in

COLLABORATORS

TITLE :
in
ACTION NAME DATE SIGNATURE
WRITTEN BY January 23, 2025
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

i

Contents
1 in 1
1.1 DAC interface and applications e e e e 1
1.2 Dump - the application that dumps the text-lines onto the printer 1
1.3 Developerinformation L e e e 4
1.4 Descriptiont i i i e e e e e e e e e e e e e 7

in 1/12

Chapter 1

In

1.1 DAC interface and applications

Dump The graphical page dumper

Developer The developer material

1.2 Dump - the application that dumps the text-lines onto the printer

The application DAC-Dump

The DAC-Dump program 1is used to dump the contents of an archive or of a <
marked text-block onto the

printer. It’s currently a Dbit tricky (in form of "not too system <
conform" but it works. The DAC-interface of

BareED has yet only limited functions - so Dump cannot offer more!

Before vyou use the menu "Project - Print" which will start Dump, you have to set <
the desired output mode via

the System preferences editors, "Printer", "PrinterGfx" and if necessary <

"PrinterPS". Dump will take your
entered settings into account when laying out the entire pages!

Since Dump and BareED are somewhat limited, vyou should take <care that <
BareED doesn’t allow you to
modify the archive while a DAC application is running.

Currently, the graphical dump will Dbe only made in monochrome (black / white) ¢
Since the System’s printer
driver 1is wused for dumping, the &result 1is poor. Because of this, Dump is
an external program that can be
replaced by a third party program, which for example is connected to a commercial <>
printer program.

You have the choice to dump the whole archive or only a selected block of <+
characters. How to mark a block
inside of BareED should be clear.

in 2/12

If you wuse a wusually print-device of the O0S, please firstly choose "
Pica" as Print Pitch and set the

appropriate wvalues for Page Length, Left Margin and Right Margin - since the <+
original printer-drivers rely on

these values to compute the correct aspect-ratio - which cannot be changed by Dump <

To start dumping a page onto the printer choose "Project - Print". BareED <
will look then for a file labelled

Dump 1in its home-directory i1in a separate directory labelled DAC or in its <=
home-directory only if the DAC

directory is non-existent!

Example:
Work:Tools/Editors/BareED home-directory for the program BareED

This directory contains following files and directories:
BareED
BareED.info
BareED.guide
BareED.guide.info
Button.cfg
catalogs
catcomp_files
defs
fonts
images
knobs
LastMinute
LastMinute.info
ReadMe
ReadMe.info
rexx
source
tool

If there is now also a directory DAC this one is scanned for the file Dump.
If this directory is not present, the home-directoy is scanned for the file Dump <

If this directory is not present, the home directory is scanned for the file <+
Dump.

If the file Dump is neither to find in the DAC- and home-directory BareED will <>
fail with the message:

Cannot load the program’s code! - File not present?

If the file was found and you have still not set the right margin a <+
requester appears where you

have to set it! Characters beyond the entered right margin will not be printed <+
out!

If vyou are sure that you know the rightmost character’s offset (right margin) <
you can enter it. If not,
enter a huge value, for example 300.

3/12

A requester
and the destination

is displayed as dots (dots = printer pixels).

appears where the source width and height are displayed in pixel

H

Now Dump begins to calculate each string line’s length. If there is a string ¢
line that exceeds your
rightmost offset, a requester appears telling so. You have now the chance to ¢
abort or to continue
calculating string lengths.
In case you continue, some more requester may pop up.
When Dump has rummaged through all string lines a requester appears that tells <
you how wide the
widest string is. Remember the rightmost character’s offset for later if ¢
you have entered a huge
value earlier.
Since we cannot stop here, we click "Okay".
If vyour set right margin would be lesser than the computed, a requester appears
that tells you so. If
you agree to continue, click "Okay" to dump the characters. In this case <«
some string lines are
truncated to fit onto the concerned page.
If vyou have entered a huge value only to compute the widest string length,
you can now safely
quit here.
In case you have set the right margin correct or you want some string <
lines to be truncated you
are now at a point, where a requester shows up that tells you how many pages <+
would be needed

to dump these strings.
start the dump.

You have another chance to quit

Say, that
somewhat more or less time

gone before the printer will start
the archive while Dump

is in progress!

you instruct Dump to dump the string lines

is

printer—-line is used to mirror the

string line!

If vyou

Printer

need at left
the System Preferences editor

new values for left and right margin.
when it is going to calculate the

dimension for printout.

to work. Once more:

Dump will take them into account

here - or you can now <>

onto the printer - <+

You can’t modify <+

The graphical dump 1is made in a manner so that the right margin you have <=
entered will fit as last character
onto the page. This means that basing on vyour defined area a complete <

and right of the printed area more space choose easily in

P

in 4/12

If you want to stop the graphic dump for a while (meanwhile you can speak to <
others - in case you use a
pin-writer - 1like me!), choose easily "Pause/Continue" in the progress— <
bar. Later on you can click this
button again to continue the dump.

If you want to abort the dump, click the "Abandon" button in the progress-bar.

In addition, you <can use a System-monitor to find the task (process) "Dump". <
Signal him a CTRL-C signal.

Dump will stop as soon as possible. You may also use the "BreakTask" command, <>
which can be found within

the NDUK package.

Depending on your printer there can be a small confusion:

When a page has been completely filled with the graphic dump and a new page is <>
required, Dump

will send an "Eject Page" command to the printer. If your printer itself <
has recognize that a new

page 1is required, it will "eject the current page" and later on it gets the <+
same instruction from Dump

so that an empty page is ejected.

This 1is harmless but annoying and only occurs when the last graphic-dump-line <>
fits exactly to the

last position of page!

1.3 Developer information

This page is under construction...

First of all, DAC means direct communication with an application - without using <+
Exec-messages!

Any DAC-application runs asynchronous from BareED. BareED is not inhibited <>
while a DAC application is
running!

Currently the DAC-interface of BareED is poor - but if there is interest in an <>
expanded interface I will write it.

A DAC application 1s a standard Amiga-DOS load file (program) with no <«
restrictions in size or hunk-layout

other than 1limited by the Amiga-DOS. This means also - if you use a C-compiler <>
- that you can use small

code and data model.

A DAC application will be started from BareED! No other technique is supported <
or will be in the future! This

means that vyou have to know which process fired up your application. To <>
determine "who was that?" the

standard Workbench-start-up-message is used with additional information enclosed.

The field "Name" of the message’s node points to the string "BAREED". When you <+
encounter this, you know
that BareED has launched your application.

5/12

In ANSI-C this would cost us these lines:

finclude <workbench/startup.h>
#include <string.h>

#include <bareed_dac.h>
extern struct WBStartup *»WBenchMsg;
struct PseudoMsg *PsMsg;

int main(unsigned int argc,

{

unsigned char ==

/* Figure out if we have been started from
if (!'WBenchMsg)
return 30; // Return error, was CLI
/* Figure out if we have been launched by W
if (strcmp(WBenchMsg->sm_Message.mn_Node.
return 20; // Return error, was Workbench

/+ Found out that we’re running as DAC-appl

Since we found out that BareED launched us,
WBStartup message into
a PseudoMsg pointer:

PsMsg = (struct PseudoMsg =*) WBenchMsg;
Note: The PseudoMsg 1s once set up by BareE
and the attributes of
the archive (project) cannot be change
application is still alive,
except BlockStart and BlockEnd! But- 1
cursor-positions or page
offsets, the editor window size and
by the already gotten
PseudoMsg and currently BareED does
them! Therefore
pm_GetAttr () and pm_ChangeAttr () have b

implemented which are
currently out of order (I'm so lazy).

The PseudoMsg looks like this:

struct PseudoMsg
{
struct WBStartup
BPTR pm_Lock; Hands off!
unsigned char xpm_Name; Hands off!
char pm_FileName[108];
unsigned char pm Dir[256];
struct GfxBase x*pm_GfxBase;
struct IntuitionBase xpm_IntuitionBase;
*pm_GadToolsBase;

pm_Startup; Only re

Hands
Hands off!

unsigned

struct Library

argv)

a CLI surround or from the desktop x/

orkbench or BareED x/
1n_Name, "BAREED") != NULL)

ication under BareED =/

we can now convert the pointer to the

D (when it launched the application)

d by the wuser while your DAC <+

ater on Dby the user newly set <>

a bit more will not be

not stop the wuser from

een wisely (hey, I'm so clever) <

adable!

off!

mirrored

changing

(_)

<_)

<_)

<_‘)

6/12

}i

struct Library «pm_DiskfontBase;
struct Library +pm_AslBase;
struct Library +*pm_IconBase;
struct Library +*pm_LocaleBase;
struct Library «pm_WorkbenchBase;

void *pm_VisualInfo; Only read- and useable - don’t release it!

struct DrawInfo xpm_DrawInfo; Only read- and useable - don’t release it!

unsigned char xpm_RegionStart; Start of memory block for letters

unsigned int pm_RegionSize; Size in bytes (multiple of 16Kb)

unsigned char *pm_TextStart; First letter

unsigned char xpm_TextEnd; Last letter

unsigned char *pm_BlockStart; First letter in block

unsigned char *pm_BlockEnd; Last letter in block

struct TextAttr *pm_FontAttr; Font is using this attributes

struct TextFont xpm_Font; The font itself

struct Window xpm_EdWindow; The editor surrounding

unsigned int pm_TabWidth; In pixels

unsigned int pm_TabStops; A tap stop occurs every ’'n’

unsigned int pm_RightMargin;

unsigned char *pm_CharSpace; Pointer to the character-spaces of the used <+
font

void (*pm_GetAttr) (struct Tagltem xtaglist); Currently NULL (out of order!)

void (*pm_ChangeAttr) (struct Tagltem xtaglist); Currently NULL (out of order <«
D)

void (*pm_BlockInput) (void);

void (*pm_AllowInput) (void);

void (»pm_Tell) (STRPTR str);

unsigned int (*pm_CaseTell) (STRPTR str);
unsigned int (*pm_RequestNumber) (unsigned int initial, STRPTR winname, STRPTR <>
hailtext, \
STRPTR gadtext, BOOL =zero);
unsigned int (*pm_StrPixelLen) (unsigned char xstart, unsigned char =xend);
void (*pm_DumpStrLine) (unsigned char =*start, unsigned char =xend, struct <>
RastPort =*rp, \
unsigned int x, unsigned int vy);

unsigned int (*pm_WidestStrLen) (unsigned char =*text, unsigned char =*stop, \
unsigned int (*xinform_code) (unsigned int len, unsigned int <=
line), \
unsigned int inform) ;
void (*pm_DumpStrings) (struct RastPort =*rp, \
unsigned int (xdump_code) (unsigned int len, unsigned int <
line), \
unsigned char *text, unsigned char =xstop);
void (*pm_FreeProgressBar) (struct ProgressBar =*pb);

struct ProgressBar x (xpm_CreateProgressBar) (STRPTR wintitle, STRPTR hail, —
STRPTR stop, STRPTR cont, \
STRPTR cancel);
unsigned int (xpm_PullPBarEvent) (struct ProgressBar #*pb);
void (*pm_ChangePBarIndicator) (struct ProgressBar *pb, unsigned int percent, <>
STRPTR hail);

<<< Following does not work properly yet - so don’t use! >>>
void (»pm_TogglePBarGad) (struct ProgressBar *pb);

Detailed structure description

in 7/12

If you have written a DAC application and you now want to run it under BareED <>
you simply press CTRL-D

within BareED’s editor-window and a file requester will appear where you <
can choose your application,

which will afterwards be loaded in and executed.

When a DAC application has crashed, BareED will not get back the sent message <
and therewith BareED will

not allow to modify the archive. Since the project is protected against <=
modifications BareED isn’t able to quit,

too.

There is a possibility to normalise BareED:
To do so enter at the CLI-prompt:
1> rx "address BAREED.n; reset daccnt"
- where n represents the use count
This ARexx macro line will set the intern BareED counters to zero!

NOTE:
A DAC application will be fired wup with a stack size of 8192 bytes. <+
This should be enough for the most

programs! You should hold in mind that vyour task wuses BarekED functions <
(code) so these functions are

re-entrant - with one exception: pm_RequestNumber (). Since there is currently <
only one program that makes

use of it, it should cause no trouble. When there are more (written by others - <
may be by you) I’1ll change that

function to be re-entrant. Currently, the only way to avoid stress is to pull <«

for the required number (s) at the
start of your program. Don’t call pm_RequestNumber () at the middle or end of your <
program!

1.4 Description

pm_Startup = a normal workbench start-up-message with the exception that the <
field "Name" of the
node structure points to the string "BAREED" and where the field <+
priority of the node
structure holds this PseudoMessage version (currently 0 = beta)
pm_Lock to pm_Dir are private, hands off - they are used by the pm_Startup <
structure

pm_GfxBase = library base pointer
pm_IntuitionBase = library base pointer
pm_GadToolsBase library base pointer
pm_DiskfontBase = library base pointer
pm_AslBase = library base pointer
pm_IconBase = library base pointer
pm_LocaleBase = library base pointer
pm_WorkbenchBase = library base pointer

pm_VisualInfo = pointer to GadTools required info - read- and useable by you - <
but never release it!
(never call FreeVisualInfo() on it!)

in 8/12

pm_DrawInfo = pointer to GadTools/Intuition draw-info structure - same rules as <
for VisuallInfo!
pm_Region = address storage start

pm_RegionSize = amount in bytes of storage

pm_TextStart = address first character in archive
pm_TextEnd = address last character in archive
pm_BlockStart = address first character of a marked block

pm_BlockEnd = last character of this block

pm_FontAttr TextAttr structure that is currently used by the editor-window
pm_Font = the already opened TextFont pointer

pm_EdWindow = pointer to an Intuition engaged window structure used as editor-
window

pm_TabWidth = how many pixel to move to the right to get the next tabulator offset

pm_TabStops = after how many space-characters a new tabulator offset is <+
reached (only valid if
using mono-space-fonts - using proportional fonts 1it’s a bit more <

difficult due to
alignment rules)

pm_RightMargin = amount space-characters used to form the rightmost character <+
offset
pm_CharSpace = pointer to an array of 256 bytes where each byte 1is &~

viewed as an index to the
LATIN-1 char set and where these bytes will hold the concerned character’s <
width
EXAMPLE :
WidthOfSpaceChar = pseudomsg->pm_CharSpace[321;
WidthOfMChar = pseudomsg->CharSpace["M’'];
WidthOfDoubleSChar = pseudomsg->CharSpace[(UBYTE) 'R’];
Note: <casting the character 1s necessary 1if using characters greater <+
than
index 127 (unsigned) to ignore the MSB!
from assembler
movea.l _pseudomsg,AQ
movea.l pm_CharSpace (A0),A0
move.w #'M’,DO
move.b 0(A0,DO.w),DO
move.w DO,_WidthOfMChar

pm_GetAttr () = pointer to a function that will in the future allow to return <
the current state of BareED
and its project
NOTE: this function must 1in no way be <called for the current <
versions of BareED
because pm_GetAttr () is a NULL-pointer! For later versions, <
check first if this
pointer is non-zero!
pm_ChangeAttr () = pointer to a function that will in the future allow to <>
change the current attributes of
BareED

in 9/12

NOTE: this function must in no way be <called for the current <
versions of BareED
because pm_ChangeAttr () is a NULL-pointer! For later versions, <
check first if
this pointer is non-zero!

pm_BlockInput () = pointer to a function: forbid any modifications through the user
pm_AllowInput () = pointer to function: allow modifications through the user
PLEASE: Use pm_BlockInput() and pm_AllowInput() wisely. In the most

cases it
should not be necessary to call these two function since when a DAC <>
application is
running, BareED prevents the archive to be modified through ARexx and <
the user,
exception: the newly marking / demarking of text blocks!

pm_Tell () = pointer to a function: to tell user what is going on

pm_CaseTell () = pointer to a function: to give the user the chance to say "Okay" <+
or "Cancel"

pm_RequestNumber ()= pointer to a function: to get a number from the user

pm_StrPixelLen () pointer to a function:
Get length 1in pixels a string line takes up where the current <
attributes of the archive
will be taken into account

INPUTS:
start - first character in line
end - last character in line (normally Linefeed or zero byte)
RESULTS:
width - in pixels
pm_DumpStrLine () = pointer to a function:

Dump a series of characters to a specified raster port where the <«
current attributes of
the archive will be taken into account

WARNING: boundaries are not check - +thus you have to ensure that no <+
pixels are
drawn beyond the memory region (bit planes)

INPUTS:
Address first and last character in line to dump
start - first character in line
end - last character in 1line (normally LineFeed or =zero byte) rp -

Pointer to raster port where to visualize the characters x -
leftmost position to start the render (normally O0)
y — topmost position to start the render (normally O0)

RESULTS:
Printed line or none

NOTES:
The y-coordinate 1is corrected by this function with the TextFont- <
tf_Baseline
value to ensure that the text is right rendered.

in 10/12

This function uses the Graphic-library functions Text () and Move ()

pm_WidestStrLen () = pointer to a function:
Get the widest string (in pixels) and inform caller when out of his set <
range where the
current attributes of the archive will be taken into account

INPUTS:
start - address of the character you like to start with
stop - at this character (address) WidestStrLen() will stop - 1if =
not
encountered already archive’s end
inform_code - routine which is invoked when a line length exeeds your set

"inform’ range
Return TRUE 1if vyou want to continue computing line length or
FALSE to stop

inform - widest string width in pixel you allow without to be informed

RESULTS:
widest string length in pixels

NOTES:
inform_code () may be zero, then your CallBack routine is not called
Your inform_code() is called with two stack parameters:
1) length in pixels
2) actual line number, which is counted on by "start"
Your inform_code () does not need to restore its base-register a4, +—
BareED
has already done this - but all other non-scratch registers must be <+
restored
on exit
pm_DumpStrings () = pointer to a function:

Dump a series of string lines to a raster port where the current attributes <«
of the archive
will be taken into account

INPUTS:
rp - raster port - where to render into
dump_code - your function that dump this raster port e. g. to the <
printer

RETRUN TRUE to continue with the next line or FALSE to stop
PARAMETERS you’ll get from DumpStrings:
length - pixel length of this string

line - 1line number of the actual line, counted from one
to endless

start - address of the character you like to start with

stop - at this character (address) DumpStrings() will stop - 1if <~
not

encountered already archive’s end

RESULTS:
rp - Raster port with wvisualized and laid out string

NOTES :

in 11/12

Before you call DumpStrings () or DumpStrLine() you should use <~
the

appropriate draw mode and pens.

The length in pixels you’ll get from DumpString() is the original string <=

length -
perhaps it has been truncated to let this string fit into your raster port.
After each dump you should clear the contents of your raster port, e. g. <
using
ClearEOF () .

You may use standard Bitmaps or foreign if 0OS 3.0 is at least available.
This routine calls DumpStrLine() .

Your dump_code () does not need to restore its base-register a4, BareED

has already done this - but all other non-scratch registers must be <
restored

on exit

pm_FreeProgressBar = pointer to a function
Free an earlier obtained ProgressBar inclusive the resources used by it
INPUTS:
rb - returned pointer from pm_CreateProgressBar () that points <«
to a

ProgressBar structure which only has one useable item: pb_Window - which
points to the by a progress-bar used window

RESULTS:
none

pm_CreateProgressBar = pointer to a function
Create a window with a progress bar in it. Not more!

INPUTS:
wintitle - String shown as title of the window (this title must be supplied <+
b
hail - String shown above of progress bar [(optional parameter)] When
used this string must not contain any format arguments! (valid is
e. g.: "Completed to")
stop - String shown in left gadget [(optional parameter)] (e.g.: "Pause")
-—— due to a bug in pm_TogglePBarGad () this string should be
set up as follow: "Pause/Continue"
cont - String shown 1in left gadget as alternative text [(optional)] due <
to

a bug 1in pm_TogglePBarGad() this text will never be displayed
— so there 1is no necessity to supply it

cancel - String shown in right gadget [(optional)]
When vyou <can only do "Pause/Continue" vyou must use this
entry instead of "Stop"

RESULTS:
pb - pointer to a ProgressBar structure or zero if something went wrong
pm_PullPBarEvent = pointer to a function

Let this function do the necessary things to parse and interpret <+
messages sent by
Intuition/GadTools

INPUTS:
pb - pointer to a ProgressBar structure

in 12/12

RESULTS:
ID -0 = if this message has no meaning for you

-1 right gadget (or <centred - if a single) has been clicked by
user

left gadget (stop/cont) by user clicked

-2

pm_TogglePBarGad = pointer to a function

Change state (text) in left gadget from either Stop to Cont or from Cont to <
Stop.

pm_TogglePBarGad performs only the action when all three gadgets texts are <
supplied.

INPUTS:
pb - pointer to a ProgressBar structure

RESULTS:
none

BUGS:
does currently not work well

	in
	DAC interface and applications
	Dump - the application that dumps the text-lines onto the printer
	Developer information
	Description

