basix

basix

] COLLABORATORS
TITLE :
basix
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

basix

Contents

1 Dbasix
L1 2TCS Basics o e e e
1.2 2.1 Whatis RGBX? e
1.3 2.2 TrueColor Chunky Pixels e
1.4 23 TCSDIsplays o o ot e e e e e e e e
1.5 24 Performance L e e
1.6 2.4.1Speed
1.7 242Memory Needs o e e e e e

1.8 2.5 Some Considerations i e e e e e e e e e

basix

Chapter 1

basix

1.1 2 TCS Basics

2 TCS Basics

This section purposes to provide all the means to use the tcs.library to
a great extent and to help you familiarize with the basic concepts more
formally defined in the techie section (which, however, you could need to
have a look at for the most complex/custom/tricky things).

What is RGBx?

TrueColor Chunky Pixels
TCS Displays
Performance

Some Considerations

NN NDDNDDNDDN
g w N

1.2 2.1 What is RGBx?

2.1 What is RGBx?

Unless you have jumped directly here - but you haven’t, have you? -, you
certainly have read somewhere that TCS is based on "RGBx" color composi-
tion: probably this name has left you a little uncertain, because of the
"alien" letter queued to the common "RGB" initials: that "x" is a sort of
variable, as under TCS colors are made of four components instead of just
the classic three; since the fourth component and its usage can be freely
defined, several color composition methods can be constructed and used,
each with its own "RGBx" denomitation.

The tcs.library comes with six different pre-defined RGBx formats, and
all you have to do is choosing the one which fits best your needs (have a
look at these advices or, even better, at the RGBx introduction sections
(in particular, the ones labelled as "3.3.xa") in technical chapter).

basix 2/8

Of course, a good knowledge of the formats helps making better choices and
programs, but it’s not that necessary.

1.3 2.2 TrueColor Chunky Pixels

2.2 TrueColor Chunky Pixels

The main characteristic of TCS displays is certainly the pixel format:
every pixel consists in a byte (i.e. pixels are treated in a chunky way

- I guess it would be a bit redundant here explaining what "chunky" means,
right?) indicating the RGBx color of the pixel itself (i.e. this byte is
not an index to a color look-up table, but indicates directly the color
components of the pixel).

For example, if we wanted to plot a pixel of color %11010100 (whatever
color it is) at the position <10,31> on a 320 pixels (=bytes) wide screen
starting at the address $£78b0040, all we would have to do is the a sim-
ple: poke $£78b0040+31%xScrWd+10,%11010100; in general:

Px1Adr = ScrAdr + yxScrWd + x

where:

Px1Adr = pixel memory location address

ScrAdr = start address of screen’s chunky buffer (top-left corner)
ScrWd = screen’s width in pixels (=bytes)

<x,y> = pixel coordinates

(cops! in the end I did talk about the chunky issue... sorry!)

However, we are more interested in the TrueColor aspect of pixels.
Unfortunately, introducing this subject without stumbling on not so plea-
sant technics is very hard, so the following information is obligatorily
incomplete and approximate.

In the previous section we have Jjust seen that there are several RGBx
modes: each mode has its own way of "interpreting" pixels and showing them
on the screen; this means that a pixel of value %11100010 looks probably
different in two different RGBx modes (otherwise all RGBx formats would be
equal to one another!).

To know how to directly manipulate the bits in order to produce the desi-
red color, the only thing you can do is to read the RGBx techie section

- I'm sorry, but there is no other way.

Otherwise, you can always use the palette files included in the package in
TCS/pal/ and/or use the library’s color manipulation functions - you’ll
discover that there is no need to be scared: everything will become easy
after a bit of practice!

1.4 2.3 TCS Displays

basix

3/8

2.3 TCS Displays
[some work to be done here...]

1.5 2.4 Performance

2.4 Performance

Now I’"11 let the numbers talk at my place.
We can look at performance from two different points of view:

Speed

2.4.1
2.4.2 Memory Needs

— all the figures in the sections above apply to the tcs.library

1.6 2.4.1 Speed

2.4.1 Speed

This section reports the results deriving from many tests based on a loop
executing the following piece of code 100 times:

Lfi11 rept 16
move.b dl, (al)+ ;write 1 pixel
endr
dbra d3, .fill

to fill a 160x256 or 320x256 screen, depending on the resolution used
(d3 is loaded with 160%256/16-1 or 320%256/16-1, respectively).

o o - o o - - +
| MskPln | ChgrMode | HScrl | resolution | machine | S | fps |
e fom o fom fom fomm fom +
					\	
OFF	OFF	OFF	HalfRes	A1200+Bz1230	2.320	43.10
OFF	OFF	ON	HalfRes	A1200+Bz1230	2.320	43.10
OFF	ON	OFF	HalfRes	A1200+Bz1230	2.389	41.86
OFF	ON	ON	HalfRes	A1200+Bz1230	2.406	41.56
ON	OFF	OFF	HalfRes	A1200+Bz1230	2.709	36.91
ON	OFF	ON	HalfRes	A1200+Bz1230	2.732	36.60
ON	ON	OFF	HalfRes	A1200+Bz1230	2.804	35.66

basix 4/8
ON	ON	ON	HalfRes	A1200+Bz1230	2.853	35.40
OFF	OFF	OFF	FullRes	A1200+Bz1230	3.564	28.50
OFF	OFF	OFF	HalfRes	Dbare A1200	2.320	43.10
OFF	OFF	ON	HalfRes	Dbare A1200	2.320	43.10
OFF	ON	OFF	HalfRes	Dbare A1200	2.389	41.86
OFF	ON	ON	HalfRes	bare A1200	2.407	41.55
ON	OFF	OFF	HalfRes	bare A1200	2.710	36.90
ON	OFF	ON	HalfRes	Dbare A1200	2.733	36.59
ON	ON	OFF	HalfRes	Dbare A1200	2.804	35.66
ON	ON	ON	HalfRes	Dbare A1200	2.854	35.38
OFF	OFF	OFF	FullRes	bare A1200 [13.913	7.19	
					\	
o +—— - o o o - +

(the Bz1230-IV was clocked at 50 Mhz and was equipped with 60 ns ram;
FullRes conversion was done without Blitter’s help)

The first thing that strikes our eyes is that the unxepanded Al1200 perfor-—
med exactly like the powered-up one in all but one mode: FullRes.

This can be looked at as a "proof of quality" for TCS displays: they offer
chunky and TrueColor-like screens for free. You may ask: if it’s for free,
why can’t 50 fps be reached? The answer, concerning HalfRes modes, is that
the program writes single bytes to the slow CHIP ram, so the 24-bit bus is
badly used. Using the same loop as above, but writing longwords instead of
bytes, the figures become:

Fommm - e fo—— e Fom e fo———— - Fo—— +
| ChgrMode | MskPln | HScrl | resolution | machine | S | fps |
o o - o o - o +
\						
ON	ON	ON	HalfRes	A1200+Bz1230	0.710	140.83
ON	ON	ON	HalfRes	Dbare A1200	0.710	140.83
\						
o o - o o - o +

in fact, considering the corresponding number of the bigger table, we have
that: 2.853/4 = 0.713, which is quite close to 0.710.

With regard to FullRes, we have already discussed the reason of such a
big drop of performance; now let’s see how much a 320x256 FullRes screen
costs to the Amiga (doing _nothing_ else than showing the screen):

Fom—— Fom fo—————— fo———— - +

Blitter | machine | S | fps |
o o - - +
\ \ | | |
unused	A4000+CS060	1.380	72.45
unused	A1200+Bz1230	2.550	39.20
unused \ bare A1200	9.270	10.13	
used	A4000+CS060	6.326	15.81
used	A1200+Bz1230	7.518	13.30
used	Dbare A1200 [12.473	8.02	
\ \ | | |
e Fomm to———— - to—————— +

(the CSII-060 was clocked at 50 MHz and had a 70 ns simm)

basix 5/8

You could think that there’s a discrepancy here; by looking at the first
table, one might expect that the time taken by FullRes operations should
be equal to the time elapsed for filling a screen in FullRes mode sub-
tracted by the time taken for filling in HalfRes (MskP1ln and ChgrMode
OFF) mode multiplied by 2 (HalfRes screen is half of FullRes’):

- bare A1200 : 13.913-2.320%2 9.273
- A1200+4Bz1230: 3.564-2.320%2 = -1.076

the first result is perfectly consistent, whereas the second is without
doubt impossible! The simple reason is that on the expanded Al1200 the
screen to be filled is located in FAST ram, therefore the actual time
is much less than 2.320x2 seconds (3.564-2.550 s = 1.014 s).

I must admit that 39 fps on a Bz1230-IV is not much, but I can’t really
imagine a better way of implementing the routines which executes the
conversion needed by FullRes displays; anyway, you *dox have a couple of
ways to go faster: redraw only the areas that actually need to be updated
or... reduce the display dimensions (currently a display size of 256x252
allows to reach 50+ fps)!!! ;)

To those wondering: "what a stupid thing, using the Blitter!", I have to
point out that Blitter can actually be useful when the 68k must perform
other heavy tasks, besides the FullRes conversion (yet, in the case of the
bare A1200 - due to the lack of FAST ram - it’s likely to be worthless).

We can close this paragraph with a note: the extra DMA fetch for MskPln
and ChgrMode steals not so many CHIP ram bus cycles, so it isn’t worth
turning those options off considering the extremely poor quality of the
deriving screen modes (scrolling, instead, most of the times is of no use,
so turn it OFF).

1.7 2.4.2 Memory Needs

2.4.2 Memory Needs

Are Tricky-Color screens memory-greedy?
Well, sort of.

First we have to discover how to calculate the quantity of memory required
for a screen ScrWd pixels wide and ScrHt pixels tall (each pixel is inten-
ded to be directly addressable):

- in HalfRes mode we need to allocate several planes of size P1lnSz =
ScrWdxScrHt bytes in CHIP ram; the number of planes (indicated from now
on with PlnsNo) is 4 if MskPln is OFF, 5 otherwise; the final occupancy
is therefore PlnSzxPlnsNo bytes in CHIP ram, O bytes in FAST.

— in FullRes mode we need to allocate a buffer in FAST ram (if available)
of ScrSz = ScrWd*ScrHt bytes, plus 4 planes of DsplWdx4«DsplHt bytes
(DsplWd and DsplHt indicate the dimensions of the display, of course)
in CHIP ram (planes in CHIP ram don’t need to be as large as the buffer
in FAST because its data have to be converted and then written to the

basix 6/8

CHIP planes - obviously we don’t need to convert more data than the vi-
sible area can hold); additionally, if the display makes use of the
Blitter—assisted FullRes conversion, we need one more "work" buffer

of ScrWdxScrHt bytes in CHIP ram.

Let’s make some comparisons between similar screens in different display
modes (DsplWd=320, DsplHt=256) :

A 256 colors normal planar screen requires:

pixels pixels colors bytes lines planes bytes mem type
320 x 256 x 256 -> 40 x 256 x 8 = 81920 CHIP

A TCS MskPln’ed HalfRes screen requires:

pixels pixels colors bytes lines planes bytes mem type
160 x 256 x 256 -> 160 x 256 x 5 = 204800 CHIP

A TCS FullRes screen with CPU-only FullRes conversion requires:

pixels pixels colors bytes lines planes bytes mem type
320 x 256 x 256 -> 160 x 256 x 4 = 163840+ CHIP
-> 320 x 256 x 1 = 81920= FAST
245760

A TCS FullRes screen with Blitter-assisted FullRes conversion requires:

pixels pixels colors bytes lines planes bytes mem type
320 x 256 x 256 -> 160 x 256 x 4 = 163840+ CHIP
-> 320 x 256 x 1 = 81920+ CHIP
-> 320 x 256 x 1 = 81920= FAST
327680

So the answer to the question at the top is, unfortunately, a big "YES"!
A screen that normally would occupy just 80 kb, takes 200 kb in HalfRes
and 240 kb or 320 kb in FullRes!!!

But that’s not all, there’s an even worse thing to consider.

Think about screens in HalfRes mode larger than the display for a moment:
in theory, it would be wise to reserve the memory needed only for the
VdoPlns, whereas the SlcPlns and MskPln, whose use is limited to the visi-
ble (and smaller) display area, could be kept 160x256 bytes large (some-—
thing similar does happen in FullRes, instead).

We’re not so lucky.

This is not possible in practice because the SlcPlns and MskPlns share

the BLPxMOD registers with the VdoPlns, due to the way we arranged them:

plane 5 MskP1ln
plane 4 SlcP1lnl
plane 3 S1cP1n0
plane 2 VdoP1lnl
plane 1 VdoP1nO

It’s spontaneous to say: "So what?!? Re-arrange them!!! SlcPlns can have

basix

their own horizontal size: it’s enough to assign them to planes 2 and 4!

plane 5 MskP1ln
plane 4 SlcP1lnl
plane 3 VdoP1lnl
plane 2 S1cP1n0
plane 1 VdoP1nO

See?!? Now VdoPlns belong to playfield 1 and SlcPlns to playfield 2, thus
can be sized indipendently! We have to give up just on MskPln (unless
activating a 6th DMA-hungry plane), but at least we’ve gained something!"

This would be a rather smart solution but... sigh! We are missing some-—
thing here: VdoP1ln0 and VdoPlnl xmust* belong to two different playfields
for the TCS method is based on this!!! In fact, they must be shifted by

one LORES pixel, that is equal to saying they need a different value in
the two nibbles (each belonging to a different playfield) of BPLCON1’s
lowest byte.

— double and triple buffering obviously require 2 and 3 times as much
as needed by the VdoPlns, respectively
— Cross Playfield requires two more planes in CHIP ram

1.8 2.5 Some Considerations

2.5 Some Considerations

If we look at the speed, TCS surely offers a blistering fast way of plot-
ting dots: in fact a single access per pixel is ideal to avoid the other-
wise many CPU wait states due to Amiga’s CHIP ram bus architecture.

The real bad side is the horizontal resolution limitation in HalfRes mode,
which can be overcome only with the expensive FullRes method that nega-
tively influences the performance.

As for RGBx formats, maybe RGBH is the best as it stands in the middle
of RGBW/RGBM (pale/bright and imprecise) and RGB332 (dark but exact).
If I were to draft a general chart I’d scribble dowm:

pos mode unique colors features

1st RGBH 256 bright, quite smooth and varied colors
2nd RGBM 217 bright, quite smooth and varied colors
3rd RGBW 175 pale, quite smooth colors; ease of use
4th RGB332 256 dark, extra smooth colors; ease of use
5th RGBP 256 strong colors (no white)

oth RGBS 256 very strong colors (no white)

The best choice, though, can be done only considering the picture(s) to
display and their original palette(s) (in particular, if you don’t need

basix

8/8

bright colors,

RGB332 is in absolute the best choice!)

	basix
	2 TCS Basics
	2.1 What is RGBx?
	2.2 TrueColor Chunky Pixels
	2.3 TCS Displays
	2.4 Performance
	2.4.1 Speed
	2.4.2 Memory Needs
	2.5 Some Considerations

