SFS

John Hendrikx

SES

Copyright © CopyrightA©1997-2001 John Hendrikx

SES

] COLLABORATORS
TITLE :
SFS
ACTION NAME DATE SIGNATURE
WRITTEN BY John Hendrikx July 31, 2024

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

SES iv

Contents

1 SFS 1
1.1 Smart Filesystem documentation L e e e e e e e e 1
1.2 Smart Filesystem: Introduction e 1
1.3 FastView: Features 2
1.4 Smart Filesystem: System requirements o v it e e e e e e e e e e e e e e 3
1.5 Smart Filesystem: About the authors e 3
1.6 Smart Filesystem: Future e 4
1.7 Smart Filesystem: Space efficiency e e e e 5
1.8 Smart Filesystem: Reporting problems e 8
1.9 Smart Filesystem: Known problems L e 9
1.10 Smart Filesystem: History e 10
1.11 Smart Filesystem: Acknowledgments e e e 17
1.12 Smart Filesystem: Installation L e 17
1.13 Smart Filesystem: Trying SESonaZIPdrive 17
1.14 Smart Filesystem: Installing SFSonaharddisk o 17
1.15 Smart Filesystem: Making SFS available foruse 18
1.16 Smart Filesystem: Creating a SFS partition e 18
1.17 Smart Filesystem: Upgrading SES e 19
1.18 Smart Filesystem: Example mountlist e e 19
1.19 The MaxTransfer field e 20
1.20 The Mask field L e 21
1.21 Internal workings of Smart Filesystem e 23
1.22 Safe Writing o e e e e e e e e 23
1.23 Notes fordrives largerthan4 GB e 26
1.24 Whatis SCSIdirect? e 28
1.25 The ’.recycled’ direCtory o i e e e e e e e e e e 29
126 masks o e 29
1.27 Using two versions of SFS simultaneously 30

SES 1/31

Chapter 1

SFS

1.1 Smart Filesystem documentation

Smart Filesystem
Version 1.84 BETA
Release 8

http://www.xs4all.nl/~hjohn/SFS

Copyright © 1997-2001, John Hendrikx
All rights reserved

Release date 22 February 2001
FREEWARE

User Manual

Introduction What is Smart Filesystem?
Feature List What are its features?
Requirements Will it run on my system?
Installation How is it installed?

Space efficiency Comparison between a few filesystems
Internals How SEFS does certain things
Known problems Things to know...

Reporting problems Having problems? Found a bug?
Future What the future will bring...
How to reach me How can the authors be reached?
Acknowledgements Who do authors wish to thank?
History What’s new in this version?

1.2 Smart Filesystem: Introduction

Smart Filesystem is a new filesystem for your Amiga. A filesystem’s
main purpose 1s to store files on a disk in such a way that they can
be located and used quickly. How this is done is up to the

SES

2/ 31

filesystem. The way information is stored on your disk has a large
impact on speed and space efficiency, and so these factors can vary a
lot from filesystem to filesystem.

Smart Filesystem was created to provide you with an alternative to the
Fast Fileystem. Smart Filesystem makes more efficient use of your
disk space, has better performance in most areas and will allow for
new features never seen before in an Amiga filesystem.

COPYRIGHT NOTICE

The Smart Filesystem software and documentation are Copyright © 1999
by John Hendrikx. All rights reserved.

DISCLAIMER

This version of Smart Filesystem is an early evaluation release, which
means it may or may not work on your system. The authors are not
responsible for any loss of data or damages to software or hardware
that may result directly or indirectly from the use of this software.
The author reserves the right to make changes to the software or
documentation without notice.

DISTRIBUTION

This version of Smart Filesystem is freeware.

None of the files of the Smart Filesystem package may be modified or
left out without permission of the authors. Crunching or archiving is

allowed only if none of the files get modified by it.

This version of Smart Filesystem may be distributed freely under the
condition that no profit is gained from its distribution.

Permission is granted to distribute this package by Bulletin Board

system or network sites, under the condition that no fee is charged on
downloading it.

1.3 FastView: Features

o Fast reading of directories.
o Fast seeking, even in extremely large files.
o Blocksizes of 512 bytes up to 32768 bytes (32 kB) are supported.

o Supports large partitions. The limit is about 2000 GB, but it can
be more depending on the blocksize.

o Support for partitions larger than 4 GB or located (partially)
beyond the 4 GB barrier on your drive. There is support for the

SES

3/ 31

New Style Devices which support 64 bit access, the 64-bit
trackdisk commands and SCSI direct.

o The length of file and directory names can be 100 characters.
o0 The size of a file is limited to slightly less than 2 GB.

o Modifying data on your disk is very safe. Even if your system is
resetted, crashes or suffers from powerloss your disk will not be
corrupted and will not require long validation procedures before
you will be able to use it again. In the worst case you will
only lose the last few modifications made to the disk. See

Safe writing for detailed information on how this works.

o There is a built-in configurable read-ahead cache system which
tries to speed up small disk accesses. This cache has as a
primary purpose to speed up directory reading but also works very
well to speed up files read by applications which use small
buffers.

o Disk space is used very efficiently. See the Space efficiency
section for a comparison between a few filesystems.

o Supports Notification and Examine All.
o Supports Soft links (hard links are not supported for now).

o Using the SFSformat command you can format your SFS partition with
case sensitive or case insensitive file and directory names.
Default is case insensitive (like FFS).

o There is a special directory called ’.recycled’ which contains the
last few files which were deleted. See Recycled.

1.4 Smart Filesystem: System requirements

Smart Filesystem will only run on Amiga systems equipped
with atleast a 68020 processor and Kickstart 2.04 or higher.
About 100 kB of memory is the minimum amount of memory Smart
Filesystem requires to run.

1.5 Smart Filesystem: About the authors

The filesystem is being written by me, John Hendrikx, in SAS/C. I get
a lot of help from Marcel Offermans who helps me test the filesystem
and provides a lot of valuable input.

The development of the filesystem started in 1993. At that time I
wrote a filesystem in assembler without having spend much time on the
design. This filesystem never got completely finished although it did
function reasonably well at the time. Because of an ever growing
assembler source which got more and more complex and because of some

SES

4/ 31

major design flaws this project got halted.

Later on, in 1996, I started writing a filesystem in C instead. I
created a decent foundation for a filesystem, but didn’t yet work out
the specifics in C. After that the C code was left alone for a while
and together with Marcel Offermans we’ve created a design for the
filesystem.

By October 1997 I’'ve started to build our ideas using the foundation
created in C earlier. The result is what this package is all about.

We can be contacted at:
hjohn@xs4all.nl (John Hendrikx)
For more information and on-line developer documentation, check out:

http://www.xs4all.nl/~hJjohn/SFS

1.6 Smart Filesystem: Future

Here is a list of things we are planning to add to Smart Filesystem or
are under development:

o Multiuser support (muFS) using multiuser.library.

o Built-in background file and free space defragmenter. Already the
filesystem is set up in such a way to allow for easy implementation
of this feature without having to do extensive scanning of the disk
before the defragmenter can begin. This means defragmenting can be
done in the background and can be interrupted at any time (even by
a reset, crash or power failure) without loss of data.

[This feature is very near to completion now]

o Mirroring of important filesystem administration blocks to make the
filesystem more robust.

o A tool to convert a FFS partition to a SFS partition on the fly.
Suggestions for other features are welcomed. We also welcome any
developers wanting to help build support tools for SFS. Especially
the FFS to SFS conversion tool is something which we could use some
help with.

Below is a list of things we will only implement if there is enough
demand for them or if some other developers are willing to help us
with them:

o Mirroring of complete partitions for absolute safety.

o Support for striping and special parity stripes.

o

Support for hard links (soft links are already supported).

o The ability to extend a partition without having to copy all your

SES 5/31

data and format the partition.
o A Partition Magic like tool for the Amiga.

o New DOS packets, or some other new interface to talk with the
filesystem. There are lots of ways to exploit a filesystem better
than is possible at the moment. New packets for example could be
the key to this. Features which would be possible then are paths
longer than 255 characters, live directories (directories updated
in real time), enforcing recordlocking and many other things.

1.7 Smart Filesystem: Space efficiency

Below I’ve made a comparison of how efficient a few filesystems use
their space (based on my knowledge of these filesystems). First
however I’11 give a short description of each of these filesystems:

FEFS (Fast FileSystem)

The standard filesystem for the Amiga. This filesystem stores
information for each file and directory separately in one block,
regardless of blocksize. It uses lists of blockpointers stored in
special blocks to keep track of what blocks belong to a file. FFS
uses a bitmap to keep track of free space. Optionally it can cache
files and directories together in special blocks (DirCache) for faster
directory access.

AFS (AmiFileSafe)

A 3rd party filesystem for the Amiga. Multiple files and directories
can be stored in a single block resulting in a more efficient usage of
space. AFS uses lists of blockpointers and lengths to keep track of
what blocks belong to a file. AFS uses a bitmap to keep track of free
space. AFS reserves a fixed amount of diskspace for administration
blocks (about 5%). Please note that AFS is no longer available.

FAT16 (FAT = File Allocation Table)

The filesystem used on MS-DOS and Windows based computers. It can
store multiple file and directory names in a single block. To keep
track of blocks used by files it uses the FAT. The FAT has 1 16-bit
entry for every block the disk consists of. This results in a 65536
block limit for FAT16 forcing larger blocksizes for larger partitions.
The FAT also serves as a means to keep track of unused space (there is
no bitmap) .

FAT32

As FAT16, except that the FAT has 32-bit entries instead to allow for
partitions with more than 65536 blocks.

SFS (Smart Filesystem)

It is somewhat similair to AFS, but uses slightly different structures
and allocates administration space dynamically.

SES

6/ 31

Comparison:

The table gives you an estimate on the amount of overhead in MB for
each of the filesystems described above, when they need to store 30000
files varying in size from 4 to 1000 kB. This includes the overhead
for the bitmap or FAT and overhead for administration blocks and
rounding the size of files up to the nearest multiple of the
blocksize. There are about 3 times more small files than large files.
The size of the partition used is almost 2 GB.

Keep in mind that these are calculated figures, and that they
represent an average case (especially AFS and this filesystem have a
bad worse case scenario, which however is extremely unlikely and which
can be avoided completely using a file defragmenter). Also keep in
mind that a lot of things have been simplified, but these figures
should still be accurate to a couple of megabytes.

Overhead in MB

This file-
Blocksize FFS AF'S FATI16 FAT32 system
512 47 110 —* 25 11
1024 54 117 - 24 18
2048 91 - - 35 33
8192 352 - - 119 120
32768 1406** - 469 470 472

(¥) An -’ indicates the filesystem doesn’t support this
blocksize at all or just in this case.

(%) The overhead in this case is very extreme. It is
unlikely we could fit all 30000 files on the disk as
we would run out of space.

If you are interested on how these figures are calculated then read
on. The overhead of a filesystem is made up out of a number of
components:

1) Each file stored will waste a small portion of space on your disk
simply because a file must be stored in a whole number of blocks.
Since blocks cannot be used partially for multiple files this means
that for every file on the disk about half a block is wasted. The
larger the blocksize, the more space is wasted for each file.

Overhead for 30000

Blocksize files (in MB)
512 7
1024 15
2048 29
8192 117

32768 469

SES 7 /31

2) Some of these filesystems use a bitmap to keep track of what blocks
are still free. A bitmap contains 1 bit for every block the disk
consists of. The more blocks the larger the bitmap. Increasing the
blocksize means less blocks to keep track of and thus means a smaller
bitmap.

Overhead for the bitmap of
Blocksize a 2 GB partition (in kB)

512 512
1024 256
2048 128
8192 32

32768 8

3) The FAT filesystems do not use a bitmap. The FAT is used to keep
track of free space and what space belongs to a file. The FAT is a
huge table consisting of 16-bits or 32-bits entries for FAT16 or FAT32
respectively. There is such an entry for every block the partition
consists of. 1Increasing the blocksize means less blocks and thus less
entries in the FAT. For FAT16 the table cannot become bigger than
65536 entries, meaning that for a 2 GB partition a blocksize of
atleast 32768 bytes is required.

Overhead for the FAT of
a 2 GB partition (in kB)

Blocksize FAT16 FAT32
512 - 16384
1024 - 8192
2048 - 4096
8192 - 1024
32768 128 256

4) Filesystem specific overhead:

FFS: For FastFileSystem every file stored means that a fileinfoblock
is allocated to store its name, comment, protection bits and so on.
The larger the blocksize the larger this overhead is. Furthermore,
FFS uses special blocks and part of the fileinfoblock to keep track of
what data blocks belong to a file. You can compare this to a
dynamically allocated FAT. These blocks contain one 32-bit entry for
every block the file has in use. The larger the blocksize the less
blocks a file will need, and thus less entries are required to keep
track of all the blocks.

Specific overhead
Blocksize for FFS (in MB)

512 40
1024 40
2048 62
8192 235

SES 8/31

AFS, FAT16, FAT32 and this filesystem: For these filesystems the rest
of the overhead is quite small. All of these filesystems store as
much information (name, comment and other information) as possible in
each block. The blocksize therefore becomes irrelevant.

FAT16 and FAT32 do not need special blocks to keep track of what
blocks a file has in use because the FAT table already contains this
information.

AFS and this filesystem do not keep track of what blocks are used by a
file by providing a single entry for each block. Instead AFS and this
filesystem make use of the fact that usually lots of blocks in
sequence belong to a single file. These filesystems simply store the
start and end of such a range, which is very compact for the average
case. Of course, there is a worst case scenario when storing file
allocation information in this way (when a very large file is split up
in fragments only 1 block in size) but this scenario is extremely
unlikely, and can be avoided by having a file defragmenter.

Finally, AFS uses a fixed amount of a partition (5%) to store all of
the information above, except the actual file data itself. This means
that it doesn’t really matter how much space exactly is used by AFS
administration blocks, as a fixed portion of the disk is used for this
anyway (I believe there were plans to make this administration area
dynamic in size, but as far as I know these were never implemented).

For FAT16 and FAT32 the test-case presented above would mean that

about 1-2 MB is wasted on administration blocks. For this filesystem
it would mean about 3-4 MB is wasted (with a worst case of more than
30 MB). For AFS it is the same as for this filesystem, except that it

doesn’t matter as the adminstration blocks are stored in the 5% area
anyway .

1.8 Smart Filesystem: Reporting problems

Bug reports can be submitted to hjohn@xs4all.nl directly. When
submitting bug reports please give us enough information to reproduce
the bug if possible. Also do not forget to include a description of
your system. Mention atleast the following information:

o Version of Smart Filesystem (you can obtain this by doing a
"version sfs:’ where ’"sfs:’ is the name of the partition you
installed Smart Filesystem on)

o Kickstart wversion, type of processor and memory information. You
can use ShowConfig (located in the System drawer) to get this
information. Just include the output from ShowConfig in your bug
report.

o Type of harddisk controller you are using.
o Please also tell us what type of harddisk you are using the

filesystem on when the problem occured (IDE or SCSI), how large
the harddisk is and how large the partition is (if possible,

SES

9/ 31

include a mountlist or the partition information as displayed in
HDToolBox). You can also use SFScheck which also prints a lot of
valuable information.

Include a detailed description of what error occured, what you were
doing at the time and what software you were using. Try to
reproduce the problem and let me know if you could reproduce it.

I’11 try and confirm bug reports within a day or two.

1.9 Smart Filesystem: Known problems

There are a number of things you should know before using this
filesystem.

Do not use disk caching software which delays writes on a SFS disk.
PowerCache is known to have this feature (but it can be disabled).
SFS relies on data being written in a special order to the disk so
it can keep your disk wvalid it all times. Caching software which
delays those writes can therefore interfere with this process.

Programs using ixemul (GNU C for example) might have problems with
this filesystem as well, although this is unlikely.

Disk changes are implemented, but haven’t been fully tested so you
might experience problems. The c:DiskChange command might help to
avoid some problems by telling the filesystem explicitely that the
disk has changed.

The filesystem doesn’t pay attention to write-protection (the
filesystem will get confused eventually if you’ve write protected
the disk and start writing data to it).

Not all space gets freed again if you delete all files from a disk.
This is caused by the fact that the filesystem allocates parts of
the disk to store its administration blocks on demand. These areas
aren’t freed again (but they are reused if needed!). This will be
fixed eventually, but is no more than a minor inconvience at the
moment .

The filesystem puts up requesters during booting to inform you that
last changes to the disk before the last reset weren’t completed
yet. This means booting may be interrupted and you’ll have to
confirm the requesters first.

Although the filesystem supports blocksizes upto 32 kB, it is not
recommended to use such large blocksizes. SFS performs very well
with small blocksizes and gains very little or even loses speed
with larger blocksizes. I’d recommend not using blocksizes larger
than 2 kB.

The structure of future versions of this filesystem WILL change
without being backwards compatible as long as the filesytem is in
BETA stage. This means you will need to reformat any SFS
partitions you have before being able to use a new version. Check

SES 10/ 31

the history to see whether or not you need to reformat your disk.
Don’t forget this filesystem is BETA - this means it might crash your
machine and damage the files you stored with it. Use it at your own
risk and always keep backups of your important data (but that goes

without saying anyway) .

Check out the Installation section as well for more
information which could help to solve problems.

1.10 Smart Filesystem: History

30 October 1999, changes for version 1.84:

— When an error occurs during a read or write to the disk, SFS will now
automatically retry the operation a few times before reporting an
error.

17 October 1999, changes for version 1.83:

SmartFilesystem:

- Fixed Enforcer hit, which could crash the machine.

— Defragmenter can now defragment very fragmented files a bit
faster because it can move multiple fragments.

SFSdefragmentGUI:

— Updated SFSdefragmentGUI to support new features of the SFS
Defragmenter.

— Added a DEBUG switch to make SFSdefragmentGUI print out what it is
doing.
7 October 1999, changes for version 1.81:

- Reduced CPU usage of Defragmenter considerably. Defragmentation
should be a lot faster on 020/030 machines now.

— Fixed a bug which was introduced in 1.80. When defragmentation
should be completed, SFS would keep on moving some more data.

3 October 1999, changes for version 1.80:

SmartFilesystem:

— Changed Defragmenter to scan for fragments from the end of the disk,
instead of from the current point of defragmentation.

— Fixed bug which popped a requester saying something like ’'couldn’t

SES 11/31

mark 128 blocks from block X because some of them were already
marked’. This only happened during defragmenting, and it could have
destroyed 128 blocks of your disk.

- Added a way to query the version of SFS easily.

SFSdefragmentGUI:
- Now checks SFS version, and refuses to work with older wversions.

- Fixed a bug which could crash the machine.

SFSformat:

- Fixed a bug which could crash the machine.

SetCache:

— Fixed a bug which could crash the machine.

19 September 1999, changes for version 1.78:

— Optimized a dozen different routines to improve small file
writing speed. CPU usage is also lower in those circumstances
now.

— Copyback cache has been improved. The cache doesn’t need to
read a line anymore before it can do a write to that line (no
read-on-write). The read will be delayed until it is needed,
or it won’t even be performed at all. Previously SFS always
did a read-on-write (similair to the 040 copyback cache).

- In 1.58 a bug was introduced which could cause a requester to
appear where SFS claims it wants to mark 32 blocks, but some
of those were already in use. The requester usually appears
when a disk is quite full and quite fragmented. The bug most
likely didn’t cause any damage (SFScheck reports everything ok
after the requester appears), but it was annoying nonetheless.
This is now fixed.

— The Defragmenter is now finally debugged far enough to allow
it to be BETA tested. The speed problems and the problems
which could arise when accessing the disk while it was being
defragmented should now be eliminated. More on the
defragmenter below.

- SFS now will try to prevent fragmentation when multiple files
are written in small bits to a SFS disk at the same time.
Previously worst-case fragmentation could occur, where each of
2 files occupied one block after the other. Now SFS tries to
make each part of the file atleast 10 blocks large.

— SFS now estimates the size of the Adminstration space it needs

SES

12/31

and will write file-data after this reserved size to the disk.
The reserved area is not fixed, and when the disk gets full it
will simply be used normally. The effect of this is that
Administration blocks will get grouped at the start of the disk
(as long as there is space there). Previously these
Administration areas would be scattered all over the disk.

A new packet, ACTION_SFS_SET, has been added. See packets.h
for details. It allows you to set some parameters of SFS
(until reboot for now). No tool is provided yet to set these
parameters.

SFS no longer crashes when used under Kickstart 1.3. It now
simply exits without mounting.

A work-around for a (possible) bug in ixemul.library (47.3) has
been added. The bug has to do with Soft Links. This bug only
shows up under SFS —-- FFS is not affected.

Changed directory scanning order slightly. This should reduce
problems even further with tools which modify entries in a
directory while scanning.

A new version of SFScheck has been added. It sports new
parameters LOCK and LINES/READAHEADSIZE

25 April 1999, changes for version 1.62:

— Changed the way SFS handles adding/removing Volumes from the

DosList completely. It now tries to add/remove entries from the
DosList asynchronously, wherever possible. This could fix all
kinds of problems with specific controllers and should also fix
the "not a dos disk’ requesters popping up just after SFS was
mounted.

10 April 1999, changes for version 1.61:

- The startup-message which the filesystem gets from Dos is now

returned *afterx SFS has checked the inserted disk.

Transactions are now stored starting from the place where the disk
was last modified, instead of always starting from the beginning.

This should speed up flushing of a SFS drive. Bitmap functions
have been altered accordingly.

When deleting a transaction SFS did not take the new OI_DELETE
type operations into account —-- these are now correctly ignored
and removed.

28 March 1999, changes for version 1.58:

— There is an SFSquery tool which displays a bit of information

about a SFS drive. Try it.

SES

13 /31

SFS will now refuse to mount a partition if it is (partially)
located after 4 GB on the drive and there was no 64-bit support
available (NSD(64), TD64 or SCSI direct). This helps to prevent
damage to your data.

The read-ahead cache should now be slightly faster on 68040 and
68060 systems by aligning the buffers to 1l6-byte boundaries.

Made some alterations to the structure of some SFS blocks to
reduce CPU usage and to make the defragmenter easier to add in a
new version.

The default name of the directory where the deleted files are
stored is now ’.recycled’. It is now referred to as the
Recycled directory in all the documentation. Renaming the
Recycled directory is of course still possible.

BUGFIX: Deleting Soft-links now works correctly.
SFS should now work under Kick 2.04.

BUGFIX: Truncating files using SetFileSize () could damage the
file truncated under some conditions.

In some cases, calling SetFileSize() twice on an empty file could
lead to a damaged file and loss of free space —- fixed.

BUGFIX: Fixed a small problem with disk changes and DMS.

There is no seperate SCSI direct version of SFS anymore. SCSI
direct will be used automatically when no NSD 64-bit or TD64
support is found (SCSI direct users: please let me know if this
works correctly for you —-- use the SFSquery tool to find out if
SCSI direct is being used).

BUGFIX: Moving a file from the Recycled directory to the same disk
would not lower the file counter which keeps track of how many
files are in the Recycled directory. This can lead to files being
removed from the Recycled directory too early.

The contents of the Recycled directory are not considered anymore
when calculating the free space.

BUGFIX: Overwriting empty directories by a file with the same name
is no longer allowed.

SFSformat now has an option to keep the Recycled directory visible
if you wish.

Format will now no longer accept names with colons (’:’) or
slashes (’/’) in them.

Updated SFScheck and SetCache. The source of SFScheck is now also
included in the archive.

Now uses TD_GETGEOMETRY to detect the size of the disk. This means
SFS should now work a bit better with DD & HD floppies, MO drives

SES

14 /31

and any other drives which have disks of different sizes.

BUGFIX: Renaming a directory into one of its children now generates

an error (Object is in use).

BUGFIX: There was a slight possibility that SFS reported that a
valid disk was inserted, but did not yet tell Dos the name of the
disk.

Implemented ACTION_FLUSH.

Like FFS, SFS now doesn’t allow drives to be inhibited which still

have pending changes. Also slightly altered the way SFS handles
disk insertion and removal.

BUGFIX: Notification did not correctly check the last character of

the notification path which could lead to multiple notifications

being sent if there were multiple notifications which only differed

by their last character.

Note: This version is NOT compatible with the previous releases of

SFS. You’ll need to reformat existing SFS partitions if you
want to use the new features. It is possible to use the new
SFS and the older version at the same time. See

Using two versions of SFS.

November 1998, changes for version 1.10:

Set version to 1.0 to be compatible with ReOrg (ReOrg hangs the
machine when there is a SFS filesystem which has a 0.x version).
SFS is still not finished however, so be careful!

BUGFIX: Fixed a very rare problem with case-sensitive names where
the filesystem could accidently use an object with the same name
but with a different case.

BUGFIX: SFS now allows programs to create files in exclusively
locked directories (like FFS does). ACTION_CHANGE_MODE now also
works correctly.

BUGFIX: An implicit delete (when overwriting a file for example)
can now no longer cause a notification message to be sent. This
should fix problems with IPrefs when ENV: was assigned to a SFS
partition.

BUGFIX: There was a slight chance SFS could accidently return a

soft-1ink if one was encountered while looking for another object.

NEW: Easy undeleting of files. When formatting a new SFS disk, a

special directory (".recycled") will be created. This directory
will contain the last 25 files you’ve recently deleted (if
there’s enough free disk space). See Recycled for more
information.

Objects with the special Hidden bit set will now no longer appear

in directory listings (’.recycled’ has Hidden bit set). The Hidden

SES

15/ 31

bit is not the same as the 'h’ bit and cannot be changed for now.

The number of free blocks is now stored in the root block. For
backwards compatibility however the number of free blocks is
still being calculated by reading the bitmap at mounting time as
well. This will be removed in a future version. For old SFS
partitions you’ll get a requester the first time you use this new
version of SFS, which informs you that this number isn’t set
correctly yet -- this is normal.

BUGFIX: The Copyback system still had some inconsistencies which
could cause corrupt files under specific circumstances. This
system has been thoroughly checked and a number of problems
where fixed.

BUGFIX: The Archive bit of some random file sometimes got cleared
when deleting a file in the same directory. Instead the Archive
bit of the directory itself should have been cleared, but it
never was.

BUGFIX: When the fileptr wasn’t in the last fragment of a file
and it was extended with SetFileSize () the file contents would be

destroyed.

Sped up reading of small amounts of data (this improves the speed
of buffered I/0).

NEW: Owner UserID and GroupID can now be set (ACTION_SET_OWNER) .

Added lots of sanity checks and thoroughly checked a very large
portion of all SFS code and fixed dozens of potential problems.

Note: This version is compatible with the previous releases of SFS

starting from version 0.67. There is no need to reformat
existing SFS partitions. You won’t be able to use the new
Recycled feature without reformatting however.

August 1998, changes for version 0.85:

Requesters which ask for a SFS disk to be inserted will now be
retried automatically when a disk is actually inserted.

SFS now guarantees data is commited atleast every 20 seconds,
even i1f the disk is being accessed continuously.

BUGFIX: The filesystem no longer gets confused when it thinks a
disk is inserted twice. This fixes problems with

omniscsi.device.

BUGFIX: Renaming a file to an empty name with the workbench now
returns ’object name invalid’ instead of ’'object not found’.

BUGFIX: Creating a dir with the same name as a file no longer
deletes the file.

BUGFIX: 100 character limit is now enforced, instead of allowing

SES 16/ 31

you to create names of any length.

— Copyback mode added to internal caching system. This helps a lot
to speed up small write operations. I also tweaked the cache
system a bit for performance.

- BUGFIX: Creating files larger than 32 MB using SetFileSize()
now works correctly. This fixes a problem with creating large
file disks using Shapeshifter.

— BUGFIX: Write protection status is now checked each time a disk
is inserted, not just at startup.

— BUGFIX: Reading directories has been made a bit more robust which
will fix problems with some programs.

- Error messages returned by SFS when there was an error accessing
the device are improved.

— Included SFScheck in the archive -- this is a program to check
the structure of your SFS disk. It will report any errors it
finds but won’t make any modifications. Read its docs and use
it regquraly if you value your data!

Note: This version is compatible with the previous releases of SFS
starting from version 0.67. There is no need to reformat
existing SFS partitions.

14 June 1998, changes for version 0.71:

— BUGFIX: It was possible to open a directory as a file using
MODE_READWRITE.

- NEW: Soft links are now supported. You need to specify a full
path with Makelink when creating soft links. Hard links are not
supported.

- NEW: A new program, sfsformat, is now included in the archive.
Using this format command you can quick format a SFS disk and
specify if you want case sensitive file and directory names.

Note: This version is compatible with the 0.67 and the 0.68
versions. There is no need to reformat existing SFS
partitions.

12 June 1998, changes for version 0.68:

- BUGFIX: When using a Mask value which didn’t end with a ’'F’ (like
Ox7FFFFFFE for example) then SFS would sometimes damage the data
it writes to a file. The problem occured for example when
unpacking a LZX archive to a SFS disk.

Note: This version is compatible with the 0.67 version. There is
no need to reformat existing SFS partitions.

SES

17 /31

1 June 1998, changes for version 0.67:

— First BETA release.

1.11 Smart Filesystem: Acknowledgments

Thanks to Ralph Schmidt and Bgrge Ngst for helping to debug
some very early versions of the filesystem. Also thanks to
Sander ter Steege, Eric Sauvageau, Ramiro Garcia and Petter
Nilsen for testing SFS on their machines.

Also thanks to the people who send us bug reports by email
and helped us solve them!

1.12 Smart Filesystem: Installation

Trying SFS on a ZIP drive
Installing SFS on a harddisk
Upgrading from 1.13 or older to a newer version

1.13 Smart Filesystem: Trying SFS on a ZIP drive

If you have a ZIP drive you can quickly try SFS using the "SZ0" icon.

You’ll have to specify your SCSI device (ie, scsi.device,
cybscsi.device, etc..) and Unit (5 or 6) with the tooltypes in the
icon first however.

1.14 Smart Filesystem: Installing SFS on a harddisk

Smart Filesystem can be installed in the RDB (Rigid Disk Block) and
automounted. Standard mountlists are also supported.
Just copy the ’SmartFilesystem’ file from the L directory to your L:

directory. Now create a mountlist, or follow the instructions below.

Making SFS available for use
Creating a SFS partition

Below are some links to some more information you may need
when installing SFS.

Upgrading SFS

How the Mask field works

How the MaxTransfer field works
Notes for drives larger than 4 GB
What is SCSI direct?

SES

18 /31

1.15 Smart Filesystem: Making SFS available for use

To be able to use Smart Filesystem on your harddisk you will first
need to put a copy of the filesystem in the Rigid Disk Block (RDB).
AmigaOS will then be able to start the filesystem from your harddisk
during booting so you can boot from a partition using Smart
Filesystem.

To install the Smart Filesystem in the RDB you’ll need a Harddisk
installation tool like HDToolBox or SCSIConfig.

1) Copy "SmartFilesystem" to your L: directory (this is just so you
can locate it easier later on).

2) Start your Harddisk installation tool, select the Harddisk you want
to store the Smart Filesystem and go to the screen which allows you
to add a filesystem to the disk.

3) On this screen you should be able to select which filesystem to
add, select l:SmartFilesystem. You now should be able to set the

DosType (or Identifier) field to 0x53465300 ("SFS\0"). You may
need to change the filesystem type to ’"Custom’ first before you can
set this.

4) When you’re done adding the filesystem, save the changes to disk
and exit the program.

If everything went okay you’re now done installing Smart Filesystem in
the RDB, and it will now be available for use. Go to the

Creating a SFS partition section to create a partition which uses
Smart Filesystem.

1.16 Smart Filesystem: Creating a SFS partition

I’11 assume here that you’ve already installed Smart Filesystem in the
RDB by following the instructions in the Making SFS available for use
section.

Using your Harddisk installation tool (for example HDToolBox or
SCSIConfig) chose the harddisk you previously installed Smart
Filesystem on and chose to partition the drive.

Select or create a suitable partition. If you selected an existing
partition all data in that partition will be lost when changing it
into SFS, so don’t forget to make a backup.

You’ll need to select which filesystem you want to use on your
partition. In HDToolBox this is usually found under Advanced Options
where you can use the Change button to go to a screen where you can
chose the filesystem. It’s also possible there is a cycle gadget where
you can select the filesystem.

When selecting the filesystem look for "SEFS\0" or 0x53465300 (or
something similair) to select the Smart Filesystem for your partition.

SES 19/ 31

Most other fields probably don’t need to be changed from their default

values. However you may need to change the Mask or Maxtransfer
values. Maxtransfer for example should be set to Ox1FFFE for most IDE
controllers. If you are in doubt as to what value these 2 fields

should have then just copy the values from one of your other
partitions from the same drive.

Other fields you might want to set are the name of the partition and
maybe the amount of buffers (I’'d recommend atleast 100 buffers, more
if you have plenty of memory. You can find out the amount of memory
required by multiplying the number of buffers with the blocksize).

When you’re satisfied with the settings save the changes to the drive
and exit the program.

If everything went okay then Smart Filesystem should be available for
use on the partition you selected after you’ve rebooted. All you need
to do now is to format the new partition (a quick format will do).

If anything goes wrong and you’re computer doesn’t start up properly
you can use the boot menu to disable your new partition.

1.17 Smart Filesystem: Upgrading SFS

If you are upgrading from a previous version of the Smart Filesystem
and you installed it in the Rigid Disk Block (RDB) using HDToolBox
then copying the new version to L: won’t be enough to upgrade the
current version. Instead you’ll need to use HDToolBox to remove the
old version from the RDB and add the new one (in HDToolBox there

is an Upgrade Filesystem option for this purpose).

For instructions on adding a filesystem to the RDB see the
Making SFS available for use section.

1.18 Smart Filesystem: Example mountlist

You’ll need to set a lot of fields yourself to get it to
work. Below first is a list of fields you should include
unchanged in your mountlist:

Filesystem = L:SmartFilesystem
Flags =0

Reserved = 2

Interleave =0

Globvec = -1

Dostype = 0x53465300

Now follows an example mountlist:

SE'S:
Device = <device name, ’'scsi.device’, ’cybscsi.device’ etc...>

SES

20/ 31

Unit
Filesystem
Flags
Reserved
Interleave
Globvec
Dostype
BlockSize
Surfaces
BlocksPerTrack
Lowcyl
Highcyl
Buffers
BufMemType
Mask
Maxtransfer
Mount

#

<unit number>

L:SmartFilesystem

0

2

0

-1

0x53465300

512

<fill in your partition in these fields>

200

0
Ox7FFFFFFF
0x100000

1

Don’t forget that the Mask and MaxTransfer value depend on your

controller.

If in doubt please check what you are using for your

other partitions and use those values.

If you have for example a SCSI ZIP drive connected to a SCSI

device named ’cybscsi.device’

and its unit is set to 5 then

you can use this mountlist:

SESZIP:
Device
Filesystem
Unit

Flags
Reserved
Interleave
Globvec
Dostype
BlockSize
Surfaces
BlocksPerTrack
Lowcyl
Highcyl
Buffers
BufMemType
Mask
Maxtransfer
Mount

#

cybscsi.device
L:SmartFilesystem
5

0

2

0

-1

0x53465300

512

2

34

2

2890

128

0

Ox7FFFFFFF
0x100000

1

1.19 The MaxTransfer field

The MaxTransfer field can be used to tell a filesystem that the device

which comes with your
specific amount of data in a single access.
occurs with IDE drives,

(harddisk) controller can’t handle more than a
This problem usually

which usually have a limit of 64 or 128 kB

which can be transfered at once.

SES

21/31

When a device has been properly written it should be able to cope with
any amount of data being transfered. These devices can have a
MaxTransfer value of Ox7FFFFFFF. Only badly written or very old
devices need to set a smaller value in MaxTransfer —-- in other words,
the MaxTransfer value is a compatibility kludge to fix broken devices.

In any case, if you have a SCSI drive, then a MaxTransfer value of
Ox7FFFFFFF should be just fine. For IDE drives, you probably need to
set it to Ox1FFFE or to OxXFFFE. Those values represent 128 kB minus 2
bytes and 64 kB minus 2 bytes respectively.

An incorrect MaxTransfer value can usually be detected by copying a
few large files (more than 200 kB) to such a partition. If the large
files are damaged while smaller files are undamaged then this is
usually an indication that the MaxTransfer value is too large.

Remember, the MaxTransfer value needs to be set for each partition.

Just changing one MaxTransfer value will only affect a single
partition, not the entire drive.

1.20 The Mask field

The Mask field can be used to tell a filesystem that the device which
comes with your (harddisk) controller cannot directly access its data
in all regions of memory available on your system.

When a device has been properly written it should be able to cope with

data located anywhere in memory. For those devices the Mask should be
set to OXFFFFFFFF. Only badly written or very old devices need a
different Mask -- in other words, the Mask value is a compatibility

kludge to fix broken devices.

For example, some devices can’t access data starting at an uneven
address in memory. Some even can only access data when it starts at
an address which can be divided by four. In the first case you would
set the Mask field to end in ’'FFFE’, and in the second case to ’'FFFC’.
If your controller can handle addresses without alignment restrictions
then you can set it to 'FFFF’ (which is of course the preferred
value) .

There are also devices which can only access memory in the 24-bit
memory area (everything below the 16 MB boundary). Usually these are
Zorro—1I controllers which cannot directly access memory located on,
for example, an accelerator card. For these devices you set the mask
to OxOOFFFFFF, indicating that the device can only access data in the
24-bit address space.

Devices which can access data located anywhere in memory (a SCSI
controller which is embedded on an accelerator card, or a Zorro-III
IDE or SCSI controller) should have a mask of OxFFFFFFFF.

Here is an overview to clarify the Mask setting:

xxxxXXXXF — Use a Mask ending with a ’'F’ if you’re device is written

SES

22/ 31

correctly and can handle transfers to and from memory with
any alignment.

xxxxxXxxE — Use this if you’re device can only handle 16-bit or WORD
aligned transfers.

xxxxxxxXC — Use this if you’re device can only handle 32-bit or LONG
aligned transfers.

FFFFFFFx - Use this Mask if you’re device is written correctly and
can work with any memory in the system. The first 'F’
may also be ’'7’ since there are no Amiga’s which can have
more than 2 GB of memory.

O0FFFFFx - This Mask restricts transfers to the 24-bit address space,
meaning it can only access ChipRAM and FastRAM in the
24-bit area (The 24-bit area is 0x00000000 to OxOOFFFFFF) .

001FFFFx - This Mask restricts transfers to ChipRAM only (the old
trackdisk.device needed this for example).

Always use the least restrictive Mask possible. The ideal Mask is
OxXFFFFFFFE.
Remember, the Mask value needs to be set for each partition. Just

changing one Mask value will only affect a single partition, not the
entire drive.

What Mask setting should I use?

If you’re in doubt, check your controller’s manual and find out what
Mask setting they recommend. You can also experiment a bit with
different Mask wvalues, but you got to be careful there. Preferably
experiment with a dummy partition which doesn’t contain any important
data.

If you intend to experiment, follow the scheme below to find out the
best Mask value for you. To determine if a specific Mask wvalue works,
you’ll need to read and write some data to the disk. Copying files is
not enough. Preferably unpack a few LhA or LZX archives to the disk,
and see 1if they are unpacked undamaged.

o + o +
| Try OxOOFFFFFF | Yes | Try OXFFFFFFFF | Yes
| I > I — > done
| Did it work? | | Did it work? |
o + o ————— |
|
No |
No \%

Use O0xOQFFFFFF

SES 23/ 31

o ————— + o ———— +
| Try OxOOFFFFFE | Yes | Try OXFFFFFFFE | Yes
\ = > |l == > done
\ Did it work? | | Did it work? |
o + o |
|
No |
No \Y%

o + fom +
| Try OxO0FFFFFC | Yes | Try OXFFFFFFFC | Yes
| o= > = > done
| Did it work? | | Did it work? |
o — + o |

| |

No | No |
\ \
Unknown Mask! Use O0xOOFFFFFC

(contact me)

1.21 Internal workings of Smart Filesystem

Safe writing A detailed explanation of how SFS makes sure
that your disk never gets damaged or invalidated by crashes
or power failure.

1.22 Safe writing

Overview

The filesystem ensures that its structure is never in an
invalid state on the disk. This includes things like the
bitmap, the directory tree and file information (for example
size and protection bits). Data blocks, the space which
contains the data stored in a file, are however not kept
completely valid at all times for performance reasons.

The filesystem keeps its structure valid by never
overwriting blocks directly. This means that even if a
crash or power loss occurs that the old structure will still
be present on the disk. When rebooting your machine SFS
will be able to detect if changes were pending and will
either discard them if they weren’t completed yet or finish
the pending changes.

SES

24 /31

However, I already mentioned that SFS doesn’t do this for
data blocks. This means that if a crash occurs it is
possible that some of the data which you were writing to a
file has been lost or has partially overwritten existing
data in that file.

In the worst case this means the following: For example,
take a file of 1000 bytes. The last action you did before
the crash was to write 2000 bytes from position 500; in
other words the first 500 bytes are unmodified and the new
file size becomes 2500 bytes.

When a crash occurs immediately after this write action the
filesize will still be 1000 bytes, however the bytes from
position 500 to 999 will have been overwritten with new
data. The reason that the filesize won’t have changed yet
is because these changes were discarded to keep the
structure of the disk wvalid. The 500 overwritten bytes
however were written immediately and can’t be recovered.

Internals

As was said, Smart Filesystem only ensures that its own
structures are kept valid. To do this it keeps track of all
changes made to this structure. TIf a filesize needs to be
updated in a specific block, then we add this change to a
list of changes to be made. This list is kept in memory
until the time comes to commit these changes to the disk.
The same goes for all other changes made to the filesystem
structure. They are all recorded and added to the list in
memory .

The caching system in SFS is smart enough to distinguish
between original blocks and blocks with the latest changes
applied to them. Also when reading new blocks from disk SFS
will automatically apply any changes to these blocks (if
any) before using them for internal operations.

All changes which belong to the same operation are kept
together. Creating a new empty file for example will result
in a number of small changes. A fileheader is created, the
file is given a node number and the file is linked into a
hash chain. Either ALL these changes are added to the
changes buffer or NONE at all.

The way the changes are stored in memory is very simple.
SFS compares the original and modified version of a block
and stores the difference between them using a quick and
very simple compression scheme. This keeps memory
consumption low and also speeds up writing the changes to
disk since they take of far less space using this simple
compression technique.

When the time comes to commit the changes to disk, then SFS
will first look for a free area on the disk (SFS
automatically ensures there is always enough free space for

SES

25/31

this). 1In this free area it writes the buffer of changes in
its compressed form. When this buffer was written
correctly, a special block is written to a fixed location.
This block is called the Transaction Failure block.

The Transaction Failure block points to the compressed
changes which were written earlier to free areas of the
disk. The mere presence of this block indicates that there
are pending changes in compressed form on the disk. 1Its
presence indicates that the last changes in the transaction
weren’t completed yet, hence its name.

After writing the compressed changes and the Transaction
Failure block, SFS will start to make the actual changes to
its structure on the disk. It will simply overwrite
existing blocks now, replacing them with their updated
versions.

If this process is interupted then next time SFS is started
it will see the Transaction Failure block. It will load the
compressed changes from the free area of the disk and
continue to make the changes (changes already made are
simply made again). You could compare this to the
validating process of FFS, but you’ll never notice since
this will usually take only a fraction of a second to
complete.

If the process was interupted before the Transaction Failure
block was written, then no changes will have been made yet
and SFS will simply use the old structure (this in effect
discards the last changes made to the disk).

If however everything went smoothly and the system didn’t
crash during this procedure the Transaction Failure block
will be removed again, which indicates the disk is in a
valid state. The whole process of updating the disk in this
way usually takes less than a second.

Assumptions

Smart Filesystem makes a few assumptions to be able to
guarantee that the system of keeping your disk wvalid at all
times works:

- Writing a single block is atomic. This means either the
block was physically written completely to disk, or not at
all. Checksums are used here for extra safety should this
operation not be atomic (I haven’t been able to confirm
or deny this yet for hard drives —-- such information seems
to be hard to find).

- Write Caching is disabled —-- this means that everything
written to disk (particularly the changes buffer) was
indeed immediately written physically before any other
blocks are written. There is a very delicate order here
in which things need to get written to be able to

SES

26/ 31

guarantee it works. See below.

— Device drivers which have internal buffers must respect
the CMD_UPDATE command which flushes the internal buffers
to disk immediately. SFS will use CMD_UPDATE before and
after any critical operations.

Order in which things must be written:

1. Writing all changes to empty areas on the disk.

2. Writing the Transaction Failure block which indicates
there is a valid but unfinished set of compressed changes
on the disk. This block points to the blocks stored
under step 1.

3. Applying the real modifications to the disk, replacing
any blocks which need to be modified.

4. Removing the Transaction Failure block.

Smart Filesystem assumes that ALL blocks written in each of
the steps above were physically written before blocks of any
of the following steps are physically written to disk.
Between the steps SEFS will call CMD_UPDATE to flush any
buffers the device driver might be using (trackdisk.device
does this for example).

Final words

This system is quite safe, but there is the slight
possibility that things go wrong anyway if any of the
assumptions Smart Filesystem makes isn’t met. Backing up
your important data is therefore still important, no matter
how safe the filesystem. Even if the chance of failure by
crash or power loss has in theory been reduced to fractions
of a percent, then there is still the possibility of fatal
bugs in the filesystem or bad sectors on your disk.

1.23 Notes for drives larger than 4 GB

To use a drive which is larger than 4 GB (4096 MB) you’ll
need to have a filesystem which supports such drives and
you’ll need a device which can handle these drives.

Getting a filesystem which supports drives larger than 4 GB
is easy. Smart Filesystem can handle such drives correctly.
There is also a patch or upgrade freely available for
FastFilesystem. This will upgrade your version to V43 or
V44,

SES

27 /31

Now you need to make sure that your device also supports
drives larger than 4 GB. If your device supports any of the
following, then it should be able to handle such drives:

— Your device is a New Style Device (NSD) which supports
64-bit addressing.

- Your device is TD64 compatible.

— Your device supports SCSI direct access. Even devices
for IDE harddisks can support this.

Of course you’ll need to make sure that your device and the
filesystem your using speak the same language. If you’ve
got a device which supports SCSI direct, but doesn’t support
NSD or TD64 then you won’t be able to use this device for
drives larger than 4 GB with a filesystem which doesn’t
support SCSI direct but only supports NSD or TD64.

Therefore I’'ve included two lists so you can see which
protocols some Devices and Filesystems support. The list
aren’t complete. 1I’11 need your help to extend the lists,
so if you have got more information send me an e-mail.

DEVICES Ver. NSD(64) TD64 SCSIdirect
scsi.device (A1200/24000) 43.21 yes no yes
cybscsi.device (Cyberstorm) 8.1 no yes yes
HardFrame.device (Microbotics) 1.5 ? no yes
statram.device (Ram Disk) ? ? no no
ramdrive.device (Ram Disk) ? ? no no
scsidev.device (GVP Series 1I) ? ? ? no
hddisk.device (CBM A2090) ? ? ? no
FILESYSTEMS Ver. NSD(64) TD64 SCSIdirect
FastFilesystem 43.18 yes no ?
FastFilesystem 44.5 no yes yes
Smart Filesystem 0.71+ vyes yes yes (*)

() Use the SCSI direct version.

It’s a very good idea to add some checks to your
startup-sequence to see if your using the correct version of
your device and filesystem. If for any reason you’re using
the wrong versions then you could easily end up destroying
your data. That’s why I have added these lines to my
User—-startup:

Version DH1l: VERSION=44 >NIL:

IF WARN
ECHO "Warning! V44 FastFilesystem is not loaded!"
Version DHI:

ENDIF

SES

28/ 31

Version scsi.device VERSION=43 >NIL:

IF WARN
ECHO "Warning! V43 scsi.device is not loaded!"
Version scsi.device

ENDIF

You’1ll might need to modify these checks a bit for your own
setup.

Finally, don’t use tools like ReOrg, DiskSalwv, DynamiCache,
PowerCache, AmiBackTools, QuarterbackTools and similair
tools on partitions which are located after the 4 GB border.
They don’t support drives larger than 4 GB and will destroy
data on other partitions if you use them!

Always be absolutely sure your tool supports drives larger
than 4 GB before using them! If you’ve got a tool and it
reports errors or acts strangely when working with one of
your partitions after the 4 GB border (for example, DiskSalv
doesn’t recognize that a disk after the 4 GB border is FFS3)
then that tool probably doesn’t support drives larger than 4
GB.

Also be careful with the standard Format command! Always
use the QUICK option for drives larger than 4 GB, otherwise
format may format information in the wrong area of your
disk!

See What is SCSI direct for more information on
SCSI direct and how it could be useful for drives larger
than 4 GB.

1.24 What is SCSI direct?

In the archive there were 2 versions of Smart Filesystem
available, a normal version and a SCSI direct version.

The normal version talks to your device in a way which all
devices support (with device I mean for example
"scsi.device’, ’'omniscsi.device’ or ’cybscsi.device’ not the
drive itself). The normal version will automatically detect
New Style Devices (NSD) and TD64 devices which support
drives larger than 4 GB. If neither is detected then it
will use the standard way of communicating with your device
which means you are limited to harddisks of 2 GB or 4 GB in
size (depending on what your device supports).

SCSI direct is just another way of communicating with your
device. Even some IDE devices support the SCSI direct
protocol, which they translate automatically to normal IDE
commands. For example, the standard scsi.device which comes
with A1200’s and A4000’s with IDE on board understand SCSI
direct.

SES

29/ 31

The advantage of the SCSI direct protocol is that it can
work with harddisks larger than 4 GB as well. So if your
device isn’t NSD or TD64 compatible then you still have the
option of using SCSI direct to use disks larger than 4 GB.

SCSI direct doesn’t give you a performance boost. It is
just as fast as the normal version of SFS. The only
difference is in the way SFS communicates with your device,
and you’ll only need it if you’ve got a drive larger than 4
GB and your device doesn’t support NSD or TD64.

See notes for drives larger than 4 GB for more
information on large drives.

1.25 The ’.recycled’ directory

SFS supports a special directory (".recycled") which
contains the files you most recently deleted. This
directory allows you to quickly and easily recover a file
you deleted by accident.

Undeleting a file is a matter of moving or copying the file
from the Recycled directory to a different location. Be
careful when moving or copying files to the same disk
however, since SFS may decide at any time that it needs to
make room for new files which could cause the file(s) you’re
trying recover to get removed.

The contents of the this special directory is maintained by
the filesystem. You’re not allowed to move files there or
create new files in this directory. Files stored in the
Recycled directory will automatically be deleted when the
disk gets full, or when the directory contains more than 25
files.

You’ re not allowed to change the contents of files stored in
the Recycled directory; this also goes for their name,
comment, protection bits and date.

The Recycled directory itself will only get created during
formatting. It is not possible to create a ’.recycled’
directory afterwards (atleast not for now). The Recycled
directory can’t be deleted, but you are allowed to rename
it. It is even possible to move it into a subdirectory.

FLUSHING THE RECYCLED DIRECTORY
You can easily permanently remove files by going to the

Recycled directory and deleting any files there. SFS will
detect this and will remove the file permanently.

1.26 masks

SES 30/ 31

Mask MaxTransfer
scsi.device (A4000, IDE) OXFFFFFFFE 0x1FFFE
cybscsi.device OXFFFFFFFEFEF OXFFFFFFFF
DKB 4091 OXFFFFFFFE OXFFFFEFFEF

1.27 Using two versions of SFS simultaneously

When upgrading to a new SFS version while SFS is in BETA I
can’t always keep SFS fully compatible to older versions.
This means that at some point you’ll have to reformat your
SFS partitions to be able to use the latest version.

However, it is possible to run two different versions of SFS

at the same time -- you simply need to treat this new version

of SFS as a completely new filesystem. So just like FFS can’t
be directly replaced by a SFS filesystem, this new version can’t
simply replace the old SFS version either.

Version 1.13 or older of SFS is not compatible with versions
released after 1.13.

SFS in the RDB

If you’ve put the old version of SFS in the RDB then you can
add the new version there as well. Don’t remove the old
version until you’ve converted all of your SFS partitions.

Add the new version, but give it a different DosType.
Normally you used 0x53465300 (=SFS/0), but give the new
version a different DosType. I’'d recommend using 0x53465301
(=SFS/1). Now you can choose between the old SFS version
(SFS/0) and the new one (SFS/1) for each of your partitions.

If you changed one of your old SFS partitions to the new
version, SFS will put up a requester during booting telling
you that the SFS disk is in a format which is not supported

anymore. This is normal. After formatting the disk it
should be useable again. You can use SFSformat or the
normal Format command with the QUICK option to format the
disk.

SFS with mountlists

If you mount your SFS partitions from a mountlist then you

can also use two versions of SFS at the same time. Just
copy the new version of SFS to your L: directory with a
different name (for example ’SmartFilesystem2’). Now in

your mountlists you can use the new version of SFS by
changing the following lines:

Filesystem = l:SmartFilesystem2
DosType = 0x53465301

SES 31/31

Also take a look at the Installation section for more
details.

	SFS
	Smart Filesystem documentation
	Smart Filesystem: Introduction
	FastView: Features
	Smart Filesystem: System requirements
	Smart Filesystem: About the authors
	Smart Filesystem: Future
	Smart Filesystem: Space efficiency
	Smart Filesystem: Reporting problems
	Smart Filesystem: Known problems
	Smart Filesystem: History
	Smart Filesystem: Acknowledgments
	Smart Filesystem: Installation
	Smart Filesystem: Trying SFS on a ZIP drive
	Smart Filesystem: Installing SFS on a harddisk
	Smart Filesystem: Making SFS available for use
	Smart Filesystem: Creating a SFS partition
	Smart Filesystem: Upgrading SFS
	Smart Filesystem: Example mountlist
	The MaxTransfer field
	The Mask field
	Internal workings of Smart Filesystem
	Safe writing
	Notes for drives larger than 4 GB
	What is SCSI direct?
	The '.recycled' directory
	masks
	Using two versions of SFS simultaneously

