
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

Event Manager Q&As
Toolbox M.TB.EventMgr.Q&As

Revised by: Developer Support Center October 1992
Written by: Developer Support Center October 1990

This Technical Note contains a collection of Q&As relating to a specific topic—questions
you’ve sent the Developer Support Center (DSC) along with answers from the DSC
engineers. While DSC engineers have checked the Q&A content for accuracy, the Q&A
Technical Notes don’t have the editing and organization of other Technical Notes. The Q&A
function is to get new technical information and updates to you quickly, saving the polish for
when the information migrates into reference manuals.

Q&As are now included with Technical Notes to make access to technical updates easier for
you. If you have comments or suggestions about Q&A content or distribution, please let us
know by sending an AppleLink to DEVFEEDBACK. Apple Partners may send technical
questions about Q&A content to DEVSUPPORT for resolution.

New Q&As and Q&As revised this month are marked with a bar in the side margin.

Consistent application scrolling speed for all Macintosh systems
Written: 5/3/89
Last reviewed: 8/1/92

How can I keep the speed of my application’s scrolling consistent on all Macintosh systems,
including faster ones such as the Macintosh II?

One method is to use TickCount. If a certain number of ticks has passed since the last
increment of the scroll bar, then go on. If not, then loop until the desired number of ticks has
passed before scrolling. It’s easy to include this test, but you’ll have to play with itawhile to
find the right number of ticks for the desired delay. Also, consider that some Macintosh
systems are faster than a Mac II, such as the SE/30 and Macintosh systems with third-party
accelerator boards. It might be nice to let users set their preference for the scrolling speed.

X-Ref:
“The Toolbox Event Manager,” Inside Macintosh Volume I

Developer Support Center October 1992

Macintosh Technical Notes

'SIZE' resource is32BitCompatible flag
Written: 3/14/91
Last reviewed: 6/7/91

Developer Support Center October 1992

Macintosh Technical Notes

Does setting the is32BitCompatible bit in the Macintosh 'SIZE' resource have any effect in
System 7.0?
__

The alert box that was to be shown for applications with the 'SIZE' resource’s
is32BitCompatible flag disabled was found to be too confusing for an end user, so the
is32BitCompatible flag is not used and the alert box is not displayed in the final System 7.0.
(It is, however, displayed in A/UX 2.0 and 2.0.1.) This could change in the future.

'SIZE' resource bit and resume events in window title bar
Written: 9/3/91
Last reviewed: 9/16/91

We set our 'SIZE' resource to say we don’t want mouse events for the click that generates a
resume event, but when the user clicks in the title bar of our (inactive) window we get the
event anyway.

You are quite right, you do get the mousedown if it occurs in the windows title bar. This
choice was made so that when you click in the drag region of a window in the background
you don’t have to click twice to get the window to drag. This somewhat negates the effect
that some developers are trying to get by setting the bit in the 'SIZE' resource, but it really
could not be avoided. Your best bet is to simply ignore the first mousedown after a resume if
it is in the drag region of the window. This way, you will not loose any events in the unlikely
event that the user can get a keystroke or something in the queue before you get your
resume.

Code snippet that uses StillDown and WaitMouseUp for dragging
Written: 6/11/91
Last reviewed: 8/13/91

The code below gives a simple example of how to use StillDown and WaitMouseUp to do
simple dragging.

Point oldPoint,newPt; /* contains the old and new mouse positions */
EventRecord theEvent; /* contains the mouseDown event */
Rect r; /* this has already been set by now */

 ... called with mouseDown event in theEvent ...

 oldPoint = theEvent.where;
 GlobalToLocal(&oldPoint);
 if (StillDown()) {
 while (WaitMouseUp()) {
 GetMouse(&newPoint);
 if (DeltaPoint(oldPoint,newPoint)) {
 EraseRect(&r);
 OffsetRect(&r,newPoint.h-oldPoint.h,newPoint.v-oltPt.v);
 FrameRect(&r);

Developer Support Center October 1992

Macintosh Technical Notes

 oldPoint = newPoint;
 }
 }
 }

 ...

Developer Support Center October 1992

Macintosh Technical Notes

Using GetKeys to check Macintosh key status
Written: 7/26/90
Last reviewed: 10/1/91

Is there a way to test whether a particular key is down independently of the event record?
My application needs to check the option key status before entering the main event loop.

The call GetKeys(VAR k:KeyMap) returns a keyMap of the current state of all the keys on
the keyboard. The call is documented in Inside Macintosh Volume I on page 259, with the
definition of keyMap on page 260. The option key will appear as the 58th bit (counting from
zero) in the map. In MacsBug you can see this with a DM KeyMap which returns:

 0000 0000 0000 0004 0000 0000 0000 0000

It is important to understand that the keyMap is an array of packed bits. You need to test if the option key BIT is 1 or 0. The key code 58 = $3A
is the 58th bit of the keyMap. This number can be determined from the keyboard figure on page 251 of Inside Macintosh. (If in counting the
above bits you get 61 instead of 58, remember that the bits within each byte counts right to left.)

With the above information you should be able to determine the status of any key on the keyboard within your program without waiting for an
event.

WaitNextEvent mouseRgn parameter & mouseMoved events
Written: 7/23/91
Last reviewed: 8/30/91

Passing nil as the mouseRgn in WaitNextEvent is entirely acceptable if a Macintosh
application doesn’t need to respond to changes in the location of the mouse pointer.
MouseMoved events are generated only as a convenience to the programmer.

From Inside Macintosh Volume VI, if nil is passed as the mouseRgn, mouseMoved events
will _not_ be generated. Otherwise, a mouseMoved event will be generated when the user
moves the mouse outside the specified region.

Inside Macintosh Volume VI, page 5-10, has a small snippet containing a main event loop
which you may find useful. It describes Apple’s recommended way of calling
WaitNextEvent with a non-nil mouseRgn parameter. Volume VI, page 5-29, has a long
description of WaitNextEvent.

System 7 applications need to be background-capable
Written: 8/1/91
Last reviewed: 8/30/91

System 7-savvy applications should have the 'SIZE' resource’s background processing bit
set. (It’s not documented anywhere explicitly that you need to have this bit set.)

Developer Support Center October 1992

Macintosh Technical Notes

All System 7 Apple event-aware applications need to be background-capable, since there are
many instances where Apple events will come in to you while you’re in the background, and
there will be many times (as new applications are developed) where you will _not_ come to
the

Developer Support Center October 1992

Macintosh Technical Notes

front to process a series of events; you’ll work in the background as a client for another
application.

You don’t want to hog a lot of system time when you have nothing to do in the background,
but with the Edition Manager you do need to be able to receive events while you’re in the
background. However, you can still be system-friendly when you do this. Here’s one way to
do is this: When you’re switched into the background, set your sleep time to MAXLONG
and make sure you have a nul mouse region. This way, you will be getting nul events _very_
rarely, and you will not be taking much time at all away from other applications, but you can
still react to events sent to you by other parts of the system. Then when you come forward,
you can reset your sleep time to your normal, low, frontmost sleep.

Help balloons & OSEventAvail between BeginUpdate & EndUpdate
Written: 8/2/91
Last reviewed: 9/16/91

Random garbage is occasionally displayed on the screen if a Macintosh help balloon goes
away due to an OSEventAvail call when a screen refresh is taking place. Is it possible that
the Help Manager code isn’t entirely cool if it hides a balloon between a BeginUpdate and
EndUpdate?

Yes, this is particularly nasty. Here’s the deal:

OSEventAvail does do balloon maintenance. This is a problem, because OSEventAvail is
documented as to NOT move memory, but when balloons are active, it does sometimes.
Beyond this, which is really a bad thing, it is still a problem for updates that allow
interrupting, such as yours.

Your problem isn’t that it moves memory. What it does do is recalculate visRgns, due to the
balloon moving. The balloons are actually windows, and the Help Manager has its own
WDEF that does the funny balloon shapes. When a balloon/window is moved, the visRgns
have to be recalculated to reflect what has been covered or exposed. This is normally fine,
but it is a really bad thing between BeginUpdate and EndUpdate.

BeginUpdate first caches the visRgn. It then localizes the updateRgn. It then intersects the
visRgn and updateRgn and places the result in the visRgn. It then clears the updateRgn. You
are now ready to update just the portion of thewindow that needs updating.

The problem is that you are making a call to OSEventAvail between BeginUpdate and
EndUpdate with balloons active, and somebody moves the mouse. The balloon therefore
moves, the visRgns are recalculated, and the window being updated now has a new visRgn.

This would not be bad, except that the visRgn that was cached when BeginUpdatewas called

Developer Support Center October 1992

Macintosh Technical Notes

reflects the balloon’s old position. When EndUpdate is called, the visRgn for the window
just updated will be restored to what it was before the balloon moved.

This now means that there is possibly an area on the screen that is shared between the
updated window and the balloon window, plus a possible area that should be in a window,
and is no longer. Obviously, this is really bad.

The only thing that I can think of to do is the following:

1) Call BeginUpdate, as usual.

Developer Support Center October 1992

Macintosh Technical Notes

2) Copy the resultant visRgn into the clipRgn.
3) Call EndUpdate
4) Draw to the window as you would for a normal update. (Your normal update also calls
OSEventAvail every so often to see if it should interrupt.)

What this accomplishes is that the clipping for the area that doesn’t need updating is no
longer done with the visRgn. It is done with the clipRgn instead. This will not be affected by
any balloons moving. Also, after the EndUpdate, there is no longer a cached copy of the
window’s visRgn, and therefore the balloon window can move and not mess up visRgns.

The above general technique should take care of the problem for you. At this point, there
isn’t a resolution to this problem -- only a workaround. It is bad that OSEventAvail can
move memory, as it was documented not to. The problem is that the Help Manager needs to
do stuff at this time, and this may involve moving the balloon window.

DTS recommends making your code safe from this problem with the above workaround, and
to also see if you can be hurt by memory moving when OSEventAvail is called in general.

Macintosh Finder and DoubleTime global
Written: 8/23/91
Last reviewed: 10/8/91

How does the Macintosh Finder interpret the DoubleTime global? It seems the Finder
doesn’t use DoubleTime the way it’s documented in Inside Macintosh.

The ratio of ticks to value of DoubleTime is 1:1—that is, the number in the DoubleTime
variable (Inside Macintosh Volume I, page 260) is, in fact, the number of ticks between a
mouse up and a mouse down. Of course, this is not how the Finder works. The Finder
multiplies the DoubleTime variable by 2 to determine double click time. It does this to
account for user problems that occur while the user is arranging icons. Thus, the hard-and-
fast answer is the Finder uses DoubleTime*2, and the rest of the system just uses
DoubleTime.

By the way, the Finder does not limit the double-time variable to 64 ticks. It treats it like a
byte in most places, although in some places it is treated like a longword. However, clipping
it at 64 ticks would be the best method since that would provide a 1 second double click (two
second in the Finder), which is long enough for anyone.

Applications should use DoubleTime as documented in the manual, not as it’s used by the
Finder.

Events and switching between Macintosh applications

Developer Support Center October 1992

Macintosh Technical Notes

Written: 830/91
Last reviewed: 10/22/91

After selecting an application in the System 7 Application or Apple menu, sometimes control
doesn’t switch from our application to the selected application.

The symptoms you’re described—the process menu not switching layers—is exactly what
happens if you have an activate or update event pending that you are not acting upon. Here
are ways that pending activate or update events have been handled incorrectly:

Developer Support Center October 1992

Macintosh Technical Notes

• dueling event loops
• your application isn’t asking for all events
• the word in your code that contains the everyEvent constant is trashed (unlikely)
• you are not calling BeginUpdate and EndUpdate (most likely problem)

PostHighLevelEvent and sending low-level messages
Written: 8/23/91
Last reviewed: 9/15/92

It looks as though the Event Manager routine PostHighLevelEvent could be (ab)used to send
low-level messages, like phony mouse clicks and keystrokes. Would this work?

No; unfortunately, this won’t work. A few reasons why:

• The only applications that will receive high-level events (and their descendants, like Apple
events) are applications that have their HLE bit set in their SIZE resource. If you try to send
(or post) an HLE to an older application you’ll get an error from the PPC Toolbox telling
you that there’s no port available.
• There’s no system-level translator to convert these things. There are currently translators to
change some Apple events. Specifically, the Finder will translate any “puppet string” event
into puppet strings for non-System 7 applications (odoc, pdoc, and quit), but these are very
special.
• The only way to send user-level events such as mouse clicks through HLEs is to use the
Apple events in the MiscStndSuite shown in the Apple Event Registry. And all those events
assume that the receiving application will do the actual translations to user actions
themselves.
• HLEs come in through the event loop. So even if it were possible (through some very nasty
patching to WaitNextEvent) to force an HLE into a non–HLE-aware application, the event
would come in with an event code of 23 (kHighLevel) and the targeted application would
just throw it away.

So the answer is that you can’t send user-level events to an HLE-aware application. If you
want to drive the interface of an old application in System 7, you have to use the same hacky
method you used under all previous systems. This, by the way, is one of the main reasons
why MacroMaker wasn’t revised for System 7. Apple decided that it wasn’t supportable and
that we would wait for applications to update to System 7 and take advantage of third-party
Apple event scripting systems.

Developer Support Center October 1992

