
WarpPNG

Oliver Roberts

WarpPNG ii

COLLABORATORS

TITLE :

WarpPNG

ACTION NAME DATE SIGNATURE

WRITTEN BY Oliver Roberts July 31, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

WarpPNG iii

Contents

1 WarpPNG 1

1.1 WarpPNG.datatype 44.17 . 1

1.2 Description . 1

1.3 Features . 2

1.4 System Requirements . 2

1.5 Installation . 3

1.6 Preferences Options . 3

1.7 Speed . 5

1.8 Distribution Conditions . 7

1.9 Disclaimer . 8

1.10 Acknowledgements . 8

1.11 Support & the Future . 9

1.12 About the author . 9

1.13 Program History . 10

WarpPNG 1 / 12

Chapter 1

WarpPNG

1.1 WarpPNG.datatype 44.17

WarpPNG.datatype 44.17 - the fastest 24-bit PNG picture datatype!
(for 68k, PPC/WarpOS and PPC/MorphOS)

Copyright © 1999-2001 Oliver Roberts, All Rights Reserved.

Description what is this datatype for?
Features list of features
System requirements what you need to use this software
Installation installing this software
Preferences descriptions of configurable settings
Speed information regarding speed issues

Distribution distribution conditions
Disclaimer important notices

Acknowledgements thankyous and credits
Support & the Future support + improvements I intend to make
About the author how to contact the author
History program history

1.2 Description

As you’ve probably guessed, WarpPNG.datatype is a yet another PNG datatype.
The original difference being that it was for owners of PPC cards, and was
targetted specifically at WarpUp (not PowerUp). Even better, it is fast,
compact, clean, well behaved and fast - a true plug’n’play PPC datatype.
Now though, 68k optimized and MorphOS native versions have been added,
which also benefit from my WarpDT engine. One of the key features is its
superior speed, hence the name WarpPNG.

I originally decided to write this datatype because no other decent WarpOS
native PNG datatype existed for the PPC, and it is was relatively easy to
implement being based on the same engine that WarpJPEG.datatype uses.

WarpPNG 2 / 12

1.3 Features

- Supports both normal and interlaced PNG files

- Gamma correction options allow the output image to be changed to
suit your monitor/environment

- Highly optimized datatype dispatch engine, and fast PNG decoder,
resulting in a very efficient, compact and quick PNG datatype

- Asynchronous file i/o and double buffering techniques (WarpOS only),
which speeds up image decoding

- Optimized versions for 68020, 030, 040 and 060

- PowerPC support with native WarpOS and native MorphOS versions

- Alter the pen allocation precision when images are remapped to an
8-bit display

- Specific support for the OS 3.5/3.9 picture.datatype, when available

- The dithering feature of the OS 3.5/3.9 picture.datatype can be
configured to your liking (e.g. disabled for 15/16-bit displays)

- Based on libpng 1.0.11 and zlib 1.1.3

1.4 System Requirements

This datatype needs the following in order to work:

- Kickstart 3.0 or higher
- picture.datatype v43 or higher

(i.e. either of the ones supplied with AmigaOS 3.5/3.9, P96 or CGraphX)

68k version

- 68020 processor or higher (optimized versions included)

WarpOS version

- PPC accelerator card + 68040/060
- WarpUp Release 4 (powerpc.library V15) or higher

MorphOS version

- PPC accelerator card
- MorphOS beta release 1 or higher

Note that a graphics card is not necessary - the P96 or OS 3.5/3.9
picture.datatype will automatically dither images down to your native Amiga
display requirements.

WarpPNG 3 / 12

1.5 Installation

To install WarpPNG.datatype, simply run the provided installer script by
double-clicking the icon. This will create a CPU specific version of the
library for you, and install it to SYS:Classes/Datatypes and also installs
the PNG descriptor file to DEVS:Datatypes. It does nothing else, so you
needn’t worry about it messing about with your system :)

1.6 Preferences Options

WarpPNG can be configured using the "Datatypes/WarpPNG.prefs" environment
variable. The preferred way of altering the settings is via the
WarpDTPrefs graphical user interface (requires OS3.5 or higher), available
from http://www.nanunanu.org/~oliver/warpdtprefs.html or Aminet
(util/dtype/WarpDTPrefs.lha).

However, it is also possible to alter the settings manually by changing the
environment variable with setenv, according to the following template:

DITHER_OVERRIDE/K,DITHER_QUALITY/K,DITHER_DEPTH/K/N,PENS_OVERRIDE/K,
PENS_QUALITY/K,GAMMA_CORRECTION/K/T,SCREEN_GAMMA/K/N,IMAGE_GAMMA/K/N

OS3.5 DITHER CONTROL OPTIONS

The three dither options all interact with each other and apply only when
at least picture.datatype V44 (OS3.5/3.9) is in use.

By default picture.datatype V44+ dithers images for all target displays
less than 24-bit. It is debatable whether it’s worth using dithering on
15/16-bit displays - for photographic images, the difference is usually not
noticable, but for computer generated images containing smooth colour
gradients dithering produces a noticably better output image.

DITHER_OVERRIDE

Selects what our dither quality setting should override:

NOTHING - do not change the dither quality in any circumstances
DEFAULTS - only override picture.datatype’s default dither quality,

which is used when the application does not specify it’s
own dither quality value

APPS - override the dither quality that an application may set
EVERYTHING - always use your custom dithering settings

DITHER_QUALITY

Select the dither quality to use when this datatype decides that changes to
the dither quality are required, according to your dither override and
depth settings:

POOR - simple colour remapping and no dithering (fastest)
GOOD - slower, higher quality dithered output (default)
BEST - similar to GOOD, with maybe slightly higher quality output

WarpPNG 4 / 12

DITHER_DEPTH

Use this option to select which display depths should use the above quality
setting. When the target display is deeper than the given depth value, the
above dither quality will be applied to that image. For example setting
this to 8 will cause the dithering settings to be used for 15/16-bit target
displays, but left untouched when the target display is <= 8-bit.

PEN SELECTION OPTIONS

The pen selection options are only relevant to 8-bit displays, and adjust
the precision to which pens/colours are allocated, which affects the image
quality and number of pens that will get used.

PENS_OVERRIDE

Selects what our pen/colour quality setting should override:

NOTHING - do not change the pen precision under any circumstances
DEFAULTS - only override picture.datatype’s default pen precision

quality, which is used when the application does not
specify

it’s own pen precision value
APPS - only override the pen precision that an application has set
EVERYTHING - always use your pen precision settings

PENS_QUALITY

Changes the pen precision quality to use when remapping an image to an
8-bit display, in situations according to your pens otherride setting:

POOR - use only a small amount of unique colours, at the expense of
image quality

GOOD - allocate enough pens to ensure a reasonable output image
quality, whilst not hogging all pens for a single image (default)

BEST - allocate as many pens as possible/necessary, resulting in the
best image quality, but when displaying multiple images on the
same screen, the quality of every image might not be so good

GAMMA CORRECTION OPTIONS

The following options allow you to control the gamma correction feature:

GAMMA_CORRECTION

ON - enable gamma correction (default)
OFF - disable gamma correction support completely

SCREEN_GAMMA

Specify the gamma of your display/screen - all images will have their gamma
corrected to match this option. Generally, this value should be altered to
match your monitor and display environment (e.g. bright room, sunlight,
dark room, etc). If you set the screen gamma too low, images will appear

WarpPNG 5 / 12

too dark - likewise, images will appear too light if you set it too high.
The default gamma value is 2.2, although the actual value you must give is
the gamma value multiplied by one million - e.g. set this option to 2200000
for a gamma of 2.2.

IMAGE_GAMMA

PNG files may well contain a gamma value, which defines the gamma of that
image. In this case, the file gamma will always be used. But, for images
that do not define a gamma value, you can use this option to change the
fallback image gamma. The default value of 0.45455 should be sufficient in
most cases. As with the screen gamma, the gamma value must be multiplied
by one million (e.g. 0.45455 -> 454550).

1.7 Speed

The fastest JPEG datatype?

The table below shows the time (in seconds) it took to decode 14 different
images on my A1200 603e/240MHz 060/50MHz, with BVision and CGX
picture.datatype, with other tested datatypes configured as close as
possible to WarpPNG’s internal settings. However, I should emphasize that
the figures above are for comparison purposes only - the actual values are
likely to be slightly different (faster or slower) on your system, but I’m
confident that the WarpOS version of WarpPNG is noticably faster than all
alternative PPC datatypes.

The figures speak for themselves... WarpPNG for WarpOS is at least 75%
faster than other PPC datatypes in most cases (100-300% faster with palette
based and/or smaller files), and around 3 times faster than 68k datatypes
on a 060 (the speed difference will be even greater on 040 systems with a
fast PPC). Maybe you don’t believe these claims - my answer to that is
simple... Try WarpPNG for yourself and you will see the difference! :)

+------------------------------+
| PowerPC/68K (dual-cpu) |
+--------------------+---------+
| WarpOS | PowerUp |
+---------+----------+---------+
	akPNG 44.97
WarpPNG	
44.17	PPCLibEmu PowerUp

bytes | | native |
+------------------------------+---------+--------------------+
1024x768 24-bit, 833721	1.20 2.08 2.27
1024x768 24-bit int, 1037008	1.72 2.54 2.82
779x767 24-bit, 946564	1.05 1.84 2.10
473x639 24-bit, 377518	0.51 0.92 0.98
473x639 24-bit int, 459869	0.71 1.11 1.21
368x463 24-bit, 279896	0.35 0.66 0.69
251x400 24-bit, 136856	0.23 0.44 0.42
718x425 grey, 157890	0.25 0.50 0.50
718x425 grey int, 182522	0.35 0.64 0.64
1024x768 256 col, 324599	0.40 0.78 0.82
779x767 256 col, 404245	0.38 0.80 0.80

WarpPNG 6 / 12

473x639 256 col, 163397	0.23 0.47 0.44
368x463 256 col, 115942	0.17 0.35 0.32
251x400 256 col, 57056	0.12 0.26 0.22
+------------------------------+------------------------------+
(int = interlaced image)

The MorphOS version is round about the same speed as the WarpOS version
(above), but a little bit faster in some cases. It’s much faster than the
PowerUp version of akPNG running under emulation in MorphOS - around
50-70% faster in the case of 24-bit images, and 3-5 times faster in the
case of 8-bit greyscale and paletted images. No benchmarks for 68k
versions are included because they were found to be many times slower.

+-----------------------+
| PowerPC only (no 68K) |
+-----------------------+
| MorphOS |
+---------+-------------+
	akPNG 44.97
WarpPNG	
44.17	PowerUp

bytes | | emulation |
+------------------------------+---------+-------------+
1024x768 24-bit, 833721	1.21 1.77
1024x768 24-bit int, 1037008	1.54 2.28
779x767 24-bit, 946564	1.06 1.64
473x639 24-bit, 377518	0.51 0.84
473x639 24-bit int, 459869	0.63 1.04
368x463 24-bit, 279896	0.35 0.64
251x400 24-bit, 136856	0.22 0.44
718x425 grey, 157890	0.24 0.89
718x425 grey int, 182522	0.32 1.03
1024x768 256 col, 324599	0.37 1.69
779x767 256 col, 404245	0.38 1.50
473x639 256 col, 163397	0.21 0.89
368x463 256 col, 115942	0.15 0.64
251x400 256 col, 57056	0.11 0.49
+------------------------------+-----------------------+
(int = interlaced image)

The results for the 68k version are much tighter, although overall, WarpPNG
comes out on top when decoding normal images. Not by that much, but faster
nonetheless. However, for some reason it is a bit slower than Gunther
Nikl’s datatype when decoding interlaced images - I hope to address this
problem soon:

+--------------------------+
| M68K |
+---------+----------------+
| WarpPNG | akPNG | PNGdt |
| 44.17 | 44.97 | G.Nikl |

+------------------------------------+---------+-------+--------+
1024x768 24-bit, 833721 bytes	3.51 4.87 3.76
1024x768 24-bit int, 1037008 bytes	6.49 8.13 6.26
779x767 24-bit, 946564 bytes	3.18 4.33 3.33
473x639 24-bit, 377518 bytes	1.38 1.99 1.49
473x639 24-bit int, 459869 bytes	2.55 3.33 2.51
368x463 24-bit, 279896 bytes	0.97 1.48 1.03

WarpPNG 7 / 12

251x400 24-bit, 136856 bytes	0.55 0.90 0.59
718x425 grey, 157890 bytes	0.68 1.22 0.71
718x425 grey int, 182522 bytes	1.44 2.68 1.39
1024x768 256 col, 324599 bytes	0.91 1.73 0.91
779x767 256 col, 404245 bytes	0.91 1.72 0.94
473x639 256 col, 163397 bytes	0.46 0.96 0.48
368x463 256 col, 115942 bytes	0.29 0.69 0.32
251x400 256 col, 57056 bytes	0.16 0.45 0.19
+------------------------------------+--------------------------+
(int = interlaced image)

Note: all tests were performed, multiple times, using Visage, with the
following command line: "visage test.png nopng time test".

WarpOS version still too slow!

Despite these facts, I’m still disappointed with the relatively slow
performance advantage offered by my 603e over my 060 (approximately only 3
times faster). The main problem is that PPC datatypes still have to use the
68k for reading the data from disk and for creating / writing to the bitmap
time lost for file i/o is negligable as WarpPNG uses double buffered
asynchronous i/o (supports DMA controllers).

The largest bottleneck is that the DTM_WRITEPIXELARRAY method of the
picture.datatype has to be used to write the image data from WarpPNG into
the image bitmap. As this process is done via picture.datatype, it can
only currently be performed by the 68k. To give you some idea of how much
of a problem this is for WarpPNG, typically, half of the overall decode
time is used by the PPC to decode the whole image, and the other half is
used by DTM_WRITEPIXELARRAY on the 68k. And that’s on a graphics card -
the time used by DTM_WRITEPIXELARRAY will probably be even greater on
systems using native Amiga graphics. It doesn’t take a genius to see that
this is slowing the datatype down, and is the main reason why WarpPNG will
still be faster on a 060 than a 040.

How to make the datatype faster

Is there anything that can be done about this? Well, yes, there are a few
patches that you can install which should make things faster:

- NewWPA8 (util/boot/NewWPA8.lha on Aminet) should provide a notable
speed increase on native Amiga graphics - probably won’t make any
difference if you use a graphics card.

- If you use a graphics card and CyberGraphX, you may want to make
sure you are using the supplied v43 picture.datatype, as this will
be faster than the P96 and OS3.5/3.9 picture.datatype on your system.

Of course, any other general speed-up patches should help too.

1.8 Distribution Conditions

WarpPNG.datatype is public domain with the copyright remaining with the
author and may be freely distributed legally providing:

WarpPNG 8 / 12

(1) None of the distributed files are changed in any way
(2) It is not sold for profit and it is not included on any disks

that are sold solely for profit (includes magazine coverdisks)
(3) The distribution contents remain complete (see list below)

If this software is to be sold for profit, permission must be obtained from
me, the author.

Aminet, Amiga Format and Amigactive have been granted permission to
distribute WarpPNG.datatype on their CDs.

The following files must be present in their original and unchanged form in
any copies of this software:

Classes/Datatypes/WarpPNG.datatype.020
Classes/Datatypes/WarpPNG.datatype.030.pch
Classes/Datatypes/WarpPNG.datatype.040.pch
Classes/Datatypes/WarpPNG.datatype.060.pch
Classes/Datatypes/WarpPNG.datatype.wos
Classes/Datatypes/WarpPNG.datatype.elf
Devs/Datatypes/PNG
Devs/Datatypes/PNG.info
WarpPNG.guide
WarpPNG.guide.info
Install_WarpPNG
Install_WarpPNG.info
spatch

1.9 Disclaimer

This software is provided "as is", without warranty of any kind, either
expressed or implied, statutory or otherwise. By using the archive and its
contents, you accept the entire risk as to its quality and performance.

Neither Oliver Roberts nor any other party involved in the creation,
production or delivery of the archive and its contents shall be liable for
any direct, indirect, special, consequential or incidental damages,
including without limitation damages for loss of profits, loss of use or
loss of anticipated costs, expenses or damages, and any data or information
which may be lost or rendered inaccurate, even if Oliver Roberts is advised
of the possibility of such damages.

Do not attempt to tamper with the supplied files. Doing so will cause
problems and you may find things start going wrong!

1.10 Acknowledgements

PNG support provided by the libpng link library by the PNG Development
Group, and the zlib link libary by Jean-loup Gailly and Mark Adler (both
compiled for WarpOS, of course).

The WarpOS version was made possible by VBCC, which was used to build and

WarpPNG 9 / 12

compile the datatype. Thanks to Volker Barthelmann and Frank Wille, for
their support and help.

The Spanish installer translation is by Dámaso D. Estévez.

Thanks also to Sam Jordan for WarpOS and helping me out with various
queries regarding it.

Finally, thanks to the OS 3.5 development team - now everyone has access to
a 24-bit picture.datatype, I don’t need to bother messing about adding
dithering routines :)

1.11 Support & the Future

Some things that may appear in the future:

- If I can squeeze any more speed out of the datatype, I’ll do so :)
In particular, I plan to speed up decoding of interlaced images in the
68k version

- WarpTIFF is currently in development, and I hope to get it finished
soon, and I will be looking at other graphics formats too.

If you have any other suggestions, please let me know.

Future releases of WarpPNG.datatype will be available from either Aminet
(util/dtype/WarpPNGdt.lha) or its webpage:

http://www.nanunanu.org/~oliver/warppng.html

If you would you like to know when WarpPNG is next updated, then you may
want to subscribe to my announcement list to receive an e-mail informing
you of the changes as soon as a new versions of any of my products are
released. To subscribe, send a blank e-mail to

futaura-announce-subscribe@yahoogroups.com

or go to

http://groups.yahoo.com/subscribe/futaura-announce

1.12 About the author

If you have any problems with this software, or if you have any
suggestions/queries, please contact me and I will do my best to sort any
bugs out as soon as possible:

e-mail: oliver@futaura.co.uk
www: http://www.nanunanu.org/~oliver/
icq: 34640231

WarpPNG 10 / 12

1.13 Program History

44.17 (2.5.2001)

- Updated with libpng 1.0.11 (this should have been in yesterday’s
update - blame my ISP’s webcache :).

44.16 (1.5.2001)

- Updated with libpng 1.0.10.

44.15 (10.4.2001)

- The built-in image gamma value (used when no value is defined in the
prefs) was incorrect - fixed.

- Gamma correction did not work in the 68040 and 060 versions, causing
images to be mostly black or white if the default gamma values were
not used. This was due to a non-working FPU pow() implementation -
mathieeedoubtrans.library is now used instead. Does not affect speed.

44.14 (4.4.2001)

- Enabled the gamma correction feature of libpng, and provided some
preferences options to control it.

- Added options to control the precision/quality of pen allocations for
when an image is displayed on a pallette-based display (8-bit).

- Unfortunately, the all versions are now fractionally (less than 1%)
slower than before, although interlaced images are now decoded a bit
faster in the 68k versions.

- Added Spanish strings to the installer.

44.13 (15.3.2001)

- Added preferences options to configure the OS3.5/3.9 dithering control
feature.

- The MorphOS version got broken in v44.11 - fixed.

44.12 (19.2.2001)

- The dithering disabler feature (for when the OS3.5/3.9 picture.datatype
is in use on hi/true colour displays) was flawed, since it only worked
with images that were eventually attached to windows (e.g. Multiview).
Now dithering will be disabled in all other cases too (e.g. Workbench /
DOpus backdrops).

44.11 (1.2.2001)

- Updated with libpng 1.0.9.

44.10 (12.1.2001)

- Fixed a bug in the new startup code, which caused images not to be
loaded in some cases - e.g. IPrefs failing to load WB backdrops.

44.9 (9.1.2001)

WarpPNG 11 / 12

- Recoded much of the startup code, with libraries now not being opened
on the ramlib context (after advice from H&P).

- Modified internal structure of the WarpOS version, to totally safeguard
against cache conflicts (may have been causing rare random crashes).

- Changed floating point usage of the 68k versions - the 040 and 060
version now use the FPU directly, while the 020 and 030 versions
continue to use the mathieee libs (in a safer manner than before).

- All WarpOS benchmarks recomputed, since WarpOS V5 is a little bit
faster

than V4 (this datatype is a bit faster as a result).
- The 68k versions are now fractionally faster than before.
- Added benchmarks for MorphOS.

44.8 (7.9.2000)

- Added a MorphOS native version and 68k version (in 020, 030, 040 and
060 flavours) to accompany the original WarpOS version.

- Minor optimizations (code size only - no extra speed :(

44.7 (2.8.2000)

- Around 10% faster decoding of most images!
- Recompiled with VBCC 0.7d beta, which gives a slight performance

increase and smaller program binaries.
- Tweaked compiler optimization options and increased disk i/o buffer for

enhanced performance.
- Recomputed all benchmarks, to ensure correctness after a change in my

test environment (test files are now on a different HD, due to a
semi-fatal HD crash on the old partition).

44.6 (26.7.2000)

- Updated with libpng 1.0.8.

44.5 (4.7.2000)

- Updated with libpng 1.0.7.
- Slightly faster (upto 2%) in some cases.

44.4 (27.4.2000)

- Updated with libpng 1.0.6.
- Tweaked compiler options and made some optimizations, which gives a
slight performance increase when decoding 24-bit and greyscale
images (around 3% faster - 8% faster for interlaced images).

- Reworked transparency handling.

44.3 (22.1.2000)

- Fixed possible deadlock case (caused everything to freeze/lock-up)
which usually only occurred when lots of images were being decoded
simultaneously.

44.2 (9.1.2000)

- When the OS3.5 picture.datatype is in use, dithering is now switched
off (only) if the image is to be rendered to a hi/true colour screen,

WarpPNG 12 / 12

resulting in much higher performance, with negligable quality loss.
- Dispatcher now performs some extra functions, which should quash

possible stability problems.
- Corrected akPNG WarpUp benchmarks.

44.1 (3.1.2000)

- Initial release.

	WarpPNG
	WarpPNG.datatype 44.17
	Description
	Features
	System Requirements
	Installation
	Preferences Options
	Speed
	Distribution Conditions
	Disclaimer
	Acknowledgements
	Support & the Future
	About the author
	Program History

