CONS
o ODELAY
o NDELAY
o NOWAIT
o PERROR

Inputs
logpointer - see above
logmask - see above
facility - see above
opts - see above
closeRXS - if 1, the functions tries to close bsdsocket.library

Result
res - an ARexx boolean

See
SysLog()

1.74 RxSocket Functions - socket

socket - creates a socket

Synopsis
sockfd=socket(family,type,protocol)
<family>,<type>,<protocol>

rxsocket_english_guide 58 / 64

Function
Creates an endpoint for communication and returns a descriptor.
Adds to the local-macro list of open sockets a new link so that
resource can be freed at macro exit.

Returns a socketfd that can be used in every function which needs
a "socketfd" argument.

The function may fail if:

o [EPROTONOSUPPORT] - The protocol type or the specified
protocol is not supported within this
domain.

o [EMFILE] - The per-process descriptor table is
full.

o [EACCESS] - Permission to create a socket of the
specified type and/or protocol is
denied.

o [ENOBUFS] - Insufficient buffer space is available.
The socket cannot be created until
sufficient resources are freed.

Inputs
family - the family of the socket (INET)
type - the type of the socket
protocol - the protocol of the socket

Result
sockfd - the socket descriptor or -1 for failure

See
errno()

1.75 RxSocket Functions - WaitSelect

WaitSelect - synchronous socket I/O multiplexing

Synopsis
res=WaitSelect(stem,secs,micro,signals)
<stem/V>,[secs/N],[micro/N],[signals/N]

Function
The function examines the socketfd that are supplied in ’stem’ to
see if some of them are ready for reading, are ready for writing,
or have an exceptional condition pending.

The descriptors to check are supplied in the fields
o stem.READ.n
o stem.WRITE.n
o stem.EX.n

The function checks the socketfd supplied iff they are different

rxsocket_english_guide 59 / 64

from -1 and until stem.READ.n stem.WRITE.n stem.EX.n exists.

If ’secs’ or micro is supplied and it is not 0, it specifies a
maximum interval to wait for the selection to complete. If they
are omitted or they are both 0, the function blocks indefinitely.

If ’signals’ is supplied and it is not 0, it specifies a signals
mask to wait for.

The functions returns the number of the ready sockets or 0 on
timeout or if a signal of ’signals’ arrived.

The function sets:
o stem.n.READ
o stem.n.WRITE
o stem.n.EX

to an ARexx boolean, so that
o stem.0.READ means socket 0 is ready to be read
o stem.0.WRITE means socket 0 can be written
o stem.0.EX means socket 0 has an exceptional condition

pending

The functions also sets stem.SIGNALS to the received signals.

An example will help.

Let’s suppose we have 2 sockets, sf1 and sf2, and we want to
control if something happens about them. We do:

WAIT.READ.0 = sfd1 /* to wait for ready to be read event */
WAIT.READ.1 = sfd2

WAIT.WRITE.0 = sfd1 /* to wait for ready to be written event */
WAIT.WRITE.1 = sfd1

WAIT.EX.0 = sfd1 /* to wait for exceptions events*/
WAIT.EX.1 = sfd2

/* we wait for the events above, or 10 seconds or a signal in sig mask */
res = WaitSelect("WAIT",10,0,sig)

/* res may be:
o < 0 error
o = 0 no events on sockets
o > 0 number of ready sockets

To test which sockets is ready we make a boolean test on
WAIT.0.READ and so on

*/

if WAIT.0.READ then ... /* socket sfd1 is ready to be read */

Inputs
stem - an ARexx stem name, see above
secs - seconds to wait
micro - microseconds to wait

rxsocket_english_guide 60 / 64

signals - signals to wait

Result
res - an integer:

o -1 an error occurred
o 0 timeout or signal
o >0 number of ready socket for *all* the READ,
WRITE, EX.

See
errno()

1.76 RxSocket Functions - WriteRxsCon

WriteRxsCon - writes to the RxSocket console

Synopsis
res = WriteRxsCon(msg)
<msg>

Write ’msg’ to the global RxSocket console.

If the console was not opened, it is opened.

If ’msg’ doesn’t end with a newline (’\n’ , "A"x), a newline is
added.

Inputs
ms - the message to write

Result
res - an ARexx boolean

See
OpenRxsCon() CloseRxsCon()

1.77 RxSocket Passing sockets

Passing sockets

Passing sockets means:
o exporting sockets to another macro
o importing sockets from another macro

The general mechanism release/obtain can be used to manage
import/export:

1. macro A
o create socket s
o release socket s via ReleaseSocket()

rxsocket_english_guide 61 / 64

o send to macro B a message containing the key
returned by ReleaseSocket() (or call macro B
with the key as an argument)

2. macro B
o wait for a message from macro A containing

the key to pass to ObtainSocket() (or wait
to be started from macro A with the key as
an argument)

o tries to obtain the socket via ObtainSocket()
o reply the message with the result of the

operation (or in same way tells A it obtained
the socket, e.g. via a signal)

3. macro A
o wait for answer from macro B
o test the result: if failure, re-obtain the

socket and handles it

A simpler mechanism to export one socket is to use RxsCall
function:

1. macro A
o create socket s
o call macro B via RxsCall(B,s)
o close socket s if needed

2. macro B :
o get the socket via LastSocket() function

To import sockets from a macro:

1. macro A
o call macro B via RxsCall(B,,"OBTAIN")

2. macro B
o create its sockets
o release them via ReleaseSocket()

3. macro A
o obtain the socket released by macro B

via NextRXSReleased() function

With this mechanism you can, e.g., use a child macro to connect to
a host and obtain a connected socket from the child.

1.78 RxSocket Inetd support

Inetd support

With rxsocket.library you can easily create full functional inetd
servers.

rxsocket_english_guide 62 / 64

A little program called "rxs" is supplied. It should be installed
in C: (as the install script does) or in SYS:Rexxc .

It launches an ARexx macro in a special way, so that the macro can
obtain the socket from inetd.

In inetd database you must

o use rxs (complete path) as "Service"
o use rxs as "Name"
o specify the name of the macro (and its arguments) as "Args"

rxs template is:

CON=CONSOLE/S,NR=NOREPORT/MACRO/A/F"

CONSOLE
macros called from inetd have no stdin/stdout, anyway they can
be forced to use RxSocket global console as stdin/stdout for
debugging purposes. This switch forces the global rxsocket
console to be opened, if it is not. See OpenRxsCon().

Two little programs are supplied to control the console from
a shell:

o rxsco opens the console
o rxscc close the console.

NOREPORT
don’t show requester about macro errors

MACRO
is the name of the macro with its arguments

In the macro, you can obtain the socket passed by inetd, via
LastSocket() (NOTA BENE: this must be called BEFORE other
sockets are created):

...
s=LastSocket()
if s>=0 then /* ok I was called from inet and the socket is s */
...

If LastSocket() returns -1, the macro was NOT started from inetd
and has no socket. In this event, the macro can choose to run as a
stand-alone service.

Note that from version 18, rxs may be used not only from inetd.
rxs is able to pass to the macro local variables defined in the
calling macro.

1.79 RxSocket Thanks

Thanks

rxsocket_english_guide 63 / 64

Thanks goes to:

o shido for his gift <<Hi shido! A lot of ovetti for you :-)>>;

o [X_MaN] who introduced me into the irc world and Internet in
general;

1.80 RxSocket Bibliography

Bibliography

I suggest to read the following:

o Quite all rfc

o "Unix Network Programming" - W. Richard Stevens PTR Prentice Hall

o socket.library autodoc from MiamiSDK, AmiTCPSDK and TermiteTCPSDK

1.81 RxSocket Note

Note

1. When writing ARexx libraries, two big problems are:
a. The interpreter opens/closes the library at any use.
b. The interpreter has no method to tell the world

the macro exited.

To solve these problems we need:
a. A safe place where to store our data (e.g.

bsdoskcet.library base and our sockets).
b. A mechanism that let use dispose all our data

when the macro exits.

The only way I found to solve both of them is:
a. The library can’t be flushed until some macro is

using it.
b. A structure called "header" is created for any

macro that uses the library.
c. A headers list is saved in the library base.
d. Anytime a header is created, this happens:

...
struct Process *me = (struct Process *)FindTask(NULL);
...
header->prevCode = me->pr_ExitCode;
header->prevData = me->pr_ExitData;
...
me->pr_ExitCode = (APTR)exitCode;

rxsocket_english_guide 64 / 64

me->pr_ExitData = (LONG)header;
...

I preserve the process ExitCode and ExitData
in the header and I replace the ExitCode with
a custom routine and the ExitData with the
header itself.

The core is now the ExitCode routine:

static void SAVEDS
exitCode (void)
{

register struct Process *me;
register struct header *header;

me = (struct Process *)FindTask(NULL);
header = (struct header *)me->pr_ExitData;

me->pr_ExitCode = header->prevCode;
me->pr_ExitData = header->prevData;

if (header->prevCode) (*((prevType *)header->prevCode))();

freeHeader(header);

Forbid();
rexxLibBase->use--;

}

This is the real ExitCode that I use:
it simply call a chain of pr_ExitCode(pr_ExitData)
so that other libraries may use the same system.

2. When a function is not avaible, the user is informed via a
requester and an ARexx error 15 (function not found) is
returned. IsLibOn() can be used to test the environment.

3. rxsocket.library offers an API for other ARexx libraries that
needs to use bsdsocket.library functions in a clean way.
rxsocket.library SDK is avaible on request.

	rxsocket_english_guide
	RxSocket 30.0
	RxSocket Introduction
	RxSocket Author
	RxSocket Warning, Requirements, Introduction and Distribution
	RxSocket Terms
	RxSocket Bugs
	RxSocket Structures
	RxSocket Functions
	RxSocket Functions - accept
	RxSocket Functions - Addr2C
	RxSocket Functions - bind
	RxSocket Functions - CloseRxsCon
	RxSocket Functions - CloseRxSocket
	RxSocket Functions - CloseSocket
	RxSocket Functions - connect
	RxSocket Functions - Dup2Socket
	RxSocket Functions - errno
	RxSocket Functions - ErrorString
	RxSocket Functions - FreeLineRead
	RxSocket Functions - GetHost
	RxSocket Functions - GetHostByAddr
	RxSocket Functions - GetHostByName
	RxSocket Functions - GetHostID
	RxSocket Functions - GetHostName
	RxSocket Functions - GetPeerName
	RxSocket Functions - GetProtoByName
	RxSocket Functions - GetProtoByNumber
	RxSocket Functions - GetServByName
	RxSocket Functions - GetServByPort
	RxSocket Functions - GetSocketBase
	RxSocket Functions - GetSocketBaseSingle
	RxSocket Functions - GetSocketEvents
	RxSocket Functions - GetSocketName
	RxSocket Functions - GetSockOpt
	RxSocket Functions - help
	RxSocket Functions - HostErrorno
	RxSocket Functions - HostErrorString
	RxSocket Functions - InetAddr
	RxSocket Functions - InetCksum
	RxSocket Functions - InetNTOA
	RxSocket Functions - InitLineRead
	RxSocket Functions - IoctlSocket
	RxSocket Functions - IsDotAddr
	RxSocket Functions - IsLibON
	RxSocket Functions - IsOnSocks
	RxSocket Functions - IsUp
	RxSocket Functions - IsSocket
	RxSocket Functions - LastSocket
	RxSocket Functions - listen
	RxSocket Functions - LineRead
	RxSocket Functions - NextRxsReleased
	RxSocket Functions - ObtainSocket
	RxSocket Functions - OpenConnection
	RxSocket Functions - OpenRxsCon
	RxSocket Functions - QueryInterfaces
	RxSocket Functions - recv
	RxSocket Functions - RecvFrom
	RxSocket Functions - RecvFromUntil
	RxSocket Functions - RecvLine
	RxSocket Functions - ReleaseCopyOfSocket
	RxSocket Functions - ReleaseSocket
	RxSocket Functions - resolve
	RxSocket Functions - RxsCall
	RxSocket Functions - send
	RxSocket Functions - SendTo
	RxSocket Functions - SetRxSocketOpt
	RxSocket Functions - SetSocketBase
	RxSocket Functions - SetSocketBaseSingle
	RxSocket Functions - SetSocketSignals
	RxSocket Functions - SetSockOpt
	RxSocket Functions - ShutDown
	RxSocket Functions - SysLog
	RxSocket Functions - SysLogCtl
	RxSocket Functions - socket
	RxSocket Functions - WaitSelect
	RxSocket Functions - WriteRxsCon
	RxSocket Passing sockets
	RxSocket Inetd support
	RxSocket Thanks
	RxSocket Bibliography
	RxSocket Note

