in

COLLABORATORS

TITLE :
in
ACTION NAME DATE SIGNATURE
WRITTEN BY July 31, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

Contents

1 in
1.1 methods.guide
1.2 methods/--background-- . . .
1.3 methods/GRM_DIMENSIONS
1.4 methodssWM_KEYACTIVE .
1.5 methodssyWM_KEYINACTIVE
1.6 methods/WM_KEYINPUT . .

Chapter 1

In

1.1 methods.guide

Search
TABLE OF CONTENTS

methods/—--background——
methods/GRM_DIMENSIONS
methods/WM_KEYACTIVE
methods/WM_KEYINACTIVE
methods/WM_KEYINPUT

1.2 methods/--background--

DESCRIPTION

Gadget classes that want to work in a BGUI environment will need to
know about a set of extra methods on top of the normal system gadget

class methods. This document describes these methods.

Not all system gadgetclass methods will reach your
class. The following standard system gadgetclass methods are
passed onto your class:

GM_HITTEST
GM_RENDER
GM_GOACTIVE
GM_HANDLEINPUT
GM_GOINACTIVE

The following methods are not used in a BGUI context and therefore

will not be send to your class:

GM_HELPTEST
GM_LAYOUT

1.3 methods/GRM_DIMENSIONS

2/4

CLASS
groupclass

NAME
GRM_DIMENSIONS

FUNCTION
To inquire about a gadget object it’s minimum width and height. The
group class sends out this method to all 1it’s members to ensure a
correct layout. This method wuses the following custom message
structure:

struct grmDimensions {

ULONG MethodID; /* GRM_DIMENSIONS =/
struct GadgetInfo *grmd_GInfo;
struct RastPort *grmd_RPort;
struct {
UWORD *Width;
UWORD *Height;
} grmd_MinSize;
ULONG grmd_Flags;
}i
grmd_GInfo —-- This field will always read NULL! It will probably
become obsolete in one of the next versions. Please do not
make any assumptions about it’s contents. Simply ignore it

until further notice.

grmd_RPort —-- This points to a RastPort which can be used to perform
text width/height computations etc. in. Do *notx render in
this RastPort.

grmd_MinSize -- This field contains two pointers in which you must
store the results of your computations. Note that you must
xadd* your results to the results you got from the superclass.

Example:

switch (msg->MethodID) {

case GRM_DIMENSIONS:
/%
*% First the superclass...
* %/
DoSuperMethodA (class, object, msg);
/%
*+ Compute your minimum sizes.
* %/
/%
*x Add results.
*%/
* (msg->grmd_MinSize.Width) += your_min_width;

* (msg—>grmd_MinSize.Height) += your_min_height;
break;

3/4

There might be <cases 1in which you want to overide the
superclass results which 1s perfectly legal to do but you
should be aware that wrong values here might seriously screw
up the look of the resulting GUI.

grmd_Flags —— This field may contain any of the following flags:
GDIMF_NO_FRAME —-- This will tell the baseclass not to take the

attached frame into consideration when computing the
minimum size.

1.4 methods/WM_KEYACTIVE

CLASS
windowclass

NAME
WM_KEYACTIVE

FUNCTION
To tell the object that it 1s activated by a key-press. Uppon
receiving this message you can setup any additional resources you may
need to go active. This method wuses the following custom message
structure:

struct wmKeyInput
ULONG MethodID; /* WM_KEY_ACTIVE %/
struct GadgetInfo *wmki_GInfo;
struct InputEvent »*wmki_IEvent;
ULONG *wmki_ID;
STRPTR wmki_Key;
bi

wmki_GInfo —- This points to a GadgetInfo structure.

wmki_TEvent —-- A pointer to a InputEvent structure which is the event
that triggered the activation. The event class is always
IECLASS_RAWKEY. This event can be used to check for qualifier
keys etc.

wmki_ID —-- In this field you can store the ID of the object when the
activation has resulted in a change that needs to be notified.
The value put in here is returned by the windowclass it’s
WM_HANDLEIDCMP method.

wmki_Key —— This points to the key string which has been assigned to
the object with the windowclass it’s WM_GADGETKEY method.

RESULT
This method should return any of the following return codes:

WMKF_MEACTIVE —-- The object can go/remains active.
WMKF_CANCEL -- The keyboard activation is cancelled.
WMKF_VERIFY —-- The keyboard activation is complete and the ID set in

the wmki_ID field is notified.

4/4

WMKF_ACTIVATE —-- Returning this tell’s the windowclass to activate the
gadget using the intuition.library it’s ActivateGadget () call.

SEE ALSO
windowclass/WM_KEYINPUT, windowclass/WM_KEYINACTIVE,
windowclass/WM_KEYINACTIVE windowclass/WM_HANDLEIDCMP,
windowclass/WM_GADGETKEY, intuition.library/ActivateGadget ()

1.5 methods/WM_KEYINACTIVE

CLASS
windowclass

NAME
WM_KEYINACTIVE

FUNCTION
When the key-activation of an object is done or aborted by some other
event this method is called to tell to object to go inactive. This

gives you the oppertunity to release the resources that you might have
obtained with the WM_KEYACTIVE method.

RESULT
No return code defined.

SEE ALSO
windowclass/WM_KEYACTIVE

1.6 methods/WM_KEYINPUT

CLASS
windowclass

NAME
WM_KEYINPUT

FUNCTION
This method is send to the object continually when the WM_KEYACTIVE
returned WMKF_MEACTIVE and the object has gone active. This method
uses the same custom message structure as the WM_KEYACTIVE method does
and it should return any of the same return codes as described in the
WM_KEYACTIVE method with the exception of WMKF_ACTIVATE.

A good example of this method is the Dbuttonclass which wuses this
method to scan for the SHIFT qualifier and/or the ESC key which
both cancel a keyboard button selection.

SEE ALSO
windowclass/WM_KEYACTIVE

	in
	methods.guide
	methods/--background--
	methods/GRM_DIMENSIONS
	methods/WM_KEYACTIVE
	methods/WM_KEYINACTIVE
	methods/WM_KEYINPUT

