
#p

INIT-Scope

Introduction
INIT-Scope is a cdev/INIT combo that meshes with the startup mechanism at the lowest levels
of your Macintosh. The INIT portion of INIT-Scope monitors the entire loading process, and
provides a great deal of information concerning what happens to your computer during this
critical phase. The cdev portion allows you to choose among several options, and also
provides a few useful utilities.

Who Can Use INIT-Scope?
Basically, INIT-Scope is a highly technical tool, and is of most use to a skilled programmer.
However, it is still of considerable value to others as well.

1. Even if you do not understand everything in the INITInfo report that INIT-Scope produces,
you will most likely still be able to get some idea of what your INITs are doing to your
system.

2. You can use INIT-Scope's INIT skipping feature to skip loading particular INITs at startup
time.

3. By providing a technical person with the data provided in INIT-Scope's INITInfo report, (s)he
can help you figure out any kinds of problems that you might have.

 In fact, if you are having a problem, and can't make sense out of the data that INIT-Scope
provides, send me a copy of the report by E-Mail, and I will try and help you decipher it.

Using INIT-Scope
INIT-Scope is easy to use. Just drag it into your system folder, open up the control panel and
choose the options you want. Then reboot your computer. The rest is automatic.

What's in a Name?
Note that INIT-Scope's name has a leading space character. This is done so that it will load
earlier than (most) of the other INITs in your system folder. INITs/cdevs/RDEVs load in
alphabetical order. Thus you may rename INIT-Scope by placing a different leading character if
you want to change its position in the startup process. If you redistribute INIT-Scope to a
bulletin board or other source, please leave its name as INIT-Scope with a leading space (also
be sure to include this documentation.)

The INITInfo Report
INIT-Scope produces a text file report called "INIT Info". You will find this file on the root level of
your startup disk. This report contains the following information:

1. The names and trapwords of all traps patched and the address of the patches.

#p

2. The basic information about your system - such as type of computer, keyboard, amount of
RAM, and the values of important low memory locations.

3. Information about the resources used by the various INITs during the start-up process. This
includes each resource type and ID.

4. Addresses of all VBL routines. This includes the address of VBL routines loaded prior to the
execution of INIT-Scope itself. Along with the address of each VBL is the phase and count
values associated with it.

5. Addresses of all shut-down routines installed. Along with the address of each such routine is
an indication of what stage of the shut-down procedure calls the routine.

6. Addresses of all installed time manager routines.

7. The start and end of the application heap at the time each INIT loads.

8. The system heap expansion caused by the INIT.

9. The actual system heap RAM used by the INIT. (This is based upon the amount of free
memory in the system heap before the INIT executes compared with the free space
afterwards.

Finally, one of INIT-Scope's finest features,

10. A detailed description of the trap history of the loading process.

 In addition to all of this information, INIT-Scope also makes using INITs easier. By setting an
appropriate option in the associated cdev (via the Control Panel desk accessory), you can skip
any INIT by holding down the Shift key just before it would ordinarily load (i.e. hold down the
Shift key just after you see the icon for the previous INIT).

 If you are technically inclined, INIT-Scope will also let you intercept any INIT by holding down
the option key at the time the INIT is about to load.

Format of the INIT Info File
INIT-Scope’s output file begins with a brief header and description of the environment of the
machine in which it resides.

An example such file begins like this:

INIT-Scope’s INIT Info Report

INIT-Scope is Copyright 1990 by David P. Sumner

Date: 5/22/90
Time: 9:46 AM

All addresses are in hex.

#p
All sizes, quantities, and id's are in decimal.

Computer: Mac Plus
Processor: 68000
Does not have MC 68881 Floating Point Coprocessor
Does not have Color QuickDraw
Mac Plus Keyboard
System Volume RefNum is: -32733
BufPtr: $E2DFA
APPL Zone $21400
Heap End: $253F4
AppLimit $7DBFC
System Zone $1400
Free in System Heap (bytes): 18580
Top of Memory: $100000 (1048576 Total Bytes of Ram).
Screen Base: $FA700
Sound Buffer: $FFD00
System Version: $602
Currently Active VBL Procedures: $7D20 $15EA8

 After this system information, the INITInfo file provides detailed information about each INIT
in turn as it is loaded in and executed by the system. For each INIT, the INIT-Scope report
shows the system environment in which the INIT loads and also the effect that the INIT has on
this environment. In particular, INIT-Scope shows the application heap at the time the INIT
loads (the system heap is an immediate derivative of this - it lies directly below the application
heap). Additionally, this portion of the report shows how many bytes of system RAM and High
RAM the INIT uses. Also the amount of RAM the INIT requests (through its sysz resource) is
also noted - requests for less than 16K are treated by the system as requests for 16K). Note
that the system heap need not expand in response to this request if there is already sufficient
memory available in the system heap.
 This section of the report also shows the true size of the INIT in bytes.

 Exactly what the rest of the file looks like will depend upon the options you select in the INIT-
Scope cdev in the Control Panel.

#p

If you have checked the ‘Show Resource Info’ box, then for each INIT you will see all the
Resource Types accessed by the INIT (either directly by the INIT or indirectly through calls
made by toolbox traps that are used by the INIT.) These Types will appear in the order in which
they occur in the loading process.

 Interspersed with the resource types are a number of other useful pieces of data. This
includes the addresses and names of all traps patched by each INIT, all VBL (clock interrupt)
routines installed, Shutdown manager routines installed and much more.

An example of this portion of the INIT Info file is:

Res Type STR

Res Type SHRW
Res Type PROC
 $1EA Patch: $2681A Pack3 (StdFile)
Res Type PROC
Res Type Data
Res Type ICN#
$A02F Patch: $2B512 PostEvent
$A970 Patch: $2B502 GetNextEvent
$A971 Patch: $2B50A EventAvail

jGNEFilter (GetNextEvent Patch) installed at: $332E0

 This would tell you that this INIT loaded a resource of type STR , then one of type SHRW,
then a PROC resource.Then it patched the toolbox trap Pack3 with a routine of its own at
address $2681A (the ‘$’ indicates a hex value). After this, the INIT loaded in resources of types
PROC, data, and an ICN#. It then patched the traps PostEvent (at $2B512), and EventAvail (at
$2B50A). We note next that the INIT effectively patches the GetNextEvent toolbox trap as well
by setting the jGNEFilter hook to the address of a routine installed in the system heap by the
INIT.

#p
 There are a great variety of other kinds of information that this portion of the INIT Info file
provides. for instance, consider this segment of the output for the INIT Soundmaster.

VBLProc $417C82 Count: $1 Phase: $0

Removed VBLProc: $417C82
Removed VBLProc: $792E
 $A9C8 Patch: $17B80 SysBeep
Shut Down Routine at: $17B94 Called before: Restart
Shut Down Routine at: $17B98 Called before: Power Off
Removed VBLProc: $792E
 $A017 Patch: $17B8C Eject
 $A02F Patch: $17B88 PostEvent

 Here we see that SoundMaster Installed a VBL routine and then shortly thereafter removed
it. It then patched the trap SysBeep. After this, it installed two shutdown routines; one to be
called before the computer restarts, and another to be called just before the power is turned
off.

Finally, SoundMaster patches the traps Eject and PostEvent.

 The INIT Info report can provide much more information than what we have indicated here.
The sections that follow will elaborate on this.

Example:
Here is an example of the report generated for a couple of simple INITs

Easy Access -- Note that this file contains three distinct INITsEasy Access (INIT)

Size of this INIT in bytes: 832
Requested System Heap space (bytes): 0
System Heap Expansion (bytes): 0
System Heap Used (bytes): 632
Application Heap: $40298 - $44A98
Free in System Heap (bytes): 16748

 $137 Patch: $2AFEC DrawMenuBar

jGNEFilter (GetNextEvent Patch) installed at: $2AFBE

Trap History
 $A51E NewPtr (Size (bytes): 776)
 $A02E BlockMove #Bytes: 776 From: $40414 To: $2AF68

Easy Access (INIT)
Size of this INIT in bytes: 572
Requested System Heap space (bytes): 0
System Heap Expansion (bytes): 612
System Heap Used (bytes): 468
Application Heap: $404FC - $41CFC
Free in System Heap (bytes): 16892

 $2F Patch: $2B26A PostEvent

Trap History
 $A51E NewPtr (Size (bytes): 532)
 $A02E BlockMove #Bytes: 532 From: $40754 To: $2B1D0

#p

LaserFixLaserFix (INIT)

Size of this INIT in bytes: 1096
BufPtr: $1E7272
High Ram Used (bytes): 388
Requested System Heap space (bytes): 0
System Heap Expansion (bytes): 468
System Heap Used (bytes): 4
Application Heap: $406D0 - $41ED0
Free in System Heap (bytes): 17356

 $8 Patch: $1E7272 Create
 $0 Patch: $1E72F6 Open

Trap History
 $A997 OpenResFile
 $A9A0 GetResource DITL #-8191
 $A86E InitGraf
 $A86F OpenPort
 $A9A0 GetResource ICN# #128
 $A029 HLock $407D8
 $A8EC CopyBits
 $A8EC CopyBits
 $A02A HUnLock $407D8
 $A9A3 ReleaseResource $407D8
 $A87D ClosePort
 $A146 GetTrapAddress
 $A146 GetTrapAddress
 $A02E BlockMove #Bytes: 388 From: $40AD2 To: $1E7272
 $A047 SetTrapAddress
 $A047 SetTrapAddress

Patches and Hooks
Obviously, it is very useful to know which traps are patched by the various INITs that reside in
your system. If two INITs patch the same trap(s) then there is a potential for trouble (although
well-written INITs can generally patch the same traps without stepping on each other’s toes).
Moreover, this information gives you at least a rough idea of how the INIT performs its magic.

 For instance, it should come as no great surprise that Boomerang patches the StdFile
trap.This is how it can get that little boomerang icon into the Standard File dialog box every
time. You will not be shocked to discover that the virus protection INITs patch traps that modify
resources. By patching such traps, these utilities can intercept a virus that is trying to add or
modify a system resource and refuse it access. On the other hand, you might be surprised to
discover that the INIT the Grouch [Begin Footnote] ---If you haven’t already tried this neat INIT, get it off of

just about any online service.--- [End Footnote] (previously Oscar) patches the traps MenuSelect and
CopyBits. Well, MenuSelect is pretty obvious since the Finder’s ‘Empty Trash’ menu item is
changed to ‘About the Grouch’, but why CopyBits? Well, I’m guessing because I haven’t
looked more closely at it, but probably the idea is based around the fact that when you throw
something into the trash, the trash icon changes and it is a call to CopyBits that causes the
icon to change.

 In spite of this, there are a number of pitfalls that you must avoid.

Delayed Patches (or Don’t Believe Everything You Read)

#p
It is naive to believe that just because a patch occurs during the time that a particular INIT is
loading, it is the INIT that is doing the patching.This may not be the case. It may not even have
anything at all to do with the INIT!

 For example, when the INIT Suitcase executes, it patches a whole slew of traps. In fact the
INIT Info file will show that the following traps are all patched by Suitcase. (Of course the
actual addresses o the patches would vary from machine to machine.)

 $A996 Patch: $3589E RsrcZoneInit

 $A9A1 Patch: $35952 GetNamedResource
 $A9A8 Patch: $359FA GetResInfo
 $A9A0 Patch: $35F10 GetResource
 $A9A2 Patch: $35DF6 LoadResource
 $A9B0 Patch: $35E3E WriteResource
 $A999 Patch: $36D66 UpDateResFile
 $A9AB Patch: $363DE AddResource
 $A9AD Patch: $36424 RmveResource
 $A99A Patch: $36DD0 CloseResFile
 $A99D Patch: $35BCC GetIndResource
 $A80E Patch: $35BDE Get1IndResource
 $A998 Patch: $35C2E UseResFile
 $A94D Patch: $3660E AddResMenu
 $A951 Patch: $36616 InsertResMenu
 $A93D Patch: $36BDC MenuSelect
 $A9B6 Patch: $35CD0 OpenDeskAcc
 $A9B7 Patch: $35D90 CloseDeskAcc
 $A023 Patch: $35DE4 DisposHandle
 $A995 Patch: $357DC InitResources
 $A935 Patch: $3659C InsertMenu
 $A932 Patch: $36566 DisposMenu
 $A9A3 Patch: $36578 ReleaseResource
 $A997 Patch: $36232 OpenResFile
 $A000 Patch: $362D0 Open
 $A00C Patch: $36332 GetFileInfo

 Well, that’s all very well and good, and in fact all of these patches really are caused by
Suitcase itself. However, no matter what INIT loads next, you will see (essentially) the
following in the next INIT's portion of the report:

$A99D Patch: GetIndResource $413CA4**

 Now, the two asterisks are INIT-Scope’s way of telling you that it has detected that this patch
is not really due to the current INIT, but is actually caused by an earlier INIT. It is not terribly
unusual for an INIT to patch a trap, which then in turn patches other traps when it is next
executed.

 This is one example of a delayed patch. In fact it does not matter what INIT executes after
Suitcase; you will always see this reference to a patch to GetIndResource. The reason for this
is that the system code that is responsible for loading INITs at startup time calls a trap that
triggers the patch to GetIndResource.

 If you run INIT-Scope on a system that contains Strtscrn and Black Box and if Strtscrn

#p
executes after Black Box, then you will see a patch to the toolbox trap PaintOne that appears
to be due to Strtscrn, but is really caused by a delayed patch of Black Box’s. (Black Box
patches InitDialogs which (apparently) in turn patches PaintOne when it is called.) Since
Strtscrn uses the toolbox trap InitDialogs, it triggers the delayed patch by Black Box.

Hooks
There is more than one way to patch the system. The Macintosh contains a variety of low
memory vectors that allow a user to install patch code that will be called at a prescribed time.
Perhaps the most frequently used such hook is jGNEFilter. Any routine whose address is
placed in this vector will be called at a special point during the operation of the crucial
GetNextEvent trap that is central to every Macintosh application. This is effectively a patch to
the GetNextEvent trap, but it does not appear as such.

Beware the Debugger Patches
If you use INIT-Scope’s intercepting capability to drop into a debugger just before an INIT is
called, you must be prepared for two things; first, there will be no trap history provided for this
INIT (the trap history option is explained in the next section), and secondly you will likely see
some unusual patches that have nothing to do with the INIT, but are in fact caused by the
debugger. For example, in the case of TMON, you may see something like:

 $2F Patch: $A3B2 PostEvent
 $1C9 Patch: $A3AC SysError
 Low Memory Vector at $8 altered to: $1EE0C4

 Note that TMON must patch vectors such as $8 to be able to intercept system errors when
they occur. We'll have more to say about debuggers in a minute.

The Trap History
INIT-Scope intercepts the INIT process at its very roots, and hence can closely monitor the
proceedings. One consequence of this is that INIT-Scope can display, as part of its report, a
detailed account of the toolbox traps used during the INITializing process. In fact, if you select
the 'Show Trap History' option, then the INIT Info report will contain the name of every trap that
the INIT calls during its execution. For many traps the values of the parameters passed to the
traps is provided as well.

 If you select the 'INIT Calls Only' option, then only traps used by the INIT will be reported.

 If you select the 'Show All Calls' option for trap history, then all trap calls will be reported no
matter whether they came from the INIT or not needless to say, this will produce a L-O-N-G
report and probably it is best not to select this option unless you really need the information.

 An example of a portion of the trap history segment of an INITInfo report is:

Trap History

.

.

#p
.

 $A9A0 GetResource BrtZ #128
 $A51E NewPtr (Size (bytes): 512)
 $A992 DetatchResource ($1D544)
 $A9A0 GetResource ICN# #128
 $A86E InitGraf
 $A86F OpenPort
 $A029 HLock $483A0
 $A8EC CopyBits
 $A8EC CopyBits
 $A02A HUnLock $483A0
 $A9A3 ReleaseResource ($483A0)
 $A87D ClosePort
 $A146 GetTrapAddress
 $A02E BlockMove #Bytes: 68 From: $4854C To: $1D847C
 $A047 SetTrapAddress

.

.

 Note that you can tell a great deal from the trap history report. Not only can you surmise the
logic of the INIT at a glance, but the values of the parameters allow you to locate important
data inside the system heap or above BufPtr. Also, the trap history report can be used like a
street map to trace through the INIT with a debugger, or as an aid to reconstructing the INIT's
code with McNosy.

 The kinds of traps whose data is provided falls into these categories:

1. Memory manager calls that deal with handles. The value of the handle is provided.

2. BlockMove (INIT-Scope tells you how many bytes were moved, from where, and to where.)

3. Resource Traps - the ResType and ID of the requested resource are both provided.

4. NewHandle and NewPtr. In each case the size of the requested handle or pointer is shown.

5. For calls by HFSDispatch, the type of call is provided.

6. Pack Managers are displayed by name.

 The trap word of each trap is also provided - and often this is valuable. For instance, both
A11E and A51E are legitimate trap words for the NewPtr trap. However, A11E will allocate the
resulting block of RAM in the application heap, while A51E will allocate the block in the system
heap.

Some Caveats
There are a few problems with the Trap History portion of the report. If you select to only see
the calls made by the INIT, then INIT-Scope attempts to determine for each trap call whether or
not it was made by the INIT. It does this by simply checking to see if the call lies in the range of
memory beginning at the address of the INIT and extending up to the address of BufPtr at the
time the INIT was loaded. Any call in this range will almost surely be from the INIT. A few
anomalies creep in however, and you should be aware of them.

#p

 First, consider files such as Easy Access. This INIT File actually loads three distinct INITs,
and you will miss most of the calls by easy Access unless you turn on the 'All Calls' option.
The reason for this is as follows. The first thing that each of the INITs loaded by Easy Access
does is to allocate a block of memory in the system heap, and then load some code resource
into it. Then the INIT jumps to a location in that new block - which is generally lower in the
system heap than the INIT itself. Consequently, INIT-Scope does not recognize these calls as
being from the INIT. Note that had the allocated memory resided in high RAM, this problem
would not occur.

Changing the Report's Creator Type
The INIT Info report is a text file, and consequently any word processor can read it. However, it
is convenient to be able to open the file directly from the Finder by double-clicking it. For this
reason, the report has been given the creator type of 'MSWD' so that you can open it directly if
you own Microsoft Word. If you use another word processor, then you might prefer to change
the creator type to something else - like MACA if your use MacWrite. You can do this by using
ResEdit to change INIT-Scope's Fcrt resource (this resource is a long word representing the
creator type of the report, and is by default MSWD).

Skipping INITs
If you check the 'Skip INITs on Shift Key' option in the INIT-Scope cdev, then you can skip any
INIT in your system folder by simply depressing the Shift key (but no other modifier keys) just
before it loads in. Generally, this amounts to depressing the Shift key right after the icon of the
previous INIT appears. When INIT-Scope detects the Shift key it will abort the loading of the
next INIT, emit a short beep as a signal, and delay for 2 seconds to give you time to release
the Shift key. Of course, to use this feature you must know the order in which your INITs load.

 If you are having a system bomb at some point during the startup process, it might be a good
idea to use this feature to simply skip all the INITs in your system folder - a lot easier than
booting with a system disk on an external floppy diskette.

 One reminder - some INIT or cdev files may contain several distinct INITs. For example Easy
Access has three. Thus to completely bypass Easy Access in this manner would require
leaving the Shift key down for all three INITs.

Turning Off INIT-Scope
Although it provides you with a great deal of information, you will not generally need to keep
INIT-Scope turned on (unless maybe you want to use one of the 'Skip INITs' or 'Intercept INITs'
feature).

 You can turn INIT-Scope off from the cdev. After this, INIT-Scope will not load again until you
turn it back on from the cdev.

 If INIT-Scope is on, but you would like to bypass it in the startup process, just lock down the
Caps Lock key but do not depress any other modifer keys.

#p
For the Highly Technical - Using INIT-Scope and a Debugger
INIT-Scope provides a lot of useful information that makes going back through the INIT with a
debugger a lot easier. You can plan for breakpoints more intelligently and have better idea of
what's going on.

 To intercept an INIT during the startup process, simply hold down the option key (but no other
modifier keys) just before the INIT is about to load (or, just after the previous INIT loads.)

 You must have a debugger installed in order to use this feature. INIT-Scope does check for
the presence of a debugger, and ignores your request to intercept if no debugger is found.

 When you fall into the debugger, you will see the instruction

jsr(A1);

 The address of the INIT's code is in register A1, and you can follow its execution by stepping
through the code at this point. The next step takes you to the first instruction in the INIT.

 Aside from the comments made earlier (in the section on trap history), there are a few other
things to be aware of if you want to use a debugger with INIT-Scope.

 For one thing, if you generate a report, and then want to use that report as a guide to ferreting
through the INIT with a debugger, then make sure that you keep INIT-Scope turned on!
Otherwise the addresses and data will not be the same the second time through as they were
in the report.

 It is usually better to load the debugger before INIT-Scope. It will work the other way around,
but it's not recommended.

 One last thing, you may find it useful to know that the name of the INIT is stored at the
location $16 bytes (22 decimal) past the address in the program counter at the moment you fall
into the debugger.

Final Comments
INIT-Scope has been tested extensively on a Mac Plus, Mac SE, Mac SE/30, Mac II, Mac IIcx,
and a Mac IIci. In addition, a great many INITs were tested with INIT-Scope. The only
debugger that INIT-Scope has been test with is TMON. Also INIT-Scope has not been tested
with Systems below 6.0.

 INIT-Scope's INIT is written entirely in assembler. Although it provides you with a great deal of
information about the patches to the toolbox traps, INIT-Scope does not patch any traps itself!

Version 2.0
Your comments, suggestions are welcome and indeed solicited. A far more powerful version of
INIT-Scope is in the works and will be out shortly. If you would like to be informed of the
release of version 2.0, send me an E-Mail.

#p

 This version 1.0 of INIT-Scope is FreeWare, but is not public domain. I retain the copyright.
INIT-Scope may be distributed anywhere you like, but this documentation must be included
with it.

 Also, please make sure that any distributed copy has the name of the file as " INIT-Scope"
(with a leading space), and I'd prefer that the Fcrt resource remain 'MSWD' (so that the report
will be a Microsoft Word file.)

David P. Sumner Dept of Mathematics
1009 Walters Lane University of South Carolina
Columbia, SC 29208 Columbia, SC 29208
(803)-783-2980 (803)-777-3976

CIS: 75515,1507
America Online: David Sumn
Internet: sumner@sc.scarolina.edu

