
tech

tech ii

COLLABORATORS

TITLE :

tech

ACTION NAME DATE SIGNATURE

WRITTEN BY July 31, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

tech iii

Contents

1 tech 1

1.1 3 How TCS Works . 1

1.2 3.1 Basic Idea . 2

1.3 3.2 Amiga Hardware Setup . 3

1.4 RGBx Color Composition . 4

1.5 3.3.1 Conventions . 5

1.6 3.3.2 Bits Allocation Inside RGBx Pixels . 6

1.7 3.3.3 How Pixels Are Plotted on a HalfRes Screen . 8

1.8 3.3.4 How Pixels Are Plotted on a FullRes Screen . 14

1.9 3.3.5 RGB <-> RGBx Conversion . 17

1.10 3.3.6a RGBW Color Composition . 21

1.11 3.3.6b RGBW Palette Settings RGBW . 22

1.12 3.3.6c RGBW <-> RGB Conversion . 24

1.13 3.3.7a RGBM Color Composition . 27

1.14 3.3.7b RGBM Palette Settings . 29

1.15 3.3.7c RGBM <-> RGB Conversion . 31

1.16 3.3.8a RGBS Color Composition . 35

1.17 3.3.8b RGBS Palette Settings . 36

1.18 3.3.8c RGBS <-> RGB Conversion . 38

1.19 3.3.9a RGBP Color Composition . 40

1.20 3.3.9b RGBP Palette Settings . 41

1.21 3.3.9c RGBP <-> RGB Conversion . 43

1.22 3.3.10a RGB332 Color Composition . 46

1.23 3.3.10b RGB332 Palette Settings . 47

1.24 3.3.10c RGB332 <-> RGB Conversion . 53

1.25 3.3.11a RGBH Color Composition . 54

1.26 3.3.11b RGBH Palette Settings . 55

1.27 3.3.11c RGBH <-> RGB Conversion . 57

1.28 3.4 Improving HalfRes Quality with ChqrMode . 60

1.29 3.5 Creating Scrollable Screens . 62

tech iv

1.30 3.5.1 Scrolling in FullRes . 62

1.31 3.5.2 Vertical Scrolling in HalfRes . 63

1.32 3.5.3 Horizontal Scrolling in HalfRes . 63

1.33 3.5.3.1 Scrolling with ChqrMode OFF . 63

1.34 3.5.3.2 Scrolling with ChqrMode ON . 65

1.35 3.5.3.2.1 XPos (64) Belongs to {1,...,56} . 68

1.36 3.5.3.2.2 XPos (64) Belongs to {57,...,60} . 68

1.37 3.5.3.2.3 XPos (64) Belongs to {0,61,62,63} . 69

1.38 3.5.3.2.4 Settings Summary . 69

1.39 3.6 Cross Playfield Mode . 70

1.40 3.6.1 Limitations . 71

1.41 3.6.2 BitPlanes Assignment . 71

1.42 3.6.3 Palette Settings . 72

1.43 3.6.4 Dual Modality . 73

1.44 3.7 Screen Buffering . 74

tech 1 / 75

Chapter 1

tech

1.1 3 How TCS Works

3 How TCS Works

**
I must stress clearly that everything that follows (here and in the rest
of the guide) derives directly from _practice_, as I don’t know anything
of optics and the likes; that’s why it’s likely that some terms are used
*improperly - I apologize for this. *
*It could well also be that not even a subtle shade of truth backs up my *
*reasoning: all I know is that it does work as a matter of fact. *
*Many apologies, again, for this lack of scientific rigour. *
**

Here you can find all the technical details to perfectly understand the
inner workings of TCS and code your own set of routines to operate it
(in case you don’t want to use the library).

3.1 Basic Idea
3.2 Amiga Hardware Setup
3.3 RGBx Color Composition
3.4 Improving HalfRes Quality with ChqrMode
3.5 Creating Scrollable Screens
3.6 Cross Playfield Mode
3.7 Screen Buffering

- for convenience, in all the following sub-sections, we assume to have
an Amiga 320x256 LORES PAL display on which a TCS 160x256 screen in
HalfRes mode or a TCS 320x256 screen in FullRes mode is shown

- the sections above discuss rather simple concepts, but aren’t easy to
read at all: I couldn’t do any better, many apologies

- all the methods suggested herein are implemented in the tcs.library
- although this part is quite vast and important, YOU DO NOT NEED TO

tech 2 / 75

DROWN YOURSELF IN IT to be able to use the tcs.library: understanding
the basic concepts and terminology is fairly enough

1.2 3.1 Basic Idea

3.1 Basic Idea

The basic idea is to exploit the extremely small size of SHRES (35 ns)
pixels. By opening a SHRES screen, in fact, pixels are so tiny that the
human eye can’t clearly distinguish the ones close to one another, so that
it "mixes" their colors, thus perceiving a single pixel.
Suppose that a LORES pixel is represented by something like:

RRRR
RRRR
RRRR
RRRR

and a SHRES pixel by:

R
R
R
R

The eye can distinguish two LORES pixels attached to each other (provided
their contrast is quite good):

RRRRGGGG
RRRRGGGG
RRRRGGGG
RRRRGGGG

But it finds quite difficult to "separate" two or more SHRES pixels:

RGRBGRBG
RGRBGRBG
RGRBGRBG
RGRBGRBG

This can be used to form different colors by attaching pixels with Red,
Green and Blue tonalities:

RGB
RGB
RGB
RGB

these 3 SHRES pixels are perceived as a single 105 ns pixel whose color
derives from the composition of the R, G and B components.

Actually, TCS screens use four SHRES pixels wide (140 ns) pixels, where
the additional component can be freely adapted to the coder’s needs:

tech 3 / 75

RGBX
RGBX
RGBX
RGBX

thus a color is given by the composition of several (4 instead of 3 as in
a normal RGB system) sub-components.

1.3 3.2 Amiga Hardware Setup

3.2 Amiga Hardware Setup

This section lists the fundamental Amiga hardware settings required to
open a Tricky-Color display.

The Amiga chipset it so flexible that it allows to set up some really
fancy displays. To exploit this we have to:

1. open a 1280x256, 4 [or 5, see 2.c] planes, SHRES display

2. a) reserve enough CHIP ram for 1 [HalfRes] or 2 [FullRes] 1280x256
bitplanes (named "VdoPln0" and "VdoPln1", "VdoPlns" in general)

b) reserve some more CHIP ram for other 2 planes, both sized like
VdoPln0, which act as color-component selectors, hence their names
will be "SlcPln0" and "SlcPln1" ("SlcPlns" in general)

c) [HalfRes] reserve, optionally, one more bitplane (warmly recommen-
ded) of the same size of VdoPln0 again, called "MskPln", whose pur-
pose will be detailed in section 3.3.3

d) [FullRes] reserve a buffer (in FAST mem, otherwise performance
drops too much) that will be our 320x256 chunky screen (let’s call
it "ChnkScr")

3. set the BPLxPT in this way:

BPL1PT = VdoPln0 address
BPL2PT = VdoPln0 [HalfRes] or VdoPln1 [FullRes] address
BPL3PT = SlcPln0 address
BPL4PT = SlcPln1 address
BPL5PT = MskPln address (only if required)

(for Cross Playfield these settings have to be extended this way)

4. a) HalfRes: set BPLCON1 to $10, so that playfield 2 (planes 2,4) is
shifted by 1 LORES pixel with respect to playfield 1
(planes 1,3,5);
this can be changed to $10 for even lines and $21 for odd
ones, in order to achieve a "chequered" display to avoid
a somehow disturbing columns-of-pixels effect

b) FullRes: set BPLCON1 to 0

tech 4 / 75

5. set the COLORxx registers (xx ranges from 0 to 15 or, if MskPln active,
to 31) to the values found in these sections or, for Cross Playfield,
in this section

6. initialize a pointer called "ChnkScr" as follows:
a) FullRes: ChnkScr = address of the homonymous buffer
b) HalfRes: ChnkScr = VdoPln0

- given the way BPLCON1 is treated at point 4.a, horizontal scrolling is
harder than usual: BPLCON1 can still be used for that purpose, but many
more complications derive from the different shift value of the play-
fields and, above all, from the settings required by the chequer effect

- for buffered displays and Cross Playfield some other additional buf-
fers must be reserved in CHIP and/or FAST ram

1.4 RGBx Color Composition

3.3 RGBx Color Composition

In this section you’ll learn how RGBx formats work, in case you need to
make the most of them or want to create your own:

3.3.1 Conventions
3.3.2 Bits Allocation Inside RGBx Pixels
3.3.3 How Pixels Are Plotted on a HalfRes Screen
3.3.4 How Pixels Are Plotted on a FullRes Screen
3.3.5 RGB <-> RGBx Conversion

Here are some possible RGBx formats (all embedded in the tcs.library):

3.3.6a RGBW Color Composition
3.3.6b RGBW Palette Settings
3.3.6c RGBW <-> RGB Conversion

3.3.7a RGBM Color Composition
3.3.7b RGBM Palette Settings
3.3.7c RGBM <-> RGB Conversion

3.3.8a RGBS Color Composition
3.3.8b RGBS Palette Settings
3.3.8c RGBS <-> RGB Conversion

3.3.9a RGBP Color Composition
3.3.9b RGBP Palette Settings
3.3.9c RGBP <-> RGB Conversion

3.3.10a RGB332 Color Composition
3.3.10b RGB332 Palette Settings

tech 5 / 75

3.3.10c RGB332 <-> RGB Conversion

3.3.11a RGBH Color Composition
3.3.11b RGBH Palette Settings
3.3.11c RGBH <-> RGB Conversion

1.5 3.3.1 Conventions

3.3.1 Conventions

Although what will follow will probably seem exaggeratedly formal, it is
very important to define some notational conventions to face the most com-
plicated issues

Since the fundamental point is that RGBx is based on the effect of color
composition, the first thing we must do is defining clearly the RGBx com-
ponents and their abbreviations and meanings:

Component Name (=CN) Component Index (=CI) corresponding color

RN 0 "red"
GN 1 "green"
BN 2 "blue"
xN 3 <format-dependent>

From these definitions we can build a little vector CI[], indexed by CNs,
for easy retrieval of CIs:

CI[RN] = 0
CI[GN] = 1
CI[BN] = 2
CI[xN] = 3

and a similar vector col[] which returns the color:

col[RN] = "red"
col[GN] = "green"
col[BN] = "blue"
col[xN] = <format-dependent>

(don’t be afraid! These are *not* real vectors! We will use them only in
this document anytime we need to be a bit more precise than natural words)

Meaning of some (frequent) sentences:

- "[the component] RN" = "the component commonly indicated as ’R’, ’red’"
- "the component with CI=1" = "the component commonly indicated by ’G’"
- "the component #CI" = "[the component] CN such that CI[CN]=CI"
- "B" = "the intensity of [the component] BN"

= "the intensity of the component commonly referred to as ’B’"
(a number in the range [0...255])

tech 6 / 75

- "the CI of [the component] xN" = CI[xN] = 3
- "the color associated to [the component] RN" = col[RN] = "red"

Some informal nomenclature about RGB component intensities:

C informally

0 "null" or "black"
85 "dark"

127 "half"
170 "dimmed"
255 "full"

where: C = Component intensity (of any component)

RGB colors will be represented with the notation <R G B>.

As explained in the following section, an RGBx component, unlike RGB’s,
can have only four values, each corresponding to an RGB intensity:

CV corresponding intensity C (only for RN, GN and BN):

0 0
1 85
2 170
3 255

where: CV = Component Value (of any component)

RGBx colors will be represented with the notation <RV GV BV xV>.

1.6 3.3.2 Bits Allocation Inside RGBx Pixels

3.3.2 Bits Allocation Inside RGBx pixels

As anticipated early in the introduction part, each pixel consists in a
byte in the screen buffer. Since we’re studying a TrueColor-ish video sys-
tem, such byte represents directly the RGBx color of the pixel, i.e. its
bits represent the RGBx components of the color of the pixel.
The most general allocation of those bits is:

bit # 7 6 5 4 3 2 1 0
bit name R1 G1 B1 x1 R0 G0 B0 x0

Not to complicate things too much right from the start, we’ll ignore the
bits xn for a while.

Each component, being represented on two bits, can range from 0 to 3:

RV GV BV

CV R1 R0 G1 G0 B1 B0 C

tech 7 / 75

0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 85
2 1 0 1 0 1 0 170
3 1 1 1 1 1 1 255

(Cn indicates the bit #n of CV; e.g.: G1 indicates the bit #1 of GV)

A red dot is obtained setting to 1 only R1 and R0: %10001000 = <3 0 0 0>;
similarly, %01000100 = <0 3 0 0> gives a green and %00100010 = <0 0 3 0>
gives a blue.
A darker red is given by R1=1, R0=0: %10000000 = <2 0 0 0>.
A very dark red is given by R1=0, R0=1 = %00001000 = <1 0 0 0>.

Many other colors derive from the combinations of those components;
for instance, if we want a white-ish color, all we have to do is:

R=255 -> RV=3 -> R1=1, R0=1 >
G=255 -> GV=3 -> G1=1, G0=1 > <3 3 3 0> = %11101110
B=255 -> BV=3 -> B1=1, B0=1 >

a darker white (a shade of grey) would be obtained with:

R=170 -> RV=2 -> R1=1, R0=0 >
G=170 -> GV=2 -> G1=1, G0=0 > <2 2 2 0> = %11100000
B=170 -> BV=2 -> B1=1, B0=0 >

an even darker white (another grey) with:

R= 85 -> RV=1 -> R1=0, R0=1 >
G= 85 -> GV=1 -> G1=0, G0=1 > <1 1 1 0> = %00001110
B= 85 -> BV=1 -> B1=0, B0=1 >

black, obviously:

R= 0 -> RV=0 -> R1=0, R0=0 >
G= 0 -> GV=0 -> G1=0, G0=0 > <0 0 0 0> = %00000000
B= 0 -> BV=0 -> B1=0, B0=0 >

yellow:

R=255 -> RV=3 -> R1=1, R0=1 >
G=255 -> GV=3 -> G1=1, G0=1 > <3 3 0 0> = %11001100
B= 0 -> BV=0 -> B1=0, B0=0 >

purple:

R=255 -> RV=3 -> R1=1, R0=1 >
G= 0 -> GV=0 -> G1=0, G0=0 > <3 0 3 0> = %10101010
B=255 -> BV=3 -> B1=1, B0=1 >

cyan:

R= 0 -> RV=0 -> R1=0, R0=0 >
G=255 -> GV=3 -> G1=1, G0=1 > <0 3 3 0> = %01100110
B=255 -> BV=3 -> B1=1, B0=1 >

tech 8 / 75

and so on...

Actually, the colors we have found so far aren’t equivalent to the RGB
colors obtained with the same assignments to the components.
This is because there is a couple of bits which have their own influence
in the final outcome: the extra bits we marked with xn.
With all the possible combination of these bits, many other colors become
available (four times as much).
The RGBx formats differ from one another in function of how the xn bits
are treated.

1.7 3.3.3 How Pixels Are Plotted on a HalfRes Screen

3.3.3 How Pixels Are Plotted on a HalfRes Screen

After reading the section 3.3.2 you may now wonder how the pixel bits
are handled and put together to generate the proper colors: everything is
fairly simple and doesn’t require any CPU, Blitter or Copper intervention.
Already guessed how thanks to the setup information?
Great!...
... but let’s talk about it anyway...

At first glance, it may seem strange that BPL1PT and BPL2PT both point to
the same memory area (VdoPln0): strange but not wrong. Notice that play-
field 2 (bitplane 2) is scrolled horizontally by one LORES pixel, which
corresponds exactly to four SHRES pixels: this means that the low-order
nibble of the RGBx byte in bitplane 1 is "covered" by the hi-order nibble
of the same byte in bitplane 2, as shown in the following diagram:

plane 2 R1 G1 B1 X1 R0 G0 B0 X0
plane 1 R1 G1 B1 X1 R0 G0 B0 X0

^^^^^^^^^^^
1 LORES pixel

the Amiga’s planar system automatically puts C0 and C1 together to gene-
rate an index (C1*2+C0) to the color registers, so we need not doing any-
thing!

The sharp-eyed readers surely have already noted that this is not enough
to keep separate all components: in fact, two planes can map only one of
them.
Indeed, we need to "select" the components, so 2 more bits per component
are required, for a total of 16 combinations (that’s why the setup list
includes a couple of "selector planes").
The lowest 2 bits of the index remain the C1 and C0 (to select the compo-
nent value), the other 2 have to be provided by the "selector planes" (to
select the component): according to the values of the CIs, the patterns
the SclPlns have to be filled with are:

component selected: RN GN BN xN RN GN BN xN

SlcPln1 pattern : 0 0 1 1 0 0 1 1 = %00110011

tech 9 / 75

SlcPln0 pattern : 0 1 0 1 0 1 0 1 = %01010101

^ ^ ^ ^ ^ ^ ^ ^
| | | | idem
| | | |
| | | CI[xN]
| | CI[BN]
| CI[GN]
CI[RN]

A scheme of the RGB palette to use for the Amiga display would be:

COLORxx SlcPlns
-$dff180 value CV <R G B >

0 %00 %00 < 0 0 0>
1 %00 %01 < 85 0 0>
2 %00 %10 <170 0 0>
3 %00 %11 <255 0 0>

4 %01 %00 < 0 0 0>
5 %01 %01 < 0 85 0>
6 %01 %10 < 0 170 0>
7 %01 %11 < 0 255 0>

8 %10 %00 < 0 0 0>
9 %10 %01 < 0 0 85>
10 %10 %10 < 0 0 170>
11 %10 %11 < 0 0 255>

12 %11 %00 <*** *** ***> (these values indicate the color
13 %11 %01 <*** *** ***> of the x component, so they have
14 %11 %10 <*** *** ***> to be defined according to each
15 %11 %11 <*** *** ***> RGBx definition)

in fact, the component GN of a green pixel (%01000100) is generated by:

plane # plane name plane data

4 SlcPln1 %00110011
3 SlcPln0 %01010101
2 VdoPln0 % 01000100
1 VdoPln0 %01000100

^
|
+--- %0111 = 7

(note that SlcPlns effectiveness is in no way affected by BPLCON1 scroll
value - if defined as in Amiga Setup section).

Unfortunately, the LORES pixels surrounding the one we wanted are affected
as well, so that two consecutive pixels are separated by another pixel.
We could say that each pixel is actually 2 LORES pixels wide (our resolu-
tion is 160x256 with a pixel ratio of 2:1), but this would be a bit redu-
ctive.
With a slightly deeper analisys, we notice that the pixel in the middle is
a sort of "average" of the surrounding pixels.

tech 10 / 75

This is better explained by expanding the previous diagram:

plane 2 R1 G1 B1 X1 R0 G0 B0 X0 r1 g1 b1 x1 r0 g0 b0 x0
plane 1 R1 G1 B1 X1 R0 G0 B0 X0 r1 g1 b1 x1 r0 g0 b0 x0

^^^^^^^^^^^ ^^^^^^^^^^^ ^^^^^^^^^^^
pixel1 (p1) "average" pixel2 (p2)

pixel
(1a2)

As you can see, 1a2 can be considered an "average" of p1 and p2 because
its components are made of both p1’s and p2’s.
This could turn out to be a nice side-effect, but, since in 1a2 the Cn
"weights" are exchanged (R0 has greater influence than r1), generally it
represents a problem.
For example, consider the red pixel given by %10000000 in a completely
black area:

plane 2 1 0 0 0 0 0 0 0
plane 1 1 0 0 0 0 0 0 0

^^^^^^^ ^^^^^^^
darker red
red pixel
pixel
(R=85) (R=170)

R1 "activates" a darker red dot on the left, which can be accepted like
a sort of "blur" or "anti-alias" effect.
Also a stronger red (%10001000) presents a similar situation:

plane 2 1 0 0 0 1 0 0 0
plane 1 1 0 0 0 1 0 0 0

^^^^^^^ ^^^^^^^ ^^^^^^^
darker red darker
red pixel red
pixel pixel
(R=85) (R=255) (R=170)

but we’re not as lucky with %00001000:

plane 2 0 0 0 0 1 0 0 0
plane 1 0 0 0 0 1 0 0 0

^^^^^^^ ^^^^^^^ ^^^^^^^
black red brighter
pixel pixel red

pixel
(R=0) (R=85) (R=170)

this means that the contribution to the "average" with the black pixel on
the right side is greater than the color iteself, which is quite bad.
The only way I can see to get around this is to activate another plane
(its name would be "MskPln") which either masks out the "average" pixels
or, even better, "re-inverts" the "importance" of Cns in the "average"
pixels.
The pattern MskPln has to be filled with is %11110000, where the 0s are
neutral and the 1s affect the "average" pixels (the 1-0 order is due to
the fact that MskPln belongs to the same playfield of VdoPln0 and conse-
quently has the same scroll shift).

tech 11 / 75

When MskPln is activated, the palette could be extended in this way to
"invert" the weight of Cns (to mask them out, just set all the following
to 0):

MskPln_
COLORxx SlcPlns
-$dff180 value CV <R G B >

16 %1_00 %00 < 0 0 0>
17 %1_00 %01 <170 0 0>
18 %1_00 %10 < 85 0 0>
19 %1_00 %11 <255 0 0>

20 %1_01 %00 < 0 0 0>
21 %1_01 %01 < 0 170 0>
22 %1_01 %10 < 0 85 0>
23 %1_01 %11 < 0 255 0>

24 %1_10 %00 < 0 0 0>
25 %1_10 %01 < 0 0 170>
26 %1_10 %10 < 0 0 85>
27 %1_10 %11 < 0 0 255>

28 %1_11 %00 <*** *** ***> (these values indicate the color
29 %1_11 %01 <*** *** ***> of the x component, so they have
30 %1_11 %10 <*** *** ***> to be defined according to each
31 %1_11 %11 <*** *** ***> RGBx definition)

This example shows how it works in case of a dark red pixel (<1 0 0 0>)
near to a brighter green one (<0 2 0 0>):

plane # plane name plane data

5 Mskpln %11110000 11110000
4 SlcPln1 %00110011 00110011
3 SlcPln0 %01010101 01010101
2 VdoPln0 % 0000 10000100 0100
1 VdoPln0 %00001000 01000000

^^^^ ^^^^
^^^^

red avg green

if the Cns weren’t re-inverted, the RV would address the color %0010=2,
whose RGB value is <170 0 0> and GV would address the color %0101=5, whose
value is <0 85 0>; the resulting RGB value would be <170 85 0>, in which
red and green "weights" are inverted in respect to the source pixels; in-
stead we would rather need <85 170 0>, which is given, adding MskPln, by
%10010=18 -> <85 0 0> and %10101=21 -> <0 170 0>. This, however, is not a
very good approximation, as a real average pixel would have the following
RGB value: (<85 0 0>+<0 170 0>)/2 = <85/2 170/2 0>.
This error is also shown by this situation:

plane # plane name plane data

5 Mskpln %11110000 11110000
4 SlcPln1 %00110011 00110011

tech 12 / 75

3 SlcPln0 %01010101 01010101
2 VdoPln0 % 0000 10001000 0000
1 VdoPln0 %00001000 10000000

^^^^ ^^^^
^^^^

red avg red

What?!? The color avg results brighter than the ones which surround it!!!
In fact, we have that the two red pixels (<1 0 0 0>, <2 0 0 0>) combine to
give a the brightest red component possible (<3 0 0 0>)!
A simple solution could be darkening all or some of the RGB values of co-
lors 16-31 (for example, their components’ intensities could be halved -
- this would cause a certain loss of brightness); but this, on the other
side, would give a bad "average" in case of consecutive identical pixels.
We need something less naive, so let’s face it analytically:

plane # plane name plane data

2 VdoPln0 R1 G1 B1 X1 R0 G0 B0 X0
1 VdoPln0 R1 G1 B1 X1 R0 G0 B0 X0 r1 g1 b1 x1 r0 g0 b0 x0

^^ ^^ ^^ ^^
RV’GV’BV’xV’

(the pixels involved are P=R1G1B1X1R0G0B0X0 and p=r1g1b1x1r0g0b0x0)

we note that CV’ (of the "average" pixel) is given by C0 (from CV of P)
and c1 (from cV of p): C1’=C0, C0’=c1, so we can list all the possible
ways to obtain CV’ from CV and cV:

CV’ CV cV corresponding intensities

C1’=C0 C0’=c1 C1 C0 c1 c0 C c

0 0 0 0 0 0 0 0
1 0 0 1 170 85

0 1 0 0 1 0 0 170
1 0 1 1 170 255

1 0 0 1 0 0 85 0
1 1 0 1 255 85

1 1 0 1 1 0 85 170
1 1 1 1 255 255

but, since CV’ can be given by any combination of CV and cV, we have the
following table (could not be valid xN - depends on the RGBx mode):

combination combination ideal intensity average
CV’ CV - cV C - c (C+c)/2

0 %00 - %00 0 - 0 0
%00 - %01 0 - 85 43
%10 - %00 170 - 0 85
%10 - %01 170 - 85 128

1 %00 - %10 0 - 170 85

tech 13 / 75

%00 - %11 0 - 255 128
%10 - %10 170 - 170 170
%10 - %11 170 - 255 213

2 %01 - %00 85 - 0 43
%01 - %01 85 - 85 85
%11 - %00 255 - 0 128
%11 - %01 255 - 85 170

3 %01 - %10 85 - 170 128
%01 - %11 85 - 255 170
%11 - %10 255 - 170 213
%11 - %11 255 - 255 255

it seems sensible to assign to C’ the intensity calculated as the average
of its ideal averages (approximate/idealized somewhere...):

CV’ C’

0 0 +
43 +
85 +

128 = 256 -> [/4] -> 64

1 85 +
128 +
170 +
213 = 596 -> [/4] -> 149

2 43 +
85 +

128 +
170 = 426 -> [/4] -> 107

3 128 +
170 +
213 +
255 = 766 -> [/4] -> 192

it’s a pleasure to see that these values are "re-inverted" as we intuiti-
vely supposed; let’s put them in the palette table:

MskPln_
COLORxx SlcPlns
-$dff180 values CV’ C’

16+4*CI %1_CI[CN] 00 64
17+4*CI %1_CI[CN] 01 149
18+4*CI %1_CI[CN] 10 107
19+4*CI %1_CI[CN] 11 192

the values of components different from CN must be set to 0

Now, with these settings, we have that the "average" pixels represent a
kind of interpolation of surrounding pixels, which improves a lot the qua-
lity of on-screen graphics.

tech 14 / 75

- another side effect related to "average" pixels is tackled with equal
shrewdness in section 3.4

1.8 3.3.4 How Pixels Are Plotted on a FullRes Screen

3.3.4 How Pixels Are Plotted on a FullRes Screen

Luckily most of what’s been discussed about in the HalfRes section holds
true also in FullRes. There are several significant differences, though.

Unfortunately here we cannot start with "... you may now wonder how the Cn
bits are handled and put together to generate the proper colors: every-
thing is fairly simple and does not require any CPU, Blitter or Copper in-
tervention..." like we did before. Instead, we have that the CPU (and,
possibly, the Blitter) must make a huge effort to keep things going fast.

OK, let’s proceed by degrees.

FullRes, as its name (opposed to HalfRes) suggests, has a horizontal re-
solution of 320 pixels per line. Let’s cut&paste a piece of text from the
previous section to see why HalfRes can’t reach such limit:

plane 2 R1 G1 B1 X1 R0 G0 B0 X0
plane 1 R1 G1 B1 X1 R0 G0 B0 X0

^^^^^^^^^^^
1 LORES pixel

in this cut-out the bits [R1 G1 B1 X1] and [R0 G0 B0 X0] "brim over" and
brutally "invade the neighbourhood", forming the well-dissected "average"
pixels: the resolution is halved because there is one of them for each
"normal" pixel.
This means that we have to find a way to get rid of those "average" pixels.
It’s not a case that this chapter has been opened with a hint to some
heavy CPU work: I can’t really imagine a way of doing such operation by
resorting just to the Amiga’s video circuitry.
One big problem is that the final video data must reside in CHIP ram (in
order to be fetchable by the aforementioned hardware) which happens to be
deadly slow for today’s standards and tasks similar to the one we are
facing now: so WE CAN’T EXPECT THIS VIDEO MODE TO BE BLISTERING FAST,
especially if compared to HalfRes.
Despite of this, we, in the "Pure Amigan" spirit, don’t throw our hopes
away, confident that our marvelous machine can actually handle this
situaton.

For a start, let’s say that although we have seen many miracles on the
Amiga, we won’t get any far without a good quantity of FAST ram: even if
we can parallelize CHIP ram writes with internal CPU processing, we can’t
do it on reads (at least on non-superscalar CPU’s... in other words: maybe
only the 060 can partially overcome this limitation... but I dare you to

tech 15 / 75

find somebody who owns a 060 accelerator without FAST ram!).
Indeed, FullRes is possible on unexpanded A1200s, but, without surprise,
the resulting speed is terrible.

We are ready now to start with the techie part.
Following the setup section directions, we:

- allocate two 1280x256 planes, called VdoPln0 and VdoPln1, in CHIP ram
- allocate a 320x256 (=10240 bytes) buffer (possibly in FAST ram) called

ChnkScr
- load the BPLxPT registers with:

BPL4PT SlcPln1
BPL3PT SlcPln0
BPL2PT VdoPln1
BPL1PT VdoPln0

ChnkScr is the buffer from/to which we read/write the pixels in chunky
fashion, while VdoPln0 and VdoPln1 are 2 separate buffers read by the
bitplane DMA and shown on the screen.

Now it’s possible to give an algorithmic description of the process to
execute.
Going back to the problem that originated this discussion, we can clearly
see that the CPU must perform this job:

1. fetch the data (pixels) from ChnkScr
2. convert the data
3. write the data to both VdoPln0 and VdoPln1

The conversion consists in separating the nibbles which the pixels are
made of and writing them to their own plane:

ChnkScr ... R1 G1 B1 X1 r1 b1 g1 x1 R2 G2 B2 X2 r2 g2 b2 x2 ...

^ ^ ^ ^ ^ ^
| | | | | |
| | | | +---------------------+---pixel2
| | | |

p1.nibble1---+---------+ +---------+---p1.nibble0

^ ^
| |
+---------------------+---pixel1

pixel1 can be seen as the concatenation of 2 nibbles:

- p1.nibble1: most-significant bits of pixel1’s CV
- p1.nibble0: least-significant bits of pixel1’s CV

It’s immediate to see that for each pixel Y of ChnkScr pY.nibbleX should
be written to VdoPlnX, in order to have the data organized in this way:

VdoPln1 ... R1 G1 B1 X1 R2 B2 G2 X2 ...
VdoPln0 ... r1 g1 b1 x1 r2 b2 g2 x2 ...

^ ^ ^ ^

tech 16 / 75

| | | |
pixel1---+---------+ +---------+---pixel2

In a nutshell: the pixels halves must be adequately arranged in "columns"
on the VdoPlns.

In practice this is exactly what HalfRes does by using the same plane for
VdoPln0 and VdoPln1 and shifting the playfields by 1 LORES pixel.
The great difference, here, is that there are no longer bits bursting out;
the price is that the CPU is occupied by a heavy conversion loop.

A little help can be obtained from the Blitter, which can take some of the
conversion load at the cost of an additional buffer in CHIP memory; here’s
what we can do:

for maximum speed we fetch source data from FAST ram by longwords; thus
each longword holds 4 chunky pixels in this format: $1a2b3c4d, where $1a
is the first, $2b is the second, $3c the third and $4d the fourth pixel.
Our goal is to write $1234 to VdoPln1 and $abcd to VdoPln0.
To minimize the CPU job, we turn $1a2b3c4d into $1a3c2b4d (which requires
just 3 rotate instructions) and write it to the additional buffer in CHIP
memory (by arranging properly fetches/writes/conversions, conversions can
be done in parallel with the slow writes to CHIP ram).
After writing the whole buffer, the Blitter can convert the data for
VdoPln1 in this way:

data shift (R) modulo (+)

channel A: $1a3c 0 +2
channel B: $2b4d 4 +2
channel C: $f0f0 - -

|
V

channel D: $1234 - 0

(D data is given by: (A & C) | (~A & B) - this is just one of the
several equivalent ways of doing this)

VdoPln0 can be similarly obtained by blitting in descending mode:

data shift (L) modulo (-)

channel A: $1a3c 4 +2
channel B: $2b4d 0 +2
channel C: $f0f0 - -

|
V

channel D: $abcd - 0

Note that each blit is just 1 word wide, so BLTSIZV must be ScrWd*ScrHt/4
(the /4 comes from the width and the modulo of the blit; at most we can
convert ScrHt=(4*MaxBLTSIZV)/ScrWd lines: for a 320 pixels wide screen it

tech 17 / 75

is (32768*4/320)=409 lines).

This technique is generally useless on machines without FAST ram, as its
main purpose is to let the CPU free to work in FAST while the Blitter in
parallel executes the FullRes conversion.

Now that all the main actors have made their appearance, we have to do
justice to a few extras who preferred staying hidden all this time:

"average" pixels totally disappeared therefore MskPln and ChqrMode are
not needed anymore; this translates directly into three facilitations:

- bitplane and Copper DMA transfers are reduced, so the CPU enjoys a
better access to CHIP ram (if Blitter-assisted conversion isn’t used)

- only 16 COLORxx registers have to be loaded, so the Copper executes
less instructions than it did with MskPln activated (and the CPU has
less writes to the copperlist when the palette is changed for fade-fx
and the likes)

- using BPLCON1 for horizontal scrolling remains as easy as it’s ever
been in Amiga’s history (yet, it can be much more simply achieved by
selecting only certain parts of ChnkScr, as the TCS_CPUFRPass1()
and TCS_CPUFRPass2() of tcs.library permit to do)

- if you need screen buffering only to avoid on-screen jerkings, you
can completely forget about it if CPU-only FullRes conversion is used:
in fact, both VdoPlns are updated at the same time longword by long-
word, so no visual side-effect appears on screen (this, instead, does
not happen with Blitter-assisted conversion because it is carried
out on planar basis)

1.9 3.3.5 RGB <-> RGBx Conversion

3.3.5 RGB <-> RGBx Conversion

One of the great problems that an RGBx format presents is that they are
unsupported by the common graphics manipulation packages (I don’t know if
any RGBx-like encoding has been already defined and adopted somewhere; I’m
skeptical because RGBx is way too weird...), with the consequent difficul-
ty in using pre-existent pictures.

Finding an automatic method which makes using images fast, comfortable
and (above all!) possible is the target of this section.

Let’s look at an RGB palette like a vector of this kind:

PAL = vector [0...255] of struc
R: 0...255
G: 0...255
B: 0...255

endstruc

Calling, for simplicity, PAL[CL] the 24-bit value obtained by the concate-
nation of PAL[CL].R, PAL[CL].G and PAL[CL].B, it would be marvelous if CL

tech 18 / 75

was exactly the RGBx value which, on a Tricky-Color display, looks like
PAL[CL] on a normal screen.
In other words, we could say that the vector PAL[] is RGBx-indexed or,
from another point of view, we can say that we have to find a method for
converting 8-bit RGBx values to normal 24-bit RGB ones.

In this way we could remap any picture to the palette PAL[] (evidently
this could worsen the picture quality) with a normal image-processing pa-
ckage or draw a brand-new picture from the scratch with a paint program
and then save it in 8-bit raw chunky format, to have it ready to be shown
on a Tricky-Color screen!
So our task consists in finding an algorithm which generates PAL[].

Now we get even more empirical, but, since the RGB definition itself seems
to have an empirical basis, let’s not be too fussy.

Each color comes with a luminance signal, which, consequently, is a
function of each of its components:

Luminance of color <R G B> = Lrgb(R,G,B) = Lr*R+Lg*G+Lb*B

(note that in 24-bit:

- R, G , 0B and Lrgb() are all represented on 8 bits
- Lrgb(R,G,B) = 0 <=> R=G=B=0;
- Lrgb(R,G,B) = 255 <=> R=G=B=255;

therefore, Lr+Lg+Lb is necessarily 1.0)

Intuitively, the Lns tell how much every single component affects the
total luminance.
Sperimentally, (ages ago) it has been found that:

Lr = 0.299
Lg = 0.587
Lb = 0.114

The same should happen in the RGBx format:

Luminance of color <R G B x> = Lrgbx(R,G,B,x) = Lr’*R+Lg’*G+Lb’*B+Lx’*x

where Lr’+Lg’+Lb’+Lx’ = 1.0;

The problem is that the normal RGB values of Lns no longer hold, due to
the addition of the fourth component.
Here comes the empirical, arbitrary part: with a little of guess-working
and/or brain-driven testing one has to find an acceptable value to assign
to Lx’, to get rid of the "exceeding" unknown.
Since PAL[] sensibly changes accordingly to Lx’, it must be chosen bearing
in mind two criteria:

- searching for the PAL[] which gives the best _final_ display result
(which does *not* necessarily mean the best-looking PAL[] in absolute)

- trying to get the highest number of _unique_ colors possible (being a
calculated palette, it could happen that PAL[i]=PAL[j], i<>j)

tech 19 / 75

To start we must note that there is a serious problem with RGBx pixels lu-
minance: an RGBx pixel is actually made up of four SHRES pixels, so each
of these sub-pixels can affect the total luminance at most by 1/4; how-
ever, this is usually even less, as a sub-pixel has only one component, so
the screen loses some brightness. More precisely, the contribution of each
sub-pixel is:

RN -> Lr*0.25 < 0.25
GN -> Lg*0.25 < 0.25
BN -> Lb*0.25 < 0.25
xN -> <RGBx format-dependent> <= 0.25

by definition Lr+Lg+Lb = 1, so the first 3 sub-pixels can give at most 1/4
of the maximum luminance possible; besides, since also xN contributes at
most with 1/4, there is always a loss of brightness of at least 50%.
Being this just a side-effect of the way pixels are displayed on the moni-
tor, in some calculations we can ignore it; in some other cases, instead,
it is fundamental bearing it in mind for correct color information hand-
ling (for example, when calculating the value of Lx’ for each RGBx mode).

Now let’s get back to the problem of finding the "weights" for the RGBx
components; supposing to have found the Lx’ value:

Lr’+Lg’+Lb’+Lx’ = 1.0 -> Lr’+Lg’+Lb’ = 1.0-Lx’

to determine the remaining Ln’s we can observe that surely they still are
directly proportional to the respective Lns; in fact, the previous equa-
tion can be decomposed as:

Lr’+Lg’+Lb’ = 1.0-Lx’ -> Lr’+Lg’+Lb’ = (1.0-Lx’)*(Lr+Lg+Lb) ->

Lr’ = (1.0-Lx’)*Lr
-> Lg’ = (1.0-Lx’)*Lg

Lb’ = (1.0-Lx’)*Lb

Now, according to these definitions, we can say that a color that looks
the same in both RGB and RGBx formats has also the same luminance
(<R’ G’ B’ x’> in RGBx looks like <R G B> in RGB):

Lrgb(R,G,B) = Lrgbx(R’,G’,B’,x’)

Remeber what we are trying to achieve: we have to build an RGB palette
starting from all the possible RGBx values; we have such values, because
in an 8-bit palette they are simply the indexes between 0 and 255; thus,
in the previous equation, the unknowns are the R, G and B.

At this point we can observe that one generical component CN contributes
to Lrgb() exactly as much as the corresponding CN’ component (and *some-
times* (part of) xN’) contributes to Lrgbx() (different RGBx formats are
characterized by different values of Lx’ and different ways in which xN’
affects Lrgbx()). How all this happens will be discussed in every RGBx
specific section.

We now write a useful (will come in handy later!) function which, given a
chunky pixel in RGBx format and a CI, returns the intensity of the compo-

tech 20 / 75

nent CN such that CI[CN]=CI:

function GetIntensity(RGBxPxl,CI)

;IN RGBxPxl = chunky pixel in RGBx format
; CI = CI[CN]
;NOTE if CI=3 (CN=xN) the result could be meaningless depending on

the RGBx format

intensity=0
if <bit No. 3-CI of RGBxPxl is 1> then intensity=intensity+85
if <bit No. 7-CI of RGBxPxl is 1> then intensity=intensity+170

return[intensity]

We can now additionally ask ourselves: what if we wanted to do exactly the
opposite (i.e. converting from normal TrueColor 24-bit to RGBx)?
The problem is quite hard (it consists in finding the appropriate values
for four unknowns starting from just three known values!) and, even more
than before, it’s impossible to give a comprehensive introduction here be-
cause the conversion is too RGBx-format dependant.

A common problem, instead, that we’ll have to face when doing this kind of
conversion is the reduction from 8-bit components to 2-bit ones, so we’d
better write another handy function.

For any 8-bit RGB component, the best matching one among the four avail-
able in RGBx must be found:

RGB {0,......,255}

| | |
V V V

RGBx {0,85,170,255}

How to do this choice? Well, "best-matching value" can be thought as "the
closest value"; considering that RGBx values grow with a "step" of 85,
it is quite easy to see that the RGB set can be divided in the following
subsets:

{0,...,42}, {43,...,85,...,127}, {128,...,170,...,212}, {213,...,255}

* * * *

so, converting the 8-bit component CN is reduced to picking the value mar-
ked with "*" that appears in the subset which C belongs to.
Indeed, in what we need is not the component intensity, but the 2-bit
Component Value:

C CV

0 -> %00
85 -> %01 -> CV = (C+42)/85

170 -> %10
255 -> %11

tech 21 / 75

So our function will simply be: C2CV(C) = (C+42)/85

- when remapping a picture using PAL[], dithering helps a lot in most of
the cases (anyway, judge from the final output quality on a TCS screen,

not from how it looks just after conversion!)
- the function TCS_MkRGBxCnvTab() of the tcs.library provides a simple

means of producing the PAL[] array

1.10 3.3.6a RGBW Color Composition

3.3.6a RGBW Color Composition

The concept behind this format is that the colors deriving from the RGB
composition can form new tonalities by altering their brightness.

Here is the specific RGBW bits allocation:

bit # 7 6 5 4 3 2 1 0
bit name R1 G1 B1 W1 R0 G0 B0 W0

We decide to use the extra bit to generate a white component (hence the
"W"), which can be seen as a "contribution" to the brightness of the other
components.
It is exactly treated like the other ones, with the only difference that
WN now it’s not a simple component, but a real color:

WV

W1 W0 col[WN] W

0 0 null white < 0 0 0>
0 1 dark white < 85 85 85>
1 0 dimmed white <170 170 170>
1 1 full white <255 255 255>

With this in mind, we can say that the brightest white possible is:

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 255 -> GV=3 -> G1=1, G0=1 > <3 3 3 3> = %11111111
B= 255 -> BV=3 -> B1=1, B0=1 >
W=<255 255 255> -> WV=3 -> W1=1, W0=1 >

a simple %11101110 would be much less brighter and look grey-ish.

In the same way we can obtain cyan with:

R= 0 -> RV=0 -> R1=0, R0=0 >
G= 0 -> GV=0 -> G1=0, G0=0 > <0 0 3 3> = %00110011
B= 255 -> BV=3 -> B1=1, B0=1 >
W=<255 255 255> -> WV=3 -> W1=1, W0=1 >

tech 22 / 75

and so on...

- the intensity of WN coincides exactly with the value of its sub-compo-
nents, so this mode is particularly easy to work with

1.11 3.3.6b RGBW Palette Settings RGBW

3.3.6b RGBW Palette Settings RGBW

(the color settings listed here don’t include the ones already specified
in section 3.3.3)

The component WN must be white:

COLORxx SlcPlns
-$dff180 values WV W

12 %11 %00 < 0 0 0> (null white)
13 %11 %01 < 85 85 85> (dark white)
14 %11 %10 <170 170 170> (dimmed white)
15 %11 %11 <255 255 255> (full white)

If the MskPln is activated, the "non-darkening" settings for the "average"
pixels could be:

MskPln_
COLORxx SlcPlns
-$dff180 values WV W

28 %1_11 00 < 0 0 0> (null white)
29 %1_11 01 <170 170 170> (dimmed white)
30 %1_11 10 < 85 85 85> (dark white)
31 %1_11 11 <255 255 255> (full white)

otherwise we could find more appropriate values analitically;
we have two pixels (R1G1B1W1R0G0B0W0 and r1g1b1w1r0g0b0w0) attached:

plane # plane name value

2 VdoPln0 R1 G1 B1 W1 R0 G0 B0 W0
1 VdoPln0 R1 G1 B1 W1 R0 G0 B0 W0 r1 g1 b1 w1 r0 g0 b0 w0

^^^^^^^^^^^
avg ^^

WV’

the values of W and w that produce all the four possible WV’s are listed
in this table:

WV’ W0 w1 W w

tech 23 / 75

0 0 0 < 0 0 0> < 0 0 0>
<170 170 170> < 85 85 85>

1 0 1 < 0 0 0> <170 170 170>
<170 170 170> <255 255 255>

2 1 0 < 85 85 85> < 0 0 0>
<255 255 255> < 85 85 85>

3 1 1 < 85 85 85> <170 170 170>
<255 255 255> <255 255 255>

but, since W and w can be mixed in any combination (inside each WV’ sub-
class), we have the following table:

WV’ combination W - w ideal RGB average

0 < 0 0 0> - < 0 0 0> < 0 0 0>
< 0 0 0> - < 85 85 85> < 43 43 43>
<170 170 170> - < 0 0 0> < 85 85 85>
<170 170 170> - < 85 85 85> <128 128 128>

1 < 0 0 0> - <170 170 170> < 85 85 85>
< 0 0 0> - <255 255 255> <128 128 128>
<170 170 170> - <170 170 170> <170 170 170>
<170 170 170> - <255 255 255> <213 213 213>

2 < 85 85 85> - < 0 0 0> < 43 43 43>
< 85 85 85> - < 85 85 85> < 85 85 85>
<255 255 255> - < 0 0 0> <128 128 128>
<255 255 255> - < 85 85 85> <170 170 170>

3 < 85 85 85> - <170 170 170> <128 128 128>
< 85 85 85> - <255 255 255> <170 170 170>
<255 255 255> - <170 170 170> <213 213 213>
<255 255 255> - <255 255 255> <255 255 255>

being WN’ a real color (rather than a simple component), it seems sensible
assigning to it the color calculated as the average of the ideal averages
(approximate/idealized somewhere...):

WV’ RGB average

0 < 0 0 0> +
< 43 43 43> +
< 85 85 85> +
<128 128 128> = <256 256 256> -> [/4] -> < 64 64 64>

1 < 85 85 85> +
<128 128 128> +
<170 170 170> +
<213 213 213> = <596 596 596> -> [/4] -> <149 149 149>

2 < 43 43 43> +
< 85 85 85> +
<128 128 128> +
<170 170 170> = <426 426 426> -> [/4] -> <107 107 107>

3 <128 128 128> +
<170 170 170> +

tech 24 / 75

<213 213 213> +
<255 255 255> = <766 766 766> -> [/4] -> <192 192 192>

putting those values in the palette table:

MskPln_
COLORxx SlcPlns
-$dff180 values WV’ W’

28 %1_11 00 < 64 64 64>
29 %1_11 01 <149 149 149>
30 %1_11 10 <107 107 107>
31 %1_11 11 <192 192 192>

1.12 3.3.6c RGBW <-> RGB Conversion

3.3.6c RGBW <-> RGB Conversion

Let’s start dealing with the RGBW -> RGB conversion considering the equa-
tion we wrote in the general part:

Lrgb(R,G,B) = Lrgbx(R’,G’,B’,x’)

which, in this case, can be instanced as:

Lrgb(R,G,B) = Lrgbw(R’,G’,B’,W’)

We have to choose a value for Lw’ now; luckily it’s very easy to derive
analytically: we know that WN’ is a gray shade, so it affects the maximum
real brightness of the pixel at most by 1/4; recalling that the other
three components affect the real brightness by 1/4, we have that the 50%
of the brightness comes from WN’, and the rest from the other components:

Lw’ = 0.5
Lr’ = (1.0-Lw’)*Lr = 0.1495
Lg’ = (1.0-Lw’)*Lg = 0.2935
Lb’ = (1.0-Lw’)*Lb = 0.0570

W’ indicates the luminance of the white component WN’, which, by defini-
tion, is a shade of gray with 3 sub-components (WN’r, WN’g, WN’b) all of
the same intensity, equal to W’ itself (WN’r = WN’g = WN’b = W’ - to avoid
confusion, such quantity will be called w’):

W’ = Lrgb(w’,w’,w’) = Lr*w’+Lg*w’+Lb*w’

Since WN’ has a complete set of sub-components, it always affects all
the components of the color.
Examining the components separately:

Lrgb(R,0,0) = Lrgbw(R’,0,0,Lrgb(w’,0,0)) -> Lr*R = Lr’*R’ + Lw’*Lr*w’
Lrgb(0,G,0) = Lrgbw(0,G’,0,Lrgb(0,w’,0)) -> Lg*G = Lg’*G’ + Lw’*Lg*w’
Lrgb(0,0,B) = Lrgbw(0,0,B’,Lrgb(0,0,w’)) -> Lb*B = Lb’*B’ + Lw’*Lb*w’

tech 25 / 75

in general:

Lc’*C’ + Lw’*Lc*w’
Lc*C = Lc’*C’ + Lw’*Lc*w’ -> C = ------------------

Lc

which, written in functional notation (remember that w’=W’):

Lc’*C’ + Lw’*Lc*W’ Lc’*C’
C(C’,W’) = ------------------ = ----- + Lw’*W’

Lc Lc

that, by substituting Lc’, becomes:

C(C’,W’) = (1.0-Lw’)*C’ + Lw’*W’

which can also be read as: the component CN depends directly on the cor-
responding component CN’, and also on the additional contribution of WN’:
it seems quite sensible, even if the reasoning followed until this point
was contorted (and we can forget about Lr’, Lg’, and Lb’, too).

This may not seem correct, as a pixel value of %10011001 in RGBW format
yields a pinkish red, not a full red as one could expect:

R(255,255) = (1.0-0.5)*255 + 0.5*255 = 255

let’s not get fooled: also GN and BN are affected by WN’:

G(0,255) = (1.0-0.5)*0 + 0.5*255 = 127.5
B(0,255) = (1.0-0.5)*0 + 0.5*255 = 127.5

so the above formula seems to make some sense.
Analogously, a %10001000 cannot be a full red because:

R(255,0) = (1.0-0.5)*255 + 0.5*0 = 127.5
G(0,0) = (1.0-0.5)*0 + 0.5*0 = 0
B(0,0) = (1.0-0.5)*0 + 0.5*0 = 0

As these simple examples show, it’s impossible to get a "normal" full red
with R=255, G=0, B=0 (this also applies to green and blue, of course).

The final step is writing the algorithm which, making use of the functions
C(C’,W’) and GetIntensity() (which in this particular case,
works perfectly for WN’, too), fills the vector PAL[]:

for V=0 to 255

W’ = GetIntensity(V,CI[WN])

R’ = GetIntensity(V,CI[RN])
PAL[V].R = R(R’,W’)

G’ = GetIntensity(V,CI[GN])
PAL[V].G = G(G’,W’)

B’ = GetIntensity(V,CI[BN])
PAL[V].B = B(B’,W’)

tech 26 / 75

next V

Now we’ll deal with the RGB -> RGBW conversion.
"Reversing" the formula found above:

C = (1.0-Lw’)*C’+Lw’*W’

to:

C’ = (C-Lw’*W’)/(1.0-Lw’)

is pretty useless, because W’ is unknown (this is really a catch-22)!
So, we’ll have to resort to something that smells a bit like a trick, but
still proves to be helpful; first of all, we want the color components to
bring the same information of the source:

R’=R, G’=G, B’=B

However, each value C’ is also affected by the presence of WN’; indeed,
once fixed C’=C, we don’t want WN’ to have any influence, so we can intui-
tively say that W’ should not "alter" the brightness given by the other
components:

W’ = Lr*R’+Lg*G’+Lb*B’

The following simple passages show that our intuition is correct;
the general formula (again) tells us:

C = (1.0-Lw’)*C’+Lw’*W’

from which:

((Lw’-1.0)*C’+C)/Lw’ = W’

that, by setting C’=C, becomes:

((Lw’-1.0+1)*C’)/Lw’ = W’ -> Lw’*C’/Lw’ = W’ -> C’ = W’

but since we have three (generally) different components, W’ cannot be
equal to all of them at the same time:

R’ = W’
G’ = W’
B’ = W’

although the system above can’t be satisfied unless the source is a shade
of gray, we can operate the following changes:

Lr*R’ = Lr*W’
Lg*G’ = Lg*W’
Lb*B’ = Lb*W’

that, by summing the terms on both sides, give:

Lr*R’+Lg*G’+Lb*B’ = W’*(Lr+Lg+Lb) -> Lr*R’+Lg*G’+Lb*B’ = W’*1

tech 27 / 75

which proves the correctness of our little "trick"...
... if only there were not a big flaw in all the last considerations!
While proceeding with the above reasoning, I was completely ignoring the
luminance problem RGBx pixels are affected by! In fact, the values pro-
duced by the method above are always darker than they should, because by
setting C’ to any value V, its contribution to the total brightness is not
Lc*V, but Lc’*V = (1.0-Lw’)*Lc*V < Lc*V.

So, let’s begin from the start again; this time we’ll simplify the formula
to calculate C by discarding W’ influence, which will be calculated later:

C = (1.0-Lw’)*C’

from which:

C’ = C/(1.0-Lw’)

First of all, it’s clear enough that this formula doesn’t help us to give
a value to W’ (W doesn’t exists in RGB!);
besides, we must point out that C’ could well exceed 255, as 1.0-Lw is
always less than 1.
So, it’s obvious that there must be something else.
Yet, this equation is a good start, because if C’ turns out to be less
than or equal to 255, then we can already round it and pick the right CV’
as discussed here, and note down that W’ must not contribute to C’;
otherwise, we cut C’ down to another value and bear in mind that W’ should
provide the brightness that C’ alone can’t provide; considering all the
components:

R’’ = R’ or 255 if R’>255
G’’ = G’ or 255 if G’>255
B’’ = B’ or 255 if B’>255
W’ = Lr*(R’’-R’)+Lg*(G’’-G’)+Lb*(B’’-B’)
W’’ = W’ or 255 if W’>255

(W’ must be truncated because, generally, there is no guarantee that
C’’-C’ is always less than 256; considering, instead, that we set Lw’ to
0.5, C’ at most can be 255*2, so C’’-C’ can’t be greater than 255 and
thus the extra operations for truncating W’ can be avoided)

of course, these all must be converted to Component Values (2 bits only)
by appling this function.

- setting Lw’ to 0.5 gives only 175 unique colors; 256 unique colors can
be obtained with a value of ~0.507, but this causes bad conversion of
some colors

1.13 3.3.7a RGBM Color Composition

3.3.7a RGBM Color Composition

tech 28 / 75

The concept this format is based on is that the component xN can be used
to "strengthen" none, one or all of the other components.

Here is the specific RGBM bits allocation:

bit # 7 6 5 4 3 2 1 0
bit name R1 G1 B1 M1 R0 G0 B0 M0

Let’s focus on the Mns, the Modify bits:

MV

M1 M0 col[MN] M

0 0 black < 0 0 0>
0 1 full red <255 0 0>
1 0 full blue < 0 0 255>
1 1 full white <255 255 255>

What does this will ever mean? Simple. The less influencing components
(RN and BN) have now the chance of being "strengthened" by the additional
component MN, whose M (irregularly) is not a simple intensity, but a real
color with the non-zero RGB components always at 255.

In this way, a strong red would be:

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 0 -> GV=0 -> G1=0, G0=0 > <3 0 0 1> = %10001001
B= 0 -> BV=0 -> B1=0, B0=0 >
M=<255 0 0> -> MV=1 -> M1=0, M0=1 >

Equally, a strong blue is given by:

R= 0 -> RV=0 -> R1=0, R0=0 >
G= 0 -> GV=0 -> G1=0, G0=0 > <0 0 3 2> = %00110010
B= 255 -> BV=3 -> B1=1, B0=1 >
M=< 0 0 255> -> MV=2 -> M1=1, M0=0 >

"Uhm... then there must be some sort typo or mistake... probably it was
meant to be ’green’ instead of ’white’ in the table above!" - that’s what
you’re now probably thinking, right?
Well, no. "white" has been intentionally scribbled down there, and now I
will tell you why.
Let’s imagine we have "green" as you were thinking: can you tell me, now,
how on earth one could get the color white?!?
It wouldn’t be simply possible.
In fact, once we have set R, G and B all to 255 (and this must be done,
otherwise we’ve already lost the game), we can’t choose either of the 4
colors for M, because we need just a white component and nothing else!
(naturally, the whole palette would be affected as well... but this is
another format!)
Now everything should make sense: we sacrifice the capability of stren-
ghtening the green component (which is already the strongest among the 3),
to have the ability of plotting white pixels and have a more "rangeful"
palette.

tech 29 / 75

White, like in most modes, is given by %11111111:

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 255 -> GV=3 -> G1=1, G0=1 > <3 3 3 3> = %11111111
B= 255 -> BV=3 -> B1=1, B0=1 >
M=<255 255 255> -> MV=3 -> M1=1, M0=1 >

1.14 3.3.7b RGBM Palette Settings

3.3.7b RGBM Palette Settings

(the color settings listed here don’t include the ones already specified
in section 3.3.3)

From the definition given in the previous section follows that the
arrangements for the palette are:

COLORxx SlcPlns
-$dff180 values MV M

12 %11 %00 < 0 0 0> (black)
13 %11 %01 <255 0 0> (full red)
14 %11 %10 < 0 0 255> (full blue)
15 %11 %11 <255 255 255> (full white)

A new inconvenience pops up, making the use of MskPln compulsory; look at
this example:

plane # plane name value

5 Mskpln %11110000 11110000
4 SlcPln1 %00110011 00110011
3 SlcPln0 %01010101 01010101
2 VdoPln0 % 1000 10010011 0010
1 VdoPln0 %10001001 00110010

^^^^ ^^^^
^^^^

strong avg strong
red blue

the "average" pixel is formed not only by the red and blue values of the
surronding pixels, but also by a full white component!

it’s quite spontaneous to say: hey! since MV=%11 in the "average" derives
from a blue and a red pixels in the surroundings, why don’t we assign it a
purple color to the component MN? Sadly, this rather good idea must be
discarded because that value is generated also in other ways.
Let’s have a more in-depth look at this.
We have two pixels (R1G1B1M1R0G0B0M0 and r1g1b1m1r0g0b0m0) attached:

plane # plane name value

tech 30 / 75

2 VdoPln0 R1 G1 B1 M1 R0 G0 B0 M0
1 VdoPln0 R1 G1 B1 M1 R0 G0 B0 M0 r1 g1 b1 m1 r0 g0 b0 m0

^^^^^^^^^^^
avg ^^

MV’

the M and m that generate all the four possible MV’s are listed in this
table:

MV’ M0 m1 M m

0 0 0 < 0 0 0> < 0 0 0>
< 0 0 255> <255 0 0>

1 0 1 < 0 0 0> < 0 0 255>
< 0 0 255> <255 255 255>

2 1 0 <255 0 0> < 0 0 0>
<255 255 255> <255 0 0>

3 1 1 <255 0 0> < 0 0 255>
<255 255 255> <255 255 255>

but, since M and m can be mixed in any combination (inside each MV’ sub-
class), we have the following table:

MV’ combination M - m ideal RGB average

0 < 0 0 0> - < 0 0 0> < 0 0 0>
< 0 0 0> - <255 0 0> <128 0 0>
< 0 0 255> - < 0 0 0> < 0 0 128>
< 0 0 255> - <255 0 0> <128 0 128>

1 < 0 0 0> - < 0 0 255> < 0 0 128>
< 0 0 0> - <255 255 255> <128 128 128>
< 0 0 255> - < 0 0 255> < 0 0 255>
< 0 0 255> - <255 255 255> <128 128 255>

2 <255 0 0> - < 0 0 0> <128 0 0>
<255 0 0> - <255 0 0> <255 0 0>
<255 255 255> - < 0 0 0> <128 128 128>
<255 255 255> - <255 0 0> <255 128 128>

3 <255 0 0> - < 0 0 255> <128 0 128>
<255 0 0> - <255 255 255> <255 128 128>
<255 255 255> - < 0 0 255> <128 128 255>
<255 255 255> - <255 255 255> <255 255 255>

it seems sensible to assign to M’ the color calculated as the average of
the ideal averages (approximate/idealized somewhere...):

MV’ RGB average

0 < 0 0 0> +
<128 0 0> +
< 0 0 128> +
<128 0 128> = <256 000 256> -> [/4] -> < 64 0 64>

1 < 0 0 128> +
<128 128 128> +

tech 31 / 75

< 0 0 255> +
<128 128 255> = <256 256 768> -> [/4] -> < 64 64 192>

2 <128 0 0> +
<255 0 0> +
<128 128 128> +
<255 128 128> = <768 256 256> -> [/4] -> <192 64 64>

3 <128 0 128> +
<255 128 128> +
<128 128 255> +
<255 255 255> = <768 512 768> -> [/4] -> <192 128 192>

Sperimentally, this solution offers a very good output.
Yet, with this specific choice of colors, we can’t obtain "pure" black and
white, because, in the "average" pixels, the black-black combination gene-
rates a very dark purple (MV’=0) and the white-white combination yields a
pale pink (MV’=3). So, at least these two cases could be treated separate-
ly, by just assigning $00000 and $fffff, respectively. Though, do not for-
get that these assignments affect also the other combinations in the same
class of black (0) and white (3)!!! This choice must be done taking into
account the kind of gfx to be displayed.
The values just found are inserted in the palette table below:

MskPln_
COLORxx SlcPlns
-$dff180 values MV’ M’

28 %1_11 00 < 64 0 64>
29 %1_11 01 < 64 64 192>
30 %1_11 10 <192 64 64>
31 %1_11 11 <192 128 192>

or, alternatively, to have "pure" black and "white":

MskPln_
COLORxx SlcPlns
-$dff180 values MV’ M’

28 %1_11 00 < 0 0 0>
29 %1_11 01 < 64 64 192>
30 %1_11 10 <192 64 64>
31 %1_11 11 <255 255 255>

- mixed "pure" solutions (only one of {black, white} is pure) are also
possible (colors 28 and 31 are independent!)

- other "non-pure"-black-and-white (if the "pureness" of those colors
is not so fundamental) formats are RGBS and RGBP

1.15 3.3.7c RGBM <-> RGB Conversion

tech 32 / 75

3.3.7c RGBM <-> RGB Conversion

Let’s start dealing with the RGBM -> RGB conversion considering the equa-
tion we wrote in the general part:

Lrgb(R,G,B) = Lrgbx(R’,G’,B’,x’)

which, in this case, can be instanced as:

Lrgb(R,G,B) = Lrgbm(R’,G’,B’,M’)

Then, we must choose a seemingly acceptable value for Lm’ and calculate
the rest of the Lc’s; we must consider that the brightest color of MN’ is
white, so, similarly to RGBW, we set Lm’ to 0.5 (this introduces a
little error when col[MN’] is not white):

Lm’ = 0.5
Lr’ = (1.0-Lw’)*Lr = 0.1495
Lg’ = (1.0-Lw’)*Lg = 0.2935
Lb’ = (1.0-Lw’)*Lb = 0.0570

To calculate the component CN, we can think that its contribution to
Lrgb() is equal to the contribution of CN’ and *potentially* MN’ to
Lrgbm(); "potentially" means that MN’ has effect when col[MN’]=col[CN’]
or when col[MN’]=black or col[MN’]=white.

Lrgb(R,0,0) = Lrgbm(R’,0,0,M’) -> Lr*R = Lr’*R’ [+Lm’*255*Lr]
Lrgb(0,G,0) = Lrgbm(0,G’,0,M’) -> Lg*G = Lg’*G’ [+Lm’*255*Lg]
Lrgb(0,0,B) = Lrgbm(0,0,B’,M’) -> Lb*B = Lb’*B’ [+Lm’*255*Lb]

where the constant 255 derives from the fact that the non-zero component
of MN’ has always such value

From the formulae above we deduct the general equation:

Lc’*C’ [+Lm’*255*Lc] Lc’*C’
C = -------------------- = ------ [+Lm’*255]

Lc Lc

which in functional notation looks like:

Lc’*C’
C(C’) = ------ [+Lm’*255] = (1.0-Lm’)*C’ [+Lm’*255]

Lc

to decide whether to omit the [operand], C() needs one more parameter:

C(C’,MV’) =

if (CI[CN’]=0 and MV’=1) or (CI[CN’]=2 and MV’=2) or MV’=3

Lc’*C’
= ------ + Lm’*255 = (1.0-Lm’)*C’+Lm’*255

Lc

tech 33 / 75

else

Lc’*C’
= ------ = (1.0-Lm’)*C’

Lc

To solve the PAL[] problem we just need the C(C’,MV’) formula and the
function GetIntensity() to build a simple algorithm:

for V=0 to 255

<get MV’ from V>

R’ = GetIntensity(V,CI[RN])
PAL[V].R = R(R’,MV’)

G’ = GetIntensity(V,CI[GN])
PAL[V].G = G(G’,MV’)

B’ = GetIntensity(V,CI[BN])
PAL[V].B = B(B’,MV’)

next V

Now let’s face the issue of RGB -> RGBM conversion.

We’ll begin considering the simpler form of C():

C(C’,MV’) = (1.0-Lm’)*C’ -> C = (1.0-Lm’)*C’

from which:

C’ = C/(1.0-Lm’)

First of all, it’s clear enough that this formula doesn’t help us to give
a value to MV’ (M doesn’t exists in RGB!);
besides, we must point out that C’ could well exceed 255, as 1.0-Lm is
always less than 1.
So, it’s obvious that there must be something else.
Yet, this equation is a good start, because if C’ turns out to be less
than or equal to 255, then we can already round it and pick the right CV’
as discussed here, and note down that MN’ must not contribute to C’;
otherwise, C’ must be cut down to another value, possibly to be combined
with a suitable MN’:

- in case col[CN]=red or col[CN]=blue, it’s possible to choose MV’ so
that col[MN’]=col[CN] and then calculate the new value of C’ as the
difference between the wanted value (C) and the contribution of MN’
(255*Lm’); using the other form of C():

C(C’,MV’) = (1.0-Lm’)*C’+Lm’*255 -> C = (1.0-Lm’)*C’+Lm’*255

from which:

C’ = (C-Lm’*255)/(1.0-Lm’)

tech 34 / 75

the highest value is obtained with the highest value of C (255):

C’ = (255-Lm’*255)/(1.0-Lm’) = 255*(1-Lm’)/(1-Lm’) = 255

so it’s guaranteed that C’ cannot be greater than 255, whatever value
is assigned to Lm’;
unfortunately, generally it’s not guaranteed that C’>=0; yet, C’ can
also be written as:

C’ = C/(1.0-Lm’)-(Lm’*255)/(1.0-Lm’)

we can find the maximum Lm’ which guarantees C’ to be higher than or
equal to 0 by solving:

C/(1.0-Lm’)-(Lm’*255)/(1.0-Lm’) >=0

since we know that C/(1.0-Lm’)>255 (that’s why we are here!), the fol-
lowing substitution is perfectly admittable:

255-(Lm’*255)/(1.0-Lm’) >=0 -> 255 >= (Lm’*255)/(1.0-Lm’)

now it’s easy to derive Lm’:

255(1-Lm’) >= Lm’*255 -> 255 >= Lm’*255*2 -> 1/2 >= Lm’

in human words, when Lm’ is less than or equal to 1/2 we are sure that
C’ is not less than 0; since we have already chosen Lm’=0.5, we can
breathe and go on with our conversion!

- in case col[CN]=green, C’ can only be 255 as MN’ cannot contribute (it
would also be possible applying the next method, but probably it would
not be worth it)

- if both R’ and B’ are higher than 255, MN’ should help both, but there
would be a price to pay: due to the RGBM definition, col[MN’] can only be
black, red, blue or white and thus it can’t be used without affecting
also G’, as the only possible choice would be col[MN’]=white (MV=3).
So we can either round R and B down to 255 and leave MN’ unused, or set
MV’ to %00010001 (i.e. col[MN’]=white) and calculate R and B with the
complex formula (in order to reduce the error on RN and BN to 0), with
the side-effect of the additional error on GN; this decision must be
taken only after comparing the respective total errors:

e0 = Lr*(R’-255)+Lg*(G’-G)+Lb*(B’-255)
e1 = Lg*((G’-G)+(255*Lm’))

Lg*(G’-G) (indipendent from MN’) can be discarded, as present in both:

e0 = Lr*(R’-255)+Lb*(B’-255)
e1 = Lg*255*Lm’

(in fact we’re interested in knowing whether the error GN is affected
by when col[MN’]=white is lower than the error given by the brutally
rounded R and B - note that e1 is a simple constant)

of course, the MV’ which yields the lower error must be used.

tech 35 / 75

- using a value of 0.5 for Lm’ gives 217 unique colors

1.16 3.3.8a RGBS Color Composition

3.3.8a RGBS Color Composition

The concept this format is based on is that the component xN can be used
to "strengthen" none or any one of the other components.

Here is the specific RGBS bits allocation:

bit # 7 6 5 4 3 2 1 0
bit name R1 G1 B1 S1 R0 G0 B0 S0

Let’s focus on the Sns, the Strengthen bits:

SV

S1 S0 col[SN] S

0 0 black < 0 0 0>
0 1 full red <255 0 0>
1 0 full green < 0 255 0>
1 1 full blue < 0 0 255>

This means that the component #CI = SV-1 is "strengthened" by the addi-
tional component SN, whose S is not an "intensity" but a real color.

In this way, a strong red would be:

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 0 -> GV=0 -> G1=0, G0=0 > <3 0 0 1> = %10001001
B= 0 -> BV=0 -> B1=0, B0=0 >
S=<255 0 0> -> SV=1 -> S1=0, S0=1 >

equally, a strong green is given by:

R= 0 -> RV=0 -> R1=0, R0=0 >
G= 255 -> GV=3 -> G1=1, G0=1 > <0 3 0 2> = %01010100
B= 0 -> BV=0 -> B1=0, B0=0 >
S=< 0 255 0> -> SV=2 -> S1=1, S0=0 >

and a strong blue by:

R= 0 -> RV=0 -> R1=0, R0=0 >
G= 0 -> GV=0 -> G1=0, G0=0 > <0 0 3 3> = %00110011
B= 255 -> BV=3 -> B1=1, B0=1 >
S=< 0 0 255> -> SV=3 -> S1=1, S0=1 >

"Pure" white cannot be obtained as the brightest color is:

tech 36 / 75

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 255 -> GV=3 -> G1=1, G0=1 > <3 3 3 2> = %11111110
B= 255 -> BV=3 -> B1=1, B0=1 >
S=< 0 255 0> -> SV=2 -> S1=1, S0=0 >

1.17 3.3.8b RGBS Palette Settings

3.3.8b RGBS Palette Settings

(the color settings listed here don’t include the ones already specified
in section 3.3.3)

From the definition given in the previous section follows that the
arrangements for the palette are:

COLORxx SlcPlns
-$dff180 values SV S

12 %11 %00 < 0 0 0> (black)
13 %11 %01 <255 0 0> (full red)
14 %11 %10 < 0 255 0> (full green)
15 %11 %11 < 0 0 255> (full blue)

This settings cause weird "average" pixels, so we’re going to study deeply
what happens.
We have two pixels (R1G1B1S1R0G0B0S0 and r1g1b1s1r0g0b0s0) attached:

plane # plane name value

2 VdoPln0 R1 G1 B1 S1 R0 G0 B0 S0
1 VdoPln0 R1 G1 B1 S1 R0 G0 B0 S0 r1 g1 b1 s1 r0 g0 b0 s0

^^^^^^^^^^^
avg ^^

SV’

the S and s that generate all the four possible SV’s are listed in this
table:

SV’ S0 s1 S s

0 0 0 < 0 0 0> < 0 0 0>
< 0 255 0> <255 0 0>

1 0 1 < 0 0 0> < 0 255 0>
< 0 255 0> < 0 0 255>

2 1 0 <255 0 0> < 0 0 0>
< 0 0 255> <255 0 0>

3 1 1 <255 0 0> < 0 255 0>
< 0 0 255> < 0 0 255>

but, since S and s can be mixed in any combination (inside each SV’ sub-
class), we have the following table:

SV’ combination S - s ideal RGB average

tech 37 / 75

0 < 0 0 0> - < 0 0 0> < 0 0 0>
< 0 0 0> - <255 0 0> <128 0 0>
< 0 255 0> - < 0 0 0> < 0 128 0>
< 0 255 0> - <255 0 0> <128 128 0>

1 < 0 0 0> - < 0 255 0> < 0 128 0>
< 0 0 0> - < 0 0 255> < 0 0 128>
< 0 255 0> - < 0 255 0> < 0 255 0>
< 0 255 0> - < 0 0 255> < 0 128 128>

2 <255 0 0> - < 0 0 0> <128 0 0>
<255 0 0> - <255 0 0> <255 0 0>
< 0 0 255> - < 0 0 0> < 0 0 128>
< 0 0 255> - <255 0 0> <128 0 128>

3 <255 0 0> - < 0 255 0> <128 128 0>
<255 0 0> - < 0 0 255> <128 0 128>
< 0 0 255> - < 0 255 0> < 0 128 128>
< 0 0 255> - < 0 0 255> < 0 0 255>

it seems sensible to assign to S’ the color calculated as the average of
the ideal averages (approximate/idealized somewhere...):

SV’ RGB average

0 < 0 0 0> +
<128 0 0> +
< 0 128 0> +
<128 128 0> = <256 256 0> -> [/4] -> < 64 64 0>

1 < 0 128 0> +
< 0 0 128> +
< 0 255 0> +
< 0 128 128> = < 0 512 256> -> [/4] -> < 0 128 64>

2 <128 0 0> +
<255 0 0> +
< 0 0 128> +
<128 0 128> = <512 0 256> -> [/4] -> <128 0 64>

3 <128 128 0> +
<128 0 128> +
< 0 128 128> +
< 0 0 255> = <256 256 512> -> [/4] -> < 64 64 128>

The values just found are inserted in the palette table below:

MskPln_
COLORxx SlcPlns
-$dff180 values SV’ S’

28 %1_11 00 < 64 64 0>
29 %1_11 01 < 0 128 64>
30 %1_11 10 <128 0 64>
31 %1_11 11 < 64 64 128>

tech 38 / 75

1.18 3.3.8c RGBS <-> RGB Conversion

3.3.8c RGBS <-> RGB Conversion

Let’s start dealing with the RGBS -> RGB conversion considering the equa-
tion we wrote in the general part:

Lrgb(R,G,B) = Lrgbx(R’,G’,B’,x’)

which, in this case, can be instanced as:

Lrgb(R,G,B) = Lrgbs(R’,G’,B’,S’)

Then, we must choose a seemingly acceptable value for Ls’ and calculate
the rest of the Lc’s. We must consider that the brightest color of SN’ is
green, so its maximum contribution to the real brightness is Lg*0.25 (this
introduces a little error when SN’ is not green); we know also that the
remaning components, together, affect the real brightness by 1/4: this
means that they have 0.25/(Lg*0.25) = 1/Lg times more influence than SN’,
i.e. a "part" of the RGBx brightness is given by SN’, and the other 1/Lg
"part" is given by the other components; thus such "part" can be calcula-
ted as:

"part" + "part"/Lg = 1.0 -> "part" = Lg/(1+Lg) = 0.370

so:

Ls’ = 1*"part" = 0.370
Ln’ = (1/Lg)*"part" = 0.630 = 1.0-Ls’

Lr’ = (1.0-Ls’)*Lr = 0.188
Lg’ = (1.0-Ls’)*Lg = 0.370
Lb’ = (1.0-Ls’)*Lb = 0.072

To calculate the component CN we can think that its contribution to Lrgb()
is equal to the contribution of CN’ and *potentially* SN’ to Lrgbs();
"potentially" means that SN’ has effect only when col[SN’]=col[CN’] or
when col[SN’] is black.

Lrgb(R,0,0) = Lrgbs(R’,0,0,S’) -> Lr*R = Lr’*R’ [+Ls’*255*Lr]
Lrgb(0,G,0) = Lrgbs(0,G’,0,S’) -> Lg*G = Lg’*G’ [+Ls’*255*Lg]
Lrgb(0,0,B) = Lrgbs(0,0,B’,S’) -> Lb*B = Lb’*B’ [+Ls’*255*Lb]

where the constant 255 derives from the fact that the non-zero component
of SN’ has always such value

From the formulae above we deduct the general equation:

Lc’*C’ [+Ls’*255*Lc] Lc’*C’
C = -------------------- = ------ [+Ls’*255]

Lc Lc

which in functional notation looks like:

tech 39 / 75

Lc’*C’
C(C’) = ------ [+Ls’*255] = (1.0-Ls’)*C’ [+Ls’*255]

Lc

to decide whether to omit the [operand], C() needs one more parameter:

C(C’,SV’) =

if CI[CN’]+1=SV’

Lc’*C’
= ------ + Ls’*255 = (1.0-Ls’)*C’+Ls’*255

Lc

else

Lc’*C’
= ------ = (1.0-Ls’)*C’

Lc

To solve the PAL[] problem we just need the C(C’,S’) formula and the
function GetIntensity() to build a simple algorithm:

for V=0 to 255

<get SV’ from V>

R’ = GetIntensity(V,CI[RN])
PAL[V].R = R(R’,SV’)

G’ = GetIntensity(V,CI[GN])
PAL[V].G = G(G’,SV’)

B’ = GetIntensity(V,CI[BN])
PAL[V].B = B(B’,SV’)

next V

Now let’s face the issue of RGB -> RGBS conversion.

We’ll begin considering the simpler form of C():

C(C’,SV’) = (1.0-Ls’)*C’ -> C = (1.0-Ls’)*C’

from which:

C’ = C/(1.0-Ls’)

First of all, it’s clear enough that this formula doesn’t help us to give
a value to SN’ (S doesn’t exists in RGB!);
besides, we must point out that C’ could well exceed 255, as 1.0-Ls is
always less than 1.
So, it’s obvious that there must be something else.
Yet, this equation is a good start, because if C’ turns out to be less
than or equal to 255, then we can already round it and pick the right CV’
as discussed here, and note down that SN’ must not contribute to C’;

tech 40 / 75

otherwise, C’ must be cut down to another value, possibly to be combined
with a suitable SN’:

- we can choose SV’ so that col[SN’]=col[CN] and then calculate the new
value of C’ as the difference between the wanted value (C) and the
contribution of SN’ (255*Ls’); using the other form of C():

C(C’,SV’) = (1.0-Ls’)*C’+Ls’*255 -> C = (1.0-Ls’)*C’+Ls’*255

from which:

C’ = (C-Ls’*255)/(1.0-Ls’)

the highest value is obtained with the highest value of C (255):

C’ = (255-Ls’*255)/(1.0-Ls’) = 255*(1-Ls’)/(1-Ls’) = 255

so it’s guaranteed that C’ cannot be greater than 255, whatever value
is assigned to Ls’;
unfortunately, generally it’s not guaranteed that C’>=0; yet, as seen
in the RGBM conversion section, any value of Ls’ in [0...0.5] satis-
fies this condition: since we have already chosen Ls’=0.37, we can
breathe and go on with our conversion!

- if two or three components are higher than 255, SN’ should help all of
them, but this is impossible due to the RGBS definition, which per-
mits to strenghten only a single component a time (so the other ones
have to be truncated to 255).
The one to be strenghtened must be chosen after comparing the errors:

er = Lg*|G’-G|+Lb*|B’-B| [RN strenghtened]
eg = Lr*|R’-R|+Lb*|B’-B| [GN strenghtened]
eb = Lr*|R’-R|+Lg*|G’-G| [BN strenghtened]

of course, the SV’ which yields the lowest error must be used.

- using a value of 0.37 for Ls’ gives 256 unique colors
- converting from RGB to RGBS following to the procedure described above,

sometimes may seem to give weirds results; for example, the RGB value
$ffffff would be converted as %11111110, which is a bright green: this
is not an error, but a consequence of RGBS strange nature, as %11111110
actually the brightest color available in this mode

1.19 3.3.9a RGBP Color Composition

3.3.9a RGBP Color Composition

This format is very similar to RGBS, the difference is that instead
of "strenghtening" just a single component, we re-inforce a Pair:

Here is the specific RGBP bits allocation:

tech 41 / 75

bit # 7 6 5 4 3 2 1 0
bit name R1 G1 B1 P1 R0 G0 B0 P0

Let’s focus on the Pns, the Pair bits:

PV

P1 P0 col[PN] P

0 0 black < 0 0 0>
0 1 full yellow (full red + full green) <255 255 0>
1 0 full cyan (full green + full blue) < 0 255 255>
1 1 full purple (full blue + full red) <255 0 255>

note that PN is not an "intensity" but a real color.

"Pure" white cannot be obtained as the brightest color is:

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 255 -> GV=3 -> G1=1, G0=1 > <3 3 3 1> = %11101111
B= 255 -> BV=3 -> B1=1, B0=1 >
P=<255 255 0> -> PV=1 -> P1=0, P0=1 >

1.20 3.3.9b RGBP Palette Settings

3.3.9b RGBP Palette Settings

(the color settings listed here don’t include the ones already specified
in section 3.3.3)

From the definition given in the previous section follows that the
arrangements for the palette are:

COLORxx SlcPlns
-$dff180 values PV P

12 %11 %00 < 0 0 0> (black)
13 %11 %01 <255 255 0> (full yellow)
14 %11 %10 < 0 255 255> (full cyan)
15 %11 %11 <255 0 255> (full purple)

This settings cause weird "average" pixels, so we’re going to study deeply
what happens.
We have two pixels (R1G1B1P1R0G0B0P0 and r1g1b1p1r0g0b0p0) attached:

plane # plane name value

2 VdoPln0 R1 G1 B1 P1 R0 G0 B0 P0
1 VdoPln0 R1 G1 B1 P1 R0 G0 B0 P0 r1 g1 b1 p1 r0 g0 b0 p0

^^^^^^^^^^^
avg ^^

PV’

tech 42 / 75

the P and p that generate all the four possible PV’s are listed in this
table:

PV’ P0 p1 P p

0 0 0 < 0 0 0> < 0 0 0>
< 0 255 255> <255 255 0>

1 0 1 < 0 0 0> < 0 255 255>
< 0 255 255> <255 0 255>

2 1 0 <255 255 0> < 0 0 0>
<255 0 255> <255 255 0>

3 1 1 <255 255 0> < 0 255 255>
<255 0 255> <255 0 255>

but, since P and p can be mixed in any combination (inside each PV’ sub-
class), we have the following table:

PV’ combination P - p ideal RGB average

0 < 0 0 0> - < 0 0 0> < 0 0 0>
< 0 0 0> - <255 255 0> <128 128 0>
< 0 255 255> - < 0 0 0> < 0 128 128>
< 0 255 255> - <255 255 0> <128 255 128>

1 < 0 0 0> - < 0 255 255> < 0 128 128>
< 0 0 0> - <255 0 255> <128 0 128>
< 0 255 255> - < 0 255 255> < 0 255 255>
< 0 255 255> - <255 0 255> <128 128 255>

2 <255 255 0> - < 0 0 0> <128 128 0>
<255 255 0> - <255 255 0> <255 255 0>
<255 0 255> - < 0 0 0> <128 0 128>
<255 0 255> - <255 255 0> <255 128 128>

3 <255 255 0> - < 0 255 255> <128 255 128>
<255 255 0> - <255 0 255> <255 128 128>
<255 0 255> - < 0 255 255> <128 128 255>
<255 0 255> - <255 0 255> <255 0 255>

it seems sensible to assign to P’ the color calculated as the average of
the ideal averages (approximate/idealized somewhere...):

PV’ RGB average

0 < 0 0 0> +
<128 128 0> +
< 0 128 128> +
<128 255 128> = <256 512 256> -> [/4] -> < 64 128 64>

1 < 0 128 128> +
<128 0 128> +
< 0 255 255> +
<128 128 255> = <256 512 768> -> [/4] -> < 64 128 192>

2 <128 128 0> +
<255 255 0> +

tech 43 / 75

<128 0 128> +
<255 128 128> = <768 512 256> -> [/4] -> <192 128 64>

3 <128 255 128> +
<255 128 128> +
<128 128 255> +
<255 0 255> = <768 512 768> -> [/4] -> <192 128 192>

The values just found are inserted in the palette table below:

MskPln_
COLORxx SlcPlns
-$dff180 values PV’ P’

28 %1_11 00 < 64 128 64>
29 %1_11 01 < 64 128 192>
30 %1_11 10 <192 128 64>
31 %1_11 11 <192 128 192>

1.21 3.3.9c RGBP <-> RGB Conversion

3.3.9c RGBP <-> RGB Conversion

Let’s start dealing with the RGBP -> RGB conversion considering the equa-
tion we wrote in the general part:

Lrgb(R,G,B) = Lrgbx(R’,G’,B’,x’)

which, in this case, can be instanced as:

Lrgb(R,G,B) = Lrgbp(R’,G’,B’,P’)

Then, we must choose a seemingly acceptable value for Lp’ and calculate
the rest of the Lc’s; we must consider that the brightest color of PN’ is
yellow, so the maximum contribution to the real brightness is (Lr+Lg)*0.25
(this introduces a little error when PN’ is not yellow); we know also that
the remaning components, together, affect the real brightness by 1/4: this
means that they have 0.25/((Lr+Lg)*0.25) = 1/(Lr+Lg) times more influence
than PN’, i.e. a "part" of the RGBx brightness is given by PN, and the
other 1/(Lr+Lg) "part" is given by the other components; thus such "part"
can be calculated as:

"part" + "part"/(Lr+Lg) = 1.0 -> "part" = (Lr+Lg)/(1+Lr+Lg) = 0.470

so:

Lp’ = 1*"part" = 0.470
Ln’ = (1/(Lr+Lg))*"part" = 0.530 = 1.0-Lp’

Lr’ = (1.0-Lp’)*Lr = 0.159
Lg’ = (1.0-Lp’)*Lg = 0.311
Lb’ = (1.0-Lp’)*Lb = 0.060

tech 44 / 75

To calculate the component CN we can think that its contribution to Lrgb()
is equal to the contribution of CN’ and *potentially* PN’ to Lrgbp();
let’s find out how PN’ affects CN’:

affected components
PV’ col[PN’] CN’ CI[CN’]

0 black all all (affected "negatively")
1 yellow RN 0

GN 1
2 cyan GN 1

BN 2
3 purple RN 0

BN 2

from which we deduct:

PV’>0 and (PV’=CI[CN’] or PV’=CI[CN’]+1 or (PV’=3 and CI[CN’]=0))

Examining the components separately:

Lrgb(R,0,0) = Lrgbp(R’,0,0,P’) -> Lr*R = Lr’*R’ [+Lp’*255*Lr]
Lrgb(0,G,0) = Lrgbp(0,G’,0,P’) -> Lg*G = Lg’*G’ [+Lp’*255*Lg]
Lrgb(0,0,B) = Lrgbp(0,0,B’,P’) -> Lb*B = Lb’*B’ [+Lp’*255*Lb]

where the constant 255 derives from the fact that the non-zero components
of PN’ have always such value

From the formulae above we deduct the general equation:

Lc’*C’ [+Lp’*255*Lc] Lc’*C’
C = -------------------- = ------ [+Lp’*255]

Lc Lc

which in functional notation looks like:

Lc’*C’
C(C’) = ------ [+Lp’*255] = (1.0-Lp’)*C’ [+Lp’*255]

Lc

to decide whether to omit the [operand], C() needs one more parameter:

C(C’,PV’) =

if PV’>0 and (PV’=CI[CN’] or PV’=CI[CN’]+1 or (PV’=3 and CI[CN’]=0))

Lc’*C’
= ------ + Lp’*255 = (1.0-Lp’)*C’+Lp’*255

Lc

else

Lc’*C’
= ------ = (1.0-Lp’)*C’

Lc

To solve the PAL[] problem we just need the C(C’,P’) formula and the

tech 45 / 75

function GetIntensity() to build a simple algorithm:

for V=0 to 255

<get PV’ from V>

R’ = GetIntensity(V,CI[RN])
PAL[V].R = R(R’,P’)

G’ = GetIntensity(V,CI[GN])
PAL[V].G = G(G’,P’)

B’ = GetIntensity(V,CI[BN])
PAL[V].B = B(B’,P’)

next V

Now let’s face the issue of RGB -> RGBP conversion.

We’ll begin considering the simpler form of C():

C(C’,PV’) = (1.0-Lp’)*C’ -> C = (1.0-Lp’)*C’

from which:

C’ = C/(1.0-Lp’)

First of all, it’s clear enough that this formula doesn’t help us to give
a value to PN’ (P doesn’t exists in RGB!);
besides, we must point out that C’ could well exceed 255, as 1.0-Lp is
always less than 1.
So, it’s obvious that there must be something else.
Yet, this equation is a good start, because if C’ turns out to be less
than or equal to 255, then we can already round it and pick the right CV’
as discussed here, and note down that PN’ must not contribute to C’;
otherwise, C’ must be cut down to another value, possibly to be combined
with a suitable PN’:

- we can choose PV’ so that col[PN’] "includes" col[CN] and then calcu-
late the new value of C’ as the difference between the wanted value (C)
and the contribution of PN’ (255*Lp’); using the other form of C():

C(C’,PV’) = (1.0-Lp’)*C’+Lp’*255 -> C = (1.0-Lp’)*C’+Lp’*255

from which:

C’ = (C-Lp’*255)/(1.0-Lp’)

the highest value is obtained with the highest value of C (255):

C’ = (255-Lp’*255)/(1.0-Lp’) = 255*(1-Lp’)/(1-Lp’) = 255

so it’s guaranteed that C’ cannot be greater than 255, whatever value
is assigned to Lp’;
unfortunately, generally it’s not guaranteed that C’>=0; yet, as seen
in the RGBM conversion section, any value of Lp’ in [0...0.5] satis-

tech 46 / 75

fies this condition: since we have already chosen Lp’=0.47, we can
breathe and go on with our conversion!

- if two components are higher than 255, then there is a value of PV’
which can perfectly help them

- if only one component is higher than 255, then it must be helped only
if the error given by the other component that is strenghtened by PN’
is lower than the error given by rounding the component to 255:

R’>255:

er = Lr*(R’-255) [if col[PN’]=black]
eg = Lg*(255*Lp’) [if col[PN’]=yellow]
eb = Lb*(255*Lp’) [if col[PN’]=purple]

(the case col[PN’]=yellow can be ignored because Lb<Lg)

G’>255:

er = Lr*(255*Lp’) [if col[PN’]=yellow]
eg = Lg*(G’-255) [if col[PN’]=black]
eb = Lb*(255*Lp’) [if col[PN’]=cyan]

(the case col[PN’]=yellow can be ignored because Lb<Lr)

B’>255:

er = Lr*(255*Lp’) [if col[PN’]=purple]
eg = Lg*(255*Lp’) [if col[PN’]=cyan]
eb = Lb*(B’-255) [if col[PN’]=black]

(the case col[PN’]=cyan can be ignored because Lr<Lg)

- if three components are greater than 255, then all the possible values
of PN’ are eligible:

er = Lr*(R’-255) [if col[PN’]=cyan]
eg = Lg*(G’-255) [if col[PN’]=purple]
eb = Lb*(B’-255) [if col[PN’]=yellow]

(the case col[PN’]=black must be discarded as the ensuing error
Lr*(R’-255)+Lg*(G’-255)+Lb*(B’-255) is obviously greater than every
other one)

of course, the PV’ which yields the lowest error must be used.

- using a value of 0.47 for Lp’ gives 256 unique colors

1.22 3.3.10a RGB332 Color Composition

3.3.10a RGB332 Color Composition

tech 47 / 75

The concept behind is: since the human eye is about two times more sensi-
tive to the differences in red’s and green’s intensities than blue’s, why
don’t we extend the range of possible red/green shades? This can be easily
achieved by mapping those components on 3 bits instead of the usual 2.
This method is quite different from all the previous ones, so don’t be
surprised by the differences you’ll find here (yet, it proves to be the
easiest to deal with).

Here’s the specific RGB332 bits allocation:

bit # 7 6 5 4 3 2 1 0
bit name R2 G2 B1 R0 R1 G1 B0 G0

don’t be fooled by this apparently messed definition; keeping in mind
that:

- red bits are R2, R1, R0
- green bits are G2, G1, G0
- blue bits are B1, B0

it’s easy to see that it’s not so different from the "normal" RGBx allo-
cation: R1 G1 B1 x1 R0 G0 B0 x0.
In fact, the xn bits have been used for the least significant bits of
red and green, while the others remain the same, apart from the fact that
the most significant bits of red and green have been renamed.

Let’s see how the least significant bits (we’ll use the letter "L" to mark
them in all the RGB332 sections) must be handled:

LV

R0 G0 col[LN]

0 0 some gray
0 1 some red
1 0 some green
1 1 some yellow (some red + some green)

Note that since the component BN has a "grain" different from the others,
it’s impossible to have perfect gray shades (white included; the brightest
color, though, is still given by %11111111).

- very special thanks go to Victor Haaz for suggesting this RGBx mode and
actively contributing to its realization

1.23 3.3.10b RGB332 Palette Settings

3.3.10b RGB332 Palette Settings

tech 48 / 75

Given the fact that RGB332 is a quite "special" RGBx format, its color
settings don’t follow the general rules specified in section 3.3.3.

First of all, we must assign a normal 8-bit value to each component,
because here we have 8 possible values for R and G (blue remains at 4).
Let’s consider the fact that when all 3 bits are ON, the value must be 255
and that when all bits are OFF the value must be 0; moreover, we can say
that, for example, R2 has more influence than R1, which, on its turn, has
more influence of R0: supposing that R2’s weight is four times as much as
R0’s, and that R1’s is twice as much as R0’s, we can write that:

R0 + R1 + R2 = 255 -> R0 + 2*R0 + 4*R0 = 255 -> 7*R0 = 255 ->

-> R0=36.42, R1=72.85, R2=145.71

since we can only use integers, we round them to: R0=36, R1=73, R2=146

The same goes for green, while for blue the old settings apply:

B1=170, B0=85

Thus our new palette settings are:

COLORxx SlcPlns
-$dff180 value CV <R G B >

0 %00 %00 < 0 0 0>
1 %00 %01 < 73 0 0>
2 %00 %10 <146 0 0>
3 %00 %11 <219 0 0> (219=73+146)

4 %01 %00 < 0 0 0>
5 %01 %01 < 0 73 0>
6 %01 %10 < 0 146 0>
7 %01 %11 < 0 219 0> (219=73+146)

8 %10 %00 < 0 0 0>
9 %10 %01 < 0 0 85>
10 %10 %10 < 0 0 170>
11 %10 %11 < 0 0 255> (255=85+170)

12 %11 %00 < 0 0 0>
13 %11 %01 < 0 36 0>
14 %11 %10 < 36 0 0>
15 %11 %11 < 36 36 0>

We now have also to recalculate the values for the colors 16-31, in case
the MskPln is ON:

plane # plane name value

2 VdoPln0 R2 G2 B1 R0 R1 G1 B0 G0
1 VdoPln0 R2 G2 B1 R0 R1 G1 B0 G0 r2 g2 b1 r0 r1 g1 b0 g0

^^^^^^^^^^^
^^ avg
LV’

tech 49 / 75

for the components RN and GN, we list the intensities C and c of the CVs
and cvs (respectively) that generate all the four possible CV’s:

CV’

C0 c1 C c how C and c have been found

0 0 0 0 C0=0 -> CV=(%00 or %10) -> C=(0 or 146)
146 73 c1=0 -> cv=(%00 or %01) -> c=(0 or 73)

0 1 0 146 C0=0 -> CV=(%00 or %10) -> C=(0 or 146)
146 219 c1=1 -> cv=(%10 or %11) -> c=(146 or 217)

1 0 73 0 C0=1 -> CV=(%01 or %11) -> C=(73 or 217)
219 73 c1=0 -> cv=(%00 or %01) -> c=(0 or 73)

1 1 73 146 C0=1 -> CV=(%01 or %11) -> C=(73 or 217)
219 219 c1=0 -> cv=(%10 or %11) -> c=(146 or 217)

but, since C and c can be mixed in any combination (inside each CV’ sub-
class), we have the following table:

combination
CV’ C - c ideal RGB average ((C+c)/2)

0 0 - 0 0
0 - 73 37

146 - 0 73
146 - 73 110

1 0 - 146 73
0 - 219 110

146 - 146 146
146 - 219 183

2 73 - 0 37
73 - 73 73

219 - 0 110
219 - 73 146

3 73 - 146 110
73 - 219 146

219 - 146 183
219 - 219 219

it seems sensible to assign to C’ the intensity calculated as the average
of its ideal averages (approximate/idealized somewhere...):

CV’ C’

0 0 +
36 +
73 +

110 = 219 -> [/4] -> 55

1 73 +
110 +

tech 50 / 75

146 +
183 = 512 -> [/4] -> 128

2 36 +
73 +

110 +
146 = 365 -> [/4] -> 91

3 110 +
146 +
183 +
219 = 658 -> [/4] -> 165

Hence the palette settings for red and green are:

MskPln_
COLORxx SlcPlns
-$dff180 value CV C

16 %1_00 %00 < 55 0 0>
17 %1_00 %01 <128 0 0>
18 %1_00 %10 < 91 0 0>
19 %1_00 %11 <165 0 0>

20 %1_01 %00 < 0 55 0>
21 %1_01 %01 < 0 128 0>
22 %1_01 %10 < 0 91 0>
23 %1_01 %11 < 0 165 0>

for blue, we’ll use the values in section 3.3.3:

MskPln_
COLORxx SlcPlns
-$dff180 value BV B

24 %1_10 %00 < 0 0 64>
25 %1_10 %01 < 0 0 149>
26 %1_10 %10 < 0 0 107>
27 %1_10 %11 < 0 0 192>

Instead some more calculations are needed to cope with the "average" pixels
caused by the R0 and G0 bits:

plane # plane name value

2 VdoPln0 R2 G2 B1 R0 R1 G1 B0 G0
1 VdoPln0 R2 G2 B1 R0 R1 G1 B0 G0 r2 g2 b1 r0 r1 g1 b0 g0

^^^^^^^^^^^
avg ^^

LV’

the L and l that generate all the four possible LV’s are listed in this
table:

LV’ G0 r0 L l

0 0 0 < 0 0 0> < 0 0 0>

tech 51 / 75

< 36 0 0> < 0 36 0>
1 0 1 < 0 0 0> < 36 0 0>

< 36 0 0> < 36 36 0>
2 1 0 < 0 36 0> < 0 0 0>

< 36 36 0> < 0 36 0>
3 1 1 < 0 36 0> < 36 0 0>

< 36 36 0> < 36 36 0>

but, since L and l can be mixed in any combination (inside each LV’ sub-
class), we have the following table:

LV’ combination L - l ideal RGB average

0 < 0 0 0> - < 0 0 0> < 0 0 0>
< 0 0 0> - < 0 36 0> < 0 18 0>
< 36 0 0> - < 0 0 0> < 18 0 0>
< 36 0 0> - < 0 36 0> < 18 18 0>

1 < 0 0 0> - < 36 0 0> < 18 0 0>
< 0 0 0> - < 36 36 0> < 18 18 0>
< 36 0 0> - < 36 0 0> < 36 0 0>
< 36 0 0> - < 36 36 0> < 36 18 0>

2 < 0 36 0> - < 0 0 0> < 0 18 0>
< 0 36 0> - < 0 36 0> < 0 36 0>
< 36 36 0> - < 0 0 0> < 18 18 0>
< 36 36 0> - < 0 36 0> < 18 36 0>

3 < 0 36 0> - < 36 0 0> < 18 18 0>
< 0 36 0> - < 36 36 0> < 18 36 0>
< 36 36 0> - < 36 0 0> < 36 18 0>
< 36 36 0> - < 36 36 0> < 36 36 0>

it seems sensible to assign to L’ the color calculated as the average of
the ideal averages (approximate/idealized somewhere...):

LV’ RGB average

0 < 0 0 0> +
< 0 18 0> +
< 18 0 0> +
< 18 18 0> = < 36 36 0> -> [/4] -> < 9 9 0>

1 < 18 0 0> +
< 18 18 0> +
< 36 0 0> +
< 36 18 0> = <108 36 0> -> [/4] -> < 27 9 0>

2 < 0 18 0> +
< 0 36 0> +
< 18 18 0> +
< 18 36 0> = < 36 108 0> -> [/4] -> < 9 27 0>

3 < 18 18 0> +
< 18 36 0> +
< 36 18 0> +
< 36 36 0> = <108 108 0> -> [/4] -> < 27 27 0>

tech 52 / 75

The remaining part of the palette becomes:

MskPln_
COLORxx SlcPlns
-$dff180 value CV’ C’

28 %1_11 %00 < 9 9 0>
29 %1_11 %01 < 27 9 0>
30 %1_11 %10 < 9 27 0>
31 %1_11 %11 < 27 27 0>

I think that a good summary could be useful:

MskPln_
COLORxx SlcPlns
-$dff180 value CV C

0 %00 %00 < 0 0 0>
1 %00 %01 < 73 0 0>
2 %00 %10 <146 0 0>
3 %00 %11 <219 0 0>

4 %01 %00 < 0 0 0>
5 %01 %01 < 0 73 0>
6 %01 %10 < 0 146 0>
7 %01 %11 < 0 219 0>

8 %10 %00 < 0 0 0>
9 %10 %01 < 0 0 85>
10 %10 %10 < 0 0 170>
11 %10 %11 < 0 0 255>

12 %11 %00 < 0 0 0>
13 %11 %01 < 0 36 0>
14 %11 %10 < 36 0 0>
15 %11 %11 < 36 36 0>

16 %1_00 %00 < 55 0 0>
17 %1_00 %01 <128 0 0>
18 %1_00 %10 < 91 0 0>
19 %1_00 %11 <165 0 0>

20 %1_01 %00 < 0 55 0>
21 %1_01 %01 < 0 128 0>
22 %1_01 %10 < 0 91 0>
23 %1_01 %11 < 0 165 0>

24 %1_10 %00 < 0 0 64>
25 %1_10 %01 < 0 0 149>
26 %1_10 %10 < 0 0 107>
27 %1_10 %11 < 0 0 192>

28 %1_11 %00 < 9 9 0>
29 %1_11 %01 < 27 9 0>
30 %1_11 %10 < 9 27 0>
31 %1_11 %11 < 27 27 0>

tech 53 / 75

- a significant drawback of this method is a noticeable loss of bright-
ness (75%!), due to the fact that we use much less than the maximum
available brightness of each pixel (in fact settings are very low)

- actually the color quality is slightly lower than in theory: RN and BN
components add up using two different pixels, quite distant from each
other: maybe a different arrangement of bits could give better results,
but I don’t want to mess everything up...

- on the other side, this method offers an almost perfect balancement of
colors (no component is "overshadowed" by the other components) and
very smooth graduation of RN and GN

- 256 unique colors

1.24 3.3.10c RGB332 <-> RGB Conversion

3.3.10c RGB332 <-> RGB Conversion

Given that this method uses only red, green and blue, the RGB <-> RGB332
conversion is much easier than the other format’s; everything comes to
finding the corrispondence between the same components in the two formats.

We’ll proceed following the same reasoning described here.
In RGB there are 256 possible values per component, while in RGB332 there
are only 8 for red and green and just 4 for blue. Considering these two
cases separately:

R/G = {0, 36, 73, 109, 146, 182, 219, 255}
B = {0, 85, 170, 255}

Intuitively we can say that if a component has a certain value in RGB then
the corresponding value in RGB332 must be the the closest among those
listed above. For example, let’s suppose that red’s intensity in RGB is
123; the closest value available in RGB332 is 109. The same value for blue
would be converted to 85. In general, we have to pick the RGB332 intensity
that contains the RGB intensity in its "surroundings". These intervals can
be defined by diving [0...255] in this way:

RGB RGB332 RGB332 RGB RGB332 RGB332
R/G R/G RV/GV B B BV

0 --+--> 0 0 0 --+--> 0 0
18 --+ 42 --+

+--> 36 1 +--> 85 1
54 --+ 127 --+

+--> 73 2 +--> 170 2
90 --+ 212 --+

+--> 109 3 255 --+--> 255 3
126 --+

+--> 146 4
162 --+

tech 54 / 75

+--> 182 5
198 --+

+--> 219 6
234 --+
255 --+--> 255 7

from which we can derive these formulas:

RV3 = (R8+17)/36 <-> R8 = 36*RV3
GV3 = (G8+17)/36 <-> G8 = 36*GV3
BV2 = (B8+42)/85 <-> B8 = 85*BV2 (the same of C2CV())

(in all these tables and formulas there are some errors due to the fact
that 255 isn’t multiple of neither 36 nor 85)

Supposing to have the function GetCV(x,CN) which returns the CV of the
component CN of the RGB332 value x, the algo to build the PAL[] table is
simply:

for V=0 to 255

PAL[V].R = 36*GetCV(V,RN)
PAL[V].G = 36*GetCV(V,GN)
PAL[V].B = 85*GetCV(V,BN)

next V

1.25 3.3.11a RGBH Color Composition

3.3.11a RGBH Color Composition

This mode is a sort of "hacked RGB332"; we have seen, in fact, that the
bad side of that mode is the lack of brightness: so, why don’t we "boost"
it? Obviously in this way we’ll lose the perfect balancement of components
which caracterizes the RGB332 mode, but generally a bright, although
"uncorrect", method is preferable to an "exact" but too dark one. That’s
why I decided to pull out this "ultra" version.
Luckily, we already know how to do all our calculations: we’ll just need
Uns bits to "strenghten" the components RN and GN in a way analougous to
RGBM.

Here is the specific RGBH bits allocation:

bit # 7 6 5 4 3 2 1 0
bit name R1 G1 B1 H1 R0 G0 B0 H0

Let’s focus on the Hns, the Hack bits:

HV

H1 H0 col[HN] H

0 0 black < 0 0 0>

tech 55 / 75

0 1 full red <255 0 0>
1 0 full green < 0 255 0>
1 1 full white <255 255 255>

by doing this, the most influencing components (RN and GN) get additional
"charge" by the component HN, whose H ("irregularly") is not a simple in-
tensity, but a real color.

In this way, a strong red would be:

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 0 -> GV=0 -> G1=0, G0=0 > <3 0 0 1> = %10001001
B= 0 -> BV=0 -> B1=0, B0=0 >
H=<255 0 0> -> HV=1 -> H1=0, H0=1 >

equally, a strong green is given by:

R 0 -> RV=0 -> R1=0, R0=0 >
G= 255 -> GV=3 -> G1=3, G0=0 > <0 3 0 2> = %01010101
B= 0 -> BV=0 -> B1=0, B0=1 >
H=< 0 255 0> -> HV=2 -> H1=1, H0=0 >

White, like in most modes, is given by %11111111:

R= 255 -> RV=3 -> R1=1, R0=1 >
G= 255 -> GV=3 -> G1=1, G0=1 > <3 3 3 3> = %11111111
B= 255 -> BV=3 -> B1=1, B0=1 >
H=<255 255 255> -> HV=3 -> H1=1, H0=1 >

1.26 3.3.11b RGBH Palette Settings

3.3.11b RGBH Palette Settings

(the color settings listed here don’t include the ones already specified
in section 3.3.3)

From the definition given in the previous section follows that the
arrangements for the palette are:

COLORxx SlcPlns
-$dff180 values HV H

12 %11 %00 < 0 0 0> (black)
13 %11 %01 <255 0 0> (full red)
14 %11 %10 < 0 255 0> (full green)
15 %11 %11 <255 255 255> (full white)

This settings cause weird "average" pixels, so we’re going to study deeply
what happens.
We have two pixels (R1G1B1H1R0G0B0H0 and r1g1b1h1r0g0b0h0) attached:

plane # plane name value

tech 56 / 75

2 VdoPln0 R1 G1 B1 H1 R0 G0 B0 H0
1 VdoPln0 R1 G1 B1 H1 R0 G0 B0 H0 r1 g1 b1 h1 r0 g0 b0 h0

^^^^^^^^^^^
avg ^^

HV’

the H and h that generate all the four possible HV’s are listed in this
table:

HV’ H0 h1 H h

0 0 0 < 0 0 0> < 0 0 0>
< 0 255 0> <255 0 0>

1 0 1 < 0 0 0> < 0 255 0>
< 0 255 0> <255 255 255>

2 1 0 <255 0 0> < 0 0 0>
<255 255 255> <255 0 0>

3 1 1 <255 0 0> < 0 255 0>
<255 255 255> <255 255 255>

but, since H and h can be mixed in any combination (inside each HV’ sub-
class), we have the following table:

HV’ combination H - h ideal RGB average

0 < 0 0 0> - < 0 0 0> < 0 0 0>
< 0 0 0> - <255 0 0> <128 0 0>
< 0 255 0> - < 0 0 0> < 0 128 0>
< 0 255 0> - <255 0 0> <128 128 0>

1 < 0 0 0> - < 0 255 0> < 0 128 0>
< 0 0 0> - <255 255 255> <128 128 128>
< 0 255 0> - < 0 255 0> < 0 255 0>
< 0 255 0> - <255 255 255> <128 255 128>

2 <255 0 0> - < 0 0 0> <128 0 0>
<255 0 0> - <255 0 0> <255 0 0>
<255 255 255> - < 0 0 0> <128 128 128>
<255 255 255> - <255 0 0> <255 128 128>

3 <255 0 0> - < 0 255 0> <128 128 0>
<255 0 0> - <255 255 255> <255 128 128>
<255 255 255> - < 0 255 0> <128 255 128>
<255 255 255> - <255 255 255> <255 255 255>

it seems sensible to assign to H’ the color calculated as the average of
the ideal averages (approximate/idealized somewhere...):

HV’ RGB average

0 < 0 0 0> +
<128 0 0> +
< 0 128 0> +
<128 128 0> = <256 256 000> -> [/4] -> < 64 64 0>

1 < 0 128 0> +
<128 128 128> +

tech 57 / 75

< 0 255 0> +
<128 255 128> = <256 768 255> -> [/4] -> < 64 192 64>

2 <128 0 0> +
<255 0 0> +
<128 128 128> +
<255 128 128> = <768 256 256> -> [/4] -> <192 64 64>

3 <128 128 0> +
<255 128 128> +
<128 255 128> +
<255 255 255> = <768 768 512> -> [/4] -> <192 192 128>

The values just found are inserted in the palette table below:

MskPln_
COLORxx SlcPlns
-$dff180 values HV’ H’

28 %1_11 00 < 64 64 0>
29 %1_11 01 < 64 192 64>
30 %1_11 10 <192 64 64>
31 %1_11 11 <192 192 128>

1.27 3.3.11c RGBH <-> RGB Conversion

3.3.11c RGBH <-> RGB Conversion

Let’s start dealing with the RGBH -> RGB conversion considering the equa-
tion we wrote in the general part:

Lrgb(R,G,B) = Lrgbx(R’,G’,B’,x’)

which, in this case, can be instanced as:

Lrgb(R,G,B) = Lrgbh(R’,G’,B’,H’)

Then, we must choose a seemingly acceptable value for Lh’ and calculate
the rest of the Lc’s; we must consider that the brightest color of HN is
white, so, similarly to RGBW, we could set Lh’ to 0.5 (this introduces a
little error when HN is not white), but we’ll use 0.49 to get 256 unique
colors:

Lh’ = 0.49
Lr’ = (1.0-Lh’)*Lr = 0.153
Lg’ = (1.0-Lh’)*Lg = 0.299
Lb’ = (1.0-Lh’)*Lb = 0.058

To calculate the component CN, we can think that its contribution to
Lrgb() is equal to the contribution of CN’ and *potentially* HN’ to
Lrgbh(). "Potentially" means that HN’ has effect when col[HN’]=col[CN’]
or when col[HN’]=black or col[HN’]=white.

tech 58 / 75

Lrgb(R,0,0) = Lrgbh(R’,0,0,H’) -> Lr*R = Lr’*R’ [+Lh’*255*Lr]
Lrgb(0,G,0) = Lrgbh(0,G’,0,H’) -> Lg*G = Lg’*G’ [+Lh’*255*Lg]
Lrgb(0,0,B) = Lrgbh(0,0,B’,H’) -> Lb*B = Lb’*B’ [+Lh’*255*Lb]

where the constant 255 derives from the fact that the non-zero component
of HN’ has always such value

From the formulae above we deduct the general equation:

Lc’*C’ [+Lh’*255*Lc] Lc’*C’
C = -------------------- = ------ [+Lh’*255]

Lc Lc

which in functional notation looks like:

Lc’*C’
C(C’,HI’(CI)) = ------ [+Lh’*255] = (1.0-Lh’)*C’ [+Lh’*255]

Lc

to decide whether to omit the [operand], C() needs one more parameter:

C(C’,HV’) =

if (CI[CN’]+1=HV’) or HV’=3

Lc’*C’
= ------ + Lh’*255 = (1.0-Lh’)*C’+Lh’*255

Lc

else

Lc’*C’
= ------ = (1.0-Lh’)*C’

Lc

To solve the PAL[] problem we just need the C(C’,HV’) formula and the
function GetIntensity() to build a simple algorithm:

for V=0 to 255

<get HV’ from V>

R’ = GetIntensity(V,CI[RN])
PAL[V].R = R(R’,HV’)

G’ = GetIntensity(V,CI[GN])
PAL[V].G = G(G’,HV’)

B’ = GetIntensity(V,CI[BN])
PAL[V].B = B(B’,HV’)

next V

Now let’s face the issue of RGB -> RGBH conversion.

We’ll begin considering the simpler form of C():

tech 59 / 75

C(C’,HV’) = (1.0-Lh’)*C’ -> C = (1.0-Lh’)*C’

from which:

C’ = C/(1.0-Lh’)

First of all, it’s clear enough that this formula doesn’t help us to give
a value to HN’ (H doesn’t exists in RGB!);
besides, we must point out that C’ could well exceed 255, as 1.0-Lh is
always less than 1.
So, it’s obvious that there must be something else.
Yet, this equation is a good start, because if C’ turns out to be less
than or equal to 255, then we can already round it and pick the right CV’
as discussed here, and note down that HN’ must not contribute to C’;
otherwise, C’ must be cut down to another value, possibly to be combined
with a suitable HN’:

- in case col[CN]=red or col[CN]=green, we can choose HV’ so that
col[HN’]=col[CN] and then calculate the new value of C’ as the dif-
ference between the wanted value (C) and the contribution of HN’
(255*Lh’); using the other form of C():

C(C’,HV’) = (1.0-Lh’)*C’+Lh’*255 -> C = (1.0-Lh’)*C’+Lh’*255

from which:

C’ = (C-Lh’*255)/(1.0-Lh’)

the highest value is obtained with the highest value of C (255):

C’ = (255-Lh’*255)/(1.0-Lh’) = 255*(1-Lh’)/(1-Lh’) = 255

so it’s guaranteed that C’ cannot be greater than 255, whatever value
is assigned to Lh’;
unfortunately, generally it’s not guaranteed that C’>=0; yet, as seen
in the RGBM conversion section, any value of Lh’ in [0...0.5] satis-
fies this condition: since we have already chosen Lh’=0.49, we can
breathe and go on with our conversion!

- in case col[CN]=blue, C’ can only be 255 as HN’ cannot contribute (it
would also be possible applying the next method, but probably it would
not be worth it)

- if both R’ and G’ are higher than 255, HN’ should help both, but there
is a price to pay: due to the RGBH definition, col[HN’] can only be
black, red, green or white and thus it can’t be used without affecting
also B’, as the only possible choice would be col[HN’]=white (HV=3).
So we can either round R and G down to 255 and leave HN’ unused, or set
HV’ to %00010001 (i.e. col[HN’]=white) and calculate R and G with the
complex formula (in order to reduce the error on RN and GN to 0), with
the side-effect of the additional error on BN; this decision must be
taken only after comparing the respective total errors:

e0: Lr*(R’-255)+Lg*(G’-255)+Lb*(B’-B)
e1: Lb*((B’-B)+(255*Lh’))

Lb*(B’-B) (indipendent from HN’) can be discarded, as present in both:

tech 60 / 75

e0: Lr*(R’-255)+Lg*(G’-255)
e1: Lb*255*Lh’

(in fact we’re interested in knowing whether the error BN is affected
by when col[HN’]=white is lower than the error given by the brutally
rounded R and G - note that e1 is a simple constant)

of course, the HV’ which yields the lower error must be used.

- using a value of 0.49 for Lh’ gives 256 unique colors

1.28 3.4 Improving HalfRes Quality with ChqrMode

3.4 Improving HalfRes Quality with ChqrMode

We have seen in section 3.3.3 that in HalfRes mode two horizontally con-
secutive pixels are separated by a "special" pixel generated by the pixels
themselves.

Try to imagine a horizontal line of the screen:

A·B·C·D·E·F·G·H·I·J·K·L·M·N·O·P·Q·R·S·T·U·V·W·X·Y·Z·

where the capital letters represent the pixels and the ’·’s their "ave-
rage" pixels

Even though we know how to horizontally-wise make the best of the ’·’,
we should consider them also vertically:

A·B·C·D·E·F·G·H·I·J·K·L·M·N·O·P·Q·R·S·T·U·V·W·X·Y·Z·
S·T·U·V·W·X·Y·Z·A·B·C·D·E·F·G·H·I·J·K·L·M·N·O·P·Q·R·
S·T·U·V·W·X·H·I·J·K·L·M·N·O·P·Q·R·Y·Z·A·B·C·D·E·F·G·
Q·R·Y·Z·A·B·C·D·E·F·G·S·T·U·V·W·X·H·I·J·K·L·M·N·O·P·
B·X·H·I·J·K·L·M·N·O·Q·R·Y·Z·A·P·C·D·E·F·G·S·T·U·V·W·
Q·R·Y·Z·A·B·X·H·I·J·K·L·M·N·O·P·C·D·E·F·G·S·T·U·V·W·
F·G·S·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·J·K·L·M·N·O·P·C·D·E·
R·Y·Z·A·B·X·H·I·J·K·L·M·N·O·P·C·D·E·F·G·S·T·U·V·W·Q·
J·K·L·M·N·O·P·C·D·E·F·G·S·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·
N·O·P·C·D·E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·
F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·E·
L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·E·F·G·S·J·K·
E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·
V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·E·F·G·S·J·K·L·M·T·U·
B·X·H·I·N·O·P·C·D·E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·
E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·

Generally it’s not a good effect having columns of pixels alternated
with columns of "average" pixels.
Most of the times it’s enough to shift the even (or odd - no difference)
lines by 1 pixel to achive a much better looking screen:

tech 61 / 75

A·B·C·D·E·F·G·H·I·J·K·L·M·N·O·P·Q·R·S·T·U·V·W·X·Y·Z·
S·T·U·V·W·X·Y·Z·A·B·C·D·E·F·G·H·I·J·K·L·M·N·O·P·Q·R

S·T·U·V·W·X·H·I·J·K·L·M·N·O·P·Q·R·Y·Z·A·B·C·D·E·F·G·
Q·R·Y·Z·A·B·C·D·E·F·G·S·T·U·V·W·X·H·I·J·K·L·M·N·O·P

B·X·H·I·J·K·L·M·N·O·Q·R·Y·Z·A·P·C·D·E·F·G·S·T·U·V·W·
Q·R·Y·Z·A·B·X·H·I·J·K·L·M·N·O·P·C·D·E·F·G·S·T·U·V·W

F·G·S·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·J·K·L·M·N·O·P·C·D·E·
R·Y·Z·A·B·X·H·I·J·K·L·M·N·O·P·C·D·E·F·G·S·T·U·V·W·Q

J·K·L·M·N·O·P·C·D·E·F·G·S·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·
N·O·P·C·D·E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I

F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·E·
L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·E·F·G·S·J·K

E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·
V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D·E·F·G·S·J·K·L·M·T·U

B·X·H·I·N·O·P·C·D·E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·
E·F·G·S·J·K·L·M·T·U·V·W·Q·R·Y·Z·A·B·X·H·I·N·O·P·C·D

The ’·’s are much less visible and more integrated with the rest of the
picture.

The Amiga with its BPLCON1 register helps a lot in this case (as in many
others...): normally, at each line, it would be enough to load it alterna-
tively with 0 and $11 to get what we want.
Yet, a TCS display already requires the BPLCON1 to be set to $10, so what
can we do? Well, nothing really changes: $10 and $21 will do the job quite
well.

Most importantly, instead, one should consider how to build up the copper-
list which carries out that job; we have 2 possible choices:

- a Copper loop which waits the beginning of every rasterline and than
COPMOVEs the right value to BPLCON1

- a simple list of couples of COPWAITs and COPMOVEs: each of them waits
for its own rasterline and then writes to BPLCON1

The copper-loop method looks less stupid, but indeed it requires many more
instruction fetches by the Copper and so more CHIP ram bus usage (as far
as I know, Copper hasn’t an instruction cache!), which is entirely to CPU
disadvantage (see the test results for further information about the
ChqrMode influence on performance).
Not only that, but a Copper loop would make horizontal scrolling impos-
sible (unless forcing the CPU to intervene (for example with a Copper in-
terrupt) at every loop)!!!
For these reasons, the best method is surely the banal and longer list of
COPMOVEs that can be easily implemented with a series of DsplHt/2 (DsplHt
= display height in lines) chunks of this kind:

dc.w $xxe1,$fffe ;wait rasterline $xx end ($xx is even)
dc.w $0102,$0010 ;write $0010 to BPLCON1

dc.w $yye1,$fffe ;wait rasterline $yy end ($yy = ($xx+1)and$ff)
dc.w $0102,$0021 ;write $0021 to BPLCON1

tech 62 / 75

- note that since BPLCON1 indicates the shift rightward, the left border
looks a bit "ragged": to eliminate this little side-effect, shift by 1
or 2 LORES pixels the display’s horizontal start position using DIWSTRT
and DIWHIGH

- there’s no difference in shifting righward of leftward: the only thing
that would change is the ragged side

- this technique has a negative effect on simple/geometrical images due
the bad look of (almost) vertical lines

1.29 3.5 Creating Scrollable Screens

3.5 Creating Scrollable Screens

Here we’ll deal with a quite hard subject: how can we scroll a screen
larger than the TCS display?

To start, we should consider whether scrolling is really important: TCS,
in fact, was born with everthing but scrolling in mind. This is because I
don’t consider the capability scrolling a fundamental feature for screens
that are probably going to be used for demo effects, 3D graphics and all
this kind of stuff.

Anyway, Amiga has always been reknown for its smooth scroll and the ease
of producing such effect: we can’t absolutely forget this issue.

3.5.1 Scrolling in FullRes
3.5.2 Vertical Scrolling in HalfRes
3.5.3 Horizontal Scrolling in HalfRes

1.30 3.5.1 Scrolling in FullRes

3.5.1 Scrolling in FullRes

If we look at the setup needed to open a FullRes display, we notice that
there is no particular setting so we could scroll as we normally would
with a "classic" Amiga screen (BPLCON1 can be used without restrictions of
sort and vertical scrolling can be achieved as usual).
Yet, as we’ll see, this would waste a large amount of CHIP mem; instead,
there is another way which (almost) for free lets us scroll easily and, at
the same time, saving a lot of memory: recalling what has been discussed
in the FullRes specific section, we can think of taking advantage of the
conversion routine itself: it is enough, in fact, to select a different
area to convert from time to time to produce the desired effect. The only
negative side of this method is that the area selected for conversion
lies often (about 3/4 of the times) on a horizontal boundary not longword
aligned, thus causing a little speed loss if source pixels are fetched by
groups of 4 (the 68k has to do 2 memory reads for misaligned accesses).

tech 63 / 75

1.31 3.5.2 Vertical Scrolling in HalfRes

3.5.2 Vertical Scrolling in HalfRes

As for vertical scrolling, nothing is really new: it’s enough to change
the values stored in the BPLxPT registers by adding PlnWd*YPos to the
planes addresses, where PlnWd is the width in bytes of a plane and YPos
the first line to be shown at the top of the display.

1.32 3.5.3 Horizontal Scrolling in HalfRes

3.5.3 Horizontal Scrolling in HalfRes

Unfortunately things start to take a bad shape when it comes to horizontal
scrolling. Why? Because of all the specific settings needed by HalfRes
displays; in particular, what makes everything complicated are the play-
fields’ different shift values (they must be shifted of 1 LORES pixel in
respect to each other, remember?) and the chequer effect (it requires a
long copperlist).

Playfields shifting is compulsory, so the cases to study are just two.
One thing these two cases have in common is that 8 extra bytes have to be
early-fetched before the display window start: this means that the DDFSTRT
value must be lower than in the no-scroll case, that the BPLxMOD registers
must be loaded with a negative value to "rescue" the extra bytes fetched
and that the BPLxPTs must point 8 bytes before the actual start of the
planes.

3.5.3.1 Scrolling with ChqrMode OFF
3.5.3.2 Scrolling with ChqrMode ON

- reading 8 bytes more per line (for each bitplane) takes longer CHIP ram
bus time

1.33 3.5.3.1 Scrolling with ChqrMode OFF

3.5.3.1 Scrolling with ChqrMode OFF

In this case the only obstacle we have to face is that playfield 2 must be
shifted, _rightward_, of 1 LORES pixel more than playfield 1. Normally
(i.e. when scrolling is not required), this simply translates to setting
BPLCON1 to $10; in our case, though, neither this nor keeping just a $10
difference between the lowest nibbles of the register is no longer enough.

tech 64 / 75

Let’s see why recalling briefly how to obtain a normal horizontal scroll
of XPos SHRES pixels _leftwards_:

we have to calculate:

- the shift value (for each playfield) to write in BPLCON1 (remembering
that H6 and H7 don’t work in SHRES, hence 0<=shift<=63 SHRES pixels)

- the offset, expressed in bytes, from the base address of any plane,
which will be used to determine the addresses of the planes’ first
bytes to be fetched by the DMA (these address are written to the
BPLxPT registers)

XPos shift in LORES pixels shift(XPos) offset(XPos)

0 00.00 0 0
1 15.75 63 +8
2 15.50 62 +8
3 15.25 61 +8
4 15.00 60 +8
. . . .
. . . .
. . . .
63 00.25 1 +8
64 00.00 0 +8
65 15.75 63 +16
. . . .
. . . .
. . . .
255 00.25 1 +56
256 00.00 0 +56
257 15.75 63 +64
. . . .
. . . .
. . . .

from this table we deduct that (the notation "(x)" means "modulo x"):

- shift(x) = (64-(x (64)) (64) = (64-(x and 63)) and 63 =
= -(x (64)) (64) = -(x and 63) and 63

- offset(x) = ((x+63) and not 63)/8 = ((x+63) and $ffc0)>>3

and (the function "ShfCON1(z)", given the shift value ’z’, returns the
shift value in the format accepted by BPLCON1 for playfield 1;
PlnAdr = base address of a generic bitplane) that:

- BPLCON1 = ShfCON1(shift(XPos)) or ShfCON1(shift(XPos))<<4
- BPLxPT = PlnAdr + offset(XPos) -8

As for our problem of keeping a shift difference of 1 LORES pixel, it’s
not so intuitive that playfield 1 has to be shifted 1 pixel left (rather
than shifting playfield 2 one pixel right); then, looking at the table,
we see that the first four lines illustrate why a simple $10 in BPLCON1
wouldn’t be enough: not only BPLCON1 should be $000f (because the play-
field to shift is changed, shift(XPos)=0 and the LORES shift for XPos+4 is
15), but also the BPLxPTs change (because offset(XPos) <> offset(XPos+4))!
This means that we’ll have to calculate those values separately for each
playfield and then store them in the copperlist in the data fields of the

tech 65 / 75

appropriate COPMOVEs:

- BPLCON1 = ShfCON1(shift(XPos+4)) or ShfCON1(shift(XPos))<<4
- BPLxPT = PlnAdr + offset(XPos+4) -8 (playfield 1)

BPLxPT = PlnAdr + offset(XPos) -8 (playfield 2)

In the next section we’ll need them in functional notation:

- GetBPLCON1(x) = ShfCON1(shift(x+4)) or ShfCON1(shift(x))<<4
- GetBPLxPT(x) = PlnAdr + offset(x) -8

- note that the offsets added to PlnAdr (possibly inclusive of the verti-
cal offset) should be kept in a safe place in case other operations li-
ke planes swap for double/triple buffering, etc. must be done without
re-executing the calculations above (with a single copperlist)

1.34 3.5.3.2 Scrolling with ChqrMode ON

3.5.3.2 Scrolling with ChqrMode ON

Well, after all, the ChqrMode OFF case was not so complicated, so we can
be quite optimistic, right?
NOT!!!

Our target is still scrolling the screen by XPos SHRES pixels left.
Let’s start keeping in mind that all that’s been said in that section
still holds; then, let’s find out what changes in the piece of copperlist
shown here when the scrolling is enabled:

dc.w $xxe1,$fffe ;wait rasterline $xx end ($xx is even)
dc.w $0102,$ssss ;write $ssss to BPLCON1

dc.w $yye1,$fffe ;wait rasterline $yy end ($yy = ($xx+1) (256))
dc.w $0102,$tttt ;write $tttt to BPLCON1

It’s clear that to scroll horizontally and contemporarily having the even
lines shifted of 1 LORES pixel (leftward, this time) more than the odd
ones, the 68k has to write to each and every COPMOVE in those chunks (for
a total of DsplHt writes) GetBPLCON1(XPos) (in the place of $ssss) and
GetBPLCON1(XPos+4) (in the place of $tttt).

But we know that this wouldn’t be enough: we should also update the BPLxPT
registers! Immeditalely one starts thinking to add some more COPMOVEs to
reload such registers, but that would result in an incredible amount of
Copper istructions, since at least 4 (5 if MskPln is active) BPLxPTs need
to be updated, for a total of 4*2*2 (5*2*2) additional COPMOVEs per chunk!
More job for both the Copper and the 68k!
Luckily we can do better. A much more feasible solution would be adding
a couple of COPMOVEs to the BPLxMOD registers per scanline (so we add
only 2*2 COPMOVEs per chunk):

tech 66 / 75

dc.w $xxe1,$fffe ;wait rasterline $xx end ($xx is even)
dc.w $0102,$ssss ;write $ssss=GetBPLCON1(XPos) to BPLCON1
dc.w $0108,$mmmm ;write $mmmm to BPL1MOD
dc.w $010a,$nnnn ;write $nnnn to BPL2MOD

dc.w $yye1,$fffe ;wait rasterline $yy end ($yy = ($xx+1) (256))
dc.w $0102,$tttt ;write $tttt=GetBPLCON1(XPos+4) to BPLCON1
dc.w $0108,$pppp ;write $pppp to BPL1MOD
dc.w $010a,$qqqq ;write $qqqq to BPL2MOD

what are they supposed to do, now? Let’s put them aside for a moment.

Instead, for a second we have to reconsider the way we used GetBPLCON1().
We applied it to both XPos and XPos+4: we must pay attention because the
function itself internally adds 4 to its input value when calling shift()
to calculate the shift of playfield1. Look at what happens:

line x GetBPLCON1(x)

odd XPos ShfCON1(shift(XPos+4)) or ShfCON1(shift(XPos))<<4
even XPos+4 ShfCON1(shift(XPos+8)) or ShfCON1(shift(XPos+4))<<4

If fact when the line is odd, playfield 1 must be shifted of 4 pixels;
when the line is even, playfield 2 must be shifted of 4 pixels and play-
field 1 of 8 pixels:

line playfield shift depends on

odd 1 0
odd 2 +4 how pixels are formed
even 1 +4 chequer
even 2 +8 how pixels are formed + chequer

shift() contains a modulo operation inside because when the input value
reaches or goes beyond 64, the scrolling is obtained with the help of the
bitplanes pointers, which we were discussing above. This observation is
useful to find out when the offsets are equal in both the even and odd
lines; so, having a look at the table of the shifts and offsets, we have
to find the possible values for XPos that don’t produce a planes pointers
change (that in maths means: XPos (64) +4 < 65 -> XPos (64) < 61 and
XPos (64) +8 < 65 -> XPos (64) < 57):

- 1 <= XPos (64) <= 56:

lines playfield offset

odd 2 offset(XPos)
odd 1 offset(XPos+4) = offset(XPos)
even 2 offset(XPos+4) = offset(XPos)
even 1 offset(XPos+8) = offset(XPos)

- 57 <= XPos (64) <= 60:

lines playfield offset

odd 2 offset(XPos)

tech 67 / 75

odd 1 offset(XPos+4) = offset(XPos)
even 2 offset(XPos+4) = offset(XPos)
even 1 offset(XPos+8) = offset(XPos)+8

- 61 <= XPos (64) <= 64 = 0:

lines playfield offset

odd 2 offset(XPos)
odd 1 offset(XPos+4) = offset(XPos)+8
even 2 offset(XPos+4) = offset(XPos)+8
even 1 offset(XPos+8) = offset(XPos)+8

in human words, we have found that the BPLxPTs are affected in 3 different
ways:

- if XPos (64) belongs to {1,...,56} then both the playfieds have the
same offset, no matter whether the line number is odd or even

- if XPos (64) belongs to {57,...,60} then the playfields share the
same offset only on the odd lines

- if XPos (64) belongs to {0,61,62,63} then the playfields share the
same offset only on the even lines, and this offset is greater than the
one needed by XPos

Now we’re getting closer to the solution: the BPLxPT registers can be
loaded just once with the values given by GetBPLxPT() for every
bitplanes, before the series of the copperlist chunks and the BPLxMOD re-
gisters can be used to add the +8 bytes difference when needed.
Supposing to start from an odd line, the BPLxPTs settings are:

playfield XPos (64) in BPLxPTs

2 {1,...,56} GetBPLxPT(XPos)
1 {1,...,56} GetBPLxPT(XPos+4) = GetBPLxPT(XPos)
2 {57,...,60} GetBPLxPT(XPos)
1 {57,...,60} GetBPLxPT(XPos+4) = GetBPLxPT(XPos)
2 {0,61,62,63} GetBPLxPT(XPos)
1 {0,61,62,63} GetBPLxPT(XPos+4) = GetBPLxPT(XPos)+8

The only things that remain to discover are the values to assign to the
BPLxMOD registers (let’s remember that we’re fetching 8 extra-bytes, so
the base value for BPLxMOD will be -8):

3.5.3.2.1 XPos (64) Belongs to {1,...,56}
3.5.3.2.2 XPos (64) Belongs to {57,...,60}
3.5.3.2.3 XPos (64) Belongs to {0,61,62,63}

Don’t worry if all this mess looks obscure: the section below directly
reveals the necessary settings without any explanation:

3.5.3.2.4 Settings Summary

- since enabling the scrolling enlarges the copperlist size, the Copper’s
accesses to the CHIP ram bus increase, too, with the consequent slow-

tech 68 / 75

down of CPU accesses to the same kind of memory
- there is no particular restriction of the choice between odd and even

lines: the one adopted here is just a convention

1.35 3.5.3.2.1 XPos (64) Belongs to {1,...,56}

3.5.3.2.1 XPos (64) Belongs to {1,...,56}

This table perfectly shows that in this case the offsets are the same for
any line and both the playfields: $mmmm = $nnnn = $pppp = $qqqq = -8 =
= BPL1MOD = BPL2MOD carry out the job quite well as the DMA fetches 8
bytes more than the actual width of a line.

1.36 3.5.3.2.2 XPos (64) Belongs to {57,...,60}

3.5.3.2.2 XPos (64) Belongs to {57,...,60}

In this case the playfield 2 has the same offset independently from the
line: by setting its to offset(XPos), it’s enough to have a modulo of -8
to "recover" the "extra-fetched" bytes on both the even and odd lines.

To find the right values for BPL1MOD, we follow the process of DMA data
fetching step-by-step:

starting from odd line;
base offset: ofs = offset(XPos)
playfield 1 offset: ofs1 = offset(XPos+4) = offset(XPos) = ofs;

After fetching a line, the BPLxPTs of playfield 1 point to the start
of the next line plus ofs1 plus 8 "extra-fetched" bytes, i.e. the start
of the next line plus ofs+8; since the next line is even, the playfield
must have an offset equal to ofs+8: we have already reached such figure
so a modulo of 0 is simply what is needed.
Settings for the odd lines:

BPL1MOD = 0 -> $mmmm = 0
BPL2MOD = -8 -> $nnnn = -8

We’re now on an even line;

Playfield 1, after a whole line has been fetched, is in this situation:
the BPLxPTs point to the next line plus ofs+8+8, which, being the next
line odd, is 16 bytes beyond the offset desired, so the modulo must
be -16.
Therefore, the modulo settings for the even lines are:

BPL1MOD = -16 -> $pppp = -16
BPL2MOD = -8 -> $qqqq = -8

tech 69 / 75

1.37 3.5.3.2.3 XPos (64) Belongs to {0,61,62,63}

3.5.3.2.3 XPos (64) Belongs to {0,61,62,63}

In this case the playfield 1 has the same offset independently from the
line: by setting it to offset(XPos)+8, it’s enough to have a modulo of -8
to "recover" the "extra-fetched" bytes on both the even and odd lines.

To find the right values for BPL2MOD, we follow the process of DMA data
fetching step-by-step:

starting from odd line;
base offset: ofs = offset(XPos)
playfield 2 offset: ofs2 = offset(XPos+4) = offset(XPos) = ofs;

After fetching a whole line of playfield 2, the BPLxPTs point to the
start of the next line plus the offset plus 8 of "extra-fetched" bytes,
i.e. the start of the next line plus ofs2+8 that is equal to ofs+8;
since the next line is even and since playfield 2 has ofs+8 as offset on
those lines, no more bytes have to be skipped and the modulo is 0.
Therefore, the modulo settings for the odd lines are:

BPL1MOD = -8 -> $mmmm = -8
BPL2MOD = 0 -> $nnnn = 0

We’re now on an even line;

Playfield 2, after a whole line has been fetched, is in this situation:
its BPLxPTs point at the start of the next line plus ofs+8+8, which,
given that the next line is odd, is 16 bytes beyond the offset desired,
so a modulo of -16 is simply what is needed to "recover" those bytes.
Therefore, the modulo settings for the even lines are:

BPL1MOD = -8 -> $pppp = -8
BPL2MOD = -16 -> $qqqq = -16

1.38 3.5.3.2.4 Settings Summary

3.5.3.2.4 Settings Summary

Summarizing the results found so far:

we have a copperlist made of DsplHt/2 (DsplHt = display height in lines)
chunks of this kind, preceded, possibly among other instructions, by the
COPMOVEs to the BPLxPT registers.
Depending on the horizontal position desired (XPos), the fields of the
copperlist have to be filled as follows:

BPLxPT:

tech 70 / 75

playfield BPLxPT

2 GetBPLxPT(XPos)
1 GetBPLxPT(XPos+4)

BPLCON1:

lines BPLCON1

odd $ssss = GetBPLCON1(XPos)
even $tttt = GetBPLCON1(XPos+4)

BPLxMOD:

lines playfield XPos (64) in BPLxMOD

odd 1 {1,...,56} $mmmm = -8
odd 2 {1,...,56} $nnnn = -8
even 1 {1,...,56} $pppp = -8
even 2 {1,...,56} $qqqq = -8

odd 1 {57,...,60} $mmmm = 0
odd 2 {57,...,60} $nnnn = -8
even 1 {57,...,60} $pppp = -16
even 2 {57,...,60} $qqqq = -8

odd 1 {0,61,62,63} $mmmm = -8
odd 2 {0,61,62,63} $nnnn = 0
even 1 {0,61,62,63} $pppp = -8
even 2 {0,61,62,63} $qqqq = -16

- if we had strictly followed the directions given until this point, the
BPLxPTs should have been:

start line playfield BPLxPT

odd 2 GetBPLxPT(XPos)
odd 1 GetBPLxPT(XPos+4)
even 2 GetBPLxPT(XPos+4)
even 1 GetBPLxPT(XPos+8)

but this is *not* needed because the odd/even definitions given here are
just mere conventions for the sake of readability

1.39 3.6 Cross Playfield Mode

3.6 Cross Playfield Mode

Whatever kind of display we have examined up to this point always three or
even four bitplanes were unused. What a waste. If you think this, then I

tech 71 / 75

agree with you. Theorically we could use those planes, for example, to
open 16-bit displays, but unluckily a HalfRes-like mode would not be pos-
sible (the ChipSet offers "only" two indipendent horizontal scroll values)
and, even if it had been, each pixel would have looked like four LORES
pixels (and 3 of them would have been "averages"). FullRes instead, would
be possible, but actually the cost of the conversion would be so high to
make it almost unfeasible. Yet, there’s still something we can do: why
don’t we use those planes for another playfield? Yes, this can be actually
obtained without much effort from the CPU, some more DMA work and some
differences respect to a real Dual Playfield (like the Amiga’s).

3.6.1 Limitations
3.6.2 BitPlanes Assignment
3.6.3 Palette Settings
3.6.4 Dual Modality

1.40 3.6.1 Limitations

3.6.1 Limitations

Before going further we have a look at the limitations: the two playfields
share the settings of BPLxMOD, DDFSTxx and BPLCON1, so they must have the
same:

- horizontal resolution (both FullRes or both HalfRes)
- display width
- [HalfRes] screen width
- [HalfRes] screen horizontal position
- [HalfRes] horizontal scroll, chequer settings

other limitations are:

- loss of many (175) colors for pixel-value-based transparency of front
playfield

- [HalfRes] MskPln is compulsory in Dual mode ("uncotrolled" average
pixels may yield one of those "lost" colors

Actually, in FullRes most limitations could be overcome by using Amiga’s
own Dual Playfield mode; though this would require a major rework of the
definitions and of all routines written to handle all the other modes.

1.41 3.6.2 BitPlanes Assignment

3.6.2 BitPlanes Assignment

After allocating two more CHIP ram buffers for the front playfield planes,
we assign them the BPLxPT registers as follows:

tech 72 / 75

(FPfldPlnX = Front Playfield Plane X)

- Fullres or HalfRes without MskPln:

BPL1PT = VdoPln0 address
BPL2PT = VdoPln0 [HalfRes] or VdoPln1 [FullRes] address
BPL3PT = SlcPln0 address
BPL4PT = SlcPln1 address
BPL5PT = FPfldPln0 address
BPL6PT = FPfldPln1 address

(first 4 assignments unchanged)

- HalfRes with MskPln

BPL1PT = VdoPln0 address
BPL2PT = VdoPln0 address
BPL3PT = SlcPln0 address
BPL4PT = SlcPln1 address
BPL5PT = MskPln address
BPL6PT = FPfldPln0 address
BPL7PT = FPfldPln1 address

(first 5 assignments unchanged)

in this way we use the SlcPlns and the MskPln also for the front play-
field, thus we can avoid to allocate other DMA/memory -consuming planes.

1.42 3.6.3 Palette Settings

3.6.3 Palette Settings

In the first section we had to acknowledge the limitations of our mode;
now it’s time to see its incredible advantages.
After assigning the bitplanes, we now see how the palette settings change
according to those assignments, examining for a start the simplest case
(HalfRes without MskPln or FullRes). Before beginning, it’s important to
point out that there is no reason to force the two playfields to have same
RGBx mode - yes, each playfield can have its own palette of 256 colors!

There are several ways to look at this problem and personally I found that
the less puzzling is considering the components separately:

bitplane bit

FPfldPln1 F
FPfldPln0 f
SlcPln1 S
SlcPln0 s
VdoPln1 V
VdoPln0 v

our task here is to find the 24-bit RGB values to write to the 64 color

tech 73 / 75

registers indexed by %FfSsVv.
But first we have to ask ourselves: what does %FfSsVv represent?
It indicates the color register that is selected when the component CN
(selected by %Ss) of a pixel on the front playfield with CV=%Ff is super-
imposed to the component CN of a pixel with CV=%Vv on the back playfield.
Secondly, the question is: what happens to the latter component? Is it
completely hidden by the front playfield’s?
Well, surely not; in that case, in fact, we would have that the back play-
field component CN of every pixel is always hidden and, by extending this
reasoning to the other compoents, the back playfield is always hidden by
the back one, whatever value their pixels have - pretty useless.
Instead, we should "merge" the two components together, specifying their
"weight" in the final outcome. We define this "weight" as the "opacity"
of the front playfield, which is a measure of how much opaque (or transpa-
rent) it is; here we’ll call it "o" and make it range from 0 (completely
transparent) to 256 (totally opaque).
So the resulting component intensity becomes: C=(CB*(256-o))+(CF*o), where
CB=intensity of component CN from back playfield and CF=intensity of com-
ponent CN from front playfield (these two values are totally indipendent,
and that’s why the two playfields need not to have the same RGBx mode).
All that remains to be done is just writing C to the COLORxx register,
where xx is selected by %fSsVv and the bank (bits 15-13 of BPLCON3) it
belongs to is selected by %F.

Now let’s also consider the case of HalfRes with MskPln:

bitplane bit

FPfldPln1 F
FPfldPln0 f
MskPln M
SlcPln1 S
SlcPln0 s
VdoPln1 V
VdoPln0 v

things, fortunately, don’t change much: of course the number of registers
to set is doubled but, apart from the different selection of COLORxx regi-
sters (xx=%MSsVv; bank=%Ff) the principle and the calculations are exactly
the same.

- it’s evident that in this way it’s very easy to produce cross-fading
effects (that’s where the name of the mode came from...)

- a drawback of this method is that we can’t easily pick an RGBx value as
"always transparent" (like in Amiga’s Dual Playfield); a partial solu-
tion is given in the following section

1.43 3.6.4 Dual Modality

3.6.4 Dual Modality

tech 74 / 75

The Cross Playfield looks nice, though it lacks of a color which the back
playfield can be seen through without color alteration, like in a normal
Dual Playfield happens. Yet, with a bit more or patience, we can "emulate"
this feature, too.

Let’s say that we want the color %RrBbGgXx to be completely transparent
and that the data on the bitplanes is arranged in this way:

bitplane pixel

FPfldPln1 RGBX
FPfldPln0 rgbx
SlcPln1 SSSS
SlcPln0 ssss
VdoPln1 UVWY
VdoPln0 uvwy

considering only RN, what we want here is that the RGB color associated to
%RrSsUu is exactly the same of %SsUu in the RGBx mode used by the back
playfield: in other words, the RGB value to write to COLORxx (xx=%RrSsUu)
is the same we use for %SsUu for back playfield in a non-Cross Playfield
mode. Doing the same for the other components is all that remains to be
done to reach our goal.

Unfortunately this method has a considerable "dark side": what happens
to color %Rr0000 (different from %RrGgBbXx), for example? The components
GN, BN and xN are OK, but RN is treated as transparent, so the final out-
come is that the color is uncorrectly shown on the screen. Of course, this
holds true for all the possible colors whose RV is %Rr and applies also to
all the other components, so, in the end, we have that all the colors who
have at least one CV equal to one in %RrGgBbXx look bad. This means that
the number of unaffected colors is reduced to 3^4 = 81 (we can freely se-
lect three CVs - instead of four - per component).

Despite the loss of colors, we have now a real Dual Playfield mode, with
the additional feature that the non-transparent colors have variable opa-
city! Not even Amiga’s Dual Playfield mode can do this!

1.44 3.7 Screen Buffering

3.7 Screen Buffering

Nothing of what we have seen so far (and we’ll see later) stops us from
creating buffered TCS displays... so if your game or your demo (or what-
ever) needs to keep itself synchronized with the video refresh and wants
to boast flicker/jerks -free graphics, we just have to think a bit about
how we can double/triple buffer.

Explaining here any buffering method would be superfluous, whereas it is
important to point out all the TCS-related topics.

tech 75 / 75

First of all, _what_ exactly do we have to buffer?
In HalfRes mode, we have to reserve two or three buffers for the only
VdoPln available (VdoPln0), which, as you should remember, is used as the
ChnkScr; in FullRes mode, both VdoPln0 and VdoPln1 must be buffered, while
ChnkScr, which is a separate buffer (preferably in FAST memory), must not:
in fact, after the ChnkScr -> VdoPlns conversion, the ChnkScr can be used
again as the buffering is applied to the buffers that are actually shown
on the monitor.

Another important thing to consider is that the scroll settings must
affect only the current physical screen, so also the copperlists must be
buffered (it’s not enough to change the pointers to the planes in a single
copperlist).

	tech
	3 How TCS Works
	3.1 Basic Idea
	3.2 Amiga Hardware Setup
	RGBx Color Composition
	3.3.1 Conventions
	3.3.2 Bits Allocation Inside RGBx Pixels
	3.3.3 How Pixels Are Plotted on a HalfRes Screen
	3.3.4 How Pixels Are Plotted on a FullRes Screen
	3.3.5 RGB <-> RGBx Conversion
	3.3.6a RGBW Color Composition
	3.3.6b RGBW Palette Settings RGBW
	3.3.6c RGBW <-> RGB Conversion
	3.3.7a RGBM Color Composition
	3.3.7b RGBM Palette Settings
	3.3.7c RGBM <-> RGB Conversion
	3.3.8a RGBS Color Composition
	3.3.8b RGBS Palette Settings
	3.3.8c RGBS <-> RGB Conversion
	3.3.9a RGBP Color Composition
	3.3.9b RGBP Palette Settings
	3.3.9c RGBP <-> RGB Conversion
	3.3.10a RGB332 Color Composition
	3.3.10b RGB332 Palette Settings
	3.3.10c RGB332 <-> RGB Conversion
	3.3.11a RGBH Color Composition
	3.3.11b RGBH Palette Settings
	3.3.11c RGBH <-> RGB Conversion
	3.4 Improving HalfRes Quality with ChqrMode
	3.5 Creating Scrollable Screens
	3.5.1 Scrolling in FullRes
	3.5.2 Vertical Scrolling in HalfRes
	3.5.3 Horizontal Scrolling in HalfRes
	3.5.3.1 Scrolling with ChqrMode OFF
	3.5.3.2 Scrolling with ChqrMode ON
	3.5.3.2.1 XPos (64) Belongs to {1,...,56}
	3.5.3.2.2 XPos (64) Belongs to {57,...,60}
	3.5.3.2.3 XPos (64) Belongs to {0,61,62,63}
	3.5.3.2.4 Settings Summary
	3.6 Cross Playfield Mode
	3.6.1 Limitations
	3.6.2 BitPlanes Assignment
	3.6.3 Palette Settings
	3.6.4 Dual Modality
	3.7 Screen Buffering

