
GeneralClasses

GeneralClasses ii

COLLABORATORS

TITLE :

GeneralClasses

ACTION NAME DATE SIGNATURE

WRITTEN BY August 25, 2024

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

GeneralClasses iii

Contents

1 GeneralClasses 1

1.1 Descriptions of the Methods of the General classes: . 1

1.2 Pen Class: . 2

1.3 FormPen Class: . 5

1.4 SavePen Class: . 5

1.5 ShowPen Class: . 5

1.6 Form Class: . 6

1.7 Object Class: . 9

1.8 UndefinedObject Class: . 11

1.9 Symbol Class: . 11

1.10 Boolean Class: . 12

1.11 True Class: . 13

1.12 False Class: . 13

1.13 Magnitude Class: . 14

1.14 Char Class: . 14

1.15 Number Class: . 16

1.16 Integer Class: . 17

1.17 Float Class: . 19

1.18 Radian Class: . 20

1.19 Point Class: . 21

1.20 Random Class: . 22

1.21 Collection Class: . 23

1.22 Bags & Sets Classes: . 25

1.23 KeyedCollection Class: . 26

1.24 Dictionary Class: . 28

1.25 AmigaTalk Class: . 29

1.26 SequenceableCollection Class: . 30

1.27 Interval Class: . 32

1.28 LinkedList Class: . 33

1.29 Semaphore Class: . 34

GeneralClasses iv

1.30 File Class: . 34

1.31 ArrayedCollection Class: . 35

1.32 Array Class: . 36

1.33 ByteArray Class: . 37

1.34 String Class: . 37

1.35 Block Class: . 39

1.36 Class Class: . 40

1.37 Process Class: . 41

GeneralClasses 1 / 41

Chapter 1

GeneralClasses

1.1 Descriptions of the Methods of the General classes:

WARNING: The documentation in this file is from the Original Little

SmallTalk documentation. If there is any question of whether

these documents are correct, you should check the corresponding

source file in AmigaTalk:General/ directory in order

to determine what is currently implemented.

Show below is the hierarchy of the General Classes that are loaded

into memory before the AmigaTalk system is ready for user input.

The indentations indicate which classes are sub-classes:

Object

UndefinedObject

Symbol

Boolean

True

False

Magnitude

Char

Number

Integer

Float

Radian

Point

Random

Collection

Bag

Set

GeneralClasses 2 / 41

KeyedCollection

Dictionary

AmigaTalk

File

SequenceableCollection

Interval

LinkedList

Semaphore

Form -- Do NOT use!

Pen

ArrayedCollection

Array

ByteArray

String

Block

Class

Process

1.2 Pen Class:

The class Pen is a class that opens a Window for performing simple

graphics commands in. This class has been re-written & is completely

different from the intentions of the Little SmallTalk author, Tim Budd.

Instead of using a plotting device (How many of those are there for the

Amiga?), this class simply opens a Window that can be used to see the

results of the Pen methods.

NOTE: There’s a limit of 20 for how many Plot Windows can be open

at the same time. AmigaTalk will tell you via Requesters when

this limit is violated.

Responds to

new

make a new instance of class Pen, initializing the

instance variables (default title: ’Unknown Plot’).

new: newPlotTitle

make a new instance of class Pen, initializing the

instance variables & using the supplied newPlotTitle as

the Plot Window title.

openPlotEnv: sizePoint

Open the Plot Window with the given size (sizePoint is of class Point,

GeneralClasses 3 / 41

so (sizePoint x) is the width, & (sizePoint y) is the height of the

Plot Window).

WARNING: You can only open a Plot Window as big as the AmigaTalk screen

(default 640 by 480).

closePlotEnv: whichPlotTitle

Close the Plot Window with the given title.

movePlotEnvBy: deltaPoint

Move the Plot Window by the given deltaPoint amounts (deltaPoint is

of class Point, so (deltaPoint x) is x movement,

& (deltaPoint y) is y movement of the Plot Window.

WARNING: There is no bounds checking for this, so make sure you keep

the Plot Window visible!

setLineType: bitPattern

Change the type of the line to plot with to the given bitPattern value.

(example: 2r11110000111100001111000011110000 = 16rF0F0F0F0 will draw

a dashed line). This is equivalent to SetDrPt() in graphics.library.

drawText: text at: startPoint

Place the given text at the given starting point using the current

pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

the text inside the Plot Window!

drawBox: fromPoint to: endPoint

Draw a box (fromPoint x) @ (fromPoint y)

to (endPoint x) @ (endPoint y). This is different from the

graphics.library DrawBox() call in that the endPoint is NOT interpreted

to be the width & height of the box. If you want to use the second

point as width @ height, simply add this:

endPoint x <- fromPoint x + endPoint x.

endPoint y <- fromPoint y + endPoint y.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawCircleAt: centerPoint radius: r

Draw a circle at the given centerPoint with the given radius using

the current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

circleRadius: radius

Draw a circle at the current location, with the given radius using

the current pen colors.

GeneralClasses 4 / 41

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawTo: endPoint

Draw a line from the current location to the given endPoint using the

current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

goTo: aPoint

Move the drawing point to the given aPoint.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawLine: fromPoint to: endPoint

Draw a line fromPoint to endPoint using the current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

drawPoint: atPoint

Draw a pixel atPoint using the current pen colors.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

direction

This method returns a Radian value, indicating the current direction

that the Pen will go with the go: method.

direction: radianAngle

Set the direction that the Pen will go with the go: method.

erase

Fill the Plot Window with the background color & erase all Plotting.

extent

Return a Point that indicates the width @ height of the Plot Window.

location

Return a Point that indicates the x @ y of the

plotter’s location.

center

Move the current plotting location to the center of the Plot Window.

tellPens

Return a Point that indicates the fpen @ bpen

of the Plot Window.

setPens: penSet

Change the fpen @ bpen values to (penSet x) @ (penSet y) respectively.

go: anAmount

GeneralClasses 5 / 41

Move the plotting location anAmount in the current direction.

anAmount is a scalar value (Integer or Float).

turn: addedAngle

Change the current direction by the given addedAngle (in Radians).

titleIs

Return a String that corresponds to the title of the plot window.

SEE ALSO FormPen, SavePen, ShowPen

1.3 FormPen Class:

The class FormPen is a sub-class of Pen that allows the User

to put together a collection (actually a Bag) of lines.

Responds to

new

Initialize the FormPen class instance.

add: startingPoint to: endPoint

Add a line with the given points to the instance.

with: aPen displayAt: location

Draw all the lines contained in the FormPen using the given aPen.

aPen is of class Pen.

1.4 SavePen Class:

The class SavePen is a sub-class of FormPen that allows the User

to save a drawing made by a Pen. What the original author of

this class means by save isn’t quite clear.

Responds to

setForm: aForm

Initialize the instance variable with aForm of class Form.

goTo: aPoint

Add a line from the current location to aPoint of class Point

to aForm.

1.5 ShowPen Class:

The class ShowPen is a sub-class of Pen that allows the User

to see some fancy uses of the Pen class.

Responds to

withPen: aPen

GeneralClasses 6 / 41

Initialize the instance variable(s) (aPen is of class Pen.

poly: nSides length: length

Draw a ploygon with the given number of sides each with the given

length.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window! Also, there is no such thing as a

ploygon with less than 3 sides, but this method doesn’t

perform any check for this!

spiral: n angle: a

Draw a spiral with the given number of segments (which is also the

length of the segments), changing the direction angle by a Radians.

WARNING: There is no bounds checking for this, so make sure you keep

inside the Plot Window!

1.6 Form Class:

The class Form is a sub-class of Object that allows the

User to draw figures using ASCII text. This class is NOT ported to

the graphic capabilities of the Amiga, so don’t expect to get any useful

pictures with it. I’ve just left the Smalltalk code as descriptions

of what the methods actually do. Use class Pen or the Curses

primitives (in AmigaTalk:User/Curses.st) for drawing simple

pictures instead.

Responds to

new

Initialize the instance of Form.

clipFrom: upperLeft to: lowerRight

"You figure it out:"

! newForm newRow rsize left top rText !

left <- upperLeft y - 1. " left hand side"

top <- upperLeft x - 1.

rsize <- lowerRight y - left.

newForm <- Form new.

(upperLeft x to: lowerRight x)

do: [:i |

newRow <- String new: rsize.

rText <- self row: i.

(1 to: rsize)

do: [:j |

GeneralClasses 7 / 41

newRow at: j

put: (rText at: (left + j)

ifAbsent: [$])

].

newForm row: (i - top) put: newRow

].

ˆ newForm

columns

ˆ text inject: 0 into: [:x :y | x max: y size]

display

smalltalk clearScreen.

self printAt: 1 @ 1.

’ ’ printAt: 20 @ 0

eraseAt: aPoint ! location !

location <- aPoint copy.

text do: [:x | (String new: (x size)) printAt: location.

location x: (location x + 1)]

extent

ˆ self rows @ self columns

first

ˆ text first

next

ˆ text next

overLayForm: sourceForm at: startingPoint

! newRowNum rowText left rowSize !

newRowNum <- startingPoint x.

left <- startingPoint y - 1.

sourceForm do: [:sourceRow |

rowText <- self row: newRowNum.

rowSize <- sourceRow size.

rowText <- rowText padTo: (left + rowSize).

(1 to: rowSize) do: [:i |

((sourceRow at: i) ~= $)

ifTrue: [rowText at: (left + i)

put: (sourceRow at: i)]].

self row: newRowNum put: rowText.

newRowNum <- newRowNum + 1]

placeForm: sourceForm at: startingPoint

! newRowNum rowText left rowSize !

GeneralClasses 8 / 41

newRowNum <- startingPoint x.

left <- startingPoint y - 1.

sourceForm do: [:sourceRow |

rowText <- self row: newRowNum.

rowSize <- sourceRow size.

rowText <- rowText padTo: (left + rowSize).

(1 to: rowSize) do: [:i |

rowText at: (left + i)

put: (sourceRow at: i)].

self row: newRowNum put: rowText.

newRowNum <- newRowNum + 1]

reversed ! newForm columns newRow !

columns <- self columns.

newForm <- Form new.

(1 to: self rows) do: [:i |

newRow <- text at: i.

newRow <- newRow ,

(String new: (columns - newRow size)).

newForm row: i put: newRow reversed].

ˆ newForm

rotated ! newForm rows newRow !

rows <- self rows.

newForm <- Form new.

(1 to: self columns) do: [:i |

newRow <- String new: rows.

(1 to: rows) do: [:j |

newRow at: ((rows - j) + 1)

put: ((text at: j)

at: i ifAbsent: [$])].

newForm row: i put: newRow].

ˆ newForm

row: index

ˆ text at: index ifAbsent: [”]

row: index put: aString

(index > text size)

ifTrue: [[text size < index] whileTrue:

[text <- text grow: ”]].

text at: index put: aString

rows

GeneralClasses 9 / 41

ˆ text size

printAt: aPoint ! location !

location <- aPoint copy.

text do: [:x | x printAt: location.

location x: ((location x) + 1)]

1.7 Object Class:

The class Object is a superclass of all classes in the system, and is

used to provide a consistent basic functionality and default behavior.

Many methods in class Object are overridden in subclasses.

Responds to

== Return true if receiver and argument are the

same object, false otherwise.

~~ Inverse of ==.

asString Return a string representation of the receiver, by default

this is the same as printString, although one or the

other is redefined in many subclasses.

asSymbol Return a symbol representing the receiver.

class Return object representing the class of the receiver.

copy Return shallowCopy of receiver. Many subclasses

redefine shallowCopy.

deepCopy Return the receiver. This method is redefined in many

subclasses.

d do: The argument must be a one argument block. Execute the

block on every element of the receiver collection.

Elements in the receiver collection are listed using first

and next, so the default behavior is

merely to execute the block using the receiver as argument.

error: Argument must be a String. Print argument string as

error message. Return nil.

n first Return first item in sequence, which is by

default simply the receiver. See next,

below.

isKindOf: Argument must be a Class. Return true if class of receiver,

or any superclass thereof, is the same as argument.

isMemberOf: Argument must be a Class. Return true if receiver is

instance of argument class.

isNil Test whether receiver is object nil.

GeneralClasses 10 / 41

n next Return next item in sequence, which is by

default nil. This message is redefined in

classes which represent sequences, such as

Array or Dictionary.

notNil Test if receiver is not object nil.

print Display print image of receiver on the Status Window.

printString Return a string representation of receiver. Objects

which do not redefine printString, and which therefore

do not have a printable representation, return their

class name as a string.

respondsTo: Argument must be a symbol. Return true if receiver will

respond to the indicated message.

shallowCopy Return the receiver. This method is redefined

in many subclasses.

subclassResponsibility:

Inform the user that a subclass did NOT implement the

given method.

notImplemented:

Inform the user that the given method is NOT implemented.

doesNotUnderstand:

Inform the user that a subclass does NOT understand the

given method.

shouldNotImplement:

Inform the user that a subclass should NOT implement the

given method.

Examples: Printed result:

7 ~~ 7.0 True

7 asSymbol #7

7 class Integer

7 copy 7

7 isKindOf: Number True

7 isMemberOf: Number False

7 isNil False

7 respondsTo: #+ True

GeneralClasses 11 / 41

1.8 UndefinedObject Class:

The pseudo variable nil is an instance (usually the only instance)

of the class UndefinedObject. nil is used to represent undefined

values, and is also typically returned in error situations. nil is also

used as a terminator in sequences, as for example in response to the

message next when there are no further elements in a sequence.

Responds to

r isNil Overrides method found in Object. Return true.

r notNil Overrides method found in Object. Return false.

r printString Return ’nil’.

Examples: Printed result:

nil isNil True

1.9 Symbol Class:

Instances of the class Symbol are created either by their literal

representation, which is a pound sign followed by a string of nonspace

characters (for example #aSymbol), or by the message asSymbol being

passed to an object. Symbols cannot be created using new. Symbols

are guaranteed to have unique representations; that is, two symbols

representing the same characters will always test equal to each other.

Inside of literal arrays, the leading pound signs on symbols can be

eliminated, for example: #(these are symbols).

Responds to

r == Return true if the two symbols represent the

same characters, false otherwise.

r asString Return a String representation of the symbol

without the leading pound sign.

r printString Return a String representation of the symbol,

including the leading pound sign.

Examples: Printed result:

#abc == #abc True

#abc == #ABC False

#abc ~~ #ABC True

#abc printString #abc

’abc’ asSymbol #abc

GeneralClasses 12 / 41

1.10 Boolean Class:

The class Boolean provides protocol for manipulating true and false

values. The pseudo-variables true and false are instances of the

subclasses of Boolean; True and False, respectively. The subclasses

True and False, in combination with blocks, are used to implement con-

ditional control structures. Note, however, that the bytecodes may

optimize conditional tests by generating code in-line, rather than using

message passing. Note that bit-wise boolean operations are provided by

class Integer.

Responds To

& The argument must be a boolean. Return the

logical conjunction (and) of the two values.

| The argument must be a boolean. Return the

logical disjunction (or) of the two values.

and: The argument must be a block. Return the

logical conjunction (and) of the two values.

If the receiver is false the second argument

is not used, otherwise the result is the

value yielded in evaluating the argument

block.

or: The argument must be a block. Return the

logical disjunction (or) of the two values.

If the receiver is true the second argument

is not used, otherwise the result is the

value yielded in evaluating the argument

block.

eqv: The argument must be a boolean. Return the

logical equivalence (eqv) of the two values.

xor: The argument must be a boolean. Return the

logical exclusive or (xor) of the two values.

Examples: Printed result:

(1 > 3) & (2 < 4) False

(1 > 3) | (2 < 4) True

(1 > 3) and: [2 < 4] False

GeneralClasses 13 / 41

1.11 True Class:

The pseudo-variable true is an instance (usually the only instance) of

the class True.

Responds To

ifTrue: Return the result of evaluating the argument block.

ifFalse: Return nil.

ifTrue:ifFalse:

Return the result of evaluating the first

argument block.

ifFalse:ifTrue:

Return the result of evaluating the second

argument block.

not Return false.

Examples: Printed result:

(3 < 5) not False

(3 < 5) ifTrue: [17] 17

1.12 False Class:

The pseudo-variable false is an instance (usually the only instance) of

the class False.

Responds To

ifTrue: Return nil.

ifFalse: Return the result of evaluating the argument block.

ifTrue:ifFalse:

Return the result of evaluating the second

argument block.

ifFalse:ifTrue:

Return the result of evaluating the first

argument block.

not Return true.

Examples: Printed result:

(1 < 3) ifTrue: [17] 17

(1 < 3) ifFalse: [17] nil

GeneralClasses 14 / 41

1.13 Magnitude Class:

The class Magnitude provides protocol for those subclasses possessing

a linear ordering. For the sake of efficiency, most subclasses redefine

some or all of the relational messages. All methods are defined in

terms of the basic messages <, = and >, which are in turn defined circu-

larly in terms of each other. Thus each subclass of Magnitude must

redefine at least one of these messages.

Responds To

< Relational less than test. Returns a boolean.

<= Relational less than or equal test.

= Relational equal test. Note that this

differs from ==, which is an object equality test.

~= Relational not equal test, opposite of =.

>= Relational greater than or equal test.

> Relational greater than test.

between:and: Relational test for inclusion.

max: Return the maximum of the receiver and argument value.

min: Return the minimum of the receiver and argument value.

Examples: Printed result:

$A max: $a $a

4 between: 3.1 and: (17/3) True

1.14 Char Class:

This class defines protocol for objects with character values.

Characters possess an ordering given by the underlying representation,

however arithmetic is not defined for character values. Characters are

written literally by preceding the character desired with a dollar sign,

for example: $a $B $$.

Responds To

r == Object equality test. Two instances of the

same character always test equal.

asciiValue Return an Integer representing the ASCII

value of the receiver.

asLowercase If the receiver is an uppercase letter

returns the same letter in lowercase, other-

wise returns the receiver.

asUppercase If the receiver is a lowercase letter returns

GeneralClasses 15 / 41

the same letter in uppercase, otherwise

returns the receiver.

r asString Return a length one string containing the

receiver. Does not contain leading dollar

sign, compare to printString.

digitValue If the receiver represents a number (for

example $9) return the digit value of the

number. If the receiver is an uppercase

letter (for example $B) return the position

of the number in the uppercase letters + 10,

($B returns 11, for example). If the

receiver is neither a digit nor an uppercase

letter an error is given and nil returned.

isAlphaNumeric

Respond true if receiver is either digit or

letter, false otherwise.

isDigit Respond true if receiver is a digit, false otherwise.

isLetter Respond true if receiver is a letter, false otherwise.

isLowercase Respond true if receiver is a lowercase letter, false

otherwise.

isSeparator Respond true if receiver is a space, tab or

newline, false otherwise.

isUppercase Respond true if receiver is an uppercase letter, false

otherwise.

isVowel Respond true if receiver is $a, $e, $i, $o or

$u, in either upper or lower case.

r printString Respond with a string representation of the

character value. Includes leading dollar

sign, compare to asString, which does not

include $.

Examples: Printed result:

$A < $0 False

$A asciiValue 65

$A asString A

$A printString $A

$A isVowel True

$A digitValue 10

GeneralClasses 16 / 41

1.15 Number Class:

The class Number is an abstract superclass for Integer and Float.

Instances of Number cannot be created directly. Relational messages

and many arithmetic messages are redefined in each subclass for arguments

of the appropriate type. In general, an error message is given and nil

returned for illegal arguments.

Responds To

+ Mixed type addition.

- Mixed type subtraction.

* Mixed type multiplication

/ Mixed type division.

n ˆ Exponentiation, same as raisedTo:.

@ Construct a point with coordinates being the

receiver and the argument.

abs Absolute value of the receiver.

exp e raised to the power.

n gamma Return the gamma function (generalized fac-

torial) evaluated at the receiver.

ln Natural logarithm of the receiver.

log: Logarithm in the given base.

negated The arithmetic inverse of the receiver.

negative True if the receiver is negative.

n pi Return the approximate value of the receiver

multiplied by (3.1415926...).

positive True if the receiver is positive.

n radians Argument converted into radians.

raisedTo: The receiver raised to the argument value.

reciprocal The arithmetic reciprocal of the receiver.

roundTo: The receiver rounded to units of the argument.

sign Return -1, 0 or 1 depending upon whether the

receiver is negative, zero or positive.

sqrt Square root. nil if receiver is less than

zero.

squared Return the receiver multiplied by itself.

strictlyPositive

True if the receiver is greater than zero.

to: Interval from receiver to argument value with

step of 1.

GeneralClasses 17 / 41

to:by: Interval from receiver to argument in given

steps.

truncatedTo: The receiver truncated to units of the argument.

Examples: Printed result:

3 < 4.1 True

3 + 4.1 7.1

3.14159 exp 23.1406

9 gamma 40320

5 reciprocal 0.2

0.5 radians 0.5 radians

13 roundTo: 5 15

13 truncateTo: 5 10

1.16 Integer Class:

The class Integer provides protocol for objects with integer values.

Responds To

r == Object equality test. Two integers representing the

same value are considered to be the same object.

// Integer quotient, truncated towards negative

infinity (compare to quo:).

\ Integer remainder, truncated towards negative

infinity (compare to rem:).

allMask: Argument must be Integer. Treating receiver

and argument as bit strings, return true if

all bits with 1 value in argument correspond

to bits with 1 values in the receiver.

anyMask: Argument must be Integer. Treating receiver

and argument as bit strings, return true if

any bit with 1 value in argument corresponds

to a bit with 1 value in the receiver.

asCharacter Return the Char with the same underlying

ASCII representation as the low order eight

bits of the receiver.

asFloat Floating point value with same magnitude as

receiver.

bitAnd: Argument must be Integer. Treating the

receiver and argument as bit strings, return

logical and of values.

GeneralClasses 18 / 41

bitAt: Argument must be Integer greater than 0 and

less than underlying word size. Treating

receiver as a bit string, return the bit value at the

given position, numbering from low order (or rightmost)

position.

bitInvert Return the receiver with all bit positions inverted.

bitOr: Return logical or of values.

bitShift: Treating the receiver as a bit string, shift

bit values by amount indicated in argument.

Negative values shift right, positive left.

bitXor: Return logical xor of values.

even Return true if receiver is even, false otherwise.

factorial Return the factorial of the receiver. Return

as Float for large numbers.

gcd: Argument must be Integer. Return the

greatest common divisor of the receiver and

argument.

highBit Return the location of the highest 1 bit in

the receiver. Return nil for receiver zero.

lcm: Argument must be Integer. Return least com-

mon multiple of receiver and argument.

noMask: Argument must be Integer. Treating receiver

and argument as bit strings, return true if

no 1 bit in the argument corresponds to a 1

bit in the receiver.

odd Return true if receiver is odd, false otherwise.

quo: Return quotient of receiver divided by argument.

radix: Return a string representation of the receiver value,

printed in the base represented by the argument.

Argument value must be less than 36.

rem: Remainder after receiver is divided by argument value.

timesRepeat: Repeat argument block the number of times given by

the receiver.

Examples: Printed result:

5 + 4 7

5 allMask: 4 True

4 allMask: 5 False

5 anyMask: 4 True

5 bitAnd: 3 1

GeneralClasses 19 / 41

5 bitOr: 3 7

5 bitInvert -6

254 radix: 16 16rFE

-5 // 4 -2

-5 quo: 4 -1

-5 \ 4 1

-5 rem: 4 -1

8 factorial 40320

1.17 Float Class:

The class Float provides protocol for objects with floating point values.

Responds To

r == Object equality test. Return true if the

receiver and argument represent the same

floating point value.

n ˆ Floating exponentiation.

arcCos Return a Radian representing the arcCos of

the receiver.

arcSin Return a Radian representing the arcSin of

the receiver.

arcTan Return a Radian representing the arcTan of

the receiver.

asFloat Return the receiver.

ceiling Return the Integer ceiling of the receiver.

coerce: Coerce the argument into being type Float.

exp Return e raised to the receiver value.

floor Return the Integer floor of the receiver.

fractionPart Return the fractional part of the receiver.

n gamma Return the value of the gamma function applied to

the receiver value.

integerPart Return the integer part of the receiver.

ln Return the natural log of the receiver.

radix: Return a string containing the printable representation

of the receiver in the given radix. Argument must be

an Integer less than 36.

rounded Return the receiver rounded to the nearest integer.

sqrt Return the square root of the receiver.

truncated Return the receiver truncated to the nearest integer.

GeneralClasses 20 / 41

Examples: Printed result:

4.2 * 3 12.6

2.1 |ˆ 4 19.4481

2.1 raisedTo: 4 19.4481

0.5 arcSin 0.523599 radians

2.1 reciprocal 0.47619

4.3 sqrt 2.07364

1.18 Radian Class:

The class Radian is used to represent radians. Radians are a unit of

measurement, independent of other numbers. Only radians will respond

to the trigonometric functions such as sin & cos. Numbers can be

converted into radians by passing them the message radians. Similarly,

radians can be converted into numbers by sending them the message

asFloat. Notice that only a limited range of arithmetic operations

are permitted on Radians. Radians are normalized to be between 0 and

2 * pi.

Responds To

+ Argument must be a Radian. Add the two rad-

ians together and return the normalized result.

- Argument must be a Radian. Subtract the

argument from the receiver and return the

normalized result.

* Argument must be a Number. Multiply the

receiver by the argument amount and return

the normalized result.

/ Argument must be a Number. Divide the

receiver by the argument amount and return

the normalized result.

asFloat Return the receiver as a floating point number.

cos Return a floating point number representing

the cosine of the receiver.

sin Return a floating point number representing

the sine of the receiver.

tan Return a floating point number representing

the tangent of the receiver.

Examples: Printed result:

0.5236 radians sin 0.5

0.5236 radians cos 0.866025

0.5236 radians tan 0.577352

0.5 arcSin asFloat 0.523599

GeneralClasses 21 / 41

1.19 Point Class:

Points are used to represent pairs of quantities, such

as coordinate pairs.

Responds To

< True if both values of the receiver are less

than the corresponding values in the argument.

<= True if the first value is less than or equal

to the corresponding value in the argument,

and the second value is less than the

corresponding value in the argument.

>= True if both values of the receiver are

greater than or equal to the corresponding

values in the argument.

* Return a new point with coordinates multi-

plied by the argument value.

/ Return a new point with coordinates divided

by the argument value.

// Return a new point with coordinates divided

by the argument value.

+ Return a new point with coordinates offset by

the corresponding values in the argument.

abs Return a new point with coordinates having

the absolute value of the receiver.

dist: Return the Euclidean distance between the

receiver and the argument point.

max: The argument must be a Point. Return the

lower right corner of the rectangle defined

by the receiver and the argument.

min: The argument must be a Point. Return the

upper left corner of the rectangle defined by

the receiver and the argument.

transpose Return a new point with coordinates being the

transpose of the receiver.

x Return the first coordinate of the receiver.

x: Set the first coordinate of the receiver.

x:y: Sets both coordinates of the receiver.

y Return the second coordinate of the receiver.

y: Set the second coordinate of the receiver.

GeneralClasses 22 / 41

Examples: Printed result:

(10@12) < (11@14) True

(10@12) < (11@11) False

(10@12) max: (11@11) 11@12

(10@12) min: (11@11) 10@11

(10@12) dist: (11@14) 2.23607

(10@12) transpose 12@10

1.20 Random Class:

The class Random provides protocol for random number generation.

Sending the message next to an instance of Random results in a Float

between 0.0 and 1.0, randomly distributed. By default, the pseudo-random

sequence is the same for each object in class Random. This can be

altered using the message "randomize".

Responds To

n between:and: Return a random number uniformly distributed

between the two arguments.

n first Return a random number between 0.0 and 1.0.

This message merely provides consistency with

protocol for other sequences, such as Arrays

or Intervals.

next Return a random number between 0.0 and 1.0.

d next: Return an Array containing the next n random

numbers, where n is the argument value.

n randInteger: The argument must be an Integer. Return a

random integer between 1 and the value given.

n randomize Change the pseudo-random number generator

seed by a time dependent value.

Examples: Printed result:

i <- Random new

i next 0.759

i next 0.157

i next: 3 #(0.408 0.278 0.547)

i randInteger: 12 5

i between: 4 and: 17.5 10.0

GeneralClasses 23 / 41

1.21 Collection Class:

The class Collection provides protocol for groups of objects, such as

Arrays or Sets. The different forms of collections are distinguished

by several characteristics, among them whether the size of the collection

is fixed or unbounded, the presence or absence of an ordering, and their

insertion or access method. For example, an Array is a collection with

a fixed size and ordering, indexed by integer keys. A Dictionary, on

the other hand, has no fixed size or ordering, and can be indexed by

arbitrary elements. Nevertheless, Arrays and Dictionarys share many

features in common, such as their access method (at: and at:put:), and

the ability to respond to collect:, select:, and many other messages.

The table below lists some of the characteristics of several forms

of collections:

Name Creation Size Ordered? Insertion Access

Method fixed? method method

Bag/Set new no no add: includes:

Dictionary new no no at:put: at:

Interval n to: m yes yes none at:

List new no yes addFirst: first

addLast: last

Array new: yes yes at:put: at:

String new: yes yes at:put: at:

The list below shows messages that are shared in common by all

collections.

Responds To

addAll: The argument must be a Collection. Add all

the elements of the argument collection to

the receiver collection.

asArray Return a new collection of type Array containing the

elements from the receiver collection. If the receiver

was ordered, the elements will be in the same order in

the new collection, otherwise the elements will be in

an arbitrary order.

asBag Return a new collection of type Bag containing the

elements from the receiver collection.

GeneralClasses 24 / 41

n asList Return a new collection of type List containing the

elements from the receiver collection. If the receiver

was ordered, the elements will be in the same order in

the new collection, otherwise the elements will be in

an arbitrary order.

asSet Return a new collection of type Set containing the

elements from the receiver collection.

asString Return a new collection of type String containing the

elements from the receiver collection. The elements to

be included must all be of type Character. If the

receiver was ordered, the elements will be in the same

order in the new collection, otherwise the elements will

be listed in an arbitrary order.

coerce: The argument must be a Collection. Return a collection,

of the same type as the receiver, containing elements

from the argument collection. This message is redefined

in most subclasses of Collection.

collect: The argument must be a one argument block. Return a new

collection, like the receiver, containing the result of

evaluating the argument block on each element of the

receiver collection.

detect: The argument must be a one argument block. Return the

first element in the receiver collection for which the

argument block evaluates true. Report an error and

return "nil" if no such element exists. Note that in

unordered collections (such as Bags or Dictionarys) the

first element to be encountered that will satisfy the

condition may not be easily predictable.

detect:ifAbsent:

Return the first element in the receiver collection for

which the first argument block evaluates true. Return

the result of evaluating the second argument if no such

element exists.

do: The argument must be a one argument block. Evaluate the

argument block on each element in the receiver collection.

includes: Return true if the receiver collection contains the

argument.

inject:into: The first argument must be a value, the second a two

argument block. The second argument is evaluated once

GeneralClasses 25 / 41

for each element in the receiver collection, passing as

arguments the result of the previous evaluation (starting

with the first argument) and the element. The value

returned is the final value generated.

isEmpty Return true if the receiver collection contains no

elements.

occurrencesOf:

Return the number of times the argument occurs in the

receiver collection.

remove: Remove the argument from the receiver collection. Report

an error if the element is not contained in the receiver

collection.

remove:ifAbsent:

Remove the first argument from the receiver collection.

Evaluate the second argument if not present.

reject: The argument must be a one argument block. Return a new

collection like the receiver containing all elements for

which the argument block returns false.

select: The argument must be a one argument block. Return a new

collection like the receiver containing all elements for

which the argument block returns true.

size Return the number of elements in the receiver

collection.

Examples: Printed result:

i <- ’abacadabra’

i size 10

i asArray #($a $b $a $c $a $d $a $b $r $a)

i asBag Bag ($a $a $a $a $a $r $b $b $c $d)

i asSet Set ($a $r $b $c $d)

i occurrencesOf: $a 5

i reject: [:x | x isVowel] bcdbr

1.22 Bags & Sets Classes:

Bags and Sets are each unordered collections of elements. Elements in

the collections do not have keys, but are added and removed directly.

The difference between a Bag and a Set is that each element can occur

any number of times in a Bag, whereas only one copy is inserted into

a Set.

GeneralClasses 26 / 41

Responds To

add: Add the indicated element to the receiver collection.

add:withOccurences:

(Bag only) Add the indicated element to the

receiver Bag the given number of times.

n first Return the first element from the receiver collection.

As the collection is unordered, the first element depends

upon certain values in the internal representation, and is

not guaranteed to be any specific element in the

collection.

n next Return the next element in the collection. In conjunction

with first, this can be used to access each element of

the collection in turn.

Examples: Printed result:

i <- (1 to: 6) asBag Bag (1 2 3 4 5 6)

i size 6

i select: [:x | (x \ 2) strictlyPositive] Bag (1 3 5)

i collect: [:x | x \ 3] Bag (0 0 1 1 2 2)

j <- (i collect: [:x | x \ 3]) asSet Set (0 1 2)

j size 3

Note: Since Bags and Sets are unordered, there is no way to

establish a mapping between the elements of the Bag i in the

example above and the corresponding elements in the collection that

resulted from the message collect: [:x | x \ 3].

1.23 KeyedCollection Class:

The class KeyedCollection provides protocol for collections with keys,

such as Dictionarys and Arrays. Since each entry in the collection has

both a key and value, the method add: is no longer appropriate. Instead,

the method at:put:, which provides both a key and a value, must be used.

Responds To

asDictionary Return a new collection of type Dictionary

containing the elements from the receiver

collection.

at: Return the item in the receiver collection

whose key matches the argument. Produces and

error message, and returns nil, if no item is

currently in the receiver collection under

GeneralClasses 27 / 41

the given key.

at:ifAbsent: Return the element stored in the dictionary

under the key given by the first argument.

Return the result of evaluating the second

argument if no such element exists.

atAll:put: The first argument must be a collection con-

taining keys valid for the receiver. At each

location given by a key in the first argument

place the second argument.

binaryDo: The argument must be a two argument block.

This message is similar to do:, however both

the key and the element value are passed as

argument to the block.

includesKey: Return true if the indicated key is valid for

the receiver collection.

indexOf: Return the key value of the first element in

the receiver collection matching the argument.

Produces an error message if no such element exists.

Note that, as with the message detect:, in unordered

collections the first element may not be related in any

way to the order in which elements were placed into the

collection, but is rather implementation dependent.

indexOf:ifAbsent:

Return the key value of the first element in the receiver

collection matching the argument. Return the result of

evaluating the second argument if no such element exists.

keys Return a Set containing the keys for the

receiver collection.

keysDo: The argument must be a one argument block.

Similar to do:, except that the values passed

to the block are the keys of the receiver

collection.

keysSelect: Similar to select, except that the selection

is made on the basis of keys instead of

values.

removeKey: Remove the object with the given key from the

receiver collection. Print an error message,

and return nil, if no such object exists.

Return the value of the deleted item.

GeneralClasses 28 / 41

removeKey:ifAbsent:

Remove the object with the given key from the

receiver collection. Return the result of

evaluating the second argument if no such

object exists.

values Return a Bag containing the values from the

receiver collection.

Examples: Printed result:

i <- ’abacadabra’

i atAll: (1 to: 7 by: 2) put: $e ebecedebra

i indexOf: $r 9

i atAll: i keys put: $z zzzzzzzzzz

i keys Set (1 2 3 4 5 6 7 8 9 10)

i values Bag ($z $z $z $z $z $z $z $z $z $z)

#(how odd) asDictionary Dictionary (1 @ #how 2 @ odd)

1.24 Dictionary Class:

A Dictionary is an unordered collection of elements, as are Bags and

Sets. However, unlike these collections, elements inserted and removed

from a Dictionary must reference an explicit key. Both the key and

value portions of an element can be any object, although commonly the

keys are instances of Symbol or Number.

Responds To

at:put: Place the second argument into the receiver collection

under the key given by the first argument.

currentKey Return the key of the last element yielded in

response to a first or next request.

n first Return the first element of the receiver collection.

Return nil if the receiver collection is empty.

n next Return the next element of the receiver collection, or

nil if no such element exists.

Examples: Printed result:

i <- Dictionary new

i at: #abc put: #def

i at: #pqr put: #tus

i at: #xyz put: #wrt

i print Dictionary (#abc @ #def #pqr @ #tus #xyz @ #wrt)

i size 3

i at: #pqr #tus

i indexOf: #tus #pqr

i keys Set (#abc #pqr #xyz)

i values Bag (#wrt #def # tus)

GeneralClasses 29 / 41

1.25 AmigaTalk Class:

The class AmigaTalk provides protocol for the pseudo-variable amigatalk.

Since it is a subclass of Dictionary, this variable can be used to store

information, and thus provide a means of communication between objects.

Other messages modify various parameters used by the AmigaTalk system.

Responds To

n date Return the current date and time as a string.

n display Set execution display to display the result of every

expression typed, but not for assignments. Note that the

display behavior can also be modified using the -d

argument on the command line.

n displayAssign

Set execution display to display the result of every

expression typed, including assignment statements.

n doPrimitive:withArguments:

Execute the indicated primitive with arguments given by

the second array. A few primitives (such as those

dealing with process management) cannot be executed in

this manner.

n noDisplay Turn off execution display - no results will

be displayed unless explicitly requested by

the user.

d perform:withArguments:

Send indicated message to the receiver, using

the arguments given. The first value in the

argument array is taken to be the receiver of

the message. Unpredictable results if the

number of arguments is not appropriate for

the given message.

n sh: The argument, which must be a string, is executed as an

A,migaDOS command by the shell. The value returned is

the termination status of the shell.

n time: The argument must be a block. The block is executed,

and the number of seconds elapsed during execution

returned. Time is only accurate to within about one

second.

Examples: Printed result:

amigatalk date Fri Apr 12 16:15:42 1985

amigatalk perform: #+ withArguments: #(2 5) 7

amigatalk doPrimitive: 10 withArguments: #(2 5) 7

GeneralClasses 30 / 41

1.26 SequenceableCollection Class:

The class SequenceableCollection contains protocol for collections

that have a definite sequential ordering and are indexed by integer

keys. Since there is a fixed order for elements, it is possible to

refer to the last element in a SequenceableCollection.

Responds To

, Appends the argument collection to the receiver

collection, returning a new collection of the same

type as the receiver.

copyFrom:to: Return a new collection, like the receiver,

containing the designated subportion of the

receiver collection.

copyWith: Return a new collection, like the receiver,

with the argument added to the end.

copyWithout: Return a new collection, like the receiver,

with all occurrences of the argument removed.

equals:startingAt:

The first argument must be a SequenceableCol-

lection. Return true if each element of the

receiver collection is equal to the corresponding

element in the argument offset by the amount given

in the second argument.

findFirst: Find the key for the first element whose

value satisfies the argument block. Produce

an error message if no such element exists.

findFirst:ifAbsent:

Both arguments must be blocks. Find the key

for the first element whose value satisfies

the first argument block. If no such element

exists return the value of the second argu-

ment.

findLast: Find the key for the last element whose value

satisfies the argument block. Produce an

error message if no such element exists.

findLast:ifAbsent:

Both arguments must be blocks. Find the key

for the last element whose value satisfies

the first argument block. If no such element

GeneralClasses 31 / 41

exists return the value of the second

argument block.

firstKey Return the first key valid for the receiver

collection.

indexOfSubCollection:startingAt:

Starting at the position given by the second

argument, find the next block of elements in

the receiver collection which match the col-

lection given by the first argument, and

return the index for the start of that block.

Produce an error message if no such position

exists.

indexOfSubCollection:startingAt:ifAbsent:

Similar to indexOfSubCollection:startingAt:,

except that the result of the exception block

is produced if no position exists matching

the pattern.

last Return the last element in the receiver collection.

lastKey Return the last key valid for the receiver collection.

replaceFrom:to:with:

Replace the elements in the receiver collec-

tion in the positions indicated by the first

two arguments with values taken from the col-

lection given by the third argument.

replaceFrom:to:with:startingAt:

Replace the elements in the receiver collec-

tion in the positions indicated by the first

two arguments with values taken from the col-

lection given in the third argument, starting

at the position given by the fourth argument.

n reversed Return a collection, like the receiver, with

elements reversed.

reverseDo: Similar to do:, except that the items are

presented in reverse order.

n sort Return a collection, like the receiver, with

the elements sorted using the comparison <=.

Elements must be able to respond to the

binary message <=.

n sort: The argument must be a two argument block

GeneralClasses 32 / 41

which yields a boolean. Return a collection,

like the receiver, sorted using the argument

to compare elements for the purpose of

ordering.

with:do: The second argument must be a two argument

block. Present one element from the receiver

collection and from the collection given by

the first argument in turn to the second

argument block. An error message is given if

the collections do not have the same number

of elements.

Examples: Printed result:

i <- ’abacadabra’

i copyFrom: 4 to: 8 cadab

i copyWith: $z abacadabraz

i copyWithout: $a bcdbr

i findFirst: [:x | x > $m] 9

i indexOfSubCollection: ’dab’ startingAt: 16

i reversed arbadacaba

i , i reversed abacadabraarbadacaba

i sort: [:x :y | x >= y] rdcbbaa

1.27 Interval Class:

The class Interval represents a sequence of numbers in an arithmetic

sequence, either ascending or descending. Instances of Interval are

created by numbers in response to the message to: or to:by:. In

conjunction with the message do:, Intervals create a control structure

similar to do or for loops in Algol-like languages. For example:

(1 to: 10) do: [:x | x print]

will print the numbers 1 through 10. Although they are a collection,

Intervals cannot be added to. They can, however, be accessed randomly

using the message at:.

Responds To

first Produce the first element from the interval.

In conjunction with "last", this message may be

used to produce each element from the inter-

val in turn. Note that Intervals also

respond to the message "at:", which can be used

GeneralClasses 33 / 41

to produce elements in an arbitrary order.

from:to:by: Initialize the upper and lower bounds and the

step size for the receiver. (This is used

principally internally by the method for

number to create new Intervals).

next Produce the next element from the interval.

size Return the number of elements that will be

generated in producing the interval.

Examples: Printed result:

(7 to: 13 by: 3) asArray #(7 10 13)

(7 to: 13 by: 3) at: 2 10

(1 to: 10) inject: 0 into: [:x :y | x + y] 55

(7 to: 13) copyFrom: 2 to: 5 #(8 9 10 11)

(3 to: 5) copyWith: 13 #(3 4 5 13)

(3 to: 5) copyWithout: 4 #(3 5)

(2 to: 4) equals: (1 to: 4) startingAt: 2 True

1.28 LinkedList Class:

Lists represent collections with a fixed order, but indefinite size.

No keys are used, and elements are added or removed from one end of

the other. Used in this way, Lists can perform as stacks or as

queues. The table below illustrates how stack and queue operations

can be implemented in terms of messages to instances of List.

stack operations queue operations

push addLast: add addLast:

pop removeLast first in queue first

top last remove first in queue removeFirst

test empty isEmpty test empty isEmpty

Responds To

add: Add the element to the beginning of the receiver

collection. This is the same as addFirst:.

addAllFirst: The argument must be a SequenceableCollection. The

elements of the argument are added, in order, to the

front of the receiver collection.

addAllLast: The argument must be a SequenceableCollection. The

elements of the argument are added, in order, to the end

of the receiver collection.

GeneralClasses 34 / 41

addFirst: The argument is added to the front of the receiver

collection.

addLast: The argument is added to the back of the receiver

collection.

removeFirst Remove the first element from the receiver collection,

returning the removed value.

removeLast Remove the last element from the receiver collection,

returning the removed value.

Examples: Printed result:

i <- List new

i addFirst: 2 / 3 List (0.6666)

i add: $A

i addAllLast: (12 to: 14 by: 2)

i print List (0.6666 $A 12 14)

i first 0.6666

i removeLast 14

i print List (0.6666 $A 12)

1.29 Semaphore Class:

Semaphores are used to synchronize concurrently running Processes.

Responds To

new: If created using new, a Semaphore starts out with zero

excess signals. Alternatively, a Semaphore can be created

with an arbitrary number of excess signals by giving it an

argument to new:.

signal If there is a process blocked on the semaphore it is

scheduled for execution, otherwise the number of excess

signals is incremented by one.

wait If there are excess signals associated with the semaphore

the number of signals is decremented by one, otherwise

the current process is placed on the semaphore queue.

1.30 File Class:

A File is a type of collection where the elements of the collection are

stored on an external medium, typically a disk. For this reason,

although most operations on collections are defined for files, many can

be quite slow in execution. A file can be opened in one of three

GeneralClasses 35 / 41

modes: In character mode every read returns a single character from

the file. In integer mode every read returns a single word, as an

integer value. In string mode every read returns a single line, as a

String. For writing, character and string modes will write the string

representation of the argument, while integer mode must write only a

single integer.

Responds To

at: Return the object stored at the indicated position.

Position is given as a character count from the start

of the file.

at:put: Place the object at the indicated position in the file.

Position is given as a character count from the start

of the file.

characterMode

Set the mode of the receiver file to character.

currentKey Return the current position in the file, as a

character count from the start of the file.

integerMode Set the mode of the receiver file to integer.

open: Open the indicated file for reading. The argument must

be a String.

open:for: The for: argument must be one of r, w or r+ (see

fopen(3) in the Unix programmers manual). Open the file

in the indicated mode.

read Return the next object from the file.

size Return the size of the file, in character counts.

stringMode Set the mode of the receiver file to string.

write: Write the argument into the file.

1.31 ArrayedCollection Class:

The class ArrayedCollection provides protocol for collections with a

fixed size and integer keys. Unlike other collections, which are

created using the message new, instances of ArrayedCollection must be

created using the one argument message new:. The argument given with

this message must be a positive integer, representing the size of the

collection to be created. In addition to the protocol shown, many of

the methods inherited from superclasses are redefined in this class.

Responds To

= The argument must also be an Array. Test whether the

GeneralClasses 36 / 41

receiver and the argument have equal elements listed

in the same order.

at:ifAbsent: Return the element stored with the given key. Return the

result of evaluating the second argument if the key is not

valid for the receiver collection.

n padTo: Return an array like the received that is at least as long

as the argument value. Returns the receiver if it is

already longer than the argument.

Examples: Printed result:

’small’ = ’small’ True

’small’ = ’SMALL’ False

’small’ asArray #($s $m $a $l $l)

’small’ asArray = ’small’ True

#(1 2 3) padTo: 5 #(1 2 3 nil nil)

#(1 2 3) padTo: 2 #(1 2 3)

1.32 Array Class:

Instances of the class Array are perhaps the most commonly used data

structure in Smalltalk programs. Arrays are represented textually by

a pound sign preceding the list of array elements.

Responds To

at: Return the item stored in the position given by the

argument. An error message is produced, and nil

returned, if the argument is not a valid key.

at:put: Store the second argument in the position given by the

first argument. An error message is produced, and nil

returned, if the argument is not a valid key.

grow: Return a new array one element larger than the receiver,

with the argument value attached to the end. This is a

slightly more efficient command than copyWith:, although

the effect is the same.

Examples: Printed result:

i <- #(110 101 97)

i size 3

i <- i grow: 116 #(110 101 97 116)

i <- i collect: [:x | x asCharacter] #(#n #e #a #t)

i asString neat

GeneralClasses 37 / 41

1.33 ByteArray Class:

A ByteArray is a special form of array in which the elements must be

numbers in the range 0-255. Instances of ByteArray are given a very

compact encoding, and are used extensively internally in the AmigaTalk

system. A ByteArray can be represented textually by a pound sign

preceding the list of array elements surrounded by a pair of square

braces.

Responds To

at: Return the item stored in the position given by the

argument. An error message is produced, and nil

returned, if the argument is not a valid key.

at:put: Store the second argument in the position given by the

first argument. An error message is produced, and nil

returned, if the argument is not a valid key.

Examples: Printed result:

i <- #[110 101 97]

i size 3

i <- i copyWith: 116 #[110 101 97 116]

i <- i asArray collect: [:x | x asCharacter] #(#n #e #a #t)

i asString neat

1.34 String Class:

Instances of the class String are similar to Arrays, except that the

individual elements must be Character. Strings are represented literally

by placing single quote marks around the characters making up the string.

Strings also differ from Arrays in that Strings possess an ordering,

given by the underlying ASCII sequence.

Responds To

, Concatenates the argument to the receiver string,

producing a new string. If the argument is not a String

it is first converted using printString.

< The argument must be a String. Test if the receiver is

lexically less than the argument. For the purposes of

comparison, case differences are ignored.

<= Test if the receiver is lexically less than or equal to

the argument.

>= Test if the receiver is lexically greater than or equal

GeneralClasses 38 / 41

to the argument.

> Test if the receiver is lexically greater than the

argument.

r asSymbol Return a Symbol with characters given by the

receiver string.

at: Return the character stored at the position given by the

argument. Produce an error message, and return nil, if

the argument does not represent a valid key.

at:put: Store the character given by second argument at the

location given by the first argument. Produce an error

message, and return nil, if either argument is invalid.

n copyFrom:length:

Return a substring of the receiver. The substring is

taken from the indicated starting position in the receiver

and extends for the given length. Produce an error

message, and return nil, if the given positions are not

legal.

r copyFrom:to: Return a substring of the receiver. The substring is

taken from the indicated positions. Produce an error

message, and return nil, if the given positions are

not legal.

n printAt: The argument must be a Point which describes a location on

the Curses screen. The string is printed at the specified

location.

size Return the number of characters stored in the string.

sameAs: Return true if the receiver and argument string match with

the exception of case differences. Note that the boolean

message =, inherited from ArrayedCollection, can be used

to see if two strings are the same including case

differences.

Examples: Printed result:

’example’ at: 2 $x

’bead’ at: 1 put: $r read

’small’ > ’BIG’ True

’small’ sameAs: ’SMALL’ True

’tary’ sort arty

’Rats live on no evil Star’ reversed ratS live on no evil staR

GeneralClasses 39 / 41

1.35 Block Class:

Although it is easy for the programmer to think of blocks as a syntactic

construct, or a control structure, they are actually objects, and share

attributes of all other objects in the Smalltalk system, such as the

ability to respond to messages.

Responds To

fork Start the block executing as a Process. The value nil is

immediately returned, and the Process created from the

block is scheduled to run in parallel with the current

process.

forkWith: Similar to fork, except that the array is passed as

arguments to the receiver block prior to scheduling for

execution.

newProcess A new Process is created for the block, but is not

scheduled for execution.

n newProcessWith:

Similar to newProcess, except that the array is passed

as arguments to the receiver block prior to it being made

into a process.

value Evaluates the receiver block. Produces an error message,

and returns nil, if the receiver block required arguments.

Return the value yielded by the block.

value: Evaluates the receiver block. Produces an error message,

and returns nil, if the receiver block did not require a

single argument. Return the value yielded by the block.

value:value: Two argument block evaluation.

value:value:value:

Three argument block evaluation.

value:value:value:value:

Four argument block evaluation.

value:value:value:value:value:

Five argument block evaluation.

whileTrue: The receiver block is repeatedly evaluated. While it

evaluates to true, the argument block is also evaluated.

Return nil when the receiver block no longer evaluates

to true.

whileTrue The receiver block is repeatedly evaluated until it

returns a value that is not true.

GeneralClasses 40 / 41

whileFalse: The receiver block is repeatedly evaluated. While it

evaluates to false, the argument block is also evaluated.

Return nil when the receiver block no longer evaluates

to false.

whileFalse The receiver block is repeatedly evaluated until it

returns a value that is not false.

Examples: Printed result:

[’block indeed’] value block indeed

[:x :y | x + y + 3] value: 5 value: 7 15

1.36 Class Class:

The class Class provides protocol for manipulating class instances. An

instance of class Class is generated for each class in the AmigaTalk

system. New instances of this class are then formed by sending messages

to the class instance.

Responds To

n deepCopy: The argument must be an instance of the receiver class.

A deepCopy of the argument is returned.

n edit The user is placed into a editor editing the file from

which the class description was originally obtained. When

the editor terminates, the class description will be

reparsed and will override the previous description.

See also view.

n list Lists all subclasses of the given class recursively. In

particular, Object list will list the names of all the

classes in the system.

new A new instance of the receiver class is returned. If the

methods for the receiver contain protocol for new, the

new instance will first be passed this message.

new: A new instance of the receiver class is returned. If the

methods for the receiver contain protocol for new:, the

new instance will first be passed this message.

n respondsTo List all the messages that the current class will respond

to.

d respondsTo: The argument must be a Symbol. Return true if the

receiver class, or any of its superclasses, contains a

method for the indicated message. Return false otherwise.

n shallowCopy: The argument must be an instance of the receiver class.

GeneralClasses 41 / 41

A shallowCopy of the argument is returned.

n superClass Return the superclass of the receiver class.

n variables Return an array containing the names of the instance

variables used in the receiver class.

n view Place the user into an editor viewing the class descrip-

tion from which the class was created. Changes made to

the file will not, however, affect the current class

representation.

getByteArray:

Return a ByteArray that represents the given method in

the given class.

Examples: Printed result:

Array new: 3 #(nil nil nil)

Bag respondsTo: #add: True

SequenceableCollection superClass KeyedCollection

1.37 Process Class:

Processes are created by the system, or by passing the message

newProcess or fork to a block; they cannot be created directly

by the user.

Responds To

block The receiver process is marked as being blocked. This is

usually the result of a semaphore wait. Blocked processes

are not executed.

resume If the receiver process has been suspended, it is

rescheduled for execution.

suspend If the receiver process is scheduled for execution, it is

marked as suspended. Suspended processes are not exe-

cuted.

state The current state of the receiver process is returned

as a Symbol.

terminate The receiver process is terminated. Unlike a blocked or

suspended process, a terminated process cannot be

restarted.

unblock If the receiver process is currently blocked, it is

scheduled for execution.

yield Returns nil. As a side effect, however, if there are

pending processes, the current process is placed back on

the process queue and another process started.

	GeneralClasses
	Descriptions of the Methods of the General classes:
	Pen Class:
	FormPen Class:
	SavePen Class:
	ShowPen Class:
	Form Class:
	Object Class:
	UndefinedObject Class:
	Symbol Class:
	Boolean Class:
	True Class:
	False Class:
	Magnitude Class:
	Char Class:
	Number Class:
	Integer Class:
	Float Class:
	Radian Class:
	Point Class:
	Random Class:
	Collection Class:
	Bags & Sets Classes:
	KeyedCollection Class:
	Dictionary Class:
	AmigaTalk Class:
	SequenceableCollection Class:
	Interval Class:
	LinkedList Class:
	Semaphore Class:
	File Class:
	ArrayedCollection Class:
	Array Class:
	ByteArray Class:
	String Class:
	Block Class:
	Class Class:
	Process Class:

