
® T H E S O U N D M A N A G E R

See Also Macintosh Technical Notes #168, and #208
Audio Interchange File Format specification
Macintosh Audio Compression/Expansion

specification

Written By Jim Reekes October 2nd, 1988

SOUND ADVICE

This document describes the System 6.0.2 Sound Manager. The original chapter
describing the Sound Manager is ambiguous, inaccurate, and often contradicts itself.
This chapter hopefully will clear up the confusion and get developers using the Sound
Manager as was originally intended. This document replaces the Sound Manager chapter
originally published in Inside Macintosh Volume V.

The Sound Manager is a replacement for the older Sound Driver documented in Inside
Macintosh Volume II. The abilities of the Sound Driver are currently supported by the
Sound Manager and it will utilize future hardware improvements. The Sound Manager
offers more flexible ways of doing things and, includes new features and options, all
requiring less programming effort. Many applications do not require the use of sound
and therefore do not need to be concerned with the Sound Manager. Refer to the Human
Interface Guideline: The Apple Desktop Interface when using sound.

A fundamental knowledge of music and sound synthesis is presumed in this document.
There are utilities available from third parties that aid in the development of creating
sampled sound resources. Creating wave table data or discussing the abilities of wave
synthesis versus sampled sound synthesis is not covered in this document. Two good
reference books are Computer Music, Synthesis, Composition, and Performance by
Charles Dodge and Thomas A. Jerse, and Principles of Digital Audio by Ken Pohlman.

This document contains an overview of the Sound Manager, and a detailed description of
sound resources, routines and commands. All of the known bugs and limitations are
collected into one section, “The Current Sound Manager”. A bug icon is used to point out
information contained in this section that is relative to the text being read. For example,

when reading about a sound command if a bug icon is shown, make sure you have read
the “Current Sound Manager” section regarding that command.

TABLE OF CONTENTS

INTRODUCTION..3
USING THE SOUND MANAGER...4

The System Beep...5
The Note Synthesizer..5
The Wave Table Synthesizer.. 5

Figure 1 Graph of a Wave Table...6
The Sampled Sound Synthesizer...7

Figure 2 Sampled Sound Header..7
Table 1 Sample Rates...8

SOUND RESOURCES.. 10
The 'snd ' Resource... 10

Figure 3 'snd ' Resource Layout...10
Format 1 'snd '...12
Example Format 1 'snd...13
Format 2 'snd '...14
Example Format 2 'snd '.. 14
The 'snth' Resource...15

Table 2 Synthesizer Resource IDs...15
SOUND MANAGER ROUTINES..16

Figure 4 Sound Channel and Routines..16
SndPlay.. 16
SndNewChannel.. 17
SndAddModifier..18
SndDoCommand... 19
SndDoImmediate...19
SndControl...19
SndDisposeChannel.. 19

SOUND MANAGER COMMANDS.. 20
Figure 5 Generic Command Format..20
Figure 6 noteCmd Format..24
Figure 7 freqCmd format.. 25

USER ROUTINES...28
PROCEDURE CallBack...28
FUNCTION Modifier...29

THE CURRENT SOUND MANAGER..31
Synthesizer Details..31
Sound Manager Bugs..33

SOUND MANAGER ABUSE..35
FREQUENTLY ASKED QUESTIONS..36
NOTE VALUES AND DURATIONS..39

Table 3 duration...39
Table 4 noteCmd values...40

SUMMARY OF THE SOUND MANAGER.. 41
Sound Manager Constants...41
Sound Manager Data Types...42
Sound Manager Routines...44

INTRODUCTION

The Sound Manager is a collection of routines that can be used to create sounds without
knowledge of, or dependence on, the hardware available. By using the Sound Manager,
applications are assured of upward-compatibility with future hardware and software
releases. The Sound Manager will always take advantage of hardware advancements.
Applications using the Sound Manager now will gain those advantages. When a
command is sent to the Sound Manager, it is really a request. For example, if sound
code written to play on a Macintosh II is being used on a Macintosh Plus or Macintosh
SE (which have slower CPU clocks and less capable audio hardware) the Sound Manager
will use synthesizers fitted best to those machine’s abilities. Conversely, future
Macintoshes may have improved audio hardware, and that same code will be utilized by
the Sound Manager to take full advantage of these as-yet-undetermined hardwares. All of
this is transparent to the application, yet serves to make that application compatible with
the full line of Macintosh computers, present and future.

A synthesizer is very similar to a device driver. A synthesizer is the code responsible for
interpreting the most general sound commands and using the hardware available to
produce it. A synthesizer is stored as a resource which the Sound Manager will install.
Customized synthesizers are supplied for every Macintosh configuration. Only one
synthesizer can be active at any time. Apple’s sound hardware is only supported when
used with Apple’s synthesizers. Writing synthesizers for Apple’s hardware is not
supported. Writing custom synthesizers for non-Apple hardware is beyond the scope of
this document. All references to synthesizers in this document pertain to the Apple
synthesizers that are supplied with the Sound Manager.

Modifiers are used to perform pre-processing of commands before they are received by a
synthesizer. Modifiers can ignore, alter, remove, or add commands, or perform periodic
functions. A modifier is a procedure in memory, or a resource which the Sound Manager
can install. For example, if the application wanted to play a melody transposed up by an
octave a modifier could be used to replace notes with notes that are an octave higher.

Instructions for a synthesizer and modifier are sent through a command queue called a
sound channel. Sound channels provide a means of linking applications to the audio
hardware. The application provides a sequence of commands which are processed
through a number of modifiers (if any) and finally through a synthesizer that creates the
sound with the hardware.

USING THE SOUND MANAGER

The Sound Manager code that runs on the Macintosh Plus is the same that is used on the
Macintosh SE. The code running on the Macintosh II is different, since it has the Apple
Sound Chip installed. The Apple Sound Chip was developed to reduce the CPU’s
involvement with producing sound and to extend the capabilities of the Sound Manager.

The Sound Manager requires the use of the VIA1 timer T1.
This conflicts with some third party MIDI drivers. As such, it
is not possible to use both the Sound Manager and these MIDI
applications.

There are two types of resources used by the Sound Manager, 'snd ' and 'snth'. A
'snd ' resource contains data and/or commands. A 'snth' resource is code used as a
synthesizer or modifier to interpret the commands sent into a channel. Generally,
applications only need to be concerned with 'snd ' resources. More information on
the formats of 'snd ' resources and their use is given later.

The Sound Manager provides a range of methods for creating sound on the Macintosh.
Most applications will only need to use a few of the Sound Manager routines. At the
simplest end of the range is the use of the note synthesizer to play a simple melody or
_SndPlay. _SndPlay only requires a proper 'snd ' resource. Such a resource will
contain the necessary information to create a channel linked to the required synthesizer
and the commands to be sent into that channel. An application can use the following
code to create a sound with this method:

myChan := NIL;
sndHandle := GetNamedResource ('snd ', 'myBeep');
myErr := SndPlay (myChan, sndHandle, FALSE);

For more complete control of the sound channel, an application can open a sound channel with _SndNewChannel. The
application will then send commands to that channel with _SndDoCommand or _SndDoImmediate. When the
application’s sound is completed, the application closes the channel with _SndDisposeChannel.

The System Beep

The trap _SysBeep is a call to the Sound Manager. The sound of the System Beep is selected by the user in the Control
Panel using the Sound 'cdev'. Except for the “Simple Beep”, _SysBeep will be performed by the Sound Manager. If
this sound is selected on a Macintosh that doesn’t have the Apple Sound Chip (i.e. the Macintosh Plus and SE), the beep will
be generated by the original ROM code. This has the benefit of bypassing the Sound Manager and the potential conflict of
third party MIDI drivers which both use the VIA1 timer T1. Thus, this conflict over the timer can be avoided by setting the
System beep to the “Simple Beep” using the Sound 'cdev' in the Control Panel.

If an application has an active synthesizer, then _SysBeep may not generate any sound. This is because only one
synthesizer can be active at any time. On a Macintosh without the Apple Sound Chip (i.e. the Plus and SE) when the
“Simple Beep” is selected the beep will be heard, since it bypasses the Sound Manager. Applications should dispose of their
channels as soon as they have completed making sound, allowing the _SysBeep to be heard.

_SysBeep cannot be called at interrupt time since the Sound Manager will attempt to
allocate memory and load a resource.

Refer to the section “Current Sound Manager” regarding _SysBeep on a Macintosh
Plus and SE.

The Note Synthesizer

The note synthesizer is the simplest of all the synthesizers supplied with the Sound Manager. The sound produced by this
synthesizer is based upon a square wave. An application cannot play back a wave form description or recorded sound when
using this synthesizer. Very little set up is required to use this synthesizer. It also has the advantage of using little CPU time.
It can be used for creating simple monophonic melodies.

The Wave Table Synthesizer

The wave table synthesizer will produce sounds based on a description of a single wave cycle. This cycle is called a wave
table and is represented as an array of bytes describing the timbre (tone) of a sound. Applications may use any number of
bytes to represent the wave, but 512 is the recommended

length since the Sound Manager will re-sample it to this length. A wave table can be pulled in from a resource or computed
by the application at run time. To install a wave table in a channel, use the waveTableCmd. Up to four wave table
channels can be opened at once allowing an application to play chords, melodies with harmonies and polyphonic melodies.

$FF

$80

$00

1 512

Time

Amplitude

single wave cycle

Packed Array of Bytes

Figure 1 Graph of a Wave Table

A wave table is a sequence of wave amplitudes measured at fixed intervals. Figure 1 represents a sine wave being converted
into a wave table by taking the value of the wave’s amplitude at every 1/512th interval. A wave table is represented as a
PACKED ARRAY [1..512] OF BYTE. Each byte may contain the value of $00 through $FF inclusive. These bytes
are considered offset values where $80 represents a zero level of amplitude, $00 is the largest negative value, and $FF is the
largest positive value. The wave table synthesizer loops through the wave table for the duration of the sound.

Refer to the section “Current Sound Manager” regarding the wave table synthesizer on
the Macintosh Plus and SE.

The Sampled Sound Synthesizer

The sampled sound synthesizer will play back digitally recorded (or computed) sounds. These sampled sounds are passed to
the synthesizer in the form of a sampled sound header. This header can be played at the original sample rate, or at other rates
to change its pitch. The sampled sound can be installed into a channel and then used as an instrument to play a sequence of
notes. Thus a sampled sound, such as a harpsichord, can be used to play a melody. This synthesizer is typically used with
pre-recorded sounds such as speech, songs or special effects. Developers concerned with saving sampled sound files need to
refer to the Audio Interchange File Format available from the Apple Programmer’s and Developer’s Association. Figure 2
shows the structure of the sampled sound header used by the sampled sound synthesizer.

Type

Pointer

Byte

Packed Array
[1..n] OF Byte

Byte

LongInt

Fixed

LongInt

LongInt

Name

samplePtr

length

sampleRate

loopStart

loopEnd

encode

baseNote

sampleArea

Figure 2 Sampled Sound Header

The first field of a sampled sound header is a POINTER. If the sampled sound is located immediately in memory after the
baseNote, this field is NIL, otherwise it will be a pointer to the sample sound data. The length field is the number of
bytes in the PACKED ARRAY [1..n] OF BYTE containing the sampled sound, n being this length.

RATE DECIMAL HEX

 5kHz 5563.6363$15BB.A2E8
 7kHz 7418.1818$1CFA.2E8B
11kHz 11127.2727$2B77.45D1
22kHz 22254.5454$56EE.8BA3
44kHz 44100.0000$AC44.0000

Table 1 Sample Rates

The sampleRate is the rate at which the sample was originally recorded. These unsigned numbers are of type FIXED.
The approximate sample rates are shown in Table 1.

The loop points contained within the sample header specifies the portion of the sample to be used by the Sound Manager
when determining the duration of a noteCmd. These loop points specify the byte numbers in the sampled data used as
the beginning and ending points to cycle through while playing the sound.

Refer to the section “Current Sound Manager” regarding the noteCmd and looping with
a sampled sound header.

The encode option is used to determine the method of encoding used in the sample. The current encode options are
shown below.

stdSH = $00 {standard sound header}
extSH = $01 {extended sound header}
cmpSH = $02 {compressed sound header}

The extended sample header (extSH) is the in-memory implementation of the Audio Interchange File Format standard
expected by the Sound Manager. The AIFF standard specifies up to 32 bit sample sizes, up to 128 channels per file, and
much more. Refer to the AIFF documentation for more details. The compressed sample header (cmpSH) is the compressed
sample counter-part of the extended sample header. Refer to the Macintosh Audio Compression and Expansion
documentation for further information.

Developers are free to use their own encode options with values in the range 64-127.
Apple reserves the values 0 - 63.

The baseNote is the pitch at which the original sample was taken. If a harpsichord were sampled while playing middle C,
then the baseNote is

middle C. The baseNote values are 1 through 127 inclusive. (Refer to Table 4.) The baseNote allows the Sound
Manager to calculate the proper play back rate of the sample when an application uses the noteCmd. Applications should
not modify the baseNote of a sampled sound. To use the sample at different pitches, send the noteCmd or freqCmd.

Refer to the section “Current Sound Manager” regarding limitations with the noteCmd
and freqCmd.

Each byte in the sampleArea data is similar in value to those in a wave table description. Each byte is a value of $00
through $FF inclusive; $80 represents a zero level of amplitude, $00 is the largest negative value, and $FF is the largest
positive value.

The Sound Manager Summary contains the description of the data format to be used with 16 bit sampled sounds. Developers
wishing to write custom synthesizers for their hardware are encouraged to use this data format. This data structure is
intended to complement the use of the AIFF standard.

SOUND RESOURCES

The 'snd ' Resource

Eight
Bytes

snd format

number of
synth/modifiers

synth resource ID

init option
for synth

number of
sound commands

Word

Long
Word

Word

Word

Word

first sound
command

sound data
(optional)????

last sound
command

last modifier
resource ID

init option
for modifier

Long
Word

Word

these fields may be
absent if “number of
synth/modifiers” is 0

Eight
Bytes

snd formatWord

Word reference count

Eight
Bytes

number of
sound commandsWord

first sound
command

sound data
(optional)????

last sound
command

Eight
Bytes

'snd ' Format 1 'snd ' Format 2

Figure 3 'snd ' Resource Layout

Sound resources are intended to be simple, portable, and dynamic solutions for
incorporating sounds into applications. Creating these 'snd ' or sound resources,
requires some understanding of sound synthesis to build a sampled sound header, wave
table data, and sound commands. There are two types of 'snd ' resources, format 1
and format 2. Figure 3 compares the structures of both of these formats. These resources
should have their purgeable bit set or the application will need to call _HPurge after
using the 'snd '.

The format 1 'snd ' was developed for use with the Sound Manager. A format 1
'snd ' may be a sequence of commands describing a melody without specifying a
synthesizer or modifier and without sound data. This would allow an application to use
the _SndPlay routine on any channel to play that melody. A format 1 'snd '
resource may contain a sampled sound or wave table data.

The format 2 'snd ' was developed for use with HyperCard. It is intended for use with
the sampled sound synthesizer only. A format 2 simply contains a sound command that
points to a sampled sound header.

HyperCard (versions 1.2.1 and earlier) contain 'snd '
resources incorrectly labeled as format 1. Refer to Macintosh
Technical Note #168.

Numbers for 'snd ' resources in the range 0 through 8191
are reserved for Apple. The 'snd ' resources numbered 1
through 4 are defined to be the standard system beep.

A sound command contained in a 'snd ' resource with associated sound data is marked
by setting the high bit of the command. This changes the param2 field of the command
to be an offset value from the resource’s beginning, pointing to the location of the sound
data. Refer to Figure 5 showing the structure of a sound command. To calculate this
offset, use one of the following formulas below.

For a format 1 'snd ' resource, the offset is calculated as follows:

offset = 4 + (number of synth/mods * 6) + (number of cmds * 8)

For a format 2 'snd ' resource, the offset is calculated as follows:

offset = 6 + (number of cmds * 8)

The first few bytes of the resource contain 'snd ' header information and are a different size for either format. Each
synthesizer or modifier specified in a format 1 'snd ' requires 6 bytes. The number of synthesizers and/or modifiers
multiplied by 6 is added to this offset. The number of commands multiplied by 8 bytes, the size of a sound command, is
added to the offset.

Format 1 'snd ' Resource

Figure 3 shows the fields of a format 1 'snd ' resource. This resource may also contain the actual sound data for the wave
table synthesizer or the sampled sound synthesizer. The number of synthesizer and modifiers to be used by this 'snd ' is
specified in the field number of synth/modifiers. The synthesizer required to produce the sound described in the
'snd ' is specified by the field synth resource ID. If any modifiers are to be installed, their resource IDs follow the
first synthesizer. Any synthesizer or modifier specified beyond this first one will be installed into the channel as a modifier.

For every synthesizer and modifier, an init option can be supplied in the field immediately following the resource ID
for each synthesizer or modifier. The number of commands within the resource is specified in the field number of
sound commands. Each sound command follows in the order they should be sent to the channel. If a command such as a
bufferCmd is contained in this resource, it needs to specify where in the resource the sampled sound header is located.
This is done by setting the high bit of the bufferCmd and supplying the offset in param2. Refer to the section “Sound
Manager Commands”.

The 'snd ' resource may be only a sequence of commands describing a melody playable by any synthesizer. This allows
the 'snd ' to be used on any channel. In this case the number of synth/modifiers should be 0, and there would
not be a synth resource ID nor init option in the 'snd '.

Example Format 1 'snd '

The following example resource contains the proper information to create a sound with _SndPlay and the sampled sound
synthesizer.

HEX Size Meaning

{beginning of snd resource, header information}
$0001 WORD format 1 resource
$0001 WORD number of synth/modifiers to be installed

{synth ID to be used}
$0005 WORD resource ID of the first synth/modifier
$0000 0000 LONG initialization option for first synth/modifier

$0001 WORD number of sound commands to follow

{first command, 8 bytes in length}
$8051 WORD bufferCmd, high bit on to indicate sound data included
$0000 WORD bufferCmd param1
$0000 0014 LONG bufferCmd param2, offset to sound header (20 bytes)

{sampled sound header used in a soundCmd and bufferCmd}
$0000 0000 LONG pointer to data (it follows immediately}
$0000 0BB8 LONG number of samples in bytes (3000 samples)
$56EE 8BA3 LONG sampling rate of this sound (22kHz)
$0000 07D0 LONG starting of the sample’s loop point
$0000 0898 LONG ending of the sample’s loop point
$00 BYTE standard sample encoding
$3C BYTE baseNote (middle C) at which sample was taken

{Packed Array [1..3000] OF Byte, the sampled sound data}
$8080 8182 8487 9384 6F68 6D65 727B 8288
$918E 8D8F 867E 7C79 6F6D 7170 7079 7F81
$898F 8D8B...

Format 2 'snd ' Resource

The format 2 'snd ' resource is used by the sampled sound synthesizer only and must contain a sampled sound. The
_SndPlay routine supports this format by automatically opening a channel to the sample sound synthesizer and using the
bufferCmd.

Figure 3 shows the fields of a format 2 'snd ' resource. The field reference count is for the application’s use and is
not used by the Sound Manager. The fields number of sound commands and the sound commands are the same as
described in a format 1 resource. The last field of this 'snd ' is for the sampled sound. The first command should be
either a soundCmd or bufferCmd with the pointer bit set in the command to specify the location of this sampled
sound header. Any other sound commands in this 'snd ' will be ignored by the Sound Manager.

Example Format 2 'snd '

The following example resource contains the proper information to create a sound with _SndPlay and the sampled sound
synthesizer.

HEX Size Meaning

{beginning of 'snd ' resource, header information}
$0002 WORD format 2 resource
$0000 WORD reference count for application’s use
$0001 WORD number of sound commands to follow

{first command, 8 bytes in length}
$8051 WORD bufferCmd, high bit on to indicate sound data included
$0000 WORD bufferCmd param1
$0000 0014 LONG bufferCmd param2, offset to sound header (20 bytes)

{sampled sound header used in a soundCmd and bufferCmd}
$0000 0000 LONG pointer to data (it follows immediately}
$0000 0BB8 LONG number of samples in bytes (3000 samples)
$56EE 8BA3 LONG sampling rate of this sound (22kHz)
$0000 07D0 LONG starting of the sample’s loop point
$0000 0898 LONG ending of the sample’s loop point
$00 BYTE standard sample encoding
$3C BYTE baseNote (middle C) at which sample was taken

{Packed Array [1..3000] OF Byte, the sampled sound data}
$8080 8182 8487 9384 6F68 6D65 727B 8288
$918E 8D8F 867E 7C79 6F6D 7170 7079 7F81
$898F 8D8B...

The 'snth' Resource

The 'snth' resources are the routines that get linked to a sound channel used to create sound. The calls to _SndPlay,
_SndNewChannel, _SndAddModifier, and _SndControl are mapped with unique 'snth' resources based on the
hardware present on each Macintosh. The Sound Manager first determines the type of Macintosh being used. Then, using
the id specified in one of the four routines above, adds a constant to this id. For the Macintosh Plus and SE, a constant of
$1000 is added to this id. For the Macintosh II, $800 is added to the id. If the mapped resource ID is not available, the
Sound Manager will use the actual id value specified.

The 'snth' resource IDs in the range 0 through 255 inclusive are reserved for Apple
within the 'snth' resource mapping range.

Resource ID Synthesizer Target Macintosh

$0001 noteSynth general for any Macintosh
$0003 waveTableSynth general for any Macintosh
$0005 sampledSynth general for any Macintosh
$0006-$00FF reserved for Apple general for any Macintosh
$0100-$0799 free for developers general for any Macintosh

$0801 noteSynth Mac with Apple Sound Chip $0803
waveTableSynth Mac with Apple Sound Chip
$0805 sampledSynth Mac with Apple Sound Chip
$0806-$08FF reserved for Apple Mac with Apple Sound Chip
$0900-$0999 free for developers Mac with Apple Sound Chip

$1001 noteSynth Mac Plus and SE
$1003 waveTableSynth Mac Plus and SE
$1005 sampledSynth Mac Plus and SE
$1006-$10FF reserved for Apple Mac Plus and SE
$1100-$1199 free for developers Mac Plus and SE

Table 2 Synthesizer Resource IDs

For example, if an application requested the sampled sound synthesizer while running on the Macintosh
Plus, it uses the resource ID of 5 when calling _SndNewChannel. The Sound Manager will then open
the 'snth' resource with the ID of $1005 since this synthesizer is specific to the Macintosh Plus.
Table 2 lists the current synthesizers and the IDs used by each Macintosh.

Refer to the section “Current Sound Manager” regarding the Macintosh II
'snth' IDs.

SOUND MANAGER ROUTINES

Modifier(s)

Synthesizer

SndDoImmediate
bypasses the queue

SndAddModifier
installs a modifier

SndControl
returns information

Queue of
Sound

Commands

Audio Hardware

SndDoCommand
adds command to queue

SndNewChannel
SndDisposeChannel
creates and disposes
of the sound channel

Figure 4 Sound Channel and Routines

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle; async: BOOLEAN)
: OSErr;

The function _SndPlay is a higher level sound routine and is generally used separately from the other Sound Manager
calls. _SndPlay will attempt to play the sound specified in the 'snd ' resource located at sndHdl. This is the only
Sound Manager routine that accepts a 'snd ' resource as one of its parameters. If a format 1 'snd ' specifies a
synthesizer and any modifiers, those 'snth' resource(s) will be loaded in memory and linked to the channel. All
commands contained in the 'snd ' will be sent to the channel. If the application passes NIL as the channel pointer,
_SndPlay will create a

channel in the application’s heap. The Sound Manager will release this memory after the sound has completed. The async
parameter is ignored if NIL is passed as the channel pointer.

If the application does supply a channel pointer in chan, the sound can be produced asynchronously. When sound is played
asynchronously, a completion routine can be called when the last command has finished processing. This procedure is the
userRoutine supplied with _SndNewChannel. _SndPlay will call _HGetState on the 'snd ' resource before
_HMoveHi and _HLock, and once the sound has completed, will restore the state of the 'snd ' resource’s handle with
_HSetState.

If the format 1 'snd ' resource does not specify which synthesizer is to be used, _SndPlay will default to the note
synthesizer. _SndPlay will also support a format 2 'snd ' resource using the sampled sound synthesizer and a
bufferCmd. Note that a format 1 'snd ' must use have a bufferCmd in order to be used with _SndPlay and the
sampled sound synthesizer.

Do not use _SndPlay with a 'snd ' that specifies a synthesizer ID if the channel has
already been linked to a synthesizer.

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: INTEGER;
init: LONGINT; userRoutine: ProcPtr) : OSErr;

When NIL is passed as the chan parameter, _SndNewChannel will allocate a sound channel record in the application’s
heap and return its POINTER. Applications concerned with memory management can allocate their own channel memory
and pass this POINTER in the chan parameter. Typically this should not present a problem since a channel should only be
in use temporarily. Each channel will hold 128 commands as a default size. The length of a channel can be expanded by the
application creating its own channel in memory.

The synth parameter is used to specify which synthesizer is to be used. The application specifies a synthesizer by its
resource ID, and this 'snth' resource will be loaded and linked to the channel. The state of the 'snth' handle will be
saved with _HGetState. To create a channel without linking it with a synthesizer, pass 0 as the synth. This is useful
when using _SndPlay with a 'snd ' that specifies a synthesizer ID.

The application may specify an init option that should be sent to the synthesizer when opening the channel. For example,
to open the third wave table channel use initChan2 as the init. Only the wave table synthesizer and sampled sound
synthesizer currently use the init options. To determine if a particular option is available by the synthesizer, use the
availableCmd.

initChanLeft = $02; {left channel - sampleSynth only}
initChanRight = $03; {right channel- sampleSynth only}
initChan0 = $04; {channel 1 - wave table only}
initChan1 = $05; {channel 2 - wave table only}
initChan2 = $06; {channel 3 - wave table only}
initChan3 = $07; {channel 4 - wave table only}
initSRate22k = $20; {22k sampling rate - sampleSynth only}
initSRate44k = $30; {44k sampling rate - sampleSynth only}
initMono = $80; {monophonic channel - sampleSynth only}
initStereo = $C0; {stereo channel - sampleSynth only}

Refer to the section “Current Sound Manager” regarding init options and the sampled
sound synthesizer.

If an application is to produce sounds asynchronously or needs to be alerted when a command has completed, it uses a
CallBack procedure. This routine will be called once the callBackCmd has been received by the synthesizer. If you
pass NIL as the userRoutine, then any callBack command will be ignored.

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;
 id: INTEGER; init: LONGINT) : OSErr;

This routine is used to install a modifier into an open channel specified in chan. The modifier will be installed in
front of the synthesizer or any existing modifiers in the channel. If the modifier is saved as a 'snth' resource, pass NIL
for the ProcPtr and specify its resource ID in the parameter id. This will cause the Sound Manager to load the 'snth'
resource, lock it in memory, and link it to the channel specified. The state of the 'snth' resource handle will be saved with
_HGetState. Refer to the section “User Routines” for more information regarding writing a modifier.

Refer to the section “Current Sound Manager” regarding modifier resources.

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;
noWait: BOOLEAN) : OSErr;

This routine will send the sound command specified in cmd to the existing channel’s command queue. If the parameter
noWait is set to FALSE and the queue is full, the Sound Manager will wait until there is space to add the command. If
noWait is set to TRUE and the channel is full, the Sound Manager will not send the command and returns the error
“queueFull”.

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;

This routine will bypass the command queue of the existing channel and send the specified command directly to the
synthesizer, or the first modifier. This routine will also override any waitCmd, pauseCmd or syncCmd that may have
been received by the synthesizer or modifiers.

FUNCTION SndControl (id: INTEGER; VAR cmd: SndCommand) : OSErr;

This routine is used to send control commands directly to a synthesizer or modifier specified by its resource ID. This can be
called even if no channel has been created for the synthesizer. This control call is used with the availableCmd or
versionCmd to request information regarding a synthesizer. The result of this call is returned in cmd.

FUNCTION SndDisposeChannel (chan: SndChannelPtr; quietNow: BOOLEAN) :
 OSErr;

This routine will dispose of the channel specified in chan and release all memory created by the Sound Manager. If an
application created its own channel record in memory or installed a sound as an instrument, the Sound Manager will not
dispose of that memory. The Sound Manager will restore the original state of 'snth' resource handles with a call to
_HSetState.

_SndDisposeChannel can either immediately dispose of a channel or wait until the queued commands are processed. If
quietNow is set to TRUE, a flushCmd and then a quietCmd is sent to the channel. This will remove all commands, stop
any sound in progress and close the channel. If quietNow is set to FALSE, then the Sound Manager will issue a
quietCmd only and wait until the quietCmd is received by the synthesizer before disposing of the channel. In this
situation _SndDisposeChannel will be synchronous.

SOUND MANAGER COMMANDS

Command Descriptions

Sound commands are placed into a channel one after the other. At the end of the channel
is the synthesizer which interprets the command and plays the sound with the hardware.
All synthesizers are designed to accept the most general set of sound commands. Some
commands are specific to only a particular synthesizer. There are some commands and
options that may not be currently implemented by a synthesizer. Refer to section “The
Current Sound Manager” for more details.

command param1 param2

Pointer bit (used in 'snd ' resources only)

long wordwordword

Figure 5 Generic Command Format

Figure 5 shows the structure of a generic sound command. Commands are always eight
bytes in length. The first two bytes are the command number, and the next six make up
the command’s options. The format of these last six bytes will depend on the command
being used.

The pointer bit is only used by 'snd ' resources that contain commands and
associated sound data (i.e. sampled sound or wave table data). If the high bit of the
command is set, then param2 is an offset specifying where the associated data is
located. This offset is the number of bytes starting from the beginning of the resource to
the associated sound data. The section “Sound Resources” shows how this offset is
calculated.

cmd=nullCmd param1=0 param2=0

This command is sent by modifiers. It is simply absorbed by the Sound Manager and no action is
performed. Modifiers use a nullCmd to replace commands in a channel to prevent them from being
sent to a synthesizer.

cmd=initCmd param1=0 param2=init

This command is only sent by the Sound Manager. It will send an initCmd to the synthesizer when an
application uses the routines _SndPlay, _SndNewChannel or _SndAddModifier. This causes a
synthesizer or modifier to allocate its private memory storage and to use the init option.

cmd=freeCmd param1=0 param2=0

This command is only sent by the Sound Manager. It is exactly opposite of the initCmd. When an
application calls _SndDisposeChannel, the Sound Manager will send the freeCmd to the
synthesizer. This causes the synthesizer to dispose of all the private memory it had allocated.

cmd=quietCmd param1=0 param2=0

This command is sent by an application using _SndDoImmediate. It will cause the synthesizer to
stop any sound in progress. It is also sent by the Sound Manager with the _SndDisposeChannel
routine.

cmd=flushCmd param1=0 param2=0

This command is sent by an application using _SndDoImmediate. It will cause all commands in the
channel be be removed. It is also sent by the Sound Manager from _SndDisposeChannel when
quietNow is TRUE.

cmd=waitCmd param1=duration param2=0

This command is sent by an application or a modifier. It will suspend all processing in the channel for
the number of half-milliseconds specified in duration. A one second wait would be a duration of
2000.

cmd=pauseCmd param1=0 param2=0

This command is sent by an application or a modifier to cause the channel to suspend processing until a
tickleCmd or resumeCmd is received.

cmd=resumeCmd param1=0 param2=0

This command is sent by an application or a modifier to cause a channel to resume processing of
commands. This is the opposite of the pauseCmd.

cmd=callBackCmd param1=user-defined
param2=user-defined

This command is sent by an application. The callBackCmd causes the Sound Manager to call the
userRoutine specified in _SndNewChannel. The two parameters of this command can be used by
the application for any purpose. This allows an application to have a general userRoutine for any
channel. By using param1 and param2 with unique values, the CallBack procedure can test for
specific actions to take. Refer to the section “User Routines”.

This command is used as a marker for an application to determine at what point the channel has reached
in processing its queue. It is mostly used to determine when to dispose of a channel, since the
callBackCmd is generally the last command sent. It can also be used to allow an application to
synchronize sounds with other actions.

cmd=syncCmd param1=count param2=identifier

This command is sent by an application. Every syncCmd is held in the channel, suspending any further
processing until its count equals 0. The Sound Manager will first decrement the count and then wait
for another syncCmd having the same identifier to be received on another channel.

To synchronize four wave table channels, send the syncCmd to each channel with count = 4 giving
each command the same identifier. If a channel should wait for two more syncCmds, then its
count would be 3. If a channel is to wait for one more syncCmd, its count would be sent as 2.

Refer to the section “Current Sound Manager” regarding the count
parameter of a syncCmd.

cmd=emptyCmd param1=0 param2=0

This command is only sent by the Sound Manager. Synthesizers expect to receive additional commands
after a resumeCmd. If no other commands are to be sent, the Sound Manager will send an emptyCmd.

cmd=tickleCmd param1=0 param2=0

This command is only sent by the Sound Manager to a modifier. This will cause modifiers to perform
their requested periodic actions. If the tickleCmd had been requested by a howOftenCmd, then a
tickleCmd will be sent periodically according to the period specified in the howOftenCmd. If
the tickleCmd had been requested by an wakeUpCmd, then this command will be

sent only once according to the period specified in the wakeUpCmd. A tickleCmd command will
also resume a channel suspended by a pauseCmd.

cmd=requestNextCmd param1=count param2=0

This command is only sent by the Sound Manager in response to a modifier returning TRUE. Refer to
the section “User Routine” discussing modifiers. Count is the number of consecutive times that the
modifier has requested another command.

cmd=howOftenCmd param1=period param2=pointer

This command is sent by a modifier and will instruct the Sound Manager to periodically send a
tickleCmd. Param1 contains the period (in half-milliseconds) that a tickleCmd should be sent.
Param2 contains a POINTER to the modifier stub.

cmd=wakeUpCmd param1=period param2=pointer

This command is sent by a modifier and will instruct the Sound Manager to send a single tickleCmd
after the period specified (in half-milliseconds). Param2 contains a POINTER to the modifier
stub.

The howOftenCmd and the wakeUpCmd are mutually exclusive.
Sending one will cancel the other.

cmd=availableCmd param1=result param2=init

This command is sent by an application to determine if certain characteristics specified in the init
parameter are available from the synthesizer. This command can only be used with the _SndControl
routine. These init options are documented under the _SndNewChannel routine and are passed in
param2 of the availableCmd.

myCmd.cmd := availableCmd;
myCmd.param1 := 0;
myCmd.param2 := initStereo; {we’ll test for a stereo channel}
myErr := SndControl (sampledSynth, myCmd);
IF (myCmd.param1 <> 0) THEN stereoAvailable := TRUE;

The result is returned in param1. A result of 1 is returned if the synthesizer has the requested characteristics. If it does
not, the result is 0.

Refer to section “Current Sound Manager” regarding limitations with the
availableCmd.

cmd=versionCmd param1=0 param2=version

This command is sent by applications and the Sound Manager to determine which version of the
synthesizer is available. The versionCmd can only be sent with the _SndControl routine. The
version is returned in param2. Version 1.2 of a synthesizer would be returned as $0001 0002.

cmd=noteCmd param1=duration
param2=amplitude + frequency

This command is sent by applications and modifiers to specify a note for either the note synthesizer, or
with an instrument installed into the channel. The duration parameter is in half-milliseconds. A
duration of 2000 would be a duration of one second. The maximum duration is a duration of
32767 or about 16 seconds. The structure of a noteCmd is given in Figure 6.

noteCmd duration amp frequency

long wordwordword

Figure 6 noteCmd Format

The param2 of a noteCmd is a combination of an amplitude and a frequency. The
amplitude is passed in the high byte and the lower three bytes are the frequency . The
frequency can be specified in two ways, as a decimal note (refer to the section “Note Values and
Durations”) or a frequency value (refer to freqCmd). The amplitude values range from $00 to $FF
inclusively. The following example demonstrates the use of a noteCmd.

amp := $FF000000; {loudest possible amplitude}
note := 60; {middle C}
myCmd.cmd := noteCmd;
myCmd.param1 := 2000; {one second duration}
myCmd.param2 := amp + note;
myErr := SndDoCommand(myChan, myCmd, FALSE);

The noteCmd will start at the beginning of a sampled sound. The noteCmd uses the
loop points of the header to extend the length of the sound to the duration specified in
a noteCmd. There must be a loop ending point specified in the header in order for the
noteCmd to work properly.

Refer to the section “Current Sound Manager” regarding limitations with the noteCmd
and using amplitude.

cmd=restCmd param1=duration param2=0

This command is sent by applications and modifiers to cause the channel to rest for the duration
specified in half-milliseconds.

cmd=freqCmd param1=0 param2=frequency

This command is sent by applications and modifiers. A frequency can be sent to a synthesizer to
change the pitch of a sound. It is similar to the noteCmd in that a decimal note value can be used
instead of a frequency value. The structure of this command is shown in Figure 7. If no sound is
playing, it causes the synthesizer to begin playing at the specified frequency for an indefinite
duration. The upper byte of param2 is ignored. A frequency value is sent in the lower three bytes of
param2, where the frequency desired is multiplied by 256. For example, to specify a frequency of 440
Hz (the A below middle C) the frequency value would be 440 * 256 or 112640.

frequency

long wordwordword

freqCmd ignored

Figure 7 freqCmd format

Refer to the section “Current Sound Manager” regarding the limitations of
the freqCmd.

cmd=ampCmd param1=amplitude param2=0

This command is sent by applications and modifiers to change the amplitude of the sound in
progress. If no sound is currently playing, then it will affect the amplitude of the next sound.

Refer to the section “Current Sound Manager” regarding the use of
amplitude.

cmd=timbreCmd param1=timbre param2=0

This command is sent by applications and modifiers. It is used only by the note synthesizer to change its
timbre or tone. A sine wave is specified as 0 in

param1 and produces a flute-like sound. A value of 255 in param1 represents a modified square
wave and produces a buzzing or reed-like sound. Changing the note synthesizer’s timbre should be done
before playing the sound. Only a Macintosh with the Apple Sound Chip will allow this command to be
sent while a sound is in progress.

cmd=waveTableCmd param1=length param2=pointer

This command is sent by applications. It is only used by the wave table synthesizer. It will install a
wave table to be used as an instrument by supplying a POINTER to the wave table in param2.

All wave cycles will be re-sampled to 512 bytes.

cmd=phaseCmd param1=shift param2=pointer

This command is sent by applications. It is only used by the wave table synthesizer to synchronize the
phases of the wave cycles across different wave table channels. As an example, if two wave table
channels containing the same wave cycle were sent the same noteCmd, they could not begin exactly at
the same time. Therefore, to synchronize the wave cycles for these two channels the phaseCmd is sent.

This prevents the phasing effects of playing two similar waves together at the same pitch. The channel
will have its wave shifted by the amount specified in shift to correspond with the wave’s phase in the
channel specified in param2. The shift value is a 16 bit fraction going from zero to one. The value
of $8000 would be the half-way point of the wave cycle. Generally, the effects from this command
will not be noticed.

Refer to the section “Current Sound Manager” regarding the phaseCmd.

cmd=soundCmd param1=0 param2=pointer

This command is sent by an application and is only used by the sampled sound synthesizer. If the
application sends this command, param2 is a POINTER to the sampled sound locked in memory. The
format of a sampled sound is shown in section “The Sampled Sound Synthesizer”. This command will
install the sampled sound as an instrument for the channel. If the soundCmd is contained within a
'snd ' resource, the high bit of the command must be set. To use a sampled sound 'snd ' as an
instrument , first obtain a POINTER to the sampled sound header locked in memory. Then pass

this POINTER in param2 of a soundCmd. After using the sound, the application is expected to
unlock this resource and allow it to be purged.

cmd=bufferCmd param1=0 param2=pointer

This command is sent by applications and the Sound Manager to play a sampled sound, in one-shot
mode, without any looping. The POINTER in param2 is the location of a sampled sound header
locked in memory. The format of a sampled sound is shown in section “The Sampled Sound
Synthesizer”. A bufferCmd will be queued in the channel until the preceding commands have been
processed. If the bufferCmd is contained within a 'snd ' resource, the high bit of the command
must be set. If the sound was loaded in from a 'snd ' resource, the application is expected to unlock
this resource and allow it to be purged after using it.

Refer to the section “Current Sound Manager” regarding the
bufferCmd.

cmd=rateCmd param1=0 param2=rate

This command is sent by applications to modify the pitch of the sampled sound currently playing. The
current pitch is multiplied by the rate in param2. It is used for pitch bending effects. The default
rate of a channel is 1.0. To cause the pitch to fall an octave (or half of its frequency), send the
rateCmd with param2 equal to one half as shown below.

myCmd.cmd := rateCmd;
myCmd.param1 := 0;
myCmd.param2 := FixedRatio(1, 2);
myErr := SndDoImmediate(myChan, myCmd);

cmd=continueCmd param1=0 param2=pointer

This command is sent by applications to the sampled sound synthesizer. It is similar to the
bufferCmd. Long sampled sounds may be broken up into smaller sections. In this case, the
application would use the bufferCmd for the first portion and the continueCmd for any remaining
portions. This will result in a single continuous sound with the first byte of the sample being joined with
the last byte of the previous sound header without audible clicks.

Refer to the section “Current Sound Manager” regarding the
continueCmd.

USER ROUTINES

These user routines will be called at interrupt time and therefore
must not attempt to allocate, move or dispose of memory, de-
reference an unlocked handle, or call other routines that do so.
Assembly language programmers must preserve all registers
other than A0-A1, and D0-D2. If these routines are to use an
application’s global data storage, it must first reset A5 to the
application’s A5 and then restore it upon exit. Refer to
Macintosh Technical Note #208 regarding setting up A5.

PROCEDURE CallBack(chan: SndChannelPtr; cmd: SndCommand);

The function _SndNewChannel allows a completion routine or CallBack procedure to be associated with a channel.
This procedure will be called when a callBackCmd is received by the synthesizer linked to that channel. This procedure
can be used for various purposes. Generally it is used by an application to determine that the channel has completed its
commands and to dispose of the channel. The CallBack procedure itself cannot be used to dispose of the channel, since it
may be called at interrupt time.

A CallBack procedure can also be used to signal that a channel has reached a certain point in the queue. An application
may wish to perform particular actions based on how far along the sequence of commands a channel has processed.
Applications can use param1 or param2 of the callBackCmd as flags. Based on certain flags for certain channels, the
call back can perform many different functions. The CallBack procedure will be passed the channel that received the
callBackCmd. The entire callBack command is also passed to the CallBack procedure.

myCmd.cmd := callBackCmd; {install the callBack command}
myCmd.param1 := 0; {not used in this example}
myCmd.param2 := SetCurrentA5; {pass the callBack our A5}
myErr := SndDoCommand (myChan, myCmd, FALSE);

The example code above is used to setup a callBackCmd. Note that param2 of a sound command is a LONGINT. This
can be used to pass in the application’s A5 to the CallBack procedure. Once this command is received by the synthesizer,
the following example CallBack procedure can set A5 in order to access the application’s globals. The function’s
SetCurrentA5 and SetA5 are documented in Macintosh Technical Note #208.

Procedure SampleCallBack (theChan: SndChannelPtr; theCmd: SndCommand);

VAR
 theA5 : LONGINT;

BEGIN
 theA5 := SetA5(myCmd.param2); {set A5 and get current A5}
 callBackPerformed := TRUE; {global flag}
 theA5 := SetA5(theA5); {restore the current A5}
END;

FUNCTION Modifier(chan: SndChannelPtr; VAR cmd: SndCommand;
mod: ModifierStubPtr) : BOOLEAN

A modifier will be called when the command reaches the end of the queue, before being sent to the synthesizer or other
modifiers that may be installed. Chan will contain the channel pointer allowing multiple wave table channels to be
supported by the same modifier. The ModifierStub is a record created by the Sound Manager during the call
_SndAddModifier. A pointer to the ModifierStub is in mod. There are two special commands that the modifier must
support, the initCmd and the freeCmd.

Refer to the section “Current Sound Manager” regarding modifiers being saved as
resources.

ModifierStub = PACKED RECORD
 nextStub: ModifierStubPtr; {pointer to next stub}
 code: ProcPtr; {pointer to modifier}
 userInfo: LONGINT; {free for modifier’s use}
 count: Time; {used internally}
 every: Time; {used internally}
 flags: SignedByte; {used internally}
 hState: SignedByte; {used internally}
END;

The initCmd is sent by the Sound Manager when an application calls _SndAddModifier. This is a command telling the
modifier to allocate any additional data. The ModiferStub contains a four byte field, userInfo, that can be used as a
pointer to this additional memory. The initCmd will not be sent to a modifier at interrupt time. This allows a
modifier to allocate memory and save the current application’s A5. All memory storage allocated by the modifier must
be locked, since the modifier will be called at interrupt time.

The freeCmd will be sent to the modifier when the Sound Manager is disposing of the channel. This command will not be
sent at interrupt time. At this point the modifier should free any data it may have allocated.

A modifier will be given the current command, before the command is sent to the synthesizer or other modifiers. The current
command is sent to the modifier in the variable cmd. A nullCmd is never sent to a modifier. If the modifier wished to
ignore the current command and allow it to be sent on, it would return FALSE. To remove the current command, replace it
with a nullCmd and then return FALSE. To alter the current command, replace it with the new one and return FALSE.
Returning FALSE means that the modifier has completed its function.

If the modifier is to send additional commands to the channel, the function will return TRUE and may or may not change the
current command. The Sound Manager will call the modifier again sending it a requestNextCmd. The modifier can then
replace this command with the one desired. The modifier can continue to return TRUE to send additional commands. The
requestNextCmd will indicate the number of times this command has been consecutively sent to the modifier.

Modifiers are short routines used to perform real-time modifications on channels.
Having too many modifiers, or a lengthy one, may degrade performance.

THE CURRENT SOUND MANAGER

Synthesizer Details

This section documents the details for each of the current synthesizers.

The Note Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

• Commands currently supported:
availableCmd versionCmd freqCmd

noteCmdrestCmd flushCmd
quietCmdampCmd timbreCmd

Limitations of the Note Synthesizer

• Amplitude change is only supported by a Macintosh with the Apple
Sound Chip, and is not supported by a Macintosh Plus or Macintosh SE.

• Only a single monophonic channel can be used.

The Wave Table Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

• Commands currently supported:
availableCmd versionCmd freqCmd

noteCmdrestCmd flushCmd
quietCmdwaveTableCmd

Limitations of the Wave Table Synthesizer

• This synthesizer is not functioning on a Macintosh Plus or Macintosh SE.

• A maximum of four channels can be open at any time.

• Amplitude change is not supported on any Macintosh.

• The one-shot mode is not supported on any Macintosh.

• The phaseCmd is not working.

The Sampled Sound Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

• Commands currently supported:
availableCmd versionCmd freqCmd

noteCmdrestCmd flushCmd
quietCmdrateCmd soundCmd
bufferCmd

Limitations of the Sampled Sound Synthesizer

• Amplitude change is not supported on any Macintosh.

• The current hardware will only support sampling rates up to 22kHz. This
is not a limitation to the playback rates, and samples can be pitched
higher on playback.

• There can only be a single monophonic channel; stereo is not supported.

• The continueCmd is not working.

The MIDI Synthesizer

• The version shipped with System 6.0.2 is $0001 0002.

Limitations of the MIDI Synthesizer

• The midiDataCmd documented in Inside Macintosh Volume V cannot
be used.

• Fully functional MIDI applications cannot be written using the current
Sound Manager and were intended as a “poor man’s” method of sending
notes to a MIDI keyboard.

• A bug in the MIDI synthesizer code prevents it from working after
calling _SndDisposeChannel.

Sound Manager Bugs

This is a list of all known bugs and possible work-arounds in the System 6.0.2 Sound
Manager. Each of these issues are being addressed and are expected to be solved with the
next Sound Manager release.

Macintosh II 'snth' IDs

The System 6.0.2 'snth' resources for the Macintosh II are incorrectly numbered.
They should be $0801-$0805, but were shipped as $0001-$0005. This does not
currently present a problem for applications, since the Sound Manager will default to
these versions while running on the Macintosh II.

availableCmd

The availableCmd is returning a value of 1, meaning TRUE, even if the synthesizer
is actually no longer available. For example, after calling _SndNewChannel for the
noteSynth, the availableCmd for the noteSynth should return FALSE since
there isn’t a second one. Furthermore, considering that only one synthesizer can be
active at one time, after opening the noteSynth the sampledSynth is not available,
but this command reports that it is. The only time the availableCmd will return
FALSE is by requesting an init option that a synthesizer doesn't support, such as stereo
channels.

_SndAddModifier

A modifier resource used in multiple channels must be pre-loaded and locked in memory
by the application. There is a bug when the Sound Manager is disposing of a channel
causing the modifier to be unlocked, regardless of other channels that may be using that
modifier. If the application locks the modifier before installing it in the channel, the
Sound Manager will not unlock it, but restores its state with _HSetState.

syncCmd

This command has a bug causing the count to be decremented incorrectly. To
synchronize four channels, the same count = 4 should be sent to all channels. The
bug is with the Sound Manager decrementing all of the count values with every new
syncCmd. In order to work around this, an application can synchronize four wave table
channels by sending the syncCmd with count = 4. Then a syncCmd with the same

identifier is sent to the second channel, this time with count = 3. The third
channel is sent a syncCmd with count = 2. Finally, the last channel is sent with the
count = 1. As

soon as the fourth syncCmd is received, all channels will have their count at 0 and will
resume processing their queued commands. This bug will be fixed eventually, so test for
the version of the synthesizer being used before relying on this.

bufferCmd

Sending a bufferCmd will reset the channel’s amplitude and rate settings. Since
the amplitude is already being ignored and the rate isn't typically used, this problem
is not of much concern at this time.

noteCmd

This command may cause the sampled sound synthesizer to loop until another command
is sent to the channel. This occurs when using a sampled sound installed as an instrument.
If a noteCmd is the last command in the channel, the sound will loop endlessly. The
work-around is to send a command after the final noteCmd. A callBackCmd,
restCmd or quietCmd would be good.

noteCmd and freqCmd

These commands currently only support note values 1 through 127 inclusive. Refer to
Table 4 for these values.

_SysBeep

On a Macintosh Plus or SE (which do not have the Apple Sound Chip) the Sound
Manager will purge the application’s channel of its 'snth' or sound data. The
application would have to dispose of the channel at this point and recreate a new one.
This is another reason to release channels as soon as the application has completed its
sound. This bug can be avoided by selecting the “Simple Beep” in the Control Panel’s
sound 'cdev'. Applications should dispose of all channels before allowing a
_SysBeep to occur. This includes putting up an alert or modal dialog that could cause
the system beep. Since a foreground application under MultiFinder could cause a
_SysBeep while the sound application is in the background, all applications should
dispose of channels at a suspend event.

SOUND MANAGER ABUSE

Sound channels are for temporary use, and should only be created just before playing
sound. Once the sound is completed, the channel should be disposed. Applications
should not hold on to these channels for extended periods. The amount of overhead in
_SndNewChannel is minimal. Basically, it is only a Memory Manager call. As long
as the application holds onto a channel linked to a synthesizer, the _SysBeep call will
not work and may cause trouble for the application’s channel.

Friendly applications will dispose of all open channels during a suspend event from
MultiFinder. If an application created a channel and then gets sent into the background,
any foreground application or _SysBeep will be unable to gain access to the sound
hardware.

Applications must dispose of all channels before calling _ExitToShell. Currently,
calling _ExitToShell while generating a sound on the Macintosh Plus and SE will
cause a system crash. So, calling _SndDisposeChannel before _ExitToShell
will solve this issue. Setting quietNow to be FALSE will allow the application to
complete the sound before continuing.

Do not mix older Sound Driver calls with the newer Sound Manager routines. The older
Sound Driver should no longer be used. The Sound Manager is its replacement,
providing all of it predecessor’s abilities and more. Note that _GetSoundVol and
_SetSoundVol are not part of the Sound Manager. They are used for setting
parameter RAM, not the amplitude of a channel. Support for the older Sound Driver may
eventually be discontinued.

The 'snd ' resource is so flexible that a warning of resource usage is needed. Most of the
problems developers have with the Sound Manager are related more to the 'snd '
being used and less to the actual routines. Editing and creating 'snd ' resources with
ResEdit is difficult. Many of the issues required in dealing with a 'snd ' are not
supported by third party utilities. It is best to limit the 'snd ' to contain either sound
data (i.e. sample sound) or a sequence of sound commands. Do not attempt to create
resources that contain multiple sets of sound data.

Be very careful with what 'snd ' resources the application is intending to support.
Test for the proper format and proper fields beforehand. An application needs to know
the exact contents of the entire 'snd ' in order to

properly handle it. Things can get ugly real quick considering variant records, variable
record lengths, and the pointer math that will be required.

If an application wants to use _SndPlay with an existing channel already linked to a
synthesizer, the 'snd ' must not contain any synth information. With a format 1
'snd ', the number of synth/modifiers field must be 0, and no synth ID
or init option should be in the resource. Applications can only call _SndPlay
with a channel linked to a synthesizer using a format 1 'snd ' that contains sound
commands without synth information.

A format 2 'snd ' can never be used with _SndPlay more than once with an existing
channel. This 'snd ' is assumed to be for the sampled sound synthesizer and
_SndPlay will link this synthesizer to the channel. If a channel is created before
calling _SndPlay with a format 2, specify synth = 0 in the call to
_SndNewChannel. After calling _SndPlay once, the application will have to dispose
of the channel before using a format 2 'snd ' again.

FREQUENTLY ASKED QUESTIONS

Q: Is there a way to determine if a sound is being made?

A: It is not possible at this time to determine if a synthesizer is currently active or
producing a sound. However, an application can use the callBackCmd to determine
when a sound has completed.

Q: How do I determine if the Apple Sound Chip is present?

A: There is no supported method for determining this. A new _SysEnvirons record
is being considered to contain this information.

Q: How can I use the Sound Manager for a metronome effect?

A: Use a modifier to send a noteCmd to the note synthesizer. The modifier will use the
howOftenCmd to cause the Sound Manager to send a tickleCmd. Every time the
modifier gets called, it can send a noteCmd to cause the click.

Q: What is the maximum number of synthesizers that can be opened at once? Can
I have the noteSynth and the sampledSynth open at the same time and produce
sound from either?

A: Only one synthesizer can be active at any time. This is because the active synthesizer
“owns” the sound hardware until the channel is disposed of.

Q: How can I tell if more than four wave table channels are open or if another
application has already open a synthesizer?

A: It is not possible at this time to determine when more than the maximum number of
wave table channels has been allocated due to a limitation with the availableCmd.
This issue is being investigated. It is not possible to determine if a synthesizer is in use
by another application. If all applications would dispose of their channels at the resume
event, this would not be a problem.

Q: How do I get _SndPlay to play the sound asynchronously? The Sound
Manager seems to ignore the async parameter.

A: If NIL is used for the channel, then _SndPlay does ignore the async flag. To play
the sound asynchronously, create a new channel with _SndNewChannel and pass this
channel’s pointer to _SndPlay. Again, if this 'snd ' contains 'snth' information you
must not link a synthesizer to the channel. Pass 0 as the synth in the call to
_SndNewChannel.

Q: Should we use 'snd ' format 1 or format 2 for creating sound resources?

A: The format 1 'snd ' is much more versatile. It can be used in the _SndPlay
routine for any synthesizer and requires minimal programming effort. There is no
recommendation for using either format. A format 1 has more advantages, and may
contain everything a format 2 does. A format 2 is for a sampled sound only.

Q: I’ve opened a channel for the sampled sound synthesizer and I’m using
_SndPlay. After awhile the system either hangs or crashes. What’s wrong?

A: This is the most common abuse of the Sound Manager. The 'snd ' being used has
specified a 'snth' resource (a format 2 'snd ' is assumed for the sampled sound
synthesizer). The Sound Manager will attempt to link this 'snth' to the channel with
every call to _SndPlay. What’s wrong is that the synthesizer has already been installed
and the Sound Manager is attempting to install it again, only this time as a modifier. The
same 'snth' code has been install more than once in the channel. If the 'snd '
contains 'snth' information, then _SndPlay can be used once and only once on a
channel. There two possible solutions: Do the pointer math to obtain the sampled sound
header and use the bufferCmd, or dispose of the channel after each call to _SndPlay.

Q: How can I use a sampled sound to play a sequence of notes?

A: Begin by opening a sampled sound channel. Load and lock the 'snd ' resource
containing the sample sound into memory. Then obtain a pointer to the sampled sound
header. Pass this pointer to the channel using the soundCmd. Now the sound is
installed and ready for a sequence of noteCmds. This sampled sound must contain an
ending loop point or the noteCmd may not be heard.

Q: How do I change the play back rate of a sampled sound? Do I use the freqCmd
or the rateCmd?

A: It is possible to change the sampling rate contained in the sampled sound header
and then use the bufferCmd. The freqCmd currently requires decimal note values
and will not support real frequency values. The rateCmd will only affect a sound that is
currently in progress and is used for pitch bending effects. It is possible to add a few
bytes of silence to the beginning of the sample to allow the rateCmd enough time to
adjust the play back rate without hearing the bending affect on its pitch.

Q: How can I play multiple sampled sounds to play as a single sampled sound
without the glitch that is heard between each sample on the Mac Plus?

A: On the Macintosh Plus or SE, the Sound Manager uses a 370 byte buffer internally to
play sampled sounds. If the array of sampled sound data is in multiples of 370 bytes, the
Sound Manager will not have to pad its internal buffer with silence. Using double
buffering techniques, an application can send multiple sampled sounds using the
bufferCmd from a CallBack procedure to create a continuous sound. Use this
technique until the continueCmd is supported.

Q: How can I use the MIDI synthesizers with my own keyboards?

A: They have too many limitations at this time. Don’t bother trying.

NOTE VALUES AND DURATIONS

Tempo in beats/min 30 60 90120150180

w whole note 1600080005333400032002667
h half note 8000 40002667200016001333
q. dotted quarter note600030002000150012001000
q quarter note 4000 200013331000 800 667
e. dotted eighth note300015001000750600 500
e eighth note 2000 1000 667 500400333
x. dotted sixteenth note1500 750 500375300250
x sixteenth note 1000 500333250200 167

Table 3 duration values

Table 3 shows the duration values that are used in a waitCmd,
howOftenCmd, wakeUpCmd, noteCmd, and restCmd. Their
duration is in half-millisecond values. This chart will help in
determining the actual duration used in certain tempos. To
calculate the duration use the following formula.

duration = (2000/(beats per minute/60)) *
beats per note

To calculate the duration for a note at a given tempo, divide the
beats per minute by 60 to get the number of beats per second. Then
divide the beats per second into 2000, which is the number of half-
milliseconds in a second. Multiply this ratio with the number of
beats the note should receive. For example, in a 4/4 time signature
each sixteenth note receives 1/4th of a beat. If an application is

playing a song in 120 beats per minute and wanted four sixteenth
notes, each noteCmd would have a duration of 250.

A
A#

B C
C#

D
D#

E F
F#

G
G#

Octave 1 1 2 3 4 5 6 7 8

Octave 2 9 10 11 12 13 14 15 16 17 18 19 20

Octave 3 21 22 23 24 25 26 27 28 29 30 31 32

Octave 4 33 34 35 36 37 38 39 40 41 42 43 44

Octave 5 45 46 47 48 49 50 51 52 53 54 55 56

Octave 6 57 58 596 0 61 62 63 64 65 66 67 68

Octave 7 69 70 71 72 73 74 75 76 77 78 79 80

Octave 8 81 82 83 84 85 86 87 88 89 90 91 92

Octave 9 93 94 95 96 97 98 99100 101102 103 104

Octave 10 105106 107 108109 110 111112113114115116

Octave 11 117118119120121122 123 124125 126 127

Table 4 noteCmd values

Table 4 shows the values that can be sent with a noteCmd. Middle C is represented by a value of 60. These values correspond to MIDI
note values.

SUMMARY OF THE SOUND MANAGER

Sound Manager Constants

{ sound command numbers }
nullCmd = 0; {utility generally sent by Sound Manager}
initCmd = 1; {utility generally sent by Sound Manager}
freeCmd = 2; {utility generally sent by Sound Manager}
quietCmd = 3; {utility generally sent by Sound Manager}
flushCmd = 4; {utility generally sent by Sound Manager}
waitCmd = 10; {sync control sent by application or modifier}
pauseCmd = 11; {sync control sent by application or modifier}
resumeCmd = 12; {sync control sent by application or modifier}
callBackCmd = 13; {sync control sent by application or modifier}
syncCmd = 14; {sync control sent by application or modifier}
emptyCmd = 15; {sync control sent by application or modifier}
tickleCmd = 20; {utility sent by Sound Manager or modifier}
requestNextCmd = 21; {utility sent by Sound Manager or modifier}
howOftenCmd = 22; {utility sent by Sound Manager or modifier}
wakeUpCmd = 23; {utility sent by Sound Manager or modifier}
availableCmd = 24; {utility sent by application}
versionCmd = 25; {utility sent by application}
noteCmd = 40; {basic command supported by all synthesizers}
restCmd = 41; {basic command supported by all synthesizers}
freqCmd = 42; {basic command supported by all synthesizers}
ampCmd = 43; {basic command supported by all synthesizers}
timbreCmd = 44; {noteSynth only}
waveTableCmd = 60; {waveTableSynth only}
phaseCmd = 61; {waveTableSynth only}
soundCmd = 80; {sampledSynth only}
bufferCmd = 81; {sampledSynth only}
rateCmd = 82; {sampledSynth only}
continueCmd = 83; {sampledSynth only}

{ synthesizer resource IDs used with _SndNewChannel }
noteSynth = 1; {note synthesizer}
waveTableSynth = 3; {wave table synthesizer}
sampledSynth = 5; {sampled sound synthesizer}
midiSynthIn = 7; {MIDI synthesizer in}
midiSynthOut = 9; {MIDI synthesizer out}

{ init options used with _SndNewChannel }
initChanLeft = $02; {left channel - sampleSynth only}
initChanRight = $03; {right channel- sampleSynth only}
initChan0 = $04; {channel 0 - wave table only}
initChan1 = $05; {channel 1 - wave table only}
initChan2 = $06; {channel 2 - wave table only}
initChan3 = $07; {channel 3 - wave table only}
initSRate22k = $20; {22k sampling rate - sampleSynth only}
initSRate44k = $30; {44k sampling rate - sampleSynth only}
initMono = $80; {monophonic channel - sampleSynth only}
initStereo = $C0; {stereo channel - sampleSynth only}

stdQLength = 128; {channel length for holding 128 commands}

{ sample encoding options }
stdSH = $00 {standard sound header}
extSH = $01 {extended sound header}
cmpSH = $02 {compressed sound header}

{ Sound Manager error codes }
noErr = 0 {no error}
noHardware = -200 {no hardware to support synthesizer}
notEnoughHardware = -201 {no more channels to support synthesizer}
queueFull = -203 {no room left in the channel}
resProblem = -204 {problem loading the resource}
badChannel = -205 {invalid channel}
badFormat = -206 {handle to snd resource was invalide}

Sound Manager Data Types

Time = LONGINT;

SndCommand = PACKED RECORD
 cmd: INTEGER; {command number}
 param1: INTEGER; {first parameter}
 param2: LONGINT; {second parameter}
END;

ModifierStubPtr = ^ModifierStub;
ModifierStub = PACKED RECORD

 nextStub: ModifierStubPtr; {pointer to next stub}
 code: ProcPtr; {pointer to modifier}
 userInfo: LONGINT; {free for modifier’s use}
 count: Time; {used internally}
 every: Time; {used internally}
 flags: SignedByte; {used internally}
 hState: SignedByte; {used internally}
END;

SndChannelPtr = ^SndChannel;
SndChannel = PACKED RECORD

 nextChan: SndChannelPtr; {pointer to next channel}
 firstMod: ModifierStubPtr; {ptr to first modifier}
 callBack: ProcPtr; {ptr to call back procedure}
 userInfo: LONGINT; {free for application’s use}
 wait: Time; {used internally}
 cmdInProgress: SndCommand; {used internally}
 flags: INTEGER; {used internally}
 qLength: INTEGER; {used internally}
 qHead: INTEGER; {used internally}
 qTail: INTEGER; {used internally}
 queue: ARRAY [0..stdQLength-1] OF SndCommand;
END;

SoundHeaderPtr = ^SoundHeader;
SoundHeader = PACKED RECORD {sampled sound header}

 samplePtr: Ptr; {NIL if samples in sampleArea}
 length: LONGINT; {number of samples in array}
 sampleRate: Fixed; {sampling rate}
 loopStart: LONGINT; {loop point beginning}
 loopEnd: LONGINT; {loop point ending}
 encode: BYTE; {sample's encoding option}
 baseNote: BYTE; {base note of sample}
 sampleArea: PACKED ARRAY [0..0] OF Byte;
END;

{refer to the Audio Interchange File Format “AIFF” specification}
ExtSoundHeaderPtr = ^ExtSoundHeader;
ExtSoundHeader = PACKED RECORD {extended sample header}

 samplePtr: Ptr; {NIL if samples in sampleArea}
 length: LONGINT; {number of sample frames}
 sampleRate: Fixed; {rate of original sample}
 loopStart: LONGINT; {loop point beginning}
 loopEnd: LONGINT; {loop point ending}
 encode: BYTE; {sample's encoding option}
 baseNote: BYTE; {base note of original sample}
 numChannels: INTEGER; {number of chans used in sample}
 sampleSize: INTEGER; {bits in each sample point}
 AIFFSampleRate:EXTENDED;{rate of original sample}
 MarkerChunk: Ptr; {pointer to a marker info}
 InstrumentChunks:Ptr; {pointer to instrument info}
 AESRecording: Ptr; {pointer to audio info}
 FutureUse1: LONGINT;
 FutureUse2: LONGINT;
 FutureUse3: LONGINT;
 FutureUse4: LONGINT;
 sampleArea: PACKED ARRAY [0..0] OF Byte;
END;

Sound Manager Routines

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;
 noWait: BOOLEAN): OSErr;

INLINE $A803;

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;
INLINE $A804;

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: INTEGER;
 init: LONGINT; userRoutine: ProcPtr): OSErr;

INLINE $A807;

FUNCTION SndDisposeChannel (chan: SndChannelPtr;
 quietNow: BOOLEAN): OSErr;

INLINE $A801;

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;
 async: BOOLEAN): OSErr;

INLINE $A805;

FUNCTION SndControl (id: INTEGER; VAR cmd: SndCommand): OSErr;
INLINE $A806;

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;
 id: INTEGER; init: LONGINT): OSErr;

INLINE $A802;

PROCEDURE MyCallBack (chan: SndChannelPtr; cmd: SndCommand);

FUNCTION MyModifier (chan: SndChannelPtr; VAR cmd: SndCommand;
 mod: ModifierStub): BOOLEAN;

INDEX

A, B, C
A5 28, 29
ampCmd 25, 31
amplitude 6, 9, 24, 25, 31, 32, 34
Apple Sound Chip 4, 5, 26, 31, 34, 36
asynchronously 17, 18
Audio Interchange File Format 7, 8, 43
availableCmd 18, 19, 23, 31, 32, 33, 37
baseNote 7, 8, 13, 14
bufferCmd 12, 14, 17, 27, 32, 34, 37, 38
CallBack procedure 18, 22, 28, 38
callBackCmd 18, 22, 28, 36
channel 6, 7, 16, 17, 18, 19, 20, 22, 28, 30, 33, 35,

36, 37
cmpSH 8
Command Descriptions 20
command’s options 20
completion routine 17, 28
compressed sample header 8
Constants 41
continueCmd 27, 32, 38
control commands 19
Control Panel 5, 34
count 22, 23, 33
custom synthesizers 3

D, E, F, G

Data Types 42
default size 17
digitally recorded 7
duration 8, 24, 25, 39
emptyCmd 22
encode 8
ExitToShell 35
extended sample header 8, 43
extSH 8
flushCmd 19, 21, 31, 32
format 1 'snd ' 11, 12, 16, 17, 36, 37
format 2 'snd ' 11, 14, 17, 36
freeCmd 21, 29
freqCmd 9, 24, 25, 31, 32, 38
frequency 24, 25
Generic Command Format 20
GetSoundVol 35

H, I, J, K, L, M

heap 17
HGetState 17, 18
howOftenCmd 22, 23, 36
HPurge 11
HSetState 19, 33
HyperCard 11
identifier 22, 33
init 18, 23
init option 12, 18, 33, 36

init parameter 23
initCmd 21, 29
instrument 7, 24, 26, 34
interrupt time 5, 28, 29
loop point 8, 13, 14, 24, 38
Macintosh Audio Compression and Expansion 8
Macintosh II 4, 15
Macintosh Plus 4, 15, 31, 34, 38
Macintosh SE 4, 15, 31, 34, 38
memory 16, 17, 18, 19, 21, 26, 27, 28, 35
MIDI 4, 5, 32, 38, 40
midiDataCmd 32
modifier 3, 12, 18, 23, 29, 33
modifier stub 23
monophonic channel 31, 32
MultiFinder 34, 35

N, O, P, Q, R

Note Synthesizer 5, 17, 25, 31
noteCmd 8, 9, 24, 25, 26, 31, 32, 34, 36, 38
noWait 19
nullCmd 20, 30
offset 11, 12, 13, 14, 20
one-shot mode 27, 32
pauseCmd 19, 21, 23
period 22, 23
periodic actions 22
phaseCmd 26, 32
phasing effects 26
pitch 7, 8, 25, 26, 27
pointer bit 14, 20
queueFull 19
quietCmd 19, 21, 31, 32
quietNow 19, 21, 35
RATE 8, 27, 34
rateCmd 27, 32, 38

reference count 14
requestNextCmd 23, 30
resource ID 12, 13, 15, 17, 18, 36, 41
Resource Layout 10
restCmd 25, 31, 32
resume event 37
resumeCmd 21, 22

S

sample header 8
sample rate 7, 8
sampleArea 9
sampled sound 9, 11, 14, 24, 26, 27
sampled sound header 7, 8, 11, 12, 14, 27, 37, 38
Sampled Sound Synthesizer 7, 13, 14, 17, 18, 26, 32
sampling rate 32, 38
SetA5 29
SetCurrentA5 28
SetSoundVol 35
Simple Beep 5
sine wave 6, 25
snd 4, 10, 11, 12, 13, 14, 16, 17, 20, 26, 27, 35, 37
SndAddModifier 15, 18, 21, 29, 33
SndControl 15, 19, 23, 24
SndDisposeChannel 19
SndDoCommand 19
SndDoImmediate 19
SndDisposeChannel 4, 21, 32, 35
SndDoCommand 4
SndDoImmediate 4, 21
SndNewChannel 4, 15, 17, 21, 22, 23, 28, 33, 35, 37
SndPlay 4, 11, 13, 14, 15, 16, 17, 21, 36, 37

snth 4, 15, 16, 17, 18, 33, 34, 37
sound channel 3, 17, 38
sound command 19
sound data 11, 12, 20, 34, 35
sound header 27
soundCmd 14, 26, 32, 38
square wave 5, 26
stdSH 8
stereo 18, 32
suspend event 34, 35
syncCmd 19, 22, 33
synchronize 22, 26, 33
synth 12, 13, 17, 36, 37
synthesizer 3, 12, 17, 20, 23
Synthesizer Details 31
Synthesizer Resource IDs 15
SysBeep 5, 34, 35
SysEnvirons 36
System Beep 5, 11

T, U, V, W, X, Y, Z

tickleCmd 21, 22, 23, 36
timbre 5, 25
timbreCmd 25, 31
userRoutine 17, 18, 22
versionCmd 19, 24, 31, 32
waitCmd 19, 21
wakeUpCmd 22, 23
wave table 5, 6, 11, 26
Wave Table Synthesizer 5, 18, 26, 31
waveTableCmd 6, 26, 31

