Compiler

Compiler

] COLLABORATORS
TITLE :
Compiler
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Compiler iii

Contents

1 Compiler 1
1.1 Commander Compiler e e e |
1.2 Configuration o i e e e e e 1
1.3 Tutorials L e 3
1.4 Tutorial 1 . . . L L o e e 3
1.5 Tutorial 2 L e e e e 5
1.6 Tutorial 3 L e e 6
1.7 Language OVEIVIEW o v v ittt it e e e e e e e e 11
1.8 Format o e e e 12
1.9 Conventions L e e e e e e 12
1.10 Root Command Order e e e 13
.11 Command Index o o e e 13
112 2 Comment e e e e e e 14
1.13 Define Font e e 14
1.14 Define Link L 15
1.15 Define Palette L L e 16
1.16 Define WIndow o e e e 16
1.17 SetColor o e 18
1.18 SetFont o L 18
119 WIndow o L 19
1.20 Border L e e e 19
L21 Gadget o o e e e e e e 20
1.22 TMage o o e e e e e e e 21
1.23 TeXt . . o o o e 21
1.24 Type Button o o e e e 22
1.25 Type Cycle o o e e e 23
1.26 Type List L o e 24
127 Type MX . . o o e e e 25
1.28 Type AREXX . . . o o o v e e e e e e e e e e e 26
1.29 Type WIndows o L 27
1.30 Previous VErsionsottt e e e e e e e e e e 27
1.31 Newinthis version o L o 0 e e e e e 28

Compiler

1/28

Chapter 1

Compiler

1.1 Commander Compiler

Commander Compiler
Configuration
Tutorials
Language Overview
Format
Conventions
Root Command Order
Command Index
History

New in this version
Previous versions

1.2 Configuration

Configuration

Configuration is supported through use of Workbench ToolTypes or CLI
parameters. If any options are not included, the stated defaults will be
used.

Configuration options are not case sensitive.

Invalid options will be ignored. In this case, the default values will

be used.

The following configuration commands are supported:

Compiler

2/28

Definition
Description: Compiles the given definition upon startup. No file
requester is presented unless the module can not be found.

The definition name is referenced as the path and filename
within the ’"definitions’ directory.

Default: NONE : FileRequester
Example: Definition=Test.def
ErrorLog
Description: Outputs error messages to the given file rather using
requesters. This option is recommed for batch file
processing.
Default: Requesters
Example: ErrorLog=RAM:Compiler.errors
Font
Description: Sets an 8 point font for the window text. This should
be a non-proportiocanl font.
Default: Topaz2.font
Example: Font=Courier.font
Last
Description: Compiles the last compiled definition. No file
requester 1is presented unless the last used definition
file can not be found.
Valid values: Last

Default: NO
Example: Last
WindowL
Description: Sets the position of the left edge of the window.
Valid values: >= 0
Default: O
Example: WindowL=50
WindowT
Description: Sets the position of the top edge of the window.

Valid values: >= 0

Compiler

3/28

Default: O

Example: WindowT=100

1.3 Tutorials

Tutorials

The Commander definition language may look a bit daunting at first
glance, so here’s some simple tutorials to get you started. Most users
will only want to modify the included definitions to suit there needs, so
that’s the approach we’ll take here for these mini-tutorials. It’s not a
difficult task as you’ll soon see.

You may wish to back up the included definition files, before proceeding
with these tutorials.

It is recommended that you do each tutorial in order, as assumptions may
be made that you have done so.

Modifying the included definitions

1. Adding ARexx scripts
2. Removing panels

Creating new definitions

3. Building your first module

1.4 Tutorial 1

Tutorials

1. Adding ARexx scripts

Let’s say you just want to add an ARexx script to the ARexx page of the
"Al1lInOne_OnePanel.cmndr" module. Load "AllInOne_OnePanel.def" into your
text editor and we’ll begin.

There are two parts to this process. Gadgets are defined and then linked
to a special function, in this case an ARexx file. Locate the following
section of the definition. If you can, search/find —-> Window "ARexx"

Window "ARexx" (
Gadget (
Position 0 2
Type List (
Size 145 313
Data (

Compiler

4/28

"Border.ifx"
"Designs.ifx"
"MapToWB.ifx"
)
Link "ARexx"

This describes the ARexx page of the module, and includes the List gadget
with all the names of the ARexx scripts. We want to add the script
"Rexx/AnalyzeJPEG.ifx" to our module. The gadget is already tall enough
to accomodate more entries without having to scroll, so we don’t need to
alter the Size info. Insert the name "AnalyzeJPEG.ifx" at the top of the
Data list, so that it’s alphabetical. Note that you could call this "My
Favourite Script" if you wanted, Commander will still be able to find the
file, as the file name is defined elsewhere. You’re just defining the
text that you see in the gadget list here. It should look like this now:

Data (
"AnalyzeJPEG.1ifx"
"Border.ifx"
"Designs.ifx"
"MapToWB.ifx"

Okay, we’re half done already. Note the Link "ARexx" line used here. That
tells Commander what this gadget is linked to. Now locate the following
section:

Define Link "ARexx" (
Type ARexx (
Data (
File "Rexx/Border.ifx"
File "Rexx/Designs.ifx"
File "Rexx/MapToWB.ifx"

This is the link definition for the ARexx page, and currently includes
three external (File) ARexx scripts. Since we are adding an external
script we want to use the File option, so our definition line is as
follows:

File "Rexx/AnalyzeJPEG.ifx"

As we did with the gadget section, we want it to appear at the top of the
list. It should look like this now:

Data (
File "Rexx/AnalyzeJPEG.ifx"
File "Rexx/Border.ifx"
File "Rexx/Designs.ifx"
File "Rexx/MapToWB.ifx"

Compiler

5/28

Note that it’s important to get the exact file name, and the path is
important too. Since this script is in ImageFX’s "Rexx" directory that’s
all we need for the path. If you wanted to link to a script on another
hard drive, for example, you would include the full path. Perhaps
something like "AnotherHarddrive:ImageFXScripts/MyScript.rexx".

Okay, were done. Now, save the definition and let’s go to the compiler.
Double click on the Compiler icon and you should get a file requester.
Select the file "AllInOne_OnePanel.def" and, if all went well, you
shouldn’t get any errors. If you goofed something up, you’ll be told soon
enough.

That’s it. Now go Open the module in Commander and try it out.

1.5 Tutorial 2

Tutorials

2. Removing panels

Okay, maybe you like the "AllInOne_MovePanels.cmndr" but it has too many
panels for your needs (or screen space). Let’s butcher it a bit.

Maybe you don’t want to have the "Analysis" panel because you don’t use
it much and it just gets in the way. Load the "AllInOne_MovePanels.def"
file into your text editor and let’s get going.

There’s three things we need to do: Delete the window, delete the
associated links, and delete the associated gadgets. Locate the following
section:

Define Window "Alpha" (
Position 0 27
Size 153 136
Title

This defines the actual window. To get rid of it, just delete all those
lines. Now locate this section:

T kkk ok kk ok ok ok kok kok kook ok ok ok ok ok ok ok Kk ok ko ke k ok ke ok ke ok ok ok ok ok ok ok ok k ok kK ok ok ok ok kK Alpha * %

Window "Alpha" (
Gadget (
Position 4 14
Type Button (
Label "Copy From Alpha"
Size 145 15
Link "Alpha CopyFromAlpha"

+ 6 more Gadgets

Compiler

6/28

Gadget (
Position 4 119
Type Button (
Label "Swap"
Size 145 15
Link "Alpha_ Swap"

This section defines all the gadgets in the "Alpha" window (which we just
deleted) . There are 8 gadgets in total (only two shown here). You want to
delete everything you see here, right down to the end of the window
structure. Make sure you delete the final closing structure bracket, too.
Each section of this module is divided with the ’*x*x*x* comment lines,
so it should be very obvious where the end is.

You might have wanted to note each of the Links used before deleting each
gadget, because we want to delete them too. But, I’ve made your life
simple by naming them all with the page as part of the title. So, it’11

be obvious. Now locate this section:

4 KAk AR A AR A AR A AR A AR A A A A A A A A AR A A A A A Ak ARk A Ak hA Ak k kK Alpha * %
Define Link "Alpha_CopyFromAlpha" (

Type ARexx (
Data (String "Alpha2Buffer")

+ 6 more Link definitions
Define Link "Alpha_Swap" (

Type ARexx (
Data (String "SwapAlpha")

Delete those 8 Link definitions and you’re all set.

Now save the definition, and recompile it. There, no more Alpha panel.

1.6 Tutorial 3

Tutorials

3. Building your first module

In the following tutorial you do not need to actually create a
definition file, we have already included them to save you the time.
Use them for reference as you proceed through the tutorial, if
necessary. They are a good guide for proper stucture and ordering.

Compiler

7/28

First things first

The first step is to tell the compiler what fonts we want to use in this
module. We just need one right now. The compiler also needs to know how
we want to refer to this font later, we will just use the label "Fontl".
We want to use the Topaz2 font with a size of 8. Here is how it would
look:

Define Font "Fontl" (
Name "Topaz2.font"
Size 8

Notice the brackets that enclose the ’'Define Font’ structure. Several
commands have parameters with the same name, such as ’'Position’. These
brackets ensure that the compiler can tell where one command ends and the
next one begins. Brackets must always appear in pairs ' (’ for starting
(opening) and ')’ for ending (closing) a structure. We have also

indented the two parameters, so that it is easier to see that they are
part of the ’'Define Font’ structure.

"Define Font’ has two requirements, a label "Fontl" and the ’'Name’
parameter. The ’'Size’ parameter is actually optional. The compiler will
default to a size of 8 if it is not told specifically to use a different
size. We have included it here to make things more understandable.

The next thing to do is to define a window for our gadgets and text to
appear in. Windows are defined like this:

Define Window "Main" (
Position 10 20
Size 150 200
Title

We have given this one the label "Main", so that we can refer to it
later. The two required parameters, ’'Position’ and ’Size’ tell the
compiler where we want the window to appear on the screen. In this case,
the upper left hand corner of the window should be at the coordinates:
x=10, y=20 and it should be 150 pixels wide and 200 pixels tall. The
optional parameter ’'Title’ indicates that we want the window to have a
title in it. The compiler is smart enough to also enable the ’DragBar’
option when ’'Title’ is used. This allows the window to be moved around at
will.

Finally, we need to reference the defined window or the compiler will
complain that it hasn’t been used. For now, we will just use an empty
window structure which we will explain later.

Window "Main" (

)

Compiling a module

Compiler

8/28

At this point, we have enough information to compile a module. We have
included the file "Tutorial_3-A.def" which includes the commands we
have used so far.

Start the compiler by double clicking the Compiler icon. When you are
prompted with the file requester, select the file "Tutorial 3-A.def".

Once you have selected the definition file to be compiled the compiler
begins its job. This is not a very big definition yet, so you likely
will not get to see any of the information the compiler displays as it
compiles. Basically, all you missed is the compiler counting lines,
fonts, windows, etc. If there had been any errors, the compiler would
have told you and stopped. Note that you do not have to quit the
compiler, it quits when it is finished.

Viewing the module

In that couple of seconds the compiler generated our tutorial module.
Let’s have a look and see what we have so far. Start Commander by
clicking on its icon. When you are prompted with the file requester,
select the file "Tutorial 3-A.cmndr". Commander will load the module and
display the defined window. Our module does not do anything yet, so just
enjoy dragging the little window around for a moment.

Displaying text

We have not used the font we defined, so let’s dislay some text with it.
First, we need to the tell the compiler what window we want to display
the text in. All of the commands that apply to windows, ’'Text’, ’Gadget’,
"Border’, etc. are contained within a window structure. Simply, a window
structure looks like this:

Window "Main" (

)

That will not actually do anything on its own. It simply tells the
compiler which window we are going to work with. We need to put something
inside that structure for it to be of any real use.

Window "Main" (
Text "ABCDEFGHIJK" (
Position 10 15

The text command has two required parameters: a text string and a
"Position’. Here we have told the compiler to place the text
"ABCDEFGHIJK" at x=10, y=15. ’"x’ refers to the left edge of the text and
"y’ refers to the baseline of the font. The baseline is the point at
which a letter meets the ground, so to speak. Letters such as
"abcdefhiklmnorstuvwxz" all sit on the baseline. But "gjpqgy" have
descenders, which drop below the baseline. With a standard size 8 font
you have something like this:

Compiler

9/28

01234567 01234567
0 *x* 0
1 % 1
2 kkokokokk 2 x* * %
3 xx * % 3 * % *
4 %% * % 4 * Kk Kk K
5 %% * % 5 * %
6 O***** 6 0 x*
7 7 * * *

Where the baseline is at row 6. When defining the position text, you
have to keep the baseline in mind when indicating coordinates. If you
wanted the upper left hand corner of the letter ’"b’ to appear at x=5,
y=10 you would use 'Position 5 16’. In the above examples, ’'o’ indicates
the point at which coordinates refer (at 0,6).

We will display two different texts in our previously defined window:

Window "Main" (

Text "Plain Text" (
Position 20 25

)

Text "Shadow Text" (
Position 20 40
Color 2
Shadow

Refer to the Command Index section for more
information about the Text command and the extra parameters, ’'Color’ and
"Shadow’, used here and others that can also be used.

Compile "Tutorial_3-B.def" and open the ’'Tutorial_3-B.cmndr’ module in
Commander to see the results.

Adding borders

Let’s make things a little prettier and add a border around the text.
Borders are defined like this:

Border (
Position 10 10
Size 107 40
Fill 3

Remember that, although we have not shown it this way, this command and
others like it must be contained within a ’'Window’ structure.

The ’"Position’ parameter, as with ’'Define Window’, refers to the

Compiler 10/28

coordinates of the upper left hand corner of the border. Again, ’Size’
refers to the width and height in pixels. Note that there is an
alternative to using the ’'Size’ command anywhere it is used. 'Position2’
sets the position of the lower right hand corner. In the above example,
we could have used ’'Position2 117 50’ instead of ’"Size 107 40’ and would
have gotten the same result. When using a paint program to do intial
layout designs, the ’"Position2’ alternative can save you some calculation
since most paint programs only give x/y coordinates.

The "Fill’ option tells the compiler that we want the border filled with
color 3. It is important to realize that sometimes the order that
commands appear within the definition file needs to be considered. If we
added this ’'Border’ definition in AFTER the ’'Text’ commands, the text
would be overdrawn by the fill option we have used. Because we want the
text to appear over the filled border, we have to order it BEFORE.
Something like this:

Window "Main" (

Border (

Position 10 10
Size 107 40
Fill 3

)

Text "Plain Text" (
Position 20 25

)

Text "Shadow Text" (
Position 20 40
Color 2
Shadow

Compile "Tutorial_3-C.def" and open the ’'Tutorial_3-C.cmndr’ module in
Commander to see the results.

Adding gadgets

To interact with Commander we have to add gadgets. Although Commander
supports several different kinds, we will begin with a simple button
gadget example:

Gadget (
Position 10 75
Type Button (
Label "Border.ifx"
Size 107 12
Link "ARexx"

The gadget command has two required parameters: ’'Position’ and 'Type’. As
with other commands, ’'Position’ defines the upper left hand coordinate of
the gadget. 'Type’ is used to define the kind of gadget and its
parameters. Note that 'Type’ is also a structure imbedded (or nested)

Compiler 11/28

within the Gadget command with its own structure bracketing pair.

The ’'Type Button’ structure has three required parameters. ’'Label’ sets

the text that will appear on the gadget. ’Size’ sets the width (107) and
height (12) of the gadget. ’'Link’ directs the gadget to a link function,
which we’ll add next.

Note that ’Gadget’ is a window command and like others must be placed
within a window structure.

Gadgets need to be told what to do when you use them. In Commander this
is done with the ’'Define Link’ command. For example:

Define Link "ARexx" (
Type ARexx (
Data (File "Rexx/Border.ifx")

A link has to have a name, in this case "ARexx", so that it can be
connected to a gadget. Rather than just including the function within the
"Gadget’ command itself, this modular approach has the advantage that you
can use the same function in multiple places within the same definition,
without wasting extra memory. It also makes it easier to move functions
from one module to another.

This link is of type ’"ARexx’, which, in this case, instructs the gadget
to execute the external script "Border.ifx" located in the "Rexx"
directory.

Compile "Tutorial_3-D.def" and open the ’'Tutorial_3-D.cmndr’ module in
Commander to see the results. If you click on the button gadget it will
execute the defined script.

1.7 Language Overview

Language Overview

All commands, parameters, options, values, etc. must be separated by a
SPACE (032), LF-line feed (010), or TAB (007) character. LF-line feed +
CR-carriage return (010+013), such as used on DOS systems, 1s supported.

A command structure is a group of parameters applicable to a command.
Command structures must be enclosed within brackets (). The end of
structure indicator ’)’, must always be followed by a LF character (or
LF+CR) .

Except for TAB (007), ASCII characters from (000) to (031) are not
permitted.

All commands, parameters and options are case sensitive. Therefore,
"Define Window’ is accepted, but ’'DEFine WinDOW’ is not.

In most cases, it is permissable to order commands and parameters in any

Compiler 12/28

manner wished. But, there are some restrictions, as noted in the
reference section. Regardless of the semi-freeform capability, it is
suggested that the recommended ordering and format be used.

1.8 Format

There are several ways to format a definition (.def) file, but for
consistency, one is recommended. For example, the ’'Define Font’
parameter, ’'Style’ could be formatted as:

The recommended format:

Style (
UNDERLINED
BOLD

is equivalent to (sometimes preferred):
Style (UNDERLINED BOLD)

and, is equivalent to:
Style
(

UNDERLINED
BOLD

)
or even this format will work, but is not recommended:
Style

(UNDERLINED
BOLD

1.9 Conventions

Conventions

bold Denotes required
plain denotes optional
bold+italic denotes optional-required.

[...] Denotes

<> Denotes required items. The ’<’ and ’>’ characters should not be
included.

Compiler

13/28

[] Denotes optional items. The ' [’ and ’]’ characters should not be
included.

{} Denotes optional-required items. Only one of these options may be used
within a structure but one of them is required. The ’{’ and "}’
characters should not be included.

| Denotes OR. Only one of these options may be used with this item.

The ' |’ character should not be included.

<#> Denotes an integer numeric value in decimal format (BASE 10). The
range is determined by the parameter it is used with.

Examples: 10, 9, 5, 127
<left> Denote integer numeric values (BASE 10) in pixels, in the range
<top> of 0 to n, where n is the maximum width of the screen/window.
<width>
<height>

<name> Denotes text information enclosed within quotation marks. For
compatibility with ARexx support, spaces are not permitted.

NOTE: <name>s are only used by the Module Compiler for
reference, and are not stored in the output module.

<string> Denotes any text information enclosed within quotation marks.

<type> Denotes a type reference, as supported by the command it is used
with. Only one type may be selected from those supported.

1.10 Root Command Order

Root Command Order

Define Palette ()
Define Font <name> ()

Set Font <name>]
Set Color <#>]

Define Window <name> ()
Define Link <name> ()

Window <name> ()

1.11 Command Index

Compiler

14 /28

Commands
14

Root Commands
Define Font
Define Link
Define Palette
Define Window
Set Color
Set Font
Window

Parameter Commands
Border

Gadget

Image

Text

Gadget Types
Type Button
Type Cycle
Type List
Type MX

Link Types

Type ARexx
Type Windows

1.12 ’ Comment

! " Comment OPTIONAL

Occurance: MULTIPLE

Description: The comment marker (apostrophe) can appear anywhere within a
definition file. All text after the comment marker, on the same line, 1is
ignored.

Comments can be very handy as reminders of how or why you did something a
certain way. Also, the comment marker can be very useful when debugging a
definition file, by providing a method of temporarly ignoring commands or
parameters, without having to delete the text.

1.13 Define Font

Define Font REQUIRED

Define Font <name> (
Name <string>

Compiler 15/28

Size <#>
Style ([BOLD] [ITALIC] [UNDERLINED])

Occurance: MULTIPLE
Placement: before Window

Description: This command is used to open Amiga fonts for use with other
commands having text based parameters. The defined font becomes the
GLOBAL DEFAULT from this point on. At least one Define Font must be used.

PARAMETERS

Name REQUIRED

<string>

This is the filename of a font contained within the FONTS: directory.
The full name should be used.

Example: Name "Topaz2p.font"

Size OPTIONAL

This sets the pointsize, in pixels, to be used with the font. If this
pointsize is not found, it will be created by scaling another size.
Generally, scaled fonts look really bad. Therefore, it is recommended
that existing font sizes be used.

Default: 8

Style OPTIONAL

BOLD
ITALIC
UNDERLINED

This is used to apply style(s) to a font. BOLD, ITALIC and UNDERLINED
can be used in any combination. These styles are only applied to text
displayed using the Text command. Other commands, such as Gadget, will
ignore style definitions. At least one style must be set for this
parameter.

Examples: Style (BOLD ITALIC)
Style (UNDERLINED)

Default: Plain

1.14 Define Link

Define Link OPTIONAL

Compiler 16 /28

Define Link <name> (
Type <type> ()

Occurance: MULTIPLE
Placement: before Window

Description: This command is used to define links for use with other
definitions, as a way of supporting additional information/functions.

See Link Type descriptions for more information.

1.15 Define Palette

Define Palette OPTIONAL

Define Palette (
<#> <r> <g>

[...]

Occurance: SINGLE
Placement: before Window

Description: This command is used to modify colors within the palette.
Colors 0-3 are used for gadget and window rendering and can not be modified.

PARAMETERS
<#>
Selects the color # within the palette. Range 4-31.
<r>
Sets the RED component level from 0-15.
<g>
Sets the GREEN component level from 0-15.

Sets the BLUE component level from 0-15.

1.16 Define Window

Compiler

17 /28

Define Window REQUIRED

Define Window <name> (
Position <left> <top>
Position2 <right> <bottom>
Size <width> <height>
Font <name>
Color <#>
Border
DragBar
Title

Occurance: MULTIPLE
Placement: before Window

Description: This command is used to define a window to which gadgets,
text, etc. can be attached. Multiple windows can be defined for
applications where one window is not enough. Using the Link Window
command, windows can be grouped together so that only one window in a
group 1is displayed at a time. For this reason, it is permissable for
windows to overlap each other. The Show Window command can be used to set
the front window at startup.

PARAMETERS

Position REQUIRED

This sets the co-ordinates, in pixels, of the upper left hand corner
of the window. The values for <left> and <top> must be within the range
of the screen.

To avoid overlapping the screen’s titlebar, it is suggested that a minimum

value of 11 be used for <top> when using an 8 point screen font.

Size

Position2 OPTIONAL REQUIRED
"Size’ sets the dimensions of the window, in pixels. The values of
<width> + <left> and <height> + <top> must be within the range of

the screen. This is an alternative to ’"Position2’. Use one or the other,
but not both.

"Position2’ sets the co-ordinates, in pixels, of the lower right hand
corner of the window. The values for <right> and <bottom> must

be within the range of the screen and greater than the <left> and <top>
values of ’"Position’. This is an alternative to ’"Size’. Use one or the
other, but not both.

Font OPTIONAL

This sets the default font for this window. Unless otherwise specified by

Compiler 18/28

the Font parameter within a Window command, this font will override the
GLOBAL DEFAULT within any Window command that references this defined
window.

If not included, the GLOBAL DEFAULT will be used.

Color OPTIONAL

This sets the default color for this window. Unless otherwise specified
by the Color parameter within a Window command, this color will override
the GLOBAL DEFAULT within any Window command that references this defined
window.

If not included, the GLOBAL DEFAULT will be used.

Border OPTIONAL

This gives the window an intuition dragbar and allows it to be moved.
This options forces the Border option to be in effect.

Title OPTIONAL

This gives the window the title <name>. This options forces the DragBar
option to be in effect and allows the window to be moved.

1.17 Set Color

Set Color

OPTIONAL

Set Color <#>
Occurance: SINGLE
Placement: before Define Window
Description: This command is used to define the GLOBAL DEFAULT color for

commands not including an optional Color parameter. If not included, an
internal default will be used.

1.18 Set Font

Set Font OPTIONAL

Set Font <name>

Compiler 19/28

Occurance: SINGLE
Placement: before Define Window

Description: This command is used to define the GLOBAL DEFAULT font for
commands not including an optional Font parameter. If not included, an
internal default will be used.

1.19 Window

Window REQUIRED

Window <name> (
Gadget <name> ()
Image <string> ()
Text <string> ()
Border ()

Occurance: MULTIPLE
Placement: after Define Window / after Define Link

Description: This command is used to attach Gadget, Image, Text and
Border definitions to a previously defined window.

PARAMETERS

See PARAMETER COMMANDS.

1.20 Border

Border OPTIONAL

Border (
Position <left> <top>
Position2 <right> <bottom>
Size <width> <height>
Fill <#>
Frame 3D|3D-Recess|NONE

Occurance: MULTIPLE

Description: This command is used to define a border to be drawn in a
window.

A border can be used as a method of visually grouping gadgets together, or
just to spice up the look of the display.

PARAMETERS

Compiler

20/28

Position REQUIRED
This sets the co-ordinates, in pixels, of the upper left hand corner of
the border. The values for <left> and <top> must be within the range of
the referenced window.

Size

Position2 OPTIONAL REQUIRED
"Size’ sets the dimensions of the border, in pixels. The values of
<width> + <left> and <height> + <top> must be within the range of the
referenced window. This is an alternative to ’'Position2’. Use one or the
other, but not both.

"Position2’ sets the co-ordinates, in pixels, of the lower right hand
corner of the border. The values for <right> and <bottom> must be within
the range of the referenced window. and greater than the <left> and <top>
values of ’"Position’. This is an alternative to ’'Size’. Use one or the
other, but not both.

Fill OPTIONAL

This is used to apply a fill color to a border. A wvalue of 0, the default
background color, will have no visual effect.

NOTE: Some gadgets do not render properly when displayed over a
non-background (0) color. For this reason, fill may not always produce
expected or pleasing results.

If not included, no fill will be applied to the border.

Frame OPTIONAL

Gadget OPTIONAL

Gadget <name> (
Position <left> <top>
Font <name>
Type <type> ()

Occurance: MULTIPLE

Description: This command is used to define a gadget and its placement in
a window.

PARAMETERS

Compiler

21/28

Position REQUIRED

This sets the co-ordinates, in pixels, of the upper left hand corner of
the gadget. The values for <left> and <top> must be within the range of
the referenced window.

Font OPTIONAL

This sets the font to be used when rendering the current gadget. This
value overrides the Window’s Default and the GLOBAL DEFAULT.

Style definitions, within the referenced font definition, are ignored.

If not included, the Window’s Default (if defined) or the GLOBAL DEFAULT
will be used.

Placement: before Type
Type REQUIRED

This sets the type of Gadget being defined. Type parameters are included
within this structure. See Gadget Types.

Placement: after Font

1.22 Image

Image OPTIONAL

Image <string> (
Position <left> <top>

Occurance: MULTIPLE
Description: This command is used to display an image within a window.

<string> REQUIRED

Defines the file name. This must include the full path.

Position REQUIRED

This sets the co-ordinates, in pixels, of the image. The wvalues for
<left> and <top> must be within the range of the referenced window.

1.23 Text

Text OPTIONAL

Compiler

22/28

Text <string> (
Position <left> <baseline>
Font <name>
Color <#>
Shadow

Occurance: MULTIPLE
Description: This command is used to display text within a window.

Position REQUIRED

This sets the co-ordinates, in pixels, of the text. The wvalues for
<left> and <baseline> must be within the range of the referenced window.

Font OPTIONAL

This sets the font to be used when rendering this text. This value
overrides the Window’s Default and the GLOBAL DEFAULT.

Style definitions, within the referenced font definition, are
supported.

If not included, the Window’s Default (if defined) or the GLOBAL DEFAULT
will be used.

Color OPTIONAL

This sets the color to be used when rendering this text. This
value overrides the Window’s Default and the GLOBAL DEFAULT.

If not included, the Window’s Default (if defined) or the GLOBAL
DEFAULT will be used.

Shadow OPTIONAL

Applies a shadow in color 1 (Black) offset 2 pixels to the right
and 1 pixel down from the coordinates defined with ’Position’.

1.24 Type Button

Type Button

Type Button (
Label <string>
Link <name>
Size <width> <height>

Occurance: MULTIPLE

Compiler 23/28

Description: BUTTON gadgets are used to execute internal macros or
external scripts.

PARAMETERS

Label REQUIRED

Only ’'ARexx’ type links with one data may be used with ’"Button’ type gadgets.
Size REQUIRED

This sets the dimensions of the gadget, in pixels. The value of <width>
and <height> must be within the range of the referenced window.

1.25 Type Cycle

Type Cycle

Type Cycle (
Size <width> <height>
Data (
<string>

)
Default <#>
Link <name>

Occurance: MULTIPLE

Description: CYCLE gadgets are used when a set number of options are
allowed (such as ON/OFF, 1/2/3/etc.)

PARAMETERS

Data OPTIONAL REQUIRED
This structure is used to define possible options for the gadget. There
must be at least two strings within the data structure.

Example:
Data (
"Sawtooth"
"Pulse"
"Triangle"
"Square"

Compiler

24 /28

Default OPTIONAL

This defines the default state of the gadget. The range of possible
values is 0 to n, where n is the number of data.

Example: To set the default to "Triangle", in the above example,

use:
Default 2
Default: O
Placement: after Data
Link OPTIONAL
Placement: after Data
Size REQUIRED

This sets the dimensions of the gadget, in pixels. The value of <width>
and <height> must be within the range of the referenced window.

1.26 Type List

Type List

Type List (
Size <width> <height>
Data (
<string>

)
Default <#>
Link <name>

Occurance: MULTIPLE

Description: LIST gadgets are used when a set number of options are
allowed (such as ON/OFF, PULSE/SAWTOOTH/TRIANGLE/etc.). It is similar in
use to CYCLE gadgets but preferred when there are many options.

PARAMETERS
Data OPTIONAL REQUIRED

This structure is used to define possible options for the gadget. There
must be at least two strings within the data structure.

Example:

Compiler 25/28
Data (
"Sawtooth"
"Pulse"
"Triangle"
"Square"
)
Default OPTIONAL

This defines the default state of the gadget. The range of possible

values is 0 to n,

Example:
use:

Default:
Placement:

where n is the number of data.

To set the default to "Triangle", in the above example,

0
after Data

Default 2

OPTIONAL

REQUIRED

This sets the dimensions of the
and <height> must be within the

1.27 Type MX

Type MX

gadget, in pixels. The value of <width>
range of the referenced window.

Type MX (
Data (
<string>

)
Default <#>

LabelPlace LEFT|RIGHT

Link <name>
Spacing <#>

Occurance: MULT

Description: MX
of options are

They operate si
at once.

PARAMETERS

IPLE

(Mutually Exclusive) gadgets are used when a set number
allowed (such as ON/OFF, PULSE/SAWTOOTH/TRIANGLE/etc.).
milar to ’"Cycle’gadgets, but display all possible options

Compiler

26/28

Data OPTIONAL REQUIRED

This structure is used to define possible options for the gadget. There
must be at least two strings within the data structure.

Example:

Data (
"Sawtooth"
"Pulse"
"Triangle"
"Square"

)

Default OPTIONAL

This defines the default state of the gadget. The range of possible
values is 0 to n, where n is the number of strings.

Example: To set the default to "Triangle", in the above example,

use:
Default 2
Default: O

Placement: after Data
LabelPlace OPTIONAL
______ Default: LEFT
Link OPTIONAL

Placement: after Data
Spacing OPTIONAL

The number of pixels between each row.

Default: 1

1.28 Type ARexx

Type ARexx

Type ARexx (
Data (
File <string>
String <string>

[...]

Compiler

27 /28

Occurance: MULTIPLE

Description: AREXX link types are the way to control ImageFX, or any
other ARexx capable program. Or can be used to provide additional
functionality not capable with GUIF’s own command set. Simple ARexx
commands can be internal to a module (String), or larger external scripts
can be used (File).

If there is only one data defined that ARexx File/String will be executed
regardless of the value of the gadget that is linked to it.

Alternatively, the number of defined data must match the gadget which has
linked to it. For example, if a ’'Cycle’ type gadget has 5 wvalues,

there must be 5 data defined here.

PARAMETERS

File

String OPTIONAL REQUIRED

"File’ is used to link an external ARexx script to a gadget.

"String’ is used to link an ARexx command string to a gadget.

1.29 Type Windows

Type Windows

Type Windows (
Data (
<name>
<name>

[...]

Occurance: MULTIPLE

Description: WINDOW type links are used for grouping two or more windows
together, so that only one window is displayed at a time. This is useful
when all the parameters for a device can not be displayed in one window.
This link type is commonly linked with a CYCLE or BUTTON type gadget.

1.30 Previous versions

Previous versions

Compiler 28/28

- First release.

1.31 New in this version

00.Mar.25

- First release.

	Compiler
	Commander Compiler
	Configuration
	Tutorials
	Tutorial 1
	Tutorial 2
	Tutorial 3
	Language Overview
	Format
	Conventions
	Root Command Order
	Command Index
	' Comment
	Define Font
	Define Link
	Define Palette
	Define Window
	Set Color
	Set Font
	Window
	Border
	Gadget
	Image
	Text
	Type Button
	Type Cycle
	Type List
	Type MX
	Type ARexx
	Type Windows
	Previous versions
	New in this version

