
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

TextEdit Technicalities
Text M.TE.TextEditTech

Revised by: Mary Burke April 1990
Written by: Mary Burke February 1990

This Technical Note discusses some areas in TextEdit that have not previously been clearly
documented.
Changes since February 1990: Added a note about the changes in TextEdit for System
Software 6.0.5, documented the low-memory global TESysJust, clarified information
about text direction and _TESetJust, discussed problems with the SetWordBreak
routine along with a solution to work around it, and described the differences in dialog text
item behavior.

TextEdit in 6.0.5

In addition to all the features of earlier versions, TextEdit 3.0 now allows you to take
advantage of the Script Manager’s handling of systems with more than one script system
installed. TextEdit uses the Script Manager to support such systems and now exhibits the
correct behavior for editing and displaying text in multiple styles and different scripts.
Multiple scripts can even exist on a single line due to TextEdit’s use of the Script Manager.
The new version of TextEdit in 6.0.5:

• handles mixed-directional text
• synchronizes keyboards and fonts
• handles double-byte characters
• determines word boundaries and line breaks
• provides outline highlighting in the background
• buffers text for performance improvements
• permits left justification in right-to-left directional scripts
• customizes word breaking
• customizes measuring

Refer to the TextEdit chapter in Inside Macintosh, Volume VI, for detailed documentation on
TextEdit 3.0.

Developer Technical Support April 1990

Macintosh Technical Notes

The LineStarts Array and nLines

The LineStarts array is a field in a TextEdit record that contains the offset position of
the first character of each line. This array has the following boundary conditions:

• It is a zero-based array.
• The last entry in the array must have the same value as teLength.
• The maximum number of entries is 16,000.

To determine the length of a line you can use the information contained in the
lineStarts array and nLines. For example, if you want to determine the length of line
n, subtract the value contained in entry n of the array from the value in the entry (n+1):

 lengthOfLineN := myTE^^.lineStarts[n+1] - myTE^^.lineStarts[n];

The terminating condition for this measurement is when n = nLines + 1. It is important not to change the information contained in the
array.

TESysJust

TESysJust is a low-memory global that specifies the system justification. The default
value of this global is normally based on the system script. It is -1 when a system’s default
line direction is right to left, and 0 for a default left-to-right line direction. Applications may
change the value using the Script Manager routine SetSysJust; however, these
applications should save the current value before using it and restore it before exiting the
application or processing a MultiFinder suspend event. The current value may be obtained
using the Script Manager routine GetSysJust.

Forcing Text Direction

The original TextEdit documentation introduced _TESetJust with three possible choices
for justification: teJustLeft (0), teJustCenter (1), and teJustRight (-1). These
choices are appropriate for script systems that are read from left to right. However, in script
systems that are read from right to left, text is incorrectly displayed as left justified in dialog
boxes and in other areas of applications where users cannot explicitly set the justification.
To fix this problem, the behavior of teJustLeft has changed to match the line direction
of the system in use, which is the value stored in TESysJust. Another constant has been
added to allow an application to force left justification: teForceLeft (-2). This constant
has been available for some time, but it has not been documented until now. If your
application does not allow the user to change the justification, then it should use
teJustLeft; if it does, then it should use teForceLeft for left justification.

A Little More on Redraw in _TESetStyle

Developer Technical Support April 1990

Macintosh Technical Notes

If the redraw parameter used in _TESetStyle is FALSE, line breaks, line heights, and
line ascents are not recalculated. Therefore a succeeding call to a routine using any of this
information does not reflect the new style information. For example, a call to
_TEGetHeight (which returns a total height between two specified lines) uses the line
height set previous to the _TESetStyle call. A call to _TECalText is necessary to
update this

Developer Technical Support April 1990

Macintosh Technical Notes

information. If redraw is TRUE, the current style information is reflected. This behavior
also holds for the redraw parameter in _TEReplaceStyle.

TEDispatchRec

There is currently space reserved for four documented hooks in the TEDispatchRec:
TEEolHook, TEWidthHook, TEDrawHook and TEHitTestHook. The space beyond
these hooks is reserved, and any attempt to use this private area results in corrupted TextEdit
data.

Custom Word Breaks

A problem exists in one of TextEdit’s advanced procedures, SetWordBreak. The current
glue code does not preserve the state of the registers correctly; however, the solution is fairly
simple. Instead of calling SetWordBreak and passing a pointer to your custom word
break routine, pass the pointer to your external glue which should call your custom word
break routine. Following is the glue code that correctly handles the registers:

WordBreakProc PROC EXPORT

 IMPORT MYWORDBREAK ;Must be uppercase here
 MOVEM.L D1-D2/A1,-(SP)
 CLR.W -(SP) ;Space for result
 MOVE.L A0,-(SP) ;Move the ptr to stack
 MOVE.W D0,-(SP) ;Move the charpos to Stack
 JSR MYWORDBREAK
 MOVE.W (SP)+,D0 ;Set Z bit
 MOVEM.L (SP)+,D1-D2/A1
 RTS

 ENDP

An external declaration is also necessary:

 FUNCTION WordBreakProc(text: Ptr; charPos: INTEGER) : BOOLEAN; EXTERNAL;

as is the function itself. One thing that should be noted is that it is not really necessary to have MyWordBreak boolean, but rather to have the Z
bit set properly. The result of the function should be zero when you do not want a break; otherwise, a non-zero value indicates a break is
desired.

 FUNCTION MyWordBreak(text : Ptr; charPos : INTEGER) : INTEGER;
 { Your word break code here. }

For more information, refer to the TextEdit chapter of Inside Macintosh, Volume I-380.

Developer Technical Support April 1990

Macintosh Technical Notes

Static and Editable Text

The Dialog Manager depends on TextEdit to display text in dialog boxes. For an editable
text field, the Dialog Manager simply calls _TEUpdate. Before making this call, it may
double the width of the rectangle to contain the text if the height of the rectangle is sufficient
for only one line and the line direction specified by TESysJust is left to right. In this case,
the Dialog Manager extends the rectangle on the right. Note, however, this does not occur
when your line direction is right to left.

For static text items, _TextBox is used instead. When the display rectangle is not large
enough. _TextBox clips the text to the size of the specified rectangle. To avoid the
clipping problem, simply make the display rectangle larger. If your dialog box contains both
static and editable text items, the difference in the text handling may appear inconsistent.

Further Reference:
• Inside Macintosh, Volumes I,V & VI, TextEdit
• Inside Macintosh, Volume V, The Script Manager
• Inside Macintosh, Volume I, The Dialog Manager
• M.TE.TestEditChanges

Developer Technical Support April 1990

