lib

lib

] COLLABORATORS
TITLE
lib
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

lib i

Contents

1 lib 1
1.1 4Theteslibrary o e 1
1.2 4.1 Preliminary Operations o ottt it e e e e e e e |
1.3 4.2 General Guidelines 2
1.4 4.3 Declarations Description e e 3
1.5 4.3.1 VideoModes definitions, bits & flags 4
1.6 432 ClippingWindow SIrUCLUI® v v vttt e bt e e e e e e e e e e e e 4
1.7 4.3.3 GraphicContext bits, flags and structure 5
1.8 4.3.4 DisplayDeclaration Structure ot i e e e e e e e e e e e e 5
1.9 4.3.5 DisplayInfo structure e 7
1.10 4.3.6 MainCopperList StruCture« o o vttt ettt e e e e e e e 7
.11 43.7ILBMInfo Structure i i e 8
1.12 4.4 Functions for Displays e e 8
113 TCS_InitDspl() o o o o e e 9
1.14 TCS_ShwDspl() o o 10
1.15 TCS_HideDspl() o o e e e e 11
1.16 TCS_FreeDspl() o o o e e e e 12
1.17 TCS_SetRGBxMode() e 12
1.18 TCS_C2PPassO() o o it e e e e e e e e 13
1.19 TCS_CPUFRPassO() o oo e e e e e e e e e e 14
1.20 TCS_CPUFRPass1() 14
1.21 TCS_CPUFRPass2() o vttt et it e e e e e e e e e e e e e e 16
1.22 TCS_BItFRPassO() o 17
1.23 TCS_BItFRPassHndIr() e e e 18
1.24 TCS_WBItFRPass() 19
1.25 TCS_DubSwp() o o 19
1.26 TCS_TIISWP() -« « o o e e e e e e e e e e e e e 20
1.27 TCS_TriUpd() o o o e e e e e e e e e e 22
1.28 TCS_WITriSWP() o o o 23
1.29 TCS_SHCSWP() « « « o o e e e e e e e 23

lib iv
1.30 TCS_GetVdoBufsAdrs() o o o e 24
1.31 TCS_EquVdoBufs() 25
1.32 TCS_SetPInsPos() 26
1.33 TCS_SetPInsVPoS() o e e e e 26
1.34 TCS_EnbXPld() 27
1.35 TCS_DsbXPfld() o 28
1.36 TCS_EnbDXPfId() o o 29
1.37 TCS_DsbDXPAId() o 29
1.38 TCS_SetFPIdOpct() o o o 30
1.39 TCS_SetGfXCIXt() o o o 31
1.40 4.5 Functions for Color/Palette Control e 31
1.41 TCS_GetRGBBItns() o oo e 31
1.42 TCS_GetRGBxTheoBrtns() e e e e e 32
1.43 TCS_GetRGBxXACtIBrtns() e e e e 33
1.44 TCS_RGBTORGBX() o e e e e e e e 33
1.45 TCS_RGBXToRGB() o 34
1.46 TCS_MKRGBXCnvTab() o oo e e e e e e e 35
1.47 TCS_RGBXPicToTrueCol() o e e e e e e e e e s s 35
1.48 TCS_TrueColPicTORGBX() o o e e e e 36
1.49 TCS_CLUTPicToTrueCol() o e e e e e e e e e s s s s 37
1.50 TCS_CLUTPIicToRGBX() o o o e e e e e e e 37
1.51 TCS_RmpRGBXPic() 38
1.52 TCS_FIgDXPfIdColIs() o o e e e e e e e e 39
1.53 SvIFFRGBxPal() 39
1.54 4.6 Functions for Graphics e e 40
1.55 4.6.1 Graphic Primitives e e e e e e e e 41
1.56 TCS_PIPXI)) o e 43
1.57 TCS_DrwLn() 43
1.58 TCS_DrwHrzLn() o e e 44
1.59 TCS_DrwVrtLnO() 44
1.60 TCS_DrwFrm() e 45
1.61 TCS_DrwSqr() . . . o v o e e e e e e e e e e e e e 45
1.62 TCS_DrwTrngl() e 46
1.63 TCS_DrwPlIgn() 46
1.64 TCS_DrwOpnPlIgn() e 47
1.65 TCS_DrwCrcl() 48
1.66 TCS_DrwEIps() o 48
1.67 TCS_FillArea() o o e e e e 49
1.68 4.6.2 Brush-handling Functions e 50

lib v
1.69 TCS_GetBrsh() 51
1.70 TCS_MKBrshMsk() 52
171 TCS_MrgBrshs() o o e e 53
1.72 TCS_FreeBrsh() 54
1.73 TCS_WrtBrsh() 54
1.74 TCS_FastWrtBrsh() e 55
1.75 TCS_WrtBrshZn() e e e e e 56
1.76 TCS_FastWrtBrshZn() 56
1.77 TCS_FitBrsh() 57
1.78 TCS_FastFitBrsh() e e e e e 58
1.79 TCS_FitBrshZn() 59
1.80 TCS_FitBrshZn() 60
1.81 TCS_RotZmBrsh() e e e 61
1.82 TCS_FastRotZmBrsh() e e e e 61
1.83 4.6.3 Miscellaneous Functions e 62
1.84 TCS_CIrScr() o o o e e 63
1.85 TCS_CpyScr() . . . o o o i e e e e e e 63
1.86 TCS_CpyScrZn() o e 64
1.87 TCS_FastCpyScrZn() o o it e e e e e e e e e e e e 65
1.88 TCS_CIpLn() o 65
1.89 TCS_FillBuf() 66
1.90 4.7 Functions for Picture Files L 67
191 TCS_LAILBMO() o o o e e e e e e e e e 67
1.92 TCS_UnLdILBM() o 68
1.93 4.8 Simple Meta-Example L e e e 69
1.94 49 Known Bugs & Problems e 69

lib

1/70

Chapter 1

lib

1.1 4 The tcs.library

4 The tcs.library

After all that theory in the previous chapter (wHaT?!? You have xnotx
read a single thing of all that stuff?!? You’d better have a look at the
basic information, at least!), I guess you now want to do some practice;
there are two ways:

a) hard: you digest the whole documentation and write your own routines
b) easy: you simply use the tcs.library I wrote for you!!!

No more things to say about a); so let’s get started with b):

Preliminary Operations

General Guidelines

Declarations Description

Functions for Displays

Functions for Color/Palette Control
Functions for Graphics

Functions for Picture Files

Simple Meta-Example

Known Bugs & Problems

T S S S O)
O 00 J o U b WN K

- to be able to follow the links here and in the following sub-sections
you should have the files "tcs.i" and "tcs_lib.i" in the directory
"INCLUDES:libraries/"

1.2 4.1 Preliminary Operations

4.1 Preliminary Operations

lib 2/70

Installing the tcs.library is of course a matter of seconds: just put the

file "tcs.library" in your "LIBS:" drawer.

Then copy the files tcs.i and tcs_lib.i anywhere you prefer: they are

the only two includes you’ll need to write your programs (for instance you
could keep them in the directory "libraries/" in the same drawer where all
the other AmigaOS includes (exec/, intuition/, etc.) are stored.

The files supplied in TCS/pal/ are the palettes (IFF/ILBMs with the BMHD =«
and CMAP chunks only) needed for creating new pictures or remapping pre-—
existent ones to the built-in RGBx formats. These files are _not_ used

by the library, so you can store them wherever you want (you can even de-
lete them - however, I don’t recommend this).

1.3 4.2 General Guidelines

4.2 General Guidelines

Generally, you’ll have to perform your operations in this order:

initialize one or more displays
show it/them

work with it/them

hide it/them

free it/them

g w N

Although a bit complicated, luckily for users, initializations are made
transparent to them by the function TCS_InitDspl(): here we Jjust need to
say that this function returns a pointer to a structure where you can find
the address of the chunky buffer relative to the display; moreover, this
pointer is fundamental as almost any other function needs it: store it in
a safe place, you’ll often have to use it!

Once the display has been set up, you can anytime activate it; note that
nothing stops you from having different displays initialized at the same
time (provided you have enough memory!): the one which is (or will be)
actually shown will not be affected at all.

Certainly, once you are finished with the display(s) you’ve created, all
the resources they have been assigned must be released: the means to do
this is provided by another function exactly opposite to the one that
performs the allocations.

As concerns Cross Playfield, you can operate in two ways:

a) initialize separately two normal displays and then put them together
with TCS_EnbXPfld ()

b) initialize a normal display, a "front-playfield-only" display and
then put them together with TCS_EnbXPfld()

the difference between the two methods is that b) uses much less memory
(the drawback is that the second display cannot be shown alone).

lib

3/70

To use a picture, you can:

a
b

)
)

load it with TCS_LAILBM/()
convert it to raw chunky with your preferred tool and load it as plain
binary data

To remap a picture to an RGBx mode of your choice, follow these steps:

g W N

run an image-processing program

load the picture you want to convert

load the chosen RGBx palette from TCS/pal/

use the program’s "remap" (or whatever it is called) function
save the new picture in ILBM format

Finally, here are some other important notes:

tcs.library functions, as any other library’s, don’t guarantee that
the content of the registers d0O0, dl, a0, al is preserved

when needed, always check the validity of the value returned in doO

or in the ccr before going further

be aware that, unless otherwise stated, functions will xnever* perform
checks on input values correctness! It’s all up to you!!!

some functions expressely require the AmigaOS to be ON and some others
to be (partially) OFF: pay attention to their description

don’t call [de-]allocation functions from interrupts, because they use
exec.library AllocMem() and FreeMem() !

1.4 4.3 Declarations Description

4.

3

Declarations Description

Before going on, I’d better shortly illustrate the meaning of some decla-
rations of public interest in tcs.i (which you have to refer to as only
small parts of that code will be reproduced here); for the declarations
not explained here, please try to understand the comments: the items which
could interest you are usually rather self-explaining.

O N ST ST AN

n

wwwwwww

VideoModes definitions, bits and flags
ClippingWindow structure

GraphicContext bits, flags and structure
DisplayDeclaration structure

DisplayInfo structure

MainCopperList structure

ILBMInfo structure

~ o U W N

o description of the TCSBase structure is given because it holds

lib

4/70

no relevant item; the library name, as usual, is given as a short macro

- tcs_1lib.i, as you may expect, contains the Library Vector Offsets

1.5 4.3.1 VideoModes definitions, bits & flags

4.3.1 VideoModes definitions, bits & flags

These definitions are very important as they are needed to specify which
video mode (VdoMode) to assign to a display at its initialization.

They are given in the common bits & flags fashion

and can be used in the

classic way: to form the desired bit-map value put the appropriate flags
together by and/or—-ing the TCS_VMf_#? values and/or by bclr/bset-ing the

relevant bits using the TCS_VMb_#? bit indexes.

A VdoMode definition consists of any TCS_VM_RGBx value (that selects the

RGBx method wanted), optionally or-ed with:
TCS_VMf_MskPln : enable MskPln (HalfRes only)

TCS_VMf_chgr : enable ChgrMode (HalfRes only)

TCS_VMf_HScrl : enable horizontal scrolling (HalfRes only)

TCS_VMf_FullRes: enable FullRes video mode (clears: TCS_VMf_MskPln,

TCS_VMf_chqgr, TCS_VMf_HScrl)
TCS_VMf_BltFRP : enable Blitter—assisted FullRes
TCS_VMf_DubBuf : enable double buffering

TCS_VMf_TriBuf : enable triple buffering (clears

(FullRes only)

TCS_VMf_ DubBuf)

TCS_VMf_FPfld : use display exclusively as front playfield when the

Cross Playfield mode is active
shown alone)

1.6 4.3.2 ClippingWindow structure

4.3.2 ClippingWindow structure

This structure is used to define the only area of the screen which can be

affected by the graphic functions.

(this display cannot be

The fields indicate the coordinates of the sides of the clipping window

as follows:

|chunky screen |

lib 5/70

| |

| |

| <1lf,top> | 1f = TCS_Cw_1f
| K—m oo ————— + | top = TCS_CW_top
| |clipping window \

| | \ |

| | \ |

| | \ |

| | \ |

| | \ |

| | \ |

| | \ |

| | \ |

| | \ |

| e * |

| <rt,btm> | rt = TCS_CW_rt
| | btm = TCS_CW_btm
——————_———_————— +

1.7 4.3.3 GraphicContext bits, flags and structure

4.3.3 GraphicContext bits, flags and structure

A Graphic Context is a structure which dictates how the graphics drawn by
Graphic Context -sensitive functions must look.

The structure fields are:
TCS_GC_flgs : bitmap made of any combination of the TCS_GCf_#7? flags

TCS_GC_ClpWin: ClippingWindow structure to use when the TCS_GCb_clp bit
of TCS_GC_flgs is set

1.8 4.3.4 DisplayDeclaration structure

4.3.4 DisplayDeclaration structure

This structure tells the library what kind of display you want to open, so
you must know perfectly the meaning of every item:

TCS_DD_VdoMode: see here

TCS_DD_UsrLst0: address of the first user copperlist: when _some_ early
settings have been done by the main copperlist and _be-
fore_ the first line is drawn on the screen and passing
to chequer and/or scroll settings (when needed), this
address is loaded to COP2LC and then the Copper is forced
to jump with a write to COPJMP2.

lib

6/70

TCS_DD_UsrLstl:

TCS_DD_DsplXO0,
TCS_DD_DsplYO

TCS_DD_DsplX1,
TCS_DD_DsplYl

TCS_DD_Scrwd

TCS_DD_ScrHt

TCS_DD_brtns

TCS_DD_GfxCtxt:

To resume main copperlist execution, the user copperlist
smustx end with COPMOVE to COPJMP1l (ex.: dc.w $88,1).
The user copperlist(s) can freely redifine COP2LC, but
cannot touch COP1LC, as it holds the main copperlist
resume address.

The user copperlist is always executed before the line
indicated by TCS_DD_DsplYO0 and should return (i.e. must
be closed by the declaration above) before such line.
Set it to 0 if no user copperlist is required

address of the second user copperlist: when _all_ the
settings have been done by the main copperlist, this
address is loaded to COP2LC and then the Copper is forced
to jump with a write to COPJMP2.

There is no particular restriction on how this copperlist
must end.

This copperlist is _always_ executed at the end of the
main copperlist, so note that if ChgrMode is ON then it
will be started after almost the whole screen has been
drawn (only part of the last rasterline remains).

Set it to 0 if no user copperlist is required

the coordinates of the top-left corner of the display
window in SHRES pixels as in DIWSTRT+DIWHIGH (just the
values, not the format!)

- TCS_DD_DsplX0 >= TCS_DL_MinXO0

- TCS_DD_DsplY0O >= TCS_DL_MinYO

the coordinates of the bottom-right corner of the display
window in LORES pixels as in DIWSTOP+DIWHIGH (just the
values, not the format!)

— TCS_DD_DsplXl <= TCS_DL_MaxX1l

— TCS_DD_DsplYl <= TCS_DL_MaxY¥Y1l

- TCS_DD_DsplX1-TCS_DD_DsplX0 >= TCS_DL_MinWd

- TCS_DD_DsplYl-TCS_DD_DsplY0 >= TCS_DL_MinHt

width in TCS pixels of the screen to open (if necessary,
it will be rounded to next multiple of 8)

— TCS_DD_ScrWd >= DsplWd/8 [HalfRes]

— TCS_DD_ScrWd >= DsplWd/4 [FullRes]

where DsplWd = (TCS_DD_DsplX1-TCS_DD_DsplX0) rounded to
the next multiple of 64 because 64-bit burst for bit-
plane data fetch is used

height in pixels of the screen to open
- TCS_DD_ScrHt >= TCS_DD_DsplYl-TCS_DD_DsplYO

brightness degree in [0...256] of display at startup

GraphicContext structure for the default Graphic Context
assigned to the display

lib 7170

1.9 4.3.5 Displayinfo structure

4.3.5 DisplayInfo structure

This structure is really important as it is used by almost any function.
It’s created and mantained automatically and normally you shouldn’t really
feel the need to access it. Yet, it contains precious info, so I'm going
to talk about the most important fields:

TCS_DI_MainLst: address of the main copperlist of the display.
There is a single copy of this copperlist per display,
regardless of the screen buffering method chosen

TCS_DI_UsrLst0: a longword that points to the first user copperlist: a
simple write in this field will not produce any effect
(the jump to the user copperlist is auto-coded inside the
main copperlist by InitDspl()). If you really need to
change the address of this copperlist, you’ll have to do
it yourself using the MainCopperList structure

TCS_DI_UsrLstl: a longword that points to the second user copperlist: a
simple write in this field will not produce any effect
(the jump to the user copperlist is auto-coded inside the
main copperlist by InitDspl()). If you really need to
change the address of this copperlist, you’ll have to do
it yourself using the MainCopperList structure

TCS_DI_CSAdr : fundamental field: it always holds the address of the
screen buffer you can write/read pixels to/from.
Always use this value and forget about the many others
defined in the same structure!

TCS_DI_CSWd : unsigned word field that holds the chunky screen width
in bytes
TCS_DI_CSHt : unsigned word field that holds the chunky screen height

in pixels

1.10 4.3.6 MainCopperList structure

4.3.6 MainCopperList structure

This structure is used to gain "clean" access to the copperlists generated
by InitDspl() (if you feel "obliged" to put your hands on this part of
Copper code, make sure you know exactly what you’re doing).

Copperlists are handled in this way: there is a "master copperlist" (the
one whose structure we’re dealing with here - note that it always runs
using COP1LC, so other copperlists can’t modify this register) which
performs some settings and calls all the other copperlists dedicated to

lib 8/70

screen buffering (TCS_MCL_BuflLst), Cross Playfield (TCS_MCL_FPfldLst),
palette (TCS_MCL_PalLst) and user-defined settings (TCS_MCL_UsrLst0/1).

Since the few other fields are rather self-explaining (and, generally,
you should not be interested much), I’11 dwell upon only the most rele-
vant of those just listed:

TCS_MCL_UsrLst0O: this is a three-longword field used for three COPMOVEs
that load the COP2LC register with TCS_DD_UsrCopLstO
and then start such copperlist by writing to COPJMP2.
If no user copperlist is required, it is written with a
COPMOVE to the strobe register COPJMP1l to continue with
the main copperlist execution

TCS_MCL_UsrLstl: this is a three-longword field used for three COPMOVEs
that load the COP2LC register with TCS_DD_UsrCopLstl
and then start such copperlist by writing to COPJMP2.
If no user copperlist is required, it is written with
a simple "COPWAIT forever" (Sfffffffe)

1.11 4.3.7 ILBMInfo structure

4.3.7 ILBMInfo structure

This structure has few rather self-explaining fields and is the one you
get after loading an ILBM:

TCS_II_UsrBufAdr : user-specified address of the chunky buffer for the
raster data (0 if none specified)

TCS_II_GfxAdr : address of the chunky buffer for the raster data (same
as TCS_II_UsrBufAdr, if this is not 0)

TCS_II_PalAdr : address of the original 256 entries, raw, 24-bit pa-
lette

TCS_II_PalDiff : degree of mismatch between the original palette and

the mode indicated in TCS_II_RGBxMode (0 in case of
exact match)

TCS_II_wd : picture’s width in pixels
TCS_II_ht : picture’s height in pixels
TCS_II_PlnsNo : picture’s number of planes
TCS_II_RGBxMode : RGBx mode automatically selected by TCS_LAILBM()

1.12 4.4 Functions for Displays

4.4 Functions for Displays

The following functions allow you to create, modify, use, destroy all the
displays you want (and your machine permits!):

lib

9/70

TCS_InitDspl ()
TCS_ShwDspl ()
TCS_HideDspl ()
TCS_FreeDspl ()
TCS_SetRGBxMode ()
TCS_C2PPass0 ()
TCS_CPUFRPassO (
TCS_CPUFRPassl1 (
TCS_CPUFRPass?2 (
TCS_BltFRPassO (
TCS_BltFRPassHn
TCS_WtB1tFRPass
TCS_DubSwp ()
TCS_TriSwp ()
TCS_TriUpd()
TCS_WtTriSwp ()
TCS_SttcSwp ()
TCS_GetVdoBufsAdrs ()
TCS_EquVdoBufs ()
TCS_SetPlnsPos ()
TCS_SetP1lnsVPos ()
TCS_EnbXPfld ()
TCS_DsbXPfld ()
TCS_EnbDXPfld ()
TCS_DsbDXPf1ld ()
TCS_SetFPf1dOpct ()
TCS_SetGExCtxt ()

1r ()

)
)
)
)
d
0

1.13 TCS_InitDspl()

TCS_InitDspl ()

INFO

Reserves and initializes all the memory buffers needed for the bitplanes,
copperlists and data structures required to create a display.

SYN
DIAdr = TCS_InitDspl (DDAdr)

do.1 al0.1

IN

DDAdr pointer to DisplayDeclaration structure of the desired display

OouUT

DIAdr pointer to DisplayInfo structure (0=ERROR)

lib 10/70

NOTE

— after the call, you can find the address of the buffer to use as chunky
screen in DIAdr.TCS_DI_CSAdr (it’s *notx adviceable to use any other
pointer that can be found in that structure)

— DDAdr.ScrWd is always rounded to next multiple of 8 (if necessary)

- error returned if (.x = DDAdr.x):

a) .DsplX0 < TCS_DL_MinXO0

b) .DsplXl > TCS_DL_MaxX1l

c) .DsplY0 < TCS_DL_MinYO

d) .DsplYl > TCS_DI_MaxY1l

e) .DsplX1l-.DsplX0 < TCS_DL_MinWd
f) .DsplYl-.DsplY0 < TCS_DL_MinHt
g) - [HalfRes] .ScrWd < DsplWd/8

— [FullRes] .ScrWd < DsplWd/4
(DsplWd = (.DsplX1l-.DsplX0) rounded to the next multiple of 64)
h) .ScrHt < .DsplYl-.DsplYO
i) not enough memory
— use TCS_FreeDspl() to deallocate
— uses exec.library’s AllocMem(), thus it can’t be called from interrupts

1.14 TCS_ShwDspl()

TCS_ShwDspl ()
INFO
Shows on the monitor a display.

SYN

success = TCS_ShwDspl (DIAdr)

ccr al0.1
IN
DIAdr display DisplayInfo structure pointer
ouT
success ne = display started successfully
eq = ERROR
NOTE

- error returned if:

lib 11/70

a) the display was already shown
b) DIAdr relative to a display initialized as "front-playfield-only"
and the other playfield was hidden
c) DIAdr is not a valid DI structure pointer
— make sure the AmigaOS is OFF and you have control over the hardware!
— 1f there is another display being shown, it is hidden first
- Cross Playfield mode is restored if other playfield already shown
- activates all the needed DMA channels (bitplanes, Copper and, in case
of Blitter—-assisted FullRes conversion, Blitter)
- it always switches to PAL
— use TCS_HideDspl() to hide the display

1.15 TCS_HideDspl()

TCS_HideDspl ()
INFO
Hides the desired display.

SYN

success = TCS_HideDspl (DIAdr, NewCopLst)

ccr a0.1 al.l
IN
DIAdr display DisplayInfo structure pointer
NewCopLst address of the copperlist to be executed after hiding the
display (0 = blacken the monitor screen)
ouT
success ne = display hidden successfully

eq = ERROR

NOTE

— error returned if:
a) display was already hidden
b) DIAdr is not a wvalid DI structure pointer

— 1f NewCopLst=0 then Copper and bitplanes DMAs are turned OFF

— use TCS_ShwDspl() to make the display visible again

— in Cross Playfield mode the other playfield remains visible unless decla-
red "front-playfield-only" (in which case NewCopLst is used)

lib

12/70

1.16 TCS_FreeDspl()

TCS

INF

Fr

SYN

sSu

ccC

IN

DI

OuUT

Su

NOT

_FreeDspl ()

0

ees all the resources allocated for a display.

ccess = TCS_FreeDspl (DIAdr)

r al0.1

Adr display DisplayInfo structure pointer

ccess ne = resources released successfully
eq = ERROR

E

error returned if:

a) the display is currently being shown (hide it, first)

b) Cross Playfield mode is active (disable it, first)

c) DIAdr is not a valid DI structure pointer

uses exec.library’s FreeMem(), thus it can’t be called from interrupts
you *must*x wait for Blitter—-assisted FullRes conversion to end (if
active) before calling this function! The reason is that while this
function releases all the allocated buffers, it could be that a long
blit is still being performed on one of them!

1.17 TCS_SetRGBxMode()

TCS_SetRGBxMode ()

INF

Se

SYN

¢}

ts the RGBx mode and palette of a display.

lib

13/70

TCS_SetRGBxMode (DIAdr, RGBxID, brtns)

al0.1 d0.b dl.w
IN
DIAdr display DisplayInfo structure pointer
RGBxID one of the TCS_VM_RGBx values
brtns brightness degree: [0 ... 256] = [min ... max]
NOTE

— since there is a single palette copperlist, its changes are immedia-
tely visible despite buffering

- brightness control permits to achieve easily simple fade in/out effects

— if the display is in Cross Playfield mode, the new palette for both
playfields is re-calculated, too

- relatively expensive

1.18 TCS_C2PPass0()

TCS_C2PPassO0 ()

INFO
Executes the conversion chunky screen —-> display logical planes.

The user does not have to bother about whether the conversion is actually
needed or not, and about which TCS_#?Pass0() function to call.

SYN

TCS_C2PPass0 (DIAdr)

a0.1

IN

DIAdr display DisplayInfo structure pointer

NOTE

- if Blitter-assisted conversion is required, the handler must be
properly set by the user anyway

- nothing is done if the screen width and height don’t match the display
area ones: ScrWd = (DsplX1-DsplX0)/4; ScrHt = DsplYl-DsplYO (the iden-—
tifiers belong to the DisplayDeclaration structure)

— see also TCS_CPUFRPassO (), TCS_CPUFRPassl (), TCS_CPUFRPass2() and

lib 14/70

TCS_BltFRPassO ()

1.19 TCS_CPUFRPass0()

TCS_CPUFRPassO ()

INFO

This function is useful only if a FullRes video mode has been activated
as it executes the conversion chunky screen -> display logical planes.

SYN

TCS_CPUFRPassO (DIAdr)

a0.1

IN

DIAdr display DisplayInfo structure pointer

NOTE

- *NEVER* call if DI’'s wvideo mode is not FullRes!!!

— this routine has to deal with lotsa data and writes to _slow_ CHIP ram,
so don’t expect to be lightning fast!

Anyway, I can’t really see how to make it faster (at least on my 030 -
I tried thousands of different implementations!!!)

— call xonlyx when the screen width and height match exactly the display
area ones: ScrWd = (DsplX1-DsplX0)/4; ScrHt = DsplYl-DsplYO (the iden-—
tifiers belong to the DisplayDeclaration structure)

- see also TCS_CPUFRPassl (), TCS_CPUFRPass2() and TCS_BltFRPassO ()

1.20 TCS_CPUFRPass1()

TCS_CPUFRPassl ()

INFO

This function is useful only if a FullRes video mode has been requested
as it executes the conversion chunky screen —-> display logical planes.

SYN

lib 15/70

TCS_CPUFRPassl (DIAdr, sx, SY)

a0.1 dO.w dl.w

IN

DIAdr display DisplayInfo structure pointer
SX, sy coordinates of top-left pixel of area to convert referring to
chunky screen’s coordinates system (see figure)

<0, 0>

A —— — +

<0, 0> |chunky screen |
A———— + | <sx,sy> |
display		A ——— +		
window			source area	
			(same size	
\		lof display		
e +		window) \		
Fomm +				
o +

NOTE

— it can be used to easily scroll screens larger than the display

— *NEVER% call if DI’s video mode is not FullRes!!!

- best performance when sx is multiple of 4

— this routine has to deal with lotsa data and writes to _slow_ CHIP ram,
so don’t expect to be lightning fast!
Anyway, I can’t really see how to make it faster (at least on my 030 -
I tried thousands of different implementations!!!)

- you must choose <sx,sy> carefully:

<0, 0>
A — +
<0, 0> |chunky screen |
h——————————— + | |
|display | | |
| window | | |
\ | | |
| | <sx,sy> |
o + | K———————————— + |
| | source area | |
e fom +———+

| ##H S

EEEEsES LS EN

o ——— +

pixels marked with a "#’ will be shown on the display even if they
don’t belong to the screen

- see also TCS_CPUFRPassO (), TCS_CPUFRPass2() and TCS_BltFRPassO ()

lib

16/70

1.21 TCS_CPUFRPass2()

TCS_CPUFRPass2 ()

INFO

This function is useful only if a FullRes video mode has been requested
as it executes the conversion chunky screen —-> display logical planes,
giving the possibility of choosing the area of the screen to convert:
this can give a significant speedup when only a part of the screen needs
to be updated.

SYN

TCS_CPUFRPass?2 (DIAdr, sx0, syO, sxl1, syl, dx, dy)

IN

DIAdr
sx0,sy0
sx1l,syl
dx, dy

NOTE

a0.1 dO.w dl.w d2.w d3.w d4.w d5.w

display DisplayInfo structure pointer

coordinates of top-left and bottom-right pixel of area to
convert referring to chunky screen’s coordinates system
coordinates of top-left pixel of the destination area referring
to display window’s coordinates system

<0, 0> <0, 0>
- —————————————— + A——— = ———————————— +
|display window |chunky screen
| <dx, dy>
| K——— + |<sx0,sy0>

<sxl,syl>

— it can be used to easily scroll screens larger than the display

— x*NEVER* call if DI’'s video mode is not FullRes!!!

— 1f necessary, the area width (sxl-sx0+1l) is rounded to the next
multiple of 16

- best performance when sx0 and dx are multiple of 4

- dx is always automatically evened

- this routine has to deal with lotsa data and writes to _slow_ CHIP ram,

lib 17/70

so don’t expect to be lightning fast!
Anyway, I can’t really see how to make it faster (at least on my 030 -
I tried thousands of different implementations!!!)

— be extremely cautios when choosing the input values; the following
situatuation causes writes to CHIP ram *notx allocated:

|chunky screen

|

| \

| | <sx0, sy0>
|

|

|

|

|

|

\ |area to convert \ |

Aomm o ==t \ | | |

+-——+ |larea to convert##i| \ | \ |

[H#4# | | [##4#| \ | \ |

[#44 | | [##4#| \ | \ |

[#44# | | [@QQ | \ | \ |
f—— o ———— +QQQ | \ o ————— *

|@RREEEQRLREEQRQRLREREREAE | \ <sx1l,syl>|

e et S I it +

#: these pixels "wrap around" the display and reappear on the other
side as shown

@: these pixels are written in CHIP ram locations not allocated
for the display bitplanes

— see also TCS_CPUFRPassO (), TCS_CPUFRPassl () and TCS_BltFRPassO ()

1.22 TCS_BItFRPass0()

TCS_BltFRPassO0 ()

INFO

Executes the first part of the conversion as in TCS_CPUFRPassO() (up-
dates VdoPlnl only).

SYN

TCS_BltFRPassO (DIAdr)

a0.1

IN

DIAdr display DisplayInfo structure pointer

NOTE

lib

18/70

NEVER call if DI’s video mode is not FullRes and Blitter-assisted
FullRes conversion has not been activated!!!

the job is completed by TCS_BltFRPassHndlr ()

the Blitter must not be currently used by any other program: if multi-
tasking is enabled, execute an OwnBlit () before; note that since the
Blitter will also be used by TCS_BltFRPassHndlr() you can release it
with DisownBlit () only after waiting for it to finish; same goes if
you need the Blitter yourself: wait before accessing its registers!
will wait for TCS_BltFRPassHndlr () to finish in case another conver-—
sion has already been started but has not terminated yet

designed for Amigas equipped with FAST ram in mind (to let the CPU free
of working in parallel), so don’t use it on unxepanded machines!
Anyway, use it carefully: the Blitter takes ages to update the whole
screen, so make sure the CPU doesn’t fall in idle state waiting for the
Blitter to finish

call only when the chunky screen width and height match exactly the
display area’s ones: ScrWd = (DsplX1-DsplX0)/4; ScrHt = DsplYl-DsplYO
(identifiers belong to the DisplayDeclaration structure)

if no buffering is used the screen looks very Jerky because this func-
tion works on planar basis: the Blitter first converts the whole Vdo-
P1nl and then VdoP1ln0O (on the contrary, TCS_CPUFRPass? () converts both
planes long by long, so no jerks are visible even without buffering)
sets INTENA.INTEN (it should have been already set, anyway)

see also TCS_CPUFRPass0O (), TCS_CPUFRPassl () and TCS_CPUFRPass2()

1.23 TCS_BItFRPassHndIr()

TCS_BltFRPassHndlr ()

INFO

SYN

Executes the second part of the current FullRes conversion (updates
VdoP1n0) when done with Blitter’s assistance.

TCS_BltFRPassHndlr ()

NOTE

NEVER call if DI’s video mode is not FullRes and Blitter-assisted
FullRes conversion has not been activated!!!

it must be called from inside a level3/BLIT interrupt handler (all the
job will be done automatically); for example:

Lev3Hndr movem. 1 d0-d1/d7/a0-al/a6, - (sp)
move .w Sdff0le, d?7 ;get INTREQR
btst.1 #6,d7
beq.s .exit ;1f not BLIT...

movea.l TCSBase, a6

lib 19/70

jsr (_LVOTCS_BltFRPassHndlr, a6)

.exit movem. 1 (sp)+,d0-d1/d7/a0-al/a6
move .w #5540, SAff09c ;clear INTREQ.BLIT
rte

(of course this code can be extended to handle all other interrupts)

— for considerations about Blitter-sharing with other tasks have a look

at the notes of TCS_BltFRPassO ()
— for considerations about possible interactions with screen buffering,

have a look at the notes of TCS_DubSwp () and TCS_TriSwp ()

1.24 TCS_WiBItFRPass()

TCS_WtB1ltFRPass ()

INFO

Waits for th current Blitter—-assisted FullRes conversion to end.

SYN
TCS_WtB1ltFRPass (DIAdr)

a0.1

IN

DIAdr pointer to a DisplayInfo structure or 0 to wait for the conver-—
sion completion on a specific or any display, respectively.

NOTE

- if you pass a non-zero DIAdr, the function will wait only if the cur-
rent conversion is relative to the specified display

— make sure TCS_BltFRPassHndlr () can still be called (i.e.: the inter-
rupt handler from which it is called is still active), otherwise a

deadlock will surely happen!
- before using the Blitter yourself, you *mustx call this function (using
graphics.library’s WaitBlit () or polling DMACONR.BBUSY is not the same

nor enough!)

1.25 TCS_DubSwp()

TCS_DubSwp ()

lib

20/70

INFO

Executes the screen swapping to make double buffering take place: the
logical buffer which was in the background will be displayed after the
Copper reloads the BPLxPT registers (during the first VBL after the call)
and the physical buffer that was displayed until that moment will become
available for your gfx operations.

SYN

NewChnkScr = TCS_DubSwp (DIAdr)

do.1 a0.1

IN

DIAdr display DisplayInfo structure pointer

OuUT

NewChnkScr address of the chunky screen that can be used for background

NOT

rendering after the call

E

it makes no sense to call this function if double buffering has not
been activated with TCS_VMf_DubBuf (TCS_VMf_ TriBuf is useless either)
call immediately before or during a vertical blanking to have that the
new physical copperlist is promptly used: otherwise, it could happen
that you start rendering on the new logic buffer which is still being
displayed, with the ensuing on-screen jerkings!

in case of Blitter—-assisted FullRes conversion, the buffers can be
swapped only after the Blitter is finished, thus this function could
put itself in active wait for that event (TCS_BltFRPassHndlr () must

be called from an enabled interrupt to be able to break that wait loop,
otherwise a deadlock will surely happen!).

Also consider that the wait probably will make everything go "out of
sync", i.e. the swap could occur in the middle of a frame (without any
visible change until the next VBL) despite you waited for the VBL be-
fore calling the function; in such case a simple solution would be wai-
ting or performing non-graphic operations till the next VBL

1.26 TCS_TriSwp()

TCS_TriSwp ()

INFO

lib

21/70

SYN

IN

This function is the homologous of TCS_DubSwp(): to keep the triple
buffering mechanism going it checks whether a screen buffer has been
completely rendered and, in such case, makes the new physical buffer di-
splayable starting from the first VBL after or during the call.

TCS_TriSwp (DIAdr)

a0.1

DIAdr display DisplayInfo structure pointer

NOTE

it makes no sense to call this function if triple buffering has not
been activated with TCS_VMf_ TriBuf (TCS_VMf_ DubBuf is useless either)
it makes only half of the job required for triple buffering: the

rest is done by TCS_TriUpd()

must be called from inside an enabled interrupt handler (preferably
every VBL with a level3/VERTB interrupt - TCS_TriUpd() could be wait-
ing in a tight loop)

in case of Blitter-assisted FullRes conversion, the swapping could be
delayed until the Blitter has finished its Jjob (more precisely, to the
next VBL after Blitter’s rendering completion) - let’s see why: normal-
ly, the sequence of the operations would be:

KA A AR A AR A AR A AR A AR A AR A A A A ARk A A I AR I AR A A A A I A A A A A A A A A A A A ARk A Ak hAhhk ko

* user program main loop

loop < oloo>
<program screen rendering>
jsr TCS_BltFRPassO () ;FullRes conversion (1lst)
jsr TCS_TriUpd() ;triple buffering
bra loop

RS I I b 2 b b b b dh b b dh b b b b 2h b b dh S b b b b SR b b dh b b S b b 2 S b b b b S Sh b S b b 2 Sh b S Sh b S dh b 2 Sh b dh i 2 i
* VERTB interrupt handler

.start <o ol>
move .w Sdff0le,d?’ ;get INTREQR
<.o.o>

btst.1 #6,d7

beqg.s .VERTB ;if not BLIT...

jsr TCS_BltFRPassHndlr () ;FullRes conversion (2nd)
move.w #5540, Sdff0le ;clear INTREQ.BLIT

<. >

.VERTB btst.1 #5,d7

lib 22/70

beqg.s .there ;1f not VERTB...

jsr TCS_TriSwp () ;triple buffering

move.w #3520, $dff01le ;clear INTREQ.VERTB
.there < o>

rte

KA KK A AR A A KA AR A I A A A I A A I A A A A A A A A I A A I A A I A AR I A A I A A I A A d A A d A A hA A A A Ak Ak ko k

to give the processor as much freedom as possible, TCS_TriUpd() works
in a non-blocking way, in the sense that it only stops if no buffer is
available; at the same time, the Blitter proceeds with its job concur-
rently, out of processor’s control: this means that there is no gua-
rantee that when trying to perform the swapping inside the handler it
has already finished (it could be in the middle of both the first and
the second part); thus, TCS_TriSwp () is forced to ignore the request,
as there is no buffer actually ready to be displayed (although, from
the program’s perpective, there is - as signalled with TCS_TriUpd()) .
A last note on when we clear INTREQ: the BLIT bit is cleared immedia-
tely after the call to TCS_BltFRPassHndlr () because in case of small
blits, the Blitter could request another interrupt before exiting this
handler, so we must pay attention not to trash this signal (yet, since
TCS_BltFRPassHndlr () returns just after starting the Blitter, it is

a very unlikely event; anyway, be extremely cautious and DO NOT set
Blitter nasty bit - DMACON.BLTPRI), which could prevent the micro from
writing to INTREQ, especially on CHIPram-only machines!)

- must *never* be interrupted by TCS_TriUpd() or TCS_BltFRPassO()!

1.27 TCS_TriUpd()

TCS_TriUpd ()

INFO

This is one of the functions needed to operate the triple buffering: in
particular this routine is used to acknowledge that a screen rendering
has been finished (in background); whenever you get to such point, Jjust
call this function, get hold of its return value and continue without
giving a damn to all the rest: this function and TCS_TriSwp() will do
everything for you.

SYN

NewChnkScr = TCS_TriUpd (DIAdr)

do.1 a0.1

IN

DIAdr display DisplayInfo structure pointer

lib 23/70

OUT

NewChnkScr address of the chunky screen that can be used for background
rendering after the call

NOTE

— *NEVER«% call it if triple buffering is not active or TCS_TriSwp ()
cannot interrupt its execution (i.e. TCS_TriSwp () must be called from
inside an enabled interrupt): otherwise it would get stuck in an infi-
nite wait loop!

- after getting NewChnkScr you can immediately start to draw graphics
to the buffer at this address

1.28 TCS_WiTriSwp()

TCS_WtTriSwp ()

INFO

Waits for a triple buffering swap to be performed by TCS_TriSwp() .

SYN
TCS_WtTriSwp (DIAdr)

a0.1

IN

DIAdr display DisplayInfo structure pointer

NOTE

— useful for particular synchronization needs

— *NEVER«% call it if triple buffering is not active or TCS_TriSwp ()
cannot interrupt its execution (i.e. TCS_TriSwp () must be called from
inside an enabled interrupt): otherwise it would get stuck in an infi-
nite wait loop!

— the function exits immediately if no swap will ever be done (this
happens when the next step should be done by TCS_TriUpd() and not by
TCS_TriSwp ()

1.29 TCS_SttcSwp()

lib 24/70

TCS_SttcSwp ()

INFO

Executes a video buffers swap (as if TCS_DubSwp () or TCS_TriSwp() or
TCS_TriUpd () had been called, but without affecting the current copper-
list) when the buffering mechanism is enabled but not running.

SYN

NewChnkScr = TCS_SttcSwp (DIAdr)

do.1 a0.1

IN

DIAdr display DisplayInfo structure pointer
OouUT

NewChnkScr address of the new logical video buffer

NOTE

— especially useful to update the video buffers statically, out of the
buffering cycle (see also TCS_GetVdoBufsAdrs () and TCS_EgquVdoBufs())
- don’t call if swapping is currently running

1.30 TCS_GetVdoBufsAdrs()

TCS_GetVdoBufsAdrs ()
INFO
Returns the addresses of all the buffers reserved for video buffering.

SYN
TCS_GetVdoBufsAdrs (DIAdr, DstLstAdr)

a0.1 al.l

IN

lib 25/70

DIAdr display DisplayInfo structure pointer
DstLstAdr address of a 16 bytes long vector, which will be filled with
4 longwords representing the addresses of:

— the current logical buffer

— the current available buffer
- the current physical buffer
- the current ready buffer

(in this order)

NOTE

- al.l is guaranteed to be left unmodified

— especially useful to update the video buffers statically, out of the
buffering cycle (see also TCS_SttcSwp() and TCS_EquVdoBufs())

— double buffering active: available=logical, ready=physical

- triple buffering active: available=logical and ready<>physical or
available<>logical and ready=physical (case at initialization)

- double/triple buffering not active: all addresses are equal

— FullRes ON: all addresses are equal independently from the buffering
mode selected

- don’t call if buffers swapping is currently running

1.31 TCS_EquVdoBufs()

TCS_EquVdoBufs ()

INFO

Equals the content of all the video buffers of a display to the current
logical video buffer’s.

SYN

TCS_EquVdoBufs (DIAdr)

al.1
IN
DIAdr display DisplayInfo structure pointer
NOTE

- especially useful to update the video buffers statically, out of the
buffering cycle (see also TCS_SttcSwp () and TCS_GetVdoBufsAdrs())

— in FullRes, you should update the logical video buffer by calling one
of the TCS_???FRPass?() functions before calling this one

lib 26/70

— no operation is performed if the display is not buffered

1.32 TCS_SetPInsPos()

TCS_SetPlnsPos ()

INFO

Sets the position of the bitplanes of a HalfRes display.

SYN
TCS_SetPlnsPos (DIAdr, XPos, YPos)

a0.1 do.w dl.w

IN

DIAdr display DisplayInfo structure pointer

XPos unsigned x offset in SHRES pixels from top-left corner
YPos unsigned y offset in pixels from top-left corner
NOTE

- this function can be used to scroll a screen larger than the display
area (no check is made, though - it’s not dangerous, it would result
just in an on-screen memory dump ;))

— don’t call if horizontal scrolling has not been activated!

— this routine is relatively slow if ChgrMode is ON, due to the fact
that the copperlist which implements it is quite long and thus many
writes to CHIP ram must be done (besides, as a consequence, Jjerkings
are very likely to show up if double/triple buffering is not active
and, anyway, if called while or just before the Copper executes that
part of the copperlist - to avoid this, call just after the VBL)

— the display DIAdr refers to needs xnot* necessarily to be active

- it affects only the current logic copperlist

— in Cross Playfield mode it’s up to you to keep the same horizontal
position of both playfields!

- to obtain the same effect in FullRes simply change the input values of
TCS_CPUFRPassl () or TCS_CPUFRPass2 ()

1.33 TCS_SetPInsVPos()

TCS_SetPlnsVPos ()

lib

27170

INFO

Sets the vertical position of the bitplanes of a HalfRes display.

SYN
TCS_SetPlnsVPos (DIAdr, YPos)

a0.1 dl.w

IN

DIAdr display DisplayInfo structure pointer
YPos unsigned y offset in pixels from top-left corner

NOTE

- this function can be used to scroll a screen larger than the display
area (no check is made, though - it’s not dangerous, it would result
just in an on-screen memory dump ;))

— don’t use if horizontal scroll is ON (use TCS_SetPlnsPos (), instead)

- to obtain the same effect in FullRes simply change the input values of
TCS_CPUFRPassl () or TCS_CPUFRPass2 ()

— the display DIAdr refers to needs xnot* necessarily to be active

— this function is fast in any video mode and thus can be always called
without problems (unlike TCS_SetPlnsPos())

- it affects only the current logic copperlist

1.3 TCS_EnbXPfld()

TCS_EnbXPfld ()

INFO

Enables the Cross Playfield mode by superimposing a screen (from a pre-—

viously initialized display - "front playfield") to another one (from
another display - "back playfield").
SYN

success = TCS_EnbXPfld(BPfld, FPfld)

ccr al0.1 al.l
IN
BPfld back playfield DisplayInfo structure pointer

FPfld front playfield DisplayInfo structure pointer

lib 28/70

ouT
success ne = mode enabled successfully
eq = ERROR
NOTE

— error returned if:
a) the displays are uncompatible
b) BPfld’s display is declared "front-playfield-only"

— in HalfRes, the playfields positions are automatically reset to <0, 0>

- front playfield opacity set to 256 and Dual mode disabled by default

— the playfields are _not_ automatically shown, but instead you must call
TCS_ShwDspl () anytime after enabling the mode

1.35 TCS_DsbXPfld()

TCS_DsbXPfld ()

INFO

Deactivates the Cross Playfield mode.

SYN

success = TCS_DsbXPfld(DIAdr)

ccr a0.1

IN

DIAdr DisplayInfo structure of any playfield
OouT

success ne = mode disabled successfully

eq = ERROR

NOTE

- error returned if:
a) Cross Playfield not enabled
b) playfield relative to DIAdr still shown (hide it, first)

lib

29/70

1.36 TCS_EnbDXPfld()

TCS_EnbDXP£f1d ()

INFO

Enables and sets the Dual modality of Cross Playfield mode to simulate
a real Dual Playfield.

SYN
success

CCr

IN

DIAdr
TrnspCol

OouT

success

NOTE

TCS_EnbDXPf1d (DIAdr, TrnspCol)

a0.1 d0.b

DisplayInfo structure of any playfield
front playfield RGBx color to treat as transparent regardless
of the playfield’s opacity

ne = mode enabled successfully
eq ERROR

- error returned if:
a) DIAdr doesn’t belong to a display used for Cross Playfield
b) HalfRes and the back playfield doesn’t have a MskPln

- activating this mode reduces the front playfield available colors to
8l: apart from the one specified, other 174 have some of their compo-
nents equal to those of col, so also those components are treated as
transparent (and thus those 174 colors don’t look as they should - to
find out which ones, use TCS_F1gDXPfldCols () or TCS_SvIFFRGBxPal ())

1.37 TCS_DsbDXPfld()

TCS_DsbDXP£f1ld ()

INFO

Disables the Dual modality of Cross Playfield mode.

lib 30/70

SYN

success = TCS_DsbDXPfld(DIAdr)

ccr a0.1
IN
DIAdr DisplayInfo structure of any playfield
OouT
success ne = mode disabled successfully
eq = ERROR
NOTE

— error returned if:
a) DIAdr doesn’t belong to a display used for Cross Playfield
b) the Dual mode was not enabled

1.38 TCS_SetFPfldOpct()

TCS_SetFPf1dOpct ()

INFO

Sets the opacity of the front playfield (when Cross Playfield mode is
active) in order to make the back playfield more/less visible through
the pixels of front playfield.

SYN

TCS_SetFPfl1dOpct (DIAdr, opct [, TrnspColl])

a0.1 dOo.w dl.b
IN
DIAdr DisplayInfo structure of any playfield
opct opacity degree of front playfield, belonging to [0...256]
(= [totally transparent ... totally opaque])
[TrnspCol] transparent RGBx color in Dual Cross Playfield mode
NOTE

- no action is performed if DIAdr doesn’t belong to a display used for

lib 31/70

Cross Playfield
- this function makes producing cross-fading effects extra-easy...
- ... but it’s a bit expensive (if MskPln is ON, almost twice as slow)

1.39 TCS_SetGfxCtxt()

TCS_SetGEfxCtxt ()

INFO

Sets the Graphic Context of a display.

SYN
TCS_SetGfxCtxt (DIAdr, GCAdr)

a0.1 al.l

IN

DIAdr display DisplayInfo structure pointer
GCAdr pointer to the desired GraphicContext structure

1.40 4.5 Functions for Color/Palette Control

4.5 Functions for Color/Palette Control

These functions provide some comfortable ways to handle RGB/RGBx data:

TCS_GetRGBBrtns ()
TCS_GetRGBxTheoBrtns ()
TCS_GetRGBxActlBrtns ()
TCS_RGBToRGBx ()
TCS_RGBxToRGB ()
TCS_MkRGBxCnvTab ()
TCS_RGBxPicToTrueCol ()
TCS_TrueColPicToRGBx ()
TCS_CLUTPicToTrueCol ()
TCS_CLUTPicToRGBx ()
TCS_RmpRGBxPic ()
TCS_F1gDXPfldCols ()
TCS_SvIFFRGBxPal ()

1.41 TCS_GetRGBBrtns()

lib 32/70

TCS_GetRGBBrtns ()

INFO

Returns the brightness of a TrueColor 24-bit pixel.

SYN
brtns = TCS_GetRGBBrtns (RGBPx1)

dO0.w do.1

IN

RGBPx1 pixel in $00RrGgBb format

OouT

brtns brightness in the [0...255] range

1.42 TCS_GetRGBxTheoBrtns()

TCS_GetRGBxTheoBrtns ()

INFO

Returns the theorical brightness of an RGBx pixel.

SYN
brtns = TCS_GetRGBxTheoBrtns (RGBxPx1l, RGBxID)

dO0.w d0.b dl.b

IN

RGBxPx1 pixel in any the RGBx format specified
RGBxID one of the TCS_VM_RGBx values

OouT

brtns brightness in the [0...255] range

lib 33/70

NOTE
- since RGBx modes can’t fully exploit all the available brightness (see
the RGB <—> RGBx issue for details), brtns does not reflect the actual

value of brightness as it appears on the screen (if you needed it, use
TCS_GetRGBxActlBrtns () instead)

1.43 TCS_GetRGBxActIBrtns()

TCS_GetRGBxActlBrtns ()

INFO

Returns the actual brightness of an RGBx pixel.

SYN
brtns = TCS_GetRGBxActlBrtns (RGBxPx1l, RGBxID)

d0.w d0.b dl.b

IN

RGBxPx1 pixel in any the RGBx format specified

RGBxID one of the TCS_VM_RGBx values

OouT

brtns brightness in the [0...127] range
NOTE

- since RGBx modes can’t fully exploit all the available brightness (see
the RGB <-> RGBx issue for details), actually brtns is always less
than 128

- see also TCS_GetRGBxTheoBrtns ()

1.44 TCS_RGBToRGBXx()

TCS_RGBTORGBx ()

INFO

Converts a normal TrueColor 24-bit pixel to the corresponding RGBx one.

lib 34/70

SYN

RGBxPx1l = TCS_RGBToRGBx (RGBPx1l, RGBxMode)

do.b do.1l dl.b
IN
RGBPx1 TrueColor 24-bit ($00RrGgBb) source value

RGBxMode desired RGBx mode (any TCS_VM_RGBx value)

OouUT

RGBxPx1 RGBPx1 encoded in the selected RGBx (8-bit)

NOTE
- the passage from 24 to 8 bits produces an unavoidable loss of quality
- the conversion is quite heavy for intensive real-time calculations (for

picture remapping try figure something else (for example, hash tables
built using this function))

1.45 TCS_RGBxToRGB()

TCS_RGBxToRGB ()
INFO
Converts a pixel in any RGBx format to TrueColor 24-bit.

SYN

RGBPx1 = TCS_RGBxToRGB (RGBxPx1l, RGBxMode)

do.1 d0.b dl.b
IN
RGBxPx1 pixel in any RGBx format

RGBxMode RGBx format of RGBxPxl (any TCS_VM_RGBx value)

OouUT

RGBPx1 pixel in TrueColor 24-bit format ($SO0RrGgBb)

lib

35/70

NOTE
— even i1f the destination is 24-bit, there’s no quality improvement

- for intensive real-time conversion, I suggest to use a look-up table
rather than calling this function each and every time (it’s slow!)

1.46 TCS_MKRGBxCnvTab()

TCS_MkRGBxCnvTab ()

INFO

Creates a look—-up table for RGBx —> RGB conversion: the item #I is the
TrueColor 24-bit value corresponding to the RGBx 8-bit value I.

SYN

TCS_MkRGBxCnvTab (TabAdr, RGBxMode)

al0.1l d0.b

IN
TabAdr address of the buffer to fill with the data;
each item written will be a longword containing a 24-bit RGB
value in the format: $00RrGgBb
RGBxMode desired RGBx mode (any TCS_VM_RGBx value)
NOTE
- the buffer must be at least 4x256 bytes long!

- to convert the RGBx value V, just read the longword at the address:
TabAdr+Vx4

1.47 TCS_RGBxPicToTrueCol()

TCS_RGBxPicToTrueCol ()

INFO

Converts a raw chunky picture in RGBx format to a raw chunky TrueColor
24-bit picture.

lib 36/70

SYN

TCS_RGBxPicToTrueCol (PicAdr, DstBufAdr, PicRGBxMode, PicWd, PicHt)

do.1 al0.1 al.l d0.b dl.w d2.w
IN
PicAdr pointer to picture’s RGBx data
DstBufAdr pointer to buffer for calculated TrueColor 24-bit data
PicRGBxMode picture’s RGBx mode (any TCS_VM_RGBx value)
Picwd picture’s width in pixels
PicHt picture’s height in pixels
NOTE

- make sure that PicWd & PicHt don’t exceed the actual dimensions of the
picture (otherwise meaningless data will be converted, too) or the di-
mension of the destination buffer (at least PicWd+«PicHtx3 bytes -

- otherwise dangerous writes to RAM will be done)

- just simple pixel-by-pixel-based remapping

- source and destination buffers cannot overlap

1.48 TCS_TrueColPicToRGBX()

TCS_TrueColPicToRGBx ()

INFO

Converts a raw chunky TrueColor 24-bit picture to a raw chunky picture in
RGBx format.

SYN

TCS_TrueColPicToRGBx (PicAdr, DstBufAdr, DstRGBxMode, PicWd, PicHt)

al0.1 al.l d0.b dl.w dz.w
IN
PicAdr pointer to picture’s TrueColor 24-bit data
DstBufAdr pointer to buffer for calculated RGBx data
DstRGBxMode desired RGBx mode (any TCS_VM_RGBx value)
Picwd picture’s width in pixels
PicHt picture’s height in pixels

NOTE

lib 37/70

- make sure that PicWd & PicHt don’t exceed the actual dimensions of the
picture (otherwise meaningless data will be converted, too) or the di-
mension of the destination buffer (at least PicWdxPicHt bytes - other-
wise dangerous writes to RAM will be done)

source and destination buffers can overlap as long as the destination
buffer comes before the source one (DstBufAdr<=PicAdr)

- just simple pixel-by-pixel-based remapping

1.49 TCS_CLUTPicToTrueCol()

TCS_CLUTPicToTrueCol ()

INFO

Converts a color indexed raw chunky 8-bit picture to a raw chunky
TrueColor 24-bit picture.

SYN

TCS_CLUTPicToTrueCol (PicAdr, DstBufAdr, CLUTAdr, PicWd, PicHt)

al0.1 al.l az.l d0.w dl.w
IN
PicAdr pointer to picture’s 8-bit data
DstBufAdr pointer to buffer for calculated TrueColor 24-bit data
CLUTAdr pointer to picture’s 24-bit color look-up table
Picwd picture’s width in pixels
PicHt picture’s height in pixels
NOTE

- make sure that PicWd & PicHt don’t exceed the actual dimensions of the
picture (otherwise meaningless data will be converted, too) or the di-
mension of the destination buffer (at least PicWdxPicHt bytes - other-
wise dangerous writes to RAM will be done)

— source and destination buffers cannot overlap

- just simple pixel-by-pixel-based remapping

1.50 TCS_CLUTPicToRGBXx()

TCS_CLUTPicToRGBx ()

INFO

lib 38/70

Converts a color indexed raw chunky 8-bit picture to a raw chunky picture
in RGBx format.

SYN

TCS_CLUTPicToRGBx (PicAdr, DstBufAdr, CLUTAdr, DstRGBxMode, PicWd, PicHt)

a0.1 al.l az2.1l d0.b dl.w d2.w

IN

PicAdr pointer to picture’s 8-bit data

DstBufAdr pointer to buffer for calculated RGBx data

CLUTAdr pointer to picture’s 24-bit color look-up table
DstRGBxMode desired RGBx mode (any TCS_VM_RGBx value)

Picwd picture’s width in pixels

PicHt picture’s height in pixels
NOTE

— make sure that PicWd & PicHt don’t exceed the actual dimensions of the
picture (otherwise meaningless data will be converted, too) or the di-
mension of the destination buffer (at least PicWdxPicHt bytes - other-
wise dangerous writes to RAM will be done)

- source and destination buffers can overlap as long as the destination
buffer comes before the source one (DstBufAdr<=PicAdr)

— Jjust simple pixel-by-pixel-based remapping

1.51 TCS_RmpRGBXxPic()

TCS_RmpRGBxPic ()

INFO

Remaps the raw chunky data of a picture from an RGBx mode to another.

SYN

TCS_RmpRGBxPic (PicAdr, DstBufAdr, SouRGBxMode, DstRGBxMode, PicWd, PicHt)

a0.1 al.l d0.b dl.b d2.w d3.w
IN
PicAdr pointer to picture’s RGBx (SouRGBxMode) data
DstBufAdr pointer to buffer for calculated RGBx (DstRGBxMode) data

SouRGBxMode picture’s RGBx mode (any TCS_VM_RGBx value)

lib

39/70

DstRGBxMode desired RGBx mode (any TCS_VM_RGBx value)

Picwd picture’s width in pixels
PicHt picture’s height in pixels
NOTE

1.52

make sure that PicWd & PicHt don’t exceed the actual dimensions of the
picture (otherwise dangerous writes to RAM will be done)

source and destination buffers can overlap as long as the destination
buffer comes before the source one (DstBufAdr<=PicAdr)

just simple pixel-by-pixel-based remapping

TCS_FlgDXPfidCols()

TCS_F1lgDXPfldCols ()

INFO

Returns the colors that look good/bad in Dual Cross Playfield mode given
a certain RGBx transparent color.

SYN

TCS_F1gDXPfldCols (FlgsAdr, col)

IN

al0.1 d0.b

FlgsAdr address of the buffer that will be filled as follows:

- FlgsAdr[x].b=-1: x is a good-looking color
- FlgsAdr[x].b=0: x is a bad-looking color

col transparent RGBx color
NOTE
- a0.1l is guaranteed to be left unmodified

- b

1.53

e sure that the buffer is at least 256 bytes long

SvIFFRGBxPal()

TCS_SvIFFRGBxPal ()

INFO

lib

40/70

Saves palette of a given RGBx mode to an IFF file.

SYN
success = TCS_SvIFFRGBxPal (F1Nm, RGBxID, BadCols, TrnspCol, DummyVal)
ccr a0.1 do0.b dl.b d2.b d3.1
IN
F1Nm name of the file where to save the palette to
RGBxID one of the TCS_VM_RGBx values
BadCols if not 0, the bad-looking colors in Dual Cross Playfield mode
will be marked as specified by the next parameters
TrnspCol transparent RGBx color in Dual Cross Playfield mode (only if
BadCols<>0)
DummyVal 24-bit RGB value to assign to bad-looking colors (only if
BadCols<>0)
OuUT
success ne = palette saved successfully
eq = ERROR
NOTE
— error returned if:
- a) could not open file for output
- b) could not write [all] data to file
— c¢) could not allocate temporary memory
— the AmigaOS must be ON because of possible disk activity
- uses exec.library’s FreeMem(), thus it can’t be called from interrupts

- existing files will be overwritten

1.54 4.6 Functions for Graphics

4.6 Functions for Graphics

The following functions allow to handle graphics almost effortlessly:

Graphic Primitives
Brush-handling Functions
Miscellaneous Functions

— function naming convention: for each Graphic Context-sensitive func-

lib

41/70

tion there are always several other derivate functions which differ for
just the trailing digit, which dictates the Graphic Context they act
according to; in other words, if there is a Graphic Context-sensitive
function called TCS_fnc (), there are also other functions of the form
TCS_fncX (), which operate as required by the Graphic Context corre-
sponding to X. For example, TCS_PltPx10() simply plots a pixel without
any particular operation, whereas TCS_P1ltPx11() plots a pixel conside-
ring the Clipping Window which has been passed as additional argument
(in fact, TCS_GCf_clp=1); analogously, TCS_DrwFrm3() will draw a filled
frame taking into account the clipping limitations (3 = TCS_GCf_clp +

+ TCS_GCf_fill =1 + 2).

This proves to be helpful to avoid the overhead of Graphic Context
-sensitive functions (the simpler the function, the heavier the over-
head!), when working with a fixed Graphic Context

unsupported Graphic Contexts are simply ignored

when not using clipping, make sure that the graphics to be drawn will
fit in the destination screen

never pass negative values (unless differently specified)

the functions are as much general as possible (and, anyway, do not pre-—
tend to be the fastest in the world), so for better performance it is
recommendable writing custom/specific routines

1.55 4.6.1 Graphic Primitives

.6.1 Graphic Primitives

This group of functions is dedicated to basic graphics drawing:

function supported Graphic Contexts

TCS_P1ltPx1() normal, clipping, inverse
TCS_P1tPx10 (
TCS_P1tPx11 (
TCS_P1ltPx14 (
TCS_P1ltPx15(

TCS_DrwLn () normal, clipping, inverse
TCS_DrwLnO (
TCS_DrwLnl (
TCS_DrwLni (
TCS_DrwLnb5 (

TCS_DrwHrzLn () normal, clipping, inverse
TCS_DrwHrzLnO
TCS_DrwHrzLnl
TCS_DrwHrzLn4
TCS_DrwHrzLnb

TCS_DrwVrtLn () normal, clipping, inverse
TCS_DrwVrtLnO
TCS_DrwVrtLnl
TCS_DrwVrtLnd
TCS_DrwVrtLnb

TCS_DrwFrm() normal, clipping, filling, inverse
TCS_DrwFrmO ()

TCS_DrwFrml ()

)
)
)
)

)
)
)
)

— o~ o~ —~
—_— — — —

TCS_DrwEFrm2 (
TCS_DrwFrm3 (
TCS_DrwEFrm4 (
TCS_DrwErmb5 (
TCS_DrwFrmb6 (
TCS_DrwFrm7 (
TCS_DrwSqgr ()

TCS_DrwSqrO (
TCS_DrwSqgrl (
TCS_DrwSqr2 (
TCS_DrwSqr3 (
TCS_DrwSqr4 (
TCS_DrwSqrb (
TCS_DrwSqrb (
TCS_DrwSqr7 (
TCS_DrwTrngl (
TCS_DrwTrnglO
TCS_DrwTrngll
TCS_DrwTrngl2
TCS_DrwTrngl3
TCS_DrwTrngl4
TCS_DrwTrnglb
TCS_DrwTrngl6
TCS_DrwTrngl?
TCS_DrwPlgn ()

TCS_DrwP1lgnO (
TCS_DrwPlgnl (
TCS_DrwPlgn2 (
TCS_DrwPlgn3 (
TCS_DrwPlgn4 (
TCS_DrwPlgnb (
TCS_DrwPlgnbé (
TCS_DrwPlgn7 (
TCS_DrwOpnPlgn ()
TCS_DrwOpnPlgnO0
TCS_DrwOpnPlgnl
TCS_DrwOpnPlgn4
TCS_DrwOpnPlgnb
TCS_DrwCrcl ()
TCS_DrwCrclO
TCS_DrwCrcll
TCS_DrwCrcl2
TCS_DrwCrcl3
TCS_DrwCrcld
TCS_DrwCrcl5
TCS_DrwCrcl6
TCS_DrwCrcl?
TCS_DrwElps ()
TCS_DrwElpsO
TCS_DrwElpsl
TCS_DrwElps2
TCS_DrwElps2
TCS_DrwElps4
TCS_DrwElpsb
TCS_DrwElpsb
TCS_DrwElps7
TCS_FillArea ()

)
)
)
)
)
)
)
)

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

clipping,

clipping,

clipping,

clipping,

clipping,

clipping,

clipping,

(UNAVAILABLE)

UNAVAILABLE
UNAVAILABLE
UNAVAILABLE
UNAVAILABLE
UNAVAILABLE
UNAVAILABLE
UNAVAILABLE

(
(
(
(
(
(
(
(UNAVAILABLE

)
)
)
)
)
)
)
)

lib 43/70

TCS_FillAreaO
TCS_FillAreal
TCS_FillAread
TCS_FillAreab

— o~ o~ —~

)
)
)
)

- try to keep coordinates below 1024 (precise limitations will be given
for each function as soon as possible)

1.56 TCS_PItPxI()

TCS_P1tPx1 ()

INFO

Plots a pixel on a logical screen.

SYN

TCS_P1ltPx1 (DIAdr, x, YV, col [, ClpWin])

a0.1 do.1 dl.w d2.b a3.1
IN
DIAdr screen display DisplayInfo structure pointer
X, ¥ coordinates of the pixel
col color value in RGBx format

[ClpWin] pointer to ClippingWindow structure

NOTE
— calling a function for a simple pixel-plotting produces a great over-
head, so you’d better write your own custom routine (if you need speed)
- for speed, it is =xabsolutely grantedx that this function will trash

only dl (i.e. all the other registers are left unmodified)
- x 1is declared as .1 for speed’s sake (to avoid an "ext.1l")

1.57 TCS_DrwLn()

TCS_DrwLn ()

INFO

lib

4470

Draws a line on a logical screen.

SYN
TCS_DrwLn (DIAdr, xO0, y0, x1, vyl, «col [, ClpWin])
al0.1 dO.w dl.w d2.w d3.w d4.Db a3.1
IN
DIAdr screen display DisplayInfo structure pointer
x0,y0 signed coordinates of the first pixel of the line
x1l,vy1l signed coordinates of the last pixel of the line
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure

1.58 TCS_DrwHrzLn()

TCS_DrwHrzLn ()
INFO
Draws a horizontal line on a logical screen.

SYN

TCS_DrwHrzLn (DIAdr, x0, x1, YV, col [, ClpWin])

al0.1 d0.w dl.w d2.w d3.Db a3.1l
IN
DIAdr screen display DisplayInfo structure pointer
x0,x1 x coordinates of the first and last pixels
vy y coordinate of both pixels
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure

1.59 TCS_DrwVrtLn0()

TCS_DrwVrtLn ()

INFO

lib

45/70

Draws a vertical line on a logical screen.

SYN

TCS_DrwVrtLn (DIAdr, vyO, vl, X, col [, ClpWin])

a0.1 do.w dl.w d2.w d3.Db a3.1
IN
DIAdr screen display DisplayInfo structure pointer
y0,yl y coordinates of the first and last pixels
b 4 x coordinate of both pixels
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure

1.60 TCS_DrwFrm()

TCS_DrwFrm()
INFO
Draws a rectangle on a logical screen.

SYN

TCS_DrwFrm(DIAdr, x0, vyO0, x1, vyl1, col [, ClpWin])

al0.1 d0.w dl.w d2.w d3.w d4.b a3.l
IN
DIAdr screen display DisplayInfo structure pointer
x0,vy0 coordinates of any corner
x1,y1l coordinates of the opposite corner
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure

1.61 TCS_DrwSqr()

TCS_DrwSqr ()

INFO

lib

46 /70

Draws a square on a logical screen.

SYN

TCS_DrwSqgr (DIAdr, x, Y, Sidelen, col [, ClpWin])

al0.1 dOo.w dl.w d2.w d3.b a3.1l
IN
DIAdr screen display DisplayInfo structure pointer
X,y coordinates of top-left corner
SideLen length of a side in pixels (>0)
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure

1.62 TCS_DrwTrngl()

TCS_DrwTrngl ()
INFO
Draws a triangle on a logical screen.

SYN

TCS_DrwTrngl (DIAdr, VtxsAdr, col [, ClpWin])

a0.1 al.l d0.b a3.1l

IN

DIAdr screen display DisplayInfo structure pointer

VtxsAdr pointer to 3 couples of the kind <x,y> where each couple indi-

cates the signed coordinates of a vertex; components are .w

col color value in RGBx format

[ClpWin] pointer to ClippingWindow structure
NOTE

— in case of clipping, there must be some more than 4xh bytes free in the
stack (h=|uy-dyl|, hy = y of uppermost vertex, dy = y of downmost vertex)

1.63 TCS_DrwPIgn()

lib 47170

TCS_DrwPlgn ()

INFO

Draws a closed polygon on a logical screen.

SYN

TCS_DrwPlgn (DIAdr, VtxsAdr, col [, ClpWin])

a0.1 al.l d0.b a3.1l
IN
DIAdr screen display DisplayInfo structure pointer
VtxsAdr pointer to sequence of couples of the kind <x,y> where each
couple indicates the signed coordinates of a vertex;
each component is .w;
the list must end with xtwox NULL longwords
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure
NOTE

— the polygon is automatically "closed", so you need not to (and, indeed,
you should not) set the last vertex equal to the first
— there xmustx be at least three vertexes defined in the list!
- when filling:
- up to 64xht+3912 bytes (ht = [clipped] polygon height) in the stack
could be needed
- no more than 31 polygon edges can "cross" a single rasterline: to be
sure, simply keep the number of the edges below 32
- best performance when the vertexes list is longword aligned

1.64 TCS_DrwOpnPIgn()

TCS_DrwOpnPlgn ()
INFO
Draws an open (i.e. last edge omitted) polygon on a logical screen.

SYN

TCS_DrwOpnPlgn (DIAdr, VtxsAdr, col [, ClpWin])

lib 48 /70

al0.1 al.l d0.b a3.1l
IN
DIAdr screen display DisplayInfo structure pointer
VtxsAdr pointer to sequence of couples of the kind <x,y> where each
couple indicates the signed coordinates of a vertex;
each component is .wj;
the list must end with xtwox NULL longwords
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure
NOTE

— there xmust* be at least one vertex defined in the list!
— best performance when the vertexes list is longword aligned

1.65 TCS_DrwCrcl()

TCS_DrwCrcl ()
INFO
Draws a circle on a logical screen.

SYN

TCS_DrwCrcl (DIAdr, cx, cy, rad, col [, ClpWin])

al0.1 d0.w dl.w d2.w d3.b a3.1l
IN
DIAdr screen display DisplayInfo structure pointer
Ccx,Ccy coordinates of the circle centre
rad circle radius length in pixels (>=0)
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure

1.66 TCS_DrwElps()

TCS_DrwElps ()

INFO

lib

49/70

Draws an ellipse on a logical screen.

SYN

TCS_DrwElps (DIAdr, cx, cy, BAxis, SAxis, col [, ClpWin])

al0.1 dO.w dl.w d2.w d3.w d4.b a3.1l
IN
DIAdr screen display DisplayInfo structure pointer
cx,Ccy coordinates of the circle centre
BAxis bigger axis length in pixels (>=0)
SAxis smaller axis length in pixels (>=0)
col color value in RGBx format
[ClpWin] pointer to ClippingWindow structure

1.67 TCS_FillArea()

TCS_FillArea()
INFO
Fills an area of a logical screen with a given RGBx color.

SYN

TCS_FillArea (DIAdr, x, Yy col [, ClpWin])

a0.1 dO.w dl.w d2.b a3.l

IN

DIAdr screen display DisplayInfo structure pointer

X,y coordinates of the first pixel to fill (all pixels adjacent

to this one and with the same color will be filled)

col color value in RGBx format

[ClpWin] pointer to ClippingWindow structure
NOTE

— BE CAREFUL! The screen edges are not considered as limits!

- this functions requires some room in the stack; more precisely, up to
8xwd+xht bytes could be needed (wd & ht are the dimensions of the rec-
tangle your polygon can be inscribed into or of the clipping window,
if the latter is smaller). Generally this figure is much lower and de-
pends on the shape of the polygon and the starting pixel; as a general

lib

50/70

rule try to start from the "centre" of the polygon (example: to fill a
square (the worst case), 1.9xwd$"2$ bytes are required if starting from
the top-left or bottom-right corner; Jjust wd$"2$ are required if starting
from the centre). Note that a better memory usage means also more speed
(and not just the time spared for writes)

— no operation is performed if:
a) normal drawing: the pixel color at <x,y> is equal to col
b) inverse drawing: col=0

1.68 4.6.2 Brush-handling Functions

4.6.2 Brush—-handling Functions

The following functions work on complex graphic data like brushes:

function supported Graphic Contexts

TCS_GetBrsh () none

TCS_MkBrshMsk () none

TCS_MrgBrshs () none

TCS_MixBrshs () none (UNAVAILABLE)
TCS_FreeBrsh () none

TCS_WrtBrsh () normal, clipping, masking

TCS_WrtBrshoO ()
TCS_WrtBrshl ()
TCS_WrtBrsh8 ()
TCS_WrtBrsh9 ()

TCS_FastWrtBrsh () normal, masking
TCS_FastWrtBrshoO ()

TCS_FastWrtBrsh8 ()

TCS_WrtBrshZn () normal, clipping, masking
TCS_WrtBrshznO ()

TCS_WrtBrshznl ()
TCS_WrtBrshZn8 ()
TCS_WrtBrshZn9 ()

TCS_FastWrtBrshzn () normal, masking
TCS_FastWrtBrshZnoO ()
TCS_FastWrtBrshZn8 ()

TCS_FitBrsh () normal, masking
TCS_FitBrshoO ()

TCS_FitBrsh8 ()

TCS_FastFitBrsh () normal, masking
TCS_FastFitBrshoO ()

TCS_FastFitBrsh8 ()

TCS_FitBrshZn () normal, masking
TCS_FitBrshznO ()

TCS_FitBrshZn8 ()

TCS_FastFitBrshZn () normal, masking
TCS_FastFitBrshZnO ()
TCS_FastFitBrshzZn8 ()

TCS_RotZmBrsh () normal, masking
TCS_RotZmBrshoO ()

lib 51/70

TCS_RotZmBrsh8 ()

TCS_FastRotZmBrsh () normal, masking
TCS_FastRotZmBrshoO ()
TCS_FastRotZmBrsh8 ()

- many of the functions above require as arguments the brush dimensions:
never pass a null or negative value for width or height!

1.69 TCS_GetBrsh()

TCS_GetBrsh()

INFO

Cuts out a chunky brush from a logical screen.

SYN

BrshAdr = TCS_GetBrsh (DIAdr, BufAdr, x, YV, BrshWd, BrshHt)

do.1l a0.1 al.l d0.w dl.w d2.w d3.w

IN

DIAdr screen display DisplayInfo structure pointer

BufAdr address of buffer for snapped brush (0 = automatic allocation)
X,y coordinates of top-left corner on source screen

BrshWd width of brush in pixels

BrshHt height of brush in pixels

OouT

BrshAdr address of new brush (0=ERROR)

NOTE

- if BufAdr=0:
- error returned if could not allocate a buffer for the brush
— the buffer must be de-allocated with TCS_FreeBrsh()
- best-memory-first allocation
— uses exec.library’s AllocMem(), thus it can’t be called from inter-
rupts
- if BufAdr<>0:
— BrshAdr=BufAdr
— make sure that the brush fits in the specified buffer
- best performance when the source or destination data (better if both)

lib 52/70

are longword aligned (even better if the width is a multiple of 4)

1.70 TCS_MkBrshMsk()

TCS_MkBrshMsk ()
INFO
Creates a chunky mask for a brush.

SYN

MskAdr = TCS_MkBrshMsk (BrshAdr, BufAdr, ptrn, TrnspCol, BrshWd, BrshHt)

do.1l al0.1 al.l do.b dl.b d2.w d3.w
IN

BrshAdr address of brush

BufAdr address of buffer for calculated mask (0 = automatic alloca-

tion)

ptrn filling pattern for non-zero pixels of mask (usually $ff)
TrnspCol color of brush pixels to be considered transparent

BrshWd width of brush in pixels

BrshHt height of brush in pixels

OouT

MskAdr address of new mask (0=ERROR)
NOTE

- if BufAdr=0:
- error returned if could not allocate a buffer for the mask
— the buffer must be de-allocated with TCS_FreeBrsh()
- best-memory-first allocation
- uses exec.library’s AllocMem(), thus it can’t be called from inter-
rupts
- if BufAdr<>0:
- MskAdr=BufAdr
- make sure that the mask fits in the specified buffer
- a mask can be used just like a brush because it *isx a brush
- by playing with the fill pattern value, you can easily obtain pseudo-
transparency effect:

- $88 = include red component

- $44 = include green component
- $22 = include blue component
- $11 = include extra component

examples:

lib 53/70

- $ff: include all the components, non-trasparent pixels of the brush
will appear totally opaque (just like they are)

- $77: the brush pixels will lose the red component ($£f£f-$88=$77) and
will let the same component of the background pixels to be vi-
sible through them

1.71 TCS_MrgBrshs()

TCS_MrgBrshs ()

INFO

Merges two different brushes together.

SYN

BrshAdr = TCS_MrgBrshs (BrshOAdr, BrshlAdr, MskOAdr, BufAdr,

do.1 a0.1 al.l a2.1 a3.l
BrshsWd, BrshsHt)

do.w dl.w

IN

BrshOAdr address of first brush
BrshlAdr address of second brush

MskOAdr address of first brush mask

BufAdr address of destination buffer for merged brush (0 = automatic
allocation)

BrshsWd width of brushes in pixels

BrshsHt height of brushes in pixels

OUT

BrshAdr address of merged brush (0=ERROR)

NOTE

- if BufAdr=0:
— error returned if could not allocate a buffer for the brush
— the buffer must be de-allocated with TCS_FreeBrsh()
- best-memory-first allocation
- uses exec.library’s AllocMem(), thus it can’t be called from inter-
rupts
- if BufAdr<>0:
— BrshAdr=BufAdr
— make sure that the brush fits in the specified buffer

lib 54 /70

— destination buffer may coincide with one of the sources

- best performance when the source or destination data (better if both)
are longword aligned (even better if the width is a multiple of 4)

— see also TCS_MixBrshs

1.72 TCS_FreeBrsh()

TCS_FreeBrsh ()

INFO

Frees the memory buffer allocated for a brush by a brush-maker function.

SYN
TCS_FreeBrsh (BrshAdr)

a0.1

IN

BrshAdr address of brush

NOTE
- useless if the brush buffer had been allocated by the user

- safe to call even if BrshAdr is wrong
— uses exec.library’s FreeMem(), thus it can’t be called from interrupts

1.73 TCS_WrtBrsh()

TCS_WrtBrsh ()

INFO

Writes a chunky brush to a logical screen.

SYN
TCS_WrtBrsh (DIAdr, BrshAdr, x, Y, BrshWd, BrshHt
a0.1 al.l d0.w dl.w d2.w d3.w

[, MskAdr] [, ClpWinl])

lib 55/70
az.l a3.l

IN

DIAdr screen display DisplayInfo structure pointer

BrshAdr address of brush

X, ¥ coordinates of top-left corner on destination screen
BrshWd width of brush in pixels

BrshHt height of brush in pixels

[MskAdr] address of mask

[ClpWin] pointer to ClippingWindow structure
NOTE

- if clipping is unused, the brush must lie entirely inside the screen!

- if used, the mask must have the same dimensions of the brush

- best performance when the source or destination data (better if both)
are longword aligned (even better if the width is a multiple of 4)

— slower than TCS_FastWrtBrsh ()

1.74 TCS_FastWrtBrsh()

TCS_FastWrtBrsh ()
INFO
Writes a chunky brush to a logical screen.

SYN

TCS_FastWrtBrsh (DIAdr, BrshAdr, x, YV, BrshWd, BrshHt [, MskAdr])

a0.1 al.l d0.w dl.w d2.w d3.w az.l

IN

DIAdr screen display DisplayInfo structure pointer

BrshAdr address of brush

X,V coordinates of top-left corner on destination screen
Brshwd width of brush in pixels; must be multiple of 16
BrshHt height of brush in pixels

[MskAdr] address of mask
NOTE

— make sure that the brush lies entirely inside the screen!
- if used, the mask must have the same dimensions of the brush

lib 56 /70

- best performance when the source or destination data (better if both)
are longword aligned
— faster than TCS_WrtBrsh()

1.75 TCS_WrtBrshZn()

TCS_WrtBrshzn ()

INFO

Writes a rectangular zone of a chunky brush to a logical screen.

SYN
TCS_WrtBrshZn (DIAdr, BrshAdr, sx0, sy0, sxl, syl, dx, dy,
a0.1 al.l d0.w dl.w d2.w d3.w d4.w d5.w

BrshWd [, MskAdr] [, BrshHt, ClpWin])

dé.w az.l d7.w a3.l

IN

DIAdr screen display DisplayInfo structure pointer
BrshAdr address of brush

sx0, sy0 coordinates of source rectangle top-left corner
sx1l,syl coordinates of source rectangle bottom-right corner
dx, dy coordinates of destination rectangle top-left corner
Brshwd width of source brush in pixels

[MskAdr] address of mask

[BrshHt] height of source brush in pixels

[ClpWin] pointer to ClippingWindow structure
NOTE

- 1f clipping is unused, the zone must lie entirely inside the screen!

- if used, the mask must have the same dimensions of the brush

- best performance when the source or destination data (better if both)
are longword aligned (even better if the width is a multiple of 4)

— see also TCS_FastWrtBrshZn()

1.76 TCS_FastWrtBrshZn()

TCS_FastWrtBrshZn ()

lib

57170

INFO

Writes a rectangular zone of a chunky brush to a logical screen.

SYN

TCS_FastWrtBrshZzn (DIAdr, BrshAdr, sx0, sy0, sx1, syl, dx, dy, Brshwd

a0.1l al.l d0.w dl.w d2.w d3.w d4.w d5.w d6.w
[, MskAdr])
az.l
IN
DIAdr screen display DisplayInfo structure pointer
BrshAdr address of brush
sx0,sy0 coordinates of rectangle top-left corner
sx1l,syl coordinates of rectangle bottom-right corner
dx, dy coordinates of destination rectangle top-left corner
Brshwd width of source brush in pixels
[MskAdr] address of mask
NOTE

— make sure that the zone lies entirely inside the screen!

— the zone width (=sxl-sx0+1) must be multiple of 16

- if used, the mask must have the same dimensions of the brush

- best performance when the source or destination data (better if both)
are longword aligned

- see also TCS_WrtBrshZn ()

1.77 TCS_FitBrsh()

TCS_FitBrsh ()

INFO

Given an 8-bit chunky brush, "fits" it to a rectangular zone of any size
in a logical screen.

SYN
TCS_FitBrsh (DIAdr, BrshAdr, VtxsAdr, BrshWd, BrshHt [, MskAdr])

a0.1 al.l az.l d0.w dl.w ad.l

lib 58/70

IN
DIAdr screen display DisplayInfo structure pointer
BrshAdr address of brush
VtxsAdr pointer of a structure of this kind:
offset content
0,2 x0,y0: coordinates of top-left pixel of destination
rectangle
4,6 x1,yl: coordinates of bottom-right pixel of destina-
tion rectangle
BrshWd width of brush in pixels
BrshHt height of brush in pixels
[MskAdr] address of mask
NOTE

— make sure that the destination zone lies completely inside the screen!
- if used, the mask must have the same dimensions of the brush
— see also TCS_FastFitBrsh()

1.78 TCS_FastFitBrsh()

TCS_FastFitBrsh ()

INFO

Given an 8-bit chunky brush, "fits" it to a rectangular zone of any size
in a logical screen.

SYN

TCS_FastFitBrsh (DIAdr, BrshAdr, VtxsAdr, BrshWd, BrshHt [, MskAdr])

a0.1 al.l a2.1 do.w dl.w ad.l

IN
DIAdr screen display DisplayInfo structure pointer
BrshAdr address of brush
VtxsAdr pointer of a structure of this kind:

offset content

0,2 x0,y0: coordinates of top-left pixel of destination

rectangle

4,6 x1,yl: coordinates of bottom-right pixel of destina-

lib 59/70

tion rectangle

BrshWd width of brush in pixels
BrshHt height of brush in pixels
[MskAdr] address of mask
NOTE

— make sure that the destination zone lies completely inside the screen!

— destination zone width (=x1-x0+1) must be multiple of 4 (automatic
rounding to the next multiple always performed)

— 1f used, the mask must have the same dimensions of the brush

— best performance when x0 is multiple of 4

— see also TCS_FitBrsh{()

1.79 TCS_FitBrshzn()

TCS_FitBrshzn ()

INFO

Given an 8-bit chunky brush, "fits" a rectangular zone of any size from
such brush into another rectangular zone of any other size in a logical
screen.

SYN

TCS_FitBrshZn (DIAdr, BrshAdr, VtxsAdr, BrshWd [, MskAdr])

a0.1 al.l az.1l dO0.w ad.l
IN
DIAdr screen display DisplayInfo structure pointer
BrshAdr address of brush
VtxsAdr pointer of a structure of this kind:
offset content
0,2 sx0,sy0: coordinates of top-left pixel of source
rectangle
4,6 sx1l,syl: coordinates of bottom-right pixel of source
rectangle
8,10 dx0,dy0: coordinates of top-left pixel of destina-
tion rectangle
12,14 dx1l,dyl: coordinates of bottom-right pixel of desti-
nation rectangle
Brshwd width of brush in pixels

[MskAdr] address of mask

lib

60/70

NOTE
- make sure that the destination zone lies completely inside the screen!

- if used, the mask must have the same dimensions of the brush
— see also TCS_FastFitBrshzn()

1.80 TCS_FitBrshZn()

TCS_FastFitBrshZn ()

INFO
Given an 8-bit chunky brush, "fits" a rectangular zone of any size from

such brush into another rectangular zone of any other size in a logical
screen.

SYN

TCS_FastFitBrshZn (DIAdr, BrshAdr, VtxsAdr, BrshWd [, MskAdr])

a0.1 al.l az.l d0.w a4.l
IN
DIAdr screen display DisplayInfo structure pointer
BrshAdr address of brush
VtxsAdr pointer of a structure of this kind:
offset content
0,2 sx0,sy0: coordinates of top-left pixel of source
rectangle
4,6 sxl,syl: coordinates of bottom-right pixel of source
rectangle
8,10 dx0,dy0: coordinates of top-left pixel of destina-
tion rectangle
12,14 dx1l,dyl: coordinates of bottom-right pixel of desti-
nation rectangle
BrshWd width of brush in pixels
[MskAdr] address of mask
NOTE

- make sure that the destination zone lies completely inside the screen!

— destination zone width (=dx1-dx0+1) must be multiple of 4 (automatic
rounding to the next multiple always performed)

- if used, the mask must have the same dimensions of the brush

lib 61/70

— best performance when dx0 is multiple of 4
— see also TCS_FitBrshZn ()

1.81 TCS_RotZmBrsh()

TCS_RotZmBrsh ()

INFO
Rotates and scales a chunky brush into a rectangular zone of a logical
screen.
SYN
TCS_RotZmBrsh (DIAdr, BrshCntrAdr, x0, vyO, x1, vl, ang, scl,
a0.1 al.l d0.w dl.w d2.w d3.w d4.1 d5.w

BrshWdLog [, MskCntrAdr])

dé.w a2.l1
IN
DIAdr screen display DisplayInfo structure pointer
BrshCntrAdr address of brush rotation centre
x0,y0 coordinates of top-left pixel of destination rectangle
x1,y1l coordinates of bottom-right pixel of destination rectangle
ang anti-clockwise rotation angle in unsigned degrees
scl scale factor in [0...65535] (a factor x scales by 256/%;
e.g: x=128 -> \times2, x=256 -> S\times$1l, x=512 —-> S$\timesS$O0 «
.5)
BrshWdLog base 2 logarithm of width of brush in pixels (>0)
[MskCntrAdr] address of mask rotation centre
NOTE

— make sure that the destination zone lies completely inside the screen!
— of course brush width must be a power of 2

- if used, the mask must have the same dimensions of the brush

— slower than TCS_FastRotZmBrsh ()

1.82 TCS_FastRotZmBrsh()

TCS_FastRotZmBrsh ()

lib 62/70

INFO
Rotates and scales a chunky brush into a rectangular zone of a logical
screen.
SYN
TCS_FastRotZmBrsh (DIAdr, BrshCntrAdr, xO0, vO0, x1, vl, ang, scl,
a0.l al.l d0.w dl.w d2.w d3.w d4.1 d5.w

BrshWdLog [, MskCntrAdr])

de6.w az.l
IN
DIAdr screen display DisplayInfo structure pointer
BrshCntrAdr address of brush rotation centre
x0,vy0 coordinates of top-left pixel of destination rectangle
x1,y1l coordinates of bottom-right pixel of destination rectangle
ang anti-clockwise rotation angle in unsigned degrees
scl scale factor in [0...65535] (a factor x scales by 256/x;
e.g: x=128 -> \times2, x=256 -> \timesl, x=512 -> \timesO0 <«
.5)
BrshWdLog base 2 logarithm of width of brush in pixels (>0)
[MskCntrAdr] address of mask rotation centre
NOTE

- make sure that the destination zone lies completely inside the screen!

— destination zone width (=x1-x0+1) must be multiple of 4 (automatic
rounding to the next multiple always performed)

— of course brush width must be a power of 2

- if used, the mask must have the same dimensions of the brush

- best performance when x0 is multiple of 4

- faster than TCS_RotZmBrsh ()

1.83 4.6.3 Miscellaneous Functions

4.6.3 Miscellaneous Functions

Almost uncategorizable:

function supported Graphic Contexts

TCS_ClrScr () normal, clipping
TCS_ClrScrO0 ()

lib 63 /70

TCS_ClrScrl ()

TCS_CpyScr () normal, clipping
TCS_CpyScr0 ()
TCS_CpyScrl ()

TCS_CpyScrzn () normal, clipping
TCS_CpyScrznO ()
TCS_CpyScrznl ()

TCS_FastCpyScrzn () none
TCS_ClpLn () none
TCS_FillBuf () none

1.84 TCS_CirScr()

TCS_ClrScr()

INFO

Clears with a given RGBx color a logical screen.

SYN

TCS_ClrScr (DIAdr, col [, ClpWin])

a0.1 d0.b a3.1
IN
DIAdr screen display DisplayInfo structure pointer
col RGBx value of the color the screen has to be cleared with
[ClpWin] pointer to ClippingWindow structure

1.85 TCS_CpyScr()

TCS_CpyScr ()

INFO

Copies a logical screen to another logical screen.

SYN
success = TCS_CpyScr (SouDIAdr, DstDIAdr [, ClpWin])

ccr a0.1l al.l a3.l

lib 64 /70

IN

SouDIAdr source screen display DisplayInfo structure pointer

DstDIAdr destination screen display DisplayInfo structure pointer

[ClpWin] pointer to ClippingWindow structure
ouT

success ne = screen copied successfully

eq = ERROR

NOTE

— error returned if any of the dimensions of the screens are different
- Blitter not used even if the screens’ buffers are in CHIP ram

1.86 TCS_CpyScrZn()

TCS_CpyScrzn ()

INFO

Copies a rectangular zone of a logical screen of a display to the logical
screen of another display.

SYN

TCS_CpyScrzn (SouDIAdr, DstDIAdr, sx0, sy0, sxl1, syl, dx, dy [, ClpWin])

al0.1 al.l d0.w dl.w d2.w d3.w d4.w db.w a3.1l

IN

SouDIAdr source screen display DisplayInfo structure pointer
DstDIAdr destination screen display DisplayInfo structure pointer
sx0,sy0 source rectangle top-left corner coordinates

sx1l,syl source rectangle bottom-right corner coordinates

dx, dy destination rectangle top-left corner coordinates

[ClpWin] pointer to ClippingWindow structure for destination screen
NOTE

- if clipping is unused, the zones must lie entirely inside the screens;
otherwise source and destination zones may lie (partially) outside of
the respective screen (the coordinates are signed)

- source and destination may overlap as long as destination comes before
source (i.e. dy<sy0 | (dy=sy0 & dx<=sx0))

lib

65/70

- best performance when the source or destination data (better if both)
are longword aligned (even better if the width is a multiple of 4)

- Blitter not used even if the screens’ buffers are in CHIP ram

- see also TCS_FastCpyScrzn()

1.87 TCS_FastCpyScrZn()

TCS_FastCpyScrzn ()

INFO

Copies a rectangular zone of a logical screen of a display to the logical
screen of another display.

SYN

TCS_FastCpyScrZn (SouDIAdr, DstDIAdr, sx0, sy0, sxl, syl, dx, dy)

a0.1 al.l d0.w dl.w d2.w d3.w dd4.w d5.w

IN

SouDIAdr source screen display DisplayInfo structure pointer
DstDIAdr destination screen display DisplayInfo structure pointer

sx0,sy0 source rectangle top-left corner signed coordinates

sx1l,syl source rectangle bottom-right corner signed coordinates
dx, dy destination rectangle top-left corner signed coordinates
NOTE

- the zone width (sx1l-sx0+1) must be a multiple of 16 (automatic rounding
to the previous multiple always performed)

— the zones must lie entirely inside the screens

- source and destination may overlap as long as destination comes before
source (i.e. dy<sy0O | (dy=sy0 & dx<=sx0))

- best performance when the source or destination data (better if both)
are longword aligned

— Blitter not used even if the screens’ buffers are in CHIP ram

- see also TCS_CpyScrZn()

1.88 TCS_ClpLn()

TCS_ClpLn ()

INFO

lib 66 /70

Clips a line without drawing it.

SYN

inside, c¢x0, cy0, cx1, cyl = TCS_ClpLn(x0, vy0, x1, vyl, ClpWin)

ccr d0.w dl.w d2.w d3.w d0.w dl.w d2.w d3.w a3.1

IN

x0,y0 signed coordinates of the first pixel of the line

x1,vy1l signed coordinates of the last pixel of the line

ClpWin pointer to ClippingWindow structure
ouT

inside ne = the line lies (partially) inside the ClippingWindow

eq = the line lies completely outside the ClippingWindow

cx0, cy0 signed coordinates of the first pixel of the clipped line

cxl,cyl signed coordinates of the last pixel of the clipped line

NOTE
- <cx0,cy0> and <cxl,cyl> are equal to <x0,y0> and <x1,yl>, respectively,

if inside=eq (cx0 and cy0 are sign-extended to 32 bits)
— guaranteed not to trash any register

1.89 TCS_FillBuf()

TCS_FillBuf ()

INFO

Fills a buffer with a given pattern (useful for filling mask planes).

SYN
TCS_FillBuf (BufAdr, BufSz, ptrn)

a0.1 do.1 dl.1l

IN

BufAdr buffer address
BufSz buffer size in bytes
ptrn bit-pattern

lib 67 /70

NOTE

- quite good, but for extra-extra-extra-extra-fast performance, write
yourself a function which fits _perfectly_ your needs

1.90 4.7 Functions for Picture Files

4.7 Functions for Picture Files

These functions allow you to quickly access IFF files from/to which load/
/save graphics:

TCS_LdRGBx () (UNAVAILABLE)
TCS_UnLdRGBx () (UNAVAILABLE)
TCS_SvRGBx () (UNAVAILABLE)

()

TCS_SvScr2RGBx () UNAVAILABLE
TCS_LJAILBM()

TCS_UnLdILBM ()

TCS_SvILBM() (UNAVAILABLE)

1.91 TCS_LdILBM()

TCS_LdILBM ()
INFO
Loads an IFF InterLeaved BitMap file into a chunky buffer.

SYN

ILBMStruc = TCS_LJdILBM(F1Nm, BufAdr, Buflen)

do.1 a0.1 al.l do.1

IN

F1Nm name of the file to load

BufAdr address of buffer for raster data (0 = automatic allocation)

BufLen size in bytes of destination buffer (only if BufAdr<>0)

OuUT

ILBMStruc pointer to an ILBMInfo structure or a TCS_PE_#7? errcode

lib 68/70

NOTE

— the RGBx mode returned in the structure is the one which best matches
the ILBM palette saved in the CMAP chunk of the IFF (the ILBM palette
generally should be one of those in the TCS/pal/ directory): in case
there is not an exact match, the best RGBx mode is chosen, but xnox
remapping is performed! - the degree of mismatch can be found in the
TCS_II_PalDiff field

— only 24-bit color values in the CMAP chunk of the IFF are correctly
interpreted (old 12-bit CMAPs don’t work!)

- currently only 8-bitplane, non-masked, non-HAM, ILBMs supported (unsup-
ported formats generate a TCS_PE_BADILBM error) !

— if the specified destination buffer is too small, a TCS_PE_LOWMEM
error will be returned

- ILBM body data is converted on line basis, so you don’t need twice
the memory for just loading

- deallocate memory only with TCS_UnLdILBM()

- make sure to pass correct values for BufAdr and BufSz!

— make sure the AmigaOS is ON because of possible disk activity

— uses exec.library’s FreeMem(), thus it can’t be called from interrupts

1.92 TCS_UnLdILBM()

TCS_UnLdILBM ()

INFO

Frees the memory allocated by LJdILBM() .

SYN
TCS_UnLdILBM (ILBMStruc)

a0.1

IN

ILBMStruc address of an ILBMInfo structure

NOTE

- safe to call even if ILBMStruc is wrong/corrupted (at most you’ll end
up with a memory leak due to the failed de-allocation of memory)

- uses exec.library’s FreeMem (), thus it can’t be called from interrupts

- of course, the eventual user-specified raster buffer won’t be freed

lib

69/70

1.93 4.8 Simple Meta-Example

4.

8

Simple Meta-Example

I’d better give directly a "concrete" example, I guess.
This mainly serves the purpose of showing the usage of the simplest (and
most important!) functions to create a display:

< your code starts here >

< >
TCSBase = Openlibrary ("tcs.library",1) ;jget lib pointer
< >
< declare a proper DD structure and call it "MyDD" >
< >
DIAdr = TCS_InitDspl (MyDD) ;init your own display
if DIAdr<>0 ;1f succedeed
< L.l >
ChnkScr = DIAdr.TCS_DI_CSAdr ;address of chunky screen

< L..0>

< take control over Amiga hardware in the cleanest way possible! >
< L. >

TCS_ShwDspl (DIAdr) ;activate display

< Ll >

< write/read whatever you want in the buffer pointed by ChnkScr >
< .. >

< OK, enough >

< L.l >
TCS_HideDspl (DIAdr, Q) ;deactivate display
< Lll >
< restore AmigaOS here >
< L.l >
TCS_FreeDspl (DIAdr) ; free display resources
< L.l >
endif
< >

CloselLibrary (TCSBase)

<

>

< your code ends here >

- working examples may be found in the TCS/examples/ directory

1.94 4.9 Known Bugs & Problems

4.

9

Known Bugs & Problems

- HalfRes+MskPln does not work correctly in (Dual) Cross Playfield mode.

I

do not absolutely know why this happens... it does make perfectly

lib

This version of the library has been tested only on an A1200

sense that this particular mode gives problems (it’s the only mode using
five bitplanes), yet it nonetheless becomes nonsense each time I look at

the code and all I can come up with is: "Hey, it’s perfect! It takes
into account the difference with the other modes everywhere needed and
always does the right thing in the right place! Moreover, the rest of
the code works perfectly in the other modes, so maybe... am I missing
something in the theory? But... what...?"

due to clipping approximation, clipped lines could be drawn slightly
differently from unclipped ones; some bad side effects:

— clipped lines may not completely coincide with unclipped ones
- clipped polygons could show a few unfilled pixels by the borders
(to be fixed with Sutherland-Hodgman clipping)

I suspect there is something wrong in RGB —-> RGBP conversion... I will
check it again later

generally graphic functions have this problem with inverse drawing: if
the same pixel is plotted an even number of times, it’s as if it had

never been drawn (example: corners of a frame). It’s a rather silly bug,

but fixing it sometimes may be very painful!

of 60 ns RAM], so it may well fail to work correctly on your equipment.

[+Bz1230+16Mb

	lib
	4 The tcs.library
	4.1 Preliminary Operations
	4.2 General Guidelines
	4.3 Declarations Description
	4.3.1 VideoModes definitions, bits & flags
	4.3.2 ClippingWindow structure
	4.3.3 GraphicContext bits, flags and structure
	4.3.4 DisplayDeclaration structure
	4.3.5 DisplayInfo structure
	4.3.6 MainCopperList structure
	4.3.7 ILBMInfo structure
	4.4 Functions for Displays
	TCS_InitDspl()
	TCS_ShwDspl()
	TCS_HideDspl()
	TCS_FreeDspl()
	TCS_SetRGBxMode()
	TCS_C2PPass0()
	TCS_CPUFRPass0()
	TCS_CPUFRPass1()
	TCS_CPUFRPass2()
	TCS_BltFRPass0()
	TCS_BltFRPassHndlr()
	TCS_WtBltFRPass()
	TCS_DubSwp()
	TCS_TriSwp()
	TCS_TriUpd()
	TCS_WtTriSwp()
	TCS_SttcSwp()
	TCS_GetVdoBufsAdrs()
	TCS_EquVdoBufs()
	TCS_SetPlnsPos()
	TCS_SetPlnsVPos()
	TCS_EnbXPfld()
	TCS_DsbXPfld()
	TCS_EnbDXPfld()
	TCS_DsbDXPfld()
	TCS_SetFPfldOpct()
	TCS_SetGfxCtxt()
	4.5 Functions for Color/Palette Control
	TCS_GetRGBBrtns()
	TCS_GetRGBxTheoBrtns()
	TCS_GetRGBxActlBrtns()
	TCS_RGBToRGBx()
	TCS_RGBxToRGB()
	TCS_MkRGBxCnvTab()
	TCS_RGBxPicToTrueCol()
	TCS_TrueColPicToRGBx()
	TCS_CLUTPicToTrueCol()
	TCS_CLUTPicToRGBx()
	TCS_RmpRGBxPic()
	TCS_FlgDXPfldCols()
	SvIFFRGBxPal()
	4.6 Functions for Graphics
	4.6.1 Graphic Primitives
	TCS_PltPxl()
	TCS_DrwLn()
	TCS_DrwHrzLn()
	TCS_DrwVrtLn0()
	TCS_DrwFrm()
	TCS_DrwSqr()
	TCS_DrwTrngl()
	TCS_DrwPlgn()
	TCS_DrwOpnPlgn()
	TCS_DrwCrcl()
	TCS_DrwElps()
	TCS_FillArea()
	4.6.2 Brush-handling Functions
	TCS_GetBrsh()
	TCS_MkBrshMsk()
	TCS_MrgBrshs()
	TCS_FreeBrsh()
	TCS_WrtBrsh()
	TCS_FastWrtBrsh()
	TCS_WrtBrshZn()
	TCS_FastWrtBrshZn()
	TCS_FitBrsh()
	TCS_FastFitBrsh()
	TCS_FitBrshZn()
	TCS_FitBrshZn()
	TCS_RotZmBrsh()
	TCS_FastRotZmBrsh()
	4.6.3 Miscellaneous Functions
	TCS_ClrScr()
	TCS_CpyScr()
	TCS_CpyScrZn()
	TCS_FastCpyScrZn()
	TCS_ClpLn()
	TCS_FillBuf()
	4.7 Functions for Picture Files
	TCS_LdILBM()
	TCS_UnLdILBM()
	4.8 Simple Meta-Example
	4.9 Known Bugs & Problems

