
Version Management

with

CVS

for
vs 1.11.1p1

Per Cederqvist et al

Copyright

 1992, 1993 Signum Support AB

Permission is granted to make and distribute verbatim
opies of this manual provided the

opyright noti
e and this permission noti
e are preserved on all
opies.

Permission is granted to
opy and distribute modi�ed versions of this manual under the

onditions for verbatim
opying, provided also that the entire resulting derived work is

distributed under the terms of a permission noti
e identi
al to this one.

Permission is granted to
opy and distribute translations of this manual into another lan-

guage, under the above
onditions for modi�ed versions, ex
ept that this permission noti
e

may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Overview 1

1 Overview

This
hapter is for people who have never used
vs, and perhaps have never used version

ontrol software before.

If you are already familiar with
vs and are just trying to learn a parti
ular feature or

remember a
ertain
ommand, you
an probably skip everything here.

1.1 What is CVS?

vs is a version
ontrol system. Using it, you
an re
ord the history of your sour
e �les.

For example, bugs sometimes
reep in when software is modi�ed, and you might not

dete
t the bug until a long time after you make the modi�
ation. With
vs, you
an easily

retrieve old versions to see exa
tly whi
h
hange
aused the bug. This
an sometimes be a

big help.

You
ould of
ourse save every version of every �le you have ever
reated. This would

however waste an enormous amount of disk spa
e.
vs stores all the versions of a �le in a

single �le in a
lever way that only stores the di�eren
es between versions.

vs also helps you if you are part of a group of people working on the same proje
t.

It is all too easy to overwrite ea
h others'
hanges unless you are extremely
areful. Some

editors, like gnu Ema
s, try to make sure that the same �le is never modi�ed by two people

at the same time. Unfortunately, if someone is using another editor, that safeguard will

not work.
vs solves this problem by insulating the di�erent developers from ea
h other.

Every developer works in his own dire
tory, and
vs merges the work when ea
h developer

is done.

vs started out as a bun
h of shell s
ripts written by Di
k Grune, posted to the news-

group
omp.sour
es.unix in the volume 6 release of De
ember, 1986. While no a
tual
ode

from these shell s
ripts is present in the
urrent version of
vs mu
h of the
vs
on
i
t

resolution algorithms
ome from them.

In April, 1989, Brian Berliner designed and
oded
vs. Je� Polk later helped Brian with

the design of the
vs module and vendor bran
h support.

You
an get
vs in a variety of ways, in
luding free download from the internet. For

more information on downloading
vs and other
vs topi
s, see:

http://www.
vshome.org/

http://www.loria.fr/~molli/
vs-index.html

There is a mailing list, known as info-
vs, devoted to
vs. To subs
ribe or

unsubs
ribe write to info-
vs-request�gnu.org. If you prefer a usenet group, the

right group is
omp.software.
onfig-mgmt whi
h is for
vs dis
ussions (along with

other
on�guration management systems). In the future, it might be possible to
reate a

omp.software.
onfig-mgmt.
vs, but probably only if there is suÆ
ient
vs traÆ
 on

omp.software.
onfig-mgmt.

You
an also subs
ribe to the bug-
vs mailing list, des
ribed in more detail in Appendix H

[BUGS℄, page 157. To subs
ribe send mail to bug-
vs-request�gnu.org.

2 CVS|Con
urrent Versions System v1.11.1p1

1.2 What is CVS not?

vs
an do a lot of things for you, but it does not try to be everything for everyone.

vs is not a build system.

Though the stru
ture of your repository and modules �le intera
t with your

build system (e.g. `Makefile's), they are essentially independent.

vs does not di
tate how you build anything. It merely stores �les for retrieval

in a tree stru
ture you devise.

vs does not di
tate how to use disk spa
e in the
he
ked out working dire
to-

ries. If you write your `Makefile's or s
ripts in every dire
tory so they have to

know the relative positions of everything else, you wind up requiring the entire

repository to be
he
ked out.

If you modularize your work, and
onstru
t a build system that will share �les

(via links, mounts, VPATH in `Makefile's, et
.), you
an arrange your disk usage

however you like.

But you have to remember that any su
h system is a lot of work to
onstru
t

and maintain.
vs does not address the issues involved.

Of
ourse, you should pla
e the tools
reated to support su
h a build system

(s
ripts, `Makefile's, et
) under
vs.

Figuring out what �les need to be rebuilt when something
hanges is, again,

something to be handled outside the s
ope of
vs. One traditional approa
h

is to use make for building, and use some automated tool for generating the

dependen
ies whi
h make uses.

See Chapter 14 [Builds℄, page 83, for more information on doing builds in

onjun
tion with
vs.

vs is not a substitute for management.

Your managers and proje
t leaders are expe
ted to talk to you frequently enough

to make
ertain you are aware of s
hedules, merge points, bran
h names and

release dates. If they don't,
vs
an't help.

vs is an instrument for making sour
es dan
e to your tune. But you are the

piper and the
omposer. No instrument plays itself or writes its own musi
.

vs is not a substitute for developer
ommuni
ation.

When fa
ed with
on
i
ts within a single �le, most developers manage to re-

solve them without too mu
h e�ort. But a more general de�nition of \
on
i
t"

in
ludes problems too diÆ
ult to solve without
ommuni
ation between devel-

opers.

vs
annot determine when simultaneous
hanges within a single �le, or a
ross

a whole
olle
tion of �les, will logi
ally
on
i
t with one another. Its
on
ept

of a
on
i
t is purely textual, arising when two
hanges to the same base �le

are near enough to spook the merge (i.e. diff3)
ommand.

vs does not
laim to help at all in �guring out non-textual or distributed

on
i
ts in program logi
.

Chapter 1: Overview 3

For example: Say you
hange the arguments to fun
tion X de�ned in �le `A'. At

the same time, someone edits �le `B', adding new
alls to fun
tion X using the

old arguments. You are outside the realm of
vs's
ompeten
e.

A
quire the habit of reading spe
s and talking to your peers.

vs does not have
hange
ontrol

Change
ontrol refers to a number of things. First of all it
an mean bug-

tra
king, that is being able to keep a database of reported bugs and the sta-

tus of ea
h one (is it �xed? in what release? has the bug submitter agreed

that it is �xed?). For interfa
ing
vs to an external bug-tra
king system, see

the `r
sinfo' and `verifymsg' �les (see Appendix C [Administrative �les℄,

page 129).

Another aspe
t of
hange
ontrol is keeping tra
k of the fa
t that
hanges to

several �les were in fa
t
hanged together as one logi
al
hange. If you
he
k in

several �les in a single
vs
ommit operation,
vs then forgets that those �les

were
he
ked in together, and the fa
t that they have the same log message is

the only thing tying them together. Keeping a gnu style `ChangeLog'
an help

somewhat.

Another aspe
t of
hange
ontrol, in some systems, is the ability to keep tra
k

of the status of ea
h
hange. Some
hanges have been written by a developer,

others have been reviewed by a se
ond developer, and so on. Generally, the way

to do this with
vs is to generate a di� (using
vs diff or diff) and email it

to someone who
an then apply it using the pat
h utility. This is very
exible,

but depends on me
hanisms outside
vs to make sure nothing falls through the

ra
ks.

vs is not an automated testing program

It should be possible to enfor
e mandatory use of a testsuite using the

ommitinfo �le. I haven't heard a lot about proje
ts trying to do that or

whether there are subtle got
has, however.

vs does not have a builtin pro
ess model

Some systems provide ways to ensure that
hanges or releases go through various

steps, with various approvals as needed. Generally, one
an a

omplish this

with
vs but it might be a little more work. In some
ases you'll want to

use the `
ommitinfo', `loginfo', `r
sinfo', or `verifymsg' �les, to require

that
ertain steps be performed before
vs will allow a
he
kin. Also
onsider

whether features su
h as bran
hes and tags
an be used to perform tasks su
h

as doing work in a development tree and then merging
ertain
hanges over to

a stable tree only on
e they have been proven.

1.3 A sample session

As a way of introdu
ing
vs, we'll go through a typi
al work-session using
vs. The �rst

thing to understand is that
vs stores all �les in a
entralized repository (see Chapter 2

[Repository℄, page 7); this se
tion assumes that a repository is set up.

4 CVS|Con
urrent Versions System v1.11.1p1

Suppose you are working on a simple
ompiler. The sour
e
onsists of a handful of C

�les and a `Makefile'. The
ompiler is
alled `t
' (Trivial Compiler), and the repository is

set up so that there is a module
alled `t
'.

1.3.1 Getting the sour
e

The �rst thing you must do is to get your own working
opy of the sour
e for `t
'. For

this, you use the
he
kout
ommand:

$
vs
he
kout t

This will
reate a new dire
tory
alled `t
' and populate it with the sour
e �les.

$
d t

$ ls

CVS Makefile ba
kend.
 driver.
 frontend.
 parser.

The `CVS' dire
tory is used internally by
vs. Normally, you should not modify or remove

any of the �les in it.

You start your favorite editor, ha
k away at `ba
kend.
', and a
ouple of hours later

you have added an optimization pass to the
ompiler. A note to r
s and s

s users: There

is no need to lo
k the �les that you want to edit. See Chapter 10 [Multiple developers℄,

page 63, for an explanation.

1.3.2 Committing your
hanges

When you have
he
ked that the
ompiler is still
ompilable you de
ide to make a new

version of `ba
kend.
'. This will store your new `ba
kend.
' in the repository and make it

available to anyone else who is using that same repository.

$
vs
ommit ba
kend.

vs starts an editor, to allow you to enter a log message. You type in \Added an optimiza-

tion pass.", save the temporary �le, and exit the editor.

The environment variable $CVSEDITOR determines whi
h editor is started. If $CVSEDITOR

is not set, then if the environment variable $EDITOR is set, it will be used. If both

$CVSEDITOR and $EDITOR are not set then there is a default whi
h will vary with your

operating system, for example vi for unix or notepad for Windows NT/95.

In addition,
vs
he
ks the $VISUAL environment variable. Opinions vary on whether

this behavior is desirable and whether future releases of
vs should
he
k $VISUAL or ignore

it. You will be OK either way if you make sure that $VISUAL is either unset or set to the

same thing as $EDITOR.

When
vs starts the editor, it in
ludes a list of �les whi
h are modi�ed. For the
vs

lient, this list is based on
omparing the modi�
ation time of the �le against the mod-

i�
ation time that the �le had when it was last gotten or updated. Therefore, if a �le's

modi�
ation time has
hanged but its
ontents have not, it will show up as modi�ed. The

simplest way to handle this is simply not to worry about it|if you pro
eed with the
ommit

vs will dete
t that the
ontents are not modi�ed and treat it as an unmodi�ed �le. The

next update will
lue
vs in to the fa
t that the �le is unmodi�ed, and it will reset its

stored timestamp so that the �le will not show up in future editor sessions.

If you want to avoid starting an editor you
an spe
ify the log message on the
ommand

line using the `-m'
ag instead, like this:

Chapter 1: Overview 5

$
vs
ommit -m "Added an optimization pass" ba
kend.

1.3.3 Cleaning up

Before you turn to other tasks you de
ide to remove your working
opy of t
. One

a

eptable way to do that is of
ourse

$
d ..

$ rm -r t

but a better way is to use the release
ommand (see Se
tion A.15 [release℄, page 112):

$
d ..

$
vs release -d t

M driver.

? t

You have [1℄ altered files in this repository.

Are you sure you want to release (and delete) dire
tory `t
': n

** `release' aborted by user
hoi
e.

The release
ommand
he
ks that all your modi�
ations have been
ommitted. If

history logging is enabled it also makes a note in the history �le. See Se
tion C.11 [history

�le℄, page 140.

When you use the `-d'
ag with release, it also removes your working
opy.

In the example above, the release
ommand wrote a
ouple of lines of output. `? t
'

means that the �le `t
' is unknown to
vs. That is nothing to worry about: `t
' is the exe-

utable
ompiler, and it should not be stored in the repository. See Se
tion C.9 [
vsignore℄,

page 138, for information about how to make that warning go away. See Se
tion A.15.2

[release output℄, page 112, for a
omplete explanation of all possible output from release.

`M driver.
' is more serious. It means that the �le `driver.
' has been modi�ed sin
e

it was
he
ked out.

The release
ommand always �nishes by telling you how many modi�ed �les you have

in your working
opy of the sour
es, and then asks you for
on�rmation before deleting any

�les or making any note in the history �le.

You de
ide to play it safe and answer n

h

RET

i

when release asks for
on�rmation.

1.3.4 Viewing di�eren
es

You do not remember modifying `driver.
', so you want to see what has happened to

that �le.

$
d t

$
vs diff driver.

This
ommand runs diff to
ompare the version of `driver.
' that you
he
ked out with

your working
opy. When you see the output you remember that you added a
ommand

line option that enabled the optimization pass. You
he
k it in, and release the module.

$
vs
ommit -m "Added an optimization pass" driver.

Che
king in driver.
;

/usr/lo
al/
vsroot/t
/driver.
,v <-- driver.

new revision: 1.2; previous revision: 1.1

6 CVS|Con
urrent Versions System v1.11.1p1

done

$
d ..

$
vs release -d t

? t

You have [0℄ altered files in this repository.

Are you sure you want to release (and delete) dire
tory `t
': y

Chapter 2: The Repository 7

2 The Repository

The
vs repository stores a
omplete
opy of all the �les and dire
tories whi
h are under

version
ontrol.

Normally, you never a

ess any of the �les in the repository dire
tly. Instead, you use

vs
ommands to get your own
opy of the �les into a working dire
tory, and then work

on that
opy. When you've �nished a set of
hanges, you
he
k (or
ommit) them ba
k

into the repository. The repository then
ontains the
hanges whi
h you have made, as well

as re
ording exa
tly what you
hanged, when you
hanged it, and other su
h information.

Note that the repository is not a subdire
tory of the working dire
tory, or vi
e versa; they

should be in separate lo
ations.

vs
an a

ess a repository by a variety of means. It might be on the lo
al
omputer,

or it might be on a
omputer a
ross the room or a
ross the world. To distinguish various

ways to a

ess a repository, the repository name
an start with an a

ess method. For

example, the a

ess method :lo
al: means to a

ess a repository dire
tory, so the reposi-

tory :lo
al:/usr/lo
al/
vsroot means that the repository is in `/usr/lo
al/
vsroot'

on the
omputer running
vs. For information on other a

ess methods, see Se
tion 2.9

[Remote repositories℄, page 19.

If the a

ess method is omitted, then if the repository does not
ontain `:', then :lo
al:

is assumed. If it does
ontain `:' then either :ext: or :server: is assumed. For example,

if you have a lo
al repository in `/usr/lo
al/
vsroot', you
an use /usr/lo
al/
vsroot

instead of :lo
al:/usr/lo
al/
vsroot. But if (under Windows NT, for example) your

lo
al repository is `
:\sr
\
vsroot', then you must spe
ify the a

ess method, as in

:lo
al:
:\sr
\
vsroot.

The repository is split in two parts. `$CVSROOT/CVSROOT'
ontains administrative �les

for
vs. The other dire
tories
ontain the a
tual user-de�ned modules.

2.1 Telling CVS where your repository is

There are several ways to tell
vs where to �nd the repository. You
an name the

repository on the
ommand line expli
itly, with the -d (for "dire
tory") option:

vs -d /usr/lo
al/
vsroot
he
kout yoyodyne/t

Or you
an set the $CVSROOT environment variable to an absolute path to the root of the

repository, `/usr/lo
al/
vsroot' in this example. To set $CVSROOT,
sh and t
sh users

should have this line in their `.
shr
' or `.t
shr
' �les:

setenv CVSROOT /usr/lo
al/
vsroot

sh and bash users should instead have these lines in their `.profile' or `.bashr
':

CVSROOT=/usr/lo
al/
vsroot

export CVSROOT

A repository spe
i�ed with -d will override the $CVSROOT environment variable. On
e

you've
he
ked a working
opy out from the repository, it will remember where its repository

is (the information is re
orded in the `CVS/Root' �le in the working
opy).

The -d option and the `CVS/Root' �le both override the $CVSROOT environment variable.

If -d option di�ers from `CVS/Root', the former is used. Of
ourse, for proper operation

they should be two ways of referring to the same repository.

8 CVS|Con
urrent Versions System v1.11.1p1

2.2 How data is stored in the repository

For most purposes it isn't important how
vs stores information in the repository. In

fa
t, the format has
hanged in the past, and is likely to
hange in the future. Sin
e in

almost all
ases one a

esses the repository via
vs
ommands, su
h
hanges need not be

disruptive.

However, in some
ases it may be ne
essary to understand how
vs stores data in

the repository, for example you might need to tra
k down
vs lo
ks (see Se
tion 10.5

[Con
urren
y℄, page 67) or you might need to deal with the �le permissions appropriate for

the repository.

2.2.1 Where �les are stored within the repository

The overall stru
ture of the repository is a dire
tory tree
orresponding to the dire
tories

in the working dire
tory. For example, supposing the repository is in

/usr/lo
al/
vsroot

here is a possible dire
tory tree (showing only the dire
tories):

/usr

|

+--lo
al

| |

| +--
vsroot

| | |

| | +--CVSROOT

| (administrative files)

|

+--gnu

| |

| +--diff

| | (sour
e
ode to gnu diff)

| |

| +--r
s

| | (sour
e
ode to r
s)

| |

| +--
vs

| (sour
e
ode to
vs)

|

+--yoyodyne

|

+--t

| |

| +--man

| |

| +--testing

|

+--(other Yoyodyne software)

Chapter 2: The Repository 9

With the dire
tories are history �les for ea
h �le under version
ontrol. The name of

the history �le is the name of the
orresponding �le with `,v' appended to the end. Here is

what the repository for the `yoyodyne/t
' dire
tory might look like:

$CVSROOT

|

+--yoyodyne

| |

| +--t

| | |

+--Makefile,v

+--ba
kend.
,v

+--driver.
,v

+--frontend.
,v

+--parser.
,v

+--man

| |

| +--t
.1,v

|

+--testing

|

+--testpgm.t,v

+--test2.t,v

The history �les
ontain, among other things, enough information to re
reate any revision

of the �le, a log of all
ommit messages and the user-name of the person who
ommitted

the revision. The history �les are known as RCS �les, be
ause the �rst program to store

�les in that format was a version
ontrol system known as r
s. For a full des
ription of

the �le format, see the man page r
s�le(5), distributed with r
s, or the �le `do
/RCSFILES'

in the
vs sour
e distribution. This �le format has be
ome very
ommon|many systems

other than
vs or r
s
an at least import history �les in this format.

The r
s �les used in
vs di�er in a few ways from the standard format. The biggest

di�eren
e is magi
 bran
hes; for more information see Se
tion 5.5 [Magi
 bran
h numbers℄,

page 44. Also in
vs the valid tag names are a subset of what r
s a

epts; for
vs's rules

see Se
tion 4.4 [Tags℄, page 34.

2.2.2 File permissions

All `,v' �les are
reated read-only, and you should not
hange the permission of those

�les. The dire
tories inside the repository should be writable by the persons that have

permission to modify the �les in ea
h dire
tory. This normally means that you must
reate

a UNIX group (see group(5))
onsisting of the persons that are to edit the �les in a proje
t,

and set up the repository so that it is that group that owns the dire
tory.

This means that you
an only
ontrol a

ess to �les on a per-dire
tory basis.

Note that users must also have write a

ess to
he
k out �les, be
ause
vs needs to

reate lo
k �les (see Se
tion 10.5 [Con
urren
y℄, page 67).

Also note that users must have write a

ess to the `CVSROOT/val-tags' �le.
vs uses

it to keep tra
k of what tags are valid tag names (it is sometimes updated when tags are

used, as well as when they are
reated).

10 CVS|Con
urrent Versions System v1.11.1p1

Ea
h r
s �le will be owned by the user who last
he
ked it in. This has little signi�
an
e;

what really matters is who owns the dire
tories.

vs tries to set up reasonable �le permissions for new dire
tories that are added inside the

tree, but you must �x the permissions manually when a new dire
tory should have di�erent

permissions than its parent dire
tory. If you set the CVSUMASK environment variable that

will
ontrol the �le permissions whi
h
vs uses in
reating dire
tories and/or �les in the

repository. CVSUMASK does not a�e
t the �le permissions in the working dire
tory; su
h

�les have the permissions whi
h are typi
al for newly
reated �les, ex
ept that sometimes

vs
reates them read-only (see the se
tions on wat
hes, Se
tion 10.6.1 [Setting a wat
h℄,

page 68; -r, Se
tion A.4 [Global options℄, page 88; or CVSREAD, Appendix D [Environment

variables℄, page 143).

Note that using the
lient/server
vs (see Se
tion 2.9 [Remote repositories℄, page 19),

there is no good way to set CVSUMASK; the setting on the
lient ma
hine has no e�e
t. If you

are
onne
ting with rsh, you
an set CVSUMASK in `.bashr
' or `.
shr
', as des
ribed in the

do
umentation for your operating system. This behavior might
hange in future versions

of
vs; do not rely on the setting of CVSUMASK on the
lient having no e�e
t.

Using pserver, you will generally need stri
ter permissions on the
vsroot dire
tory

and dire
tories above it in the tree; see Se
tion 2.9.3.3 [Password authenti
ation se
urity℄,

page 24.

Some operating systems have features whi
h allow a parti
ular program to run with the

ability to perform operations whi
h the
aller of the program
ould not. For example, the

set user ID (setuid) or set group ID (setgid) features of unix or the installed image feature

of VMS.
vs was not written to use su
h features and therefore attempting to install
vs

in this fashion will provide prote
tion against only a

idental lapses; anyone who is trying

to
ir
umvent the measure will be able to do so, and depending on how you have set it

up may gain a

ess to more than just
vs. You may wish to instead
onsider pserver. It

shares some of the same attributes, in terms of possibly providing a false sense of se
urity or

opening se
urity holes wider than the ones you are trying to �x, so read the do
umentation

on pserver se
urity
arefully if you are
onsidering this option (Se
tion 2.9.3.3 [Password

authenti
ation se
urity℄, page 24).

2.2.3 File Permission issues spe
i�
 to Windows

Some �le permission issues are spe
i�
 to Windows operating systems (Windows 95,

Windows NT, and presumably future operating systems in this family. Some of the following

might apply to OS/2 but I'm not sure).

If you are using lo
al
vs and the repository is on a networked �le system whi
h is

served by the Samba SMB server, some people have reported problems with permissions.

EnablingWRITE=YES in the samba
on�guration is said to �x/workaround it. Dis
laimer:

I haven't investigated enough to know the impli
ations of enabling that option, nor do I

know whether there is something whi
h
vs
ould be doing di�erently in order to avoid the

problem. If you �nd something out, please let us know as des
ribed in Appendix H [BUGS℄,

page 157.

Chapter 2: The Repository 11

2.2.4 The atti

You will noti
e that sometimes
vs stores an r
s �le in the Atti
. For example, if the

vsroot is `/usr/lo
al/
vsroot' and we are talking about the �le `ba
kend.
' in the

dire
tory `yoyodyne/t
', then the �le normally would be in

/usr/lo
al/
vsroot/yoyodyne/t
/ba
kend.
,v

but if it goes in the atti
, it would be in

/usr/lo
al/
vsroot/yoyodyne/t
/Atti
/ba
kend.
,v

instead. It should not matter from a user point of view whether a �le is in the atti
;

vs keeps tra
k of this and looks in the atti
 when it needs to. But in
ase you want to

know, the rule is that the RCS �le is stored in the atti
 if and only if the head revision on

the trunk has state dead. A dead state means that �le has been removed, or never added,

for that revision. For example, if you add a �le on a bran
h, it will have a trunk revision

in dead state, and a bran
h revision in a non-dead state.

2.2.5 The CVS dire
tory in the repository

The `CVS' dire
tory in ea
h repository dire
tory
ontains information su
h as �le at-

tributes (in a �le
alled `CVS/fileattr'. In the future additional �les may be added to this

dire
tory, so implementations should silently ignore additional �les.

This behavior is implemented only by
vs 1.7 and later; for details see Se
tion 10.6.5

[Wat
hes Compatibility℄, page 71.

The format of the �leattr �le is a series of entries of the following form (where `{' and

`}' means the text between the bra
es
an be repeated zero or more times):

ent-type �lename <tab> attrname = attrval {; attrname = attrval} <linefeed>

ent-type is `F' for a �le, in whi
h
ase the entry spe
i�es the attributes for that �le.

ent-type is `D', and �lename empty, to spe
ify default attributes to be used for newly

added �les.

Other ent-type are reserved for future expansion.
vs 1.9 and older will delete them

any time it writes �le attributes.
vs 1.10 and later will preserve them.

Note that the order of the lines is not signi�
ant; a program writing the �leattr �le may

rearrange them at its
onvenien
e.

There is
urrently no way of quoting tabs or linefeeds in the �lename, `=' in attrname,

`;' in attrval, et
. Note: some implementations also don't handle a NUL
hara
ter in any

of the �elds, but implementations are en
ouraged to allow it.

By
onvention, attrname starting with `_' is for an attribute given spe
ial meaning by

vs; other attrnames are for user-de�ned attributes (or will be, on
e implementations start

supporting user-de�ned attributes).

Builtin attributes:

_wat
hed Present means the �le is wat
hed and should be
he
ked out read-only.

_wat
hers

Users with wat
hes for this �le. Value is wat
her > type { , wat
her > type }

where wat
her is a username, and type is zero or more of edit,unedit,
ommit

separated by `+' (that is, nothing if none; there is no "none" or "all" keyword).

12 CVS|Con
urrent Versions System v1.11.1p1

_editors Users editing this �le. Value is editor > val { , editor > val } where editor is

a username, and val is time+hostname+pathname, where time is when the
vs

edit
ommand (or equivalent) happened, and hostname and pathname are for

the working dire
tory.

Example:

Ffile1 _wat
hed=;_wat
hers=joe>edit,mary>
ommit

Ffile2 _wat
hed=;_editors=sue>8 Jan 1975+workstn1+/home/sue/
vs

D _wat
hed=

means that the �le `file1' should be
he
ked out read-only. Furthermore, joe is wat
hing

for edits and mary is wat
hing for
ommits. The �le `file2' should be
he
ked out read-

only; sue started editing it on 8 Jan 1975 in the dire
tory `/home/sue/
vs' on the ma
hine

workstn1. Future �les whi
h are added should be
he
ked out read-only. To represent this

example here, we have shown a spa
e after `D', `Ffile1', and `Ffile2', but in fa
t there

must be a single tab
hara
ter there and no spa
es.

2.2.6 CVS lo
ks in the repository

For an introdu
tion to
vs lo
ks fo
using on user-visible behavior, see Se
tion 10.5

[Con
urren
y℄, page 67. The following se
tion is aimed at people who are writing tools

whi
h want to a

ess a
vs repository without interfering with other tools a
essing the

same repository. If you �nd yourself
onfused by
on
epts des
ribed here, like read lo
k,

write lo
k, and deadlo
k, you might
onsult the literature on operating systems or databases.

Any �le in the repository with a name starting with `#
vs.rfl.' is a read lo
k. Any

�le in the repository with a name starting with `#
vs.wfl' is a write lo
k. Old versions of

vs (before
vs 1.5) also
reated �les with names starting with `#
vs.tfl', but they are

not dis
ussed here. The dire
tory `#
vs.lo
k' serves as a master lo
k. That is, one must

obtain this lo
k �rst before
reating any of the other lo
ks.

To obtain a readlo
k, �rst
reate the `#
vs.lo
k' dire
tory. This operation must be

atomi
 (whi
h should be true for
reating a dire
tory under most operating systems). If it

fails be
ause the dire
tory already existed, wait for a while and try again. After obtaining

the `#
vs.lo
k' lo
k,
reate a �le whose name is `#
vs.rfl.' followed by information of

your
hoi
e (for example, hostname and pro
ess identi�
ation number). Then remove the

`#
vs.lo
k' dire
tory to release the master lo
k. Then pro
eed with reading the repository.

When you are done, remove the `#
vs.rfl' �le to release the read lo
k.

To obtain a writelo
k, �rst
reate the `#
vs.lo
k' dire
tory, as with a readlo
k. Then

he
k that there are no �les whose names start with `#
vs.rfl.'. If there are, remove

`#
vs.lo
k', wait for a while, and try again. If there are no readers, then
reate a �le

whose name is `#
vs.wfl' followed by information of your
hoi
e (for example, hostname and

pro
ess identi�
ation number). Hang on to the `#
vs.lo
k' lo
k. Pro
eed with writing the

repository. When you are done, �rst remove the `#
vs.wfl' �le and then the `#
vs.lo
k'

dire
tory. Note that unlike the `#
vs.rfl' �le, the `#
vs.wfl' �le is just informational;

it has no e�e
t on the lo
king operation beyond what is provided by holding on to the

`#
vs.lo
k' lo
k itself.

Note that ea
h lo
k (writelo
k or readlo
k) only lo
ks a single dire
tory in the repos-

itory, in
luding `Atti
' and `CVS' but not in
luding subdire
tories whi
h represent other

Chapter 2: The Repository 13

dire
tories under version
ontrol. To lo
k an entire tree, you need to lo
k ea
h dire
tory

(note that if you fail to obtain any lo
k you need, you must release the whole tree before

waiting and trying again, to avoid deadlo
ks).

Note also that
vs expe
ts writelo
ks to
ontrol a

ess to individual `foo,v' �les. r
s

has a s
heme where the `,foo,' �le serves as a lo
k, but
vs does not implement it and so

taking out a
vs writelo
k is re
ommended. See the
omments at r
s internal lo
k�le in

the
vs sour
e
ode for further dis
ussion/rationale.

2.2.7 How �les are stored in the CVSROOT dire
tory

The `$CVSROOT/CVSROOT' dire
tory
ontains the various administrative �les. In some

ways this dire
tory is just like any other dire
tory in the repository; it
ontains r
s �les

whose names end in `,v', and many of the
vs
ommands operate on it the same way.

However, there are a few di�eren
es.

For ea
h administrative �le, in addition to the r
s �le, there is also a
he
ked out
opy

of the �le. For example, there is an r
s �le `loginfo,v' and a �le `loginfo' whi
h
ontains

the latest revision
ontained in `loginfo,v'. When you
he
k in an administrative �le,
vs

should print

vs
ommit: Rebuilding administrative file database

and update the
he
ked out
opy in `$CVSROOT/CVSROOT'. If it does not, there is something

wrong (see Appendix H [BUGS℄, page 157). To add your own �les to the �les to be updated

in this fashion, you
an add them to the `
he
koutlist' administrative �le (see Se
tion C.10

[
he
koutlist℄, page 139).

By default, the `modules' �le behaves as des
ribed above. If the modules �le is very

large, storing it as a
at text �le may make looking up modules slow (I'm not sure whether

this is as mu
h of a
on
ern now as when
vs �rst evolved this feature; I haven't seen

ben
hmarks). Therefore, by making appropriate edits to the
vs sour
e
ode one
an store

the modules �le in a database whi
h implements the ndbm interfa
e, su
h as Berkeley db

or GDBM. If this option is in use, then the modules database will be stored in the �les

`modules.db', `modules.pag', and/or `modules.dir'.

For information on the meaning of the various administrative �les, see Appendix C

[Administrative �les℄, page 129.

2.3 How data is stored in the working dire
tory

While we are dis
ussing
vs internals whi
h may be
ome visible from time to time, we

might as well talk about what
vs puts in the `CVS' dire
tories in the working dire
tories.

As with the repository,
vs handles this information and one
an usually a

ess it via
vs

ommands. But in some
ases it may be useful to look at it, and other programs, su
h as

the jCVS graphi
al user interfa
e or the VC pa
kage for ema
s, may need to look at it. Su
h

programs should follow the re
ommendations in this se
tion if they hope to be able to work

with other programs whi
h use those �les, in
luding future versions of the programs just

mentioned and the
ommand-line
vs
lient.

The `CVS' dire
tory
ontains several �les. Programs whi
h are reading this dire
tory

should silently ignore �les whi
h are in the dire
tory but whi
h are not do
umented here,

to allow for future expansion.

14 CVS|Con
urrent Versions System v1.11.1p1

The �les are stored a

ording to the text �le
onvention for the system in question. This

means that working dire
tories are not portable between systems with di�ering
onventions

for storing text �les. This is intentional, on the theory that the �les being managed by
vs

probably will not be portable between su
h systems either.

`Root' This �le
ontains the
urrent
vs root, as des
ribed in Se
tion 2.1 [Spe
ifying

a repository℄, page 7.

`Repository'

This �le
ontains the dire
tory within the repository whi
h the
urrent dire
tory

orresponds with. It
an be either an absolute pathname or a relative pathname;

vs has had the ability to read either format sin
e at least version 1.3 or so.

The relative pathname is relative to the root, and is the more sensible approa
h,

but the absolute pathname is quite
ommon and implementations should a

ept

either. For example, after the
ommand

vs -d :lo
al:/usr/lo
al/
vsroot
he
kout yoyodyne/t

`Root' will
ontain

:lo
al:/usr/lo
al/
vsroot

and `Repository' will
ontain either

/usr/lo
al/
vsroot/yoyodyne/t

or

yoyodyne/t

If the parti
ular working dire
tory does not
orrespond to a dire
tory in the

repository, then `Repository' should
ontain `CVSROOT/Emptydir'.

`Entries' This �le lists the �les and dire
tories in the working dire
tory. The �rst
hara
-

ter of ea
h line indi
ates what sort of line it is. If the
hara
ter is unre
ognized,

programs reading the �le should silently skip that line, to allow for future ex-

pansion.

If the �rst
hara
ter is `/', then the format is:

/name/revision/timestamp[+
on
i
t℄/options/tagdate

where `[' and `℄' are not part of the entry, but instead indi
ate that the `+' and

on
i
t marker are optional. name is the name of the �le within the dire
tory.

revision is the revision that the �le in the working derives from, or `0' for

an added �le, or `-' followed by a revision for a removed �le. timestamp is

the timestamp of the �le at the time that
vs
reated it; if the timestamp

di�ers with the a
tual modi�
ation time of the �le it means the �le has been

modi�ed. It is stored in the format used by the ISO C as
time() fun
tion (for

example, `Sun Apr 7 01:29:26 1996'). One may write a string whi
h is not

in that format, for example, `Result of merge', to indi
ate that the �le should

always be
onsidered to be modi�ed. This is not a spe
ial
ase; to see whether a

�le is modi�ed a program should take the timestamp of the �le and simply do a

string
ompare with timestamp. If there was a
on
i
t,
on
i
t
an be set to the

modi�
ation time of the �le after the �le has been written with
on
i
t markers

(see Se
tion 10.3 [Con
i
ts example℄, page 65). Thus if
on
i
t is subsequently

the same as the a
tual modi�
ation time of the �le it means that the user has

Chapter 2: The Repository 15

obviously not resolved the
on
i
t. options
ontains sti
ky options (for example

`-kb' for a binary �le). tagdate
ontains `T' followed by a tag name, or `D' for a

date, followed by a sti
ky tag or date. Note that if timestamp
ontains a pair

of timestamps separated by a spa
e, rather than a single timestamp, you are

dealing with a version of
vs earlier than
vs 1.5 (not do
umented here).

The timezone on the timestamp in CVS/Entries (lo
al or universal) should be

the same as the operating system stores for the timestamp of the �le itself.

For example, on Unix the �le's timestamp is in universal time (UT), so the

timestamp in CVS/Entries should be too. On vms, the �le's timestamp is in

lo
al time, so
vs on vms should use lo
al time. This rule is so that �les do

not appear to be modi�ed merely be
ause the timezone
hanged (for example,

to or from summer time).

If the �rst
hara
ter of a line in `Entries' is `D', then it indi
ates a subdire
tory.

`D' on a line all by itself indi
ates that the program whi
h wrote the `Entries'

�le does re
ord subdire
tories (therefore, if there is su
h a line and no other

lines beginning with `D', one knows there are no subdire
tories). Otherwise, the

line looks like:

D/name/�ller1/�ller2/�ller3/�ller4

where name is the name of the subdire
tory, and all the �ller �elds should be

silently ignored, for future expansion. Programs whi
h modify Entries �les

should preserve these �elds.

The lines in the `Entries' �le
an be in any order.

`Entries.Log'

This �le does not re
ord any information beyond that in `Entries', but it

does provide a way to update the information without having to rewrite the

entire `Entries' �le, in
luding the ability to preserve the information even if

the program writing `Entries' and `Entries.Log' abruptly aborts. Programs

whi
h are reading the `Entries' �le should also
he
k for `Entries.Log'. If the

latter exists, they should read `Entries' and then apply the
hanges mentioned

in `Entries.Log'. After applying the
hanges, the re
ommended pra
ti
e is

to rewrite `Entries' and then delete `Entries.Log'. The format of a line in

`Entries.Log' is a single
hara
ter
ommand followed by a spa
e followed by

a line in the format spe
i�ed for a line in `Entries'. The single
hara
ter

ommand is `A' to indi
ate that the entry is being added, `R' to indi
ate that

the entry is being removed, or any other
hara
ter to indi
ate that the entire

line in `Entries.Log' should be silently ignored (for future expansion). If the

se
ond
hara
ter of the line in `Entries.Log' is not a spa
e, then it was written

by an older version of
vs (not do
umented here).

Programs whi
h are writing rather than reading
an safely ignore `Entries.Log'

if they so
hoose.

`Entries.Ba
kup'

This is a temporary �le. Re
ommended usage is to write a new entries �le

to `Entries.Ba
kup', and then to rename it (atomi
ally, where possible) to

`Entries'.

16 CVS|Con
urrent Versions System v1.11.1p1

`Entries.Stati
'

The only relevant thing about this �le is whether it exists or not. If it exists,

then it means that only part of a dire
tory was gotten and
vs will not
reate

additional �les in that dire
tory. To
lear it, use the update
ommand with the

`-d' option, whi
h will get the additional �les and remove `Entries.Stati
'.

`Tag' This �le
ontains per-dire
tory sti
ky tags or dates. The �rst
hara
ter is `T'

for a bran
h tag, `N' for a non-bran
h tag, or `D' for a date, or another
hara
ter

to mean the �le should be silently ignored, for future expansion. This
hara
ter

is followed by the tag or date. Note that per-dire
tory sti
ky tags or dates are

used for things like applying to �les whi
h are newly added; they might not be

the same as the sti
ky tags or dates on individual �les. For general information

on sti
ky tags and dates, see Se
tion 4.9 [Sti
ky tags℄, page 38.

`Che
kin.prog'

`Update.prog'

These �les store the programs spe
i�ed by the `-i' and `-u' options in the

modules �le, respe
tively.

`Notify' This �le stores noti�
ations (for example, for edit or unedit) whi
h have not

yet been sent to the server. Its format is not yet do
umented here.

`Notify.tmp'

This �le is to `Notify' as `Entries.Ba
kup' is to `Entries'. That is, to write

`Notify', �rst write the new
ontents to `Notify.tmp' and then (atomi
ally

where possible), rename it to `Notify'.

`Base' If wat
hes are in use, then an edit
ommand stores the original
opy of the �le

in the `Base' dire
tory. This allows the unedit
ommand to operate even if it

is unable to
ommuni
ate with the server.

`Baserev' The �le lists the revision for ea
h of the �les in the `Base' dire
tory. The format

is:

Bname/rev/expansion

where expansion should be ignored, to allow for future expansion.

`Baserev.tmp'

This �le is to `Baserev' as `Entries.Ba
kup' is to `Entries'. That is, to write

`Baserev', �rst write the new
ontents to `Baserev.tmp' and then (atomi
ally

where possible), rename it to `Baserev'.

`Template'

This �le
ontains the template spe
i�ed by the `r
sinfo' �le (see Se
tion C.8

[r
sinfo℄, page 138). It is only used by the
lient; the non-
lient/server
vs

onsults `r
sinfo' dire
tly.

2.4 The administrative �les

The dire
tory `$CVSROOT/CVSROOT'
ontains some administrative �les. See Appendix C

[Administrative �les℄, page 129, for a
omplete des
ription. You
an use
vs without any

Chapter 2: The Repository 17

of these �les, but some
ommands work better when at least the `modules' �le is properly

set up.

The most important of these �les is the `modules' �le. It de�nes all modules in the

repository. This is a sample `modules' �le.

CVSROOT CVSROOT

modules CVSROOT modules

vs gnu/
vs

r
s gnu/r
s

diff gnu/diff

t
 yoyodyne/t

The `modules' �le is line oriented. In its simplest form ea
h line
ontains the name of

the module, whitespa
e, and the dire
tory where the module resides. The dire
tory is a

path relative to $CVSROOT. The last four lines in the example above are examples of su
h

lines.

The line that de�nes the module
alled `modules' uses features that are not explained

here. See Se
tion C.1 [modules℄, page 129, for a full explanation of all the available features.

2.4.1 Editing administrative �les

You edit the administrative �les in the same way that you would edit any other module.

Use `
vs
he
kout CVSROOT' to get a working
opy, edit it, and
ommit your
hanges in

the normal way.

It is possible to
ommit an erroneous administrative �le. You
an often �x the error and

he
k in a new revision, but sometimes a parti
ularly bad error in the administrative �le

makes it impossible to
ommit new revisions.

2.5 Multiple repositories

In some situations it is a good idea to have more than one repository, for instan
e if you

have two development groups that work on separate proje
ts without sharing any
ode. All

you have to do to have several repositories is to spe
ify the appropriate repository, using

the CVSROOT environment variable, the `-d' option to
vs, or (on
e you have
he
ked out a

working dire
tory) by simply allowing
vs to use the repository that was used to
he
k out

the working dire
tory (see Se
tion 2.1 [Spe
ifying a repository℄, page 7).

The big advantage of having multiple repositories is that they
an reside on di�erent

servers. With
vs version 1.10, a single
ommand
annot re
urse into dire
tories from

di�erent repositories. With development versions of
vs, you
an
he
k out
ode from

multiple servers into your working dire
tory.
vs will re
urse and handle all the details

of making
onne
tions to as many server ma
hines as ne
essary to perform the requested

ommand. Here is an example of how to set up a working dire
tory:

vs -d server1:/
vs
o dir1

d dir1

vs -d server2:/root
o sdir

vs update

The
vs
o
ommands set up the working dire
tory, and then the
vs update
ommand

will
onta
t server2, to update the dir1/sdir subdire
tory, and server1, to update everything

else.

18 CVS|Con
urrent Versions System v1.11.1p1

2.6 Creating a repository

To set up a
vs repository, �rst
hoose the ma
hine and disk on whi
h you want to store

the revision history of the sour
e �les. CPU and memory requirements are modest, so most

ma
hines should be adequate. For details see Se
tion 2.9.1 [Server requirements℄, page 19.

To estimate disk spa
e requirements, if you are importing RCS �les from another system,

the size of those �les is the approximate initial size of your repository, or if you are starting

without any version history, a rule of thumb is to allow for the server approximately three

times the size of the
ode to be under
vs for the repository (you will eventually outgrow

this, but not for a while). On the ma
hines on whi
h the developers will be working, you'll

want disk spa
e for approximately one working dire
tory for ea
h developer (either the

entire tree or a portion of it, depending on what ea
h developer uses).

The repository should be a

essible (dire
tly or via a networked �le system) from all

ma
hines whi
h want to use
vs in server or lo
al mode; the
lient ma
hines need not have

any a

ess to it other than via the
vs proto
ol. It is not possible to use
vs to read from

a repository whi
h one only has read a

ess to;
vs needs to be able to
reate lo
k �les (see

Se
tion 10.5 [Con
urren
y℄, page 67).

To
reate a repository, run the
vs init
ommand. It will set up an empty repository in

the
vs root spe
i�ed in the usual way (see Chapter 2 [Repository℄, page 7). For example,

vs -d /usr/lo
al/
vsroot init

vs init is
areful to never overwrite any existing �les in the repository, so no harm is

done if you run
vs init on an already set-up repository.

vs init will enable history logging; if you don't want that, remove the history �le after

running
vs init. See Se
tion C.11 [history �le℄, page 140.

2.7 Ba
king up a repository

There is nothing parti
ularly magi
al about the �les in the repository; for the most part

it is possible to ba
k them up just like any other �les. However, there are a few issues to

onsider.

The �rst is that to be paranoid, one should either not use
vs during the ba
kup, or have

the ba
kup program lo
k
vs while doing the ba
kup. To not use
vs, you might forbid

logins to ma
hines whi
h
an a

ess the repository, turn o� your
vs server, or similar

me
hanisms. The details would depend on your operating system and how you have
vs

set up. To lo
k
vs, you would
reate `#
vs.rfl' lo
ks in ea
h repository dire
tory. See

Se
tion 10.5 [Con
urren
y℄, page 67, for more on
vs lo
ks. Having said all this, if you just

ba
k up without any of these pre
autions, the results are unlikely to be parti
ularly dire.

Restoring from ba
kup, the repository might be in an in
onsistent state, but this would not

be parti
ularly hard to �x manually.

When you restore a repository from ba
kup, assuming that
hanges in the repository

were made after the time of the ba
kup, working dire
tories whi
h were not a�e
ted by the

failure may refer to revisions whi
h no longer exist in the repository. Trying to run
vs

in su
h dire
tories will typi
ally produ
e an error message. One way to get those
hanges

ba
k into the repository is as follows:

� Get a new working dire
tory.

Chapter 2: The Repository 19

� Copy the �les from the working dire
tory from before the failure over to the new

working dire
tory (do not
opy the
ontents of the `CVS' dire
tories, of
ourse).

� Working in the new working dire
tory, use
ommands su
h as
vs update and
vs diff

to �gure out what has
hanged, and then when you are ready,
ommit the
hanges into

the repository.

2.8 Moving a repository

Just as ba
king up the �les in the repository is pretty mu
h like ba
king up any other

�les, if you need to move a repository from one pla
e to another it is also pretty mu
h like

just moving any other
olle
tion of �les.

The main thing to
onsider is that working dire
tories point to the repository. The

simplest way to deal with a moved repository is to just get a fresh working dire
tory after

the move. Of
ourse, you'll want to make sure that the old working dire
tory had been

he
ked in before the move, or you �gured out some other way to make sure that you

don't lose any
hanges. If you really do want to reuse the existing working dire
tory,

it should be possible with manual surgery on the `CVS/Repository' �les. You
an see

Se
tion 2.3 [Working dire
tory storage℄, page 13, for information on the `CVS/Repository'

and `CVS/Root' �les, but unless you are sure you want to bother, it probably isn't worth it.

2.9 Remote repositories

Your working
opy of the sour
es
an be on a di�erent ma
hine than the repository.

Using
vs in this manner is known as
lient/server operation. You run
vs on a ma
hine

whi
h
an mount your working dire
tory, known as the
lient, and tell it to
ommuni
ate to

a ma
hine whi
h
an mount the repository, known as the server. Generally, using a remote

repository is just like using a lo
al one, ex
ept that the format of the repository name is:

:method:[[user℄[:password℄�℄hostname[:[port℄℄/path/to/repository

Spe
ifying a password in the repository name is not re
ommended during
he
kout, sin
e

this will
ause
vs to store a
leartext
opy of the password in ea
h
reated dire
tory.
vs

login �rst instead (see Se
tion 2.9.3.2 [Password authenti
ation
lient℄, page 23).

The details of exa
tly what needs to be set up depend on how you are
onne
ting to the

server.

If method is not spe
i�ed, and the repository name
ontains `:', then the default is ext

or server, depending on your platform; both are des
ribed in Se
tion 2.9.2 [Conne
ting via

rsh℄, page 20.

2.9.1 Server requirements

The qui
k answer to what sort of ma
hine is suitable as a server is that requirements

are modest|a server with 32M of memory or even less
an handle a fairly large sour
e tree

with a fair amount of a
tivity.

The real answer, of
ourse, is more
ompli
ated. Estimating the known areas of large

memory
onsumption should be suÆ
ient to estimate memory requirements. There are two

su
h areas do
umented here; other memory
onsumption should be small by
omparison (if

20 CVS|Con
urrent Versions System v1.11.1p1

you �nd that is not the
ase, let us know, as des
ribed in Appendix H [BUGS℄, page 157,

so we
an update this do
umentation).

The �rst area of big memory
onsumption is large
he
kouts, when using the
vs server.

The server
onsists of two pro
esses for ea
h
lient that it is serving. Memory
onsumption

on the
hild pro
ess should remain fairly small. Memory
onsumption on the parent pro
ess,

parti
ularly if the network
onne
tion to the
lient is slow,
an be expe
ted to grow to

slightly more than the size of the sour
es in a single dire
tory, or two megabytes, whi
hever

is larger.

Multiplying the size of ea
h
vs server by the number of servers whi
h you expe
t to

have a
tive at one time should give an idea of memory requirements for the server. For the

most part, the memory
onsumed by the parent pro
ess probably
an be swap spa
e rather

than physi
al memory.

The se
ond area of large memory
onsumption is diff, when
he
king in large �les. This

is required even for binary �les. The rule of thumb is to allow about ten times the size of the

largest �le you will want to
he
k in, although �ve times may be adequate. For example,

if you want to
he
k in a �le whi
h is 10 megabytes, you should have 100 megabytes of

memory on the ma
hine doing the
he
kin (the server ma
hine for
lient/server, or the

ma
hine running
vs for non-
lient/server). This
an be swap spa
e rather than physi
al

memory. Be
ause the memory is only required brie
y, there is no parti
ular need to allow

memory for more than one su
h
he
kin at a time.

Resour
e
onsumption for the
lient is even more modest|any ma
hine with enough

apa
ity to run the operating system in question should have little trouble.

For information on disk spa
e requirements, see Se
tion 2.6 [Creating a repository℄,

page 18.

2.9.2 Conne
ting with rsh

vs uses the `rsh' proto
ol to perform these operations, so the remote user host needs

to have a `.rhosts' �le whi
h grants a

ess to the lo
al user.

For example, suppose you are the user `mozart' on the lo
al ma
hine `toe.example.
om',

and the server ma
hine is `faun.example.org'. On faun, put the following line into the �le

`.rhosts' in `ba
h''s home dire
tory:

toe.example.
om mozart

Then test that rsh is working with

rsh -l ba
h faun.example.org 'e
ho $PATH'

Next you have to make sure that rsh will be able to �nd the server. Make sure that

the path whi
h rsh printed in the above example in
ludes the dire
tory
ontaining a pro-

gram named
vs whi
h is the server. You need to set the path in `.bashr
', `.
shr
',

et
., not `.login' or `.profile'. Alternately, you
an set the environment variable CVS_

SERVER on the
lient ma
hine to the �lename of the server you want to use, for example

`/usr/lo
al/bin/
vs-1.6'.

There is no need to edit `inetd.
onf' or start a
vs server daemon.

There are two a

ess methods that you use in CVSROOT for rsh. :server: spe
i�es an

internal rsh
lient, whi
h is supported only by some
vs ports. :ext: spe
i�es an external

Chapter 2: The Repository 21

rsh program. By default this is rsh but you may set the CVS_RSH environment variable to

invoke another program whi
h
an a

ess the remote server (for example, remsh on HP-UX

9 be
ause rsh is something di�erent). It must be a program whi
h
an transmit data to

and from the server without modifying it; for example the Windows NT rsh is not suitable

sin
e it by default translates between CRLF and LF. The OS/2
vs port has a ha
k to pass

`-b' to rsh to get around this, but sin
e this
ould potentially
ause problems for programs

other than the standard rsh, it may
hange in the future. If you set CVS_RSH to SSH or some

other rsh repla
ement, the instru
tions in the rest of this se
tion
on
erning `.rhosts' and

so on are likely to be inappli
able;
onsult the do
umentation for your rsh repla
ement.

Continuing our example, supposing you want to a

ess the module `foo' in the repository

`/usr/lo
al/
vsroot/', on ma
hine `faun.example.org', you are ready to go:

vs -d :ext:ba
h�faun.example.org/usr/lo
al/
vsroot
he
kout foo

(The `ba
h�'
an be omitted if the username is the same on both the lo
al and remote

hosts.)

2.9.3 Dire
t
onne
tion with password authenti
ation

The
vs
lient
an also
onne
t to the server using a password proto
ol. This is parti
-

ularly useful if using rsh is not feasible (for example, the server is behind a �rewall), and

Kerberos also is not available.

To use this method, it is ne
essary to make some adjustments on both the server and

lient sides.

2.9.3.1 Setting up the server for password authenti
ation

First of all, you probably want to tighten the permissions on the `$CVSROOT' and

`$CVSROOT/CVSROOT' dire
tories. See Se
tion 2.9.3.3 [Password authenti
ation se
urity℄,

page 24, for more details.

On the server side, the �le `/et
/inetd.
onf' needs to be edited so inetd knows to run

the
ommand
vs pserver when it re
eives a
onne
tion on the right port. By default, the

port number is 2401; it would be di�erent if your
lient were
ompiled with CVS_AUTH_PORT

de�ned to something else, though. This
an also be sep
i�ed in the CVSROOT variable

(see Se
tion 2.9 [Remote repositories℄, page 19) or overridden with the CVS CLIENT PORT

environment variable (see Appendix D [Environment variables℄, page 143).

If your inetd allows raw port numbers in `/et
/inetd.
onf', then the following (all on

a single line in `inetd.
onf') should be suÆ
ient:

2401 stream t
p nowait root /usr/lo
al/bin/
vs

vs -f --allow-root=/usr/
vsroot pserver

You
ould also use the `-T' option to spe
ify a temporary dire
tory.

The `--allow-root' option spe
i�es the allowable
vsroot dire
tory. Clients whi
h

attempt to use a di�erent
vsroot dire
tory will not be allowed to
onne
t. If there is more

than one
vsroot dire
tory whi
h you want to allow, repeat the option. (Unfortunately,

many versions of inetd have very small limits on the number of arguments and/or the total

length of the
ommand. The usual solution to this problem is to have inetd run a shell

s
ript whi
h then invokes
vs with the ne
essary arguments.)

22 CVS|Con
urrent Versions System v1.11.1p1

If your inetd wants a symboli
 servi
e name instead of a raw port number, then put

this in `/et
/servi
es':

vspserver 2401/t
p

and put
vspserver instead of 2401 in `inetd.
onf'.

On
e the above is taken
are of, restart your inetd, or do whatever is ne
essary to for
e

it to reread its initialization �les.

If you are having trouble setting this up, see Se
tion F.2 [Conne
tion℄, page 152.

Be
ause the
lient stores and transmits passwords in
leartext (almost|see

Se
tion 2.9.3.3 [Password authenti
ation se
urity℄, page 24, for details), a separate
vs

password �le is generally used, so people don't
ompromise their regular passwords when

they a

ess the repository. This �le is `$CVSROOT/CVSROOT/passwd' (see Se
tion 2.4 [Intro

administrative �les℄, page 16). It uses a
olon-separated format, similar to `/et
/passwd'

on Unix systems, ex
ept that it has fewer �elds:
vs username, optional password, and an

optional system username for
vs to run as if authenti
ation su

eeds. Here is an example

`passwd' �le with �ve entries:

anonymous:

ba
h:ULtgRLXo7NRxs

spwang:1sOp854gDF3DY

melissa:tGX1fS8sun6rY:pub
vs

qproj:XR4EZ
Es0szik:pub
vs

(The passwords are en
rypted a

ording to the standard Unix
rypt() fun
tion, so it is

possible to paste in passwords dire
tly from regular Unix `/et
/passwd' �les.)

The �rst line in the example will grant a

ess to any
vs
lient attempting to authenti-

ate as user anonymous, no matter what password they use, in
luding an empty password.

(This is typi
al for sites granting anonymous read-only a

ess; for information on how to

do the "read-only" part, see Se
tion 2.10 [Read-only a

ess℄, page 26.)

The se
ond and third lines will grant a

ess to ba
h and spwang if they supply their

respe
tive plaintext passwords.

The fourth line will grant a

ess to melissa, if she supplies the
orre
t password, but

her
vs operations will a
tually run on the server side under the system user pub
vs. Thus,

there need not be any system user named melissa, but there must be one named pub
vs.

The �fth line shows that system user identities
an be shared: any
lient who su

essfully

authenti
ates as qproj will a
tually run as pub
vs, just as melissa does. That way you

ould
reate a single, shared system user for ea
h proje
t in your repository, and give ea
h

developer their own line in the `$CVSROOT/CVSROOT/passwd' �le. The
vs username on ea
h

line would be di�erent, but the system username would be the same. The reason to have

di�erent
vs usernames is that
vs will log their a
tions under those names: when melissa

ommits a
hange to a proje
t, the
he
kin is re
orded in the proje
t's history under the

name melissa, not pub
vs. And the reason to have them share a system username is so

that you
an arrange permissions in the relevant area of the repository su
h that only that

a

ount has write-permission there.

If the system-user �eld is present, all password-authenti
ated
vs
ommands run as

that user; if no system user is spe
i�ed,
vs simply takes the
vs username as the system

username and runs
ommands as that user. In either
ase, if there is no su
h user on the

Chapter 2: The Repository 23

system, then the
vs operation will fail (regardless of whether the
lient supplied a valid

password).

The password and system-user �elds
an both be omitted (and if the system-user �eld

is omitted, then also omit the
olon that would have separated it from the en
rypted

password). For example, this would be a valid `$CVSROOT/CVSROOT/passwd' �le:

anonymous::pub
vs

fish:rKa5jzULzmhOo:kfogel

sussman:1sOp854gDF3DY

When the password �eld is omitted or empty, then the
lient's authenti
ation attempt

will su

eed with any password, in
luding the empty string. However, the
olon after the

vs username is always ne
essary, even if the password is empty.

vs
an also fall ba
k to use system authenti
ation. When authenti
ating a password,

the server �rst
he
ks for the user in the `$CVSROOT/CVSROOT/passwd' �le. If it �nds the

user, it will use that entry for authenti
ation as des
ribed above. But if it does not �nd the

user, or if the
vs `passwd' �le does not exist, then the server
an try to authenti
ate the

username and password using the operating system's user-lookup routines (this "fallba
k"

behavior
an be disabled by setting SystemAuth=no in the
vs `
onfig' �le, see Se
tion C.13

[
on�g℄, page 141). Be aware, however, that falling ba
k to system authenti
ation might

be a se
urity risk:
vs operations would then be authenti
ated with that user's regular

login password, and the password
ies a
ross the network in plaintext. See Se
tion 2.9.3.3

[Password authenti
ation se
urity℄, page 24 for more on this.

Right now, the only way to put a password in the
vs `passwd' �le is to paste it there

from somewhere else. Someday, there may be a
vs passwd
ommand.

Unlike many of the �les in `$CVSROOT/CVSROOT', it is normal to edit the `passwd' �le

in-pla
e, rather than via
vs. This is be
ause of the possible se
urity risks of having the

`passwd' �le
he
ked out to people's working
opies. If you do want to in
lude the `passwd'

�le in
he
kouts of `$CVSROOT/CVSROOT', see Se
tion C.10 [
he
koutlist℄, page 139.

2.9.3.2 Using the
lient with password authenti
ation

To run a
vs
ommand on a remote repository via the password-authenti
ating server,

one spe
i�es the pserver proto
ol, optional username, repository host, an optional port

number, and path to the repository. For example:

vs -d :pserver:faun.example.org:/usr/lo
al/
vsroot
he
kout someproj

or

CVSROOT=:pserver:ba
h�faun.example.org:2401/usr/lo
al/
vsroot

vs
he
kout someproj

However, unless you're
onne
ting to a publi
-a

ess repository (i.e., one where that

username doesn't require a password), you'll need to supply a password or log in �rst.

Logging in veri�es your password with the repository and stores it in a �le. It's done with

the login
ommand, whi
h will prompt you intera
tively for the password if you didn't

supply one as part of $CVSROOT:

vs -d :pserver:ba
h�faun.example.org:/usr/lo
al/
vsroot login

CVS password:

or

24 CVS|Con
urrent Versions System v1.11.1p1

vs -d :pserver:ba
h:p4ss30rd�faun.example.org:/usr/lo
al/
vsroot login

After you enter the password,
vs veri�es it with the server. If the veri�
ation su
-

eeds, then that
ombination of username, host, repository, and password is permanently

re
orded, so future transa
tions with that repository won't require you to run
vs login.

(If veri�
ation fails,
vs will exit
omplaining that the password was in
orre
t, and nothing

will be re
orded.)

The re
ords are stored, by default, in the �le `$HOME/.
vspass'. That �le's format

is human-readable, and to a degree human-editable, but note that the passwords are not

stored in
leartext|they are trivially en
oded to prote
t them from "inno
ent"
ompromise

(i.e., inadvertent viewing by a system administrator or other non-mali
ious person).

You
an
hange the default lo
ation of this �le by setting the CVS_PASSFILE environment

variable. If you use this variable, make sure you set it before
vs login is run. If you were

to set it after running
vs login, then later
vs
ommands would be unable to look up the

password for transmission to the server.

On
e you have logged in, all
vs
ommands using that remote repository and username

will authenti
ate with the stored password. So, for example

vs -d :pserver:ba
h�faun.example.org:/usr/lo
al/
vsroot
he
kout foo

should just work (unless the password
hanges on the server side, in whi
h
ase you'll

have to re-run
vs login).

Note that if the `:pserver:' were not present in the repository spe
i�
ation,
vs would

assume it should use rsh to
onne
t with the server instead (see Se
tion 2.9.2 [Conne
ting

via rsh℄, page 20).

Of
ourse, on
e you have a working
opy
he
ked out and are running
vs
ommands

from within it, there is no longer any need to spe
ify the repository expli
itly, be
ause
vs

an dedu
e the repository from the working
opy's `CVS' subdire
tory.

The password for a given remote repository
an be removed from the CVS_PASSFILE by

using the
vs logout
ommand.

2.9.3.3 Se
urity
onsiderations with password authenti
ation

The passwords are stored on the
lient side in a trivial en
oding of the
leartext, and

transmitted in the same en
oding. The en
oding is done only to prevent inadvertent pass-

word
ompromises (i.e., a system administrator a

identally looking at the �le), and will

not prevent even a naive atta
ker from gaining the password.

The separate
vs password �le (see Se
tion 2.9.3.1 [Password authenti
ation server℄,

page 21) allows people to use a di�erent password for repository a

ess than for login

a

ess. On the other hand, on
e a user has non-read-only a

ess to the repository, she
an

exe
ute programs on the server system through a variety of means. Thus, repository a

ess

implies fairly broad system a

ess as well. It might be possible to modify
vs to prevent

that, but no one has done so as of this writing.

Note that be
ause the `$CVSROOT/CVSROOT' dire
tory
ontains `passwd' and other �les

whi
h are used to
he
k se
urity, you must
ontrol the permissions on this dire
tory as

tightly as the permissions on `/et
'. The same applies to the `$CVSROOT' dire
tory itself

and any dire
tory above it in the tree. Anyone who has write a

ess to su
h a dire
tory

Chapter 2: The Repository 25

will have the ability to be
ome any user on the system. Note that these permissions are

typi
ally tighter than you would use if you are not using pserver.

In summary, anyone who gets the password gets repository a

ess (whi
h may imply

some measure of general system a

ess as well). The password is available to anyone who

an sni� network pa
kets or read a prote
ted (i.e., user read-only) �le. If you want real

se
urity, get Kerberos.

2.9.4 Dire
t
onne
tion with GSSAPI

GSSAPI is a generi
 interfa
e to network se
urity systems su
h as Kerberos 5. If you

have a working GSSAPI library, you
an have
vs
onne
t via a dire
t t
p
onne
tion,

authenti
ating with GSSAPI.

To do this,
vs needs to be
ompiled with GSSAPI support; when
on�guring
vs it

tries to dete
t whether GSSAPI libraries using kerberos version 5 are present. You
an also

use the `--with-gssapi'
ag to
on�gure.

The
onne
tion is authenti
ated using GSSAPI, but the message stream is not authen-

ti
ated by default. You must use the -a global option to request stream authenti
ation.

The data transmitted is not en
rypted by default. En
ryption support must be
ompiled

into both the
lient and the server; use the `--enable-en
rypt'
on�gure option to turn it

on. You must then use the -x global option to request en
ryption.

GSSAPI
onne
tions are handled on the server side by the same server whi
h handles

the password authenti
ation server; see Se
tion 2.9.3.1 [Password authenti
ation server℄,

page 21. If you are using a GSSAPI me
hanism su
h as Kerberos whi
h provides for

strong authenti
ation, you will probably want to disable the ability to authenti
ate via

leartext passwords. To do so,
reate an empty `CVSROOT/passwd' password �le, and set

SystemAuth=no in the
on�g �le (see Se
tion C.13 [
on�g℄, page 141).

The GSSAPI server uses a prin
ipal name of
vs/hostname, where hostname is the

anoni
al name of the server host. You will have to set this up as required by your GSSAPI

me
hanism.

To
onne
t using GSSAPI, use `:gserver:'. For example,

vs -d :gserver:faun.example.org:/usr/lo
al/
vsroot
he
kout foo

2.9.5 Dire
t
onne
tion with kerberos

The easiest way to use kerberos is to use the kerberos rsh, as des
ribed in Se
tion 2.9.2

[Conne
ting via rsh℄, page 20. The main disadvantage of using rsh is that all the data needs

to pass through additional programs, so it may be slower. So if you have kerberos installed

you
an
onne
t via a dire
t t
p
onne
tion, authenti
ating with kerberos.

This se
tion
on
erns the kerberos network se
urity system, version 4. Kerberos version 5

is supported via the GSSAPI generi
 network se
urity interfa
e, as des
ribed in the previous

se
tion.

To do this,
vs needs to be
ompiled with kerberos support; when
on�guring
vs it tries

to dete
t whether kerberos is present or you
an use the `--with-krb4'
ag to
on�gure.

The data transmitted is not en
rypted by default. En
ryption support must be
ompiled

into both the
lient and server; use the `--enable-en
ryption'
on�gure option to turn it

on. You must then use the -x global option to request en
ryption.

26 CVS|Con
urrent Versions System v1.11.1p1

You need to edit `inetd.
onf' on the server ma
hine to run
vs kserver. The
lient

uses port 1999 by default; if you want to use another port spe
ify it in the CVSROOT (see

Se
tion 2.9 [Remote repositories℄, page 19) or the CVS_CLIENT_PORT environment variable

on the
lient.

When you want to use
vs, get a ti
ket in the usual way (generally kinit); it must be

a ti
ket whi
h allows you to log into the server ma
hine. Then you are ready to go:

vs -d :kserver:faun.example.org:/usr/lo
al/
vsroot
he
kout foo

Previous versions of
vs would fall ba
k to a
onne
tion via rsh; this version will not do

so.

2.9.6 Conne
ting with fork

This a

ess method allows you to
onne
t to a repository on your lo
al disk via the

remote proto
ol. In other words it does pretty mu
h the same thing as :lo
al:, but

various quirks, bugs and the like are those of the remote
vs rather than the lo
al
vs.

For day-to-day operations you might prefer either :lo
al: or :fork:, depending on your

preferen
es. Of
ourse :fork:
omes in parti
ularly handy in testing or debugging
vs and

the remote proto
ol. Spe
i�
ally, we avoid all of the network-related setup/
on�guration,

timeouts, and authenti
ation inherent in the other remote a

ess methods but still
reate

a
onne
tion whi
h uses the remote proto
ol.

To
onne
t using the fork method, use `:fork:' and the pathname to your lo
al repos-

itory. For example:

vs -d :fork:/usr/lo
al/
vsroot
he
kout foo

As with :ext:, the server is
alled `
vs' by default, or the value of the CVS_SERVER

environment variable.

2.10 Read-only repository a

ess

It is possible to grant read-only repository a

ess to people using the password-

authenti
ated server (see Se
tion 2.9.3 [Password authenti
ated℄, page 21). (The other

a

ess methods do not have expli
it support for read-only users be
ause those methods

all assume login a

ess to the repository ma
hine anyway, and therefore the user
an do

whatever lo
al �le permissions allow her to do.)

A user who has read-only a

ess
an do only those
vs operations whi
h do not modify

the repository, ex
ept for
ertain \administrative" �les (su
h as lo
k �les and the history

�le). It may be desirable to use this feature in
onjun
tion with user-aliasing (see Se
-

tion 2.9.3.1 [Password authenti
ation server℄, page 21).

Unlike with previous versions of
vs, read-only users should be able merely to read the

repository, and not to exe
ute programs on the server or otherwise gain unexpe
ted levels

of a

ess. Or to be more a

urate, the known holes have been plugged. Be
ause this feature

is new and has not re
eived a
omprehensive se
urity audit, you should use whatever level

of
aution seems warranted given your attitude
on
erning se
urity.

There are two ways to spe
ify read-only a

ess for a user: by in
lusion, and by ex
lusion.

"In
lusion" means listing that user spe
i�
ally in the `$CVSROOT/CVSROOT/readers' �le,

whi
h is simply a newline-separated list of users. Here is a sample `readers' �le:

Chapter 2: The Repository 27

melissa

splotnik

jrandom

(Don't forget the newline after the last user.)

"Ex
lusion" means expli
itly listing everyone who has write a

ess|if the �le

$CVSROOT/CVSROOT/writers

exists, then only those users listed in it have write a

ess, and everyone else has read-only

a

ess (of
ourse, even the read-only users still need to be listed in the
vs `passwd' �le).

The `writers' �le has the same format as the `readers' �le.

Note: if your
vs `passwd' �le maps
vs users onto system users (see Se
tion 2.9.3.1

[Password authenti
ation server℄, page 21), make sure you deny or grant read-only a

ess

using the
vs usernames, not the system usernames. That is, the `readers' and `writers'

�les
ontain
vs usernames, whi
h may or may not be the same as system usernames.

Here is a
omplete des
ription of the server's behavior in de
iding whether to grant

read-only or read-write a

ess:

If `readers' exists, and this user is listed in it, then she gets read-only a

ess. Or if

`writers' exists, and this user is NOT listed in it, then she also gets read-only a

ess (this

is true even if `readers' exists but she is not listed there). Otherwise, she gets full read-write

a

ess.

Of
ourse there is a
on
i
t if the user is listed in both �les. This is resolved in the more

onservative way, it being better to prote
t the repository too mu
h than too little: su
h a

user gets read-only a

ess.

2.11 Temporary dire
tories for the server

While running, the
vs server
reates temporary dire
tories. They are named

vs-servpid

where pid is the pro
ess identi�
ation number of the server. They are lo
ated in the

dire
tory spe
i�ed by the TMPDIR environment variable (see Appendix D [Environment

variables℄, page 143), the `-T' global option (see Se
tion A.4 [Global options℄, page 88), or

failing that `/tmp'.

In most
ases the server will remove the temporary dire
tory when it is done, whether

it �nishes normally or abnormally. However, there are a few
ases in whi
h the server does

not or
annot remove the temporary dire
tory, for example:

� If the server aborts due to an internal server error, it may preserve the dire
tory to aid

in debugging

� If the server is killed in a way that it has no way of
leaning up (most notably, `kill

-KILL' on unix).

� If the system shuts down without an orderly shutdown, whi
h tells the server to
lean

up.

In
ases su
h as this, you will need to manually remove the `
vs-servpid' dire
tories.

As long as there is no server running with pro
ess identi�
ation number pid, it is safe to do

so.

28 CVS|Con
urrent Versions System v1.11.1p1

Chapter 3: Starting a proje
t with CVS 29

3 Starting a proje
t with CVS

Be
ause renaming �les and moving them between dire
tories is somewhat in
onvenient,

the �rst thing you do when you start a new proje
t should be to think through your �le

organization. It is not impossible to rename or move �les, but it does in
rease the potential

for
onfusion and
vs does have some quirks parti
ularly in the area of renaming dire
tories.

See Se
tion 7.4 [Moving �les℄, page 56.

What to do next depends on the situation at hand.

3.1 Setting up the �les

The �rst step is to
reate the �les inside the repository. This
an be done in a
ouple of

di�erent ways.

3.1.1 Creating a dire
tory tree from a number of �les

When you begin using
vs, you will probably already have several proje
ts that
an

be put under
vs
ontrol. In these
ases the easiest way is to use the import
om-

mand. An example is probably the easiest way to explain how to use it. If the �les

you want to install in
vs reside in `wdir', and you want them to appear in the repository

as `$CVSROOT/yoyodyne/rdir', you
an do this:

$
d wdir

$
vs import -m "Imported sour
es" yoyodyne/rdir yoyo start

Unless you supply a log message with the `-m'
ag,
vs starts an editor and prompts for

a message. The string `yoyo' is a vendor tag, and `start' is a release tag. They may �ll no

purpose in this
ontext, but sin
e
vs requires them they must be present. See Chapter 13

[Tra
king sour
es℄, page 79, for more information about them.

You
an now verify that it worked, and remove your original sour
e dire
tory.

$
d ..

$
vs
he
kout yoyodyne/rdir # Explanation below

$ diff -r wdir yoyodyne/rdir

$ rm -r wdir

Erasing the original sour
es is a good idea, to make sure that you do not a

identally edit

them in wdir, bypassing
vs. Of
ourse, it would be wise to make sure that you have a

ba
kup of the sour
es before you remove them.

The
he
kout
ommand
an either take a module name as argument (as it has done in

all previous examples) or a path name relative to $CVSROOT, as it did in the example above.

It is a good idea to
he
k that the permissions
vs sets on the dire
tories inside $CVSROOT

are reasonable, and that they belong to the proper groups. See Se
tion 2.2.2 [File permis-

sions℄, page 9.

If some of the �les you want to import are binary, you may want to use the wrappers

features to spe
ify whi
h �les are binary and whi
h are not. See Se
tion C.2 [Wrappers℄,

page 132.

30 CVS|Con
urrent Versions System v1.11.1p1

3.1.2 Creating Files From Other Version Control Systems

If you have a proje
t whi
h you are maintaining with another version
ontrol system,

su
h as r
s, you may wish to put the �les from that proje
t into
vs, and preserve the

revision history of the �les.

From RCS If you have been using r
s, �nd the r
s �les|usually a �le named `foo.
' will

have its r
s �le in `RCS/foo.
,v' (but it
ould be other pla
es;
onsult the r
s

do
umentation for details). Then
reate the appropriate dire
tories in
vs if

they do not already exist. Then
opy the �les into the appropriate dire
tories

in the
vs repository (the name in the repository must be the name of the

sour
e �le with `,v' added; the �les go dire
tly in the appropriate dire
tory of

the repository, not in an `RCS' subdire
tory). This is one of the few times when

it is a good idea to a

ess the
vs repository dire
tly, rather than using
vs

ommands. Then you are ready to
he
k out a new working dire
tory.

The r
s �le should not be lo
ked when you move it into
vs; if it is,
vs will

have trouble letting you operate on it.

From another version
ontrol system

Many version
ontrol systems have the ability to export r
s �les in the stan-

dard format. If yours does, export the r
s �les and then follow the above

instru
tions.

Failing that, probably your best bet is to write a s
ript that will
he
k out the

�les one revision at a time using the
ommand line interfa
e to the other system,

and then
he
k the revisions into
vs. The `s

s2r
s' s
ript mentioned below

may be a useful example to follow.

From SCCS

There is a s
ript in the `
ontrib' dire
tory of the
vs sour
e distribution
alled

`s

s2r
s' whi
h
onverts s

s �les to r
s �les. Note: you must run it on a

ma
hine whi
h has both s

s and r
s installed, and like everything else in

ontrib it is unsupported (your mileage may vary).

From PVCS

There is a s
ript in the `
ontrib' dire
tory of the
vs sour
e distribution
alled

`pv
s_to_r
s' whi
h
onverts pv
s ar
hives to r
s �les. You must run it on

a ma
hine whi
h has both pv
s and r
s installed, and like everything else in

ontrib it is unsupported (your mileage may vary). See the
omments in the

s
ript for details.

3.1.3 Creating a dire
tory tree from s
rat
h

For a new proje
t, the easiest thing to do is probably to
reate an empty dire
tory

stru
ture, like this:

$ mkdir t

$ mkdir t
/man

$ mkdir t
/testing

After that, you use the import
ommand to
reate the
orresponding (empty) dire
tory

stru
ture inside the repository:

Chapter 3: Starting a proje
t with CVS 31

$
d t

$
vs import -m "Created dire
tory stru
ture" yoyodyne/dir yoyo start

Then, use add to add �les (and new dire
tories) as they appear.

Che
k that the permissions
vs sets on the dire
tories inside $CVSROOT are reasonable.

3.2 De�ning the module

The next step is to de�ne the module in the `modules' �le. This is not stri
tly ne
essary,

but modules
an be
onvenient in grouping together related �les and dire
tories.

In simple
ases these steps are suÆ
ient to de�ne a module.

1. Get a working
opy of the modules �le.

$
vs
he
kout CVSROOT/modules

$
d CVSROOT

2. Edit the �le and insert a line that de�nes the module. See Se
tion 2.4 [Intro adminis-

trative �les℄, page 16, for an introdu
tion. See Se
tion C.1 [modules℄, page 129, for a

full des
ription of the modules �le. You
an use the following line to de�ne the module

`t
':

t
 yoyodyne/t

3. Commit your
hanges to the modules �le.

$
vs
ommit -m "Added the t
 module." modules

4. Release the modules module.

$
d ..

$
vs release -d CVSROOT

32 CVS|Con
urrent Versions System v1.11.1p1

Chapter 4: Revisions 33

4 Revisions

For many uses of
vs, one doesn't need to worry too mu
h about revision numbers;
vs

assigns numbers su
h as 1.1, 1.2, and so on, and that is all one needs to know. However,

some people prefer to have more knowledge and
ontrol
on
erning how
vs assigns revision

numbers.

If one wants to keep tra
k of a set of revisions involving more than one �le, su
h as whi
h

revisions went into a parti
ular release, one uses a tag, whi
h is a symboli
 revision whi
h

an be assigned to a numeri
 revision in ea
h �le.

4.1 Revision numbers

Ea
h version of a �le has a unique revision number. Revision numbers look like `1.1',

`1.2', `1.3.2.2' or even `1.3.2.2.4.5'. A revision number always has an even number of

period-separated de
imal integers. By default revision 1.1 is the �rst revision of a �le. Ea
h

su

essive revision is given a new number by in
reasing the rightmost number by one. The

following �gure displays a few revisions, with newer revisions to the right.

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !

+-----+ +-----+ +-----+ +-----+ +-----+

It is also possible to end up with numbers
ontaining more than one period, for example

`1.3.2.2'. Su
h revisions represent revisions on bran
hes (see Chapter 5 [Bran
hing and

merging℄, page 41); su
h revision numbers are explained in detail in Se
tion 5.4 [Bran
hes

and revisions℄, page 43.

4.2 Versions, revisions and releases

A �le
an have several versions, as des
ribed above. Likewise, a software produ
t
an

have several versions. A software produ
t is often given a version number su
h as `4.1.1'.

Versions in the �rst sense are
alled revisions in this do
ument, and versions in the

se
ond sense are
alled releases. To avoid
onfusion, the word version is almost never used

in this do
ument.

4.3 Assigning revisions

By default,
vs will assign numeri
 revisions by leaving the �rst number the same and

in
rementing the se
ond number. For example, 1.1, 1.2, 1.3, et
.

When adding a new �le, the se
ond number will always be one and the �rst number

will equal the highest �rst number of any �le in that dire
tory. For example, the
urrent

dire
tory
ontains �les whose highest numbered revisions are 1.7, 3.1, and 4.12, then an

added �le will be given the numeri
 revision 4.1.

Normally there is no reason to
are about the revision numbers|it is easier to treat

them as internal numbers that
vs maintains, and tags provide a better way to distinguish

between things like release 1 versus release 2 of your produ
t (see Se
tion 4.4 [Tags℄, page 34).

However, if you want to set the numeri
 revisions, the `-r' option to
vs
ommit
an do

34 CVS|Con
urrent Versions System v1.11.1p1

that. The `-r' option implies the `-f' option, in the sense that it
auses the �les to be

ommitted even if they are not modi�ed.

For example, to bring all your �les up to revision 3.0 (in
luding those that haven't

hanged), you might invoke:

$
vs
ommit -r 3.0

Note that the number you spe
ify with `-r' must be larger than any existing revision

number. That is, if revision 3.0 exists, you
annot `
vs
ommit -r 1.3'. If you want to

maintain several releases in parallel, you need to use a bran
h (see Chapter 5 [Bran
hing

and merging℄, page 41).

4.4 Tags{Symboli
 revisions

The revision numbers live a life of their own. They need not have anything at all to

do with the release numbers of your software produ
t. Depending on how you use
vs the

revision numbers might
hange several times between two releases. As an example, some of

the sour
e �les that make up r
s 5.6 have the following revision numbers:

i.
 5.21

o.
 5.9

ident.
 5.3

r
s.
 5.12

r
sbase.h 5.11

r
sdiff.
 5.10

r
sedit.
 5.11

r
sf
mp.
 5.9

r
sgen.
 5.10

r
slex.
 5.11

r
smap.
 5.2

r
sutil.
 5.10

You
an use the tag
ommand to give a symboli
 name to a
ertain revision of a �le.

You
an use the `-v'
ag to the status
ommand to see all tags that a �le has, and whi
h

revision numbers they represent. Tag names must start with an upper
ase or lower
ase

letter and
an
ontain upper
ase and lower
ase letters, digits, `-', and `_'. The two tag

names BASE and HEAD are reserved for use by
vs. It is expe
ted that future names whi
h

are spe
ial to
vs will be spe
ially named, for example by starting with `.', rather than

being named analogously to BASE and HEAD, to avoid
on
i
ts with a
tual tag names.

You'll want to
hoose some
onvention for naming tags, based on information su
h as the

name of the program and the version number of the release. For example, one might take

the name of the program, immediately followed by the version number with `.'
hanged

to `-', so that
vs 1.9 would be tagged with the name
vs1-9. If you
hoose a
onsistent

onvention, then you won't
onstantly be guessing whether a tag is
vs-1-9 or
vs1_9 or

what. You might even want to
onsider enfor
ing your
onvention in the taginfo �le (see

Se
tion 8.3 [user-de�ned logging℄, page 59).

The following example shows how you
an add a tag to a �le. The
ommands must

be issued inside your working dire
tory. That is, you should issue the
ommand in the

dire
tory where `ba
kend.
' resides.

Chapter 4: Revisions 35

$
vs tag rel-0-4 ba
kend.

T ba
kend.

$
vs status -v ba
kend.

===

File: ba
kend.
 Status: Up-to-date

Version: 1.4 Tue De
 1 14:39:01 1992

RCS Version: 1.4 /u/
vsroot/yoyodyne/t
/ba
kend.
,v

Sti
ky Tag: (none)

Sti
ky Date: (none)

Sti
ky Options: (none)

Existing Tags:

rel-0-4 (revision: 1.4)

For a
omplete summary of the syntax of
vs tag, in
luding the various options, see

Appendix B [Invoking CVS℄, page 117.

There is seldom reason to tag a �le in isolation. A more
ommon use is to tag all the �les

that
onstitute a module with the same tag at strategi
 points in the development life-
y
le,

su
h as when a release is made.

$
vs tag rel-1-0 .

vs tag: Tagging .

T Makefile

T ba
kend.

T driver.

T frontend.

T parser.

(When you give
vs a dire
tory as argument, it generally applies the operation to all

the �les in that dire
tory, and (re
ursively), to any subdire
tories that it may
ontain. See

Chapter 6 [Re
ursive behavior℄, page 51.)

The
he
kout
ommand has a
ag, `-r', that lets you
he
k out a
ertain revision of

a module. This
ag makes it easy to retrieve the sour
es that make up release 1.0 of the

module `t
' at any time in the future:

$
vs
he
kout -r rel-1-0 t

This is useful, for instan
e, if someone
laims that there is a bug in that release, but you

annot �nd the bug in the
urrent working
opy.

You
an also
he
k out a module as it was at any given date. See Se
tion A.7.1 [
he
kout

options℄, page 98. When spe
ifying `-r' to any of these
ommands, you will need beware of

sti
ky tags; see Se
tion 4.9 [Sti
ky tags℄, page 38.

When you tag more than one �le with the same tag you
an think about the tag as "a

urve drawn through a matrix of �lename vs. revision number." Say we have 5 �les with

the following revisions:

36 CVS|Con
urrent Versions System v1.11.1p1

file1 file2 file3 file4 file5

1.1 1.1 1.1 1.1 /--1.1* <-*- TAG

1.2*- 1.2 1.2 -1.2*-

1.3 \- 1.3*- 1.3 / 1.3

1.4 \ 1.4 / 1.4

\-1.5*- 1.5

1.6

At some time in the past, the * versions were tagged. You
an think of the tag as a

handle atta
hed to the
urve drawn through the tagged revisions. When you pull on the

handle, you get all the tagged revisions. Another way to look at it is that you "sight"

through a set of revisions that is "
at" along the tagged revisions, like this:

file1 file2 file3 file4 file5

1.1

1.2

1.1 1.3 _

1.1 1.2 1.4 1.1 /

1.2*----1.3*----1.5*----1.2*----1.1 (--- <--- Look here

1.3 1.6 1.3 _

1.4 1.4

1.5

4.5 Spe
ifying what to tag from the working dire
tory

The example in the previous se
tion demonstrates one of the most
ommon ways to

hoose whi
h revisions to tag. Namely, running the
vs tag
ommand without arguments

auses
vs to sele
t the revisions whi
h are
he
ked out in the
urrent working dire
tory.

For example, if the
opy of `ba
kend.
' in working dire
tory was
he
ked out from revision

1.4, then
vs will tag revision 1.4. Note that the tag is applied immediately to revision 1.4

in the repository; tagging is not like modifying a �le, or other operations in whi
h one �rst

modi�es the working dire
tory and then runs
vs
ommit to transfer that modi�
ation to

the repository.

One potentially surprising aspe
t of the fa
t that
vs tag operates on the repository is

that you are tagging the
he
ked-in revisions, whi
h may di�er from lo
ally modi�ed �les in

your working dire
tory. If you want to avoid doing this by mistake, spe
ify the `-
' option

to
vs tag. If there are any lo
ally modi�ed �les,
vs will abort with an error before it

tags any �les:

$
vs tag -
 rel-0-4

vs tag: ba
kend.
 is lo
ally modified

vs [tag aborted℄:
orre
t the above errors first!

4.6 Spe
ifying what to tag by date or revision

The
vs rtag
ommand tags the repository as of a
ertain date or time (or
an be used

to tag the latest revision). rtag works dire
tly on the repository
ontents (it requires no

prior
he
kout and does not look for a working dire
tory).

Chapter 4: Revisions 37

The following options spe
ify whi
h date or revision to tag. See Se
tion A.5 [Common

options℄, page 90, for a
omplete des
ription of them.

-D date Tag the most re
ent revision no later than date.

-f Only useful with the `-D date' or `-r tag '
ags. If no mat
hing revision is found,

use the most re
ent revision (instead of ignoring the �le).

-r tag Only tag those �les that
ontain existing tag tag.

The
vs tag
ommand also allows one to spe
ify �les by revision or date, using the

same `-r', `-D', and `-f' options. However, this feature is probably not what you want. The

reason is that
vs tag
hooses whi
h �les to tag based on the �les that exist in the working

dire
tory, rather than the �les whi
h existed as of the given tag/date. Therefore, you are

generally better o� using
vs rtag. The ex
eptions might be
ases like:

vs tag -r 1.4 ba
kend.

4.7 Deleting, moving, and renaming tags

Normally one does not modify tags. They exist in order to re
ord the history of the

repository and so deleting them or
hanging their meaning would, generally, not be what

you want.

However, there might be
ases in whi
h one uses a tag temporarily or a

identally puts

one in the wrong pla
e. Therefore, one might delete, move, or rename a tag. Warning: the

ommands in this se
tion are dangerous; they permanently dis
ard histori
al information

and it
an diÆ
ult or impossible to re
over from errors. If you are a
vs administrator,

you may
onsider restri
ting these
ommands with taginfo (see Se
tion 8.3 [user-de�ned

logging℄, page 59).

To delete a tag, spe
ify the `-d' option to either
vs tag or
vs rtag. For example:

vs rtag -d rel-0-4 t

deletes the tag rel-0-4 from the module t
.

When we say move a tag, we mean to make the same name point to di�erent revisions.

For example, the stable tag may
urrently point to revision 1.4 of `ba
kend.
' and perhaps

we want to make it point to revision 1.6. To move a tag, spe
ify the `-F' option to either

vs tag or
vs rtag. For example, the task just mentioned might be a

omplished as:

vs tag -r 1.6 -F stable ba
kend.

When we say rename a tag, we mean to make a di�erent name point to the same revisions

as the old tag. For example, one may have misspelled the tag name and want to
orre
t

it (hopefully before others are relying on the old spelling). To rename a tag, �rst
reate a

new tag using the `-r' option to
vs rtag, and then delete the old name. This leaves the

new tag on exa
tly the same �les as the old tag. For example:

vs rtag -r old-name-0-4 rel-0-4 t

vs rtag -d old-name-0-4 t

38 CVS|Con
urrent Versions System v1.11.1p1

4.8 Tagging and adding and removing �les

The subje
t of exa
tly how tagging intera
ts with adding and removing �les is somewhat

obs
ure; for the most part
vs will keep tra
k of whether �les exist or not without too mu
h

fussing. By default, tags are applied to only �les whi
h have a revision
orresponding to

what is being tagged. Files whi
h did not exist yet, or whi
h were already removed, simply

omit the tag, and
vs knows to treat the absen
e of a tag as meaning that the �le didn't

exist as of that tag.

However, this
an lose a small amount of information. For example, suppose a �le was

added and then removed. Then, if the tag is missing for that �le, there is no way to know

whether the tag refers to the time before the �le was added, or the time after it was removed.

If you spe
ify the `-r' option to
vs rtag, then
vs tags the �les whi
h have been removed,

and thereby avoids this problem. For example, one might spe
ify -r HEAD to tag the head.

On the subje
t of adding and removing �les, the
vs rtag
ommand has a `-a' option

whi
h means to
lear the tag from removed �les that would not otherwise be tagged. For

example, one might spe
ify this option in
onjun
tion with `-F' when moving a tag. If

one moved a tag without `-a', then the tag in the removed �les might still refer to the old

revision, rather than re
e
ting the fa
t that the �le had been removed. I don't think this

is ne
essary if `-r' is spe
i�ed, as noted above.

4.9 Sti
ky tags

Sometimes a working
opy's revision has extra data asso
iated with it, for example it

might be on a bran
h (see Chapter 5 [Bran
hing and merging℄, page 41), or restri
ted to

versions prior to a
ertain date by `
he
kout -D' or `update -D'. Be
ause this data persists

{ that is, it applies to subsequent
ommands in the working
opy { we refer to it as sti
ky.

Most of the time, sti
kiness is an obs
ure aspe
t of
vs that you don't need to think

about. However, even if you don't want to use the feature, you may need to know something

about sti
ky tags (for example, how to avoid them!).

You
an use the status
ommand to see if any sti
ky tags or dates are set:

$
vs status driver.

===

File: driver.
 Status: Up-to-date

Version: 1.7.2.1 Sat De
 5 19:35:03 1992

RCS Version: 1.7.2.1 /u/
vsroot/yoyodyne/t
/driver.
,v

Sti
ky Tag: rel-1-0-pat
hes (bran
h: 1.7.2)

Sti
ky Date: (none)

Sti
ky Options: (none)

The sti
ky tags will remain on your working �les until you delete them with `
vs update

-A'. The `-A' option retrieves the version of the �le from the head of the trunk, and forgets

any sti
ky tags, dates, or options.

The most
ommon use of sti
ky tags is to identify whi
h bran
h one is working on, as

des
ribed in Se
tion 5.3 [A

essing bran
hes℄, page 42. However, non-bran
h sti
ky tags

have uses as well. For example, suppose that you want to avoid updating your working

Chapter 4: Revisions 39

dire
tory, to isolate yourself from possibly destabilizing
hanges other people are making.

You
an, of
ourse, just refrain from running
vs update. But if you want to avoid updating

only a portion of a larger tree, then sti
ky tags
an help. If you
he
k out a
ertain revision

(su
h as 1.4) it will be
ome sti
ky. Subsequent
vs update
ommands will not retrieve the

latest revision until you reset the tag with
vs update -A. Likewise, use of the `-D' option

to update or
he
kout sets a sti
ky date, whi
h, similarly,
auses that date to be used for

future retrievals.

People often want to retrieve an old version of a �le without setting a sti
ky tag. This

an be done with the `-p' option to
he
kout or update, whi
h sends the
ontents of the

�le to standard output. For example:

$
vs update -p -r 1.1 file1 >file1

===

Che
king out file1

RCS: /tmp/
vs-sanity/
vsroot/first-dir/Atti
/file1,v

VERS: 1.1

$

However, this isn't the easiest way, if you are asking how to undo a previous
he
kin (in

this example, put `file1' ba
k to the way it was as of revision 1.1). In that
ase you are

better o� using the `-j' option to update; for further dis
ussion see Se
tion 5.8 [Merging

two revisions℄, page 46.

40 CVS|Con
urrent Versions System v1.11.1p1

Chapter 5: Bran
hing and merging 41

5 Bran
hing and merging

vs allows you to isolate
hanges onto a separate line of development, known as a bran
h.

When you
hange �les on a bran
h, those
hanges do not appear on the main trunk or other

bran
hes.

Later you
an move
hanges from one bran
h to another bran
h (or the main trunk)

by merging. Merging involves �rst running
vs update -j, to merge the
hanges into the

working dire
tory. You
an then
ommit that revision, and thus e�e
tively
opy the
hanges

onto another bran
h.

5.1 What bran
hes are good for

Suppose that release 1.0 of t
 has been made. You are
ontinuing to develop t
, planning

to
reate release 1.1 in a
ouple of months. After a while your
ustomers start to
omplain

about a fatal bug. You
he
k out release 1.0 (see Se
tion 4.4 [Tags℄, page 34) and �nd the

bug (whi
h turns out to have a trivial �x). However, the
urrent revision of the sour
es are

in a state of
ux and are not expe
ted to be stable for at least another month. There is no

way to make a bug�x release based on the newest sour
es.

The thing to do in a situation like this is to
reate a bran
h on the revision trees for all

the �les that make up release 1.0 of t
. You
an then make modi�
ations to the bran
h

without disturbing the main trunk. When the modi�
ations are �nished you
an ele
t to

either in
orporate them on the main trunk, or leave them on the bran
h.

5.2 Creating a bran
h

You
an
reate a bran
h with tag -b; for example, assuming you're in a working
opy:

$
vs tag -b rel-1-0-pat
hes

This splits o� a bran
h based on the
urrent revisions in the working
opy, assigning

that bran
h the name `rel-1-0-pat
hes'.

It is important to understand that bran
hes get
reated in the repository, not in the

working
opy. Creating a bran
h based on
urrent revisions, as the above example does,

will not automati
ally swit
h the working
opy to be on the new bran
h. For information

on how to do that, see Se
tion 5.3 [A

essing bran
hes℄, page 42.

You
an also
reate a bran
h without referen
e to any working
opy, by using rtag:

$
vs rtag -b -r rel-1-0 rel-1-0-pat
hes t

`-r rel-1-0' says that this bran
h should be rooted at the revision that
orresponds

to the tag `rel-1-0'. It need not be the most re
ent revision { it's often useful to split a

bran
h o� an old revision (for example, when �xing a bug in a past release otherwise known

to be stable).

As with `tag', the `-b'
ag tells rtag to
reate a bran
h (rather than just a symboli
 re-

vision name). Note that the numeri
 revision number that mat
hes `rel-1-0' will probably

be di�erent from �le to �le.

So, the full e�e
t of the
ommand is to
reate a new bran
h { named `rel-1-0-pat
hes'

{ in module `t
', rooted in the revision tree at the point tagged by `rel-1-0'.

42 CVS|Con
urrent Versions System v1.11.1p1

5.3 A

essing bran
hes

You
an retrieve a bran
h in one of two ways: by
he
king it out fresh from the repository,

or by swit
hing an existing working
opy over to the bran
h.

To
he
k out a bran
h from the repository, invoke `
he
kout' with the `-r'
ag, followed

by the tag name of the bran
h (see Se
tion 5.2 [Creating a bran
h℄, page 41):

$
vs
he
kout -r rel-1-0-pat
hes t

Or, if you already have a working
opy, you
an swit
h it to a given bran
h with `update

-r':

$
vs update -r rel-1-0-pat
hes t

or equivalently:

$
d t

$
vs update -r rel-1-0-pat
hes

It does not matter if the working
opy was originally on the main trunk or on some

other bran
h { the above
ommand will swit
h it to the named bran
h. And similarly to a

regular `update'
ommand, `update -r' merges any
hanges you have made, notifying you

of
on
i
ts where they o

ur.

On
e you have a working
opy tied to a parti
ular bran
h, it remains there until you

tell it otherwise. This means that
hanges
he
ked in from the working
opy will add new

revisions on that bran
h, while leaving the main trunk and other bran
hes una�e
ted.

To �nd out what bran
h a working
opy is on, you
an use the `status'
ommand. In

its output, look for the �eld named `Sti
ky tag' (see Se
tion 4.9 [Sti
ky tags℄, page 38) {

that's
vs's way of telling you the bran
h, if any, of the
urrent working �les:

$
vs status -v driver.
 ba
kend.

===

File: driver.
 Status: Up-to-date

Version: 1.7 Sat De
 5 18:25:54 1992

RCS Version: 1.7 /u/
vsroot/yoyodyne/t
/driver.
,v

Sti
ky Tag: rel-1-0-pat
hes (bran
h: 1.7.2)

Sti
ky Date: (none)

Sti
ky Options: (none)

Existing Tags:

rel-1-0-pat
hes (bran
h: 1.7.2)

rel-1-0 (revision: 1.7)

===

File: ba
kend.
 Status: Up-to-date

Version: 1.4 Tue De
 1 14:39:01 1992

RCS Version: 1.4 /u/
vsroot/yoyodyne/t
/ba
kend.
,v

Sti
ky Tag: rel-1-0-pat
hes (bran
h: 1.4.2)

Sti
ky Date: (none)

Sti
ky Options: (none)

Chapter 5: Bran
hing and merging 43

Existing Tags:

rel-1-0-pat
hes (bran
h: 1.4.2)

rel-1-0 (revision: 1.4)

rel-0-4 (revision: 1.4)

Don't be
onfused by the fa
t that the bran
h numbers for ea
h �le are di�erent (`1.7.2'

and `1.4.2' respe
tively). The bran
h tag is the same, `rel-1-0-pat
hes', and the �les are

indeed on the same bran
h. The numbers simply re
e
t the point in ea
h �le's revision his-

tory at whi
h the bran
h was made. In the above example, one
an dedu
e that `driver.
'

had been through more
hanges than `ba
kend.
' before this bran
h was
reated.

See Se
tion 5.4 [Bran
hes and revisions℄, page 43 for details about how bran
h numbers

are
onstru
ted.

5.4 Bran
hes and revisions

Ordinarily, a �le's revision history is a linear series of in
rements (see Se
tion 4.1 [Revi-

sion numbers℄, page 33):

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !

+-----+ +-----+ +-----+ +-----+ +-----+

However,
vs is not limited to linear development. The revision tree
an be split into

bran
hes, where ea
h bran
h is a self-maintained line of development. Changes made on

one bran
h
an easily be moved ba
k to the main trunk.

Ea
h bran
h has a bran
h number,
onsisting of an odd number of period-separated

de
imal integers. The bran
h number is
reated by appending an integer to the revision

number where the
orresponding bran
h forked o�. Having bran
h numbers allows more

than one bran
h to be forked o� from a
ertain revision.

44 CVS|Con
urrent Versions System v1.11.1p1

All revisions on a bran
h have revision numbers formed by appending an ordinal number

to the bran
h number. The following �gure illustrates bran
hing with an example.

+-------------+

Bran
h 1.2.2.3.2 -> ! 1.2.2.3.2.1 !

/ +-------------+

/

/

+---------+ +---------+ +---------+

Bran
h 1.2.2 -> _! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !

/ +---------+ +---------+ +---------+

/

/

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

!

!

! +---------+ +---------+ +---------+

Bran
h 1.2.4 -> +---! 1.2.4.1 !----! 1.2.4.2 !----! 1.2.4.3 !

+---------+ +---------+ +---------+

The exa
t details of how the bran
h number is
onstru
ted is not something you normally

need to be
on
erned about, but here is how it works: When
vs
reates a bran
h number

it pi
ks the �rst unused even integer, starting with 2. So when you want to
reate a bran
h

from revision 6.4 it will be numbered 6.4.2. All bran
h numbers ending in a zero (su
h as

6.4.0) are used internally by
vs (see Se
tion 5.5 [Magi
 bran
h numbers℄, page 44). The

bran
h 1.1.1 has a spe
ial meaning. See Chapter 13 [Tra
king sour
es℄, page 79.

5.5 Magi
 bran
h numbers

This se
tion des
ribes a
vs feature
alled magi
 bran
hes. For most purposes, you need

not worry about magi
 bran
hes;
vs handles them for you. However, they are visible to

you in
ertain
ir
umstan
es, so it may be useful to have some idea of how it works.

Externally, bran
h numbers
onsist of an odd number of dot-separated de
imal integers.

See Se
tion 4.1 [Revision numbers℄, page 33. That is not the whole truth, however. For

eÆ
ien
y reasons
vs sometimes inserts an extra 0 in the se
ond rightmost position (1.2.4

be
omes 1.2.0.4, 8.9.10.11.12 be
omes 8.9.10.11.0.12 and so on).

vs does a pretty good job at hiding these so
alled magi
 bran
hes, but in a few pla
es

the hiding is in
omplete:

� The magi
 bran
h number appears in the output from
vs log.

� You
annot spe
ify a symboli
 bran
h name to
vs admin.

You
an use the admin
ommand to reassign a symboli
 name to a bran
h the way r
s

expe
ts it to be. If R4pat
hes is assigned to the bran
h 1.4.2 (magi
 bran
h number 1.4.0.2)

in �le `numbers.
' you
an do this:

$
vs admin -NR4pat
hes:1.4.2 numbers.

Chapter 5: Bran
hing and merging 45

It only works if at least one revision is already
ommitted on the bran
h. Be very
areful

so that you do not assign the tag to the wrong number. (There is no way to see how the

tag was assigned yesterday).

5.6 Merging an entire bran
h

You
an merge
hanges made on a bran
h into your working
opy by giving the `-j

bran
hname'
ag to the update sub
ommand. With one `-j bran
hname' option it merges

the
hanges made between the point where the bran
h forked and newest revision on that

bran
h (into your working
opy).

The `-j' stands for \join".

Consider this revision tree:

+-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+

!

!

! +---------+ +---------+

Bran
h R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !

+---------+ +---------+

The bran
h 1.2.2 has been given the tag (symboli
 name) `R1fix'. The following example

assumes that the module `mod'
ontains only one �le, `m.
'.

$
vs
he
kout mod # Retrieve the latest revision, 1.4

$
vs update -j R1fix m.
 # Merge all
hanges made on the bran
h,

i.e. the
hanges between revision 1.2

and 1.2.2.2, into your working
opy

of the �le.

$
vs
ommit -m "In
luded R1fix" # Create revision 1.5.

A
on
i
t
an result from a merge operation. If that happens, you should resolve it

before
ommitting the new revision. See Se
tion 10.3 [Con
i
ts example℄, page 65.

If your sour
e �les
ontain keywords (see Chapter 12 [Keyword substitution℄, page 75),

you might be getting more
on
i
ts than stri
tly ne
essary. See Se
tion 5.10 [Merging and

keywords℄, page 47, for information on how to avoid this.

The
he
kout
ommand also supports the `-j bran
hname'
ag. The same e�e
t as

above
ould be a
hieved with this:

$
vs
he
kout -j R1fix mod

$
vs
ommit -m "In
luded R1fix"

It should be noted that update -j tagname will also work but may not produ
e the

desired result. See Se
tion 5.9 [Merging adds and removals℄, page 47, for more.

5.7 Merging from a bran
h several times

Continuing our example, the revision tree now looks like this:

46 CVS|Con
urrent Versions System v1.11.1p1

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

! *

! *

! +---------+ +---------+

Bran
h R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !

+---------+ +---------+

where the starred line represents the merge from the `R1fix' bran
h to the main trunk,

as just dis
ussed.

Now suppose that development
ontinues on the `R1fix' bran
h:

+-----+ +-----+ +-----+ +-----+ +-----+

! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk

+-----+ +-----+ +-----+ +-----+ +-----+

! *

! *

! +---------+ +---------+ +---------+

Bran
h R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !

+---------+ +---------+ +---------+

and then you want to merge those new
hanges onto the main trunk. If you just use the

vs update -j R1fix m.

ommand again,
vs will attempt to merge again the
hanges

whi
h you have already merged, whi
h
an have undesirable side e�e
ts.

So instead you need to spe
ify that you only want to merge the
hanges on the bran
h

whi
h have not yet been merged into the trunk. To do that you spe
ify two `-j' options,

and
vs merges the
hanges from the �rst revision to the se
ond revision. For example, in

this
ase the simplest way would be

vs update -j 1.2.2.2 -j R1fix m.
 # Merge
hanges from 1.2.2.2 to the

head of the R1�x bran
h

The problem with this is that you need to spe
ify the 1.2.2.2 revision manually. A

slightly better approa
h might be to use the date the last merge was done:

vs update -j R1fix:yesterday -j R1fix m.

Better yet, tag the R1�x bran
h after every merge into the trunk, and then use that tag

for subsequent merges:

vs update -j merged_from_R1fix_to_trunk -j R1fix m.

5.8 Merging di�eren
es between any two revisions

With two `-j revision'
ags, the update (and
he
kout)
ommand
an merge the dif-

feren
es between any two revisions into your working �le.

$
vs update -j 1.5 -j 1.3 ba
kend.

will undo all
hanges made between revision 1.3 and 1.5. Note the order of the revisions!

If you try to use this option when operating on multiple �les, remember that the numeri

revisions will probably be very di�erent between the various �les. You almost always use

symboli
 tags rather than revision numbers when operating on multiple �les.

Chapter 5: Bran
hing and merging 47

Spe
ifying two `-j' options
an also undo �le removals or additions. For example, suppose

you have a �le named `file1' whi
h existed as revision 1.1, and you then removed it (thus

adding a dead revision 1.2). Now suppose you want to add it again, with the same
ontents

it had previously. Here is how to do it:

$
vs update -j 1.2 -j 1.1 file1

U file1

$
vs
ommit -m test

Che
king in file1;

/tmp/
vs-sanity/
vsroot/first-dir/file1,v <-- file1

new revision: 1.3; previous revision: 1.2

done

$

5.9 Merging
an add or remove �les

If the
hanges whi
h you are merging involve removing or adding some �les, update -j

will re
e
t su
h additions or removals.

For example:

vs update -A

tou
h a b

vs add a b
 ;
vs
i -m "added" a b

vs tag -b bran
htag

vs update -r bran
htag

tou
h d ;
vs add d

rm a ;
vs rm a

vs
i -m "added d, removed a"

vs update -A

vs update -jbran
htag

After these
ommands are exe
uted and a `
vs
ommit' is done, �le `a' will be removed

and �le `d' added in the main bran
h.

Note that using a single stati
 tag (`-j tagname') rather than a dynami
 tag (`-j bran
h-

name') to merge
hanges from a bran
h will usually not remove �les whi
h were removed

on the bran
h sin
e
vs does not automati
ally add stati
 tags to dead revisions. The ex-

eption to this rule o

urs when a stati
 tag has been atta
hed to a dead revision manually.

Use the bran
h tag to merge all
hanges from the bran
h or use two stati
 tags as merge

endpoints to be sure that all intended
hanges are propogated in the merge.

5.10 Merging and keywords

If you merge �les
ontaining keywords (see Chapter 12 [Keyword substitution℄, page 75),

you will normally get numerous
on
i
ts during the merge, be
ause the keywords are ex-

panded di�erently in the revisions whi
h you are merging.

Therefore, you will often want to spe
ify the `-kk' (see Se
tion 12.4 [Substitution modes℄,

page 77) swit
h to the merge
ommand line. By substituting just the name of the keyword,

not the expanded value of that keyword, this option ensures that the revisions whi
h you

are merging will be the same as ea
h other, and avoid spurious
on
i
ts.

For example, suppose you have a �le like this:

48 CVS|Con
urrent Versions System v1.11.1p1

+---------+

_! 1.1.2.1 ! <- br1

/ +---------+

/

/

+-----+ +-----+

! 1.1 !----! 1.2 !

+-----+ +-----+

and your working dire
tory is
urrently on the trunk (revision 1.2). Then you might get

the following results from a merge:

$
at file1

key $Revision: 1.2 $

. . .

$
vs update -j br1

U file1

RCS file: /
vsroot/first-dir/file1,v

retrieving revision 1.1

retrieving revision 1.1.2.1

Merging differen
es between 1.1 and 1.1.2.1 into file1

r
smerge: warning:
onfli
ts during merge

$
at file1

<<<<<<< file1

key $Revision: 1.2 $

=======

key $Revision: 1.1.2.1 $

>>>>>>> 1.1.2.1

. . .

What happened was that the merge tried to merge the di�eren
es between 1.1 and

1.1.2.1 into your working dire
tory. So, sin
e the keyword
hanged from Revision: 1.1

to Revision: 1.1.2.1,
vs tried to merge that
hange into your working dire
tory, whi
h

on
i
ted with the fa
t that your working dire
tory had
ontained Revision: 1.2.

Here is what happens if you had used `-kk':

$
at file1

key $Revision: 1.2 $

. . .

$
vs update -kk -j br1

U file1

RCS file: /
vsroot/first-dir/file1,v

retrieving revision 1.1

retrieving revision 1.1.2.1

Merging differen
es between 1.1 and 1.1.2.1 into file1

$
at file1

key $Revision$

. . .

What is going on here is that revision 1.1 and 1.1.2.1 both expand as plain Revision,

and therefore merging the
hanges between them into the working dire
tory need not
hange

anything. Therefore, there is no
on
i
t.

Chapter 5: Bran
hing and merging 49

There is, however, one major
aveat with using `-kk' on merges. Namely, it overrides

whatever keyword expansion mode
vs would normally have used. In parti
ular, this is a

problem if the mode had been `-kb' for a binary �le. Therefore, if your repository
ontains

binary �les, you will need to deal with the
on
i
ts rather than using `-kk'.

50 CVS|Con
urrent Versions System v1.11.1p1

Chapter 6: Re
ursive behavior 51

6 Re
ursive behavior

Almost all of the sub
ommands of
vs work re
ursively when you spe
ify a dire
tory as

an argument. For instan
e,
onsider this dire
tory stru
ture:

$HOME

|

+--t

| |

+--CVS

| (internal
vs files)

+--Makefile

+--ba
kend.

+--driver.

+--frontend.

+--parser.

+--man

| |

| +--CVS

| | (internal
vs files)

| +--t
.1

|

+--testing

|

+--CVS

| (internal
vs files)

+--testpgm.t

+--test2.t

If `t
' is the
urrent working dire
tory, the following is true:

� `
vs update testing' is equivalent to

vs update testing/testpgm.t testing/test2.t

� `
vs update testing man' updates all �les in the subdire
tories

� `
vs update .' or just `
vs update' updates all �les in the t
 dire
tory

If no arguments are given to update it will update all �les in the
urrent working dire
tory

and all its subdire
tories. In other words, `.' is a default argument to update. This is also

true for most of the
vs sub
ommands, not only the update
ommand.

The re
ursive behavior of the
vs sub
ommands
an be turned o� with the `-l' option.

Conversely, the `-R' option
an be used to for
e re
ursion if `-l' is spe
i�ed in `~/.
vsr
'

(see Se
tion A.3 [~/.
vsr
℄, page 88).

$
vs update -l # Don't update �les in subdire
tories

52 CVS|Con
urrent Versions System v1.11.1p1

Chapter 7: Adding, removing, and renaming �les and dire
tories 53

7 Adding, removing, and renaming �les and

dire
tories

In the
ourse of a proje
t, one will often add new �les. Likewise with removing or

renaming, or with dire
tories. The general
on
ept to keep in mind in all these
ases is that

instead of making an irreversible
hange you want
vs to re
ord the fa
t that a
hange has

taken pla
e, just as with modifying an existing �le. The exa
t me
hanisms to do this in

vs vary depending on the situation.

7.1 Adding �les to a dire
tory

To add a new �le to a dire
tory, follow these steps.

� You must have a working
opy of the dire
tory. See Se
tion 1.3.1 [Getting the sour
e℄,

page 4.

� Create the new �le inside your working
opy of the dire
tory.

� Use `
vs add �lename' to tell
vs that you want to version
ontrol the �le. If the �le

ontains binary data, spe
ify `-kb' (see Chapter 9 [Binary �les℄, page 61).

� Use `
vs
ommit �lename' to a
tually
he
k in the �le into the repository. Other de-

velopers
annot see the �le until you perform this step.

You
an also use the add
ommand to add a new dire
tory.

Unlike most other
ommands, the add
ommand is not re
ursive. You
annot even type

`
vs add foo/bar'! Instead, you have to

$
d foo

$
vs add bar

Command
vs add [-k k
ag℄ [-m message℄ �les . . .

S
hedule �les to be added to the repository. The �les or dire
tories spe
i�ed with add

must already exist in the
urrent dire
tory. To add a whole new dire
tory hierar
hy

to the sour
e repository (for example, �les re
eived from a third-party vendor), use

the import
ommand instead. See Se
tion A.12 [import℄, page 106.

The added �les are not pla
ed in the sour
e repository until you use
ommit to make

the
hange permanent. Doing an add on a �le that was removed with the remove

ommand will undo the e�e
t of the remove, unless a
ommit
ommand intervened.

See Se
tion 7.2 [Removing �les℄, page 54, for an example.

The `-k' option spe
i�es the default way that this �le will be
he
ked out; for more

information see Se
tion 12.4 [Substitution modes℄, page 77.

The `-m' option spe
i�es a des
ription for the �le. This des
ription appears in the

history log (if it is enabled, see Se
tion C.11 [history �le℄, page 140). It will also be

saved in the version history inside the repository when the �le is
ommitted. The

log
ommand displays this des
ription. The des
ription
an be
hanged using `admin

-t'. See Se
tion A.6 [admin℄, page 93. If you omit the `-m des
ription'
ag, an empty

string will be used. You will not be prompted for a des
ription.

For example, the following
ommands add the �le `ba
kend.
' to the repository:

54 CVS|Con
urrent Versions System v1.11.1p1

$
vs add ba
kend.

$
vs
ommit -m "Early version. Not yet
ompilable." ba
kend.

When you add a �le it is added only on the bran
h whi
h you are working on (see

Chapter 5 [Bran
hing and merging℄, page 41). You
an later merge the additions to another

bran
h if you want (see Se
tion 5.9 [Merging adds and removals℄, page 47).

7.2 Removing �les

Dire
tories
hange. New �les are added, and old �les disappear. Still, you want to be

able to retrieve an exa
t
opy of old releases.

Here is what you
an do to remove a �le, but remain able to retrieve old revisions:

� Make sure that you have not made any un
ommitted modi�
ations to the �le. See

Se
tion 1.3.4 [Viewing di�eren
es℄, page 5, for one way to do that. You
an also use

the status or update
ommand. If you remove the �le without
ommitting your

hanges, you will of
ourse not be able to retrieve the �le as it was immediately before

you deleted it.

� Remove the �le from your working
opy of the dire
tory. You
an for instan
e use rm.

� Use `
vs remove �lename' to tell
vs that you really want to delete the �le.

� Use `
vs
ommit �lename' to a
tually perform the removal of the �le from the reposi-

tory.

When you
ommit the removal of the �le,
vs re
ords the fa
t that the �le no longer

exists. It is possible for a �le to exist on only some bran
hes and not on others, or to re-add

another �le with the same name later.
vs will
orre
tly
reate or not
reate the �le, based

on the `-r' and `-D' options spe
i�ed to
he
kout or update.

Command
vs remove [options℄ �les . . .

S
hedule �le(s) to be removed from the repository (�les whi
h have not already been

removed from the working dire
tory are not pro
essed). This
ommand does not

a
tually remove the �le from the repository until you
ommit the removal. For a full

list of options, see Appendix B [Invoking CVS℄, page 117.

Here is an example of removing several �les:

$
d test

$ rm *.

$
vs remove

vs remove: Removing .

vs remove: s
heduling a.
 for removal

vs remove: s
heduling b.
 for removal

vs remove: use '
vs
ommit' to remove these files permanently

$
vs
i -m "Removed unneeded files"

vs
ommit: Examining .

vs
ommit: Committing .

As a
onvenien
e you
an remove the �le and
vs remove it in one step, by spe
ifying

the `-f' option. For example, the above example
ould also be done like this:

Chapter 7: Adding, removing, and renaming �les and dire
tories 55

$
d test

$
vs remove -f *.

vs remove: s
heduling a.
 for removal

vs remove: s
heduling b.
 for removal

vs remove: use '
vs
ommit' to remove these files permanently

$
vs
i -m "Removed unneeded files"

vs
ommit: Examining .

vs
ommit: Committing .

If you exe
ute remove for a �le, and then
hange your mind before you
ommit, you
an

undo the remove with an add
ommand.

$ ls

CVS ja.h oj.

$ rm oj.

$
vs remove oj.

vs remove: s
heduling oj.
 for removal

vs remove: use '
vs
ommit' to remove this file permanently

$
vs add oj.

U oj.

vs add: oj.
, version 1.1.1.1, resurre
ted

If you realize your mistake before you run the remove
ommand you
an use update to

resurre
t the �le:

$ rm oj.

$
vs update oj.

vs update: warning: oj.
 was lost

U oj.

When you remove a �le it is removed only on the bran
h whi
h you are working on (see

Chapter 5 [Bran
hing and merging℄, page 41). You
an later merge the removals to another

bran
h if you want (see Se
tion 5.9 [Merging adds and removals℄, page 47).

7.3 Removing dire
tories

In
on
ept removing dire
tories is somewhat similar to removing �les|you want the

dire
tory to not exist in your
urrent working dire
tories, but you also want to be able to

retrieve old releases in whi
h the dire
tory existed.

The way that you remove a dire
tory is to remove all the �les in it. You don't remove

the dire
tory itself; there is no way to do that. Instead you spe
ify the `-P' option to
vs

update or
vs
he
kout, whi
h will
ause
vs to remove empty dire
tories from working

dire
tories. (Note that
vs export always removes empty dire
tories.) Probably the best

way to do this is to always spe
ify `-P'; if you want an empty dire
tory then put a dummy

�le (for example `.keepme') in it to prevent `-P' from removing it.

Note that `-P' is implied by the `-r' or `-D' options of
he
kout. This way
vs will be

able to
orre
tly
reate the dire
tory or not depending on whether the parti
ular version

you are
he
king out
ontains any �les in that dire
tory.

56 CVS|Con
urrent Versions System v1.11.1p1

7.4 Moving and renaming �les

Moving �les to a di�erent dire
tory or renaming them is not diÆ
ult, but some of the

ways in whi
h this works may be non-obvious. (Moving or renaming a dire
tory is even

harder. See Se
tion 7.5 [Moving dire
tories℄, page 57.).

The examples below assume that the �le old is renamed to new.

7.4.1 The Normal way to Rename

The normal way to move a �le is to
opy old to new, and then issue the normal
vs

ommands to remove old from the repository, and add new to it.

$ mv old new

$
vs remove old

$
vs add new

$
vs
ommit -m "Renamed old to new" old new

This is the simplest way to move a �le, it is not error-prone, and it preserves the history

of what was done. Note that to a

ess the history of the �le you must spe
ify the old or

the new name, depending on what portion of the history you are a

essing. For example,

vs log old will give the log up until the time of the rename.

When new is
ommitted its revision numbers will start again, usually at 1.1, so if that

bothers you, use the `-r rev' option to
ommit. For more information see Se
tion 4.3

[Assigning revisions℄, page 33.

7.4.2 Moving the history �le

This method is more dangerous, sin
e it involves moving �les inside the repository. Read

this entire se
tion before trying it out!

$
d $CVSROOT/dir

$ mv old,v new,v

Advantages:

� The log of
hanges is maintained inta
t.

� The revision numbers are not a�e
ted.

Disadvantages:

� Old releases
annot easily be fet
hed from the repository. (The �le will show up as new

even in revisions from the time before it was renamed).

� There is no log information of when the �le was renamed.

� Nasty things might happen if someone a

esses the history �le while you are moving

it. Make sure no one else runs any of the
vs
ommands while you move it.

7.4.3 Copying the history �le

This way also involves dire
t modi�
ations to the repository. It is safe, but not without

drawba
ks.

Chapter 7: Adding, removing, and renaming �les and dire
tories 57

Copy the r
s �le inside the repository

$
d $CVSROOT/dir

$
p old,v new,v

Remove the old �le

$
d ~/dir

$ rm old

$
vs remove old

$
vs
ommit old

Remove all tags from new

$
vs update new

$
vs log new # Remember the non-bran
h tag names

$
vs tag -d tag1 new

$
vs tag -d tag2 new

...

By removing the tags you will be able to
he
k out old revisions.

Advantages:

� Che
king out old revisions works
orre
tly, as long as you use `-rtag ' and not `-Ddate'

to retrieve the revisions.

� The log of
hanges is maintained inta
t.

� The revision numbers are not a�e
ted.

Disadvantages:

� You
annot easily see the history of the �le a
ross the rename.

7.5 Moving and renaming dire
tories

The normal way to rename or move a dire
tory is to rename or move ea
h �le within it

as des
ribed in Se
tion 7.4.1 [Outside℄, page 56. Then
he
k out with the `-P' option, as

des
ribed in Se
tion 7.3 [Removing dire
tories℄, page 55.

If you really want to ha
k the repository to rename or delete a dire
tory in the repository,

you
an do it like this:

1. Inform everyone who has a
he
ked out
opy of the dire
tory that the dire
tory will

be renamed. They should
ommit all their
hanges, and remove their working
opies,

before you take the steps below.

2. Rename the dire
tory inside the repository.

$
d $CVSROOT/parent-dir

$ mv old-dir new-dir

3. Fix the
vs administrative �les, if ne
essary (for instan
e if you renamed an entire

module).

4. Tell everyone that they
an
he
k out again and
ontinue working.

If someone had a working
opy the
vs
ommands will
ease to work for him, until he

removes the dire
tory that disappeared inside the repository.

It is almost always better to move the �les in the dire
tory instead of moving the dire
-

tory. If you move the dire
tory you are unlikely to be able to retrieve old releases
orre
tly,

sin
e they probably depend on the name of the dire
tories.

58 CVS|Con
urrent Versions System v1.11.1p1

Chapter 8: History browsing 59

8 History browsing

On
e you have used
vs to store a version
ontrol history|what �les have
hanged when,

how, and by whom, there are a variety of me
hanisms for looking through the history.

8.1 Log messages

Whenever you
ommit a �le you spe
ify a log message.

To look through the log messages whi
h have been spe
i�ed for every revision whi
h has

been
ommitted, use the
vs log
ommand (see Se
tion A.13 [log℄, page 108).

8.2 The history database

You
an use the history �le (see Se
tion C.11 [history �le℄, page 140) to log various
vs

a
tions. To retrieve the information from the history �le, use the
vs history
ommand

(see Se
tion A.11 [history℄, page 105).

Note: you
an
ontrol what is logged to this �le by using the `LogHistory' keyword in

the `CVSROOT/
onfig' �le (see Se
tion C.13 [
on�g℄, page 141).

8.3 User-de�ned logging

You
an
ustomize
vs to log various kinds of a
tions, in whatever manner you
hoose.

These me
hanisms operate by exe
uting a s
ript at various times. The s
ript might append

a message to a �le listing the information and the programmer who
reated it, or send

mail to a group of developers, or, perhaps, post a message to a parti
ular newsgroup. To

log
ommits, use the `loginfo' �le (see Se
tion C.7 [loginfo℄, page 137). To log
ommits,

he
kouts, exports, and tags, respe
tively, you
an also use the `-i', `-o', `-e', and `-t'

options in the modules �le. For a more
exible way of giving noti�
ations to various users,

whi
h requires less in the way of keeping
entralized s
ripts up to date, use the
vs wat
h

add
ommand (see Se
tion 10.6.2 [Getting Noti�ed℄, page 69); this
ommand is useful even

if you are not using
vs wat
h on.

The `taginfo' �le de�nes programs to exe
ute when someone exe
utes a tag or rtag

ommand. The `taginfo' �le has the standard form for administrative �les (see Appendix C

[Administrative �les℄, page 129), where ea
h line is a regular expression followed by a

ommand to exe
ute. The arguments passed to the
ommand are, in order, the tagname,

operation (add for tag, mov for tag -F, and del for tag -d), repository, and any remaining

are pairs of �lename revision. A non-zero exit of the �lter program will
ause the tag to be

aborted.

Here is an example of using taginfo to log tag and rtag
ommands. In the taginfo �le

put:

ALL /usr/lo
al/
vsroot/CVSROOT/loggit

Where `/usr/lo
al/
vsroot/CVSROOT/loggit'
ontains the following s
ript:

#!/bin/sh

e
ho "$�" >>/home/kingdon/
vsroot/CVSROOT/taglog

60 CVS|Con
urrent Versions System v1.11.1p1

8.4 Annotate
ommand

Command
vs annotate [-flR℄ [-r rev|-D date℄ �les . . .

For ea
h �le in �les, print the head revision of the trunk, together with information

on the last modi�
ation for ea
h line. For example:

$
vs annotate ssfile

Annotations for ssfile

1.1 (mary 27-Mar-96): ssfile line 1

1.2 (joe 28-Mar-96): ssfile line 2

The �le `ssfile'
urrently
ontains two lines. The ssfile line 1 line was
he
ked

in by mary on Mar
h 27. Then, on Mar
h 28, joe added a line ssfile line 2,

without modifying the ssfile line 1 line. This report doesn't tell you anything

about lines whi
h have been deleted or repla
ed; you need to use
vs diff for that

(see Se
tion A.9 [di�℄, page 102).

The options to
vs annotate are listed in Appendix B [Invoking CVS℄, page 117, and

an be used to sele
t the �les and revisions to annotate. The options are des
ribed in more

detail in Se
tion A.5 [Common options℄, page 90.

Chapter 9: Handling binary �les 61

9 Handling binary �les

The most
ommon use for
vs is to store text �les. With text �les,
vs
an merge

revisions, display the di�eren
es between revisions in a human-visible fashion, and other

su
h operations. However, if you are willing to give up a few of these abilities,
vs
an

store binary �les. For example, one might store a web site in
vs in
luding both text �les

and binary images.

9.1 The issues with binary �les

While the need to manage binary �les may seem obvious if the �les that you
ustomarily

work with are binary, putting them into version
ontrol does present some additional issues.

One basi
 fun
tion of version
ontrol is to show the di�eren
es between two revisions.

For example, if someone else
he
ked in a new version of a �le, you may wish to look at what

they
hanged and determine whether their
hanges are good. For text �les,
vs provides

this fun
tionality via the
vs diff
ommand. For binary �les, it may be possible to extra
t

the two revisions and then
ompare them with a tool external to
vs (for example, word

pro
essing software often has su
h a feature). If there is no su
h tool, one must tra
k
hanges

via other me
hanisms, su
h as urging people to write good log messages, and hoping that

the
hanges they a
tually made were the
hanges that they intended to make.

Another ability of a version
ontrol system is the ability to merge two revisions. For
vs

this happens in two
ontexts. The �rst is when users make
hanges in separate working

dire
tories (see Chapter 10 [Multiple developers℄, page 63). The se
ond is when one merges

expli
itly with the `update -j'
ommand (see Chapter 5 [Bran
hing and merging℄, page 41).

In the
ase of text �les,
vs
an merge
hanges made independently, and signal a
on
i
t

if the
hanges
on
i
t. With binary �les, the best that
vs
an do is present the two di�erent

opies of the �le, and leave it to the user to resolve the
on
i
t. The user may
hoose one

opy or the other, or may run an external merge tool whi
h knows about that parti
ular

�le format, if one exists. Note that having the user merge relies primarily on the user to

not a

identally omit some
hanges, and thus is potentially error prone.

If this pro
ess is thought to be undesirable, the best
hoi
e may be to avoid merging.

To avoid the merges that result from separate working dire
tories, see the dis
ussion of

reserved
he
kouts (�le lo
king) in Chapter 10 [Multiple developers℄, page 63. To avoid the

merges resulting from bran
hes, restri
t use of bran
hes.

9.2 How to store binary �les

There are two issues with using
vs to store binary �les. The �rst is that
vs by default

onverts line endings between the
anoni
al form in whi
h they are stored in the repository

(linefeed only), and the form appropriate to the operating system in use on the
lient (for

example,
arriage return followed by line feed for Windows NT).

The se
ond is that a binary �le might happen to
ontain data whi
h looks like a keyword

(see Chapter 12 [Keyword substitution℄, page 75), so keyword expansion must be turned

o�.

The `-kb' option available with some
vs
ommands insures that neither line ending

onversion nor keyword expansion will be done.

62 CVS|Con
urrent Versions System v1.11.1p1

Here is an example of how you
an
reate a new �le using the `-kb'
ag:

$ e
ho 'Id' > kotest

$
vs add -kb -m"A test file" kotest

$
vs
i -m"First
he
kin;
ontains a keyword" kotest

If a �le a

identally gets added without `-kb', one
an use the
vs admin
ommand to

re
over. For example:

$ e
ho 'Id' > kotest

$
vs add -m"A test file" kotest

$
vs
i -m"First
he
kin;
ontains a keyword" kotest

$
vs admin -kb kotest

$
vs update -A kotest

For non-unix systems:

Copy in a good
opy of the �le from outside CVS

$
vs
ommit -m "make it binary" kotest

When you
he
k in the �le `kotest' the �le is not preserved as a binary �le, be
ause you

did not
he
k it in as a binary �le. The
vs admin -kb
ommand sets the default keyword

substitution method for this �le, but it does not alter the working
opy of the �le that

you have. If you need to
ope with line endings (that is, you are using
vs on a non-unix

system), then you need to
he
k in a new
opy of the �le, as shown by the
vs
ommit

ommand above. On unix, the
vs update -A
ommand suÆ
es.

However, in using
vs admin -k to
hange the keyword expansion, be aware that the

keyword expansion mode is not version
ontrolled. This means that, for example, that if

you have a text �le in old releases, and a binary �le with the same name in new releases,

vs provides no way to
he
k out the �le in text or binary mode depending on what version

you are
he
king out. There is no good workaround for this problem.

You
an also set a default for whether
vs add and
vs import treat a �le as binary

based on its name; for example you
ould say that �les who names end in `.exe' are binary.

See Se
tion C.2 [Wrappers℄, page 132. There is
urrently no way to have
vs dete
t whether

a �le is binary based on its
ontents. The main diÆ
ulty with designing su
h a feature is

that it is not
lear how to distinguish between binary and non-binary �les, and the rules to

apply would vary
onsiderably with the operating system.

Chapter 10: Multiple developers 63

10 Multiple developers

When more than one person works on a software proje
t things often get
ompli
ated.

Often, two people try to edit the same �le simultaneously. One solution, known as �le

lo
king or reserved
he
kouts, is to allow only one person to edit ea
h �le at a time. This

is the only solution with some version
ontrol systems, in
luding r
s and s

s. Currently

the usual way to get reserved
he
kouts with
vs is the
vs admin -l
ommand (see Se
-

tion A.6.1 [admin options℄, page 93). This is not as ni
ely integrated into
vs as the wat
h

features, des
ribed below, but it seems that most people with a need for reserved
he
kouts

�nd it adequate. It also may be possible to use the wat
hes features des
ribed below, to-

gether with suitable pro
edures (not enfor
ed by software), to avoid having two people edit

at the same time.

The default model with
vs is known as unreserved
he
kouts. In this model, developers

an edit their own working
opy of a �le simultaneously. The �rst person that
ommits his

hanges has no automati
 way of knowing that another has started to edit it. Others will

get an error message when they try to
ommit the �le. They must then use
vs
ommands

to bring their working
opy up to date with the repository revision. This pro
ess is almost

automati
.

vs also supports me
hanisms whi
h fa
ilitate various kinds of
ommuni
ation, without

a
tually enfor
ing rules like reserved
he
kouts do.

The rest of this
hapter des
ribes how these various models work, and some of the issues

involved in
hoosing between them.

10.1 File status

Based on what operations you have performed on a
he
ked out �le, and what operations

others have performed to that �le in the repository, one
an
lassify a �le in a number of

states. The states, as reported by the status
ommand, are:

Up-to-date

The �le is identi
al with the latest revision in the repository for the bran
h in

use.

Lo
ally Modi�ed

You have edited the �le, and not yet
ommitted your
hanges.

Lo
ally Added

You have added the �le with add, and not yet
ommitted your
hanges.

Lo
ally Removed

You have removed the �le with remove, and not yet
ommitted your
hanges.

Needs Che
kout

Someone else has
ommitted a newer revision to the repository. The name is

slightly misleading; you will ordinarily use update rather than
he
kout to get

that newer revision.

Needs Pat
h

Like Needs Che
kout, but the
vs server will send a pat
h rather than the entire

�le. Sending a pat
h or sending an entire �le a

omplishes the same thing.

64 CVS|Con
urrent Versions System v1.11.1p1

Needs Merge

Someone else has
ommitted a newer revision to the repository, and you have

also made modi�
ations to the �le.

File had
on
i
ts on merge

This is like Lo
ally Modi�ed, ex
ept that a previous update
ommand gave a

on
i
t. If you have not already done so, you need to resolve the
on
i
t as

des
ribed in Se
tion 10.3 [Con
i
ts example℄, page 65.

Unknown
vs doesn't know anything about this �le. For example, you have
reated a

new �le and have not run add.

To help
larify the �le status, status also reports the Working revision whi
h is the

revision that the �le in the working dire
tory derives from, and the Repository revision

whi
h is the latest revision in the repository for the bran
h in use.

The options to status are listed in Appendix B [Invoking CVS℄, page 117. For informa-

tion on its Sti
ky tag and Sti
ky date output, see Se
tion 4.9 [Sti
ky tags℄, page 38. For

information on its Sti
ky options output, see the `-k' option in Se
tion A.16.1 [update

options℄, page 113.

You
an think of the status and update
ommands as somewhat
omplementary. You

use update to bring your �les up to date, and you
an use status to give you some idea of

what an update would do (of
ourse, the state of the repository might
hange before you

a
tually run update). In fa
t, if you want a
ommand to display �le status in a more brief

format than is displayed by the status
ommand, you
an invoke

$
vs -n -q update

The `-n' option means to not a
tually do the update, but merely to display statuses; the

`-q' option avoids printing the name of ea
h dire
tory. For more information on the update

ommand, and these options, see Appendix B [Invoking CVS℄, page 117.

10.2 Bringing a �le up to date

When you want to update or merge a �le, use the update
ommand. For �les that are

not up to date this is roughly equivalent to a
he
kout
ommand: the newest revision of

the �le is extra
ted from the repository and put in your working dire
tory.

Your modi�
ations to a �le are never lost when you use update. If no newer revision

exists, running update has no e�e
t. If you have edited the �le, and a newer revision is

available,
vs will merge all
hanges into your working
opy.

For instan
e, imagine that you
he
ked out revision 1.4 and started editing it. In the

meantime someone else
ommitted revision 1.5, and shortly after that revision 1.6. If you

run update on the �le now,
vs will in
orporate all
hanges between revision 1.4 and 1.6

into your �le.

If any of the
hanges between 1.4 and 1.6 were made too
lose to any of the
hanges

you have made, an overlap o

urs. In su
h
ases a warning is printed, and the resulting

�le in
ludes both versions of the lines that overlap, delimited by spe
ial markers. See

Se
tion A.16 [update℄, page 113, for a
omplete des
ription of the update
ommand.

Chapter 10: Multiple developers 65

10.3 Con
i
ts example

Suppose revision 1.4 of `driver.
'
ontains this:

#in
lude <stdio.h>

void main()

{

parse();

if (nerr == 0)

gen
ode();

else

fprintf(stderr, "No
ode generated.\n");

exit(nerr == 0 ? 0 : 1);

}

Revision 1.6 of `driver.
'
ontains this:

#in
lude <stdio.h>

int main(int arg
,

har **argv)

{

parse();

if (arg
 != 1)

{

fprintf(stderr, "t
: No args expe
ted.\n");

exit(1);

}

if (nerr == 0)

gen
ode();

else

fprintf(stderr, "No
ode generated.\n");

exit(!!nerr);

}

Your working
opy of `driver.
', based on revision 1.4,
ontains this before you run `
vs

update':

#in
lude <stdlib.h>

#in
lude <stdio.h>

void main()

{

init_s
anner();

parse();

if (nerr == 0)

gen
ode();

else

fprintf(stderr, "No
ode generated.\n");

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You run `
vs update':

66 CVS|Con
urrent Versions System v1.11.1p1

$
vs update driver.

RCS file: /usr/lo
al/
vsroot/yoyodyne/t
/driver.
,v

retrieving revision 1.4

retrieving revision 1.6

Merging differen
es between 1.4 and 1.6 into driver.

r
smerge warning: overlaps during merge

vs update:
onfli
ts found in driver.

C driver.

vs tells you that there were some
on
i
ts. Your original working �le is saved unmodi�ed

in `.#driver.
.1.4'. The new version of `driver.
'
ontains this:

#in
lude <stdlib.h>

#in
lude <stdio.h>

int main(int arg
,

har **argv)

{

init_s
anner();

parse();

if (arg
 != 1)

{

fprintf(stderr, "t
: No args expe
ted.\n");

exit(1);

}

if (nerr == 0)

gen
ode();

else

fprintf(stderr, "No
ode generated.\n");

<<<<<<< driver.

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

=======

exit(!!nerr);

>>>>>>> 1.6

}

Note how all non-overlapping modi�
ations are in
orporated in your working
opy, and

that the overlapping se
tion is
learly marked with `<<<<<<<', `=======' and `>>>>>>>'.

You resolve the
on
i
t by editing the �le, removing the markers and the erroneous line.

Suppose you end up with this �le:

#in
lude <stdlib.h>

#in
lude <stdio.h>

int main(int arg
,

har **argv)

{

init_s
anner();

parse();

if (arg
 != 1)

{

Chapter 10: Multiple developers 67

fprintf(stderr, "t
: No args expe
ted.\n");

exit(1);

}

if (nerr == 0)

gen
ode();

else

fprintf(stderr, "No
ode generated.\n");

exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);

}

You
an now go ahead and
ommit this as revision 1.7.

$
vs
ommit -m "Initialize s
anner. Use symboli
 exit values." driver.

Che
king in driver.
;

/usr/lo
al/
vsroot/yoyodyne/t
/driver.
,v <-- driver.

new revision: 1.7; previous revision: 1.6

done

For your prote
tion,
vs will refuse to
he
k in a �le if a
on
i
t o

urred and you have

not resolved the
on
i
t. Currently to resolve a
on
i
t, you must
hange the timestamp

on the �le. In previous versions of
vs, you also needed to insure that the �le
ontains

no
on
i
t markers. Be
ause your �le may legitimately
ontain
on
i
t markers (that is,

o

urren
es of `>>>>>>> ' at the start of a line that don't mark a
on
i
t), the
urrent

version of
vs will print a warning and pro
eed to
he
k in the �le.

If you use release 1.04 or later of p
l-
vs (a gnu Ema
s front-end for
vs) you
an use

an Ema
s pa
kage
alled emerge to help you resolve
on
i
ts. See the do
umentation for

p
l-
vs.

10.4 Informing others about
ommits

It is often useful to inform others when you
ommit a new revision of a �le. The `-i'

option of the `modules' �le, or the `loginfo' �le,
an be used to automate this pro
ess.

See Se
tion C.1 [modules℄, page 129. See Se
tion C.7 [loginfo℄, page 137. You
an use these

features of
vs to, for instan
e, instru
t
vs to mail a message to all developers, or post a

message to a lo
al newsgroup.

10.5 Several developers simultaneously attempting to run

CVS

If several developers try to run
vs at the same time, one may get the following message:

[11:43:23℄ waiting for ba
h's lo
k in /usr/lo
al/
vsroot/foo

vs will try again every 30 se
onds, and either
ontinue with the operation or print

the message again, if it still needs to wait. If a lo
k seems to sti
k around for an undue

amount of time, �nd the person holding the lo
k and ask them about the
vs
ommand they

are running. If they aren't running a
vs
ommand, look in the repository dire
tory men-

tioned in the message and remove �les whi
h they own whose names start with `#
vs.rfl',

`#
vs.wfl', or `#
vs.lo
k'.

Note that these lo
ks are to prote
t
vs's internal data stru
tures and have no relation-

ship to the word lo
k in the sense used by r
s|whi
h refers to reserved
he
kouts (see

Chapter 10 [Multiple developers℄, page 63).

68 CVS|Con
urrent Versions System v1.11.1p1

Any number of people
an be reading from a given repository at a time; only when

someone is writing do the lo
ks prevent other people from reading or writing.

One might hope for the following property

If someone
ommits some
hanges in one
vs
ommand,

then an update by someone else will either get all the

hanges, or none of them.

but
vs does not have this property. For example, given the �les

a/one.

a/two.

b/three.

b/four.

if someone runs

vs
i a/two.
 b/three.

and someone else runs
vs update at the same time, the person running update might

get only the
hange to `b/three.
' and not the
hange to `a/two.
'.

10.6 Me
hanisms to tra
k who is editing �les

For many groups, use of
vs in its default mode is perfe
tly satisfa
tory. Users may

sometimes go to
he
k in a modi�
ation only to �nd that another modi�
ation has inter-

vened, but they deal with it and pro
eed with their
he
k in. Other groups prefer to be

able to know who is editing what �les, so that if two people try to edit the same �le they

an
hoose to talk about who is doing what when rather than be surprised at
he
k in

time. The features in this se
tion allow su
h
oordination, while retaining the ability of two

developers to edit the same �le at the same time.

For maximum bene�t developers should use
vs edit (not
hmod) to make �les read-

write to edit them, and
vs release (not rm) to dis
ard a working dire
tory whi
h is no

longer in use, but
vs is not able to enfor
e this behavior.

10.6.1 Telling CVS to wat
h
ertain �les

To enable the wat
h features, you �rst spe
ify that
ertain �les are to be wat
hed.

Command
vs wat
h on [-lR℄ �les . . .

Spe
ify that developers should run
vs edit before editing �les.
vs will
reate

working
opies of �les read-only, to remind developers to run the
vs edit
ommand

before working on them.

If �les in
ludes the name of a dire
tory,
vs arranges to wat
h all �les added to the

orresponding repository dire
tory, and sets a default for �les added in the future;

this allows the user to set noti�
ation poli
ies on a per-dire
tory basis. The
ontents

of the dire
tory are pro
essed re
ursively, unless the -l option is given. The -R option

an be used to for
e re
ursion if the -l option is set in `~/.
vsr
' (see Se
tion A.3

[~/.
vsr
℄, page 88).

If �les is omitted, it defaults to the
urrent dire
tory.

Chapter 10: Multiple developers 69

Command
vs wat
h o� [-lR℄ �les . . .

Do not
reate �les read-only on
he
kout; thus, developers will not be reminded to

use
vs edit and
vs unedit.

The �les and options are pro
essed as for
vs wat
h on.

10.6.2 Telling CVS to notify you

You
an tell
vs that you want to re
eive noti�
ations about various a
tions taken on

a �le. You
an do this without using
vs wat
h on for the �le, but generally you will want

to use
vs wat
h on, so that developers use the
vs edit
ommand.

Command
vs wat
h add [-a a
tion℄ [-lR℄ �les . . .

Add the
urrent user to the list of people to re
eive noti�
ation of work done on �les.

The -a option spe
i�es what kinds of events
vs should notify the user about. a
tion

is one of the following:

edit Another user has applied the
vs edit
ommand (des
ribed below) to a

�le.

unedit Another user has applied the
vs unedit
ommand (des
ribed below) or

the
vs release
ommand to a �le, or has deleted the �le and allowed

vs update to re
reate it.

ommit Another user has
ommitted
hanges to a �le.

all All of the above.

none None of the above. (This is useful with
vs edit, des
ribed below.)

The -a option may appear more than on
e, or not at all. If omitted, the a
tion

defaults to all.

The �les and options are pro
essed as for the
vs wat
h
ommands.

Command
vs wat
h remove [-a a
tion℄ [-lR℄ �les . . .

Remove a noti�
ation request established using
vs wat
h add; the arguments are the

same. If the -a option is present, only wat
hes for the spe
i�ed a
tions are removed.

When the
onditions exist for noti�
ation,
vs
alls the `notify' administrative �le.

Edit `notify' as one edits the other administrative �les (see Se
tion 2.4 [Intro adminis-

trative �les℄, page 16). This �le follows the usual
onventions for administrative �les (see

Se
tion C.3.1 [syntax℄, page 133), where ea
h line is a regular expression followed by a

ommand to exe
ute. The
ommand should
ontain a single o

urren
e of `%s' whi
h will

be repla
ed by the user to notify; the rest of the information regarding the noti�
ation will

be supplied to the
ommand on standard input. The standard thing to put in the notify

�le is the single line:

ALL mail %s -s "CVS notifi
ation"

This
auses users to be noti�ed by ele
troni
 mail.

70 CVS|Con
urrent Versions System v1.11.1p1

Note that if you set this up in the straightforward way, users re
eive noti�
ations on the

server ma
hine. One
ould of
ourse write a `notify' s
ript whi
h dire
ted noti�
ations

elsewhere, but to make this easy,
vs allows you to asso
iate a noti�
ation address for ea
h

user. To do so
reate a �le `users' in `CVSROOT' with a line for ea
h user in the format

user:value. Then instead of passing the name of the user to be noti�ed to `notify',
vs

will pass the value (normally an email address on some other ma
hine).

vs does not notify you for your own
hanges. Currently this
he
k is done based on

whether the user name of the person taking the a
tion whi
h triggers noti�
ation mat
hes

the user name of the person getting noti�
ation. In fa
t, in general, the wat
hes features

only tra
k one edit by ea
h user. It probably would be more useful if wat
hes tra
ked ea
h

working dire
tory separately, so this behavior might be worth
hanging.

10.6.3 How to edit a �le whi
h is being wat
hed

Sin
e a �le whi
h is being wat
hed is
he
ked out read-only, you
annot simply edit it.

To make it read-write, and inform others that you are planning to edit it, use the
vs edit

ommand. Some systems
all this a
he
kout, but
vs uses that term for obtaining a
opy

of the sour
es (see Se
tion 1.3.1 [Getting the sour
e℄, page 4), an operation whi
h those

systems
all a get or a fet
h.

Command
vs edit [options℄ �les . . .

Prepare to edit the working �les �les.
vs makes the �les read-write, and noti�es

users who have requested edit noti�
ation for any of �les.

The
vs edit
ommand a

epts the same options as the
vs wat
h add
ommand,

and establishes a temporary wat
h for the user on �les;
vs will remove the wat
h

when �les are unedited or
ommitted. If the user does not wish to re
eive noti�
a-

tions, she should spe
ify -a none.

The �les and options are pro
essed as for the
vs wat
h
ommands.

Normally when you are done with a set of
hanges, you use the
vs
ommit
ommand,

whi
h
he
ks in your
hanges and returns the wat
hed �les to their usual read-only state.

But if you instead de
ide to abandon your
hanges, or not to make any
hanges, you
an

use the
vs unedit
ommand.

Command
vs unedit [-lR℄ �les . . .

Abandon work on the working �les �les, and revert them to the repository versions on

whi
h they are based.
vs makes those �les read-only for whi
h users have requested

noti�
ation using
vs wat
h on.
vs noti�es users who have requested unedit noti-

�
ation for any of �les.

The �les and options are pro
essed as for the
vs wat
h
ommands.

If wat
hes are not in use, the unedit
ommand probably does not work, and the way

to revert to the repository version is to remove the �le and then use
vs update to

get a new
opy. The meaning is not pre
isely the same; removing and updating may

also bring in some
hanges whi
h have been made in the repository sin
e the last time

you updated.

Chapter 10: Multiple developers 71

When using
lient/server
vs, you
an use the
vs edit and
vs unedit
ommands

even if
vs is unable to su

essfully
ommuni
ate with the server; the noti�
ations will be

sent upon the next su

essful
vs
ommand.

10.6.4 Information about who is wat
hing and editing

Command
vs wat
hers [-lR℄ �les . . .

List the users
urrently wat
hing
hanges to �les. The report in
ludes the �les being

wat
hed, and the mail address of ea
h wat
her.

The �les and options are pro
essed as for the
vs wat
h
ommands.

Command
vs editors [-lR℄ �les . . .

List the users
urrently working on �les. The report in
ludes the mail address of ea
h

user, the time when the user began working with the �le, and the host and path of

the working dire
tory
ontaining the �le.

The �les and options are pro
essed as for the
vs wat
h
ommands.

10.6.5 Using wat
hes with old versions of CVS

If you use the wat
h features on a repository, it
reates `CVS' dire
tories in the repository

and stores the information about wat
hes in that dire
tory. If you attempt to use
vs 1.6

or earlier with the repository, you get an error message su
h as the following (all on one

line):

vs update:
annot open CVS/Entries for reading:

No su
h file or dire
tory

and your operation will likely be aborted. To use the wat
h features, you must upgrade

all
opies of
vs whi
h use that repository in lo
al or server mode. If you
annot upgrade,

use the wat
h off and wat
h remove
ommands to remove all wat
hes, and that will restore

the repository to a state whi
h
vs 1.6
an
ope with.

10.7 Choosing between reserved or unreserved
he
kouts

Reserved and unreserved
he
kouts ea
h have pros and
ons. Let it be said that a lot of

this is a matter of opinion or what works given di�erent groups' working styles, but here

is a brief des
ription of some of the issues. There are many ways to organize a team of

developers.
vs does not try to enfor
e a
ertain organization. It is a tool that
an be used

in several ways.

Reserved
he
kouts
an be very
ounter-produ
tive. If two persons want to edit di�erent

parts of a �le, there may be no reason to prevent either of them from doing so. Also, it is

ommon for someone to take out a lo
k on a �le, be
ause they are planning to edit it, but

then forget to release the lo
k.

People, espe
ially people who are familiar with reserved
he
kouts, often wonder how

often
on
i
ts o

ur if unreserved
he
kouts are used, and how diÆ
ult they are to re-

solve. The experien
e with many groups is that they o

ur rarely and usually are relatively

straightforward to resolve.

72 CVS|Con
urrent Versions System v1.11.1p1

The rarity of serious
on
i
ts may be surprising, until one realizes that they o

ur

only when two developers disagree on the proper design for a given se
tion of
ode; su
h

a disagreement suggests that the team has not been
ommuni
ating properly in the �rst

pla
e. In order to
ollaborate under any sour
e management regimen, developers must

agree on the general design of the system; given this agreement, overlapping
hanges are

usually straightforward to merge.

In some
ases unreserved
he
kouts are
learly inappropriate. If no merge tool exists

for the kind of �le you are managing (for example word pro
essor �les or �les edited by

Computer Aided Design programs), and it is not desirable to
hange to a program whi
h

uses a mergeable data format, then resolving
on
i
ts is going to be unpleasant enough

that you generally will be better o� to simply avoid the
on
i
ts instead, by using reserved

he
kouts.

The wat
hes features des
ribed above in Se
tion 10.6 [Wat
hes℄, page 68
an be
on-

sidered to be an intermediate model between reserved
he
kouts and unreserved
he
kouts.

When you go to edit a �le, it is possible to �nd out who else is editing it. And rather

than having the system simply forbid both people editing the �le, it
an tell you what the

situation is and let you �gure out whether it is a problem in that parti
ular
ase or not.

Therefore, for some groups it
an be
onsidered the best of both the reserved
he
kout and

unreserved
he
kout worlds.

Chapter 11: Revision management 73

11 Revision management

If you have read this far, you probably have a pretty good grasp on what
vs
an do for

you. This
hapter talks a little about things that you still have to de
ide.

If you are doing development on your own using
vs you
ould probably skip this
hapter.

The questions this
hapter takes up be
ome more important when more than one person is

working in a repository.

11.1 When to
ommit?

Your group should de
ide whi
h poli
y to use regarding
ommits. Several poli
ies are

possible, and as your experien
e with
vs grows you will probably �nd out what works for

you.

If you
ommit �les too qui
kly you might
ommit �les that do not even
ompile. If

your partner updates his working sour
es to in
lude your buggy �le, he will be unable to

ompile the
ode. On the other hand, other persons will not be able to bene�t from the

improvements you make to the
ode if you
ommit very seldom, and
on
i
ts will probably

be more
ommon.

It is
ommon to only
ommit �les after making sure that they
an be
ompiled. Some

sites require that the �les pass a test suite. Poli
ies like this
an be enfor
ed using the

ommitinfo �le (see Se
tion C.4 [
ommitinfo℄, page 134), but you should think twi
e before

you enfor
e su
h a
onvention. By making the development environment too
ontrolled it

might be
ome too regimented and thus
ounter-produ
tive to the real goal, whi
h is to get

software written.

74 CVS|Con
urrent Versions System v1.11.1p1

Chapter 12: Keyword substitution 75

12 Keyword substitution

As long as you edit sour
e �les inside a working dire
tory you
an always �nd out the

state of your �les via `
vs status' and `
vs log'. But as soon as you export the �les from

your development environment it be
omes harder to identify whi
h revisions they are.

vs
an use a me
hanism known as keyword substitution (or keyword expansion) to help

identifying the �les. Embedded strings of the form $keyword$ and $keyword:...$ in a �le

are repla
ed with strings of the form $keyword:value$ whenever you obtain a new revision

of the �le.

12.1 Keyword List

This is a list of the keywords:

$Author$ The login name of the user who
he
ked in the revision.

$Date$ The date and time (UTC) the revision was
he
ked in.

$Header$ A standard header
ontaining the full pathname of the r
s �le, the revision

number, the date (UTC), the author, the state, and the lo
ker (if lo
ked). Files

will normally never be lo
ked when you use
vs.

Id Same as $Header$, ex
ept that the r
s �lename is without a path.

$Name$ Tag name used to
he
k out this �le. The keyword is expanded only if one
he
ks

out with an expli
it tag name. For example, when running the
ommand
vs

o -r first, the keyword expands to `Name: first'.

$Lo
ker$ The login name of the user who lo
ked the revision (empty if not lo
ked, whi
h

is the normal
ase unless
vs admin -l is in use).

Log The log message supplied during
ommit, pre
eded by a header
ontaining the

r
s �lename, the revision number, the author, and the date (UTC). Existing

log messages are not repla
ed. Instead, the new log message is inserted after

$Log:...$. Ea
h new line is pre�xed with the same string whi
h pre
edes the

$Log keyword. For example, if the �le
ontains

/* Here is what people have been up to:

*

* $Log: frob.
,v $

* Revision 1.1 1997/01/03 14:23:51 joe

* Add the superfrobni
ate option

*

*/

then additional lines whi
h are added when expanding the $Log keyword will

be pre
eded by ` * '. Unlike previous versions of
vs and r
s, the
omment

leader from the r
s �le is not used. The $Log keyword is useful for a

umu-

lating a
omplete
hange log in a sour
e �le, but for several reasons it
an be

problemati
. See Se
tion 12.5 [Log keyword℄, page 77.

$RCSfile$

The name of the RCS �le without a path.

76 CVS|Con
urrent Versions System v1.11.1p1

$Revision$

The revision number assigned to the revision.

$Sour
e$ The full pathname of the RCS �le.

$State$ The state assigned to the revision. States
an be assigned with
vs admin

-s|see Se
tion A.6.1 [admin options℄, page 93.

12.2 Using keywords

To in
lude a keyword string you simply in
lude the relevant text string, su
h as Id,

inside the �le, and
ommit the �le.
vs will automati
ally expand the string as part of the

ommit operation.

It is
ommon to embed the Id string in the sour
e �les so that it gets passed through

to generated �les. For example, if you are managing
omputer program sour
e
ode, you

might in
lude a variable whi
h is initialized to
ontain that string. Or some C
ompilers

may provide a #pragma ident dire
tive. Or a do
ument management system might provide

a way to pass a string through to generated �les.

The ident
ommand (whi
h is part of the r
s pa
kage)
an be used to extra
t keywords

and their values from a �le. This
an be handy for text �les, but it is even more useful for

extra
ting keywords from binary �les.

$ ident samp.

samp.
:

$Id: samp.
,v 1.5 1993/10/19 14:57:32
eder Exp $

$ g

 samp.

$ ident a.out

a.out:

$Id: samp.
,v 1.5 1993/10/19 14:57:32
eder Exp $

S

s is another popular revision
ontrol system. It has a
ommand, what, whi
h is very

similar to ident and used for the same purpose. Many sites without r
s have s

s. Sin
e

what looks for the
hara
ter sequen
e �(#) it is easy to in
lude keywords that are dete
ted

by either
ommand. Simply pre�x the keyword with the magi
 s

s phrase, like this:

stati

har *id="�(#) $Id: ab.
,v 1.5 1993/10/19 14:57:32
eder Exp $";

12.3 Avoiding substitution

Keyword substitution has its disadvantages. Sometimes you might want the literal text

string `$Author$' to appear inside a �le without
vs interpreting it as a keyword and

expanding it into something like `$Author:
eder $'.

There is unfortunately no way to sele
tively turn o� keyword substitution. You
an

use `-ko' (see Se
tion 12.4 [Substitution modes℄, page 77) to turn o� keyword substitution

entirely.

In many
ases you
an avoid using keywords in the sour
e, even though they appear

in the �nal produ
t. For example, the sour
e for this manual
ontains `$�asis{}Author$'

whenever the text `$Author$' should appear. In nroff and troff you
an embed the

null-
hara
ter \& inside the keyword for a similar e�e
t.

Chapter 12: Keyword substitution 77

12.4 Substitution modes

Ea
h �le has a stored default substitution mode, and ea
h working dire
tory
opy of a

�le also has a substitution mode. The former is set by the `-k' option to
vs add and
vs

admin; the latter is set by the `-k' or `-A' options to
vs
he
kout or
vs update.
vs

diff also has a `-k' option. For some examples, see Chapter 9 [Binary �les℄, page 61, and

Se
tion 5.10 [Merging and keywords℄, page 47.

The modes available are:

`-kkv' Generate keyword strings using the default form, e.g. $Revision: 5.7 $ for

the Revision keyword.

`-kkvl' Like `-kkv', ex
ept that a lo
ker's name is always inserted if the given revision

is
urrently lo
ked. The lo
ker's name is only relevant if
vs admin -l is in use.

`-kk' Generate only keyword names in keyword strings; omit their values. For ex-

ample, for the Revision keyword, generate the string $Revision$ instead of

$Revision: 5.7 $. This option is useful to ignore di�eren
es due to keyword

substitution when
omparing di�erent revisions of a �le (see Se
tion 5.10 [Merg-

ing and keywords℄, page 47).

`-ko' Generate the old keyword string, present in the working �le just before it

was
he
ked in. For example, for the Revision keyword, generate the string

$Revision: 1.1 $ instead of $Revision: 5.7 $ if that is how the string ap-

peared when the �le was
he
ked in.

`-kb' Like `-ko', but also inhibit
onversion of line endings between the
anoni
al

form in whi
h they are stored in the repository (linefeed only), and the form

appropriate to the operating system in use on the
lient. For systems, like unix,

whi
h use linefeed only to terminate lines, this is the same as `-ko'. For more

information on binary �les, see Chapter 9 [Binary �les℄, page 61.

`-kv' Generate only keyword values for keyword strings. For example, for the

Revision keyword, generate the string 5.7 instead of $Revision: 5.7 $. This

an help generate �les in programming languages where it is hard to strip

keyword delimiters like $Revision: $ from a string. However, further keyword

substitution
annot be performed on
e the keyword names are removed, so

this option should be used with
are.

One often would like to use `-kv' with
vs export|see Se
tion A.10 [export℄,

page 104. But be aware that doesn't handle an export
ontaining binary �les

orre
tly.

12.5 Problems with the Log keyword.

The Log keyword is somewhat
ontroversial. As long as you are working on your

development system the information is easily a

essible even if you do not use the Log

keyword|just do a
vs log. On
e you export the �le the history information might be

useless anyhow.

A more serious
on
ern is that
vs is not good at handling Log entries when a bran
h

is merged onto the main trunk. Con
i
ts often result from the merging operation.

78 CVS|Con
urrent Versions System v1.11.1p1

People also tend to "�x" the log entries in the �le (
orre
ting spellingmistakes and maybe

even fa
tual errors). If that is done the information from
vs log will not be
onsistent

with the information inside the �le. This may or may not be a problem in real life.

It has been suggested that the Log keyword should be inserted last in the �le, and not

in the �les header, if it is to be used at all. That way the long list of
hange messages will

not interfere with everyday sour
e �le browsing.

Chapter 13: Tra
king third-party sour
es 79

13 Tra
king third-party sour
es

If you modify a program to better �t your site, you probably want to in
lude your

modi�
ations when the next release of the program arrives.
vs
an help you with this

task.

In the terminology used in
vs, the supplier of the program is
alled a vendor. The

unmodi�ed distribution from the vendor is
he
ked in on its own bran
h, the vendor bran
h.

vs reserves bran
h 1.1.1 for this use.

When you modify the sour
e and
ommit it, your revision will end up on the main trunk.

When a new release is made by the vendor, you
ommit it on the vendor bran
h and
opy

the modi�
ations onto the main trunk.

Use the import
ommand to
reate and update the vendor bran
h. When you import a

new �le, the vendor bran
h is made the `head' revision, so anyone that
he
ks out a
opy of

the �le gets that revision. When a lo
al modi�
ation is
ommitted it is pla
ed on the main

trunk, and made the `head' revision.

13.1 Importing for the �rst time

Use the import
ommand to
he
k in the sour
es for the �rst time. When you use the

import
ommand to tra
k third-party sour
es, the vendor tag and release tags are useful.

The vendor tag is a symboli
 name for the bran
h (whi
h is always 1.1.1, unless you use

the `-b bran
h'
ag|see Se
tion 13.6 [Multiple vendor bran
hes℄, page 80.). The release

tags are symboli
 names for a parti
ular release, su
h as `FSF_0_04'.

Note that import does not
hange the dire
tory in whi
h you invoke it. In parti
ular,

it does not set up that dire
tory as a
vs working dire
tory; if you want to work with the

sour
es import them �rst and then
he
k them out into a di�erent dire
tory (see Se
tion 1.3.1

[Getting the sour
e℄, page 4).

Suppose you have the sour
es to a program
alled wdiff in a dire
tory `wdiff-0.04',

and are going to make private modi�
ations that you want to be able to use even when new

releases are made in the future. You start by importing the sour
e to your repository:

$
d wdiff-0.04

$
vs import -m "Import of FSF v. 0.04" fsf/wdiff FSF_DIST WDIFF_0_04

The vendor tag is named `FSF_DIST' in the above example, and the only release tag

assigned is `WDIFF_0_04'.

13.2 Updating with the import
ommand

When a new release of the sour
e arrives, you import it into the repository with the

same import
ommand that you used to set up the repository in the �rst pla
e. The only

di�eren
e is that you spe
ify a di�erent release tag this time.

$ tar xfz wdiff-0.05.tar.gz

$
d wdiff-0.05

$
vs import -m "Import of FSF v. 0.05" fsf/wdiff FSF_DIST WDIFF_0_05

For �les that have not been modi�ed lo
ally, the newly
reated revision be
omes the

head revision. If you have made lo
al
hanges, import will warn you that you must merge

the
hanges into the main trunk, and tell you to use `
he
kout -j' to do so.

80 CVS|Con
urrent Versions System v1.11.1p1

$
vs
he
kout -jFSF_DIST:yesterday -jFSF_DIST wdiff

The above
ommand will
he
k out the latest revision of `wdiff', merging the
hanges made

on the vendor bran
h `FSF_DIST' sin
e yesterday into the working
opy. If any
on
i
ts arise

during the merge they should be resolved in the normal way (see Se
tion 10.3 [Con
i
ts

example℄, page 65). Then, the modi�ed �les may be
ommitted.

Using a date, as suggested above, assumes that you do not import more than one release

of a produ
t per day. If you do, you
an always use something like this instead:

$
vs
he
kout -jWDIFF_0_04 -jWDIFF_0_05 wdiff

In this
ase, the two above
ommands are equivalent.

13.3 Reverting to the latest vendor release

You
an also revert lo
al
hanges
ompletely and return to the latest vendor release by

hanging the `head' revision ba
k to the vendor bran
h on all �les. For example, if you

have a
he
ked-out
opy of the sour
es in `~/work.d/wdiff', and you want to revert to the

vendor's version for all the �les in that dire
tory, you would type:

$
d ~/work.d/wdiff

$
vs admin -bWDIFF .

You must spe
ify the `-bWDIFF' without any spa
e after the `-b'. See Se
tion A.6.1 [admin

options℄, page 93.

13.4 How to handle binary �les with
vs import

Use the `-k' wrapper option to tell import whi
h �les are binary. See Se
tion C.2

[Wrappers℄, page 132.

13.5 How to handle keyword substitution with
vs import

The sour
es whi
h you are importing may
ontain keywords (see Chapter 12 [Keyword

substitution℄, page 75). For example, the vendor may use
vs or some other system whi
h

uses similar keyword expansion syntax. If you just import the �les in the default fashion,

then the keyword expansions supplied by the vendor will be repla
ed by keyword expansions

supplied by your own
opy of
vs. It may be more
onvenient to maintain the expansions

supplied by the vendor, so that this information
an supply information about the sour
es

that you imported from the vendor.

To maintain the keyword expansions supplied by the vendor, supply the `-ko' option to

vs import the �rst time you import the �le. This will turn o� keyword expansion for that

�le entirely, so if you want to be more sele
tive you'll have to think about what you want

and use the `-k' option to
vs update or
vs admin as appropriate.

13.6 Multiple vendor bran
hes

All the examples so far assume that there is only one vendor from whi
h you are getting

sour
es. In some situations you might get sour
es from a variety of pla
es. For example,

suppose that you are dealing with a proje
t where many di�erent people and teams are

Chapter 13: Tra
king third-party sour
es 81

modifying the software. There are a variety of ways to handle this, but in some
ases you

have a bun
h of sour
e trees lying around and what you want to do more than anything

else is just to all put them in
vs so that you at least have them in one pla
e.

For handling situations in whi
h there may be more than one vendor, you may spe
ify

the `-b' option to
vs import. It takes as an argument the vendor bran
h to import to.

The default is `-b 1.1.1'.

For example, suppose that there are two teams, the red team and the blue team, that

are sending you sour
es. You want to import the red team's e�orts to bran
h 1.1.1 and use

the vendor tag RED. You want to import the blue team's e�orts to bran
h 1.1.3 and use

the vendor tag BLUE. So the
ommands you might use are:

$
vs import dir RED RED_1-0

$
vs import -b 1.1.3 dir BLUE BLUE_1-5

Note that if your vendor tag does not mat
h your `-b' option,
vs will not dete
t this

ase! For example,

$
vs import -b 1.1.3 dir RED RED_1-0

Be
areful; this kind of mismat
h is sure to sow
onfusion or worse. I
an't think of a useful

purpose for the ability to spe
ify a mismat
h here, but if you dis
over su
h a use, don't.

vs is likely to make this an error in some future release.

82 CVS|Con
urrent Versions System v1.11.1p1

Chapter 14: How your build system intera
ts with CVS 83

14 How your build system intera
ts with CVS

As mentioned in the introdu
tion,
vs does not
ontain software for building your soft-

ware from sour
e
ode. This se
tion des
ribes how various aspe
ts of your build system

might intera
t with
vs.

One
ommon question, espe
ially from people who are a

ustomed to r
s, is how to

make their build get an up to date
opy of the sour
es. The answer to this with
vs is

two-fold. First of all, sin
e
vs itself
an re
urse through dire
tories, there is no need to

modify your `Makefile' (or whatever
on�guration �le your build tool uses) to make sure

ea
h �le is up to date. Instead, just use two
ommands, �rst
vs -q update and then make

or whatever the
ommand is to invoke your build tool. Se
ondly, you do not ne
essarily

want to get a
opy of a
hange someone else made until you have �nished your own work.

One suggested approa
h is to �rst update your sour
es, then implement, build and test the

hange you were thinking of, and then
ommit your sour
es (updating �rst if ne
essary). By

periodi
ally (in between
hanges, using the approa
h just des
ribed) updating your entire

tree, you ensure that your sour
es are suÆ
iently up to date.

One
ommon need is to re
ord whi
h versions of whi
h sour
e �les went into a parti
ular

build. This kind of fun
tionality is sometimes
alled bill of materials or something similar.

The best way to do this with
vs is to use the tag
ommand to re
ord whi
h versions went

into a given build (see Se
tion 4.4 [Tags℄, page 34).

Using
vs in the most straightforward manner possible, ea
h developer will have a
opy

of the entire sour
e tree whi
h is used in a parti
ular build. If the sour
e tree is small, or if

developers are geographi
ally dispersed, this is the preferred solution. In fa
t one approa
h

for larger proje
ts is to break a proje
t down into smaller separately-
ompiled subsystems,

and arrange a way of releasing them internally so that ea
h developer need
he
k out only

those subsystems whi
h are they are a
tively working on.

Another approa
h is to set up a stru
ture whi
h allows developers to have their own

opies of some �les, and for other �les to a

ess sour
e �les from a
entral lo
ation. Many

people have
ome up with some su
h a system using features su
h as the symboli
 link

feature found in many operating systems, or the VPATH feature found in many versions

of make. One build tool whi
h is designed to help with this kind of thing is Odin (see

ftp://ftp.
s.
olorado.edu/pub/distribs/odin).

84 CVS|Con
urrent Versions System v1.11.1p1

Chapter 15: Spe
ial Files 85

15 Spe
ial Files

In normal
ir
umstan
es,
vs works only with regular �les. Every �le in a proje
t is

assumed to be persistent; it must be possible to open, read and
lose them; and so on.

vs also ignores �le permissions and ownerships, leaving su
h issues to be resolved by the

developer at installation time. In other words, it is not possible to "
he
k in" a devi
e into

a repository; if the devi
e �le
annot be opened,
vs will refuse to handle it. Files also lose

their ownerships and permissions during repository transa
tions.

86 CVS|Con
urrent Versions System v1.11.1p1

Appendix A: Guide to CVS
ommands 87

Appendix A Guide to CVS
ommands

This appendix des
ribes the overall stru
ture of
vs
ommands, and des
ribes some

ommands in detail (others are des
ribed elsewhere; for a qui
k referen
e to
vs
ommands,

see Appendix B [Invoking CVS℄, page 117).

A.1 Overall stru
ture of CVS
ommands

The overall format of all
vs
ommands is:

vs [
vs_options ℄
vs_
ommand [
ommand_options ℄ [
ommand_args ℄

vs The name of the
vs program.

vs_options

Some options that a�e
t all sub-
ommands of
vs. These are des
ribed below.

vs_
ommand

One of several di�erent sub-
ommands. Some of the
ommands have aliases that

an be used instead; those aliases are noted in the referen
e manual for that

ommand. There are only two situations where you may omit `
vs_
ommand':

`
vs -H' eli
its a list of available
ommands, and `
vs -v' displays version in-

formation on
vs itself.

ommand_options

Options that are spe
i�
 for the
ommand.

ommand_args

Arguments to the
ommands.

There is unfortunately some
onfusion between
vs_options and
ommand_options.

`-l', when given as a
vs_option, only a�e
ts some of the
ommands. When it is given

as a
ommand_option is has a di�erent meaning, and is a

epted by more
ommands. In

other words, do not take the above
ategorization too seriously. Look at the do
umentation

instead.

A.2 CVS's exit status

vs
an indi
ate to the
alling environment whether it su

eeded or failed by setting its

exit status. The exa
t way of testing the exit status will vary from one operating system to

another. For example in a unix shell s
ript the `$?' variable will be 0 if the last
ommand

returned a su

essful exit status, or greater than 0 if the exit status indi
ated failure.

If
vs is su

essful, it returns a su

essful status; if there is an error, it prints an error

message and returns a failure status. The one ex
eption to this is the
vs diff
ommand.

It will return a su

essful status if it found no di�eren
es, or a failure status if there were

di�eren
es or if there was an error. Be
ause this behavior provides no good way to dete
t

errors, in the future it is possible that
vs diff will be
hanged to behave like the other

vs
ommands.

88 CVS|Con
urrent Versions System v1.11.1p1

A.3 Default options and the ~/.
vsr
 �le

There are some
ommand_options that are used so often that you might have set up an

alias or some other means to make sure you always spe
ify that option. One example (the

one that drove the implementation of the `.
vsr
' support, a
tually) is that many people

�nd the default output of the `diff'
ommand to be very hard to read, and that either

ontext di�s or unidi�s are mu
h easier to understand.

The `~/.
vsr
' �le is a way that you
an add default options to
vs_
ommands within

vs, instead of relying on aliases or other shell s
ripts.

The format of the `~/.
vsr
' �le is simple. The �le is sear
hed for a line that begins

with the same name as the
vs_
ommand being exe
uted. If a mat
h is found, then the

remainder of the line is split up (at whitespa
e
hara
ters) into separate options and added

to the
ommand arguments before any options from the
ommand line.

If a
ommand has two names (e.g.,
he
kout and
o), the oÆ
ial name, not ne
essarily

the one used on the
ommand line, will be used to mat
h against the �le. So if this is the

ontents of the user's `~/.
vsr
' �le:

log -N

diff -u

update -P

he
kout -P

the
ommand `
vs
he
kout foo' would have the `-P' option added to the arguments, as

well as `
vs
o foo'.

With the example �le above, the output from `
vs diff foobar' will be in unidi� format.

`
vs diff -
 foobar' will provide
ontext di�s, as usual. Getting "old" format di�s would

be slightly more
ompli
ated, be
ause diff doesn't have an option to spe
ify use of the

"old" format, so you would need `
vs -f diff foobar'.

In pla
e of the
ommand name you
an use
vs to spe
ify global options (see Se
tion A.4

[Global options℄, page 88). For example the following line in `.
vsr
'

vs -z6

auses
vs to use
ompression level 6.

A.4 Global options

The available `
vs_options' (that are given to the left of `
vs_
ommand') are:

--allow-root=rootdir

Spe
ify legal
vsroot dire
tory. See Se
tion 2.9.3.1 [Password authenti
ation

server℄, page 21.

-a Authenti
ate all
ommuni
ation between the
lient and the server. Only has an

e�e
t on the
vs
lient. As of this writing, this is only implemented when using

a GSSAPI
onne
tion (see Se
tion 2.9.4 [GSSAPI authenti
ated℄, page 25).

Authenti
ation prevents
ertain sorts of atta
ks involving hija
king the a
tive

t
p
onne
tion. Enabling authenti
ation does not enable en
ryption.

-b bindir In
vs 1.9.18 and older, this spe
i�ed that r
s programs are in the bindir

dire
tory. Current versions of
vs do not run r
s programs; for
ompatibility

this option is a

epted, but it does nothing.

Appendix A: Guide to CVS
ommands 89

-T tempdir

Use tempdir as the dire
tory where temporary �les are lo
ated. Overrides the

setting of the $TMPDIR environment variable and any pre
ompiled dire
tory.

This parameter should be spe
i�ed as an absolute pathname.

-d
vs root dire
tory

Use
vs root dire
tory as the root dire
tory pathname of the repository. Over-

rides the setting of the $CVSROOT environment variable. See Chapter 2 [Repos-

itory℄, page 7.

-e editor Use editor to enter revision log information. Overrides the setting of the

$CVSEDITOR and $EDITOR environment variables. For more information, see

Se
tion 1.3.2 [Committing your
hanges℄, page 4.

-f Do not read the `~/.
vsr
' �le. This option is most often used be
ause of the

non-orthogonality of the
vs option set. For example, the `
vs log' option `-N'

(turn o� display of tag names) does not have a
orresponding option to turn

the display on. So if you have `-N' in the `~/.
vsr
' entry for `log', you may

need to use `-f' to show the tag names.

-H

--help Display usage information about the spe
i�ed `
vs_
ommand' (but do not a
-

tually exe
ute the
ommand). If you don't spe
ify a
ommand name, `
vs -H'

displays overall help for
vs, in
luding a list of other help options.

-l Do not log the `
vs_
ommand' in the
ommand history (but exe
ute it anyway).

See Se
tion A.11 [history℄, page 105, for information on
ommand history.

-n Do not
hange any �les. Attempt to exe
ute the `
vs_
ommand', but only to

issue reports; do not remove, update, or merge any existing �les, or
reate any

new �les.

Note that
vs will not ne
essarily produ
e exa
tly the same output as without

`-n'. In some
ases the output will be the same, but in other
ases
vs will

skip some of the pro
essing that would have been required to produ
e the exa
t

same output.

-Q Cause the
ommand to be really quiet; the
ommand will only generate output

for serious problems.

-q Cause the
ommand to be somewhat quiet; informational messages, su
h as

reports of re
ursion through subdire
tories, are suppressed.

-r Make new working �les read-only. Same e�e
t as if the $CVSREAD environment

variable is set (see Appendix D [Environment variables℄, page 143). The de-

fault is to make working �les writable, unless wat
hes are on (see Se
tion 10.6

[Wat
hes℄, page 68).

-s variable=value

Set a user variable (see Se
tion C.12 [Variables℄, page 140).

-t Tra
e program exe
ution; display messages showing the steps of
vs a
tivity.

Parti
ularly useful with `-n' to explore the potential impa
t of an unfamiliar

ommand.

90 CVS|Con
urrent Versions System v1.11.1p1

-v

--version

Display version and
opyright information for
vs.

-w Make new working �les read-write. Overrides the setting of the $CVSREAD en-

vironment variable. Files are
reated read-write by default, unless $CVSREAD is

set or `-r' is given.

-x En
rypt all
ommuni
ation between the
lient and the server. Only has an ef-

fe
t on the
vs
lient. As of this writing, this is only implemented when using

a GSSAPI
onne
tion (see Se
tion 2.9.4 [GSSAPI authenti
ated℄, page 25) or a

Kerberos
onne
tion (see Se
tion 2.9.5 [Kerberos authenti
ated℄, page 25). En-

abling en
ryption implies that message traÆ
 is also authenti
ated. En
ryption

support is not available by default; it must be enabled using a spe
ial
on�gure

option, `--enable-en
ryption', when you build
vs.

-z gzip-level

Set the
ompression level. Valid levels are 1 (high speed, low
ompression) to 9

(low speed, high
ompression), or 0 to disable
ompression (the default). Only

has an e�e
t on the
vs
lient.

A.5 Common
ommand options

This se
tion des
ribes the `
ommand_options' that are available a
ross several
vs
om-

mands. These options are always given to the right of `
vs_
ommand'. Not all
ommands

support all of these options; ea
h option is only supported for
ommands where it makes

sense. However, when a
ommand has one of these options you
an almost always
ount on

the same behavior of the option as in other
ommands. (Other
ommand options, whi
h are

listed with the individual
ommands, may have di�erent behavior from one
vs
ommand

to the other).

Warning: the `history'
ommand is an ex
eption; it supports many options that
on
i
t

even with these standard options.

-D date spe

Use the most re
ent revision no later than date spe
. date spe
 is a single

argument, a date des
ription spe
ifying a date in the past.

The spe
i�
ation is sti
ky when you use it to make a private
opy of a sour
e �le;

that is, when you get a working �le using `-D',
vs re
ords the date you spe
i�ed,

so that further updates in the same dire
tory will use the same date (for more

information on sti
ky tags/dates, see Se
tion 4.9 [Sti
ky tags℄, page 38).

`-D' is available with the
he
kout, diff, export, history, rdiff, rtag, and

update
ommands. (The history
ommand uses this option in a slightly dif-

ferent way; see Se
tion A.11.1 [history options℄, page 105).

A wide variety of date formats are supported by
vs. The most standard ones

are ISO8601 (from the International Standards Organization) and the Internet

e-mail standard (spe
i�ed in RFC822 as amended by RFC1123).

ISO8601 dates have many variants but a few examples are:

Appendix A: Guide to CVS
ommands 91

1972-09-24

1972-09-24 20:05

There are a lot more ISO8601 date formats, and
vs a

epts many of them,

but you probably don't want to hear the whole long story :-).

In addition to the dates allowed in Internet e-mail itself,
vs also allows some

of the �elds to be omitted. For example:

24 Sep 1972 20:05

24 Sep

The date is interpreted as being in the lo
al timezone, unless a spe
i�
 timezone

is spe
i�ed.

These two date formats are preferred. However,
vs
urrently a

epts a wide

variety of other date formats. They are intentionally not do
umented here in

any detail, and future versions of
vs might not a

ept all of them.

One su
h format is month/day/year. This may
onfuse people who are a

us-

tomed to having the month and day in the other order; `1/4/96' is January 4,

not April 1.

Remember to quote the argument to the `-D'
ag so that your shell doesn't

interpret spa
es as argument separators. A
ommand using the `-D'
ag
an

look like this:

$
vs diff -D "1 hour ago"
vs.texinfo

-f When you spe
ify a parti
ular date or tag to
vs
ommands, they normally

ignore �les that do not
ontain the tag (or did not exist prior to the date) that

you spe
i�ed. Use the `-f' option if you want �les retrieved even when there

is no mat
h for the tag or date. (The most re
ent revision of the �le will be

used).

Note that even with `-f', a tag that you spe
ify must exist (that is, in some

�le, not ne
essary in every �le). This is so that
vs will
ontinue to give an

error if you mistype a tag name.

`-f' is available with these
ommands: annotate,
he
kout, export, rdiff,

rtag, and update.

Warning: The
ommit and remove
ommands also have a `-f' option, but it has

a di�erent behavior for those
ommands. See Se
tion A.8.1 [
ommit options℄,

page 100, and Se
tion 7.2 [Removing �les℄, page 54.

-k k
ag Alter the default pro
essing of keywords. See Chapter 12 [Keyword substitu-

tion℄, page 75, for the meaning of k
ag. Your k
ag spe
i�
ation is sti
ky when

you use it to
reate a private
opy of a sour
e �le; that is, when you use this

option with the
he
kout or update
ommands,
vs asso
iates your sele
ted

k
ag with the �le, and
ontinues to use it with future update
ommands on the

same �le until you spe
ify otherwise.

The `-k' option is available with the add,
he
kout, diff, import and update

ommands.

-l Lo
al; run only in
urrent working dire
tory, rather than re
ursing through

subdire
tories.

92 CVS|Con
urrent Versions System v1.11.1p1

Warning: this is not the same as the overall `
vs -l' option, whi
h you
an

spe
ify to the left of a
vs
ommand!

Available with the following
ommands: annotate,
he
kout,
ommit, diff,

edit, editors, export, log, rdiff, remove, rtag, status, tag, unedit,

update, wat
h, and wat
hers.

-m message

Use message as log information, instead of invoking an editor.

Available with the following
ommands: add,
ommit and import.

-n Do not run any
he
kout/
ommit/tag program. (A program
an be spe
i�ed

to run on ea
h of these a
tivities, in the modules database (see Se
tion C.1

[modules℄, page 129); this option bypasses it).

Warning: this is not the same as the overall `
vs -n' option, whi
h you
an

spe
ify to the left of a
vs
ommand!

Available with the
he
kout,
ommit, export, and rtag
ommands.

-P Prune empty dire
tories. See Se
tion 7.3 [Removing dire
tories℄, page 55.

-p Pipe the �les retrieved from the repository to standard output, rather than

writing them in the
urrent dire
tory. Available with the
he
kout and update

ommands.

-R Pro
ess dire
tories re
ursively. This is on by default.

Available with the following
ommands: annotate,
he
kout,
ommit, diff,

edit, editors, export, rdiff, remove, rtag, status, tag, unedit, update,

wat
h, and wat
hers.

-r tag Use the revision spe
i�ed by the tag argument instead of the default head

revision. As well as arbitrary tags de�ned with the tag or rtag
ommand,

two spe
ial tags are always available: `HEAD' refers to the most re
ent version

available in the repository, and `BASE' refers to the revision you last
he
ked

out into the
urrent working dire
tory.

The tag spe
i�
ation is sti
ky when you use this with
he
kout or update to

make your own
opy of a �le:
vs remembers the tag and
ontinues to use it

on future update
ommands, until you spe
ify otherwise (for more information

on sti
ky tags/dates, see Se
tion 4.9 [Sti
ky tags℄, page 38).

The tag
an be either a symboli
 or numeri
 tag, as des
ribed in Se
tion 4.4

[Tags℄, page 34, or the name of a bran
h, as des
ribed in Chapter 5 [Bran
hing

and merging℄, page 41.

Spe
ifying the `-q' global option along with the `-r'
ommand option is often

useful, to suppress the warning messages when the r
s �le does not
ontain the

spe
i�ed tag.

Warning: this is not the same as the overall `
vs -r' option, whi
h you
an

spe
ify to the left of a
vs
ommand!

`-r' is available with the
he
kout,
ommit, diff, history, export, rdiff,

rtag, and update
ommands.

Appendix A: Guide to CVS
ommands 93

-W Spe
ify �le names that should be �ltered. You
an use this option repeatedly.

The spe

an be a �le name pattern of the same type that you
an spe
ify in

the `.
vswrappers' �le. Available with the following
ommands: import, and

update.

A.6 admin|Administration

� Requires: repository, working dire
tory.

� Changes: repository.

� Synonym: r
s

This is the
vs interfa
e to assorted administrative fa
ilities. Some of them have ques-

tionable usefulness for
vs but exist for histori
al purposes. Some of the questionable

options are likely to disappear in the future. This
ommand does work re
ursively, so

extreme
are should be used.

On unix, if there is a group named
vsadmin, only members of that group
an run
vs

admin (ex
ept for the
vs admin -k
ommand, whi
h
an be run by anybody). This group

should exist on the server, or any system running the non-
lient/server
vs. To disallow

vs admin for all users,
reate a group with no users in it. On NT, the
vsadmin feature

does not exist and all users
an run
vs admin.

A.6.1 admin options

Some of these options have questionable usefulness for
vs but exist for histori
al pur-

poses. Some even make it impossible to use
vs until you undo the e�e
t!

-Aold�le Might not work together with
vs. Append the a

ess list of old�le to the

a

ess list of the r
s �le.

-alogins Might not work together with
vs. Append the login names appearing in the

omma-separated list logins to the a

ess list of the r
s �le.

-b[rev℄ Set the default bran
h to rev. In
vs, you normally do not manipulate default

bran
hes; sti
ky tags (see Se
tion 4.9 [Sti
ky tags℄, page 38) are a better way

to de
ide whi
h bran
h you want to work on. There is one reason to run
vs

admin -b: to revert to the vendor's version when using vendor bran
hes (see

Se
tion 13.3 [Reverting lo
al
hanges℄, page 80). There
an be no spa
e between

`-b' and its argument.

-
string Sets the
omment leader to string. The
omment leader is not used by
urrent

versions of
vs or r
s 5.7. Therefore, you
an almost surely not worry about

it. See Chapter 12 [Keyword substitution℄, page 75.

-e[logins℄

Might not work together with
vs. Erase the login names appearing in the

omma-separated list logins from the a

ess list of the RCS �le. If logins is

omitted, erase the entire a

ess list. There
an be no spa
e between `-e' and

its argument.

94 CVS|Con
urrent Versions System v1.11.1p1

-I Run intera
tively, even if the standard input is not a terminal. This option

does not work with the
lient/server
vs and is likely to disappear in a future

release of
vs.

-i Useless with
vs. This
reates and initializes a new r
s �le, without depositing

a revision. With
vs, add �les with the
vs add
ommand (see Se
tion 7.1

[Adding �les℄, page 53).

-ksubst Set the default keyword substitution to subst. See Chapter 12 [Keyword sub-

stitution℄, page 75. Giving an expli
it `-k' option to
vs update,
vs export,

or
vs
he
kout overrides this default.

-l[rev℄ Lo
k the revision with number rev. If a bran
h is given, lo
k the latest revision

on that bran
h. If rev is omitted, lo
k the latest revision on the default bran
h.

There
an be no spa
e between `-l' and its argument.

This
an be used in
onjun
tion with the `r
slo
k.pl' s
ript in the `
ontrib'

dire
tory of the
vs sour
e distribution to provide reserved
he
kouts (where

only one user
an be editing a given �le at a time). See the
omments in that

�le for details (and see the `README' �le in that dire
tory for dis
laimers about

the unsupported nature of
ontrib). A

ording to
omments in that �le, lo
king

must set to stri
t (whi
h is the default).

-L Set lo
king to stri
t. Stri
t lo
king means that the owner of an RCS �le is not

exempt from lo
king for
he
kin. For use with
vs, stri
t lo
king must be set;

see the dis
ussion under the `-l' option above.

-mrev:msg

Repla
e the log message of revision rev with msg.

-Nname[:[rev℄℄

A
t like `-n', ex
ept override any previous assignment of name. For use with

magi
 bran
hes, see Se
tion 5.5 [Magi
 bran
h numbers℄, page 44.

-nname[:[rev℄℄

Asso
iate the symboli
 name name with the bran
h or revision rev. It is nor-

mally better to use `
vs tag' or `
vs rtag' instead. Delete the symboli
 name

if both `:' and rev are omitted; otherwise, print an error message if name is al-

ready asso
iated with another number. If rev is symboli
, it is expanded before

asso
iation. A rev
onsisting of a bran
h number followed by a `.' stands for

the
urrent latest revision in the bran
h. A `:' with an empty rev stands for the

urrent latest revision on the default bran
h, normally the trunk. For exam-

ple, `
vs admin -nname:' asso
iates name with the
urrent latest revision of all

the RCS �les; this
ontrasts with `
vs admin -nname:$' whi
h asso
iates name

with the revision numbers extra
ted from keyword strings in the
orresponding

working �les.

-orange Deletes (outdates) the revisions given by range.

Note that this
ommand
an be quite dangerous unless you know exa
tly what

you are doing (for example see the warnings below about how the rev1:rev2

syntax is
onfusing).

Appendix A: Guide to CVS
ommands 95

If you are short on dis
 this option might help you. But think twi
e before using

it|there is no way short of restoring the latest ba
kup to undo this
ommand!

If you delete di�erent revisions than you planned, either due to
arelessness or

(heaven forbid) a
vs bug, there is no opportunity to
orre
t the error before

the revisions are deleted. It probably would be a good idea to experiment on a

opy of the repository �rst.

Spe
ify range in one of the following ways:

rev1::rev2

Collapse all revisions between rev1 and rev2, so that
vs only stores

the di�eren
es asso
iated with going from rev1 to rev2, not inter-

mediate steps. For example, after `-o 1.3::1.5' one
an retrieve

revision 1.3, revision 1.5, or the di�eren
es to get from 1.3 to 1.5,

but not the revision 1.4, or the di�eren
es between 1.3 and 1.4.

Other examples: `-o 1.3::1.4' and `-o 1.3::1.3' have no e�e
t,

be
ause there are no intermediate revisions to remove.

::rev Collapse revisions between the beginning of the bran
h
ontaining

rev and rev itself. The bran
hpoint and rev are left inta
t. For

example, `-o ::1.3.2.6' deletes revision 1.3.2.1, revision 1.3.2.5,

and everything in between, but leaves 1.3 and 1.3.2.6 inta
t.

rev:: Collapse revisions between rev and the end of the bran
h
ontaining

rev. Revision rev is left inta
t but the head revision is deleted.

rev Delete the revision rev. For example, `-o 1.3' is equivalent to `-o

1.2::1.4'.

rev1:rev2 Delete the revisions from rev1 to rev2, in
lusive, on the same

bran
h. One will not be able to retrieve rev1 or rev2 or any of

the revisions in between. For example, the
ommand `
vs admin

-oR_1_01:R_1_02 .' is rarely useful. It means to delete revisions

up to, and in
luding, the tag R 1 02. But beware! If there are

�les that have not
hanged between R 1 02 and R 1 03 the �le

will have the same numeri
al revision number assigned to the tags

R 1 02 and R 1 03. So not only will it be impossible to retrieve

R 1 02; R 1 03 will also have to be restored from the tapes! In

most
ases you want to spe
ify rev1::rev2 instead.

:rev Delete revisions from the beginning of the bran
h
ontaining rev

up to and in
luding rev.

rev: Delete revisions from revision rev, in
luding rev itself, to the end

of the bran
h
ontaining rev.

None of the revisions to be deleted may have bran
hes or lo
ks.

If any of the revisions to be deleted have symboli
 names, and one spe
i�es one

of the `::' syntaxes, then
vs will give an error and not delete any revisions.

If you really want to delete both the symboli
 names and the revisions, �rst

delete the symboli
 names with
vs tag -d, then run
vs admin -o. If one

spe
i�es the non-`::' syntaxes, then
vs will delete the revisions but leave the

96 CVS|Con
urrent Versions System v1.11.1p1

symboli
 names pointing to nonexistent revisions. This behavior is preserved

for
ompatibility with previous versions of
vs, but be
ause it isn't very useful,

in the future it may
hange to be like the `::'
ase.

Due to the way
vs handles bran
hes rev
annot be spe
i�ed symboli
ally if it is

a bran
h. See Se
tion 5.5 [Magi
 bran
h numbers℄, page 44, for an explanation.

Make sure that no-one has
he
ked out a
opy of the revision you outdate.

Strange things will happen if he starts to edit it and tries to
he
k it ba
k in. For

this reason, this option is not a good way to take ba
k a bogus
ommit;
ommit

a new revision undoing the bogus
hange instead (see Se
tion 5.8 [Merging two

revisions℄, page 46).

-q Run quietly; do not print diagnosti
s.

-sstate[:rev℄

Useful with
vs. Set the state attribute of the revision rev to state. If rev is

a bran
h number, assume the latest revision on that bran
h. If rev is omitted,

assume the latest revision on the default bran
h. Any identi�er is a

eptable for

state. A useful set of states is `Exp' (for experimental), `Stab' (for stable), and

`Rel' (for released). By default, the state of a new revision is set to `Exp' when

it is
reated. The state is visible in the output from
vs log (see Se
tion A.13

[log℄, page 108), and in the `Log' and `$State$' keywords (see Chapter 12

[Keyword substitution℄, page 75). Note that
vs uses the dead state for its

own purposes; to take a �le to or from the dead state use
ommands like
vs

remove and
vs add, not
vs admin -s.

-t[�le℄ Useful with
vs. Write des
riptive text from the
ontents of the named �le

into the RCS �le, deleting the existing text. The �le pathname may not begin

with `-'. The des
riptive text
an be seen in the output from `
vs log' (see

Se
tion A.13 [log℄, page 108). There
an be no spa
e between `-t' and its

argument.

If �le is omitted, obtain the text from standard input, terminated by end-of-�le

or by a line
ontaining `.' by itself. Prompt for the text if intera
tion is possible;

see `-I'.

-t-string Similar to `-t�le'. Write des
riptive text from the string into the r
s �le,

deleting the existing text. There
an be no spa
e between `-t' and its argument.

-U Set lo
king to non-stri
t. Non-stri
t lo
king means that the owner of a �le need

not lo
k a revision for
he
kin. For use with
vs, stri
t lo
king must be set;

see the dis
ussion under the `-l' option above.

-u[rev℄ See the option `-l' above, for a dis
ussion of using this option with
vs. Unlo
k

the revision with number rev. If a bran
h is given, unlo
k the latest revision

on that bran
h. If rev is omitted, remove the latest lo
k held by the
aller.

Normally, only the lo
ker of a revision may unlo
k it; somebody else unlo
king

a revision breaks the lo
k. This
auses the original lo
ker to be sent a
ommit

noti�
ation (see Se
tion 10.6.2 [Getting Noti�ed℄, page 69). There
an be no

spa
e between `-u' and its argument.

Appendix A: Guide to CVS
ommands 97

-Vn In previous versions of
vs, this option meant to write an r
s �le whi
h would

be a

eptable to r
s version n, but it is now obsolete and spe
ifying it will

produ
e an error.

-xsuÆxes In previous versions of
vs, this was do
umented as a way of spe
ifying the

names of the r
s �les. However,
vs has always required that the r
s �les

used by
vs end in `,v', so this option has never done anything useful.

A.7
he
kout|Che
k out sour
es for editing

� Synopsis:
he
kout [options℄ modules. . .

� Requires: repository.

� Changes: working dire
tory.

� Synonyms:
o, get

Create or update a working dire
tory
ontaining
opies of the sour
e �les spe
i�ed by

modules. You must exe
ute
he
kout before using most of the other
vs
ommands, sin
e

most of them operate on your working dire
tory.

The modules are either symboli
 names for some
olle
tion of sour
e dire
tories and

�les, or paths to dire
tories or �les in the repository. The symboli
 names are de�ned in

the `modules' �le. See Se
tion C.1 [modules℄, page 129.

Depending on the modules you spe
ify,
he
kout may re
ursively
reate dire
tories and

populate them with the appropriate sour
e �les. You
an then edit these sour
e �les at any

time (regardless of whether other software developers are editing their own
opies of the

sour
es); update them to in
lude new
hanges applied by others to the sour
e repository;

or
ommit your work as a permanent
hange to the sour
e repository.

Note that
he
kout is used to
reate dire
tories. The top-level dire
tory
reated is

always added to the dire
tory where
he
kout is invoked, and usually has the same name

as the spe
i�ed module. In the
ase of a module alias, the
reated sub-dire
tory may have

a di�erent name, but you
an be sure that it will be a sub-dire
tory, and that
he
kout

will show the relative path leading to ea
h �le as it is extra
ted into your private work area

(unless you spe
ify the `-Q' global option).

The �les
reated by
he
kout are
reated read-write, unless the `-r' option to
vs (see

Se
tion A.4 [Global options℄, page 88) is spe
i�ed, the CVSREAD environment variable is

spe
i�ed (see Appendix D [Environment variables℄, page 143), or a wat
h is in e�e
t for

that �le (see Se
tion 10.6 [Wat
hes℄, page 68).

Note that running
he
kout on a dire
tory that was already built by a prior
he
kout

is also permitted. This is similar to spe
ifying the `-d' option to the update
ommand

in the sense that new dire
tories that have been
reated in the repository will appear in

your work area. However,
he
kout takes a module name whereas update takes a dire
tory

name. Also to use
he
kout this way it must be run from the top level dire
tory (where you

originally ran
he
kout from), so before you run
he
kout to update an existing dire
tory,

don't forget to
hange your dire
tory to the top level dire
tory.

For the output produ
ed by the
he
kout
ommand see Se
tion A.16.2 [update output℄,

page 115.

98 CVS|Con
urrent Versions System v1.11.1p1

A.7.1
he
kout options

These standard options are supported by
he
kout (see Se
tion A.5 [Common options℄,

page 90, for a
omplete des
ription of them):

-D date Use the most re
ent revision no later than date. This option is sti
ky, and

implies `-P'. See Se
tion 4.9 [Sti
ky tags℄, page 38, for more information on

sti
ky tags/dates.

-f Only useful with the `-D date' or `-r tag '
ags. If no mat
hing revision is found,

retrieve the most re
ent revision (instead of ignoring the �le).

-k k
ag Pro
ess keywords a

ording to k
ag. See Chapter 12 [Keyword substitution℄,

page 75. This option is sti
ky; future updates of this �le in this working dire
-

tory will use the same k
ag. The status
ommand
an be viewed to see the

sti
ky options. See Appendix B [Invoking CVS℄, page 117, for more information

on the status
ommand.

-l Lo
al; run only in
urrent working dire
tory.

-n Do not run any
he
kout program (as spe
i�ed with the `-o' option in the

modules �le; see Se
tion C.1 [modules℄, page 129).

-P Prune empty dire
tories. See Se
tion 7.5 [Moving dire
tories℄, page 57.

-p Pipe �les to the standard output.

-R Che
kout dire
tories re
ursively. This option is on by default.

-r tag Use revision tag. This option is sti
ky, and implies `-P'. See Se
tion 4.9 [Sti
ky

tags℄, page 38, for more information on sti
ky tags/dates.

In addition to those, you
an use these spe
ial
ommand options with
he
kout:

-A Reset any sti
ky tags, dates, or `-k' options. See Se
tion 4.9 [Sti
ky tags℄,

page 38, for more information on sti
ky tags/dates.

-
 Copy the module �le, sorted, to the standard output, instead of
reating or

modifying any �les or dire
tories in your working dire
tory.

-d dir Create a dire
tory
alled dir for the working �les, instead of using the module

name. In general, using this
ag is equivalent to using `mkdir dir;
d dir'

followed by the
he
kout
ommand without the `-d'
ag.

There is an important ex
eption, however. It is very
onvenient when
he
king

out a single item to have the output appear in a dire
tory that doesn't
on-

tain empty intermediate dire
tories. In this
ase only,
vs tries to \shorten"

pathnames to avoid those empty dire
tories.

For example, given a module `foo' that
ontains the �le `bar.
', the
ommand

`
vs
o -d dir foo' will
reate dire
tory `dir' and pla
e `bar.
' inside. Simi-

larly, given a module `bar' whi
h has subdire
tory `baz' wherein there is a �le

`quux.
', the
ommand `
vs -d dir
o bar/baz' will
reate dire
tory `dir' and

pla
e `quux.
' inside.

Using the `-N'
ag will defeat this behavior. Given the same module def-

initions above, `
vs
o -N -d dir foo' will
reate dire
tories `dir/foo' and

Appendix A: Guide to CVS
ommands 99

pla
e `bar.
' inside, while `
vs
o -N -d dir bar/baz' will
reate dire
tories

`dir/bar/baz' and pla
e `quux.
' inside.

-j tag With two `-j' options, merge
hanges from the revision spe
i�ed with the �rst

`-j' option to the revision spe
i�ed with the se
ond `j' option, into the working

dire
tory.

With one `-j' option, merge
hanges from the an
estor revision to the revision

spe
i�ed with the `-j' option, into the working dire
tory. The an
estor revision

is the
ommon an
estor of the revision whi
h the working dire
tory is based on,

and the revision spe
i�ed in the `-j' option.

In addition, ea
h -j option
an
ontain an optional date spe
i�
ation whi
h,

when used with bran
hes,
an limit the
hosen revision to one within a spe-

i�
 date. An optional date is spe
i�ed by adding a
olon (:) to the tag:

`-jSymboli
 Tag:Date Spe
i�er'.

See Chapter 5 [Bran
hing and merging℄, page 41.

-N Only useful together with `-d dir'. With this option,
vs will not \shorten"

module paths in your working dire
tory when you
he
k out a single module.

See the `-d'
ag for examples and a dis
ussion.

-s Like `-
', but in
lude the status of all modules, and sort it by the status string.

See Se
tion C.1 [modules℄, page 129, for info about the `-s' option that is used

inside the modules �le to set the module status.

A.7.2
he
kout examples

Get a
opy of the module `t
':

$
vs
he
kout t

Get a
opy of the module `t
' as it looked one day ago:

$
vs
he
kout -D yesterday t

A.8
ommit|Che
k �les into the repository

� Synopsis:
ommit [-lnRf℄ [-m 'log message' | -F �le℄ [-r revision℄ [�les. . . ℄

� Requires: working dire
tory, repository.

� Changes: repository.

� Synonym:
i

Use
ommit when you want to in
orporate
hanges from your working sour
e �les into

the sour
e repository.

If you don't spe
ify parti
ular �les to
ommit, all of the �les in your working
urrent

dire
tory are examined.
ommit is
areful to
hange in the repository only those �les that

you have really
hanged. By default (or if you expli
itly spe
ify the `-R' option), �les in

subdire
tories are also examined and
ommitted if they have
hanged; you
an use the `-l'

option to limit
ommit to the
urrent dire
tory only.

ommit veri�es that the sele
ted �les are up to date with the
urrent revisions in the

sour
e repository; it will notify you, and exit without
ommitting, if any of the spe
i�ed

100 CVS|Con
urrent Versions System v1.11.1p1

�les must be made
urrent �rst with update (see Se
tion A.16 [update℄, page 113).
ommit

does not
all the update
ommand for you, but rather leaves that for you to do when the

time is right.

When all is well, an editor is invoked to allow you to enter a log message that will be

written to one or more logging programs (see Se
tion C.1 [modules℄, page 129, and see

Se
tion C.7 [loginfo℄, page 137) and pla
ed in the r
s �le inside the repository. This log

message
an be retrieved with the log
ommand; see Se
tion A.13 [log℄, page 108. You
an

spe
ify the log message on the
ommand line with the `-m message' option, and thus avoid

the editor invo
ation, or use the `-F �le' option to spe
ify that the argument �le
ontains

the log message.

A.8.1
ommit options

These standard options are supported by
ommit (see Se
tion A.5 [Common options℄,

page 90, for a
omplete des
ription of them):

-l Lo
al; run only in
urrent working dire
tory.

-n Do not run any module program.

-R Commit dire
tories re
ursively. This is on by default.

-r revision

Commit to revision. revision must be either a bran
h, or a revision on the

main trunk that is higher than any existing revision number (see Se
tion 4.3

[Assigning revisions℄, page 33). You
annot
ommit to a spe
i�
 revision on a

bran
h.

ommit also supports these options:

-F �le Read the log message from �le, instead of invoking an editor.

-f Note that this is not the standard behavior of the `-f' option as de�ned in

Se
tion A.5 [Common options℄, page 90.

For
e
vs to
ommit a new revision even if you haven't made any
hanges to

the �le. If the
urrent revision of �le is 1.7, then the following two
ommands

are equivalent:

$
vs
ommit -f �le

$
vs
ommit -r 1.8 �le

The `-f' option disables re
ursion (i.e., it implies `-l'). To for
e
vs to
ommit

a new revision for all �les in all subdire
tories, you must use `-f -R'.

-m message

Use message as the log message, instead of invoking an editor.

Appendix A: Guide to CVS
ommands 101

A.8.2
ommit examples

A.8.2.1 Committing to a bran
h

You
an
ommit to a bran
h revision (one that has an even number of dots) with the `-r'

option. To
reate a bran
h revision, use the `-b' option of the rtag or tag
ommands (see

Chapter 5 [Bran
hing and merging℄, page 41). Then, either
he
kout or update
an be used

to base your sour
es on the newly
reated bran
h. From that point on, all
ommit
hanges

made within these working sour
es will be automati
ally added to a bran
h revision, thereby

not disturbing main-line development in any way. For example, if you had to
reate a pat
h

to the 1.2 version of the produ
t, even though the 2.0 version is already under development,

you might do:

$
vs rtag -b -r FCS1_2 FCS1_2_Pat
h produ
t_module

$
vs
he
kout -r FCS1_2_Pat
h produ
t_module

$
d produ
t_module

[[ha
k away ℄℄

$
vs
ommit

This works automati
ally sin
e the `-r' option is sti
ky.

A.8.2.2 Creating the bran
h after editing

Say you have been working on some extremely experimental software, based on whatever

revision you happened to
he
kout last week. If others in your group would like to work on

this software with you, but without disturbing main-line development, you
ould
ommit

your
hange to a new bran
h. Others
an then
he
kout your experimental stu� and utilize

the full bene�t of
vs
on
i
t resolution. The s
enario might look like:

[[ha
ked sour
es are present ℄℄

$
vs tag -b EXPR1

$
vs update -r EXPR1

$
vs
ommit

The update
ommand will make the `-r EXPR1' option sti
ky on all �les. Note that

your
hanges to the �les will never be removed by the update
ommand. The
ommit will

automati
ally
ommit to the
orre
t bran
h, be
ause the `-r' is sti
ky. You
ould also do

like this:

[[ha
ked sour
es are present ℄℄

$
vs tag -b EXPR1

$
vs
ommit -r EXPR1

but then, only those �les that were
hanged by you will have the `-r EXPR1' sti
ky
ag. If you

ha
k away, and
ommit without spe
ifying the `-r EXPR1'
ag, some �les may a

identally

end up on the main trunk.

To work with you on the experimental
hange, others would simply do

$
vs
he
kout -r EXPR1 whatever_module

102 CVS|Con
urrent Versions System v1.11.1p1

A.9 di�|Show di�eren
es between revisions

� Synopsis: di� [-lR℄ [format options℄ [[-r rev1 | -D date1℄ [-r rev2 | -D date2℄℄ [�les. . . ℄

� Requires: working dire
tory, repository.

� Changes: nothing.

The diff
ommand is used to
ompare di�erent revisions of �les. The default a
tion

is to
ompare your working �les with the revisions they were based on, and report any

di�eren
es that are found.

If any �le names are given, only those �les are
ompared. If any dire
tories are given,

all �les under them will be
ompared.

The exit status for di� is di�erent than for other
vs
ommands; for details Se
tion A.2

[Exit status℄, page 87.

A.9.1 di� options

These standard options are supported by diff (see Se
tion A.5 [Common options℄,

page 90, for a
omplete des
ription of them):

-D date Use the most re
ent revision no later than date. See `-r' for how this a�e
ts

the
omparison.

-k k
ag Pro
ess keywords a

ording to k
ag. See Chapter 12 [Keyword substitution℄,

page 75.

-l Lo
al; run only in
urrent working dire
tory.

-R Examine dire
tories re
ursively. This option is on by default.

-r tag Compare with revision tag. Zero, one or two `-r' options
an be present. With

no `-r' option, the working �le will be
ompared with the revision it was based

on. With one `-r', that revision will be
ompared to your
urrent working �le.

With two `-r' options those two revisions will be
ompared (and your working

�le will not a�e
t the out
ome in any way).

One or both `-r' options
an be repla
ed by a `-D date' option, des
ribed above.

The following options spe
ify the format of the output. They have the same meaning as

in GNU di�.

-0 -1 -2 -3 -4 -5 -6 -7 -8 -9

--binary

--brief

--
hanged-group-format=arg

-

-C nlines

--
ontext[=lines℄

-e --ed

-t --expand-tabs

-f --forward-ed

--horizon-lines=arg

--ifdef=arg

-w --ignore-all-spa
e

Appendix A: Guide to CVS
ommands 103

-B --ignore-blank-lines

-i --ignore-
ase

-I regexp

--ignore-mat
hing-lines=regexp

-h

-b --ignore-spa
e-
hange

-T --initial-tab

-L label

--label=label

--left-
olumn

-d --minimal

-N --new-file

--new-line-format=arg

--old-line-format=arg

--paginate

-n --r
s

-s --report-identi
al-files

-p

--show-
-fun
tion

-y --side-by-side

-F regexp

--show-fun
tion-line=regexp

-H --speed-large-files

--suppress-
ommon-lines

-a --text

--un
hanged-group-format=arg

-u

-U nlines

--unified[=lines℄

-V arg

-W
olumns

--width=
olumns

A.9.2 di� examples

The following line produ
es a Unidi� (`-u'
ag) between revision 1.14 and 1.19 of

`ba
kend.
'. Due to the `-kk'
ag no keywords are substituted, so di�eren
es that only

depend on keyword substitution are ignored.

$
vs diff -kk -u -r 1.14 -r 1.19 ba
kend.

Suppose the experimental bran
h EXPR1 was based on a set of �les tagged

RELEASE 1 0. To see what has happened on that bran
h, the following
an be used:

$
vs diff -r RELEASE_1_0 -r EXPR1

A
ommand like this
an be used to produ
e a
ontext di� between two releases:

$
vs diff -
 -r RELEASE_1_0 -r RELEASE_1_1 > diffs

If you are maintaining ChangeLogs, a
ommand like the following just before you
ommit

your
hanges may help you write the ChangeLog entry. All lo
al modi�
ations that have

not yet been
ommitted will be printed.

$
vs diff -u | less

104 CVS|Con
urrent Versions System v1.11.1p1

A.10 export|Export sour
es from CVS, similar to
he
kout

� Synopsis: export [-
NnR℄ [-r rev|-D date℄ [-k subst℄ [-d dir℄ module. . .

� Requires: repository.

� Changes:
urrent dire
tory.

This
ommand is a variant of
he
kout; use it when you want a
opy of the sour
e for

module without the
vs administrative dire
tories. For example, you might use export to

prepare sour
e for shipment o�-site. This
ommand requires that you spe
ify a date or tag

(with `-D' or `-r'), so that you
an
ount on reprodu
ing the sour
e you ship to others (and

thus it always prunes empty dire
tories).

One often would like to use `-kv' with
vs export. This
auses any keywords to be

expanded su
h that an import done at some other site will not lose the keyword revision

information. But be aware that doesn't handle an export
ontaining binary �les
orre
tly.

Also be aware that after having used `-kv', one
an no longer use the ident
ommand

(whi
h is part of the r
s suite|see ident(1)) whi
h looks for keyword strings. If you want

to be able to use ident you must not use `-kv'.

A.10.1 export options

These standard options are supported by export (see Se
tion A.5 [Common options℄,

page 90, for a
omplete des
ription of them):

-D date Use the most re
ent revision no later than date.

-f If no mat
hing revision is found, retrieve the most re
ent revision (instead of

ignoring the �le).

-l Lo
al; run only in
urrent working dire
tory.

-n Do not run any
he
kout program.

-R Export dire
tories re
ursively. This is on by default.

-r tag Use revision tag.

In addition, these options (that are
ommon to
he
kout and export) are also sup-

ported:

-d dir Create a dire
tory
alled dir for the working �les, instead of using the module

name. See Se
tion A.7.1 [
he
kout options℄, page 98, for
omplete details on

how
vs handles this
ag.

-k subst Set keyword expansion mode (see Se
tion 12.4 [Substitution modes℄, page 77).

-N Only useful together with `-d dir'. See Se
tion A.7.1 [
he
kout options℄,

page 98, for
omplete details on how
vs handles this
ag.

Appendix A: Guide to CVS
ommands 105

A.11 history|Show status of �les and users

� Synopsis: history [-report℄ [-
ags℄ [-options args℄ [�les. . . ℄

� Requires: the �le `$CVSROOT/CVSROOT/history'

� Changes: nothing.

vs
an keep a history �le that tra
ks ea
h use of the
he
kout,
ommit, rtag, update,

and release
ommands. You
an use history to display this information in various for-

mats.

Logging must be enabled by
reating the �le `$CVSROOT/CVSROOT/history'.

Warning: history uses `-f', `-l', `-n', and `-p' in ways that
on
i
t with the normal

use inside
vs (see Se
tion A.5 [Common options℄, page 90).

A.11.1 history options

Several options (shown above as `-report')
ontrol what kind of report is generated:

-
 Report on ea
h time
ommit was used (i.e., ea
h time the repository was mod-

i�ed).

-e Everything (all re
ord types). Equivalent to spe
ifying `-x' with all re
ord

types. Of
ourse, `-e' will also in
lude re
ord types whi
h are added in a future

version of
vs; if you are writing a s
ript whi
h
an only handle
ertain re
ord

types, you'll want to spe
ify `-x'.

-m module

Report on a parti
ular module. (You
an meaningfully use `-m' more than on
e

on the
ommand line.)

-o Report on
he
ked-out modules. This is the default report type.

-T Report on all tags.

-x type Extra
t a parti
ular set of re
ord types type from the
vs history. The types

are indi
ated by single letters, whi
h you may spe
ify in
ombination.

Certain
ommands have a single re
ord type:

F release

O
he
kout

E export

T rtag

One of four re
ord types may result from an update:

C A merge was ne
essary but
ollisions were dete
ted (requiring man-

ual merging).

G A merge was ne
essary and it su

eeded.

U A working �le was
opied from the repository.

W The working
opy of a �le was deleted during update (be
ause it

was gone from the repository).

106 CVS|Con
urrent Versions System v1.11.1p1

One of three re
ord types results from
ommit:

A A �le was added for the �rst time.

M A �le was modi�ed.

R A �le was removed.

The options shown as `-flags'
onstrain or expand the report without requiring option

arguments:

-a Show data for all users (the default is to show data only for the user exe
uting

history).

-l Show last modi�
ation only.

-w Show only the re
ords for modi�
ations done from the same working dire
tory

where history is exe
uting.

The options shown as `-options args'
onstrain the report based on an argument:

-b str Show data ba
k to a re
ord
ontaining the string str in either the module name,

the �le name, or the repository path.

-D date Show data sin
e date. This is slightly di�erent from the normal use of `-D date',

whi
h sele
ts the newest revision older than date.

-f �le Show data for a parti
ular �le (you
an spe
ify several `-f' options on the same

ommand line). This is equivalent to spe
ifying the �le on the
ommand line.

-n module

Show data for a parti
ular module (you
an spe
ify several `-n' options on the

same
ommand line).

-p repository

Show data for a parti
ular sour
e repository (you
an spe
ify several `-p' options

on the same
ommand line).

-r rev Show re
ords referring to revisions sin
e the revision or tag named rev appears

in individual r
s �les. Ea
h r
s �le is sear
hed for the revision or tag.

-t tag Show re
ords sin
e tag tag was last added to the history �le. This di�ers from

the `-r'
ag above in that it reads only the history �le, not the r
s �les, and

is mu
h faster.

-u name Show re
ords for user name.

-z timezone

Show times in the sele
ted re
ords using the spe
i�ed time zone instead of UTC.

A.12 import|Import sour
es into CVS, using vendor

bran
hes

� Synopsis: import [-options℄ repository vendortag releasetag. . .

� Requires: Repository, sour
e distribution dire
tory.

� Changes: repository.

Appendix A: Guide to CVS
ommands 107

Use import to in
orporate an entire sour
e distribution from an outside sour
e (e.g., a

sour
e vendor) into your sour
e repository dire
tory. You
an use this
ommand both for

initial
reation of a repository, and for wholesale updates to the module from the outside

sour
e. See Chapter 13 [Tra
king sour
es℄, page 79, for a dis
ussion on this subje
t.

The repository argument gives a dire
tory name (or a path to a dire
tory) under the

vs root dire
tory for repositories; if the dire
tory did not exist, import
reates it.

When you use import for updates to sour
e that has been modi�ed in your sour
e

repository (sin
e a prior import), it will notify you of any �les that
on
i
t in the two

bran
hes of development; use `
he
kout -j' to re
on
ile the di�eren
es, as import instru
ts

you to do.

If
vs de
ides a �le should be ignored (see Se
tion C.9 [
vsignore℄, page 138), it does

not import it and prints `I ' followed by the �lename (see Se
tion A.12.2 [import output℄,

page 108, for a
omplete des
ription of the output).

If the �le `$CVSROOT/CVSROOT/
vswrappers' exists, any �le whose names mat
h the

spe
i�
ations in that �le will be treated as pa
kages and the appropriate �ltering will

be performed on the �le/dire
tory before being imported. See Se
tion C.2 [Wrappers℄,

page 132.

The outside sour
e is saved in a �rst-level bran
h, by default 1.1.1. Updates are leaves

of this bran
h; for example, �les from the �rst imported
olle
tion of sour
e will be revision

1.1.1.1, then �les from the �rst imported update will be revision 1.1.1.2, and so on.

At least three arguments are required. repository is needed to identify the
olle
tion of

sour
e. vendortag is a tag for the entire bran
h (e.g., for 1.1.1). You must also spe
ify at

least one releasetag to identify the �les at the leaves
reated ea
h time you exe
ute import.

Note that import does not
hange the dire
tory in whi
h you invoke it. In parti
ular,

it does not set up that dire
tory as a
vs working dire
tory; if you want to work with the

sour
es import them �rst and then
he
k them out into a di�erent dire
tory (see Se
tion 1.3.1

[Getting the sour
e℄, page 4).

A.12.1 import options

This standard option is supported by import (see Se
tion A.5 [Common options℄,

page 90, for a
omplete des
ription):

-m message

Use message as log information, instead of invoking an editor.

There are the following additional spe
ial options.

-b bran
h See Se
tion 13.6 [Multiple vendor bran
hes℄, page 80.

-k subst Indi
ate the keyword expansion mode desired. This setting will apply to all

�les
reated during the import, but not to any �les that previously existed in

the repository. See Se
tion 12.4 [Substitution modes℄, page 77, for a list of valid

`-k' settings.

-I name Spe
ify �le names that should be ignored during import. You
an use this

option repeatedly. To avoid ignoring any �les at all (even those ignored by

default), spe
ify `-I !'.

108 CVS|Con
urrent Versions System v1.11.1p1

name
an be a �le name pattern of the same type that you
an spe
ify in the

`.
vsignore' �le. See Se
tion C.9 [
vsignore℄, page 138.

-W spe
 Spe
ify �le names that should be �ltered during import. You
an use this option

repeatedly.

spe

an be a �le name pattern of the same type that you
an spe
ify in the

`.
vswrappers' �le. See Se
tion C.2 [Wrappers℄, page 132.

A.12.2 import output

import keeps you informed of its progress by printing a line for ea
h �le, pre
eded by

one
hara
ter indi
ating the status of the �le:

U �le The �le already exists in the repository and has not been lo
ally modi�ed; a

new revision has been
reated (if ne
essary).

N �le The �le is a new �le whi
h has been added to the repository.

C �le The �le already exists in the repository but has been lo
ally modi�ed; you will

have to merge the
hanges.

I �le The �le is being ignored (see Se
tion C.9 [
vsignore℄, page 138).

L �le The �le is a symboli
 link;
vs import ignores symboli
 links. People periodi-

ally suggest that this behavior should be
hanged, but if there is a
onsensus

on what it should be
hanged to, it doesn't seem to be apparent. (Various

options in the `modules' �le
an be used to re
reate symboli
 links on
he
kout,

update, et
.; see Se
tion C.1 [modules℄, page 129.)

A.12.3 import examples

See Chapter 13 [Tra
king sour
es℄, page 79, and Se
tion 3.1.1 [From �les℄, page 29.

A.13 log|Print out log information for �les

� Synopsis: log [options℄ [�les. . . ℄

� Requires: repository, working dire
tory.

� Changes: nothing.

Display log information for �les. log used to
all the r
s utility rlog. Although this is

no longer true in the
urrent sour
es, this history determines the format of the output and

the options, whi
h are not quite in the style of the other
vs
ommands.

The output in
ludes the lo
ation of the r
s �le, the head revision (the latest revision on

the trunk), all symboli
 names (tags) and some other things. For ea
h revision, the revision

number, the author, the number of lines added/deleted and the log message are printed.

All times are displayed in Coordinated Universal Time (UTC). (Other parts of
vs print

times in the lo
al timezone).

Warning: log uses `-R' in a way that
on
i
ts with the normal use inside
vs (see

Se
tion A.5 [Common options℄, page 90).

Appendix A: Guide to CVS
ommands 109

A.13.1 log options

By default, log prints all information that is available. All other options restri
t the

output.

-b Print information about the revisions on the default bran
h, normally the high-

est bran
h on the trunk.

-d dates Print information about revisions with a
he
kin date/time in the range given

by the semi
olon-separated list of dates. The date formats a

epted are those

a

epted by the `-D' option to many other
vs
ommands (see Se
tion A.5

[Common options℄, page 90). Dates
an be
ombined into ranges as follows:

d1<d2

d2>d1 Sele
t the revisions that were deposited between d1 and d2.

<d

d> Sele
t all revisions dated d or earlier.

d<

>d Sele
t all revisions dated d or later.

d Sele
t the single, latest revision dated d or earlier.

The `>' or `<'
hara
ters may be followed by `=' to indi
ate an in
lusive range

rather than an ex
lusive one.

Note that the separator is a semi
olon (;).

-h Print only the name of the r
s �le, name of the �le in the working dire
tory,

head, default bran
h, a

ess list, lo
ks, symboli
 names, and suÆx.

-l Lo
al; run only in
urrent working dire
tory. (Default is to run re
ursively).

-N Do not print the list of tags for this �le. This option
an be very useful when

your site uses a lot of tags, so rather than "more"'ing over 3 pages of tag

information, the log information is presented without tags at all.

-R Print only the name of the r
s �le.

-rrevisions

Print information about revisions given in the
omma-separated list revisions of

revisions and ranges. The following table explains the available range formats:

rev1:rev2 Revisions rev1 to rev2 (whi
h must be on the same bran
h).

rev1::rev2

Revisions between, but not in
luding, rev1 and rev2.

:rev Revisions from the beginning of the bran
h up to and in
luding rev.

::rev Revisions from the beginning of the bran
h up to, but not in
luding,

rev.

rev: Revisions starting with rev to the end of the bran
h
ontaining rev.

rev: Revisions starting just after rev to the end of the bran
h
ontaining

rev.

110 CVS|Con
urrent Versions System v1.11.1p1

bran
h An argument that is a bran
h means all revisions on that bran
h.

bran
h1:bran
h2

bran
h1::bran
h2

A range of bran
hes means all revisions on the bran
hes in that

range.

bran
h. The latest revision in bran
h.

A bare `-r' with no revisions means the latest revision on the default bran
h,

normally the trunk. There
an be no spa
e between the `-r' option and its

argument.

-s states Print information about revisions whose state attributes mat
h one of the states

given in the
omma-separated list states.

-t Print the same as `-h', plus the des
riptive text.

-wlogins Print information about revisions
he
ked in by users with login names appear-

ing in the
omma-separated list logins. If logins is omitted, the user's login is

assumed. There
an be no spa
e between the `-w' option and its argument.

log prints the interse
tion of the revisions sele
ted with the options `-d', `-s', and `-w',

interse
ted with the union of the revisions sele
ted by `-b' and `-r'.

A.13.2 log examples

Contributed examples are gratefully a

epted.

A.14 rdi�|'pat
h' format di�s between releases

� rdi� [-
ags℄ [-V vn℄ [-r t|-D d [-r t2|-D d2℄℄ modules. . .

� Requires: repository.

� Changes: nothing.

� Synonym: pat
h

Builds a Larry Wall format pat
h(1) �le between two releases, that
an be fed dire
tly

into the pat
h program to bring an old release up-to-date with the new release. (This is one

of the few
vs
ommands that operates dire
tly from the repository, and doesn't require a

prior
he
kout.) The di� output is sent to the standard output devi
e.

You
an spe
ify (using the standard `-r' and `-D' options) any
ombination of one or two

revisions or dates. If only one revision or date is spe
i�ed, the pat
h �le re
e
ts di�eren
es

between that revision or date and the
urrent head revisions in the r
s �le.

Note that if the software release a�e
ted is
ontained in more than one dire
tory, then

it may be ne
essary to spe
ify the `-p' option to the pat
h
ommand when pat
hing the

old sour
es, so that pat
h is able to �nd the �les that are lo
ated in other dire
tories.

Appendix A: Guide to CVS
ommands 111

A.14.1 rdi� options

These standard options are supported by rdiff (see Se
tion A.5 [Common options℄,

page 90, for a
omplete des
ription of them):

-D date Use the most re
ent revision no later than date.

-f If no mat
hing revision is found, retrieve the most re
ent revision (instead of

ignoring the �le).

-l Lo
al; don't des
end subdire
tories.

-R Examine dire
tories re
ursively. This option is on by default.

-r tag Use revision tag.

In addition to the above, these options are available:

-
 Use the
ontext di� format. This is the default format.

-s Create a summary
hange report instead of a pat
h. The summary in
ludes

information about �les that were
hanged or added between the releases. It is

sent to the standard output devi
e. This is useful for �nding out, for example,

whi
h �les have
hanged between two dates or revisions.

-t A di� of the top two revisions is sent to the standard output devi
e. This is

most useful for seeing what the last
hange to a �le was.

-u Use the unidi� format for the
ontext di�s. Remember that old versions of the

pat
h program
an't handle the unidi� format, so if you plan to post this pat
h

to the net you should probably not use `-u'.

-V vn Expand keywords a

ording to the rules
urrent in r
s version vn (the expan-

sion format
hanged with r
s version 5). Note that this option is no longer

a

epted.
vs will always expand keywords the way that r
s version 5 does.

A.14.2 rdi� examples

Suppose you re
eive mail from foo�example.net asking for an update from release 1.2

to 1.4 of the t

ompiler. You have no su
h pat
hes on hand, but with
vs that
an easily

be �xed with a
ommand su
h as this:

$
vs rdiff -
 -r FOO1_2 -r FOO1_4 t
 | \

$$ Mail -s 'The pat
hes you asked for' foo�example.net

Suppose you have made release 1.3, and forked a bran
h
alled `R_1_3fix' for bug�xes.

`R_1_3_1'
orresponds to release 1.3.1, whi
h was made some time ago. Now, you want to

see how mu
h development has been done on the bran
h. This
ommand
an be used:

$
vs pat
h -s -r R_1_3_1 -r R_1_3fix module-name

vs rdiff: Diffing module-name

File ChangeLog,v
hanged from revision 1.52.2.5 to 1.52.2.6

File foo.
,v
hanged from revision 1.52.2.3 to 1.52.2.4

File bar.h,v
hanged from revision 1.29.2.1 to 1.2

112 CVS|Con
urrent Versions System v1.11.1p1

A.15 release|Indi
ate that a Module is no longer in use

� release [-d℄ dire
tories. . .

� Requires: Working dire
tory.

� Changes: Working dire
tory, history log.

This
ommand is meant to safely
an
el the e�e
t of `
vs
he
kout'. Sin
e
vs doesn't

lo
k �les, it isn't stri
tly ne
essary to use this
ommand. You
an always simply delete your

working dire
tory, if you like; but you risk losing
hanges you may have forgotten, and you

leave no tra
e in the
vs history �le (see Se
tion C.11 [history �le℄, page 140) that you've

abandoned your
he
kout.

Use `
vs release' to avoid these problems. This
ommand
he
ks that no un
ommitted

hanges are present; that you are exe
uting it from immediately above a
vs working

dire
tory; and that the repository re
orded for your �les is the same as the repository

de�ned in the module database.

If all these
onditions are true, `
vs release' leaves a re
ord of its exe
ution (attesting

to your intentionally abandoning your
he
kout) in the
vs history log.

A.15.1 release options

The release
ommand supports one
ommand option:

-d Delete your working
opy of the �le if the release su

eeds. If this
ag is not

given your �les will remain in your working dire
tory.

Warning: The release
ommand deletes all dire
tories and �les re
ursively.

This has the very serious side-e�e
t that any dire
tory that you have
reated

inside your
he
ked-out sour
es, and not added to the repository (using the add

ommand; see Se
tion 7.1 [Adding �les℄, page 53) will be silently deleted|even

if it is non-empty!

A.15.2 release output

Before release releases your sour
es it will print a one-line message for any �le that is

not up-to-date.

Warning: Any new dire
tories that you have
reated, but not added to the
vs dire
tory

hierar
hy with the add
ommand (see Se
tion 7.1 [Adding �les℄, page 53) will be silently

ignored (and deleted, if `-d' is spe
i�ed), even if they
ontain �les.

U �le

P �le There exists a newer revision of this �le in the repository, and you have not

modi�ed your lo
al
opy of the �le (`U' and `P' mean the same thing).

A �le The �le has been added to your private
opy of the sour
es, but has not yet

been
ommitted to the repository. If you delete your
opy of the sour
es this

�le will be lost.

R �le The �le has been removed from your private
opy of the sour
es, but has not

yet been removed from the repository, sin
e you have not yet
ommitted the

removal. See Se
tion A.8 [
ommit℄, page 99.

Appendix A: Guide to CVS
ommands 113

M �le The �le is modi�ed in your working dire
tory. There might also be a newer

revision inside the repository.

? �le �le is in your working dire
tory, but does not
orrespond to anything in the

sour
e repository, and is not in the list of �les for
vs to ignore (see the de-

s
ription of the `-I' option, and see Se
tion C.9 [
vsignore℄, page 138). If you

remove your working sour
es, this �le will be lost.

A.15.3 release examples

Release the `t
' dire
tory, and delete your lo
al working
opy of the �les.

$
d .. # You must stand immediately above the

sour
es when you issue `
vs release'.

$
vs release -d t

You have [0℄ altered files in this repository.

Are you sure you want to release (and delete) dire
tory `t
': y

$

A.16 update|Bring work tree in syn
 with repository

� update [-Ad
PpR℄ [-d℄ [-r tag|-D date℄ �les. . .

� Requires: repository, working dire
tory.

� Changes: working dire
tory.

After you've run
he
kout to
reate your private
opy of sour
e from the
ommon repos-

itory, other developers will
ontinue
hanging the
entral sour
e. From time to time, when

it is
onvenient in your development pro
ess, you
an use the update
ommand from within

your working dire
tory to re
on
ile your work with any revisions applied to the sour
e

repository sin
e your last
he
kout or update.

A.16.1 update options

These standard options are available with update (see Se
tion A.5 [Common options℄,

page 90, for a
omplete des
ription of them):

-D date Use the most re
ent revision no later than date. This option is sti
ky, and

implies `-P'. See Se
tion 4.9 [Sti
ky tags℄, page 38, for more information on

sti
ky tags/dates.

-f Only useful with the `-D date' or `-r tag '
ags. If no mat
hing revision is found,

retrieve the most re
ent revision (instead of ignoring the �le).

-k k
ag Pro
ess keywords a

ording to k
ag. See Chapter 12 [Keyword substitution℄,

page 75. This option is sti
ky; future updates of this �le in this working dire
-

tory will use the same k
ag. The status
ommand
an be viewed to see the

sti
ky options. See Appendix B [Invoking CVS℄, page 117, for more information

on the status
ommand.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re
ursive behav-

ior℄, page 51.

114 CVS|Con
urrent Versions System v1.11.1p1

-P Prune empty dire
tories. See Se
tion 7.5 [Moving dire
tories℄, page 57.

-p Pipe �les to the standard output.

-R Update dire
tories re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r rev Retrieve revision/tag rev. This option is sti
ky, and implies `-P'. See Se
tion 4.9

[Sti
ky tags℄, page 38, for more information on sti
ky tags/dates.

These spe
ial options are also available with update.

-A Reset any sti
ky tags, dates, or `-k' options. See Se
tion 4.9 [Sti
ky tags℄,

page 38, for more information on sti
ky tags/dates.

-C Overwrite lo
ally modi�ed �les with
lean
opies from the repository (the mod-

i�ed �le is saved in `.#�le.revision', however).

-d Create any dire
tories that exist in the repository if they're missing from the

working dire
tory. Normally, update a
ts only on dire
tories and �les that were

already enrolled in your working dire
tory.

This is useful for updating dire
tories that were
reated in the repository sin
e

the initial
he
kout; but it has an unfortunate side e�e
t. If you deliberately

avoided
ertain dire
tories in the repository when you
reated your working

dire
tory (either through use of a module name or by listing expli
itly the �les

and dire
tories you wanted on the
ommand line), then updating with `-d' will

reate those dire
tories, whi
h may not be what you want.

-I name Ignore �les whose names mat
h name (in your working dire
tory) during the

update. You
an spe
ify `-I' more than on
e on the
ommand line to spe
-

ify several �les to ignore. Use `-I !' to avoid ignoring any �les at all. See

Se
tion C.9 [
vsignore℄, page 138, for other ways to make
vs ignore some �les.

-Wspe
 Spe
ify �le names that should be �ltered during update. You
an use this

option repeatedly.

spe

an be a �le name pattern of the same type that you
an spe
ify in the

`.
vswrappers' �le. See Se
tion C.2 [Wrappers℄, page 132.

-jrevision With two `-j' options, merge
hanges from the revision spe
i�ed with the �rst

`-j' option to the revision spe
i�ed with the se
ond `j' option, into the working

dire
tory.

With one `-j' option, merge
hanges from the an
estor revision to the revision

spe
i�ed with the `-j' option, into the working dire
tory. The an
estor revision

is the
ommon an
estor of the revision whi
h the working dire
tory is based on,

and the revision spe
i�ed in the `-j' option.

Note that using a single `-j tagname' option rather than `-j bran
hname' to

merge
hanges from a bran
h will often not remove �les whi
h were removed

on the bran
h. See Se
tion 5.9 [Merging adds and removals℄, page 47, for more.

In addition, ea
h `-j' option
an
ontain an optional date spe
i�
ation whi
h,

when used with bran
hes,
an limit the
hosen revision to one within a spe-

i�
 date. An optional date is spe
i�ed by adding a
olon (:) to the tag:

`-jSymboli
 Tag:Date Spe
i�er'.

Appendix A: Guide to CVS
ommands 115

See Chapter 5 [Bran
hing and merging℄, page 41.

A.16.2 update output

update and
he
kout keep you informed of their progress by printing a line for ea
h �le,

pre
eded by one
hara
ter indi
ating the status of the �le:

U �le The �le was brought up to date with respe
t to the repository. This is done

for any �le that exists in the repository but not in your sour
e, and for �les

that you haven't
hanged but are not the most re
ent versions available in the

repository.

P �le Like `U', but the
vs server sends a pat
h instead of an entire �le. These two

things a

omplish the same thing.

A �le The �le has been added to your private
opy of the sour
es, and will be added

to the sour
e repository when you run
ommit on the �le. This is a reminder

to you that the �le needs to be
ommitted.

R �le The �le has been removed from your private
opy of the sour
es, and will be

removed from the sour
e repository when you run
ommit on the �le. This is a

reminder to you that the �le needs to be
ommitted.

M �le The �le is modi�ed in your working dire
tory.

`M'
an indi
ate one of two states for a �le you're working on: either there were

no modi�
ations to the same �le in the repository, so that your �le remains

as you last saw it; or there were modi�
ations in the repository as well as in

your
opy, but they were merged su

essfully, without
on
i
t, in your working

dire
tory.

vs will print some messages if it merges your work, and a ba
kup
opy of your

working �le (as it looked before you ran update) will be made. The exa
t name

of that �le is printed while update runs.

C �le A
on
i
t was dete
ted while trying to merge your
hanges to �le with
hanges

from the sour
e repository. �le (the
opy in your working dire
tory) is now

the result of attempting to merge the two revisions; an unmodi�ed
opy of

your �le is also in your working dire
tory, with the name `.#�le.revision' where

revision is the revision that your modi�ed �le started from. Resolve the
on
i
t

as des
ribed in Se
tion 10.3 [Con
i
ts example℄, page 65. (Note that some

systems automati
ally purge �les that begin with `.#' if they have not been

a

essed for a few days. If you intend to keep a
opy of your original �le, it is a

very good idea to rename it.) Under vms, the �le name starts with `__' rather

than `.#'.

? �le �le is in your working dire
tory, but does not
orrespond to anything in the

sour
e repository, and is not in the list of �les for
vs to ignore (see the de-

s
ription of the `-I' option, and see Se
tion C.9 [
vsignore℄, page 138).

116 CVS|Con
urrent Versions System v1.11.1p1

Appendix B: Qui
k referen
e to CVS
ommands 117

Appendix B Qui
k referen
e to CVS
ommands

This appendix des
ribes how to invoke
vs, with referen
es to where ea
h
ommand or

feature is des
ribed in detail. For other referen
es run the
vs --help
ommand, or see

[Index℄, page 159.

A
vs
ommand looks like:

vs [global options ℄
ommand [
ommand options ℄ [
ommand args ℄

Global options:

--allow-root=rootdir

Spe
ify legal
vsroot dire
tory (server only) (not in
vs 1.9 and older). See

Se
tion 2.9.3.1 [Password authenti
ation server℄, page 21.

-a Authenti
ate all
ommuni
ation (
lient only) (not in
vs 1.9 and older). See

Se
tion A.4 [Global options℄, page 88.

-b Spe
ify RCS lo
ation (
vs 1.9 and older). See Se
tion A.4 [Global options℄,

page 88.

-d root Spe
ify the
vsroot. See Chapter 2 [Repository℄, page 7.

-e editor Edit messages with editor. See Se
tion 1.3.2 [Committing your
hanges℄, page 4.

-f Do not read the `~/.
vsr
' �le. See Se
tion A.4 [Global options℄, page 88.

-H

--help Print a help message. See Se
tion A.4 [Global options℄, page 88.

-l Do not log in `$CVSROOT/CVSROOT/history' �le. See Se
tion A.4 [Global op-

tions℄, page 88.

-n Do not
hange any �les. See Se
tion A.4 [Global options℄, page 88.

-Q Be really quiet. See Se
tion A.4 [Global options℄, page 88.

-q Be somewhat quiet. See Se
tion A.4 [Global options℄, page 88.

-r Make new working �les read-only. See Se
tion A.4 [Global options℄, page 88.

-s variable=value

Set a user variable. See Se
tion C.12 [Variables℄, page 140.

-T tempdir

Put temporary �les in tempdir. See Se
tion A.4 [Global options℄, page 88.

-t Tra
e
vs exe
ution. See Se
tion A.4 [Global options℄, page 88.

-v

--version

Display version and
opyright information for
vs.

-w Make new working �les read-write. See Se
tion A.4 [Global options℄, page 88.

-x En
rypt all
ommuni
ation (
lient only). See Se
tion A.4 [Global options℄,

page 88.

118 CVS|Con
urrent Versions System v1.11.1p1

-z gzip-level

Set the
ompression level (
lient only). See Se
tion A.4 [Global options℄,

page 88.

Keyword expansion modes (see Se
tion 12.4 [Substitution modes℄, page 77):

-kkv $Id: file1,v 1.1 1993/12/09 03:21:13 joe Exp $

-kkvl $Id: file1,v 1.1 1993/12/09 03:21:13 joe Exp harry $

-kk Id

-kv file1,v 1.1 1993/12/09 03:21:13 joe Exp

-ko no expansion

-kb no expansion, �le is binary

Keywords (see Se
tion 12.1 [Keyword list℄, page 75):

$Author: joe $

$Date: 1993/12/09 03:21:13 $

$Header: /home/files/file1,v 1.1 1993/12/09 03:21:13 joe Exp harry $

$Id: file1,v 1.1 1993/12/09 03:21:13 joe Exp harry $

$Lo
ker: harry $

$Name: snapshot_1_14 $

$RCSfile: file1,v $

$Revision: 1.1 $

$Sour
e: /home/files/file1,v $

$State: Exp $

$Log: file1,v $

Revision 1.1 1993/12/09 03:30:17 joe

Initial revision

Commands,
ommand options, and
ommand arguments:

add [options℄ [�les...℄

Add a new �le/dire
tory. See Se
tion 7.1 [Adding �les℄, page 53.

-k k
ag Set keyword expansion.

-m msg Set �le des
ription.

admin [options℄ [�les...℄

Administration of history �les in the repository. See Se
tion A.6 [admin℄,

page 93.

-b[rev℄ Set default bran
h. See Se
tion 13.3 [Reverting lo
al
hanges℄,

page 80.

-
string Set
omment leader.

-ksubst Set keyword substitution. See Chapter 12 [Keyword substitution℄,

page 75.

-l[rev℄ Lo
k revision rev, or latest revision.

-mrev:msg

Repla
e the log message of revision rev with msg.

-orange Delete revisions from the repository. See Se
tion A.6.1 [admin op-

tions℄, page 93.

Appendix B: Qui
k referen
e to CVS
ommands 119

-q Run quietly; do not print diagnosti
s.

-sstate[:rev℄

Set the state.

-t Set �le des
ription from standard input.

-t�le Set �le des
ription from �le.

-t-string Set �le des
ription to string.

-u[rev℄ Unlo
k revision rev, or latest revision.

annotate [options℄ [�les...℄

Show last revision where ea
h line was modi�ed. See Se
tion 8.4 [annotate℄,

page 60.

-D date Annotate the most re
ent revision no later than date. See Se
-

tion A.5 [Common options℄, page 90.

-f Use head revision if tag/date not found. See Se
tion A.5 [Common

options℄, page 90.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r tag Annotate revision tag. See Se
tion A.5 [Common options℄, page 90.

he
kout [options℄ modules...

Get a
opy of the sour
es. See Se
tion A.7 [
he
kout℄, page 97.

-A Reset any sti
ky tags/date/options. See Se
tion 4.9 [Sti
ky tags℄,

page 38 and Chapter 12 [Keyword substitution℄, page 75.

-
 Output the module database. See Se
tion A.7.1 [
he
kout options℄,

page 98.

-D date Che
k out revisions as of date (is sti
ky). See Se
tion A.5 [Common

options℄, page 90.

-d dir Che
k out into dir. See Se
tion A.7.1 [
he
kout options℄, page 98.

-f Use head revision if tag/date not found. See Se
tion A.5 [Common

options℄, page 90.

-j rev Merge in
hanges. See Se
tion A.7.1 [
he
kout options℄, page 98.

-k k
ag Use k
ag keyword expansion. See Se
tion 12.4 [Substitution

modes℄, page 77.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-N Don't \shorten" module paths if -d spe
i�ed. See Se
tion A.7.1

[
he
kout options℄, page 98.

120 CVS|Con
urrent Versions System v1.11.1p1

-n Do not run module program (if any). See Se
tion A.7.1 [
he
kout

options℄, page 98.

-P Prune empty dire
tories. See Se
tion 7.5 [Moving dire
tories℄,

page 57.

-p Che
k out �les to standard output (avoids sti
kiness). See Se
-

tion A.7.1 [
he
kout options℄, page 98.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r tag Che
kout revision tag (is sti
ky). See Se
tion A.5 [Common op-

tions℄, page 90.

-s Like -
, but in
lude module status. See Se
tion A.7.1 [
he
kout

options℄, page 98.

ommit [options℄ [�les...℄

Che
k
hanges into the repository. See Se
tion A.8 [
ommit℄, page 99.

-F �le Read log message from �le. See Se
tion A.8.1 [
ommit options℄,

page 100.

-f For
e the �le to be
ommitted; disables re
ursion. See Se
tion A.8.1

[
ommit options℄, page 100.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-m msg Use msg as log message. See Se
tion A.8.1 [
ommit options℄,

page 100.

-n Do not run module program (if any). See Se
tion A.8.1 [
ommit

options℄, page 100.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r rev Commit to rev. See Se
tion A.8.1 [
ommit options℄, page 100.

diff [options℄ [�les...℄

Show di�eren
es between revisions. See Se
tion A.9 [di�℄, page 102. In addition

to the options shown below, a

epts a wide variety of options to
ontrol output

style, for example `-
' for
ontext di�s.

-D date1 Di� revision for date against working �le. See Se
tion A.9.1 [di�

options℄, page 102.

-D date2 Di� rev1/date1 against date2. See Se
tion A.9.1 [di� options℄,

page 102.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-N In
lude di�s for added and removed �les. See Se
tion A.9.1 [di�

options℄, page 102.

Appendix B: Qui
k referen
e to CVS
ommands 121

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r rev1 Di� revision for rev1 against working �le. See Se
tion A.9.1 [di�

options℄, page 102.

-r rev2 Di� rev1/date1 against rev2. See Se
tion A.9.1 [di� options℄,

page 102.

edit [options℄ [�les...℄

Get ready to edit a wat
hed �le. See Se
tion 10.6.3 [Editing �les℄, page 70.

-a a
tions Spe
ify a
tions for temporary wat
h, where a
tions is edit, unedit,

ommit, all, or none. See Se
tion 10.6.3 [Editing �les℄, page 70.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

editors [options℄ [�les...℄

See who is editing a wat
hed �le. See Se
tion 10.6.4 [Wat
h information℄,

page 71.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

export [options℄ modules...

Export �les from
vs. See Se
tion A.10 [export℄, page 104.

-D date Che
k out revisions as of date. See Se
tion A.5 [Common options℄,

page 90.

-d dir Che
k out into dir. See Se
tion A.10.1 [export options℄, page 104.

-f Use head revision if tag/date not found. See Se
tion A.5 [Common

options℄, page 90.

-k k
ag Use k
ag keyword expansion. See Se
tion 12.4 [Substitution

modes℄, page 77.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-N Don't \shorten" module paths if -d spe
i�ed. See Se
tion A.10.1

[export options℄, page 104.

-n Do not run module program (if any). See Se
tion A.10.1 [export

options℄, page 104.

-P Prune empty dire
tories. See Se
tion 7.5 [Moving dire
tories℄,

page 57.

122 CVS|Con
urrent Versions System v1.11.1p1

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r tag Che
kout revision tag. See Se
tion A.5 [Common options℄, page 90.

history [options℄ [�les...℄

Show repository a

ess history. See Se
tion A.11 [history℄, page 105.

-a All users (default is self). See Se
tion A.11.1 [history options℄,

page 105.

-b str Ba
k to re
ord with str in module/�le/repos �eld. See

Se
tion A.11.1 [history options℄, page 105.

-
 Report on
ommitted (modi�ed) �les. See Se
tion A.11.1 [history

options℄, page 105.

-D date Sin
e date. See Se
tion A.11.1 [history options℄, page 105.

-e Report on all re
ord types. See Se
tion A.11.1 [history options℄,

page 105.

-l Last modi�ed (
ommitted or modi�ed report). See Se
tion A.11.1

[history options℄, page 105.

-m module

Report on module (repeatable). See Se
tion A.11.1 [history op-

tions℄, page 105.

-n module

In module. See Se
tion A.11.1 [history options℄, page 105.

-o Report on
he
ked out modules. See Se
tion A.11.1 [history op-

tions℄, page 105.

-r rev Sin
e revision rev. See Se
tion A.11.1 [history options℄, page 105.

-T Produ
e report on all TAGs. See Se
tion A.11.1 [history options℄,

page 105.

-t tag Sin
e tag re
ord pla
ed in history �le (by anyone). See

Se
tion A.11.1 [history options℄, page 105.

-u user For user user (repeatable). See Se
tion A.11.1 [history options℄,

page 105.

-w Working dire
tory must mat
h. See Se
tion A.11.1 [history op-

tions℄, page 105.

-x types Report on types, one or more of TOEFWUCGMAR. See Se
tion A.11.1

[history options℄, page 105.

-z zone Output for time zone zone. See Se
tion A.11.1 [history options℄,

page 105.

import [options℄ repository vendor-tag release-tags...

Import �les into
vs, using vendor bran
hes. See Se
tion A.12 [import℄,

page 106.

Appendix B: Qui
k referen
e to CVS
ommands 123

-b bra Import to vendor bran
h bra. See Se
tion 13.6 [Multiple vendor

bran
hes℄, page 80.

-d Use the �le's modi�
ation time as the time of import. See Se
-

tion A.12.1 [import options℄, page 107.

-k k
ag Set default keyword substitution mode. See Se
tion A.12.1 [import

options℄, page 107.

-m msg Use msg for log message. See Se
tion A.12.1 [import options℄,

page 107.

-I ign More �les to ignore (! to reset). See Se
tion A.12.1 [import options℄,

page 107.

-W spe
 More wrappers. See Se
tion A.12.1 [import options℄, page 107.

init Create a
vs repository if it doesn't exist. See Se
tion 2.6 [Creating a reposi-

tory℄, page 18.

log [options℄ [�les...℄

Print out history information for �les. See Se
tion A.13 [log℄, page 108.

-b Only list revisions on the default bran
h. See Se
tion A.13.1 [log

options℄, page 109.

-d dates Spe
ify dates (d1<d2 for range, d for latest before). See Se
-

tion A.13.1 [log options℄, page 109.

-h Only print header. See Se
tion A.13.1 [log options℄, page 109.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-N Do not list tags. See Se
tion A.13.1 [log options℄, page 109.

-R Only print name of RCS �le. See Se
tion A.13.1 [log options℄,

page 109.

-rrevs Only list revisions revs. See Se
tion A.13.1 [log options℄, page 109.

-s states Only list revisions with spe
i�ed states. See Se
tion A.13.1 [log

options℄, page 109.

-t Only print header and des
riptive text. See Se
tion A.13.1 [log

options℄, page 109.

-wlogins Only list revisions
he
ked in by spe
i�ed logins. See Se
tion A.13.1

[log options℄, page 109.

login Prompt for password for authenti
ating server. See Se
tion 2.9.3.2 [Password

authenti
ation
lient℄, page 23.

logout Remove stored password for authenti
ating server. See Se
tion 2.9.3.2 [Pass-

word authenti
ation
lient℄, page 23.

rdiff [options℄ modules...

Show di�eren
es between releases. See Se
tion A.14 [rdi�℄, page 110.

124 CVS|Con
urrent Versions System v1.11.1p1

-
 Context di� output format (default). See Se
tion A.14.1 [rdi� op-

tions℄, page 111.

-D date Sele
t revisions based on date. See Se
tion A.5 [Common options℄,

page 90.

-f Use head revision if tag/date not found. See Se
tion A.5 [Common

options℄, page 90.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r rev Sele
t revisions based on rev. See Se
tion A.5 [Common options℄,

page 90.

-s Short pat
h - one liner per �le. See Se
tion A.14.1 [rdi� options℄,

page 111.

-t Top two di�s - last
hange made to the �le. See Se
tion A.9.1 [di�

options℄, page 102.

-u Unidi� output format. See Se
tion A.14.1 [rdi� options℄, page 111.

-V vers Use RCS Version vers for keyword expansion (obsolete). See Se
-

tion A.14.1 [rdi� options℄, page 111.

release [options℄ dire
tory

Indi
ate that a dire
tory is no longer in use. See Se
tion A.15 [release℄, page 112.

-d Delete the given dire
tory. See Se
tion A.15.1 [release options℄,

page 112.

remove [options℄ [�les...℄

Remove an entry from the repository. See Se
tion 7.2 [Removing �les℄, page 54.

-f Delete the �le before removing it. See Se
tion 7.2 [Removing �les℄,

page 54.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

rtag [options℄ tag modules...

Add a symboli
 tag to a module. See Chapter 4 [Revisions℄, page 33 and

Chapter 5 [Bran
hing and merging℄, page 41.

-a Clear tag from removed �les that would not otherwise be tagged.

See Se
tion 4.8 [Tagging add/remove℄, page 38.

-b Create a bran
h named tag. See Chapter 5 [Bran
hing and merg-

ing℄, page 41.

Appendix B: Qui
k referen
e to CVS
ommands 125

-D date Tag revisions as of date. See Se
tion 4.6 [Tagging by date/tag℄,

page 36.

-d Delete tag. See Se
tion 4.7 [Modifying tags℄, page 37.

-F Move tag if it already exists. See Se
tion 4.7 [Modifying tags℄,

page 37.

-f For
e a head revision mat
h if tag/date not found. See Se
tion 4.6

[Tagging by date/tag℄, page 36.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-n No exe
ution of tag program. See Se
tion A.5 [Common options℄,

page 90.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r rev Tag existing tag rev. See Se
tion 4.6 [Tagging by date/tag℄, page 36.

status [options℄ �les...

Display status information in a working dire
tory. See Se
tion 10.1 [File status℄,

page 63.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-v In
lude tag information for �le. See Se
tion 4.4 [Tags℄, page 34.

tag [options℄ tag [�les...℄

Add a symboli
 tag to
he
ked out version of �les. See Chapter 4 [Revisions℄,

page 33 and Chapter 5 [Bran
hing and merging℄, page 41.

-b Create a bran
h named tag. See Chapter 5 [Bran
hing and merg-

ing℄, page 41.

-
 Che
k that working �les are unmodi�ed. See Se
tion 4.5 [Tagging

the working dire
tory℄, page 36.

-D date Tag revisions as of date. See Se
tion 4.6 [Tagging by date/tag℄,

page 36.

-d Delete tag. See Se
tion 4.7 [Modifying tags℄, page 37.

-F Move tag if it already exists. See Se
tion 4.7 [Modifying tags℄,

page 37.

-f For
e a head revision mat
h if tag/date not found. See Se
tion 4.6

[Tagging by date/tag℄, page 36.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

126 CVS|Con
urrent Versions System v1.11.1p1

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r rev Tag existing tag rev. See Se
tion 4.6 [Tagging by date/tag℄, page 36.

unedit [options℄ [�les...℄

Undo an edit
ommand. See Se
tion 10.6.3 [Editing �les℄, page 70.

-a a
tions Spe
ify a
tions for temporary wat
h, where a
tions is edit, unedit,

ommit, all, or none. See Se
tion 10.6.3 [Editing �les℄, page 70.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

update [options℄ [�les...℄

Bring work tree in syn
 with repository. See Se
tion A.16 [update℄, page 113.

-A Reset any sti
ky tags/date/options. See Se
tion 4.9 [Sti
ky tags℄,

page 38 and Chapter 12 [Keyword substitution℄, page 75.

-C Overwrite lo
ally modi�ed �les with
lean
opies from the reposi-

tory (the modi�ed �le is saved in `.#�le.revision', however).

-D date Che
k out revisions as of date (is sti
ky). See Se
tion A.5 [Common

options℄, page 90.

-d Create dire
tories. See Se
tion A.16.1 [update options℄, page 113.

-f Use head revision if tag/date not found. See Se
tion A.5 [Common

options℄, page 90.

-I ign More �les to ignore (! to reset). See Se
tion A.12.1 [import options℄,

page 107.

-j rev Merge in
hanges. See Se
tion A.16.1 [update options℄, page 113.

-k k
ag Use k
ag keyword expansion. See Se
tion 12.4 [Substitution

modes℄, page 77.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-P Prune empty dire
tories. See Se
tion 7.5 [Moving dire
tories℄,

page 57.

-p Che
k out �les to standard output (avoids sti
kiness). See Se
-

tion A.16.1 [update options℄, page 113.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

-r tag Che
kout revision tag (is sti
ky). See Se
tion A.5 [Common op-

tions℄, page 90.

-W spe
 More wrappers. See Se
tion A.12.1 [import options℄, page 107.

Appendix B: Qui
k referen
e to CVS
ommands 127

version

Display the version of
vs being used. If the repository is remote, display both

the
lient and server versions.

wat
h [on|off|add|remove℄ [options℄ [�les...℄

on/o�: turn on/o� read-only
he
kouts of �les. See Se
tion 10.6.1 [Setting a

wat
h℄, page 68.

add/remove: add or remove noti�
ation on a
tions. See Se
tion 10.6.2 [Getting

Noti�ed℄, page 69.

-a a
tions Spe
ify a
tions for temporary wat
h, where a
tions is edit, unedit,

ommit, all, or none. See Se
tion 10.6.3 [Editing �les℄, page 70.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

wat
hers [options℄ [�les...℄

See who is wat
hing a �le. See Se
tion 10.6.4 [Wat
h information℄, page 71.

-l Lo
al; run only in
urrent working dire
tory. See Chapter 6 [Re-

ursive behavior℄, page 51.

-R Operate re
ursively (default). See Chapter 6 [Re
ursive behavior℄,

page 51.

128 CVS|Con
urrent Versions System v1.11.1p1

Appendix C: Referen
e manual for Administrative �les 129

Appendix C Referen
e manual for Administrative

�les

Inside the repository, in the dire
tory `$CVSROOT/CVSROOT', there are a number of sup-

portive �les for
vs. You
an use
vs in a limited fashion without any of them, but if they

are set up properly they
an help make life easier. For a dis
ussion of how to edit them, see

Se
tion 2.4 [Intro administrative �les℄, page 16.

The most important of these �les is the `modules' �le, whi
h de�nes the modules inside

the repository.

C.1 The modules �le

The `modules' �le re
ords your de�nitions of names for
olle
tions of sour
e
ode.
vs

will use these de�nitions if you use
vs to update the modules �le (use normal
ommands

like add,
ommit, et
).

The `modules' �le may
ontain blank lines and
omments (lines beginning with `#') as

well as module de�nitions. Long lines
an be
ontinued on the next line by spe
ifying a

ba
kslash (`\') as the last
hara
ter on the line.

There are three basi
 types of modules: alias modules, regular modules, and ampersand

modules. The di�eren
e between them is the way that they map �les in the repository

to �les in the working dire
tory. In all of the following examples, the top-level repository

ontains a dire
tory
alled `first-dir', whi
h
ontains two �les, `file1' and `file2', and

a dire
tory `sdir'. `first-dir/sdir'
ontains a �le `sfile'.

C.1.1 Alias modules

Alias modules are the simplest kind of module:

mname -a aliases...

This represents the simplest way of de�ning a module mname. The `-a'
ags

the de�nition as a simple alias:
vs will treat any use of mname (as a
ommand

argument) as if the list of names aliases had been spe
i�ed instead. aliases may

ontain either other module names or paths. When you use paths in aliases,

he
kout
reates all intermediate dire
tories in the working dire
tory, just as

if the path had been spe
i�ed expli
itly in the
vs arguments.

For example, if the modules �le
ontains:

amodule -a first-dir

then the following two
ommands are equivalent:

$
vs
o amodule

$
vs
o first-dir

and they ea
h would provide output su
h as:

vs
he
kout: Updating first-dir

U first-dir/file1

U first-dir/file2

vs
he
kout: Updating first-dir/sdir

U first-dir/sdir/sfile

130 CVS|Con
urrent Versions System v1.11.1p1

C.1.2 Regular modules

mname [options ℄ dir [�les... ℄

In the simplest
ase, this form of module de�nition redu
es to `mname dir'.

This de�nes all the �les in dire
tory dir as module mname. dir is a relative

path (from $CVSROOT) to a dire
tory of sour
e in the sour
e repository. In

this
ase, on
he
kout, a single dire
tory
alled mname is
reated as a working

dire
tory; no intermediate dire
tory levels are used by default, even if dir was

a path involving several dire
tory levels.

For example, if a module is de�ned by:

regmodule first-dir

then regmodule will
ontain the �les from �rst-dir:

$
vs
o regmodule

vs
he
kout: Updating regmodule

U regmodule/file1

U regmodule/file2

vs
he
kout: Updating regmodule/sdir

U regmodule/sdir/sfile

$

By expli
itly spe
ifying �les in the module de�nition after dir, you
an sele
t parti
ular

�les from dire
tory dir. Here is an example:

regfiles first-dir/sdir sfile

With this de�nition, getting the reg�les module will
reate a single working dire
tory

`regfiles'
ontaining the �le listed, whi
h
omes from a dire
tory deeper in the
vs sour
e

repository:

$
vs
o regfiles

U regfiles/sfile

$

C.1.3 Ampersand modules

A module de�nition
an refer to other modules by in
luding `&module' in its de�nition.

mname [options ℄ &module...

Then getting the module
reates a subdire
tory for ea
h su
h module, in the dire
tory

ontaining the module. For example, if modules
ontains

ampermod &first-dir

then a
he
kout will
reate an ampermod dire
tory whi
h
ontains a dire
tory
alled

first-dir, whi
h in turns
ontains all the dire
tories and �les whi
h live there. For exam-

ple, the
ommand

$
vs
o ampermod

will
reate the following �les:

ampermod/first-dir/file1

ampermod/first-dir/file2

ampermod/first-dir/sdir/sfile

Appendix C: Referen
e manual for Administrative �les 131

There is one quirk/bug: the messages that
vs prints omit the `ampermod', and thus do

not
orre
tly display the lo
ation to whi
h it is
he
king out the �les:

$
vs
o ampermod

vs
he
kout: Updating first-dir

U first-dir/file1

U first-dir/file2

vs
he
kout: Updating first-dir/sdir

U first-dir/sdir/sfile

$

Do not rely on this buggy behavior; it may get �xed in a future release of
vs.

C.1.4 Ex
luding dire
tories

An alias module may ex
lude parti
ular dire
tories from other modules by using an

ex
lamation mark (`!') before the name of ea
h dire
tory to be ex
luded.

For example, if the modules �le
ontains:

exmodule -a !first-dir/sdir first-dir

then
he
king out the module `exmodule' will
he
k out everything in `first-dir' ex
ept

any �les in the subdire
tory `first-dir/sdir'.

C.1.5 Module options

Either regular modules or ampersand modules
an
ontain options, whi
h supply addi-

tional information
on
erning the module.

-d name Name the working dire
tory something other than the module name.

-e prog Spe
ify a program prog to run whenever �les in a module are exported. prog

runs with a single argument, the module name.

-i prog Spe
ify a program prog to run whenever �les in a module are
ommitted. prog

runs with a single argument, the full pathname of the a�e
ted dire
tory in a

sour
e repository. The `
ommitinfo', `loginfo', and `verifymsg' �les provide

other ways to
all a program on
ommit.

-o prog Spe
ify a program prog to run whenever �les in a module are
he
ked out. prog

runs with a single argument, the module name.

-s status Assign a status to the module. When the module �le is printed with `
vs

he
kout -s' the modules are sorted a

ording to primarily module status, and

se
ondarily a

ording to the module name. This option has no other meaning.

You
an use this option for several things besides status: for instan
e, list the

person that is responsible for this module.

-t prog Spe
ify a program prog to run whenever �les in a module are tagged with rtag.

prog runs with two arguments: the module name and the symboli
 tag spe
i�ed

to rtag. It is not run when tag is exe
uted. Generally you will �nd that taginfo

is a better solution (see Se
tion 8.3 [user-de�ned logging℄, page 59).

132 CVS|Con
urrent Versions System v1.11.1p1

-u prog Spe
ify a program prog to run whenever `
vs update' is exe
uted from the top-

level dire
tory of the
he
ked-out module. prog runs with a single argument,

the full path to the sour
e repository for this module.

You should also see see Se
tion C.1.6 [Module program options℄, page 132 about how

the \program options" programs are run.

C.1.6 How the modules �le \program options" programs are run

For
he
kout, rtag, and export, the program is server-based, and as su
h the following

applies:-

If using remote a

ess methods (pserver, ext, et
.),
vs will exe
ute this program on the

server from a temporary dire
tory. The path is sear
hed for this program.

If using \lo
al a

ess" (on a lo
al or remote NFS �lesystem, i.e. repository set just to

a path), the program will be exe
uted from the newly
he
ked-out tree, if found there, or

alternatively sear
hed for in the path if not.

The
ommit and update programs are lo
ally-based, and are run as follows:-

The program is always run lo
ally. One must re-
he
kout the tree one is using if these

options are updated in the modules administrative �le. The �le CVS/Che
kin.prog
ontains

the value of the option `-i' set in the modules �le, and similarly for the �le CVS/Update.prog

and `-u'. The program is always exe
uted from the top level of the
he
ked-out
opy on the

lient. Again, the program is �rst sear
hed for in the
he
ked-out
opy and then using the

path.

The programs are all run after the operation has e�e
tively
ompleted.

C.2 The
vswrappers �le

Wrappers refers to a
vs feature whi
h lets you
ontrol
ertain settings based on the

name of the �le whi
h is being operated on. The settings are `-k' for binary �les, and `-m'

for nonmergeable text �les.

The `-m' option spe
i�es the merge methodology that should be used when a non-binary

�le is updated. MERGE means the usual
vs behavior: try to merge the �les. COPY means

that
vs update will refuse to merge �les, as it also does for �les spe
i�ed as binary with

`-kb' (but if the �le is spe
i�ed as binary, there is no need to spe
ify `-m 'COPY'').
vs will

provide the user with the two versions of the �les, and require the user using me
hanisms

outside
vs, to insert any ne
essary
hanges. WARNING: do not use COPY with
vs 1.9

or earlier{su
h versions of
vs will
opy one version of your �le over the other, wiping out

the previous
ontents. The `-m' wrapper option only a�e
ts behavior when merging is done

on update; it does not a�e
t how �les are stored. See Chapter 9 [Binary �les℄, page 61, for

more on binary �les.

The basi
 format of the �le `
vswrappers' is:

wild
ard [option value℄[option value℄...

where option is one of

-m update methodology value: MERGE or COPY

Appendix C: Referen
e manual for Administrative �les 133

-k keyword expansion value: expansion mode

and value is a single-quote delimited value.

For example, the following
ommand imports a dire
tory, treating �les whose name ends

in `.exe' as binary:

vs import -I ! -W "*.exe -k 'b'" first-dir vendortag reltag

C.3 The
ommit support �les

The `-i'
ag in the `modules' �le
an be used to run a
ertain program whenever �les

are
ommitted (see Se
tion C.1 [modules℄, page 129). The �les des
ribed in this se
tion

provide other, more
exible, ways to run programs whenever something is
ommitted.

There are three kind of programs that
an be run on
ommit. They are spe
i�ed in �les

in the repository, as des
ribed below. The following table summarizes the �le names and

the purpose of the
orresponding programs.

`
ommitinfo'

The program is responsible for
he
king that the
ommit is allowed. If it exits

with a non-zero exit status the
ommit will be aborted.

`verifymsg'

The spe
i�ed program is used to evaluate the log message, and possibly verify

that it
ontains all required �elds. This is most useful in
ombination with the

`r
sinfo' �le, whi
h
an hold a log message template (see Se
tion C.8 [r
sinfo℄,

page 138).

`editinfo'

The spe
i�ed program is used to edit the log message, and possibly verify that

it
ontains all required �elds. This is most useful in
ombination with the

`r
sinfo' �le, whi
h
an hold a log message template (see Se
tion C.8 [r
sinfo℄,

page 138). (obsolete)

`loginfo' The spe
i�ed program is
alled when the
ommit is
omplete. It re
eives the

log message and some additional information and
an store the log message in

a �le, or mail it to appropriate persons, or maybe post it to a lo
al newsgroup,

or. . . Your imagination is the limit!

C.3.1 The
ommon syntax

The administrative �les su
h as `
ommitinfo', `loginfo', `r
sinfo', `verifymsg', et
.,

all have a
ommon format. The purpose of the �les are des
ribed later on. The
ommon

syntax is des
ribed here.

Ea
h line
ontains the following:

� A regular expression. This is a basi
 regular expression in the syntax used by GNU

ema
s.

� A whitespa
e separator|one or more spa
es and/or tabs.

� A �le name or
ommand-line template.

134 CVS|Con
urrent Versions System v1.11.1p1

Blank lines are ignored. Lines that start with the
hara
ter `#' are treated as
omments.

Long lines unfortunately
an not be broken in two parts in any way.

The �rst regular expression that mat
hes the
urrent dire
tory name in the repository

is used. The rest of the line is used as a �le name or
ommand-line as appropriate.

C.4 Commitinfo

The `
ommitinfo' �le de�nes programs to exe
ute whenever `
vs
ommit' is about to

exe
ute. These programs are used for pre-
ommit
he
king to verify that the modi�ed,

added and removed �les are really ready to be
ommitted. This
ould be used, for instan
e,

to verify that the
hanged �les
onform to to your site's standards for
oding pra
ti
e.

As mentioned earlier, ea
h line in the `
ommitinfo' �le
onsists of a regular expression

and a
ommand-line template. The template
an in
lude a program name and any number

of arguments you wish to supply to it. The full path to the
urrent sour
e repository is

appended to the template, followed by the �le names of any �les involved in the
ommit

(added, removed, and modi�ed �les).

The �rst line with a regular expression mat
hing the dire
tory within the repository will

be used. If the
ommand returns a non-zero exit status the
ommit will be aborted.

If the repository name does not mat
h any of the regular expressions in this �le, the

`DEFAULT' line is used, if it is spe
i�ed.

All o

urren
es of the name `ALL' appearing as a regular expression are used in addition

to the �rst mat
hing regular expression or the name `DEFAULT'.

Note: when
vs is a

essing a remote repository, `
ommitinfo' will be run on the remote

(i.e., server) side, not the
lient side (see Se
tion 2.9 [Remote repositories℄, page 19).

C.5 Verifying log messages

On
e you have entered a log message, you
an evaluate that message to
he
k for spe
i�

ontent, su
h as a bug ID. Use the `verifymsg' �le to spe
ify a program that is used to

verify the log message. This program
ould be a simple s
ript that
he
ks that the entered

message
ontains the required �elds.

The `verifymsg' �le is often most useful together with the `r
sinfo' �le, whi
h
an be

used to spe
ify a log message template.

Ea
h line in the `verifymsg' �le
onsists of a regular expression and a
ommand-line

template. The template must in
lude a program name, and
an in
lude any number of

arguments. The full path to the
urrent log message template �le is appended to the

template.

One thing that should be noted is that the `ALL' keyword is not supported. If more than

one mat
hing line is found, the �rst one is used. This
an be useful for spe
ifying a default

veri�
ation s
ript in a dire
tory, and then overriding it in a subdire
tory.

If the repository name does not mat
h any of the regular expressions in this �le, the

`DEFAULT' line is used, if it is spe
i�ed.

If the veri�
ation s
ript exits with a non-zero exit status, the
ommit is aborted.

Appendix C: Referen
e manual for Administrative �les 135

Note that the veri�
ation s
ript
annot
hange the log message; it
an merely a

ept it

or reje
t it.

The following is a little silly example of a `verifymsg' �le, together with the
orrespond-

ing `r
sinfo' �le, the log message template and an veri�
ation s
ript. We begin with the

log message template. We want to always re
ord a bug-id number on the �rst line of the

log message. The rest of log message is free text. The following template is found in the

�le `/usr/
vssupport/t
.template'.

BugId:

The s
ript `/usr/
vssupport/bugid.verify' is used to evaluate the log message.

#!/bin/sh

#

bugid.verify filename

#

Verify that the log message
ontains a valid bugid

on the first line.

#

if head -1 < $1 | grep '^BugId:[℄*[0-9℄[0-9℄*$' > /dev/null; then

exit 0

else

e
ho "No BugId found."

exit 1

fi

The `verifymsg' �le
ontains this line:

^t
 /usr/
vssupport/bugid.verify

The `r
sinfo' �le
ontains this line:

^t
 /usr/
vssupport/t
.template

C.6 Editinfo

NOTE: The `editinfo' feature has been rendered obsolete. To set a default editor for

log messages use the EDITOR environment variable (see Appendix D [Environment vari-

ables℄, page 143) or the `-e' global option (see Se
tion A.4 [Global options℄, page 88). See

Se
tion C.5 [verifymsg℄, page 134, for information on the use of the `verifymsg' feature for

evaluating log messages.

If you want to make sure that all log messages look the same way, you
an use the

`editinfo' �le to spe
ify a program that is used to edit the log message. This program

ould be a
ustom-made editor that always enfor
es a
ertain style of the log message,

or maybe a simple shell s
ript that
alls an editor, and
he
ks that the entered message

ontains the required �elds.

If no mat
hing line is found in the `editinfo' �le, the editor spe
i�ed in the environment

variable $CVSEDITOR is used instead. If that variable is not set, then the environment

variable $EDITOR is used instead. If that variable is not set a default will be used. See

Se
tion 1.3.2 [Committing your
hanges℄, page 4.

The `editinfo' �le is often most useful together with the `r
sinfo' �le, whi
h
an be

used to spe
ify a log message template.

136 CVS|Con
urrent Versions System v1.11.1p1

Ea
h line in the `editinfo' �le
onsists of a regular expression and a
ommand-line

template. The template must in
lude a program name, and
an in
lude any number of

arguments. The full path to the
urrent log message template �le is appended to the

template.

One thing that should be noted is that the `ALL' keyword is not supported. If more than

one mat
hing line is found, the �rst one is used. This
an be useful for spe
ifying a default

edit s
ript in a module, and then overriding it in a subdire
tory.

If the repository name does not mat
h any of the regular expressions in this �le, the

`DEFAULT' line is used, if it is spe
i�ed.

If the edit s
ript exits with a non-zero exit status, the
ommit is aborted.

Note: when
vs is a

essing a remote repository, or when the `-m' or `-F' options to
vs

ommit are used, `editinfo' will not be
onsulted. There is no good workaround for this;

use `verifymsg' instead.

C.6.1 Editinfo example

The following is a little silly example of a `editinfo' �le, together with the
orresponding

`r
sinfo' �le, the log message template and an editor s
ript. We begin with the log

message template. We want to always re
ord a bug-id number on the �rst line of the

log message. The rest of log message is free text. The following template is found in the

�le `/usr/
vssupport/t
.template'.

BugId:

The s
ript `/usr/
vssupport/bugid.edit' is used to edit the log message.

#!/bin/sh

#

bugid.edit filename

#

Call $EDITOR on FILENAME, and verify that the

resulting file
ontains a valid bugid on the first

line.

if ["x$EDITOR" = "x" ℄; then EDITOR=vi; fi

if ["x$CVSEDITOR" = "x" ℄; then CVSEDITOR=$EDITOR; fi

$CVSEDITOR $1

until head -1|grep '^BugId:[℄*[0-9℄[0-9℄*$' < $1

do e
ho -n "No BugId found. Edit again? ([y℄/n)"

read ans

ase ${ans} in

n*) exit 1;;

esa

$CVSEDITOR $1

done

The `editinfo' �le
ontains this line:

^t
 /usr/
vssupport/bugid.edit

The `r
sinfo' �le
ontains this line:

^t
 /usr/
vssupport/t
.template

Appendix C: Referen
e manual for Administrative �les 137

C.7 Loginfo

The `loginfo' �le is used to
ontrol where `
vs
ommit' log information is sent. The

�rst entry on a line is a regular expression whi
h is tested against the dire
tory that the

hange is being made to, relative to the $CVSROOT. If a mat
h is found, then the remainder

of the line is a �lter program that should expe
t log information on its standard input.

If the repository name does not mat
h any of the regular expressions in this �le, the

`DEFAULT' line is used, if it is spe
i�ed.

All o

urren
es of the name `ALL' appearing as a regular expression are used in addition

to the �rst mat
hing regular expression or `DEFAULT'.

The �rst mat
hing regular expression is used.

See Se
tion C.3 [
ommit �les℄, page 133, for a des
ription of the syntax of the `loginfo'

�le.

The user may spe
ify a format string as part of the �lter. The string is
omposed of

a `%' followed by a spa
e, or followed by a single format
hara
ter, or followed by a set of

format
hara
ters surrounded by `{' and `}' as separators. The format
hara
ters are:

s �le name

V old version number (pre-
he
kin)

v new version number (post-
he
kin)

All other
hara
ters that appear in a format string expand to an empty �eld (
ommas

separating �elds are still provided).

For example, some valid format strings are `%', `%s', `%{s}', and `%{sVv}'.

The output will be a string of tokens separated by spa
es. For ba
kwards
ompati-

bility, the �rst token will be the repository subdire
tory. The rest of the tokens will be

omma-delimited lists of the information requested in the format string. For example, if

`/u/sr
/master/yoyodyne/t
' is the repository, `%{sVv}' is the format string, and three

�les (ChangeLog, Makefile, foo.
) were modi�ed, the output might be:

yoyodyne/t
 ChangeLog,1.1,1.2 Makefile,1.3,1.4 foo.
,1.12,1.13

As another example, `%{}' means that only the name of the repository will be generated.

Note: when
vs is a

essing a remote repository, `loginfo' will be run on the remote

(i.e., server) side, not the
lient side (see Se
tion 2.9 [Remote repositories℄, page 19).

C.7.1 Loginfo example

The following `loginfo' �le, together with the tiny shell-s
ript below, appends all log

messages to the �le `$CVSROOT/CVSROOT/
ommitlog', and any
ommits to the administrative

�les (inside the `CVSROOT' dire
tory) are also logged in `/usr/adm/
vsroot-log'. Commits

to the `prog1' dire
tory are mailed to
eder.

ALL /usr/lo
al/bin/
vs-log $CVSROOT/CVSROOT/
ommitlog $USER

^CVSROOT /usr/lo
al/bin/
vs-log /usr/adm/
vsroot-log

^prog1 Mail -s %s
eder

The shell-s
ript `/usr/lo
al/bin/
vs-log' looks like this:

138 CVS|Con
urrent Versions System v1.11.1p1

#!/bin/sh

(e
ho "--";

e
ho -n $2" ";

date;

e
ho;

at) >> $1

C.7.2 Keeping a
he
ked out
opy

It is often useful to maintain a dire
tory tree whi
h
ontains �les whi
h
orrespond to

the latest version in the repository. For example, other developers might want to refer to

the latest sour
es without having to
he
k them out, or you might be maintaining a web site

with
vs and want every
he
kin to
ause the �les used by the web server to be updated.

The way to do this is by having loginfo invoke
vs update. Doing so in the naive way

will
ause a problem with lo
ks, so the
vs update must be run in the ba
kground. Here

is an example for unix (this should all be on one line):

^
y
li
-pages (date;
at; (sleep 2;
d /u/www/lo
al-do
s;

vs -q update -d) &) >> $CVSROOT/CVSROOT/updatelog 2>&1

This will
ause
he
kins to repository dire
tories starting with
y
li
-pages to update

the
he
ked out tree in `/u/www/lo
al-do
s'.

C.8 R
sinfo

The `r
sinfo' �le
an be used to spe
ify a form to edit when �lling out the
ommit log.

The `r
sinfo' �le has a syntax similar to the `verifymsg', `
ommitinfo' and `loginfo'

�les. See Se
tion C.3.1 [syntax℄, page 133. Unlike the other �les the se
ond part is not

a
ommand-line template. Instead, the part after the regular expression should be a full

pathname to a �le
ontaining the log message template.

If the repository name does not mat
h any of the regular expressions in this �le, the

`DEFAULT' line is used, if it is spe
i�ed.

All o

urren
es of the name `ALL' appearing as a regular expression are used in addition

to the �rst mat
hing regular expression or `DEFAULT'.

The log message template will be used as a default log message. If you spe
ify a log

message with `
vs
ommit -m message' or `
vs
ommit -f �le' that log message will override

the template.

See Se
tion C.5 [verifymsg℄, page 134, for an example `r
sinfo' �le.

When
vs is a

essing a remote repository, the
ontents of `r
sinfo' at the time a

dire
tory is �rst
he
ked out will spe
ify a template whi
h does not then
hange. If you

edit `r
sinfo' or its templates, you may need to
he
k out a new working dire
tory.

C.9 Ignoring �les via
vsignore

There are
ertain �le names that frequently o

ur inside your working
opy, but that you

don't want to put under
vs
ontrol. Examples are all the obje
t �les that you get while

you
ompile your sour
es. Normally, when you run `
vs update', it prints a line for ea
h

�le it en
ounters that it doesn't know about (see Se
tion A.16.2 [update output℄, page 115).

Appendix C: Referen
e manual for Administrative �les 139

vs has a list of �les (or sh(1) �le name patterns) that it should ignore while running

update, import and release. This list is
onstru
ted in the following way.

� The list is initialized to in
lude
ertain �le name patterns: names asso
iated with
vs

administration, or with other
ommon sour
e
ontrol systems;
ommon names for pat
h

�les, obje
t �les, ar
hive �les, and editor ba
kup �les; and other names that are usually

artifa
ts of assorted utilities. Currently, the default list of ignored �le name patterns

is:

RCS SCCS CVS CVS.adm

RCSLOG
vslog.*

tags TAGS

.make.state .nse_depinfo

~ # .#* ,* _$* *$

*.old *.bak *.BAK *.orig *.rej .del-*

*.a *.olb *.o *.obj *.so *.exe

*.Z *.el
 *.ln

ore

� The per-repository list in `$CVSROOT/CVSROOT/
vsignore' is appended to the list, if

that �le exists.

� The per-user list in `.
vsignore' in your home dire
tory is appended to the list, if it

exists.

� Any entries in the environment variable $CVSIGNORE is appended to the list.

� Any `-I' options given to
vs is appended.

� As
vs traverses through your dire
tories, the
ontents of any `.
vsignore' will be ap-

pended to the list. The patterns found in `.
vsignore' are only valid for the dire
tory

that
ontains them, not for any sub-dire
tories.

In any of the 5 pla
es listed above, a single ex
lamation mark (`!')
lears the ignore list.

This
an be used if you want to store any �le whi
h normally is ignored by
vs.

Spe
ifying `-I !' to
vs import will import everything, whi
h is generally what you want

to do if you are importing �les from a pristine distribution or any other sour
e whi
h is

known to not
ontain any extraneous �les. However, looking at the rules above you will see

there is a
y in the ointment; if the distribution
ontains any `.
vsignore' �les, then the

patterns from those �les will be pro
essed even if `-I !' is spe
i�ed. The only workaround

is to remove the `.
vsignore' �les in order to do the import. Be
ause this is awkward, in

the future `-I !' might be modi�ed to override `.
vsignore' �les in ea
h dire
tory.

Note that the syntax of the ignore �les
onsists of a series of lines, ea
h of whi
h
ontains a

spa
e separated list of �lenames. This o�ers no
lean way to spe
ify �lenames whi
h
ontain

spa
es, but you
an use a workaround like `foo?bar' to mat
h a �le named `foo bar' (it

also mat
hes `fooxbar' and the like). Also note that there is
urrently no way to spe
ify

omments.

C.10 The
he
koutlist �le

It may be helpful to use
vs to maintain your own �les in the `CVSROOT' dire
tory. For

example, suppose that you have a s
ript `log
ommit.pl' whi
h you run by in
luding the

following line in the `
ommitinfo' administrative �le:

140 CVS|Con
urrent Versions System v1.11.1p1

ALL $CVSROOT/CVSROOT/log
ommit.pl

To maintain `log
ommit.pl' with
vs you would add the following line to the

`
he
koutlist' administrative �le:

log
ommit.pl

The format of `
he
koutlist' is one line for ea
h �le that you want to maintain using

vs, giving the name of the �le.

After setting up `
he
koutlist' in this fashion, the �les listed there will fun
tion just

like
vs's built-in administrative �les. For example, when
he
king in one of the �les you

should get a message su
h as:

vs
ommit: Rebuilding administrative file database

and the
he
ked out
opy in the `CVSROOT' dire
tory should be updated.

Note that listing `passwd' (see Se
tion 2.9.3.1 [Password authenti
ation server℄, page 21)

in `
he
koutlist' is not re
ommended for se
urity reasons.

For information about keeping a
he
kout out
opy in a more general
ontext than the

one provided by `
he
koutlist', see Se
tion C.7.2 [Keeping a
he
ked out
opy℄, page 138.

C.11 The history �le

The �le `$CVSROOT/CVSROOT/history' is used to log information for the history
om-

mand (see Se
tion A.11 [history℄, page 105). This �le must be
reated to turn on logging.

This is done automati
ally if the
vs init
ommand is used to set up the repository (see

Se
tion 2.6 [Creating a repository℄, page 18).

The �le format of the `history' �le is do
umented only in
omments in the
vs sour
e

ode, but generally programs should use the
vs history
ommand to a

ess it anyway, in

ase the format
hanges with future releases of
vs.

C.12 Expansions in administrative �les

Sometimes in writing an administrative �le, you might want the �le to be able to know

various things based on environment
vs is running in. There are several me
hanisms to

do that.

To �nd the home dire
tory of the user running
vs (from the HOME environment variable),

use `~' followed by `/' or the end of the line. Likewise for the home dire
tory of user, use

`~user'. These variables are expanded on the server ma
hine, and don't get any reasonable

expansion if pserver (see Se
tion 2.9.3 [Password authenti
ated℄, page 21) is in use; therefore

user variables (see below) may be a better
hoi
e to
ustomize behavior based on the user

running
vs.

One may want to know about various pie
es of information internal to
vs. A
vs

internal variable has the syntax ${variable}, where variable starts with a letter and
onsists

of alphanumeri

hara
ters and `_'. If the
hara
ter following variable is a non-alphanumeri

hara
ter other than `_', the `{' and `}'
an be omitted. The
vs internal variables are:

CVSROOT This is the value of the
vs root in use. See Chapter 2 [Repository℄, page 7,

for a des
ription of the various ways to spe
ify this.

Appendix C: Referen
e manual for Administrative �les 141

RCSBIN In
vs 1.9.18 and older, this spe
i�ed the dire
tory where
vs was looking

for r
s programs. Be
ause
vs no longer runs r
s programs, spe
ifying this

internal variable is now an error.

CVSEDITOR

VISUAL

EDITOR These all expand to the same value, whi
h is the editor that
vs is using. See

Se
tion A.4 [Global options℄, page 88, for how to spe
ify this.

USER Username of the user running
vs (on the
vs server ma
hine). When using

pserver, this is the user spe
i�ed in the repository spe
i�
ation whi
h need

not be the same as the username the server is running as (see Se
tion 2.9.3.1

[Password authenti
ation server℄, page 21).

If you want to pass a value to the administrative �les whi
h the user who is running

vs
an spe
ify, use a user variable. To expand a user variable, the administrative �le

ontains ${=variable}. To set a user variable, spe
ify the global option `-s' to
vs, with

argument variable=value. It may be parti
ularly useful to spe
ify this option via `.
vsr
'

(see Se
tion A.3 [~/.
vsr
℄, page 88).

For example, if you want the administrative �le to refer to a test dire
tory you might

reate a user variable TESTDIR. Then if
vs is invoked as

vs -s TESTDIR=/work/lo
al/tests

and the administrative �le
ontains sh ${=TESTDIR}/runtests, then that string is ex-

panded to sh /work/lo
al/tests/runtests.

All other strings
ontaining `$' are reserved; there is no way to quote a `$'
hara
ter so

that `$' represents itself.

Environment variables passed to administrative �les are:

CVS_USER The
vs-spe
i�
 username provided by the user, if it
an be provided (
ur-

rently just for the pserver a

ess method), and to the empty string otherwise.

(CVS USER and USER may di�er when `$CVSROOT/CVSROOT/passwd' is used

to map
vs usernames to system usernames.)

C.13 The CVSROOT/
on�g
on�guration �le

The administrative �le `
onfig'
ontains various mis
ellaneous settings whi
h a�e
t

the behavior of
vs. The syntax is slightly di�erent from the other administrative �les.

Variables are not expanded. Lines whi
h start with `#' are
onsidered
omments. Other

lines
onsist of a keyword, `=', and a value. Note that this syntax is very stri
t. Extraneous

spa
es or tabs are not permitted.

Currently de�ned keywords are:

RCSBIN=bindir

For
vs 1.9.12 through 1.9.18, this setting told
vs to look for r
s programs

in the bindir dire
tory. Current versions of
vs do not run r
s programs; for

ompatibility this setting is a

epted, but it does nothing.

142 CVS|Con
urrent Versions System v1.11.1p1

SystemAuth=value

If value is `yes', then pserver should
he
k for users in the system's user

database if not found in `CVSROOT/passwd'. If it is `no', then all pserver users

must exist in `CVSROOT/passwd'. The default is `yes'. For more on pserver, see

Se
tion 2.9.3 [Password authenti
ated℄, page 21.

TopLevelAdmin=value

Modify the `
he
kout'
ommand to
reate a `CVS' dire
tory at the top level

of the new working dire
tory, in addition to `CVS' dire
tories
reated within

he
ked-out dire
tories. The default value is `no'.

This option is useful if you �nd yourself performing many
ommands at the top

level of your working dire
tory, rather than in one of the
he
ked out subdire
-

tories. The `CVS' dire
tory
reated there will mean you don't have to spe
ify

CVSROOT for ea
h
ommand. It also provides a pla
e for the `CVS/Template' �le

(see Se
tion 2.3 [Working dire
tory storage℄, page 13).

Lo
kDir=dire
tory

Put
vs lo
k �les in dire
tory rather than dire
tly in the repository. This is

useful if you want to let users read from the repository while giving them write

a

ess only to dire
tory, not to the repository. You need to
reate dire
tory, but

vs will
reate subdire
tories of dire
tory as it needs them. For information

on
vs lo
ks, see Se
tion 10.5 [Con
urren
y℄, page 67.

Before enabling the Lo
kDir option, make sure that you have tra
ked down and

removed any
opies of
vs 1.9 or older. Su
h versions neither support Lo
kDir,

nor will give an error indi
ating that they don't support it. The result, if this

is allowed to happen, is that some
vs users will put the lo
ks one pla
e, and

others will put them another pla
e, and therefore the repository
ould be
ome

orrupted.
vs 1.10 does not support Lo
kDir but it will print a warning if run

on a repository with Lo
kDir enabled.

LogHistory=value

Control what is logged to the `CVSROOT/history' �le. Default of `TOFEWGCMAR'

(or simply `all') will log all transa
tions. Any subset of the default is le-

gal. (For example, to only log transa
tions that modify the `*,v' �les, use

`LogHistory=TMAR'.)

Appendix D: All environment variables whi
h a�e
t CVS 143

Appendix D All environment variables whi
h

a�e
t CVS

This is a
omplete list of all environment variables that a�e
t
vs.

$CVSIGNORE

A whitespa
e-separated list of �le name patterns that
vs should ignore. See

Se
tion C.9 [
vsignore℄, page 138.

$CVSWRAPPERS

A whitespa
e-separated list of �le name patterns that
vs should treat as wrap-

pers. See Se
tion C.2 [Wrappers℄, page 132.

$CVSREAD If this is set,
he
kout and update will try hard to make the �les in your

working dire
tory read-only. When this is not set, the default behavior is to

permit modi�
ation of your working �les.

$CVSUMASK

Controls permissions of �les in the repository. See Se
tion 2.2.2 [File permis-

sions℄, page 9.

$CVSROOT Should
ontain the full pathname to the root of the
vs sour
e repository

(where the r
s �les are kept). This information must be available to
vs for

most
ommands to exe
ute; if $CVSROOT is not set, or if you wish to override

it for one invo
ation, you
an supply it on the
ommand line: `
vs -d
vsroot

vs_
ommand...' On
e you have
he
ked out a working dire
tory,
vs stores

the appropriate root (in the �le `CVS/Root'), so normally you only need to worry

about this when initially
he
king out a working dire
tory.

$EDITOR

$CVSEDITOR

$VISUAL Spe
i�es the program to use for re
ording log messages during
ommit.

$CVSEDITOR overrides $EDITOR. See Se
tion 1.3.2 [Committing your
hanges℄,

page 4.

$PATH If $RCSBIN is not set, and no path is
ompiled into
vs, it will use $PATH to try

to �nd all programs it uses.

$HOME

$HOMEPATH

$HOMEDRIVE

Used to lo
ate the dire
tory where the `.
vsr
' �le, and other su
h �les, are

sear
hed. On Unix,
vs just
he
ks for HOME. On Windows NT, the system will

set HOMEDRIVE, for example to `d:' and HOMEPATH, for example to `\joe'. On

Windows 95, you'll probably need to set HOMEDRIVE and HOMEPATH yourself.

$CVS_RSH Spe
i�es the external program whi
h
vs
onne
ts with, when :ext: a

ess

method is spe
i�ed. see Se
tion 2.9.2 [Conne
ting via rsh℄, page 20.

$CVS_SERVER

Used in
lient-server mode when a

essing a remote repository using rsh. It

spe
i�es the name of the program to start on the server side when a

essing

144 CVS|Con
urrent Versions System v1.11.1p1

a remote repository using rsh. The default value is
vs. see Se
tion 2.9.2

[Conne
ting via rsh℄, page 20

$CVS_PASSFILE

Used in
lient-server mode when a

essing the
vs login server. Default

value is `$HOME/.
vspass'. see Se
tion 2.9.3.2 [Password authenti
ation
lient℄,

page 23

$CVS_CLIENT_PORT

Used in
lient-server mode when a

essing the server via Kerberos, GSSAPI, or

vs's password authenti
ation if the port is not spe
i�ed in $CVSROOT. see

Se
tion 2.9 [Remote repositories℄, page 19

$CVS_RCMD_PORT

Used in
lient-server mode. If set, spe
i�es the port number to be used when

a

essing the r
md demon on the server side. (Currently not used for Unix

lients).

$CVS_CLIENT_LOG

Used for debugging only in
lient-server mode. If set, everything sent to the

server is logged into `$CVS_CLIENT_LOG.in' and everything sent from the server

is logged into `$CVS_CLIENT_LOG.out'.

$CVS_SERVER_SLEEP

Used only for debugging the server side in
lient-server mode. If set, delays the

start of the server
hild pro
ess the spe
i�ed amount of se
onds so that you
an

atta
h to it with a debugger.

$CVS_IGNORE_REMOTE_ROOT

For
vs 1.10 and older, setting this variable prevents
vs from overwriting the

`CVS/Root' �le when the `-d' global option is spe
i�ed. Later versions of
vs

do not rewrite `CVS/Root', so CVS_IGNORE_REMOTE_ROOT has no e�e
t.

$COMSPEC Used under OS/2 only. It spe
i�es the name of the
ommand interpreter and

defaults to
md.exe.

$TMPDIR

$TMP

$TEMP Dire
tory in whi
h temporary �les are lo
ated. The
vs server uses TMPDIR.

See Se
tion A.4 [Global options℄, page 88, for a des
ription of how to spe
ify

this. Some parts of
vs will always use `/tmp' (via the tmpnam fun
tion provided

by the system).

On Windows NT, TMP is used (via the _tempnam fun
tion provided by the

system).

The pat
h program whi
h is used by the
vs
lient uses TMPDIR, and if it is

not set, uses `/tmp' (at least with GNU pat
h 2.1). Note that if your server

and
lient are both running
vs 1.9.10 or later,
vs will not invoke an external

pat
h program.

Appendix E: Compatibility between CVS Versions 145

Appendix E Compatibility between CVS Versions

The repository format is
ompatible going ba
k to
vs 1.3. But see Se
tion 10.6.5

[Wat
hes Compatibility℄, page 71, if you have
opies of
vs 1.6 or older and you want to

use the optional developer
ommuni
ation features.

The working dire
tory format is
ompatible going ba
k to
vs 1.5. It did
hange between

vs 1.3 and
vs 1.5. If you run
vs 1.5 or newer on a working dire
tory
he
ked out with

vs 1.3,
vs will
onvert it, but to go ba
k to
vs 1.3 you need to
he
k out a new working

dire
tory with
vs 1.3.

The remote proto
ol is interoperable going ba
k to
vs 1.5, but no further (1.5 was

the �rst oÆ
ial release with the remote proto
ol, but some older versions might still be

oating around). In many
ases you need to upgrade both the
lient and the server to take

advantage of new features and bug�xes, however.

146 CVS|Con
urrent Versions System v1.11.1p1

Appendix F: Troubleshooting 147

Appendix F Troubleshooting

If you are having trouble with
vs, this appendix may help. If there is a parti
ular error

message whi
h you are seeing, then you
an look up the message alphabeti
ally. If not, you

an look through the se
tion on other problems to see if your problem is mentioned there.

F.1 Partial list of error messages

Here is a partial list of error messages that you may see from
vs. It is not a
omplete

list|
vs is
apable of printing many, many error messages, often with parts of them sup-

plied by the operating system, but the intention is to list the
ommon and/or potentially

onfusing error messages.

The messages are alphabeti
al, but introdu
tory text su
h as `
vs update: ' is not
on-

sidered in ordering them.

In some
ases the list in
ludes messages printed by old versions of
vs (partly be
ause

users may not be sure whi
h version of
vs they are using at any parti
ular moment).

vs
ommand: authorization failed: server host reje
ted a

ess

This is a generi
 response when trying to
onne
t to a pserver server whi
h

hooses not to provide a spe
i�
 reason for denying authorization. Che
k that

the username and password spe
i�ed are
orre
t and that the CVSROOT spe
i�ed

is allowed by `--allow-root' in `inetd.
onf'. See Se
tion 2.9.3 [Password

authenti
ated℄, page 21.

�le:line: Assertion 'text' failed

The exa
t format of this message may vary depending on your system. It

indi
ates a bug in
vs, whi
h
an be handled as des
ribed in Appendix H

[BUGS℄, page 157.

vs
ommand:
onfli
t: removed �le was modified by se
ond party

This message indi
ates that you removed a �le, and someone else modi�ed it.

To resolve the
on
i
t, �rst run `
vs add �le'. If desired, look at the other

party's modi�
ation to de
ide whether you still want to remove it. If you don't

want to remove it, stop here. If you do want to remove it, pro
eed with `
vs

remove �le' and
ommit your removal.

annot
hange permissions on temporary dire
tory

Operation not permitted

This message has been happening in a non-reprodu
ible, o

asional way when

we run the
lient/server testsuite, both on Red Hat Linux 3.0.3 and 4.1. We

haven't been able to �gure out what
auses it, nor is it known whether it is

spe
i�
 to linux (or even to this parti
ular ma
hine!). If the problem does

o

ur on other uni
es, `Operation not permitted' would be likely to read `Not

owner' or whatever the system in question uses for the unix EPERM error. If you

have any information to add, please let us know as des
ribed in Appendix H

[BUGS℄, page 157. If you experien
e this error while using
vs, retrying the

operation whi
h produ
ed it should work �ne.

148 CVS|Con
urrent Versions System v1.11.1p1

vs [server aborted℄: Cannot
he
k out files into the repository itself

The obvious
ause for this message (espe
ially for non-
lient/server
vs) is

that the
vs root is, for example, `/usr/lo
al/
vsroot' and you try to
he
k

out �les when you are in a subdire
tory, su
h as `/usr/lo
al/
vsroot/test'.

However, there is a more subtle
ause, whi
h is that the temporary dire
tory

on the server is set to a subdire
tory of the root (whi
h is also not allowed). If

this is the problem, set the temporary dire
tory to somewhere else, for example

`/var/tmp'; see TMPDIR in Appendix D [Environment variables℄, page 143, for

how to set the temporary dire
tory.

annot open CVS/Entries for reading: No su
h file or dire
tory

This generally indi
ates a
vs internal error, and
an be handled as with other

vs bugs (see Appendix H [BUGS℄, page 157). Usually there is a workaround|

the exa
t nature of whi
h would depend on the situation but whi
h hopefully

ould be �gured out.

vs [init aborted℄:
annot open CVS/Root: No su
h file or dire
tory

This message is harmless. Provided it is not a

ompanied by other errors,

the operation has
ompleted su

essfully. This message should not o

ur with

urrent versions of
vs, but it is do
umented here for the bene�t of
vs 1.9

and older.

vs [
he
kout aborted℄:
annot rename file �le to CVS/,,�le: Invalid argument

This message has been reported as intermittently happening with
vs 1.9 on

Solaris 2.5. The
ause is unknown; if you know more about what
auses it, let

us know as des
ribed in Appendix H [BUGS℄, page 157.

vs [
ommand aborted℄:
annot start server via r
md

This, unfortunately, is a rather nonspe
i�
 error message whi
h
vs 1.9 will

print if you are running the
vs
lient and it is having trouble
onne
ting to

the server. Current versions of
vs should print a mu
h more spe
i�
 error

message. If you get this message when you didn't mean to run the
lient at all,

you probably forgot to spe
ify :lo
al:, as des
ribed in Chapter 2 [Repository℄,

page 7.

i: �le,v: bad diff output line: Binary files - and /tmp/T2a22651 differ

vs 1.9 and older will print this message when trying to
he
k in a binary �le if

r
s is not
orre
tly installed. Re-read the instru
tions that
ame with your r
s

distribution and the install �le in the
vs distribution. Alternately, upgrade

to a
urrent version of
vs, whi
h
he
ks in �les itself rather than via r
s.

vs
he
kout:
ould not
he
k out �le

With
vs 1.9, this
an mean that the
o program (part of r
s) returned a

failure. It should be pre
eded by another error message, however it has been

observed without another error message and the
ause is not well-understood.

With the
urrent version of
vs, whi
h does not run
o, if this message o

urs

without another error message, it is de�nitely a
vs bug (see Appendix H

[BUGS℄, page 157).

Appendix F: Troubleshooting 149

vs [login aborted℄:
ould not find out home dire
tory

This means that you need to set the environment variables that
vs uses to lo-

ate your home dire
tory. See the dis
ussion of HOME, HOMEDRIVE, and HOMEPATH

in Appendix D [Environment variables℄, page 143.

vs update:
ould not merge revision rev of �le: No su
h file or dire
tory

vs 1.9 and older will print this message if there was a problem �nding the

r
smerge program. Make sure that it is in your PATH, or upgrade to a
urrent

version of
vs, whi
h does not require an external r
smerge program.

vs [update aborted℄:
ould not pat
h �le: No su
h file or dire
tory

This means that there was a problem �nding the pat
h program. Make sure

that it is in your PATH. Note that despite appearan
es the message is not

referring to whether it
an �nd �le. If both the
lient and the server are running

a
urrent version of
vs, then there is no need for an external pat
h program

and you should not see this message. But if either
lient or server is running

vs 1.9, then you need pat
h.

vs update:
ould not pat
h �le; will refet
h

This means that for whatever reason the
lient was unable to apply a pat
h

that the server sent. The message is nothing to be
on
erned about, be
ause

inability to apply the pat
h only slows things down and has no e�e
t on what

vs does.

dying gasps from server unexpe
ted

There is a known bug in the server for
vs 1.9.18 and older whi
h
an
ause

this. For me, this was reprodu
ible if I used the `-t' global option. It was �xed

by Andy Piper's 14 Nov 1997
hange to sr
/�lesubr.
, if anyone is
urious. If

you see the message, you probably
an just retry the operation whi
h failed, or

if you have dis
overed information
on
erning its
ause, please let us know as

des
ribed in Appendix H [BUGS℄, page 157.

end of file from server (
onsult above messages if any)

The most
ommon
ause for this message is if you are using an external rsh

program and it exited with an error. In this
ase the rsh program should

have printed a message, whi
h will appear before the above message. For more

information on setting up a
vs
lient and server, see Se
tion 2.9 [Remote

repositories℄, page 19.

vs [update aborted℄: EOF in key in RCS file �le,v

vs [
he
kout aborted℄: EOF while looking for end of string in RCS file �le,v

This means that there is a syntax error in the given r
s �le. Note that this

might be true even if r
s
an read the �le OK;
vs does more error
he
king

of errors in the RCS �le. That is why you may see this message when upgrad-

ing from
vs 1.9 to
vs 1.10. The likely
ause for the original
orruption is

hardware, the operating system, or the like. Of
ourse, if you �nd a
ase in

whi
h
vs seems to
orrupting the �le, by all means report it, (see Appendix H

[BUGS℄, page 157). There are quite a few variations of this error message,

depending on exa
tly where in the r
s �le
vs �nds the syntax error.

150 CVS|Con
urrent Versions System v1.11.1p1

vs
ommit: Exe
uting 'mkmodules'

This means that your repository is set up for a version of
vs prior to
vs 1.8.

When using
vs 1.8 or later, the above message will be pre
eded by

vs
ommit: Rebuilding administrative file database

If you see both messages, the database is being rebuilt twi
e, whi
h is un-

ne
essary but harmless. If you wish to avoid the dupli
ation, and you have

no versions of
vs 1.7 or earlier in use, remove -i mkmodules every pla
e it

appears in your modules �le. For more information on the modules �le, see

Se
tion C.1 [modules℄, page 129.

missing author

Typi
ally this
an happen if you
reated an RCS �le with your username set to

empty.
vs will, bogusly,
reate an illegal RCS �le with no value for the author

�eld. The solution is to make sure your username is set to a non-empty value

and re-
reate the RCS �le.

vs [
he
kout aborted℄: no su
h tag tag

This message means that
vs isn't familiar with the tag tag. Usually this means

that you have mistyped a tag name; however there are (relatively obs
ure)
ases

in whi
h
vs will require you to try a few other
vs
ommands involving that

tag, before you �nd one whi
h will
ause
vs to update the `val-tags' �le; see

dis
ussion of val-tags in Se
tion 2.2.2 [File permissions℄, page 9. You only need

to worry about this on
e for a given tag; when a tag is listed in `val-tags', it

stays there. Note that using `-f' to not require tag mat
hes does not override

this
he
k; see Se
tion A.5 [Common options℄, page 90.

PANIC administration files missing

This typi
ally means that there is a dire
tory named
vs but it does not
ontain

the administrative �les whi
h
vs puts in a CVS dire
tory. If the problem is

that you
reated a CVS dire
tory via some me
hanism other than
vs, then

the answer is simple, use a name other than
vs. If not, it indi
ates a
vs bug

(see Appendix H [BUGS℄, page 157).

r
s error: Unknown option: -x,v/

This message will be followed by a usage message for r
s. It means that you

have an old version of r
s (probably supplied with your operating system), as

well as an old version of
vs.
vs 1.9.18 and earlier only work with r
s version

5 and later;
urrent versions of
vs do not run r
s programs.

vs [server aborted℄: re
eived broken pipe signal

This message seems to be
aused by a hard-to-tra
k-down bug in
vs or the

systems it runs on (we don't know|we haven't tra
ked it down yet!). It seems

to happen only after a
vs
ommand has
ompleted, and you should be able to

just ignore the message. However, if you have dis
overed information
on
erning

its
ause, please let us know as des
ribed in Appendix H [BUGS℄, page 157.

Too many arguments!

This message is typi
ally printed by the `log.pl' s
ript whi
h is in the `
ontrib'

dire
tory in the
vs sour
e distribution. In some versions of
vs, `log.pl' has

been part of the default
vs installation. The `log.pl' s
ript gets
alled from

Appendix F: Troubleshooting 151

the `loginfo' administrative �le. Che
k that the arguments passed in `loginfo'

mat
h what your version of `log.pl' expe
ts. In parti
ular, the `log.pl' from

vs 1.3 and older expe
ts the log�le as an argument whereas the `log.pl' from

vs 1.5 and newer expe
ts the log�le to be spe
i�ed with a `-f' option. Of

ourse, if you don't need `log.pl' you
an just
omment it out of `loginfo'.

vs [update aborted℄: unexpe
ted EOF reading �le,v

See `EOF in key in RCS file'.

vs [login aborted℄: unre
ognized auth response from server

This message typi
ally means that the server is not set up properly. For ex-

ample, if `inetd.
onf' points to a nonexistent
vs exe
utable. To debug it

further, �nd the log �le whi
h inetd writes (`/var/log/messages' or whatever

inetd uses on your system). For details, see Se
tion F.2 [Conne
tion℄, page 152,

and Se
tion 2.9.3.1 [Password authenti
ation server℄, page 21.

vs server:
annot open /root/.
vsignore: Permission denied

vs [server aborted℄:
an't
hdir(/root): Permission denied

See Se
tion F.2 [Conne
tion℄, page 152.

vs
ommit: Up-to-date
he
k failed for `�le'

This means that someone else has
ommitted a
hange to that �le sin
e the last

time that you did a
vs update. So before pro
eeding with your
vs
ommit

you need to
vs update.
vs will merge the
hanges that you made and the

hanges that the other person made. If it does not dete
t any
on
i
ts it will

report `M �le' and you are ready to
vs
ommit. If it dete
ts
on
i
ts it will print

a message saying so, will report `C �le', and you need to manually resolve the

on
i
t. For more details on this pro
ess see Se
tion 10.3 [Con
i
ts example℄,

page 65.

Usage: diff3 [-exEX3 [-i | -m℄ [-L label1 -L label3℄℄ file1 file2 file3

Only one of [exEX3℄ allowed

This indi
ates a problem with the installation of diff3 and r
smerge. Spe
i�-

ally r
smerge was
ompiled to look for GNU di�3, but it is �nding unix di�3

instead. The exa
t text of the message will vary depending on the system. The

simplest solution is to upgrade to a
urrent version of
vs, whi
h does not rely

on external r
smerge or diff3 programs.

warning: unre
ognized response `text' from
vs server

If text
ontains a valid response (su
h as `ok') followed by an extra
arriage

return
hara
ter (on many systems this will
ause the se
ond part of the message

to overwrite the �rst part), then it probably means that you are using the

`:ext:' a

ess method with a version of rsh, su
h as most non-unix rsh versions,

whi
h does not by default provide a transparent data stream. In su
h
ases you

probably want to try `:server:' instead of `:ext:'. If text is something else,

this may signify a problem with your
vs server. Double-
he
k your installation

against the instru
tions for setting up the
vs server.

vs
ommit: [time℄ waiting for user's lo
k in dire
tory

This is a normal message, not an error. See Se
tion 10.5 [Con
urren
y℄, page 67,

for more details.

152 CVS|Con
urrent Versions System v1.11.1p1

vs
ommit: warning: editor session failed

This means that the editor whi
h
vs is using exits with a nonzero exit status.

Some versions of vi will do this even when there was not a problem editing the

�le. If so, point the CVSEDITOR environment variable to a small s
ript su
h as:

#!/bin/sh

vi $*

exit 0

F.2 Trouble making a
onne
tion to a CVS server

This se
tion
on
erns what to do if you are having trouble making a
onne
tion to a
vs

server. If you are running the
vs
ommand line
lient running on Windows, �rst upgrade

the
lient to
vs 1.9.12 or later. The error reporting in earlier versions provided mu
h less

information about what the problem was. If the
lient is non-Windows,
vs 1.9 should be

�ne.

If the error messages are not suÆ
ient to tra
k down the problem, the next steps depend

largely on whi
h a

ess method you are using.

:ext: Try running the rsh program from the
ommand line. For example: "rsh server-

name
vs -v" should print
vs version information. If this doesn't work, you

need to �x it before you
an worry about
vs problems.

:server: You don't need a
ommand line rsh program to use this a

ess method, but if

you have an rsh program around, it may be useful as a debugging tool. Follow

the dire
tions given for :ext:.

:pserver:

Errors along the lines of "
onne
tion refused" typi
ally indi
ate that inetd isn't

even listening for
onne
tions on port 2401 whereas errors like "
onne
tion reset

by peer" or "re
v() from server: EOF" typi
ally indi
ate that inetd is listening

for
onne
tions but is unable to start
vs (this is frequently
aused by having

an in
orre
t path in `inetd.
onf'). "unre
ognized auth response" errors are

aused by a bad
ommand line in `inetd.
onf', typi
ally an invalid option

or forgetting to put the `pserver'
ommand at the end of the line. Another

less
ommon problem is invisible
ontrol
hara
ters that your editor "helpfully"

added without you noti
ing.

One good debugging tool is to "telnet servername 2401". After
onne
ting, send

any text (for example "foo" followed by return). If
vs is working
orre
tly, it

will respond with

vs [pserver aborted℄: bad auth proto
ol start: foo

If instead you get:

Usage:
vs [
vs-options℄
ommand [
ommand-options-and-arguments℄

...

then you're missing the `pserver'
ommand at the end of the line in

`inetd.
onf';
he
k to make sure that the entire
ommand is on one line and

that it's
omplete.

Likewise, if you get something like:

Appendix F: Troubleshooting 153

Unknown
ommand: `pserved'

CVS
ommands are:

add Add a new file/dire
tory to the repository

...

then you've misspelled `pserver' in some way. If it isn't obvious,
he
k for

invisible
ontrol
hara
ters (parti
ularly
arriage returns) in `inetd.
onf'.

If it fails to work at all, then make sure inetd is working right. Change the

invo
ation in `inetd.
onf' to run the e
ho program instead of
vs. For example:

2401 stream t
p nowait root /bin/e
ho e
ho hello

After making that
hange and instru
ting inetd to re-read its
on�guration �le,

"telnet servername 2401" should show you the text hello and then the server

should
lose the
onne
tion. If this doesn't work, you need to �x it before you

an worry about
vs problems.

On AIX systems, the system will often have its own program trying to use port

2401. This is AIX's problem in the sense that port 2401 is registered for use

with
vs. I hear that there is an AIX pat
h available to address this problem.

Another good debugging tool is the `-d' (debugging) option to inetd. Consult

your system do
umentation for more information.

If you seem to be
onne
ting but get errors like:

vs server:
annot open /root/.
vsignore: Permission denied

vs [server aborted℄:
an't
hdir(/root): Permission denied

then you probably haven't spe
i�ed `-f' in `inetd.
onf'.

If you
an
onne
t su

essfully for a while but then
an't, you've probably hit

inetd's rate limit. (If inetd re
eives too many requests for the same servi
e

in a short period of time, it assumes that something is wrong and temporarily

disables the servi
e.) Che
k your inetd do
umentation to �nd out how to adjust

the rate limit (some versions of inetd have a single rate limit, others allow you

to set the limit for ea
h servi
e separately.)

F.3 Other
ommon problems

Here is a list of problems whi
h do not �t into the above
ategories. They are in no

parti
ular order.

� On Windows, if there is a 30 se
ond or so delay when you run a
vs
ommand, it may

mean that you have your home dire
tory set to `C:/', for example (see HOMEDRIVE and

HOMEPATH in Appendix D [Environment variables℄, page 143).
vs expe
ts the home

dire
tory to not end in a slash, for example `C:' or `C:\
vs'.

� If you are running
vs 1.9.18 or older, and
vs update �nds a
on
i
t and tries to

merge, as des
ribed in Se
tion 10.3 [Con
i
ts example℄, page 65, but doesn't tell you

there were
on
i
ts, then you may have an old version of r
s. The easiest solution

probably is to upgrade to a
urrent version of
vs, whi
h does not rely on external r
s

programs.

154 CVS|Con
urrent Versions System v1.11.1p1

Appendix G: Credits 155

Appendix G Credits

Roland Pes
h, then of Cygnus Support <roland�wrs.
om>wrote the manual pages whi
h

were distributed with
vs 1.3. Mu
h of their text was
opied into this manual. He also

read an early draft of this manual and
ontributed many ideas and
orre
tions.

The mailing-list info-
vs is sometimes informative. I have in
luded information from

postings made by the following persons: David G. Grubbs <dgg�think.
om>.

Some text has been extra
ted from the man pages for r
s.

The
vs faq by David G. Grubbs has provided useful material. The faq is no longer

maintained, however, and this manual is about the
losest thing there is to a su

essor (with

respe
t to do
umenting how to use
vs, at least).

In addition, the following persons have helped by telling me about mistakes I've made:

Roxanne Brunskill <rbrunski�datap.
a>,

Kathy Dyer <dyer�phoenix.o
f.llnl.gov>,

Karl Pingle <pingle�a
uson.
om>,

Thomas A Peterson <tap�sr
.honeywell.
om>,

Inge Wallin <ingwa�signum.se>,

Dirk Kos
huetzki <kos
huet�fmi.uni-passau.de>

and Mi
hael Brown <brown�wi.extrel.
om>.

The list of
ontributors here is not
omprehensive; for a more
omplete list of who has

ontributed to this manual see the �le `do
/ChangeLog' in the
vs sour
e distribution.

156 CVS|Con
urrent Versions System v1.11.1p1

Appendix H: Dealing with bugs in CVS or this manual 157

Appendix H Dealing with bugs in CVS or this

manual

Neither
vs nor this manual is perfe
t, and they probably never will be. If you are

having trouble using
vs, or think you have found a bug, there are a number of things you

an do about it. Note that if the manual is un
lear, that
an be
onsidered a bug in the

manual, so these problems are often worth doing something about as well as problems with

vs itself.

� If you want someone to help you and �x bugs that you report, there are
ompanies

whi
h will do that for a fee. One su
h
ompany is:

Signum Support AB

Box 2044

S-580 02 Linkoping

Sweden

Email: info�signum.se

Phone: +46 (0)13 - 21 46 00

Fax: +46 (0)13 - 21 47 00

http://www.signum.se/

� If you got
vs through a distributor, su
h as an operating system vendor or a vendor

of freeware
d-roms, you may wish to see whether the distributor provides support.

Often, they will provide no support or minimal support, but this may vary from dis-

tributor to distributor.

� If you have the skills and time to do so, you may wish to �x the bug yourself. If you

wish to submit your �x for in
lusion in future releases of
vs, see the �le ha
king

in the
vs sour
e distribution. It
ontains mu
h more information on the pro
ess of

submitting �xes.

� There may be resour
es on the net whi
h
an help. Two good pla
es to start are:

http://www.
vshome.org

http://www.loria.fr/~molli/
vs-index.html

If you are so inspired, in
reasing the information available on the net is likely to be

appre
iated. For example, before the standard
vs distribution worked on Windows

95, there was a web page with some explanation and pat
hes for running
vs on

Windows 95, and various people helped out by mentioning this page on mailing lists

or newsgroups when the subje
t
ame up.

� It is also possible to report bugs to bug-
vs. Note that someone may or may not want

to do anything with your bug report|if you need a solution
onsider one of the options

mentioned above. People probably do want to hear about bugs whi
h are parti
ularly

severe in
onsequen
es and/or easy to �x, however. You
an also in
rease your odds

by being as
lear as possible about the exa
t nature of the bug and any other relevant

information. The way to report bugs is to send email to bug-
vs�gnu.org. Note that

submissions to bug-
vs may be distributed under the terms of the gnu Publi
 Li
ense,

so if you don't like this, don't submit them. There is usually no justi�
ation for sending

mail dire
tly to one of the
vs maintainers rather than to bug-
vs; those maintainers

who want to hear about su
h bug reports read bug-
vs. Also note that sending a

bug report to other mailing lists or newsgroups is not a substitute for sending it to

158 CVS|Con
urrent Versions System v1.11.1p1

bug-
vs. It is �ne to dis
uss
vs bugs on whatever forum you prefer, but there are

not ne
essarily any maintainers reading bug reports sent anywhere ex
ept bug-
vs.

People often ask if there is a list of known bugs or whether a parti
ular bug is a known

one. The �le bugs in the
vs sour
e distribution is one list of known bugs, but it doesn't

ne
essarily try to be
omprehensive. Perhaps there will never be a
omprehensive, detailed

list of known bugs.

Index 159

Index

!

!, in modules �le . 131

#

#
vs.lo
k, removing . 67

#
vs.lo
k, te
hni
al details 12

#
vs.r
, and ba
kups . 18

#
vs.r
, removing . 67

#
vs.r
, te
hni
al details . 12

#
vs.t
 . 12

#
vs.w
, removing . 67

#
vs.w
, te
hni
al details . 12

&

&, in modules �le . 130

-

-a, in modules �le . 129

-d, in modules �le . 131

-e, in modules �le . 131, 132

-i, in modules �le . 131, 132

-j (merging bran
hes) . 45

-j (merging bran
hes), and keyword substitution

. 47

-k (keyword substitution) . 77

-kk, to avoid
on
i
ts during a merge. 47

-o, in modules �le . 131, 132

-s, in modules �le . 131

-t, in modules �le . 131, 132

-u, in modules �le . 131, 132

.

.# �les. 115

.bashr
, setting CVSROOT in 7

.
shr
, setting CVSROOT in 7

.
vsr
 �le. 88

.pro�le, setting CVSROOT in 7

.t
shr
, setting CVSROOT in 7

/

/usr/lo
al/
vsroot, as example repository 7

:

:ext:, setting up. 20

:ext:, troubleshooting . 152

:fork:, setting up . 26

:gserver:, setting up . 25

:kserver:, setting up . 25

:lo
al:, setting up . 7

:pserver:, setting up . 23

:pserver:, troubleshooting . 152

:server:, setting up . 20

:server:, troubleshooting . 152

=

======= . 66

�les (VMS) . 115

>

>>>>>>> . 66

<

<<<<<<< . 66

A

Abandoning work . 70

A

ess a bran
h . 42

add (sub
ommand) . 53

Adding a tag . 34

Adding �les . 53

Admin (sub
ommand) . 93

Administrative �les (intro) 16

Administrative �les (referen
e). 129

Administrative �les, editing them 17

Alias modules . 129

ALL in
ommitinfo . 134

Ampersand modules . 130

annotate (sub
ommand). 60

Atomi
 transa
tions, la
k of 68

Atti
 . 11

Authenti
ated
lient, using 23

Authenti
ating server, setting up 21

Authenti
ation, stream . 88

Author keyword . 75

Automati
ally ignored �les 139

Avoiding editor invo
ation. 92

160 CVS|Con
urrent Versions System v1.11.1p1

B

Ba
king up, repository . 18

Base dire
tory, in CVS dire
tory 16

BASE, as reserved tag name 34

BASE, spe
ial tag . 92

Baserev �le, in CVS dire
tory. 16

Baserev.tmp �le, in CVS dire
tory 16

Bill of materials . 83

Binary �les . 61

Bran
h merge example . 45

Bran
h number . 33, 43

Bran
h, a

essing . 42

Bran
h,
he
k out. 42

Bran
h,
reating a . 41

Bran
h, identifying . 42

Bran
h, retrieving . 42

Bran
h, vendor- . 79

Bran
hes motivation . 41

Bran
hes,
opying
hanges between 41

Bran
hes, sti
ky . 42

Bran
hing . 41

Bringing a �le up to date . 64

Bugs in this manual or CVS 157

Bugs, reporting . 157

Builds . 83

C

Changes,
opying between bran
hes 41

Changing a log message . 94

Che
k out a bran
h . 42

Che
ked out
opy, keeping 138

Che
kin program . 131

Che
kin.prog �le, in CVS dire
tory 16

Che
king
ommits . 134

Che
king out sour
e. 4

he
kout (sub
ommand) . 97

Che
kout program . 131

Che
kout, as term for getting ready to edit 70

Che
kout, example . 4

he
koutlist . 139

Choosing, reserved or unreserved
he
kouts 71

Cleaning up . 5

Client/Server Operation . 19

Client/Server Operation, port spe
i�
ation 19,

21

o (sub
ommand) . 97

Command referen
e . 117

Command stru
ture . 87

Comment leader . 93

ommit (sub
ommand) . 99

Commit �les . 133

Commit, when to . 73

Commitinfo . 134

Committing
hanges . 4

Common options . 90

Common syntax of info �les 133

Compatibility, between CVS versions 145

Compression . 90, 118

COMSPEC, environment variable 144

on�g, in CVSROOT . 141

Con
i
t markers . 66

Con
i
t resolution . 66

Con
i
ts (merge example) . 66

Contributors (CVS program) 1

Contributors (manual) . 155

Copying a repository . 19

Copying
hanges . 41

Corre
ting a log message . 94

Creating a bran
h . 41

Creating a proje
t . 29

Creating a repository . 18

Credits (CVS program) . 1

Credits (manual) . 155

CVS 1.6, and wat
hes . 71

CVS
ommand stru
ture . 87

CVS dire
tory, in repository 11

CVS dire
tory, in working dire
tory 13

CVS passwd �le . 22

CVS, history of . 1

CVS, introdu
tion to . 1

CVS, versions of . 145

CVS/Base dire
tory. 16

CVS/Baserev �le . 16

CVS/Baserev.tmp �le . 16

CVS/Che
kin.prog �le . 16

CVS/Entries �le . 14

CVS/Entries.Ba
kup �le . 15

CVS/Entries.Log �le . 15

CVS/Entries.Stati
 �le . 15

CVS/Notify �le . 16

CVS/Notify.tmp �le . 16

CVS/Repository �le . 14

CVS/Root �le . 7

CVS/Tag �le . 16

CVS/Template �le . 16

CVS/Update.prog �le . 16

CVS CLIENT LOG, environment variable 144

CVS CLIENT PORT . 25

CVS IGNORE REMOTE ROOT, environment

variable . 144

CVS PASSFILE, environment variable 24

CVS RCMD PORT, environment variable 144

CVS RSH, environment variable 143

CVS SERVER, and :fork: . 26

CVS SERVER, environment variable 20

CVS SERVER SLEEP, environment variable . . 144

vsadmin. 93

CVSEDITOR, environment variable 4

CVSEDITOR, internal variable 141

vsignore (admin �le), global 138

Index 161

CVSIGNORE, environment variable. 143

CVSREAD, environment variable 143

CVSREAD, overriding . 90

vsroot. 7

CVSROOT (�le) . 129

CVSROOT, environment variable 7

CVSROOT, internal variable 140

CVSROOT, module name . 16

CVSROOT, multiple repositories 17

CVSROOT, overriding . 89

CVSROOT, storage of �les 13

CVSROOT/
on�g . 141

CVSUMASK, environment variable 10

vswrappers (admin �le) . 132

CVSWRAPPERS, environment variable . . 132, 143

D

Date keyword . 75

Dates . 90

Dead state . 11

De
imal revision number . 33

DEFAULT in
ommitinfo. 134

DEFAULT in editinfo . 136

DEFAULT in verifymsg . 134

De�ning a module . 31

De�ning modules (intro) . 16

De�ning modules (referen
e manual) 129

Deleting �les . 54

Deleting revisions . 94

Deleting sti
ky tags . 38

Deleting tags . 37

Des
ending dire
tories . 51

Devi
e nodes . 85

Di� . 5

di� (sub
ommand) . 102

Di�eren
es, merging . 46

Dire
tories, moving . 57

Dire
tories, removing . 55

Dire
tory, des
ending . 51

Disjoint repositories . 17

Distributing log messages 137

driver.
 (merge example) . 65

E

edit (sub
ommand) . 70

editinfo (admin �le) . 135

Editing administrative �les 17

Editing the modules �le . 31

Editor, avoiding invo
ation of 92

EDITOR, environment variable 4

EDITOR, internal variable 141

EDITOR, overriding . 89

Editor, spe
ifying per module 135

editors (sub
ommand) . 71

emerge . 67

En
ryption . 90

Entries �le, in CVS dire
tory 14

Entries.Ba
kup �le, in CVS dire
tory 15

Entries.Log �le, in CVS dire
tory 15

Entries.Stati
 �le, in CVS dire
tory 15

Environment variables . 143

environment variables, passed to administrative

�les . 141

Errors, reporting . 157

Example of a work-session . 3

Example of merge . 65

Example, bran
h merge . 45

Ex
luding dire
tories, in modules �le 131

Exit status, of
ommitinfo 134

Exit status, of CVS . 87

Exit status, of editor . 152

Exit status, of taginfo . 59

Exit status, of verifymsg . 134

export (sub
ommand) . 104

Export program . 131

F

Fet
hing sour
e . 4

File had
on
i
ts on merge 64

File lo
king . 63

File permissions, general . 9

File permissions, Windows-spe
i�
 10

File status . 63

Files, moving . 56

Files, referen
e manual . 129

Fixing a log message . 94

For
ing a tag mat
h. 91

fork, a

ess method . 26

Form for log message. 138

Format of CVS
ommands . 87

G

Getting started . 3

Getting the sour
e . 4

Global
vsignore . 138

Global options . 88

Group . 9

gserver (
lient/server
onne
tion method), port

spe
i�
ation . 19, 21

GSSAPI . 25

Gzip . 90, 118

162 CVS|Con
urrent Versions System v1.11.1p1

H

Hard links. 85

HEAD, as reserved tag name 34

HEAD, spe
ial tag . 92

Header keyword . 75

history (sub
ommand) . 105

History browsing . 59

History �le . 140

History �les . 9

History of CVS . 1

HOME, environment variable 143

HOMEDRIVE, environment variable 143

HOMEPATH, environment variable 143

I

Id keyword . 75

Ident (shell
ommand) . 76

Identifying a bran
h . 42

Identifying �les . 75

Ignored �les . 139

Ignoring �les . 138

import (sub
ommand) . 106

Importing �les . 29

Importing �les, from other version
ontrol systems

. 30

Importing modules . 79

Index . 159

Info �les (syntax) . 133

Informing others . 67

init (sub
ommand) . 18

Installed images (VMS) . 10

Internal variables . 140

Introdu
tion to CVS . 1

Invoking CVS . 117

Isolation . 59

J

Join . 45

K

Keeping a
he
ked out
opy 138

Kerberos, using :gserver: . 25

Kerberos, using :kserver: . 25

Kerberos, using kerberized rsh 20

Keyword expansion . 75

Keyword List . 75

Keyword substitution . 75

Keyword substitution, and merging 47

Keyword substitution,
hanging modes 77

K
ag . 77

kinit . 26

Known bugs in this manual or CVS 158

kserver (
lient/server
onne
tion method), port

spe
i�
ation . 19, 21

L

Layout of repository . 7

Left-hand options . 88

Linear development . 33

Link, symboli
, importing 108

List, mailing list . 1

Lo
ally Added . 63

Lo
ally Modi�ed . 63

Lo
ally Removed . 63

Lo
kDir, in CVSROOT/
on�g 142

Lo
ker keyword . 75

Lo
king �les . 63

Lo
ks,
vs, and ba
kups . 18

Lo
ks,
vs, introdu
tion . 67

Lo
ks,
vs, te
hni
al details. 12

log (sub
ommand) . 108

Log information, saving . 140

Log keyword . 75

Log message entry . 4

Log message template . 138

Log message,
orre
ting . 94

Log message, verifying . 134

Log messages . 137

Log messages, editing . 135

LogHistory, in CVSROOT/
on�g 142

Login (sub
ommand) . 23

loginfo (admin �le) . 137

Logout (sub
ommand) . 24

M

Mail, automati
 mail on
ommit 67

Mailing list . 1

Mailing log messages . 137

Main trunk and bran
hes . 41

make . 83

Many repositories . 17

Markers,
on
i
t . 66

Merge, an example . 65

Merge, bran
h example . 45

Merging . 41

Merging a bran
h . 45

Merging a �le . 64

Merging two revisions . 46

Merging, and keyword substitution 47

mkmodules . 149

Modi�
ations,
opying between bran
hes 41

Module status . 131

Module, de�ning . 31

Modules (admin �le) . 129

Modules �le . 16

Index 163

Modules �le program options 132

Modules �le,
hanging. 31

modules.db . 13

modules.dir . 13

modules.pag . 13

Motivation for bran
hes . 41

Moving a repository. 19

Moving dire
tories . 57

Moving �les . 56

Moving tags . 37

Multiple developers . 63

Multiple repositories . 17

N

Name keyword . 75

Name, symboli
 (tag) . 34

Needs Che
kout . 63

Needs Merge . 64

Needs Pat
h . 63

Newsgroups . 1

notify (admin �le) . 69

Notify �le, in CVS dire
tory 16

Notify.tmp �le, in CVS dire
tory 16

Number, bran
h . 33, 43

Number, revision- . 33

O

Option defaults . 88

Options, global . 88

Options, in modules �le . 131

Outdating revisions . 94

Overlap . 64

Overriding CVSREAD . 90

Overriding CVSROOT . 89

Overriding EDITOR . 89

Overriding RCSBIN. 88

Overriding TMPDIR . 88

Overview . 1

Ownership, saving in CVS . 85

P

Parallel repositories . 17

passwd (admin �le) . 22

Password
lient, using . 23

Password server, setting up 21

PATH, environment variable 143

Per-dire
tory sti
ky tags/dates 16

Per-module editor . 135

Permissions, general. 9

Permissions, saving in CVS 85

Permissions, Windows-spe
i�
 10

Poli
y. 73

port, spe
ifying for remote repositories 19, 21

Pre
ommit
he
king . 134

pserver (
lient/server
onne
tion method), port

spe
i�
ation . 19, 21

pserver (sub
ommand) . 21

PVCS, importing �les from 30

R

RCS history �les . 9

RCS revision numbers . 34

RCS, importing �les from . 30

RCS-style lo
king . 63

RCSBIN, in CVSROOT/
on�g 141

RCSBIN, internal variable 141

RCSBIN, overriding . 88

RCS�le keyword . 75

r
sinfo (admin �le). 138

rdi� (sub
ommand) . 110

Read-only �les, and -r . 89

Read-only �les, and CVSREAD 143

Read-only �les, and wat
hes 68

Read-only �les, in repository. 9

Read-only mode . 89

Read-only repository a

ess. 26

readers (admin �le) . 26

Re
ursive (dire
tory des
ending) 51

Referen
e manual (�les) . 129

Referen
e manual for variables 143

Referen
e,
ommands . 117

Regular expression syntax 133

Regular modules . 130

release (sub
ommand) . 112

Releases, revisions and versions 33

Releasing your working
opy 5

Remote repositories . 19

Remote repositories, port spe
i�
ation 19, 21

Remove (sub
ommand) . 54

Removing a
hange . 46

Removing dire
tories . 55

Removing �les . 54

Removing tags. 37

Removing your working
opy 5

Renaming dire
tories . 57

Renaming �les . 56

Renaming tags . 37

Repla
ing a log message . 94

Reporting bugs . 157

Repositories, multiple . 17

Repositories, remote . 19

Repositories, remote, port spe
i�
ation. 19, 21

Repository (intro) . 7

Repository �le, in CVS dire
tory 14

Repository, ba
king up . 18

Repository, example. 7

Repository, how data is stored 8

164 CVS|Con
urrent Versions System v1.11.1p1

Repository, moving . 19

Repository, setting up . 18

Reserved
he
kouts . 63

Resetting sti
ky tags . 38

Resolving a
on
i
t . 66

Restoring old version of removed �le 46

Resurre
ting old version of dead �le 46

Retrieve a bran
h . 42

Retrieving an old revision using tags 35

Reverting to repository version 70

Revision keyword . 75

Revision management . 73

Revision numbers . 33

Revision numbers (bran
hes) 43

Revision tree . 33

Revision tree, making bran
hes 41

Revisions, merging di�eren
es between 46

Revisions, versions and releases 33

Right-hand options . 90

Root �le, in CVS dire
tory . 7

rsh . 20

rsh repla
ements (Kerberized, SSH, &
) 20

rtag (sub
ommand) . 36

rtag,
reating a bran
h using 41

S

Saving spa
e . 94

SCCS, importing �les from 30

Se
urity, �le permissions in repository 9

Se
urity, GSSAPI . 25

Se
urity, kerberos . 25

Se
urity, of pserver. 24

Se
urity, setuid . 10

Server, CVS . 19

Server, temporary dire
tories 27

Setgid . 10

Setting up a repository . 18

Setuid . 10

Signum Support . 157

Sour
e keyword . 76

Sour
e, getting CVS sour
e . 1

Sour
e, getting from CVS . 4

Spe
ial �les . 85

Spe
ifying dates . 90

Spreading information. 67

SSH (rsh repla
ement) . 20

Starting a proje
t with CVS 29

State keyword . 76

Status of a �le . 63

Status of a module . 131

Sti
ky date . 38

Sti
ky tags . 38

Sti
ky tags, resetting . 38

Sti
ky tags/dates, per-dire
tory 16

Storing log messages . 137

Stream authenti
ation. 88

Stru
ture . 87

Subdire
tories . 51

Support, getting CVS support 157

Symboli
 link, importing . 108

Symboli
 links . 85

Symboli
 name (tag) . 34

Syntax of info �les . 133

SystemAuth, in CVSROOT/
on�g 141

T

tag (sub
ommand) . 36

Tag �le, in CVS dire
tory . 16

Tag program . 131

tag,
ommand, introdu
tion 34

tag,
reating a bran
h using 41

Tag, example . 34

Tag, retrieving old revisions 35

Tag, symboli
 name . 34

taginfo . 59

Tags . 34

Tags, deleting . 37

Tags, moving . 37

Tags, renaming . 37

Tags, sti
ky . 38

t
, Trivial Compiler (example) 3

Team of developers . 63

TEMP, environment variable 144

Template �le, in CVS dire
tory 16

Template for log message . 138

Temporary dire
tories, and server 27

Temporary �les, lo
ation of 144

Third-party sour
es . 79

Time . 90

Timezone, in input. 90

Timezone, in output . 108

TMP, environment variable 144

TMPDIR, environment variable 144

TMPDIR, overriding . 88

TopLevelAdmin, in CVSROOT/
on�g 142

Tra
e . 89

Tra
eability . 59

Tra
king sour
es . 79

Transa
tions, atomi
, la
k of 68

Trivial Compiler (example) . 3

Typi
al repository . 7

Index 165

U

Umask, for repository �les . 10

Undoing a
hange . 46

unedit (sub
ommand) . 70

Unknown . 64

Unreserved
he
kouts . 63

Up-to-date . 63

update (sub
ommand) . 113

Update program . 131

Update, introdu
tion . 64

update, to display �le status 64

Update.prog �le, in CVS dire
tory 16

Updating a �le . 64

User aliases . 22

User variables . 141

USER, internal variable . 141

users (admin �le) . 69

V

Variables . 140

Vendor . 79

Vendor bran
h . 79

verifymsg (admin �le) . 134

version (sub
ommand) . 127

Versions, of CVS . 145

Versions, revisions and releases 33

Viewing di�eren
es . 5

VISUAL, environment variable. 4

VISUAL, internal variable 141

W

wat
h add (sub
ommand) . 69

wat
h o� (sub
ommand) . 68

wat
h on (sub
ommand) . 68

wat
h remove (sub
ommand) 69

wat
hers (sub
ommand) . 71

Wat
hes . 68

wdi� (import example) . 79

Web pages, maintaining with CVS 138

What (shell
ommand) . 76

What bran
hes are good for 41

What is CVS not? . 2

What is CVS? . 1

When to
ommit . 73

Windows, and permissions . 10

Work-session, example of . 3

Working
opy . 63

Working
opy, removing . 5

Wrappers . 132

writers (admin �le) . 26

Z

Zone, time, in input . 90

Zone, time, in output . 108

166 CVS|Con
urrent Versions System v1.11.1p1

i

Short Contents

1 Overview . 1

2 The Repository . 7

3 Starting a proje
t with CVS . 29

4 Revisions . 33

5 Bran
hing and merging . 41

6 Re
ursive behavior . 51

7 Adding, removing, and renaming �les and dire
tories 53

8 History browsing . 59

9 Handling binary �les . 61

10 Multiple developers . 63

11 Revision management . 73

12 Keyword substitution . 75

13 Tra
king third-party sour
es . 79

14 How your build system intera
ts with CVS 83

15 Spe
ial Files . 85

Appendix A Guide to CVS
ommands 87

Appendix B Qui
k referen
e to CVS
ommands 117

Appendix C Referen
e manual for Administrative �les 129

Appendix D All environment variables whi
h a�e
t CVS 143

Appendix E Compatibility between CVS Versions 145

Appendix F Troubleshooting . 147

Appendix G Credits . 155

Appendix H Dealing with bugs in CVS or this manual 157

Index . 159

ii CVS|Con
urrent Versions System v1.11.1p1

iii

Table of Contents

1 Overview . 1

1.1 What is CVS? . 1

1.2 What is CVS not? . 2

1.3 A sample session . 3

1.3.1 Getting the sour
e . 4

1.3.2 Committing your
hanges . 4

1.3.3 Cleaning up . 5

1.3.4 Viewing di�eren
es . 5

2 The Repository . 7

2.1 Telling CVS where your repository is . 7

2.2 How data is stored in the repository . 8

2.2.1 Where �les are stored within the repository 8

2.2.2 File permissions . 9

2.2.3 File Permission issues spe
i�
 to Windows 10

2.2.4 The atti
 . 11

2.2.5 The CVS dire
tory in the repository 11

2.2.6 CVS lo
ks in the repository . 12

2.2.7 How �les are stored in the CVSROOT dire
tory . . 13

2.3 How data is stored in the working dire
tory 13

2.4 The administrative �les . 16

2.4.1 Editing administrative �les . 17

2.5 Multiple repositories . 17

2.6 Creating a repository . 18

2.7 Ba
king up a repository . 18

2.8 Moving a repository . 19

2.9 Remote repositories . 19

2.9.1 Server requirements . 19

2.9.2 Conne
ting with rsh . 20

2.9.3 Dire
t
onne
tion with password authenti
ation . . 21

2.9.3.1 Setting up the server for password

authenti
ation . 21

2.9.3.2 Using the
lient with password

authenti
ation . 23

2.9.3.3 Se
urity
onsiderations with password

authenti
ation . 24

2.9.4 Dire
t
onne
tion with GSSAPI 25

2.9.5 Dire
t
onne
tion with kerberos 25

2.9.6 Conne
ting with fork . 26

2.10 Read-only repository a

ess . 26

2.11 Temporary dire
tories for the server . 27

iv CVS|Con
urrent Versions System v1.11.1p1

3 Starting a proje
t with CVS. 29

3.1 Setting up the �les . 29

3.1.1 Creating a dire
tory tree from a number of �les . . 29

3.1.2 Creating Files From Other Version Control Systems

. 30

3.1.3 Creating a dire
tory tree from s
rat
h 30

3.2 De�ning the module . 31

4 Revisions. 33

4.1 Revision numbers . 33

4.2 Versions, revisions and releases . 33

4.3 Assigning revisions . 33

4.4 Tags{Symboli
 revisions . 34

4.5 Spe
ifying what to tag from the working dire
tory 36

4.6 Spe
ifying what to tag by date or revision 36

4.7 Deleting, moving, and renaming tags. 37

4.8 Tagging and adding and removing �les 38

4.9 Sti
ky tags . 38

5 Bran
hing and merging 41

5.1 What bran
hes are good for . 41

5.2 Creating a bran
h . 41

5.3 A

essing bran
hes . 42

5.4 Bran
hes and revisions . 43

5.5 Magi
 bran
h numbers . 44

5.6 Merging an entire bran
h . 45

5.7 Merging from a bran
h several times . 45

5.8 Merging di�eren
es between any two revisions 46

5.9 Merging
an add or remove �les . 47

5.10 Merging and keywords . 47

6 Re
ursive behavior . 51

7 Adding, removing, and renaming �les and

dire
tories. 53

7.1 Adding �les to a dire
tory . 53

7.2 Removing �les . 54

7.3 Removing dire
tories . 55

7.4 Moving and renaming �les . 56

7.4.1 The Normal way to Rename . 56

7.4.2 Moving the history �le . 56

7.4.3 Copying the history �le . 56

7.5 Moving and renaming dire
tories . 57

v

8 History browsing . 59

8.1 Log messages . 59

8.2 The history database . 59

8.3 User-de�ned logging . 59

8.4 Annotate
ommand . 60

9 Handling binary �les . 61

9.1 The issues with binary �les . 61

9.2 How to store binary �les . 61

10 Multiple developers . 63

10.1 File status . 63

10.2 Bringing a �le up to date . 64

10.3 Con
i
ts example . 65

10.4 Informing others about
ommits . 67

10.5 Several developers simultaneously attempting to run CVS

. 67

10.6 Me
hanisms to tra
k who is editing �les 68

10.6.1 Telling CVS to wat
h
ertain �les 68

10.6.2 Telling CVS to notify you . 69

10.6.3 How to edit a �le whi
h is being wat
hed 70

10.6.4 Information about who is wat
hing and editing . . 71

10.6.5 Using wat
hes with old versions of CVS 71

10.7 Choosing between reserved or unreserved
he
kouts 71

11 Revision management . 73

11.1 When to
ommit? . 73

12 Keyword substitution . 75

12.1 Keyword List . 75

12.2 Using keywords . 76

12.3 Avoiding substitution . 76

12.4 Substitution modes . 77

12.5 Problems with the Log keyword. 77

13 Tra
king third-party sour
es. 79

13.1 Importing for the �rst time . 79

13.2 Updating with the import
ommand . 79

13.3 Reverting to the latest vendor release 80

13.4 How to handle binary �les with
vs import 80

13.5 How to handle keyword substitution with
vs import 80

13.6 Multiple vendor bran
hes . 80

14 How your build system intera
ts with CVS

. 83

vi CVS|Con
urrent Versions System v1.11.1p1

15 Spe
ial Files . 85

Appendix A Guide to CVS
ommands 87

A.1 Overall stru
ture of CVS
ommands. 87

A.2 CVS's exit status . 87

A.3 Default options and the ~/.
vsr
 �le . 88

A.4 Global options . 88

A.5 Common
ommand options . 90

A.6 admin|Administration . 93

A.6.1 admin options . 93

A.7
he
kout|Che
k out sour
es for editing 97

A.7.1
he
kout options . 98

A.7.2
he
kout examples . 99

A.8
ommit|Che
k �les into the repository 99

A.8.1
ommit options . 100

A.8.2
ommit examples . 101

A.8.2.1 Committing to a bran
h 101

A.8.2.2 Creating the bran
h after editing 101

A.9 di�|Show di�eren
es between revisions 102

A.9.1 di� options . 102

A.9.2 di� examples . 103

A.10 export|Export sour
es from CVS, similar to
he
kout . . 104

A.10.1 export options . 104

A.11 history|Show status of �les and users 105

A.11.1 history options . 105

A.12 import|Import sour
es into CVS, using vendor bran
hes

. 106

A.12.1 import options . 107

A.12.2 import output . 108

A.12.3 import examples . 108

A.13 log|Print out log information for �les 108

A.13.1 log options . 109

A.13.2 log examples . 110

A.14 rdi�|'pat
h' format di�s between releases 110

A.14.1 rdi� options . 111

A.14.2 rdi� examples . 111

A.15 release|Indi
ate that a Module is no longer in use 112

A.15.1 release options . 112

A.15.2 release output . 112

A.15.3 release examples . 113

A.16 update|Bring work tree in syn
 with repository 113

A.16.1 update options . 113

A.16.2 update output . 115

Appendix B Qui
k referen
e to CVS
ommands

. 117

vii

Appendix C Referen
e manual for

Administrative �les . 129

C.1 The modules �le . 129

C.1.1 Alias modules . 129

C.1.2 Regular modules . 130

C.1.3 Ampersand modules . 130

C.1.4 Ex
luding dire
tories . 131

C.1.5 Module options . 131

C.1.6 How the modules �le \program options" programs

are run . 132

C.2 The
vswrappers �le . 132

C.3 The
ommit support �les . 133

C.3.1 The
ommon syntax . 133

C.4 Commitinfo . 134

C.5 Verifying log messages . 134

C.6 Editinfo . 135

C.6.1 Editinfo example . 136

C.7 Loginfo . 137

C.7.1 Loginfo example . 137

C.7.2 Keeping a
he
ked out
opy 138

C.8 R
sinfo . 138

C.9 Ignoring �les via
vsignore . 138

C.10 The
he
koutlist �le. 139

C.11 The history �le . 140

C.12 Expansions in administrative �les . 140

C.13 The CVSROOT/
on�g
on�guration �le 141

Appendix D All environment variables whi
h

a�e
t CVS . 143

Appendix E Compatibility between CVS

Versions . 145

Appendix F Troubleshooting 147

F.1 Partial list of error messages . 147

F.2 Trouble making a
onne
tion to a CVS server 152

F.3 Other
ommon problems . 153

Appendix G Credits . 155

Appendix H Dealing with bugs in CVS or this

manual . 157

Index . 159

viii CVS|Con
urrent Versions System v1.11.1p1

