in

COLLABORATORS

TITLE :
in
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

in iii

Contents

1 in 1
1.1 listviewclass.guide L L e 1
1.2 listviewclass/--background--o e 2
1.3 listviewclass/BASE_DRAGACTIVE e e 2
1.4 listviewclass/BASE_DRAGQUERY e 3
1.5 [listviewclass/BASE_DRAGUPDATE e 3
1.6 listviewclass/BASE_DROPPED e 3
1.7 listviewclass/BASE_FREEDRAGOBJECT e e 3
1.8 listviewclass/BASE_GETDRAGOBIJECT e s s s s 4
1.9 listviewclass/LVM_ADDENTRIES e e 4
1.10 listviewclass’/LVM_ADDSINGLE e 5
1.11 listviewclass/LVM_CLEAR e e e 5
1.12 listviewclass/LVM_INSERTENTRIES e 6
1.13 listviewclass/LVM_INSERTSINGLE e e s 7
1.14 listviewclasssLVM_MOVE e 7
1.15 listviewclass/LVM_REDRAW e 8
1.16 listviewclass’/LVM_REFRESH e 9
1.17 listviewclasssLVM_REMENTRY o e 9
1.18 listviewclass/LVM_REMSELECTED e e 10
1.19 listviewclass’/LVM_REPLACE e e 10
1.20 listviewclass/LVM_SORT e 11
1.21 listviewclass/LVM_[UNJLOCKLIST s e e e e e e 11
1.22 listviewclass/LVM_[XxX]ENTRY e e e 12
1.23 listviewclass/LISTV_CompareHook e 13
1.24 listviewclass/LISTV_CustomDisable e 14
1.25 listviewclass/LISTV_DeSelect e e e 14
1.26 listviewclass/LISTV_DisplayHook o e 14
1.27 listviewclass/LISTV_DropSpot o o e e 17
1.28 listviewclass/LISTV_Entry e e e e e e e 17
1.29 listviewclass/LISTV_EntryArray o e e 17

in iv
1.30 listviewclass/LISTV_EntryNumber e e 18
1.31 listviewclass/LISTV_LastClicked e s e 18
1.32 listviewclass/LISTV_LastClickedNum 0 e 19
1.33 listviewclass/LISTV_LastColumn e 19
1.34 listviewclass/LISTV_ListFont 19
1.35 listviewclass/LISTV_MakeVisible e e 19
1.36 listviewclass/LISTV_MinEntriesShown0 . o e 20
1.37 listviewclass/LISTV_MultiSelect 20
1.38 listviewclass/LISTV_MultiSelectNoShift e 20
1.39 listviewclass/LISTV_NewPosition e e e e e s e e e 21
1.40 listviewclass/LISTV_NumEntries e e 21
1.41 listviewclass/LISTV_ReadOnly e 21
1.42 listviewclass/LISTV_ResourceHook e e 22
1.43 listviewclass/LISTV_Select[XXX] o o i e e e e e e e e e e e e e e 24
1.44 listviewclass/LISTV_Select[xxx]NotVisible 25
1.45 listviewclass/LISTV_ShowDropPos e e 25
1.46 listviewclass/LISTV_SortEntryArray 0 e e e e e e 25
1.47 listviewclass/LISTV_ThinFrames o e e e 26
1.48 listviewclass/LISTV _Title 26
1.49 listviewclass/LISTV_TitleHook e e 26
1.50 listviewclass/LISTV_TOp o o o e e e e e e e e e e e e e 27
1.51 listviewclass/LISTV_ViewBounds e e 27
1.52 listviewclass/PGA_NewLook e 28

1/28

Chapter 1

In

1.1 listviewclass.guide

Search
TABLE OF CONTENTS

listviewclass/—--background——
listviewclass/BASE_DRAGACTIVE
listviewclass/BASE_DRAGQUERY
listviewclass/BASE_DRAGUPDATE
listviewclass/BASE_DROPPED
listviewclass/BASE_FREEDRAGOBJECT
listviewclass/BASE_GETDRAGOBJECT
listviewclass/LVM_ADDENTRIES
listviewclass/LVM_ADDSINGLE
listviewclass/LVM_CLEAR
listviewclass/LVM_INSERTENTRIES
listviewclass/LVM_INSERTSINGLE
listviewclass/LVM_MOVE
listviewclass/LVM_REDRAW
listviewclass/LVM_REFRESH
listviewclass/LVM_REMENTRY
listviewclass/LVM_REMSELECTED
listviewclass/LVM_REPLACE
listviewclass/LVM_SORT
listviewclass/LVM_[UN]LOCKLIST
listviewclass/LVM_ [xxx]ENTRY
listviewclass/LISTV_CompareHook
listviewclass/LISTV_CustomDisable
listviewclass/LISTV_DeSelect
listviewclass/LISTV_DisplayHook
listviewclass/LISTV_DropSpot
listviewclass/LISTV_Entry
listviewclass/LISTV_EntryArray
listviewclass/LISTV_EntryNumber
listviewclass/LISTV_LastClicked
listviewclass/LISTV_LastClickedNum
listviewclass/LISTV_LastColumn
listviewclass/LISTV_ListFont
listviewclass/LISTV_MakeVisible
listviewclass/LISTV_MinEntriesShown

2/28

listviewclass/LISTV_MultiSelect
listviewclass/LISTV_MultiSelectNoShift
listviewclass/LISTV_NewPosition
listviewclass/LISTV_NumEntries
listviewclass/LISTV_ReadOnly
listviewclass/LISTV_ResourceHook
listviewclass/LISTV_Select [xxXx]
listviewclass/LISTV_Select [xxx]NotVisible
listviewclass/LISTV_ShowDropPos
listviewclass/LISTV_SortEntryArray
listviewclass/LISTV_ThinFrames
listviewclass/LISTV_Title
listviewclass/LISTV_TitleHook
listviewclass/LISTV_Top
listviewclass/LISTV_ViewBounds
listviewclass/PGA_NewLook

1.2 listviewclass/--background--

NAME
Class: listviewclass
Superclass: baseclass
Include File: <libraries/bgui.h>

FUNCTION
To provide a gadget simular to the gadtools.library’s listview
kind. The lisview class does however have extended functionality
like hooks for entry creation, entry comparrison, entry and title
rendering. Also a multi-selection mode is available. Opposed to the
gadtools version this class does not require the usage of list and
nodes. All kinds of data can be added to the listview as entries
providing that you supply hook routines to handle this data.

Objects from this class send out the following attribute pairs in
their notification events:

GA_ID - Gadget object ID.
LISTV_Entry — Pointer to the selected entry.
LISTV_EntryNumber - Logical number of the selected entry.
LISTV_LastColumn - Last column clicked on.

NOTE
Most of the methods described below can also contain a pointer to a
GadgetInfo structure. This pointer does not have to be valid. All

actions will be done only if you want to let the action also be shown
visually vyou need to pass a valid pointer to a GadgetInfo structure.

1.3 listviewclass/BASE_DRAGACTIVE

NAME
BASE_DRAGACTIVE —-- This method overides the baseclass method. To show
the user that the object is the active drop target it will

in 3/28

render a dotted box around the view area instead of a dotted
box arround the hitbox area.

1.4 listviewclass/BASE_DRAGQUERY

NAME
BASE_DRAGQUERY —-- This method overides the baseclass method. It will
return BQR_ACCEPT when:

1) The request came from itself. I.E. It will only accept
drops from itself.

2) The LISTV_ShowDropSpot attribute is set to TRUE.

3) The mouse location is inside the view area, not inside
the scroller object.

Take a look at the supplied demo programs to see how you can
overide this behaviour.

1.5 listviewclass/BASE_DRAGUPDATE

NAME

BASE_DRAGUPDATE —-- This method overides the baseclass method. When the
LISTV_ShowDropSpot attribute is set to TRUE and the user is
dragging the entries over the object, the place at which they
can drop the entries is continually wupdated by rendering a
dotted line at that spot.

1.6 listviewclass/BASE_DROPPED

NAME

BASE_DROPPED —-- This method overides the Dbaseclass method. When the
user has dropped the entries this method will move them to
the location where they were dropped.

Take a look at the supplied demo programs to see how you can
overide this behaviour.

1.7 listviewclass/BASE_FREEDRAGOBJECT

NAME

BASE_FREEDRAGOBJECT —-- This method overides the baseclass method. It
simply deallocated the stuff which was setup by the
BASE_GETDRAGOBJECT method.

in 4/28

1.8 listviewclass/BASE_GETDRAGOBJECT

NAME

BASE_GETDRAGOBJECT —- This method overides the baseclass method. When
the user starts dragging the selected entries this method will
create a BitMap in which the dragged entries are displayed.

Up to ten selected entries are shown in the dragged list. When
there were more than ten entries the dragged 1list will show
the following entries:

First Selected Entry

——>
Last Selected Entry

1.9 listviewclass/LVM_ADDENTRIES

NAME
LVM_ADDENTRIES -- Add multiple entries.

SYNOPSIS
err = DoMethod(obj, LVM_ADDENTRIES, gi, entries, how)

ULONG err;
struct GadgetInfo *gi;
APTR *entries;
ULONG how;

FUNCTION

This method can be used to add more than one entry after the listview
object has been created.

INPUTS
gi - A pointer to the GadgetInfo structure or NULL.
entries - This must point to a NULL-terminated array of pointers to

the entries to add.
how - Here you can select where the entries are added. The
following positions are possible:

LVAP_HEAD —-- The entries are added at the top of the list.
LVAP_TAIL —-- The entries are added at the bottom of the list.
LVAP_SORTED -- The entries are added sorted according to the

sorting method active. In the attributes section of
this documentation you can find more about the sorting
possibilities.

RESULT
err — TRUE uppon succes and FALSE if one or more of the entries
failed to be added.

SEE ALSO
LVM_ADDSINGLE, LVM_REMENTRY, LISTV_CompareHook

5/28

1.

10 listviewclass/LVM_ADDSINGLE

NAME
LVM_ADDSINGLE -- Add a single entry.

SYNOPSIS
err = DoMethod(obj, LVM_ADDSINGLE, gi, entry, how, flags)

ULONG err;
struct GadgetInfo *gi;
APTR entry;
ULONG how;
ULONG flags;
FUNCTION

This method can be used to add a single entry to the listview object
after it has been created.

INPUTS

gl - A pointer to the GadgetInfo structure.

entry - This must point to the entry which needs to be added to the
listview object.

how - Please refer to the LVM_ADDENTRIES section for more
information on the ways you can add entries.

flags - Any of the following flags can be set here:

LVASEF_MAKEVISIBLE —-- This tell’s the lisview object to scroll
the 1list to make the added entry visible.

LVASF_SELECT -- This tell’s the listview object to make the
added entry selected. This will also automatically
scroll the 1list to make the added entry visible
unless the LVASF_NOT_VISIBLE flag is set.

LVASF_MULTISELECT xx V40 %% —— This flag only works on multi-
select listviews. When set the added entry is
selected without unselecting already selected entries
in the list. This flag will also scroll the list to
make the added entry visible unless the
LVASF_NOT_VISIBLE flag is set.

LVASF_NOT_VISIBLE *x V40 x* —— When set 1in combination with
the LVASF_SELECT or LVASEF_MULTISELECT flags the added
entry 1s selected Dbut not made visible.

RESULT
err — TRUE uppon success, FALSE uppon failure.

SEE ALSO
LVM_ADDENTRIES, LVM_REMENTRY

1.11 listviewclass/LVM_CLEAR

NAME

6/28

1.

LVM_CLEAR —-- Delete all entries.

SYNOPSIS
DoMethod(obj, LVM_CLEAR, gi)

struct GadgetInfo *gi;
FUNCTION
This method must be used to clear and delete all entries

the list.

INPUTS
gi - A pointer to the GadgetInfo structure.

RESULT
Return code is not defined.

12 listviewclass/LVM_INSERTENTRIES
NAME

LVM_INSERTENTRIES *% V40 x+* —— Insert several entries.
SYNOPSIS

err = DoMethod(obj, LVM_INSERTENTRIES, gi, pos, entries)

ULONG err;

struct GadgetInfo *gi;

ULONG pos;

APTR *entries;
FUNCTION

This method is basically the same as the LVM_ADDENTRIES

present in

method with

the exception that you can specify at which position the entries will

be inserted 1in the list.

INPUTS
gl - A pointer to the GadgetInfo structure.
pos - This must be the numeric position at which you want to

have

the entries inserted. The numbers can range from 0 to the
amount of entries already in the list. If you specify a number

larger than the amount of entries already in the 1list

entries will be appended to the existing entries.

the

entries - A pointer to a NULL-terminated array of entry pointers to

add to the 1list.

RESULT

err — TRUE uppon succes and FALSE if one or more of the entries

failed to be added.

SEE ALSO
LVM_ADDENTRIES, LVM_INSERTSINGLE, LVM_REMENTRY

7/28

1.

1.

13 listviewclass/LVM_INSERTSINGLE
NAME

LVM_INSERTSINGLE xx V40 *x —— Insert a single entry.
SYNOPSIS

err = DoMethod(obj, LVM_INSERTSINGLE, gi, pos, entry, flags)

ULONG err;
struct GadgetInfo *gi;
ULONG pos;
APTR entry;
ULONG flags;
FUNCTION

This method should be wused to insert a single entry at a given
position in the list. It is basically the same as the LVM_ADDSINGLE
method with the exception that the position of the entry is specified.

INPUTS
gi - A pointer to the GadgetInfo structure.
pos — This must be the numeric position at which you want to

have the entry inserted. The numbers can range from 0 to the
amount of entries already in the list. If you specify a number
larger than the amount of entries already 1in the 1list the
entry will be appended to the existing entries.

entry - A pointer to the entry to insert.

flags - Special flags which vyou can use to make the inserted entry
visible, select it, multi-select it etc. For a complete
description of the possibilities read the LVM_ADDSINGLE
section.

RESULT
err — TRUE uppon succes and FALSE uppon failure.

SEE ALSO
LVM_ADDSINGLE, LVM_INSERTENTRIES, LVM_REMENTRY

14 listviewclass/LVM_MOVE
NAME

LVM_MOVE %% V38 *x —— Move an entry.
SYNOPSIS

succ = DoMethod(obj, LVM_MOVE, gi, entry, dir, new)

ULONG succ;

struct GadgetInfo *gi;
APTR entry;

ULONG dir;

ULONG new;

8/28

1.

FUNCTION
This method must be used to move entries in the list.

INPUTS
gl - A pointer to the GadgetInfo structure.

entry - This can point to the specific entry you want to move. If
you specify NULL here the selected entry is moved.

dir - Here you can specify the direction in which the entry must

be moved. The following directions are possible:
LVMOVE_UP —— Move the entry one place up.

LVMOVE_DOWN —— Move the entry one place down.
LVMOVE_TOP —-— Move the entry to the list-top.
LVMOVE_BOTTOM -- Move the entry to the list-bottom.
LVMOVE_NEWPOS —-- Move the entry to lvmm_NewPos. x* V40 x%

new — This field was added in V40 of the library. Do not use it
on lower versions. This field must contain the ordinal
position number to where the entry is moved. It 1is wused 1in
combination with the LVMOVE_NEWPOS direction constant.

NOTE
When the entry actually moved the class will send out a notification
message with the following attributes:

GA_ID —-— The ID of the object.

LISTV_NewPosition —-- The new ordinal position of the entry.
RESULT

succ - TRUE when the entry moved and FALSE if not.

15 listviewclass/LVM_REDRAW

NAME
LVM_REDRAW ** V40 *x —— Redraw the list contents.

SYNOPSIS
DoMethod (obj, LVM_REDRAW, gi)

struct GadgetInfo *gi;

FUNCTION
This method is basically the same as the LVM_REFRESH method described
above with the exception that, instead of refreshing the whole

listview, only the -entries which are visible are refreshed.

INPUTS
gi - A pointer to the GadgetInfo structure.

RESULT
Return code is not defined.

9/28

SEE ALSO
LVM_REFRESH

1.16 listviewclass/LVM_REFRESH

NAME
LVM_REFRESH —-- Refresh the listview.

SYNOPSIS
DoMethod (obj, LVM_REFRESH, gi)

struct GadgetInfo *gi;

FUNCTION
This method must be wused to refresh the listview object after some
changes have been made which where not visible. In some cases it might
be usefull to add entries without passing a GadgetInfo structure along
with the adding methods. This will speed up the adding and you can
show the changes when you are done by sending this method to the
listview object.

INPUTS
gl - A pointer to the GadgetInfo structure. Should be valid
otherwise this method is not really useful.

RESULT
Return code is not defined.

SEE ALSO
LVM_REDRAW

1.17 listviewclass/LVM_REMENTRY

NAME
LVM_REMENTRY —-- Remove an entry.

SYNOPSIS
DoMethod(obj, LVM_REMENTRY, gi, entry)

struct GadgetInfo *gi;
APTR entry;

FUNCTION
This method must be used to remove a single entry from the listview
object.

INPUTS
gi - A pointer to the GadgetInfo structure.
entry - This must point to the entry you want to remove.

RESULT
Return code is not defined.

10/28

SEE ALSO
LVM_ADDENTRIES, LVM_ADDSINGLE

1.18 listviewclass/LVM_REMSELECTED

NAME
LVM_REMSELECTED ** V40 %% —— Remove selected entry.

SYNOPSIS
succ = DoMethod(obj, LVM_REMSELECTED, gi)

ULONG succ;
struct GadgetInfo *gi;

FUNCTION
This method can be used to remove the currently selected entry
the list and automatically select the next or previous one.

INPUTS
gl - A pointer to the GadgetInfo structure.

NOTE

This method only operates on single-select listviews. On multi-select

listviews this method has no effect.

RESULT
succ - TRUE if an entry was removed and FALSE if not.

1.19 listviewclass/LVM_REPLACE

NAME
LVM_REPLACE %% V39 *x —— Replace an entry by another.

SYNOPSIS
rep = DoMethod(obj, LVM_REPLACE, gi, old, new)

APTR rep;
struct GadgetInfo *gi;
APTR old;
APTR new;

FUNCTION
This method allows you to replace an existing entry with another.

INPUTS
gi - A pointer to the GadgetInfo structure.

old - This must be a pointer to the entry you want to replace.

new - This must point to the new data you want to replace the old
entry by.

11/28

RESULT
rep — A pointer to the new entry uppon success and NULL uppon
failure.

1.20 listviewclass/LVM_SORT

NAME
LVM_SORT —-- Sort all entries.

SYNOPSIS
DoMethod (obj, LVM_SORT, gi)

struct GadgetInfo *gi;

FUNCTION
Calling this method will force a complete re-sorting of the entries
in the list. This can be handy when your comparisson hook (described
in the attributes LISTV_CompareHook section) can handle different
kinds of comparissons.

INPUTS
gl - A pointer to the GadgetInfo structure.

RESULT
Return code is not defined.

1.21 listviewclass/LVM_[UN]JLOCKLIST

NAME
LVM_LOCKLIST, LVM_UNLOCKLIST -- (Un)lock the listview.

SYNOPSIS
DoMethod (obj, LVM_LOCKLIST)
DoMethod(obj, LVM_UNLOCKLIST, gi)

struct GadgetInfo *gi;

FUNCTION
These methods must be used to lock or unlock the list contents. When,
for example, you must change the text of a list entry you should 1lock
it using the LVM_LOCKLIST method and when you are done unlock it
using the LVM_UNLOCKLIST method.

This locking is only necessary when you are manipulating the contents
of the 1list entries by hand. Changing the list contents with any of

the other listview methods do not require you to lock the list.

INPUTS
gl - A pointer to the GadgetInfo structure.

RESULT

12/28

1.

No return code is defined.

22 listviewclass/LVM_[xxx]ENTRY

NAME
LVM_FIRSTENTRY, LVM_LASTENTRY, LVM_NEXTENTRY, LVM_PREVENTRY

SYNOPSIS

entry = DoMethod(obj, LVM_FIRSTENTRY, NULL, flags

()
entry = DoMethod(obj, LVM_LASTENTRY, NULL, flags)
entry = DoMethod(obj, LVM_NEXTENTRY, prev, flags)
entry = DoMethod(obj, LVM_PREVENTRY, prev, flags)
APTR entry;

APTR prev;
ULONG flags;
FUNCTION

These methods must be used to itterate through all entries in the
listview. You can itterate through the entries one by one or only the
selected ones.

INPUTS

prev - For the LVM_FIRSTENTRY and LVM_LASTENTRY methods this must
be NULL. For the LVM_NEXTENTRY and LVM_PREVENTRY this should
point to the entry returned by a previous call to any of these
methods.

flags - Any of the following flags may be set here:

LVGEF_SELECTED —-- The methods will only scan for selected
entries when this bit is set. All non-selected entries
will simply be skipped.

RESULT
entry - A pointer to the entry or NULL when no more entries are
available.

EXAMPLE
/ *

* Scan through all entries in
* the listview gadget starting
* at the first one.

*/
Object *listview;
APTR entry;
/ *
* Get first entry.
*/
if (entry = (APTR)DoMethod (
listview, LVM_FIRSTENTRY, NULL, 0L)) {
/ *

x Loop through the rest of the list.

13/28

*/
do {
/%
* Print the entry...
*/
printf("Entry = %s\n", entry);
/%
* Next entry...
*/
entry = (APTR)DoMethod (

listview, LVM_NEXTENTRY, entry, OL);
} while (entry);

1.23 listviewclass/LISTV_CompareHook

NAME
LISTV_CompareHook ——- (struct Hook «*)

FUNCTION
To add a hook routine that will compare two entries with eachother.
As it is possible to have entries which are different from simple
strings you can perform your own comparison here. The comparison hook
is called each time an entry is added sorted or when the list is re-
sorted. The hook routine will be called as follows:

rc = hookFunc(hook, object, message);

DO AQ A2 Al
LONG rc;

struct Hook +*hook;

Object xobject;

struct lvCompare *message;

The message argument is a pointer to the following data structure:

struct 1lvCompare {

APTR lvc_EntryA;
APTR lvc_EntryB;
}i
lvc_EntryA, lvc_EntryB —-- These are the entries that must be compared

to eachother.

The internal comparison routine simple does a stricmp() on the two
entry strings.

This hook must return -1 when entry a is smaller than entry b, 0 when
entry a is equal to entry b and 1 when entry a is bigger than entry b.

DEFAULT
NULL (internal comparison routine).

APPLICABILITY

14 /28

(I).

SEE ALSO
LISTV_ResourceHook, LISTV_DisplayHook

1.24 listviewclass/LISTV_CustomDisable

NAME
LISTV_CustomDiable —— (BOOL) #** V40 =*x*

FUNCTION
To tell the <class rendering routine that the custom rendering hook
will take care of the disabled rendering itself. If set to FALSE the
class itself will render a ghosting pattern over the list entries.

Note that this tag only affects objects which have a custom rendering
hook installed with LISTV_DisplayHook.

DEFAULT
FALSE.

APPLICABILITY
(IS).

SEE ALSO
LISTV_DisplayHook

1.25 listviewclass/LISTV_DeSelect

NAME
LISTV_DeSelect —- (ULONG) ** V39 #*x

FUNCTION
To deselect a selected entry. The data you pass is the ordinal number
of the entry starting at 0 for the first entry in the list. If vyou
supply a value of ~0 (-1) all selected entries in the list are
deselected.

APPLICABILITY
(SU)

SEE ALSO
LISTV_Select

1.26 listviewclass/LISTV_DisplayHook

NAME
LISTV_DisplayHook —-- (struct Hook x)

FUNCTION

15/28

To add a hook routine that will take care of rendering the entries. In
some cases it 1s necessary to do your own rendering. This hook is
called for each entry that needs to be rendered. The hook routine will
be called as follows:

rc = hookFunc(hook, object, message);

DO A0 A2 Al

VOID re; /* No return code defined. =*/
struct Hook xhook;

Object xobject;

struct 1lvRender xmessage;
The message argument is a pointer to the following data structure:

struct 1vRender {

struct RastPort *1lvr_RPort;
struct DrawInfo *1lvr_DrawInfo;
struct Rectangle *1lvr_Bounds;
APTR lvr_Entry;
UWORD lvr_State;
UWORD lvr_Flags;
}i
lvr_RPort -- This 1s a pointer to the RastPort in which the rendering
must be done. Please note that the font you must use to render
text is already set up for you. It 1is not recommendable to

use another font than the one set in this RastPort because the
height of the area vyou may render in is setup accoording to
this font.

lvr_DrawInfo —-- This can point to a DrawInfo structure as defined in
<intuition/screens.h> in which the necessay information about
the display environment is stored. Note that it 1is possible
that this is NULL. It is not very likely but it is possible.

lvr_Bounds —-- This is a struct Rectangle in which the area you should
render in 1is defined. Do _not_ render outside the given bounds
or you will seriously screw up the display! Also keep in mind
that the area you are rendering into is not always cleared. In
other words, the area may still show data from another entry.
You must make sure you completely re-render the given bounds.

lvr_Entry —-- This points to the entry data as setup by the entry
creation hook or the built-in entry creation.

lvr_State —-- This describes the state in which to render the entry.
The state is one of the following possibilities:

LVRS_NORMAL —-- Normal rendering. Render the entry in a normal,
un-selected way.

LVRS_SELECTED —-- Selected rendering. Render the entry in a
selected way.

LVRS_NORMAL_DISABLED -- Normal, disabled rendering. Render the
entry in a normal way but make it disabled. This is

normally done Dby ghosting it with a pattern (see
below) .

in 16/28
LVRS_SELECTED_DISABLED —-- Selected, disabled rendering. Render
the entry is a selected way but make it disabled. This
is normally done by ghosting it with a pattern (see
below) .
Ghosting the entry is usually done like this:
struct lvRender *1lvr;
UWORD spens = lvr->1lvr_DrawInfo->dri_Pens;
UWORD patt = { 0x2222, 0x8888 };
SetAPen(lvr->1lvr_RPort, pens[SHADOWPEN]);
SetDrMd(lvr->1lvr_RPort, JAM1);
SetAfPt (lvr->lvr_RPort, patt, 1);
RectFill(lvr—->1lvr_RPort, lvr->lvr_Bounds.MinX,
lvr->1lvr_Bounds.MinY,
lvr—->1lvr_Bounds.MaxX,
lvr—->1vr_Bounds.MaxY);
Please keep in mind that, although the above code doesn’t show
it, the lvr_DrawInfo field can be NULL.
lvr_Flags ——- No flags are defined yet.

When this hook is not set the internal rendering routine will simply
render a string which is created in the LIST_ResourceHook. When the
LISTV_RenderHook routine creates something other than a simple string
pointer you must provide a display hook to render the entries.

Most of the time when vyou add more than a simple string to the
listview object the data you add is a structure which contains the
string and some extra data. To prevent you from having to write a
display-hook to render the string your hook can also simply return a
pointer to the string and the listviewclass will render it for you.
I.E.:

struct myStruct {
UBYTE *string;

UWORD some_more_data;
}i
__saveds __asm hookFunc(register __a0 struct Hook xhook,
register __a2 Object *1v_obij,
register __al struct lvRender *1lvr)
{
return (((struct myNode *)lvr->lvr_Entry)->string);

This hook will 1let the listviewclass dispatcher render the returned
string for vyou while keeping the extended data available for you. If
your hook returns NULL the listviewclass assumes you have done all
rendering required.

DEFAULT
NULL (internal entry rendering).

17 /28

APPLICABILITY
(I).

SEE ALSO
LISTV_ResourceHook, LISTV_CompareHook, LISTV_TitleHook

1.27 listviewclass/LISTV_DropSpot

NAME
LISTV_DropSpot —— (ULONG) x* V40 x%

FUNCTION
To query the position at which the dragged entries were dropped. When
the LISTV_ShowDropSpot was set to TRUE and the user has dragged some
entries in this listview this attribute will hold the ordinal list
position where the entries were dropped. This attribute is _only_
usefull when queried in a BASE_DROPPED method.

APPLICABILITY
(G) .

SEE ALSO
baseclass.doc/BASE_DROPPED, LISTV_ShowDropPos

1.28 listviewclass/LISTV_Entry

NAME
LISTV_Entry —-— (APTR)

FUNCTION
This tag 1s sent during notification. The data field is a pointer to
the entry which triggered the notification.

APPLICABILITY
(N) .

SEE ALSO
LISTV_EntryNumber

1.29 listviewclass/LISTV_EntryArray

NAME
LISTV_EntryArray —-— (APTR *)
FUNCTION
To add a set of entries at initialization time. The data is a pointer

to a NULL-terminated array of entries which need to be added to the
listview object.

DEFAULT

18/28

NULL.

APPLICABILITY
(I).

SEE ALSO
LISTV_SortEntryArray

1.30 listviewclass/LISTV_EntryNumber

NAME
LISTV_EntryNumber —-- (ULONG)

FUNCTION

This tag 1s sent during notification. The data field is the logical
number of the entry which triggered the notification.

APPLICABILITY
(N) .

SEE ALSO
LISTV_Entry

1.31 listviewclass/LISTV_LastClicked

NAME
LISTV_LastClicked —— (APTR)

FUNCTION
To get a pointer to the last selected entry.
detect double-clicking and entry.

EXAMPLE
Object xlistview;
ULONG ds[2], dm[2], last = 0, clicked;

This data can be used to

GetAttr (LISTV_LastClicked, listview, &clicked);

if (clicked == last) {
CurrentTime(&ds[1], &dm[1]);
if (DoubleClick(ds[O], dm[O], ds[1
/+ Double clicked =/

}
CurrentTime(&ds[0], &dm[O]);
last = clicked;

APPLICABILITY
(G) .

SEE ALSO
LISTV_LastClickedNum

i

dm [1 1)) {

in 19/28

1.32 listviewclass/LISTV_LastClickedNum

NAME
LISTV_LastClickedNum —— (ULONG) % V38 #*=*

FUNCTION
To return the number of the last selected entry.

APPLICABILITY
(G) .

SEE ALSO
LISTV_LastClicked

1.33 listviewclass/LISTV_ LastColumn

NAME
LISTV_LastColumn —- (ULONG) % V41 *x*

FUNCTION
To get the number of the last column clicked on. This is useful if

you need to do different things depending on the column clicked on.

APPLICABILITY
(G) .

SEE ALSO
LISTV_LastClicked, LISTV_LastClickedNum

1.34 listviewclass/LISTV_ListFont

NAME
LISTV_ListFont -- (struct TextAttr)
FUNCTION
To set the font which is used to render the entries. By default the

font wused to render the entries is the same font which is used to
render the object it’s label. This font might be proportional. In some
cases 1t might be useful to have a mono-space font for the entries or
even another proportional font.

DEFAULT
NULL.

APPLICABILITY
(IG)

1.35 listviewclass/LISTV_MakeVisible

in 20/28

NAME
LISTV_MakeVisible —-- (ULONG)

FUNCTION
To scroll the list to make the entry appear in the display area of the
listview object. The data required is the logical number of the entry
in the list starting with 0 as the first entry.

APPLICABILITY
(SU) .

1.36 listviewclass/LISTV_MinEntriesShown

NAME
LISTV_MinEntriesShown —— (UWORD)
FUNCTION
To specify how many entries should be visible at all times. Note: The

larger this value the bigger the object it’s minimum size.

DEFAULT

APPLICABILITY
(I).

1.37 listviewclass/LISTV_MultiSelect

NAME
LISTV_MultiSelect —-- (BOOL)

FUNCTION
To make the listview a multi-selection object. Multi-selection objects
allow the user to select more than one entry from the list.

DEFAULT
FALSE.

APPLICABILITY
(ISU) .

1.38 listviewclass/LISTV_MultiSelectNoShift

NAME
LISTV_MultiSelectNoShift —— (BOOL) #*x V39 *x

FUNCTION
To allow the user to multi-(de)select the entries in a multi-selection
object without having to use the SHIFT key. This tag is only useful

21/28

when the LISTV_MultiSelect tag is set to TRUE.

DEFAULT
FALSE.

APPLICABILITY
(ISU) .

SEE ALSO
LISTV_MultiSelect

1.39 listviewclass/LISTV_NewPosition

NAME
LISTV_NewPosition —— (ULONG) #** V38 %=

FUNCTION
To notify the object 1it’s targets of the entry it’s new position
number. When vyou move an entry with the LVM_MOVE method the object

will send out a notification message with this attribute.
Since V40 of the library this attribute is also gettable with OM_GET.
Please note however that getting this attribute will only give the
desired result _after_ you moved an entry with LVM_MOVE.

APPLICABILITY
(NG) .

SEE ALSO
LVM_MOVE

1.40 listviewclass/LISTV_NumEntries

NAME
LISTV_NumEntries (ULONG) % V38 *«*

FUNCTION
To return the number of entries in the list.

APPLICABILITY
(G) .

1.41 listviewclass/LISTV_ReadOnly

NAME
LISTV_ReadOnly —-- (BOOL)
FUNCTION
To make the listview a read-only object. Read only objects have full

functionality except for the entries which cannot be selected.

22/28

DEFAULT
FALSE.

APPLICABILITY
(I).

1.42 listviewclass/LISTV_ResourceHook

NAME
LISTV_ResourceHook —-— (struct Hook *)

FUNCTION
To add a hook routine that will build or delete a listview entry. The

hook routine will be called as follows:

rc = hookFunc(hook, object, message);

DO AQ A2 Al
APTR rc;

struct Hook <xhook;

Object xobject;

struct 1lvRender =xmessage;
The message arguments is a pointer to the following data structure:

struct lvResource {
UWORD lvr_Command;
APTR lvr_Entry;
bi

lvr_Command -- This can be LVRC_MAKE which means that the hook should
create an entry or it can be LVRC_KILL which means that the
hook must dispose of a previously created entry.

lvr_Entry —-- When this is a LVRC_MAKE command this contains the data
added to the 1listview by one of the adding methods or
attributes. When this 1s a LVRC_KILL command this points to
whatever LVRC_MAKE has created.

The default creating/deletion that is done by the listview expects the
entries to be simple string pointers. Internally these strings are
copied to an internal buffer when the entry is created. When the entry
is disposed of the string copy is simply de-allocated. If you add
entries to the listview which are not string pointers you must supply
your own resource handling using this attribute.

EXAMPLE
/ *
* This example takes a PubScreenNode as input,
copies the name and adds that to the listview.

Uppon deletion it simply de-allocates the copy
x* of the string.

23/28

__saveds __asm APTR

hookFunc (register _ a0 struct Hook *hook,
register __a2 Object *object,
register __al struct lvResource *1lvr)

struct PubScreenNode *psn =
(struct PubScreenNode x)lvr->lvr_Entry;

UWORD len;
APTR rc = NULL;
/%
* Built or dispose?
*/
switch (lvr->lvr_Command) {
case LVRC_MAKE:
/ %
* Determine string size.
*/
len = strlen(psn—->psn_Node.ln_name) + 1;
/ %
* Allocate and copy the string.
*/
if (rc = (APTR)AllocVec(len, MEMF_ANY))
strcpy ((UBYTE *x)rc, psn—->psn_Node.ln_Name);
break;

case LVRC_KILL:

/%
* Simply de—allocate whats created above.
*/
FreeVec(lvr->lvr_Entry);
break;
}
/%
* "rc’ will be a pointer to the created
* string copy or NULL which indicates a
* memory error with LVRC_MAKE. If rc is non-NULL
* the string is added to the list of entries.
*/

return(rc);

The hook must return a pointer to the data created when the command is
LVRC_MAKE. When the command is LVRC_MAKE and NULL is returned the
entry will not be added to the list.

LVRC_KILL commands do not have a return code defined.

DEFAULT
NULL (internal memory handling).

APPLICABILITY
(I).

SEE ALSO

24 /28

LISTV_DisplayHook, LISTV_CompareHook

1.43 listviewclass/LISTV_Select[xxx]

NAME
LISTV_Select, LISTV_SelectMulti *% V39 %% —— (ULONG)

FUNCTION
To select an entry in the list. The entry you select will also be made
visible in the display area. The data required is the logical

number of the entry in the list starting with 0 as the first entry.

The following magic numbers are allowed in the tag it’s data field:

LISTV_Select_First —— Select the first entry. xx V38 xx
LISTV_Select_Last —— Select the last entry. *x V38 #*x*
LISTV_Select_Next —-— Select the next entry. If there is no entry

selected yet the first visible entry is selected. xx V38 x*x

LISTV_Select_Previous —-- Select the previous entry. If there is no
selected entry vyet the first visible entry 1is selected.
*%x V38 %%
LISTV_Select_Top —— Select the first visible entry. *x V38 %%
LISTV_Select_Page_Up —- Select the entry one page above the current.

If the currently selected entry is not the top-entry the top
entry will be selected. Otherwise the entry one-page up minus
one is selected. When no entry is selected the first visible
entry is selected. x% V38 xx

LISTV_Select_Page_Down —-- Select the entry one page below the current.
If the currently selected entry is not the bottom-entry the
bottom entry will be selected. Otherwise the entry one-page
down minus one is selected. When no entry 1is selected the
first visible entry is selected. *x* V38 xx

LISTV_Select_All —- Selects all entries in the list. Please note that
this magic number will only work on listviews in multi-
selection mode and it will only work with the
LISTV_SelectMulti and LISTV_SelectMultiNotVisible attributes.

*x V39 =%

LISTV_SelectMulti will select the entry without deselecting any
previous selected items while LISTV_Select will deselect any previous
selections.

APPLICABILITY
(sSU) .

SEE ALSO
LISTV_SelectNotVisible, LISTV_SelectMultiNotVisible, LISTV_DeSelect

25/28

1.44 listviewclass/LISTV_Select[xxx]NotVisible

NAME
LISTV_SelectNotVisible, LISTV_SelectMultiNotVisible —-- (ULONG)
*x V39 %%
FUNCTION
To select an entry in the list. This attribute works exactly like the

LISTV_Select and LISTV_SelectMulti attributes with the exception that
the selected entry 1s not moved into the current view area of the
list.

APPLICABILITY
(SU) .

SEE ALSO
LIST_Select, LISTV_SelectMulti

1.45 listviewclass/LISTV_ShowDropPos

NAME
LISTV_ShowDropPos —— (BOOL) #*x V40 #*x*

FUNCTION
When set to TRUE 1in combination with the baseclass BT_DropObiject
and/or BT_DragObject attributes you will create a Listview object in
which entries can be dropped at a specific location. Example:

list = ListviewObject,

BT_DragObiject, TRUE,

BT_DropObject, TRUE,

LISTV_ShowDropSpot, TRUE,
EndObject;

This creates a listview object in which the entries can be moved
arround by means of drag and drop. Please look at the supplied example
programs to see the possibilities of Listview drag and drop.

DEFAULT
FALSE.

APPLICABILITY
(IS).

SEE ALSO
baseclass.doc/BT_DragObject, baseclass.doc/BT_DropObject,
LISTV_DropPos

1.46 listviewclass/LISTV_SortEntryArray

NAME
LISTV_SortEntryArray —-— (BOOL)

in 26/28

FUNCTION
To sort the entries added at object create time. By default the
entries added with the LISTV_EntryArray attribute will ocure in the
list in the same order as they ocure in the array. When this attribute
is set to TRUE these entries will be sorted.

DEFAULT
FALSE.

APPLICABILITY
(I).

SEE ALSO
LISTV_EntryArray

1.47 listviewclass/LISTV_ThinFrames

NAME
LISTV_ThinFrames —-- (BOOL)

FUNCTION
To make all 1listview object framing appear as thin frames. This will

help you to make an aspect-ratio dependant GUI.

DEFAULT
FALSE.

APPLICABILITY
(I).

1.48 listviewclass/LISTV_ Title

NAME
LISTV_Title —- (UBYTE «) *x V41 %%

FUNCTION
Set a title for the list.

To specify titles with multiple columns, place a tab character between
the title strings, like this: "Name\tSize\tDate".

DEFAULT
NULL.

APPLICABILITY
(ISG) .

1.49 listviewclass/LISTV_TitleHook

27 /28

NAME
LISTV_TitleHook —-- (struct Hook *)

FUNCTION

To add a hook to render a title for the list. Multi-column listviews
normally have a title entry which is rendered in the list area but
does not scroll with the list. To support multi-column listviews this
hook can be defined which will keep room for a single entry at the top
of the list area which is reserved for this purpose. The hook routine
is called exactly the same as the LISTV_DisplayHook routine with the
exception that the 1lvr_Entry field of the lvRender structure will
contain a NULL pointer.

DEFAULT
NULL (no title).

APPLICABILITY
(I).

SEE ALSO
LISTV_DisplayHook

1.50 listviewclass/LISTV_Top

NAME
LISTV_Top —-- (ULONG)

FUNCTION
Set the top-entry of the visible part of the list. This tag is mostly
used by the prop object that is connected to the listview Dbut it can
also Dbe controlled by your program. The data of this tag must be the
number of the node to set at the top of the visible area.

DEFAULT

APPLICABILITY
(ISGU) .

1.51 listviewclass/LISTV_ViewBounds

NAME
LISTV_ViewBounds —— (struct IBox *) x* V40 =*=*
FUNCTION
To query the bounds of the view area of the 1listview object. Please

note that reading this attribute is only wvalid after the object has
been rendered.

You will be passes a pointer (READ-ONLY) to a struct IBox in which the
bounds of the view area are described.

28/28

APPLICABILITY
(G) .

1.52 listviewclass/PGA_NewLook

NAME
PGA_NewLook —-- (BOOL)

FUNCTION
To make the scroller of the listview gadget appear in the new look.

DEFAULT
FALSE.

APPLICABILITY
(I).

	in
	listviewclass.guide
	listviewclass/--background--
	listviewclass/BASE_DRAGACTIVE
	listviewclass/BASE_DRAGQUERY
	listviewclass/BASE_DRAGUPDATE
	listviewclass/BASE_DROPPED
	listviewclass/BASE_FREEDRAGOBJECT
	listviewclass/BASE_GETDRAGOBJECT
	listviewclass/LVM_ADDENTRIES
	listviewclass/LVM_ADDSINGLE
	listviewclass/LVM_CLEAR
	listviewclass/LVM_INSERTENTRIES
	listviewclass/LVM_INSERTSINGLE
	listviewclass/LVM_MOVE
	listviewclass/LVM_REDRAW
	listviewclass/LVM_REFRESH
	listviewclass/LVM_REMENTRY
	listviewclass/LVM_REMSELECTED
	listviewclass/LVM_REPLACE
	listviewclass/LVM_SORT
	listviewclass/LVM_[UN]LOCKLIST
	listviewclass/LVM_[xxx]ENTRY
	listviewclass/LISTV_CompareHook
	listviewclass/LISTV_CustomDisable
	listviewclass/LISTV_DeSelect
	listviewclass/LISTV_DisplayHook
	listviewclass/LISTV_DropSpot
	listviewclass/LISTV_Entry
	listviewclass/LISTV_EntryArray
	listviewclass/LISTV_EntryNumber
	listviewclass/LISTV_LastClicked
	listviewclass/LISTV_LastClickedNum
	listviewclass/LISTV_LastColumn
	listviewclass/LISTV_ListFont
	listviewclass/LISTV_MakeVisible
	listviewclass/LISTV_MinEntriesShown
	listviewclass/LISTV_MultiSelect
	listviewclass/LISTV_MultiSelectNoShift
	listviewclass/LISTV_NewPosition
	listviewclass/LISTV_NumEntries
	listviewclass/LISTV_ReadOnly
	listviewclass/LISTV_ResourceHook
	listviewclass/LISTV_Select[xxx]
	listviewclass/LISTV_Select[xxx]NotVisible
	listviewclass/LISTV_ShowDropPos
	listviewclass/LISTV_SortEntryArray
	listviewclass/LISTV_ThinFrames
	listviewclass/LISTV_Title
	listviewclass/LISTV_TitleHook
	listviewclass/LISTV_Top
	listviewclass/LISTV_ViewBounds
	listviewclass/PGA_NewLook

