
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Key Mapping
Toolbox M.TB.KeyMapping

Revised by: Jim Luther, Peter Edberg, & Imran Sayeed February 1991
Written by: Cameron Birse September 1987

This Technical Note describes the Macintosh family key code mapping scheme when running
System file 4.1 and later. This Note also provides a “safe” method for remapping keyboards.
Changes since October 1990: Added a section on how 'KMAP' resources are matched to
specific ADB keyboard types and a section on the original Macintosh and Macintosh Plus
keyboards.

Introduction

System file 4.1 introduced a change in the keystroke mapping mechanism for the Macintosh
family. Originally, a keystroke caused an interrupt, and the interrupt handler dispatched the
keycode to a translation routine pointed to by a low-memory pointer (Key1Trans or
Key2Trans). The System used to install this routine at boot time, and developers would
generally replace it in part or entirely to remap the keyboard. When the keycode was mapped, it
was returned to the interrupt handler, which then posted the event. The System file contained
both the translation routine and the key map in 'INIT' resources ID = 0 and ID = 1.

In all System files since 4.1, the low-memory pointers are still there, and the Macintosh Plus
still calls them; however, Macintosh systems equipped with ADB do not call these low-memory
pointers. The System preserves them so applications that call them can still use them to
translate keycodes, but since System file 4.1, they point to a routine that implements a different
mechanism.

ADB Keyboards

With multiple Apple Desktop Bus (ADB) keyboards, a mechanism is needed to map the
different raw keycodes to a standard virtual keycode that can be mapped to ASCII and special
character sets. This mapping is done in an effort to reduce keyboard hardware dependence, and
Developer Technical Support February 1991

Macintosh Technical Notes

the raw mapping routine uses a table which is resident in the System 'KMAP' resource.
Basically, the raw keycode is used to index into the 'KMAP' table; the value at the indexed
location in the 'KMAP' is what gets returned as the virtual keycode.

The 'KMAP' resource ID that matches the keyboard type is used if that 'KMAP' resource is
present. If a 'KMAP' resource ID that matches the keyboard type cannot be found, then the
system attempts to use 'KMAP' resource ID = 0. If 'KMAP' resource ID = 0 cannot be
found, then raw keycode to virtual keycode mapping does not occur. On all Macintosh systems
later than the Macintosh Plus, 'KMAP' resource ID = 0 is in ROM. The global variable
KbdType (a byte) contains the type of the last keyboard used.

KbdType Keyboard Type
$01 Apple Keyboard (standard) and Apple Desktop Bus Keyboard (IIGS)
$02 Apple Extended Keyboard and Apple Extended Keyboard II
$04 Apple Keyboard, ISO
$05 Apple Extended Keyboard II, ISO
$06 Portable
$07 Portable, ISO
$08 Apple Keyboard II
$09 Apple Keyboard II, ISO

With this mechanism, the keystroke causes an interrupt, and the interrupt handler maps the raw
keycode to a “virtual” keycode , which is then sent to the _KeyTrans trap. This trap maps the
virtual keycode to an ASCII value (using tables which reside in the 'KCHR' resource of the
System file) and returns that value to the handler which posts the event.

FUNCTION KeyTrans(transData:Ptr;keycode:INTEGER;VAR state: LONGINT):LONGINT

The transData parameter is a pointer to the 'KCHR' image in memory. The keycode parameter is an integer composed of the modifier flags in
bits 8-15, an up or down stroke flag in bit 7 (1=up), and the virtual key code in bits 6-0. The state parameter is a value internal to _KeyTrans
which should be preserved across calls if dead keys are desired. It is dependent on the 'KCHR' information, so if the 'KCHR' is changed, state
should be reset to zero.

The LONGINT returned is actually two 16-bit characters to be posted as events (usually the high byte of each is zero), high word first. A returned
value of zero in either word should not be posted. Do not depend upon the word in which the character is returned; if both words are valid, then the
high word should be posted first.

To remap the keyboard, one must supply a 'KCHR' resource and have the System use it. Each 'KCHR' resource has an associated 'SICN'
resource. The 'SICN' resource provides a graphic representation of the current keyboard mapping. For example, the French keyboard layout has a
'SICN' of a French flag to designate that particular map is currently active. The 'SICN' resource should be some representation of the particular
remap, and its ID number must be the same as that of the 'KCHR'. The 'KCHR' resource must be named appropriately, as it can be displayed in a
scrolling list in the Keyboard Control Panel.

Macintosh and Macintosh Plus Keyboards

With the Macintosh (the original keyboard on the 128K and 512K Macintoshes) and Macintosh

Developer Technical Support February 1991

Macintosh Technical Notes

Plus keyboards, the event record contains the raw keycode, since there is no 'KMAP' mapping.
For the domestic Macintosh keyboard and the Macintosh Plus keyboard, this is not a problem,
since the raw keycodes generated by those keyboards are identical to the virtual keycodes. This
is not the case for the Macintosh international keyboard, which is still used with the Macintosh
Plus on many international systems. For this keyboard, the event record contains a raw
keycode which can not be treated as a virtual keycode.

If you need to obtain virtual keycodes for the Macintosh international keyboard, you need to
map the raw keycode in the event record to a virtual keycode. The following table provides the
necessary mapping (the raw keycodes generated by this keyboard are in the range $00-$3F;
keycodes above this are generated by the optional keypad that may be used with this keyboard).
If the raw keycode is used as an offset into this table, the byte at that offset is the virtual
keycode. This mapping is also performed by the _Key1Trans hook before it calls
_KeyTrans, if the keyboard is a Macintosh international type.

 oldIntlKeybdRawToVirtual ; raw keycode:
 dc.b $00, $01, $02, $03, $04, $05, $32, $06 ; $00 .. $07
 dc.b $07, $08, $2c, $09, $0c, $0d, $0e, $0f ; $08 .. $0f
 dc.b $10, $11, $12, $13, $14, $15, $16, $17 ; $10 .. $17
 dc.b $18, $19, $1a, $1b, $1c, $1d, $1e, $1f ; $18 .. $1f
 dc.b $20, $21, $22, $23, $2a, $25, $26, $27 ; $20 .. $27
 dc.b $28, $29, $24, $2e, $2f, $0b, $2d, $2b ; $28 .. $2f
 dc.b $30, $34, $0a, $33, $31, $35, $36, $37 ; $30 .. $37
 dc.b $38, $39, $3a, $3b, $3c, $3d, $3e, $3f ; $38 .. $3f

The global variable KbdType (a byte) contains the type of the last keyboard used. The following table shows the values of the global variable
KbdType for the Macintosh and Macintosh Plus keyboards:

KbdType Keyboard Type
$03 Macintosh (domestic or international)
$0B Macintosh Plus

For both the Macintosh domestic and international keyboards, the global variable KbdType is 3. The Macintosh has no way to distinguish between
these two keyboards, and must rely on the user to indicate which keyboard is being used by clicking on the appropriate picture in a panel in the
Keyboard Cdev (this panel only appears on non-ADB Macintoshes). A byte flag in the 'itlc' resource ID = 0 indicates which keyboard the
user has specified. If the KbdType global contains 3, you can test this flag to determine if the international version of the keyboard is being used
(following is the assembly-language version):

 with ItlcRecord
 subq #4,sp ; space for returned handle
 move.l #'itlc',-(sp) ; push itlc type
 clr.w -(sp) ; want ID=0
 _GetResource ; get the itlc resource
 move.l (sp)+,d0 ; did we get it?
 beq myErrorHandling ; if not, bail
 move.l d0,a0 ; copy handle
 move.l (a0),a0 ; get pointer
 tst.b itlcOldKybd(a0) ; check flag
 endwith ;ItlcRecord
 ; if non-zero, international keyboard is being used

Hardware Dependencies

Although the principle underlying virtual keycodes is to have a standard keycode for a character

Developer Technical Support February 1991

Macintosh Technical Notes

regardless of the actual keyboard used, some hardware dependent differences are still present,
and covered in this section.

• The virtual keycodes for the cursor keys and for some keypad operator keys are
different on the ADB keyboards and the non-ADB keyboards:

Key Description ADB Keycode Non-ADB Keycode
left arrow $7B $46
right arrow $7C $42
down arrow $7D $48
up arrow $7E $4D
keypad plus sign (+) $45 $46 (with Shift bit set in modifiers)
keypad asterisk (*) $43 $42 (with Shift bit set in modifiers)
keypad equal sign (=) $51 $48 (with Shift bit set in modifiers)
keypad slash (/) $4B $4D (with Shift bit set in modifiers)

Notice that on non-ADB keyboards, the keycodes for the keypad operators listed
duplicate the keycodes for the cursor keys. On these keyboards, holding Shift and
pressing Left Arrow produce the plus sign character (+), for example.

• The Macintosh International keyboard and the ISO ADB keyboards have an extra
key that is not present on the domestic keyboards. This key produces virtual
keycode $0A.

• It is possible to reassign the virtual keycodes for the Shift, Option, and Control
keys on the right side of the ADB Extended keyboards. Please refer to Inside
Macintosh, V-193, The Toolbox Event Manager, for an explanation.

• There is a different virtual keycode for the Enter key depending on whether it is on
the keypad (as on the Macintosh Plus keyboard and most ADB keyboards) or on
the main section of the keyboard (as on the Macintosh keyboard and the Portable
keyboard). The keypad version has keycode $4C, while the main keyboard version
has keycode $34.

Remapping the Keyboard

Remapping the keyboard can be done two ways: either at boot time or from within an
application. Remapping from within an application can be made permanent (until the next
boot) or only for the life of the application. The remapping is accomplished by modifying a
'KCHR' resource and telling the System to use the new 'KCHR'. The 'KCHR' must have an
ID number in the range of the appropriate script and must have an associated 'SICN' resource

Developer Technical Support February 1991

Macintosh Technical Notes

with the same ID number. The Roman script, for example, uses the range 0 to 16383, and the
standard 'KCHR' IDs for each country are the same as the country code (e.g., US = 0, French =
1, German = 2, etc.). Other Roman keyboards should have numbers somewhere in the script
range (e.g., “Dvorak” at ID 500).

Remap At Boot Time

To remap the keyboard at boot time, there must be a modified 'KCHR' resource in the System
file with an ID number in the range of the appropriate script and an associated 'SICN'
resource with the same ID number. To make the System use the modified 'KCHR' at boot
time, one must change the entries in the 'itlb' resource in the System file to reflect the ID of
the modified 'KCHR' and 'SICN' resources. Refer to the latest version of MPW’s SysTypes.r
file for the exact format of the 'itlb' resource.

Since Apple’s System Software Licensing policy forbids shipping a modified System file, Apple
suggests using the Installer to install the new resources. This installation should assign the new
resources their IDs based upon what is currently in the System file to avoid all conflicts. Refer
to M.PT.Installer for more details on Apple’s Installer program.

Remap After Boot Time

To remap the keyboard after boot time, there must be a modified 'KCHR' resource in the
System file or in the application with an ID number in the range of the appropriate script and an
associated 'SICN' resource with the same ID number. One must also call the Script Manager
to set up the proper resources and tell the System to use them. First call _SetScript to set
the Script Manager’s global variable for the 'KCHR' resource ID, then call _SetScript
again to set the global variable for the 'SICN' resource ID. Now call _KeyScript to load
the resources and set up the System to use them. The following sample code demonstrates these
calls:

MPW Pascal

 CONST
 DvorakID = 500;

 VAR
 err: OSErr;

 BEGIN
 err := SetScript(smRoman, smScriptKeys, DvorakID);
 err := SetScript(smRoman, smScriptIcon, DvorakID);
 KeyScript(smRoman);
 END;

'KCHR' Resource Format

Developer Technical Support February 1991

Macintosh Technical Notes

This section provides a general description of the 'KCHR' resource format; refer to the latest
version of MPW’s SysTypes.r file for the exact format of the 'KCHR' resource.

The 'KCHR' resource consists of a two-byte version number followed by a 256-byte modifier
table, mapping all 256 possible modifier states to a table number. This table is followed by a
two-byte count of tables, which is, in turn, followed by that many 128-byte ASCII tables. The
ASCII tables map the virtual keycode to an ASCII value; zero signifies a dead key, and in this
case the dead key table must be searched. The dead key table is composed of a count of dead
key records (two bytes) and that many dead key records. A dead key record consists of a one-
byte table number, a one-byte virtual keycode (without an up or down bit), a completor table,
and a no-match character.

When _KeyTrans searches the dead key records, it checks for a match with the table number
and the keycode. If there is no match, it is not a dead key, and a zero is returned. If there is a
match, it is recorded in the state variable. If the previous key was a dead key, the completor
table is searched. The completor table is comprised of a count of completor records, followed
by that number of completor records.

A completor record is simply a substitution list for ASCII characters. If the ASCII character
matches the first byte in the completor record, the second byte is substituted for it. When there
is no substitution to be made, the original ASCII character is preceded by the no match
character found at the at the end of the dead key record.

'KMAP' Resource Format

This section provides a general description of the 'KMAP' resource format; refer to the latest
version of MPW’s SysTypes.r file for the exact format of the 'KMAP' resource.

The 'KMAP' resource starts with a two-byte ID, followed by a two-byte version number. These
four bytes are followed by the 128-byte keycode mapping table, described previously. The table
is followed by a list of exceptions. The 128-byte table is simply a one-to-one mapping of real
keycodes to virtual keycodes; the first byte is the virtual keycode for $00, the second for $01,
etc. The high bit of the virtual keycode signals an exception entry in the exception list.

The exception list is used to enable the device driver to initiate communication with the device,
usually to perform a state change. The exception list begins with a two-byte record count
followed by that many records. The format of the exception record is available in the MPW
SysTypes.r file. The raw keycode is the keycode as generated by the device. The XOR bit
informs the driver to invert the state of the key instead of using the state provided by the
hardware. This can be used to provide keys that lock in software. Inside Macintosh, Volume V,
Developer Technical Support February 1991

Macintosh Technical Notes

The Apple Desktop Bus, describes the ADB opcode. Finally, the data string is a Pascal string
that is passed to the _ADBOp trap.

Further Reference:
• Inside Macintosh, Volume V, The Toolbox Event Manager
• Inside Macintosh, Volume V, The Apple Desktop Bus
• M.PT.Installer
• M.TE.InternationalCancel

Developer Technical Support February 1991

