
Testfile

Testfile ii

COLLABORATORS

TITLE :

Testfile

ACTION NAME DATE SIGNATURE

WRITTEN BY January 23, 2025

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Testfile iii

Contents

1 Testfile 1

1.1 Table Of Contents . 1

1.2 MHI/MHIAllocDecoder . 1

1.3 MHI/MHIFreeDecoder . 2

1.4 MHI/MHIGetEmpty . 3

1.5 MHI/MHIGetStatus . 3

1.6 MHI/MHIPause . 4

1.7 MHI/MHIPlay . 5

1.8 MHI/MHIQuery . 5

1.9 MHI/MHIQueueBuffer . 7

1.10 MHI/MHISetParam . 8

1.11 MHI/MHIStop . 9

Testfile 1 / 9

Chapter 1

Testfile

1.1 Table Of Contents

TABLE OF CONTENTS

MHIAllocDecoder
MHIFreeDecoder
MHIGetEmpty
MHIGetStatus
MHIPause
MHIPlay
MHIQuery
MHIQueueBuffer
MHISetParam
MHIStop

1.2 MHI/MHIAllocDecoder

NAME
MHIAllocDecoder - allocate a decoder

SYNOPSIS
handle = MHIAllocDecoder(task, mhisignal);
d0 a0 d0

APTR MHIAllocDecoder (Task *, ULONG mhisignal);

FUNCTION
Allocate a decoder. This function gives you a handle in d0 which is
required by other MHI functions. The handle is private and it’s
contents will vary with each decoder, so don’t poke it. Note that
some decoders may allow more than one handle to be allocated,
meaning that they can output more than one MPEG stream at once.

When you allocate a handle all resources required by the decoder are
also allocated (memory, hardware etc). The decoder is then ready to
start decoding.

Testfile 2 / 9

INPUTS
task - a pointer to the task you want to receive signals

from MHI
mhisignal - a signal mask to use when signaling your task

RESULT
handle - a pointer to your handle

EXAMPLE
/* Note: use more error checking! */
/* See example code */
mytask = FindTask(0);
mysignal = AllocSignal(-1);
sigmask = 1L << mysignal;
handle = MHIAllocDecoder(mytask, sigmask);

NOTES
You must dispose of your handle when done with it.

BUGS

SEE ALSO
MHIFreeDecoder

1.3 MHI/MHIFreeDecoder

NAME
MHIFreeDecoder - free a decoder up

SYNOPSIS
MHIFreeDecoder(handle);

a3

VOID MHIFreeDecoder(APTR handle);

FUNCTION
Free the given handle. You must call this function when you are
finished with a handle and wish to free the decoder up.

INPUTS
handle - the handle you were allocated

RESULT
None

EXAMPLE
MHIFreeDecoder(handle);

NOTES
No checking is done, so don’t pass a bad handle.

BUGS

SEE ALSO

Testfile 3 / 9

MHIAllocDecoder

1.4 MHI/MHIGetEmpty

NAME
MHIGetEmpty

SYNOPSIS
buffer = MHIGetEmpty(handle);
d0 a3

APTR MHIGetEmpty(APTR handle);

FUNCTION
Find the next empty buffer in the queue. If there are any empty
buffers left the first one is freed and removed from the queue,
and a pointer to it returned to you. You are then free to do what
you like with that buffer (e.g. FreeMem() it, load more data into
it etc).

INPUTS
handle - the handle you were allocated

RESULT
buffer - a pointer to the used buffer

EXAMPLE
while (usedbuf = MHIGetEmpty(handle))
{
...
}

NOTES
Requires a valid handle. You should use this function in a loop
after you receive a signal from MHI, just as you would when
checking a Message Port. The buffer that is freed is considered
’empty’ and as such you cannot rely on it’s contents at all. It
may however contain data, as it is not automatically cleared.

BUGS

SEE ALSO
MHIQueueBuffer

1.5 MHI/MHIGetStatus

NAME
MHIGetStatus

SYNOPSIS
status = MHIGetStatus(handle);
d0 a3

Testfile 4 / 9

UBYTE MHIGetStatus(APTR handle);

FUNCTION
Return the current status of the MHI decoder. This give you
information about what the decoder is doing, and if it has
stalled (MHIF_OUT_OF_DATA).

INPUTS
handle - the handle you were allocated

RESULT
status - one of: MHIF_PLAYING (player currently outputting sound)

MHIF_STOPPED (doing nothing)
MHIF_OUT_OF_DATA (run out of data but still

waiting for more)
MHIF_PAUSED (play currently paused but can

be restarted)

EXAMPLE
status = MHIGetStatus(handle);

NOTES
You can use this to check if an MPEG stream has finished
decoding by waiting for buffers to be returned to you and
then checking if status = MHIF_OUT_OF_DATA. See example code.

BUGS

SEE ALSO
MHIPlay
MHIStop
MHIPause

1.6 MHI/MHIPause

NAME
MHIPause

SYNOPSIS
MHIPause(handle);

a3

VOID MHIPause(APTR handle);

FUNCTION
Halt decoding and audio output. The buffer queue is not
altered and play may begin again at exactly where it left
off.

INPUTS
handle - the handle you were allocated

RESULT
None

Testfile 5 / 9

EXAMPLE
MHIPause(handle);

NOTES
Use MHIPlay to start decoding again. MHIStop can also be
used even if the decoder is paused.

BUGS

SEE ALSO
MHIGetStatus
MHIPlay
MHIStop

1.7 MHI/MHIPlay

NAME
MHIPlay

SYNOPSIS
MHIPlay(handle);

a3

VOID MHIPlay(APTR handle);

FUNCTION
Set the MHI decoder into play mode. The decoder starts
decoding the first buffer in the queue.

INPUTS
handle - the handle you were allocated

RESULT
None

EXAMPLE
MHIPlay(handle);

NOTES
You may call this function without any buffers in the
queue, but it is usually best to buffer some data
before starting the decoding.

BUGS

SEE ALSO
MHIGetStatus
MHIStop
MHIPause

1.8 MHI/MHIQuery

Testfile 6 / 9

NAME
MHIQuery

SYNOPSIS
result = MHIQuery(query);
d0 d1

ULONG MHIQuery(ULONG query);

FUNCTION
Query some aspect of the decoder. A complete list of available
queries can be found in mhi.h.

MHIQ_DECODER_NAME
MHIQ_DECODER_VERSION
MHIQ_AUTHOR

Return a string pointer to the name of the
decoder/author/version string.

MHIQ_IS_HARDWARE
MHIF_TRUE if decoder is hardware, MHIF_FALSE if it’s
software based.

MHIQ_IS_68K
MHIQ_IS_PPC

Same as MHIQ_IS_HARDWARE for 68k/PPC processor based
decoders.

MHIQ_MPEG1
MHIQ_MPEG2
MHIQ_MPEG25
MHIQ_MPEG4

Return MHIF_TRUE if MPEG version is supported, or
MHIF_FALSE if not.

MHIQ_LAYER1
MHIQ_LAYER2
MHIQ_LAYER3

Return MHIF_TRUE if MPEG layer is supported, or
MHIF_FALSE if not.

MHIQ_VARIABLE_BITRATE
MHIQ_JOINT_STERIO

Return MHIF_TRUE if encoding format is supported, or
MHIF_FALSE if not.

MHIQ_BASS_CONTROL
MHIQ_TREBLE_CONTROL
MHIQ_MID_CONTROL

Return MHIF_TRUE if tone control is supported, or
MHIF_FALSE if not.

MHIQ_VOLUME_CONTROL
MHIQ_PANNING_CONTROL
MHIQ_CROSSMIXING

Return MHIF_TRUE if output control is supported, or

Testfile 7 / 9

MHIF_FALSE if not.

INPUTS
query - an MHIQ_#? query flag.

RESULT
result - the result code, see mhi.h and above

EXAMPLE
/* see if decoder support variable bit rates */
result = MHIQuery(MHIQ_VARIABLE_BITRATE);

NOTES

BUGS

SEE ALSO

1.9 MHI/MHIQueueBuffer

NAME
MHIQueueBuffer - add a memory buffer to the decoder queue

SYNOPSIS
success = MHIQueueBuffer(handle, buffer, size);
d0 a3 a0 d0

BOOL MHIQueueBuffer(APTR handle, APTR buffer, ULONG size);

FUNCTION
Add a buffer to the decoder queue. Once the buffer is in the queue
you are not allowed to alter it in any way until it is released
by MHI.

INPUTS
handle - the handle you were allocated
buffer - a pointer to the start of the buffer to be queued
size - the byte size of the buffer

RESULT
success - TRUE (-1) when buffer was queued or FALSE (0) when

for some reason the buffer could not be queued

EXAMPLE
MHIQueueBuffer(handle, bufmem, size);

NOTES
Requires a valid handle.

BUGS

SEE ALSO
MHIGetEmpty

Testfile 8 / 9

1.10 MHI/MHISetParam

NAME
MHISetParam

SYNOPSIS
MHISetParam(handle, param, value);

VOID MHISetParam(APTR handle, UWORD param, ULONG value);
a3 d0 d1

FUNCTION
Alter one of the decoder parameters. Commonly used to set volume,
bass, treble, panning etc. A complete list of parameters can be
found in mhi.h. Details of current parameters:

MHIP_VOLUME
Overall sound volume. 100 is max, 0 is silence.

MHIP_PANNING
Sound panning. 50 is centre (default), 0 is full left and
100 is full right.

MHIP_CROSSMIXING
Crossmixing is where some of the sound from the left
channel is mixed onto the right channel, and vice versa.
It is often used to lessen the stereo effect for people
using headphones. Also similar to ’surround’ sound
effects used in some software. 0 is no mixing (default)
and 100 is maximum (effectively mono).

MHIP_BASS
MHIP_MID
MHIP_TREBLE

These parameters control tone. Bass is low frequencies,
and treble is high. Mid is everything in between. MHI
does not specify the exact frequency ranges that these
cover, as it can vary with hardware for instance.
50 is the default, with no tone modification. 100 is
maximum boost, and 0 is is maximum cut.

MHIP_PREFACTOR
Prefactor allows sound levels to be boosted or reduced
before it goes through tone control. This is useful to
prevent ’chopping’, where the signal is boosted too
much by tone control and distorts. It is not the same
as volume. The default is 50, which is no prefactor.
100 is maximum cut, where sound levels are lowered,
and 0 is maximum boost.

INPUTS
handle - the handle you were allocated
param - the parameter you want to alter
value - the value to set

?
RESULT

Testfile 9 / 9

Parameter is set if value is valid

EXAMPLE
/* pump up the bass man */
MHISetParam(handle, MHIP_BASS, 90);

?
NOTES

SEE ALSO

1.11 MHI/MHIStop

NAME
MHIStop

SYNOPSIS
MHIStop(handle);

a3

VOID MHIStop(APTR handle);

FUNCTION
Stop all decoding and audio output. All buffers in the queue
are flushed.

INPUTS
handle - the handle you were allocated

RESULT
None

EXAMPLE
MHIStop(handle);

NOTES
This function will flush the buffer queue. Use MHIPause if
you want to resume play where you left off later without
emptying the buffer queue.

BUGS

SEE ALSO
MHIGetStatus
MHIPlay
MHIPause

	Testfile
	Table Of Contents
	MHI/MHIAllocDecoder
	MHI/MHIFreeDecoder
	MHI/MHIGetEmpty
	MHI/MHIGetStatus
	MHI/MHIPause
	MHI/MHIPlay
	MHI/MHIQuery
	MHI/MHIQueueBuffer
	MHI/MHISetParam
	MHI/MHIStop

