
v

MEMO

WildCard Quick Reference Apri l 1987
Mike Farr
Wildcard Test Team

This is a quick reference for WildTalk programmers. It covers Expressions,
Messages, Control structures, Commands, Functions, Error handling and WCMDs.
For more information, see the Help Stacks.

Intro to Expressions

Expressions are the building blocks of WildTalk. In order to refer to WC objects correctly or to create text strings and
numeric values, we must be able to construct legal expressions. Most Wildtalk commands make use of the expressions
explained below. There are four types of expressions: logical, arithmetic, string, and container. A logical expression is
an expression like 4 < 5 that evaluates to true or false. An arithmetic expression is just an expression like 4 + 5 that
evaluates to a number. A string expression is just an expression that operates on character strings using special
operators to join two or more strings together: "this " & "that". A container expression uses WildCard fields and/or
variables to store logical, arithmetic, and string expressions. Chunk expressions like first word or line 1 to 5 specify a
part of a container.

Logical Expressions:
 Anything that returns "true" or "false".

May use the logical operators below to compare
1) arithmetic expressions using any one of the logical arithmetic operators (< > >= etc.),
2) string expressions using any of the logical string operators (is in/of, is not in/of, contains)

Several expressions may be combined with and and or.

 Logical Operators
> < >= <= ≤ ≥ contains is in not
is not in is of is not of and or is <> ≠ =

Examples:
5≤6
var1 <> first word of field "ffo"
("this that, and the other" contains "this") is not contained in bkgnd field "foo"

 (var1 contains word 3 of field "blah") and (var1 > var1) or (the value of field "foobar" < 5)

Arithmetic Expressions:
Anything that evaluates to a number. May use functions, operators, parentheses, variables, fields, or any word, line,
item, or character part of variables or fields:

^ (exponent) / div mod + -

Examples:
 5 * 4.987 + line 4 of card field 3 - (-74.9 ^ 5 + 4 ^ (var1 +2))

 the value of line 4 of field "bar" div 9

Notes on WildCard B1
2

String Expressions:
May use functions, variables, fields, and string literals ("a string"), combined with the string operators & and
&& and chunk operators such as word, line, and character etc. Functions returning numbers, or variables, or
fields containing numbers can be treated as strings, thus "5438" is a 4 character string not the number 5438:

String Constants
 empty formFeed lineFeed quote return space tab

Examples
 "literal" & variable & return & linefeed & card field "bad" & third word of field "dude"

field "amos" of card id 234 & return & item 2 of field 4 & the value of ("field " & var4)

Misc. Constants:
These miscellaneos constanst didn't fit in any where else:

down up (for testing the state of the mouse button or a key)
false true pi (3.1415926589793...)

Examples:
if tabKey is up then ...
repeat until <some functrion> = false

Objects

An object can send and receive messages. Wild Card contains the following types of objects:

buttons fields cards backgrounds stacks

Buttons and fields are contained in cards or backgrounds. They are referred to by Name, Number, and ID Number.

The following words and phrases may be used to refer to particular objects.

Ordinals and Constants:
any last
first second third fourth fifth sixth seventh eighth ninth tenth
one two three four five six seven eight nine ten

Additional Ordinals for cards:
next previous prev this middle mid recent

Notes on WildCard B1
3

Containers

Containers are storage areas that may hold text or numeric values. Variables are one kind of container. Fields are
another. You use the command put to put the value of an expression into a container as in put "this that" into var1.

WildCard contains the following containers:

variables Variables can be local to objects or global to any object in WildCard.
Global variables are created with the command "global VarName" in an

object's script creates a global. Every object's script containing global VarName shares the
same variable VarName.

message box, msg can put into the message box, can type text into it, can execute
message commands from it

fields can access field's contents with put command, or with chunk expressions
(see below)

it A global variable that always exists
selection When field text has been selected from within a script (by using the drag
command) the selected text is put into a container called selection.

Chunk Expressions
Chunk expressions like "first word of" and "line 1 to 3 of" specify the componant parts of a container.
Componants--for example a word--can be used like a container. You can perform operations on, or store values into
a componant just as you can into a container. For example, put "this string" into word 2 of field "foo"

Basic componants of Chunk Expressions:
word character line
 item --an item is a section of a string bounded by commas,

"item1, item2, item3,...".
character:

character 1 to 25 of <field designator>

word:
word of <field designator>
word 1 of varName

item:
item 5 of <field designator>

line:
line 1 of <field designator> item 2 to 3 of field "foobar"

ranges:
line 1 to 5 of field "foobar" item 2 to 3 of field "foobar"

Notes on WildCard B1
4

Examples of Chunk Expressions:

third word of field "foo"
character 3 to 48 of card field 5
lines 1 to 10 of bkgnd field ID 234
third word of Var1
lines 1 to 10 of third word of field "foo"
--where the third word of field "foo" is the name of a currently defined variable.

Designating Objects, Containers et. al.

Putting it all together

Arithmetic and string expressions can be used in specifying objects: card button "foo"&"bar", and containers: word
(5*3+2) of field 35+Var1. Functions, (documented later in this reference), return numeric or string values and can also be
used to specify objects or containers. An example is

 put line (the mousey div 12 + 32 of field "foo") into msg

which uses an arithmetic expression to specify a line number, in this case the line in field "foo" that the mouse is pointing
to. (The top of the field is at vertical position 32 and in 10 point type on 12 point leading.)

Throughout the rest of this document I refer to various <designators>. This is short hand for the ways to specify objects
and containers. Anywhere you see an expression in <...>, you may substitute the appropriate specifying phrase. An
<Object Designator> is a phrase designating a particular object whereas <card designator> refers only to cards.
Ordinals, constants, expressions, functions results, and containers can be used to specify the ID, Name or Number of an
object.

A <container designator> is a phrase designating a container, or a part of a container (like the first word of the container).
Ordinals, constants, expressions, functions results, and even other containers can be used to specify a container, and chunk
expressions can be used to specify a part of a container.

Fields are both objects and containers. If you send a message to a field or change its position, it will be used as an object.
If you put something into it, or refer to part of its text in a chunk expression, it will be used as a container.

Object Designators

Only the go command (described below) allows you to refer directly to a card within another stack: go to card 5 of stack
"foo". In all other cases, the object you refer to must be within the same stack. If you want to refer to an object outside of
the current stack you must first go to that stack. (You can do this without the user noticing it by setting the property
lockScreen to true; see the set command.)

<stack designator>
Name: stack "foo"

stack "VolName:stackname"
Number:(stacks not numbered)
ID: (stacks have no ID)

<card designator>
Name: card "foo"

card "foo" of stack "VolName:stackname"
Number:(stacks not numbered)

Notes on WildCard B1
5

ID: (stacks have no ID)

<button designator>
Name: button "foo" (defaults to card button) bkgnd button "foo"
Number:card button 5 background button 1
ID: card button ID 234 background button ID 234+3

<field designator>
Name: field "foo" (defaults to card button) bkgnd field "foo"
Number:card field 5 background field 1
ID: card field ID 234 background field ID 234+3

Using Ordinals:
first card in stack third field in card recent card next card
card ten of this stack first card button?

Using Arith Expression:
card 5+3-2 of card

Using String Expressions:
card "foo" & "bar"

Using Containers : see below
card cardName ;where cardName is a variable
card first item of field 1
card (first word of field (first word of var1)) ;var1 is a variable
card cardName ;where cardName is a variable
card first item of field 1
card (first word of field (first word of var1)) ;var1 is a variable
first card in stack word 1 of field 3 of earlier card
bkgnd button "sam" & "fred"

Complex Chunk Expressions

Ordinals, string expressions, and container expressions can be mixed together to form really complex and convoluted
<designators> and chunk expressions. Here are some examples.

item var2 of message first word of field "joe" of card 5
line five of field one of card id 548 char var1 of var2
any char of bkgnd field "sam" character 5 of var1
last word of it first card field of card "foo"
first word of card field "foo"
first card in stack word 1 of field 3 of earlier card

Paths
We've all had the experience of forgetting where we put a file. We've buried it so deep inside folders within folders
that we need help (like the findfile DA) to discover where we put it. WC also needs help to discover where you put
your files so that it doesn't have to search the whole disk. A search path, like the examples below, determine where
WC will look for stacks, applications, and document files. WC accepts complete pathnames:

HDSC:folder1:folder2:folder3

Notes on WildCard B1
6

And relative pathnames: if WC is contained in folder2 in the line above, then folder3 may be referred to as

:folder3:

the complete pathname is unecessary. When given a relative path name, WC will start looking within its own folder,
folder2 and will see folder3.

Notes on WildCard B1
7
Messages

WildCard Messages
Wildcard sends several messages automatically. These include messages when the mouse is clicked and when the
user goes to a different card. Wildcard generates these automatic messages and sends them to either to a button, a
field or the current card. All the messages below get sent to one of these three objects. If the object does not have a
handler for the message, (an on message ... end message script), then the message is automatically inherited by the
next higher object. A card is the next higher object for a button or field. The complete inheritence path is as follows:

Message

WildCardCard Bkgnd

Stack

Buttons
Fields

WCMD

We start with a message sent by WildCard to a button, field or card. In the case of a button or field, if the object has
no handler for the message then the message is inherited by the card containing the button or field. When a card
receives a message, whether it be from WC or inherited from an button or field, it acts on the message if it has
ahandler for it, or lets it be inherited by the background containing the card. The background may acto on it or pass
it along to the stack, and then perhaps to WildCard. WildCard will check to see if it knows what to do with the
message, (for example, arrowKey left) or if it has a user added WCMD for the message (for example,
SoundCapToRes).

It may seem more logical that some messages, such as openBackground, be sent to the background, instead of to the
card. Within WC, it is up to inheritence to get the message where it is supposed to go.

Messages typed into the message box are sent to the card.

User Messages

There are several ways for the user to send messages. The first is by just naming the message from within a script or
the message box. The user can send predefined WC messages like mouseDown, openCard, or his own messages.
For example, one might have a script for a button that contains:

on mouseUp
messageName

end mouseUp

on messageName
...

end messageName

Notes on WildCard B1
8

WildCard will momentarily suspend the button's script and will send the message messageName to the current
object. In this case the button. If the button script contains a handler for the message messageName as shown
above, then messageName would get run. If there is no messageName handler, then the message would get inherited
as normal. When the message is finished running, or no handler is found for it, then the button's message will
resume running.

Messages can also pass arguments to their message handlers in this form: message arg1, arg2, arg3,... Spaces are
allowed after commas. Here is an example:

messageName "a string", word 1 of field 2, stringWithNoSpaces, var1

The handler for this message looks like:

on messageName arg1, arg2, arg3, arg4
put arg2 into it
put word 1 of field arg1
put 5 into arg4
...

end messageName

Passing Variables

When a variable is passed as an argument to a message, it is passed like a var parameter in Pascal. That is, when the
receiving handler changes the value of its parameter, it also changes the value of the variable used by the caller. This
way the receiving handler can pass values back to the calling handler.

The user can also send a message from a script or the message box and specify the target as well:

send "mouseUp "

-or-
 send "mouseUp " to button "foo"

-or-
send "myMessage arg1, arg2" to button "foo"

Using send, the message name and arguments must be passed within quotes. This limits the arguments to being
variables or one word unquoted strings, as WildCard cannot have quotes within quotes.

A script can also process a message and then pass the message on:

pass "mouseUp"

This allows the message to be executed within the script, and then to be inherited as well. A message handler may
only pass the same message on, e.g. a mouseUp handler may only pass mouseUp. See the messages section.

Mouse messages:

mouseEnter is sent to a button or a field when the mouse enters it, providing the mouse button is not
down.

mouseWithin is sent to a button or field periodically while the mouse cursor is within it.

Notes on WildCard B1
9

mouseLeave is sent to a button or field when the mouse cursor leaves it.

mouseDown is sent to a button when the mouse is clicked within it. It is sent to a field only if the
mouse is within the field and the field's text is locked. If the text is not locked, then the
mouseDown is interpreted as the selection of an insertion point. If the mouse is not over
any field or button, then the mouseDown is sent to the Card. Not sent to hidden buttons
or fields.

mouseStillDown sent to a button periodically while the mouse button is held down. It is sent to a field
only if the field's text is locked.

mouseUp is sent to a button or card if the previous mouseDown was also sent to that button or card.
MouseUp is sent to a field if the field's text is locked, and the preceding mouseDown was
also sent to that field. If the mouse is clicked within a button or field and dragged
outside it, no mouseUp is sent to any object.

mouseLeave is sent to a button or field when the mouse cursor leaves it.

Mouse messages are not sent to hidden buttons or fields.

New messages:

newButton Sent to the newly created button.
newField Sent to the newly created field.
newCard Sent to the newly created card.
newBackground Sent to the card created at the same time as the newly created background.
newStack Sent to the card created at the same time as the newly created stack.

Delete messages:

deleteButton sent (as a final wish) to the condemned button before it is deleted.
deleteField sent to the field before it is deleted.
deleteCard sent to the card before it is deleted.
deleteBackground sent to the current card before its background (and iself) is deleted.
deleteStack sent to the current card before its stack (and iself) is deleted.

open messages:

openField sent to the field when the user clicks within it to get an insertion point
openCard sent to a card when the user "opens" or goes to it. If a card is opened from within a

script, the script is momentarily interrupted and the openCard message is sent to the card
and handled or inherited.

openBackground sent to a newly opend card when it shares a different background from the previous card .
openStack sent to the first card opened when the user goes to a new stack.

Notes on WildCard B1
10

Close messages:

closefield sent to the field when the user has altered its contents and then clicked the mouse outside
the field.

closecard sent to the current card just before going to a new card.
closebackground sent to the card just before opening a new card that has a different background.
closestack sent to the current card just before opening a new stack.

Special messages:

arrowKey {right | left | up | down}
sent to the current card. If the user does not intercept the arrowKey message, then
depending on the value of the argument, WC will :

Argument Action
right go to the next card
left go to the previous card
up push the current card on the card stack
down pop the card stack

help send to the current card when the user types "help" in the message box, or when he types
cmd-? anywhere except while entering text into a field.

idle periodically sent to the current card

resume sent to the current card when returning from application

returnKey sent to the current card when the return key is hit, and no insertion point is currently set
in a field.

startUp sent to the current card when the program is fired up (first card in Home stack if WC
double clicked.)

suspend sent to the current card when an "open application" command is executed. The
application is opened anyway.

enterKey sent to the current card, when the enter key is hit, and no insertion point is currently set in
a field.

tabKey sent to the current card when the tab key is pressed, providing an insertion point is not
currently set in a field. Can also be sent by typing tabKey in the message box.

userMessage any message name. If typed from the message box, it is is sent to the current card. If
sent from within a message handler, then it is sent to the target of the original message,
and is then available for inheritence.

Control Structures

The following are legal control structures.

if then else
if <logical expression> then <statement> if var1 < var2 +4 then add 1 to var1

Notes on WildCard B1
11

if <logical expression> then if var1 +4 > 5 then
<statement> put var1 into msg
<statement> add 1 to var1

end if end if

if <logical expression> then
<statement>
<statement>

else
<statement>
<statement>

end if

Example of nested ifs:

if <logical expression> then
<statement>
if <logical expression> then <statement>

<statement>

if <logical expression> then
<statement>
<statement>

else
<statement>
<statement>

end if
end if

repeat repeat while <logical expression> --repeat while the mouse is down
<statement>
<statement>

end repeat

repeat until <logical expression> --repeat until var1 < var2
<statement>
<statement>

end repeat

repeat with <cont. exp.> = <arith. exp.> to <arith. exp.>
<statement> --repeat with indexVar = 1 to 5
<statement>

end repeat

repeat with <cont. exp.> = <arith. exp.> down to <arith. exp.>
<statement> --repeat with indexVar = 15 down to 5
<statement>

end repeat

Notes on WildCard B1
12
Commands

Notation used:
<some arg> means insert a proper argument to the command or function

[] indicates an optional structure, may be excluded from command

{ } indicates choose one of the possibilities

| separates possible choices within [] or {}.
Ex: [<choice1>|<choice2>] or {<choice> | <choice>}

* means repeat the preceding argument any number of times. For
example you may pass many musical notes to the play command.

<cont. exp.> any container or part of one. See containers earlier in this paper
<arith. exp.> any expression that returns an arithmetic value.

See aritimetic expressions
<logical exp.> any expression that evaluates to true or false.

See logical expressions
<string exp.> an expression using strings and string operators & and &&

add <dest> to <source>
<cont. exp.> <cont. exp.>
<arith. exp.>

add (var1+4) to third word of line2 of field "foo"

answer <question> [with <reply>] [or <reply>] [or <reply>]
<cont. exp.> <cont. exp.>
<string exp.> <string exp.>
<arith. exp> <arith. exp.>

answer "Name of stack:" with Var1 or Var2 or "Help"

ask <question> [with <reply>]
<cont. exp.> <cont. exp.>
<string exp.> <string exp.>
<arith. exp> <arith. exp.>

ask line 1 of field "bar" with pathVar1

beep <number of beeps>
<arith. exp.>
<cont. exp.>

 beep 4*4

choose <tool name> tool
browse button field select lasso pencil brush eraser

line rectangle round rect bucket oval curve text regular
polygon polygon spray
click at <horPos>, <vertPos>

click at 50,100 range = 0-511 for horizontal, and 0-341 for vertical

Notes on WildCard B1
13

close file <filename> ;closes file for reading or writing (see read, write)
<cont. exp.> close file first line of field 5

close file var1
<string exp.> close file "HD:folder:foobar"

close file "CustomerRec" & short date

delete < container exp.> ;delete contents of container, part of container or object
delete characters 1 to 3 to last of var1
delete word 1 to 5 of field "sam"

dial <phone number> [with [modem] <hayes modem commands>]
<cont. exp.> Dialing with modem takes the <hayes modem commands>

and prepends them to the <phone number> My favorite are
ATTD which means get the ATtention of the modem, and Tone

Dial the number.
<string exp.>

dial "408-973-6683" with ATTD
dial first line of field "Phone Number" with ATTD

divide <dest> by <source>
<cont. exp.> <cont. exp.>

<arith. exp.>
divide third word of var1 by word three of field 2

domenu <menu item>
 If a menu is more than one word, make sure the menu item is in quotes.

domenu "new card..." domenu "Find File"

drag from <xpos>,<ypos> to <xpos>,<ypos>
Move the mouse cursor from position to position just as if moved by the user.

move from 20,30 to 40,50 You may drag off the visible screen. If drawing, WC will properly clip to
the screen. Visible screen = 0-511 for horizontal, and 0-341 for vertical.

flash <number of times>
flash 5+3-2
flash var1
flash word 1 of field "foobar"

find [chars | word] <string pattern> [of | in] { <field designator> }
<cont. exp.>
<string exp.>

find "string" in card field 1 ;find word starting with "string" in field 1
find chars first word of Var1 in first field of card 4 ;find

first word of Var1 in field 4
find word "The rat" ;find exactly "the rat" in any field

Notes on WildCard B1
14

get <property> [of | in] <target> ->property returned in it
NOTE: An <object designator> as used below is just an expression that specifies an object. Container

or string expressions may be used. The following string expression is a sample of a <button designator>:

card button ID 3834 of card "foo" of background 3.

For more information on <object designators> see the section on expressions.
WildCard Properties

fullMenus -> true | false
powerKeys -> true | false lockScreen

-> true | false pattern -> 1 .. 40
lineSize -> 1.. 6 userLevel

-> 1 .. 5
brush -> 1 .. 32

Stack Properties
freeSize of <stack designator> -> space left in current allocation record
size of <stack designator> ->size of thestack in bytes
name of <stack designator> -> stack "name "

short name of <stack designator> -> name
longname of <stack designator> -> stack ":MyStacks:Note"

script of <stack designator> -> the text of the script in it

Bkgnd Properties
name of <bkgnd. designator> -> bkgnd "name "

short name of <bkgnd. designator> -> name
longname of <bkgnd. designator> -> bkgnd "blah" of

 stack ":MyStacks:Note"
 if bkgnd has no name,

its ID will be returned
id of <bkgnd. designator> -> 434
script of <bkgnd. designator> -> the text of the script in it

Card Properties
name of <card designator> -> card "name"

short name of <card designator> -> name
longname of <card designator> -> card "name" of stack

":MyStacks:Note"
 if card has no name,

its ID will be returned
number of <card designator> -> the no. of the card in the stack
id of <card designator> -> card id 345

short id of <card designator> -> 345
longid of <card designator> -> card id 345 of

 stack ":MyStacks:Note"
script of <card designator> -> the text of the script in it

Notes on WildCard B1
15

Field Properties
 name of <field designator> -> field "foobar"

short name of <field designator>" -> foobar
long name of <field designator> -> bkgnd field "foobar"

 of card ID 345 of stack ":MyStacks:foo"
 if field has no name,

 its ID will be returned.
number of <field designator> -> the number of the field in

the background or card
style of <field designator> -> transparent,

 opaque, rect, rectangle, shadow
id of <field designator> -> 234

loc, location of <field designator> ->xpos, ypos
textAlign of <field designator> -> center | left| right
textFont of <field designator> ->Font Name
textSize of <field designator> -> number
textStyle of <field designator> Bold|Plain|Italic

|Underline|Outline
|Shadow|Condense
|Expand

textHeight of <field designator> -> number
lockText of <field designator> -> true or false
showLines of <field designator> -> true or false
wideMargins of <field designator> -> true or false
hidden of <field designator> -> true or false
script of <field designator> -> the text of the script in it

Button Properties:
icon of <button designator> -> <icon number>
name of <button designator> -> button "do it"

short name of <button designator> -> button "do it"
longname of <button designator> -> button "do it" of card id 345

of stack ":MyStacks:Note"
 if button has no name,

its ID will be returned.
number of <button designator> -> 3
id of <button designator> -> 345
showName of <button designator> ->true or false
hidden of <button designator> ->true or false
size of <button designator> ->x, y, x, y
 location,loc of <button designator> ->xpos, ypos
style of <button designator> ->transparent

|round rect, rectangle | radioButton
|checkBox

hilite of <button designator> -> true| false
icon of <button designator> -> the icon number
script of <button designator> -> the text of the script into it

global <variable name> [, <variable name>, <variable name>...]*
Any name. Becomes a variable container accessable from any object's script. Once

a script has declared a global of a given name, any other script declaring a global of the
same name will use the same variable.

global foo, bar, sam, space, fatman

Notes on WildCard B1
16

go [to] {card <card designator>} {of <stack designator>}
go to card "mycard"of stack "mystack"
go to card id 89A4 of stack varName
go to card varname of stack "mystack"&short date
go to card (first word of var2)
go to first card of stack word 1 of var2

[go] help

hide <button or field designator>
hide button id 5 of card "foobar"
hide field "fun"

hide <window name>
pattern windowtool window message | message box | msg

hide msg
hide pattern window

lock screen

mark card

multiply <dest> by <source>
<cont. exp.> <cont. exp.>

<arith. exp.>
multiply third word of field "foobar" by 25
multiply var1 by 23*2+4^2

open file <textfile> ;open file for reading or writing

<cont. exp.> ;creates file if doesn't already exist
<string exp.> ;quote paths or filenames that contain spaces, or periods

Open is used in conjuction with read, write and close:

open file "filename"
write"string" & tabkey & "string" & return to file "filename"
close file "filename"
open file "filename"
read from file "filename" until "g"
read from file "filename" for 5
close file "filename"

Notes: You must close a file before reading back anything you send to it. You always start
reading from the beginning of a file. To write to the end of a file, read to the end and then write. If you write into the
middle of the file, the rest of the file will be lost. Currently, (will soon be fixed) if you close a file before reading to the
end, andy data after the last char you read will be lost. A mistyped read or write command will also have
this effect, closing ALL open files and truncating them.

open <Application>
open MacDraw

open <file name> with <Application>
<cont. exp.> <cont. exp.>
string exp. variable

Notes on WildCard B1
17

variable string exp.
open file "textfile" with "Word"
open file fileName1 with App1

play <sound > [tempo <arith. exp>] "{ <note> [octave] [#|b] [duration]"}*"
boing 200 is medium 4 = middle octave

w = whole note
for more info see help stack q = quarter note

e = eighth note
snd resources must be moved with ResEdit s = 16th note

Example: t = 32nd note

play "Boing" tempo 120 "e c d# g3h. gq d4 e3 d4 e3 d4 e3 cbw."
 "." for dotted,
3 in d4e3 for triplet
for sharp or b for flat

pop card
pop card ;return to that card

print <filename> with <Application>
<cont. exp.> <cont. exp.>
<string exp.> <string exp.>

print file "textfile" with "Word"
print file fileName1 with App1

push <card designator>
push last card ;save path to last card in this stack
push earlier card ;save path to the card we just came from
push message ;restore previous state of message box
push card id 54 of stack "foobar"

put <source> <preposition><destination>
<cont. exp.> before <cont. exp.>
<arith. exp.> after
<string exp.> into

put "string" into field 1
put var1 into iy
put third word of card field "foo" after bkgnd field Var1 of card "sam"
put character 4 of word (word 2 of card field "ffoo") into word 2 of message
put 35^2/.002
put "open FnameVar1 with" && CurrentApp into it

read from file <filename> until <single char>
<cont. exp.> <cont. exp.>
<string exp.> <string exp.>

read from file "sentences" until return
read from file var1 until "&"
See open command for fulle example and notes .

Notes on WildCard B1
18

read from file <filename> for <number of bytes>
<cont. exp.> <cont. exp.>
<string exp.> <arith. exp.>

read from file "sentences" until return
read from file var1 until "&"
See open command for fulle example and notes .

send "<messageName> [<arg1>, <arg2> ...]" to <object designator>
messageName is any <string exp.> card, field, button, bkgnd,
WC message or any <cont. exp.> (home?)
user defined message Args may not contain quotes " ".

send "mouseUp" to button ID 345 of card "foo"
send "myMsg var1, string, var2" to this stack

By using a message name as the first word on a line in a script, that message is
sent to the current object and then possibly inherited. See the Messages section
above.

myMessage var1, "first word field 2"

Notes on WildCard B1
19

set <property> [of | in] <target>

NOTE: An <object designator> as used below is just an expression that specifies an object. Container
or string expressions may be used. The following string expression is a sample of a <button designator>:

card button ID 3834 of card "foo" of background 3.

For more information on <object designators> see the section on expressions.
WildCard Properties

fullMenus to true | false
powerKeys to true | false
userLevel to 1 .. 5
brush to 1 .. 32
pattern to 1 .. 40
lineSize to 1 .. 6

Stack Properties
 name of <stack designator> to <cont. exp.> or <string exp.>

script of <stack designator> to <container or string exp.>

Bkgnd Properties
name of <bkgnd designator> to <cont. exp.> or <string exp.>
script of <bkgnd designator> to <container or string exp.>

Card Properties
name of <card designator> to <cont. exp.> or <string exp.>
script of <card designator> to < container or string exp.>

Field Properties
name of <field designator> to <cont. exp.> or <string exp.>
number of <field designator>" to <arith. exp.>
style of <field designator> to transparent|opaque| rectangle

|shadow | rect loc, location of <field
designator> to horPos, vertPos

textAlign of <field designator> to center | left| right
textFont of <field designator> to <cont. exp.> that = a fontname
textSize of <field designator> to <arith. exp.>
textStyle of <field designator> to Bold|Plain|Italic|Underline

|Outline|Shadow|Condense|Expand
textHeight of <field designator> to <arith. exp.>
lockText of <field designator> to true | false
showLines of <field designator> to true | false
wideMargins of <field designator> to true | false
hidden of <field designator> to true | false
script of <field designator> to <cont. exp.> or <string exp.>

Notes on WildCard B1
20

Button Properties:
icon of <button designator> to <icon number>
name of <button designator> to <string exp.>
number of <button designator> to <arith. exp.>
id of <button designator> to <arith. exp.>
showName of <button designator> to true | false
hidden of <button designator> totrue | false
size of <button designator> to x, y, x, y
location,loc of <button designator> to horpos, vertPos style

of <button designator> to transparent|round rect|rectangle
| radioButton | checkBox

icon of <button designator> to <arith.exp.> (an icon number)
hilite of <button designator> to true | false
script of <button designator> to < container or string exp.>

show <window name> [at <horPos>, <vertPos>] tool window| pattern

window 0 - xbound 0 - ybound
message box <cont. exp>

<arith. exp>
show tool window at 50, 50 Screen boundries for Mac Plus and SC are
show message box at HorPos, VertPos 0 - 511 and 0 - 341

show <buttonOrField> [at <horPos>, <vertPos>] <container

exp.> 0 - HorMax 0 - VertMax (unchecked by WT)
<string exp.> Screen boundries for Mac Plus and SC are

show button 5 at 30,20 0 - 511 and 0 - 341
show button third word of field "foo" at Xpos, Ypos
show line 1 of field "foo" at line 2 of Var2 ;line 1 of field contains button or field

show <arith. exp.> cards
show 5 cards
show all cards
show word 1 of var1 cards

sort [ascending | descending]
[text | numeric | international] by <field exp.>

sort ascending text by field 1
sort by line 1 of field "foobar"
sort numeric by word 1 of field "foobar"

subtract <source> from <dest>
<cont. exp.> <cont. exp.>
<arith. exp.>

subtract 35.08 from line 3 of field "foo"

visual [effect] <effect name> [<speed>]
plain dissolve scroll right barn door close slow very slow
scroll up scroll down iris open barn door open fast very fast
iris close checkerboardwipe left
wipe right wipe up wipe down

unlock screen

Notes on WildCard B1
21

wait <time amount> <time scale>
<cont. exp.> ticks
<arith. exp.> seconds

wait 25 seconds wait 2300 ticks

write <string expression> to <filename>
<cont. exp.> <cont. exp.>
<string exp.> <arith. exp.>

write "string" & tabkey & "string" & return
See open command for complete example and notes.

wait <conditional exp.>
forever
until <boolean exp.>
while <boolean exp.>

wait forever
wait until the returnKey is down
wait while the mouse is up
wait until the mousev > 50
wait field 1

Functions:

In order to tell functions from commands, messages or user variable names, you must include the word the, before the
function name, of, after the function name, or parenthesis () around the arguments to the functionwhen you call a function.
The following forms are acceptable:

[the] functionName (arg1,afg2,...)
[the] functionName of arg1, arg2,...
the functionName [of]

The functions below appear in the funcName of format.

Function Arguments Returns

the chartonum of <an ascii char> the ascii number of the char
the clickloc xpos, ypos of where mouse was clicked
the commandKey up|Down; Is the command key up or down?
the date 4/20/87
the long date Tuesday March 19, 1987
the day week 1-7
the day year 1-366
the day {month} 1-31
the heapspace some large number, amount of space left in heap
the hour 0-23
the length of <stack|field> no. of cards in the stack | no. of chars in field
the minute 0-59
the month 1-12
the mouse up|down
the mouseclick true|false (don't know what this is)
the mouseh xpos (0 to 511 or greater) of mouse.

Notes on WildCard B1
22

the mouseloc xpos,ypos of mouse.
the mousev ypos (o-341 or greater) of mouse.
the number of cards number of cards in the current stack.
the number of buttons|fields number of bkgnd, or fgnd btns or flds in the card.
the number of chars| words|lines

| items [of | in] <container|field designator> How many there are.
the numtochar of <arith. exp.> a char, the ascii char associated with the number.
the offset of <char exp.> [of | in] <field> offset from start of container to the char.
the optionKey up|down; is option key up or down?
the param of <arith. exp> the nth parameter to the current message
the paramcount number of parameters
the params the parameter list
the random of <arith. exp. for upperBound>

integer (0 - upperBound)
the seconds unsigned integer
the secs unsigned Integer
the shiftKey up|Down
the sounddone true|false
the stackspace unsigned Integer, amount of stack space left
the target string indicating the original recipient of the current

message, e.g. card id 235, button id 2345
the ticks 60ths of second since boot
the time 2:34: PM
the long time 2:34:18 PM
the tool browse|button|field|various art tools

the value of <container evaluate the expression.
| <string exp.> Currently we on the test team are not sure of the exact

specifications of value of. The following is our
the argument is a container that contains an arith exp. then value of
returns the numeric value of that expression. If it the container contains
a string expression, then return its string value. In the case of an actual
in line string or arith. exp. being passed as an argument, evaluate the
expression. Thus, value of "string exp" and value of a container that
contains "string exp" will return the same thing. Value of only does one
level of evaluation. Thus if the value returned by value of was, say, a
variable name, you could then take the value of that variable. Thus
expressions like value of (value of first line of field "foobar") would be
legal.

the year unsigned Integer: 1986

Notes on WildCard B1
23

Error Handling

Unspecified as of this writing.

WCMD Format

Unspecified as of this writing.

