
Scientist's Spreadsheet
User's Manual
Macintosh Version 2.17

for the 512K Macintosh®, Macintosh Plus and Macintosh XL
March 1, 1987

by William Menke

Assistant Professor of Geological Science
Lamont-Doherty Geological Observatory of Columbia University
Palisades, New York 10964
(914) 359-2900
x 438

A Data Manipulation program designed especially for
Scientists and Engineers
for performing
arithmetic, curve fitting and time series analysis
on tabular data

Note: a completely compatible version of Scientist's Spreadsheet is now
available for Sun 3 ® Workstations under the SunView environment.

1

This software and manual are public domain.

The author requests that any parties distributing modified versions of this software include a
notification of modification that is visible in the Command Window when the program is launched,
change the version number to x.y wherex>10, and include their name and address in the manual.

Disclaimer

William Menke makes no warranty, expressed or implied, and there are expressly excluded all
warranties of merchantability and fitness for a particular purpose. William Menke shall have no
liability with respect to consequential, exemplary, or incidential damages arising out of or in connection
with the use or performance of this software. It is the user's responsibility to assure that this software is
adequate for the user's purposes.

2

Table of Contents

1. Introduction 4
1.1 The Scientist's Spreadsheet Table 5
1.2 Memory allocation 6
1.3 Windows 7
1.4 Menu Items 7
1.5 Commands 8

2.0 Tutorial 8
2.1 A Typical Scientist's Spreadsheet Session 8
2.2 Cookbook 9
2.3 Scientist's Spreadsheet Variables 10
2.4 Procedures 10

2.4.1 Executing Demo Procedure 10
2.4.2 Writing Procedures 10

3.0 Reference Information 12
3.1 Command Syntax: 12

3.1.1 Essential Commands 12
3.1.2 Commands that set the header 12
3.1.3 Commands for using variables 13
3.1.4 Graphics Commands 14
3.1.5 Commands for using procedures 14
3.1.6 Control commands to be used within procedures 15
3.1.7 Commands for column arithmetic and statistics 16
3.1.8 Time series analysis commands 18
3.1.9 Commands for table manipulations 20

4.0 Helpful Hints 21
5.0 Contents of Procedure Files on distribution disk 22
6.0 Known Anomalies and Caveats 24

6.1 Caveats 24
6.2 Known Anomalies 24

7.0 Technical information 25
7.1 Source code 25
7.2 Format of Ascii files 25
7.3 Format of procedure files 25
7.4 Format of binary files 25

3

1. Introduction. Scientist's Spreadsheet is an interactive data manipulator designed for the kind of
tabular data commonly used by scientists and engineers. The fundamental data structure in Scientist's
Spreadsheet is a table of numbers. These data can be input, saved as files, viewed, plotted, and
operated upon mathematically.

• Scientist's Spreadsheet is basically a command string oriented program. The command set includes
graphics, arithmetic, time-series analysis, curve fitting and table management operations.

• Scientist's Spreadsheet makes full use of the Macintosh windowing and menu selection functions.
For instance, it contains a mouse-driven table editor to facilitate inputing, viewing, and manipulating
the table.

• The contents of the table can be plotted on the Macintosh screen and then printed or saved as a
MacPaint® file.

• Procedures (programs) can be written in Scientist's Spreadsheet command language and then
executed as if they were Scientist's Spreadsheet commands. These procedures can use string variables
and a variety of control structures.

4

1.1 The Scientist's Spreadsheet Table. The fundamental data structure used by Scientist's
Spreadsheet is a rectangular table of numbers. Only one table can be accessed by the user at any one
time.

Note about precision. All table entries are stored as single-precision (32
bit) floating point numbers in standard IEEE format. The special numbers
NaN, Inf, and -Inf are supported.

In addition to the usual numbers, table entries can be set to NaN (not a number), Inf (for infinity) and
-Inf. Improper mathematical operations such as division by zero will generate these entries.
Scientist's Spreadsheet will not crash from an arithmetic error.

Note about entering data. Data can be entered in the table in one of
three ways: typing it into the edit window, reading it in from a file
previously created by Scientist's Spreadsheet, or reading it in from a
TEXT file created by some other program (eg. MacWrite®, Excel®).

Scientist's Spreadsheet tables come in two variations. One type is 'interpolated', meaning that the data
in column 1 increase linearly with row number. Entries in column 1 of interpolated tabes cannot be
altered individually: only the starting value and sampling interval can be changed. The other type is
'uninterpolated', in which column 1 is no different than any other column. Interpolated tables require
less disk storage than uninterpolated ones.

Note about interpolated tables Interpolated and uninterpolated tables
generally act similarly, except:

• Entries in column 1 of an interpolated table cannot be changed.
• Some commands (mostly time-series analysis) work on only one kind of
table.

Making interpolated and uninterpolated tables.

• By default, tables are uninterpolated.

• There are two ways to create an interpolated table:
1. Setting the sampling interval and starting value, and

then declaring the table interpolated. Column 1 of the table will
immediately be overwritten to reflect the new settings, but the other
columns will be unaffected. For example:

samp 1.0
start 0.0
interpolated true

2. Interpolating a table to a given sampling interval with
the interpolate or spline command. The number of rows in the table will

change, and the data in all the columns will be
interpolated. For example

interpolate 1.0
• An interpolated table can always be changed into an uninterpolated one
with the command:

 interpolated false

5

In addition to the table entries themselves, each table has a set of essential information, called a
header, associated with it. The header is automatically updated by Scientist's Spreadsheet as the user
manipulates the table, and is stored along with the table entries when a file containing a table is
created.

Note about the header. The header contains the following information, referred
to by standard names:

rows: the number of active rows in the table;
cols: the number of active columns in the table;
title: an 80 character string describing the data;
interpolated: a boolean flag (eg. is either 'true' or 'false') indicating

whether or not the table is interpolated;
colname: a 10 character name for each column;
samp, start: the sampling interval and starting value of the table if in-
terpolated. Col 1 is computed by the rule start + samp × (row-1).

The title and column names help to document the table, so the user should set them.

1.2 Memory allocation. The amount of the computer's memory allocated for the table can be varied.
The default allocation when Scientist's Spreadsheet is launched is 128 rows and 2 columns. This size
can be increased by the allocate command, up to 4096 rows and 32 columns. This should be done at
the beginning of the session, since reallocating the table destroys the data in the old one (unless it is
first saved in a file). Not all of the allocated rows and columns need be used at any one time. The
user is free to reduce (and subsequently enlarge) the 'active size' table, using the rows and cols
command (Figure 1).

active
rows

active
columns

allocated
rows

allocated columns

Figure 1. The active size of the table (white area) can be less than or equal to the
allocated size (white and shaded area).

1.3 Windows. Scientist's Spreadsheet has four windows, named Command Window, Graphics
Window, Edit Window, and Procedure Window:

6

The Command Window displays a history of what has been done during the session, and is
where new commands are typed. The contents of the Command Window can be freely edited. Only
text added to the last line and followed by a return is interpreted as a command.

The Graphics Window contains a plot of columns of the table. Plots are made by typing the
appropriate commands in the command window. Clicking the mouse when the graphics window is
active causes the current position of the cursor to be printed in the command window.

The Edit Window displays the table in tabular form and allows you to edit its entries.
The Procedure Window contains currently defined procedures (programs). They can be freely

edited and transferred between the window and files.

1.4 Menu Items:
The Apple menu, through which the desk accessories can be accessed.
The File menu, through which all disk I/O is accomplished.

Read Binary Table reads a previously saved table (and its header) from a file on disk
into memory.

Save Binary Table as... saves a table in a file on a disk. This file is in a compact
binary format that cannot be read by other applications. The table's header is stored
along with the table.

Read Ascii Table... reads a table stored as an ascii text file into memory.
Save Ascii Table as... saves a table in a file on a disk. This file is in a standard

format that can be read by some other applications, such as MacWrite, Excel, and Edit.
These files contain only the column names and table values, with the items on each line
separated by tabs.

Read Procedure reads a previously saved procedure into the procedure window,
appending it to the bottom of whatever text is present in the window.

Save Procedure as... saves the entire contents of the procedure window in a file on
disk.

Print Graph prints the graph on the printer (either the ImageWriter of the LaserWriter,
whichever was selected by the Chooser).
Save graph as ... saves the contents of the graphics window as a MacPaint file.
Quit quits from Scientist's Spreadsheet. All data and procedures not previously saved

to disk are lost.

Note that tables can be stored on disks in two forms: Binary and Ascii. You should normally use the
Binary form, since it is faster and the entire table header is saved. MacWrite and Excel files containing
a table can be read into Scientist's Spreadsheet if they are saved in the text-only mode and read as an
ascii table.

The Edit menu:
Undo does nothing - it is provided only for use of the desk accessories.
Cut deletes the selected text from the command, procedure and edit window.
Copy copies the selected text from the command, procedure and edit window into the

clipboard.
Paste transfers the contents of the clipboard to the selected position in the command,

procedure and edit windows.

The Windows menu, which provides a way to select hidden windows.
The Abort menu, which allows procedures and some commands to be aborted.
The Miscellaneous menu:

Position Edit Window allows you to move display a given row and column.

1.5 Commands. Many Scientist's Spreadsheet operations are invoked by typing commands in the last
line of the Command Window. In some instances a command consists of just a single word. For
instance, the command clear erases the graphics window. In other instances, a command requires one
or more arguments. For instance, in the command plot 1 2, the '1 2' are two additional parameters or
command words that specify the two columns to be plotted. Scientist's Spreadsheet has about 75
commands, each of which is described later in the manual.

7

Note about command words. A command word is a sequence of
characters containing no blanks or a quoted sequence of characters
containing blanks.

2.0 Tutorial.

2.1 A Typical Scientist's Spreadsheet Session. In the following tutorial, material Scientist's
Spreadsheet types is printed in bold, material the user types is printed in plain text, and comments are
printed in italic. The session creates a table that is 128 rows by 3 columns, evaluates some
trigonometric functions, and plots them.

Scientist's Spreadsheet, Version 2.17, by William Menke
Caveat Emptor

New Table 128 by 2
> allocate 128 3 creates 128 by 3 table
> title 'my test dataset' sets title
> colname 1 time, t labels column 1
> colname 2 0.987sin(t) labels column 2
> colname 3 sin(t)/t labels column 3
> samp 0.1 column 1 is interpolated column
> start 0.0 with sampling interval 0.1
> interpolated true starting value 0.0
> cfunction sin 1 2 put 0.987 times sine of column 1
> cmath 2 *# 0.987 = 2 into column 2
> cfunction sin 1 3 put sine of column 1 divided by
> cmath 3 / 1 = 3 column 1 into column 3
> table 1 3 1.0 sin(0)/0 now set to NaN

reset to 1
> xaxis 0 12.8 set abcissa of plotting screen
> yaxis -1 1 set ordinate of plotting screen
> clear clear graph
> plot 1 2 solid plot column 2 against 1
> plot 1 3 dotted plot column 3 against 1
> quit quit from Scientist's Spreadsheet
2.2 Cookbook.

2.2.1. Plot data in column 3 against data in column 4:
clear
scale 3 4
axes
plot 3 4

2.2.2. Create a table with time, t, sampled every 0.01 seconds in column 1, and sin(t) in column 2:
samp 0.01
start 0.0
interpolated true

8

cfunction sin 1 2

2.2.3. Evaluate the function z=sin2(x+y) where x is in column 1, y is in column 2, and z is to be put in
column 3.

cmath 1 + 2 = 3
cfunction sin 3 3
cmath 3 * 3 = 3

2.2.4. Create a table with time, t, sampled every 0.01 seconds in column 1, and a unit spike, δ(t-0.63),
in column 2. Then bandpass the spike between 20 and 30 hertz.

samp 0.01
start 0.0
interpolated true
constant 0 2
table 64 2 1.0
bandpass 20.0 30.0 2 2

2.2.5. Convert an uninterpolated dataset into an interpolated one, remove a linear trend and then
compute and plot its amplitude spectrum. Assume that the table is uninterpolated, column 1 is time
sampled about once every second, and that the time series is in column 2.

interpolate 1.0
trend remove 1 2 2
spectrum amplitude
scale 1 2
clear
axes
plot 1 2

2.3 Scientist's Spreadsheet Variables. Variables contain character strings of up to 80 characters in
length. A variable's name can be any character string that does not contain a blank. Once defined (eg.
by the setvar command), the value of a variable can be used as a command word by including its
name in the command string prefaced by the @ symbol. For example, the commands:

setvar date 'November 1, 1755'
prompt @date

create a variable named 'date' that is set to the value 'November 1, 1755', and then types the value of
the variable in the command window. Note that variables can contain numbers in string form.
Variables are mainly useful in procedures. In addition to variables defined by the user, Scientist's
Spreadsheet also defines and automatically updates variables set to commonly used parameters:

The header variables: rows, cols, title, interpolated, samp, start
The arguments of the last procedure to be executed: arg1, arg2, arg3, arg4
The endpoints of the graphics axes, xmin, xmax, ymin, ymax
The position of the cursor in user coordinated after the last cursor command:

xpos, ypos
The minimum value in a column after the min command: min
The maximum value in a column after the max command: max
The mean and standard deviation after a mean command: mean, stddev
The slope, intercept, and one-standard-deviation errors after a trend
command: slope, intercept, errslope, errintercept
The number of non-NaN data used in computations during commands such as min,

max, mean, trend, polyfit, multifit, etc: counts

9

For example, in order to print out the current value of the graphics x-axes, type the commands:
prompt @xmin
prompt @xmax

2.4 Procedures. The user can write short programs, or 'procedures' consisting of sequences of
Scientist's Spreadsheet commands, variable definitions and references, and control structures.
Procedures are first written in the procedure window or read into Scientist's Spreadsheet r using the
Read Procedure item in the File menu. They can then be run using the execute command
(abbreviated x). Three files of procedures, Demo Procedure, Useful Procedures and Ternary Diagram
are included on the distribution disk. Useful Procedures and Ternary Diagram are described later in
the manual.

2.4.1 Executing Demo Procedure:
1. Launch Scientist's Spreadsheet by double-clicking on its icon.
2. Select Read Procedure from the File Menu.
3.When the Read File dialog box appears, select and open Demo
Procedure.
4. Activate the Procedure Window, and note that the Demo procedure is present.
5. Activate the Command Window and type x demo in the bottom line, and follow the

directions that will appear. The procedure will create a table of data and plot it, and then allow you
to measure points from the graphics window by clicking the cursor.

2.4.2 Writing Procedures. The following sample procedure squares column 1, adds it to column 2,
and puts the results in column 3:

label add
cmath 1 * 1 = 1
cmath 1 + 2 = 3
return

This procedure is executed by typing on the last line in the Command Window:
x add

Procedures can get input from the keyboard. The above example can be modified to ask for a result
column:

label add
input result 'enter result column'
cmath 1 * 1 = 1
cmath 1 + 2 = @result
return

This procedure is executed by typing
x add

Another way for a procedure to get information is through arguments entered in the command line.
label add
cmath 1 * 1 = 1
cmath 1 + 2 = @arg1
return

This procedure is executed by typing
x add 3

(where 3 is the result column).

Procedures can call other procedures:
label addAndSquare

10

x add
cmath 3 * 3 = 3
return

 label add
cmath 1 * 1 = 1
cmath 1 + 2 = 3
return

Procedures can contain loops. The following procedure plots columns 2, 3, ... against column 1.
label plotAllColumns
for column 2 @cols
plot 1 @column
next column
return

Procedures can contain conditional statements. The following procedure plots columns 2, 3 ... against
1, querrying each time whether to discontinue plotting.

label plot1
for column 2 @cols
plot 1 @column
input querry 'continue? y or n'
if @querry s= 'n'

 return
next column
return

11

3.0 Reference Information.

3.1 Command Syntax: Command keywords are printed in bold, arguments in plain text. Italicized
command words may be omitted.

3.1.1 Essential Commands:
quit
allocate1 maximum_rows maximum_columns

3.1.2 Commands that set the header:2

colname column_number any_string
cols number_of_cols

⎛ true
interpolated ⎜

⎝false

rows number_of_rows
samp sampling_interval
start starting_value
title any_string

Notes.
1. Maximum table size is 4096 by 32, although in practice this is less and depends on the amount of
memory on the system.
2. Commands that change the header automatically update the header variables.

12

3.1.3 Commands for using variables:1
delete variable variable_name
input variable_name prompt_string
prompt any_string_1 ... any_string_5

⎛ table row col
set variable_name ⎜ colname col

⎝ coefficient2 n

setvar variable_name any_string
type variables

⎛ sin ⎞
⎜ cos ⎟
⎜ tan ⎟
⎜ asin ⎟

vfunction ⎜ acos ⎟ input_value variable_name
⎜ atan ⎟
⎜ sqrt ⎟
⎜ ln ⎟
⎜ exp ⎟
⎜ erf ⎟
⎜ erfc ⎟
⎜ abs ⎟
⎜ int ⎟
⎜ frac ⎟
⎜ denan3 ⎟
⎝ row3 ⎠

⎛ + ⎞
vmath input_value_1 ⎜ - ⎟ input_value_2 = variable_name

⎜ * ⎟
⎝ / ⎠

concat variable_name any_string_1 any_string_2 any_string_3

Notes:
1. A variables name (any string containing no blanks) is distinct from its value, which is its name
preceeded by the symbol @.
2. The coefficients are those determined by least-squares methods using the polyfit and multifit
commands.
3. The denan function converts NaN's into zeroes. The row function returns the row number of a
value in col 1 of an interpolated table, based on the current value of samp and start. The row is always
in the range 1<row<rows.

13

3.1.4 Graphics Commands:
anotate1 x y any_string
axes2
clear3
cursor4 any_prompt_string
hbars5 abcissa_col ordinate_col bar_half_width start_row end_row

⎛ solid ⎞
⎜ dotted ⎟
⎜ dashed ⎟

plot abcissa_col ordinate_col ⎜ bold ⎟ start_row end_row
⎜ dots ⎟
⎜ circles ⎟
⎜ crosses ⎟
⎜ stars ⎟
⎝ x ⎠

scale6 abcissa_col ordinate_col
xaxis minimum_value maximum_value
yaxis minimum_value maximum_value
vbars5 abcissa_col ordinate_col bar_half_height start_row end_row

⎛ solid ⎞
⎜ dotted ⎟
⎜ dashed ⎟

vector x1 y1 x2 y2 ⎜ bold ⎟
⎜ dots ⎟
⎜ circles ⎟
⎜ crosses ⎟
⎜ stars ⎟
⎝ x ⎠

3.1.5 Commands for using procedures:
beep
execute7 label
sleep number_of_seconds

⎛ true
refresh8 ⎜

⎝ false

Notes.
1. Plots the given character string in the graphics window at position (x,y)
2. Clears (erases) the graphics screen.
3. Used to pick values from a plot using the mouse. The variables xpos and ypos are set to the cursor
position when the mouse is clicked. If the prompt string is not given, no prompt is printed.
4. Sets the xaxis and yaxis values on the basis of the data in two columns.
5.Horizontal and vertical error bars.
6. Plots axes.
7. Automatically updates variables arg1, arg2, arg3, arg4.
8. Suspends or restarts refreshing of the edit window during the execution of a procedure (so the
procedure will run faster). This command can only be used within a procedure. A return to the
command window always restores the refresh.

14

3.1.6 Control commands to be used within procedures:
label any_string
for1 variable_name starting_integer ending_integer increment
next1 variable_name
goto label
return

⎛ s= ⎞
⎜ s<> ⎟
⎜ = ⎟

if2 any_string_1 ⎜ <> ⎟ any_string_2 num_of_lines
⎜ < ⎟
⎜ > ⎟
⎜ <= ⎟
⎝ >= ⎠

Notes.
1. The for-next statement pair are used for loops, the for statement being placed at the beginning of
the loop and the next being placed at the end. Loops can be nested.
2. The if statement permits the following num_of_lines to be executed only if the comparison is true.
The comparisons s= and s<> test the ascii representation of strings. The comparison =, <>, <, >, <=,
and >= assume that the strings contain floating point numbers and tests the value of these numbers.
When testing for the presence of a NaN, the string comparisons should be used.

15

3.1.7 Commands for column arithmetic and statistics:

⎛ + ⎞
cmath input_col_1 ⎜ - ⎟ input_col_2 = output_col

 ⎜ * ⎟
⎝ / ⎠

⎛ #+ ⎞
cmath constant ⎜ #- ⎟ input_col = output_col

⎜ #* ⎟
 ⎝ #/ ⎠

⎛ +# ⎞
cmath input_col ⎜ -# ⎟ constant = output_col

⎜ *# ⎟
⎝ /# ⎠

⎛ sin ⎞
⎜ cos ⎟
⎜ tan ⎟
⎜ asin ⎟

cfunction ⎜ acos ⎟ input_col output_col
⎜ atan ⎟
⎜ sqrt ⎟
⎜ ln ⎟
⎜ exp ⎟
⎜ erf ⎟
⎜ erfc ⎟
⎜ abs ⎟
⎜ int ⎟
⎜ frac ⎟
⎜ denan1 ⎟
⎝ row1 ⎠

constant2 value col_number first_row last_row

⎛ type input_col ⎞
mean3 ⎜ keep input_col output_col ⎟

⎜ remove input_col output_col ⎟
⎝ compute input_col ⎠

⎛ type input_col_1 input_col_2 ⎞
trend4 ⎜ keep input_col_1 input_col_2 output_col ⎟

⎜ remove input_col_1 input_col_2 output_col ⎟
⎝ compute input_col_1 input_col_2 ⎠

min5 col_number
max5 col_number
sort col_number

16

⎛ type input_col_1 input_col_2 ⎞
polyfit6 order ⎜ keep input_col_1 input_col_2 output_col ⎟
 ⎜ remove input_col_1 input_col_2 output_col ⎟
 ⎝ compute input_col_1 input_col_2 ⎠

⎛ type independent_col_list dependent_col ⎞
multifit7 ⎜ keep independent_col_list dependent_col output_col ⎟
 ⎜ remove independent_col_list dependent_col output_col ⎟
 ⎝ compute independent_col_list dependent_col ⎠

Notes.
1. The denan function converts NaN's to zero. The row function returns the row number of a value in
col 1 of an interpolated table, based on the current value of samp and start. The row is always in the
range 1<row<rows.
2. The constant command sets the rows of a column between starting_row and ending_row to the
given constant value. If the row limits are omitted, they default to 1 and rows respectively.
3. The mean command computes the mean of a column and updates the variables mean, stddev and
counts (the number of non-NaN column entries). 'type' types the result in the command window,
'keep' puts it in a column, 'remove' subtracts it from a column, and 'compute' has no action except
updating the header variables.
4. Trend computes a least-squares fit between two columns and updates the header variables slope,
intercept, errslope, errintercept, counts. See note 3 for explanation of keywords.
5. The commands min and max automatically update the variables min, max, counts.
6. Least-squares fit of polynomials of order 1-6. This command resets the variable counts. Variables
can be set to the values of the coefficients with the set command. See note 3 for explanation of
keywords.
7. Least-squares linear multivariate regression. See note 3 for explanation of keywords. This
command resets the variable counts. Variables can be set to the values of the coefficients with the set
command. The independent column list consists of column numbers separated by commas, spaces, or
tabs. If spaces or tabs are used, the list must be surrounded by quotes. For example:

multifit type 1,2,3,4 5 6

17

3.1.8 Time series analysis commands:

bandpass1 low_frequency high_frequency input_col_num output_col
circconv2 input_cols_1 input_col_2 output_col
coherence3 frequency_smoothing_interval
convolve4 input_col# operator_col_# operator_length output_col_#
differentiate5 x_col _num y_col _num output_col_num
histogram6 minimum_value maximum_value number_of_bins
integrate7 x_col _num y_col _num output_col_num

⎛ forward starting_s delta_s new_rows ⎞
laplace8 ⎜ ⎟

⎝ inverse starting_t delta_t new_rows ⎠

noise9 mean std_deviation output_col_num
phaseshift10 angle_in_radians input_col_num output_col_num
reverse11 input_col_number output_col_number
sum12 input_col_num ouput_col_num

⎛ amplitude ⎞
spectrum13 ⎜ power ⎟

⎝ phase ⎠

⎛ ascending x_col output_col start_row end_row ⎞
taper14 ⎜ ⎟

⎝ descending x_col output_col start_row end_row ⎠

18

Notes.
1. Interpolated table only. Second order Chebyshev recursive filter. Will phase shift to larger times.
2. Circular convolution or two time series with Fast Fourier Transform. Input columns are padded
with zeroes out to a power of two in length, FFT'ed, multiplied, and the result inverse FFT'ed. The
result is truncated to the length of the table. Table must be interpolated.
3. Interpolated table only. Coherence between time series x(t) and yi(t) where x(t) is in column 2 and
yi(t) is in cols 3, 4, ... cols. Column 1, t is replaced by frequency, f (Hertz), column 2 by |x(f)|2, and
the rest of the columns by coherence |<x(f)y*i(f)>|2/<|x(f)|2><|yi(f)|2>, where <> means boxcar
smoothing.
4. Interpolated table only. Brute-force convolution; operator length better be short. Points off the
beginning of the input column are assummed to be zero.
5. Differentiation, dy/dx by first order finite differences (dy/dx)i=(yi+1-yi)/Δx. The last row is set to
NaN.
6. Interpolated table only. Columns 2 through cols are replaced with histograms of their previous
values, and column 1 is replaced with the bin positions (centers).
7. Integration, ∫0x y(x') dx' by trapezoidal rule, with an integration constant of zero.
8. Interpolated table only. Laplace transform and its inverse. Forward transform does f(s)=∫0�∞ f(t)
exp(-st) dt by trapezoidal rule and is quite slow. Column one is assummed to be t, and columns
2...cols are several f(t)'s. The entire table is replaced with its transform, column 1 being replaced by s.
Inverse transform is by Stehfest's (1969) Algorithm 368, and is rather unstable, so results must be
treated with some skepticism. As a rule of thumb, f(s) must be accurate between 0.6/t and 5.6/t to get
sensible results.
9. Gaussian random noise.
10. Interpolated table only. Phase shift is defined so that the Hilbert transform is a phase shift of 90°.
The data is padded with zeroes to a power of two >= 128 in length, so that the fast fourier transform
algorithm can be used. The phase of the zero and nyquiest frequencies are not changed.
11. Reverse the order of elements in a column.
12. Running sum of input column values.
13. Interpolated table only. Spectrum using the fast fourier transform. Columns 2 through cols are
padded with zeroes to the nearest power of two >= 128 in length, then transformed. Column 1 is
changed to frequency (Hertz). Table must be interpolated.
14. The column is multipied by a half-wavelength cosine taper that rises from zero to one or falls from
one to zero. Portions of the column outside of the ends of the taper are unaffected.

19

3.1.9 Commands for table manipulations:
⎛ col input_col output_col ⎞

copy ⎜ ⎟
⎝ row input_row output_row ⎠

⎛ col input_col output_col ⎞
swap ⎜ ⎟

⎝ row input_row output_row ⎠

⎛col input_col number_of_cols ⎞
insert ⎜ ⎟

⎝row input_row number_of_rows ⎠

⎛col input_col number_of_cols ⎞
delete ⎜ ⎟

⎝row input_row number_of_rows ⎠

type col col_number

⎛ row_number col_number1 ⎞
table ⎜ ⎟

⎝ row_number col_number value2 ⎠

interpolate3 sampling_interval

spline4 sampling_interval

Notes:
1. Writes the current table value in the command window.
2. Sets the given table entry.
3. Linear interpolation of an uninterpolated table to an interpolated one. Table values that are set to
NaN are ignored. The number of rows of the table is changed. If the row allocation is not large
enough, the end of the data will be lost.
4. Natural cubic spline interpolation of an uninterpolated table to an interpolated one. Table values that
are set to NaN are ignored.

20

4.0 Helpful Hints:

1) Allocate a table large enough for all your needs, right at the beginning of a Scientist's Spreadsheet
session. Then, if you want to work with a smaller table, just declare it to be smaller using the rows
and cols commands. Doing this usually speeds things up, since re-allocating space is time consuming.

2) Decreasing the active size of a table with the rows and cols command does not actually destroy any
data. One can always recover the data by increasing the table size. This fact allows one to merge two
tables stored in two different files: allocate a large table with enough columns to hold both tables,
read in the first table, increase the number of active columns with the cols command and copy the
columns to the right hand part of the table. Then read in the second table and increase the table size
using the cols command, thus recovering the data from the first table.

3) Material from the Command Window can be copied and pasted into the procedure window, and
quickly edited into a short procedure.

4) When reading an ascii table into MacWrite, choose the option whereby MacWrite interprets
carriage returns as paragraphs. Then put enough tabs in the ruler so that all the columns line up
properly.

5) If you transfer data to the Macintosh from another computer using MacTerminal®, you will lose
any tabs between the columns (MacTerminal converts them to spaces). Therefore, don't send tabs,
send one space between each entry. Then use MacWrite to change each space to a tab. You can't type
a tab into the change dialog box, but you can paste it in.

6) Remember that windows (and in particular the graphics window) can be plotted on the printer by
typeing Command-Shift-4.

7) If you're running on a system with very limited memory, occasionally clear the command window
using the clear item in the edit menu.

8) A running procedure will update the edit window whenever one of its component commands alter
the table. This can sometimes be helpful when debugging a procedure, since the user can watch the
calculations as they proceed. However, the updating is quite time consuming. One way to speed
things up is to close up the edit window to its minimum size before running the procedure. Another is
to place the command refresh false within the procedure.

21

5.0 Contents of Procedure Files on distribution disk:

In Useful Procedures:

x arrow line_type
Plots an arrow in the graphics window with head and tail at cursor clicks. Line_type
should be solid, bold, dotted, or dashed.

x autocorrelation
Autocorrelation of time series in column 2 (using the conv command).Table allocation

must be at least 4 cols and at least twice the currently defined number of rows. The table is
destroyed. Resuls returned in col 2.
x clip min_value max_value input_col output_col

Clips the data in a column.
x crosscorrelation

Crosscorrelation of time series in columns 2 and 3 (using the conv command).Table
allocation must be atleast 4 cols and at least twice the currently defined number of rows.

The table is destroyed. Resuls returned in col 2.
x drawcurve

Lets the user construct a curve by clicking the mouse in the graphics window. The
procedure loops until the column is filled or it is aborted from the abort menu.

x drawhist ordinate_col
Draws a histogram with vertical bars. To be used after histogram command.

x letter any_string
Writes the string in the graphics windows when the mouse is clicked.

x logplot
Log-log plot. Prompts for input.

x movingaverage
Moving average of a dataset with a triangular averaging function. Prompts for input.
Requires one extra column for temporary results.

x naner ordinate-col
Lets the user click on a plot of a column to set its values to NaN. Good for throwing
away unwanted data points. The procedure loops until it is aborted from the abort
menu.

x numberplot abcissa_col ordinate_col plotting_symbol
Plots data with the points numbered sequentially.

x plot1 symbol second_symbol
Plots columns 2 ... cols vs. col 1, pausing and clearing the screen between each plot.
Will plot a second symbol if given, eg. x plot1 solid stars makes plots with stars
connected by straight lines.

x plotall symbol second_symbol
Plots all columns against one another, pausing and clearing the screen between each plot.

Will plot a second symbol if given, eg. x plotall solid stars makes plots with stars connected by
straight lines.
x pointer any_string line_type

Plots a labeled arrow in the graphics window with head and tail at cursor clicks. The
arrow's tail is labeled with any_string. Line_type should be solid, bold, dotted, or
dashed.

x pt abcissa_col_number ordinate_col_number symbol
clears, scales and plots

x rfunction function_type input_row output_row
Function applied to a row of the table. See cfunction command for function_types.

x rmath input_row_or_constant operator input_row_or_constant output_row
Arithmetic applied to a row. See cmath command for allowed operators. Note that equal

sign is ommitted, in contrast to vmath and cmath commands.
x scroller ordinate_col screen_width

22

The user cas scroll the plot left and right by clicking to the left or right of center. The
procedure loops until it is aborted from the abort menu.

x semilogplot
Semi-log plot. Prompts for input.

x separate input_col output_col_of_>_values output_col_of_>_values test_value
Divides the data in a column into two groups, depending on whether they are greater
than or less than a given test value. Each group is put in a separate output column.
Output columns are padded with NaN's.

x stickplot abcissa_col ordinate_col
Plots a column with vertical bars and a zero baseline.

x transpose
Transposes the rows and columns of a table.

x zapper ordinate_col
Lets the user click on a plot of a column to set its values to the ordinate_value of the
click. Good for editing data points. The procedure loops until it is aborted from the abort

menu.
x zerophasebandpass low_frequency high_frequency input_col output_col

Zero phase bandpass with roll-off twice as fast as bandpass command.

In Ternary diagram: A set of procedures to plot ternary diagrams (used in geochemistry, etc.). The table
must be at least 5 columns wide with the fractions of end members A, B, C, in columns 1, 2, 3
(although column 3 ia computed automatically as 1-A-B.. Columns 4 and 5 are used for temporary
results, so don't put data in them.

x plot-triangle
Draws the triangle on the graphics screen, with the vertices labeled with the column
names.

x plot-ternary plotting-symbol
Recomputes C as 1-A-B and plots the data. The plotting symbol should be one of the
usual ones for the plot command, and defaults to x if ommitted. If you don't like the
shape of the triangle, change the yaxis command in this procedure to suit your fancy.

x pick
Activates the cursor and prints out A,B,C values. The procedure loops until it is
aborted from the abort menu.

23

6.0 Known Anomalies and Caveats:

6.1 Caveats.

1. Accuracy of calculations.
Any program that performs numerical calculations must trade off accuracy and

speed of computation. While the many numerical algorithms that are incorporated in
Scientist's Spreadsheet were chosen with care, and to the author's knowledge are
sufficiently accurate for the needs of most scientists and engineers, instances will arise when
a particular algorithm fails to give sufficiently accurate results for a particular use. For the
most part these failures occur for pathological cases well known in numerical analysis: in curve-
fitting when the normal equations are nearly underdetermined, in integal transforms
when the integrand is too oscillatory or has singularities, etc. The user has the responsibility to
check for these cases. A computer progam is no substitute for knowledge about the techniques
that one is using, and their limitations.

6.2 Known Anomalies.

1. Treatment of NaN's.
a) Keyboard entries and all transcendental functions generate NANDIV.This was done

because the Manx floating point library generates error codes, not NaN's. Elementary arithmetic
generate IEEE standard NaN's.

b) The if statement floating-point comparisons don't work well with NaN's. When
testing for NaN's, use a string comparison.

2. Memory usage.
a) Scientist's Spreadsheet will crash if it runs out of memory. Some actions, such as

allocate, check to see if enough memory is available, and return an error message if it isn't. But a
system-generated memory error, such as from the Resource Manager, leads to a crash. This usually
isn't a problem on systems with lots of RAM, except if you've reserved a lot of
memory for a RamDisk.

b) The entire code for Scientist's Spreadsheet is locked into memory when the
program is loaded.

3. Edit Window.
a) The edit window is crude, to say the least. The refresh is too slow, the scroll is

always based on a 4096 by 32 table, etc.
b) If you scroll a newly input table entry out of the window, or execute a command,
before hitting a return or clicking the mouse, you usually lose the value you just
input.

4. Sort command. Nan's and Inf's are not descriminated during the sort.

24

7.0 Technical information.

7.1 Source code. Scientist's Spreadsheet is written in the C programming language, and compiled
under Manx Aztec C version 1.06G. A complete copy of the source code can be obtained by sending
an initialized diskette and a stamped return mailer to the author.

7.2 Format of Ascii files. Scientist's Spreadsheet Ascii files have type TEXT. The first line contains
the column names, separated with tabs. Subsequent lines contain rows of the table, with entries
separated by tabs. Each line is terminated with a return.

7.3 Format of procedure files. Scientist's Spreadsheet procedure files have type TEXT. Each line of
the procedure is terminated with a return.

7.4 Format of binary files. The following C code demonstrates how a binary file is read:

#define cmdWordLen 80
typedef char cmdWS[cmdWordLen];
typedef char colStr[12];

struct headerRec {
cmdWS title;
int interpolated, rows, cols, maxRows, maxCols;
float start, samp;
colStr colName[32];
char hEndArray[30]; /*fills out header to 512 bytes*/
};

typedef struct headerRec headerRec;

typedef float TArray[];
typedef TArray *TArrayPtr;
typedef TArrayPtr *TArrayHdl;

struct tableRec {
headerRec header;
TArrayHdl ptr[32];
};

typedef struct tableRec tableRec;

tableRec table;
int i, j, k, f, firstCol, oldMaxRows, oldMaxCols;
long count, bytes;
Finfo info;

/* note that a binary file has type RGTB */

oldMaxRows = table.header.maxRows;
oldMaxCols = table.header.maxCols;

count=512L;
FSRead(f,&count,&(table.header));

table.header.maxCols = oldMaxCols;
table.header.maxRows = oldMaxRows;

if (table.header.interpolated) {

25

firstCol=1;
/* and you must build column 0 yourself*/
/* from the rule value=start+i*samp */
}

else {
firstCol=0;
}

bytes = (long)table.header.rows*4L;
for(j=firstCol; j<table.header.cols; j++) {

HLock(table.ptr[j]);
count = bytes;
k=FSRead(f,&count,*(table.ptr[j]));
HUnlock(table.ptr[j]);
} /*end for*/

26

